
WHITE PAPER

 1

[

October 2000

Prepared by
Alain Lissoir

Technology Consultant
Compaq Services

Compaq Computer
Corporation

The powerful combination of Windows
Script Host and Active Directory Service
Interfaces under Windows 2000
The purpose of this white paper is to explain some advanced scripting techniques using
Windows Script Host (WSH) and Active Directory Service Interfaces (ADSI). Through the
use of examples, the reader will learn how to write reusable code with WSH, how to
execute queries, and how to manipulate Active Directory rights. The document also shows
how to create miscellaneous object types such as different group types, user objects, and
Exchange 2000 mailboxes.

This white paper is the second part of a series of which “Understanding Microsoft
Windows Script Host and Active Directory Interfaces in Windows 2000” is the first part.

Acknowledgments:

Micky Balladelli
Jan De Clercq
Mike Dransfield
Andrew Gent
Andy Harjanto (Microsoft Corporation)
Dung Hoang Khac
Jurgen Klejdzinski
Tony Redmond
John Rhoton
Rudy Schockaert
Alan Smith (Microsoft Corporation)
Roland Schoenauen

.

WHITE PAPER (cont.)

2 WSH and ADSI – Part 2

NOT ICE

The information in this publication is subject to change without notice.

Compaq Computer Corporation shall not be liable for technical or editorial errors or omissions
contained herein, nor for incidental or consequential damages resulting from the furnishing,
performance, or use of this material.

This publication does not constitute an endorsement of the product or products that were tested.
The configuration or configurations tested or described may or may not be the only available
solution. This test is not a determination of product quality or correctness, nor does it ensure
compliance with any federal, state or local requirements. Compaq does not warrant products other
than its own strictly as stated in Compaq product warranties.

Product names mentioned herein may be trademarks and/or registered trademarks of their
respective companies.

Compaq, Contura, Deskpro, Fastart, Compaq Insight Manager, LTE, PageMarq, Systempro,
Systempro/LT, ProLiant, TwinTray, LicensePaq, QVision, SLT, ProLinea, SmartStart, NetFlex,
DirectPlus, QuickFind, RemotePaq, BackPaq, TechPaq, SpeedPaq, QuickBack, PaqFax, registered
United States Patent and Trademark Office.

Aero, Concerto, QuickChoice, ProSignia, Systempro/XL, Net1, SilentCool, LTE Elite, Presario,
SmartStation, MiniStation, Vocalyst, PageMate, SoftPaq, FirstPaq, SolutionPaq, EasyPoint, EZ
Help, MaxLight, MultiLock, QuickBlank, QuickLock, TriFlex Architecture and UltraView,
CompaqCare and the Innovate logo, are trademarks and/or service marks of Compaq Computer
Corporation.

Other product names mentioned herein may be trademarks and/or registered trademarks of their
respective companies.

©1999 Compaq Computer Corporation. Printed in the U.S.A.

Microsoft, Windows, Windows NT, Windows NT Advanced Server, SQL Server for Windows NT
are trademarks and/or registered trademarks of Microsoft Corporation.

October 2000

2nd version.

Feedback may be addressed directly to alain.lissoir@compaq.com

 .

WHITE PAPER (cont.)

3 WSH and ADSI – Part 2

TABLE OF CONTENTS

INTRODUCTION ...5

PREREQUISITES...6

WHAT’S NEW IN THIS UPDATED VERSION? ...7
Sample 18 - Creating groups for organizational unit members...7
Sample 20 - Enabling E-Mail on object for Exchange 2000 with ADSI7
Sample 21 - Enabling E-Mail on object for Exchange 2000 with CDOEXM7
Sample 22 - Creating users under Windows 2000 with their associated Exchange 2000
mailboxes ...7

DEMONSTRATION BY SAMPLES...8
SEARCHING IN THE ACTIVE DIRECTORY...8

Querying the Active Directory ...9
The Dictionary Object returns the query results ...12
Code reusability...14
Events sinking ..24
Using the ADSearch script to get more Schema information ..28

ACCESSING SECURITY SETTINGS ON FILE SYSTEM AND ACTIVE DIRECTORY OBJECTS.................33
Viewing the rights set on a File System Object or on an Active Directory object34
Adding rights to a File System Object or to an Active Directory object..................................42
Removing rights from a File System Object or from an Active Directory object.....................46
Creating a Security Descriptor for an Exchange 2000 mailbox..48

CREATING SECURITY GROUPS BASED ON OU MEMBERSHIP ..52
Creating a group object...53

WORKING WITH EXCHANGE 2000 ..58
Checking the presence of Exchange 2000, checking the presence of an Exchange
Organization name ..58
Enabling E-Mail on objects ...59
Creating the Exchange 2000 mailbox with ADSI ..64
Creating the Exchange 2000 mailbox with CDO for Exchange Management.........................64

BUILDING ACTIVE DIRECTORY USER ACCOUNTS AND EXCHANGE 2000 MAILBOXES68
The core logic of the script ..68
The user object creation ..74
Creating directories with the File System object ...76
The share object creation ..77

CONCLUSION ..79

APPENDIX A: USER OBJECT ATTRIBUTE DEFINITIONS ...80

APPENDIX B: USER GUI RIGHTS ...90

TABLE OF SAMPLES

Sample 1: The Active Directory search function ...10
Sample 2: The main function calling the ADSearch function. ...13
Sample 3: Making an external VB Script function reusable from other scripting languages such as
Java with XML encapsulation..14
Sample 4: The XML dummy file generated by the Wizard Script Component.18

WHITE PAPER (cont.)

4 WSH and ADSI – Part 2

Sample 5: The ADSearch VB Script function exposed as a COM component with Windows Script
Component...20
Sample 6: Calling the ADSearch Windows Script Component from VB Script.23
Sample 7: Calling the ADSearch Windows Script Component from Java Script.23
Sample 8: Windows Script Component triggering event ...26
Sample 9 Windows Script File capturing events..28
Sample 10: Loading all the Active Directory Tree objects with their attributes, attribute
particularities and syntaxes into an Excel sheet..29
Sample 11 Prompting for some parameters...32
Sample 12: Deciphering a security descriptor from the File System or from the Active Directory.35
Sample 13: Using the ‘ViewSecurityDescriptor.VBS’ script from a Windows Script file................40
Sample 14: Adding rights to a File System object or to an Active Directory object........................44
Sample 15: Removing rights from a File System object or from an Active Directory object.46
Sample 16: Windows Script demonstrating the miscellaneous right functions usage.47
Sample 17 Creating a security descriptor ...49
Sample 18 Creating groups for organizational unit members...54
Sample 19 Checking the presence of Exchange 2000 with a specific Exchange Organization name.
...58
Sample 20 Enabling E-Mail on object for Exchange 2000 with ADSI ..59
Sample 21 Enabling E-Mail on object for Exchange 2000 with CDOEXM65
Sample 22 Creating users under Windows 2000 with their associated Exchange 2000 mailboxes 68
Sample 23 Creating the directories for the home directory and the profile directory.....................76
Sample 24 Creating the share for the home directory ...77
TABLE OF FIGURES

Figure 1 Registration of a Windows Script Component ..17
Figure 2 The Windows Script Component Wizard...18
Figure 3 The security descriptor and the relationship between each of its components.33
Figure 4 Advanced view of File System rights...42
Figure 5 Advanced view of Active Directory rights...42
Figure 6 The extended rights location in the Configuration Context. ...43
Figure 7 Blocking inheritance ...44
Figure 8 Adding organizational unit members to a group. ...52
TABLE OF TABLES

Table 1 The user object attributes, the syntax properties and the property types............................80
Table 2 The Active Directory standard GUI rights and their associated flag values.90
Table 3 The File System GUI rights and their associated flag values. ..91
Table 4 The Active Directory GUI inheritance and their associated flag values.92
Table 5 The File System GUI inheritance and their associated flag values.92
Table 6 The Exchange 2000 GUI rights and their associated flag values.......................................93
Table 7 The Exchange 2000 GUI inheritance and their associated flag values.94

WHITE PAPER (cont.)

5 WSH and ADSI – Part 2

INTR ODUCT ION
In Part 1 “Understanding Microsoft Windows Script Host and Active Directory Service Interfaces
in Windows 2000”, the reader has the opportunity to examine all the basic functions of WSH and
ADSI. Basic access methods are explained via small samples. The second part of this study will
demonstrate that the scripting technology can be more than a single script file development. The
combination of WSH and ADSI gives a powerful tool to developers and administrators.

Before WSH, any specific Windows system customization required the use of a custom tool or an
external solution such as Resource Kit utilities, Perl engines, and so on.

Today, under Windows 2000, using WSH and ADSI (and even possibly other COM objects
written for automation languages), developers and administrators can handle most of their tasks
from one unique environment: Windows Script Host.

One of the purposes of this White Paper is to develop a script capable of creating users (with their
properties), their home directories, their profile directories (with file system right settings) and the
Exchange 2000 mailbox (with access rights). The document will examine all steps in detail to
reach that goal. All functions needed will be developed and commented on in this document.

This White Paper is intended for people with a good knowledge of Windows 2000, Exchange
2000, ADSI and WSH. It is strongly recommended that you read the first part of the study (and
also other White Papers on Windows 2000 given in reference) if the reader is new to those
technologies.

This white paper is based on Windows 2000 and Exchange 2000. Some changes may occur for
later versions.

WHITE PAPER (cont.)

6 WSH and ADSI – Part 2

PREREQUISITES
The reader should have an understanding of the following technologies before reading this
document:

• VB Scripting

• How to use COM objects inside VB Scripting

• Windows 2000 Active Directory

• Windows 2000 concepts

• Part 1 - Understanding Microsoft WSH and ADSI in Windows 2000

To run sample scripts given in this document, you must have:

• Windows 2000 installed with Active Directory installed

• Microsoft Excel 97 or Microsoft Excel 2000 installed

• Microsoft Exchange 2000 installed

WHITE PAPER (cont.)

7 WSH and ADSI – Part 2

WHAT’S N EW IN THIS UPDA TED VERS ION?
This update concerns the support for the commercial release of Exchange 2000.

Sample 18 - Creating groups for organizational unit members

The statement including the “EnableE-MailFunction.vbs” function has been changed to include the
new function name “EnableE-MailFunction (ADSI).vbs”.

Sample 20 - Enabling E-Mail on object for Exchange 2000 with ADSI

The Sample 20 didn’t create correctly a mail-enabled recipient with ADSI. The script didn’t
initialize the targetAddress attribute of the mail-enabled object.

The function “EnableE-MailFunction.vbs” using ADSI to enable the mailbox has been renamed to:

“EnableE-MailFunction (ADSI).vbs”

This differentiates the ADSI function from the one using CDO for Exchange Management
(CDOEXM) to enable the mailbox:

“EnableE-MailFunction (CDOEXM).vbs”

The function call creating the Exchange 2000 Security Descriptor has been moved inside the
"EnableE-MailFunction (ADSI).vbs" function. The Exchange 2000 Security Descriptor creation is
mandatory if we create the mailbox via ADSI. When creating the mailbox via CDOEXM, the
CDOEXM COM object constructs a default security descriptor.

This function contained a wrong reference to the variable objUser. It should be objObject instead.
Originally objUser and objObject referenced the same object, because objUser was a global
variable the scripts worked correctly. But it was potential bug if the function caller was using
another variable than objUser.

The “EnableE-MailFunction (ADSI).vbs” uses the new Exchange 2000 rights contants to construct
the default Exchange 2000 default security descriptor (See Include.vbs)

Sample 21 - Enabling E-Mail on object for Exchange 2000 with CDOEXM

The sample is a new function to show how to use CDO for Exchange Management (CDOEXM) to
mail-enable or mailbox-enable an object. This function is given for reference only.

Sample 22 - Creating users under Windows 2000 with their associated Exchange 2000 mailboxes

The statement including the “EnableE-MailFunction.vbs” function has been changed to include the
new function name “EnableE-MailFunction (ADSI).vbs”.

The Private Store name has been moved to a constant such as the Organization name, the
Administration group name and the Storage group name. Before this parameter was hard coded in
the script code and was not modifiable in the script header.

A function “CreateUserID” to create the Windows 2000 User Ids has been added to the script.

WHITE PAPER (cont.)

8 WSH and ADSI – Part 2

DEMONSTRATION BY SAMPLES
Rather than doing a long description of all the WSH and ADSI functionality, we will examine
practical samples showing how to manipulate data from the Active Directory. Discussing different
topics between each sample will show the different capabilities of the two technologies.
Capabilities such as security configuration, code reusability, data search, Windows 2000 user
creation, and Exchange 2000 mailboxes creation will be examined through these samples. Of
course, the purpose of the document is not to provide all possible applications of WSH and ADSI.
The purpose of the scripts is to give the reader a good idea of “how the things work”.

Searching in the Active Directory
One approach to searching across the Active Directory could be by browsing the tree to find all
existing objects and their associated properties. (See the first part of this study: “Understanding the
Microsoft Windows Script Host and the Active Directory Service Interfaces in Windows 2000”.)
That is, of course, a valid method but it has some performance disadvantages. In addition, the code
must contain the search condition in the script logic.

Another method is using a search mechanism provided by ADSI based on the IDirectorySearch
interface. ADSI implements several interfaces but only one is suitable for use in a scripting
environment such as Windows Script Host.

Here are more details about the available methods:

• IDirectorySearch

ADSI provides the IDirectorySearch interface to query Active Directory (as well as other
directory services such as NDS) using LDAP. IDirectorySearch is a COM interface that returns
richly typed data (Integer, Octet String, String, Security Descriptor, UTC-Time, Large Integer,
Boolean, etc.). The IDirectorySearch interface provides a very high level and low overhead
interface for querying data of a directory or a global catalog. The IDirectorySearch COM
interface is not available to development environments that use Automation Languages (Visual
Basic, VBScript, JavaScript and so on).

• OLE DB

OLE DB is a set of COM interfaces that provide applications with uniform access to data stored in
diverse information sources, regardless of location or type. ADSI also provides an OLE DB
provider enabling applications to use OLE DB to access Active Directory. The ADSI OLE DB
provider uses the IDirectorySearch interfaces to submit queries to Active Directory and to collect
the results. Because all are COM-based, this method of search is the most suitable from a scripting
environment.

• LDAP API

Windows 2000 domain controllers are directory servers compliant with LDAP version 3. The
LDAP API is a C-style function library. Applications can use the LDAP API to search Active
Directory. Without an encapsulation of the API in a COM object, this type of service is not
accessible from Windows Script Host.

WHITE PAPER (cont.)

9 WSH and ADSI – Part 2

Querying the Active Directory

To query the Active Directory, the Sample 1 uses the OLE DB techniques implemented by the set
of COM interfaces provided by ADSI and ADO. The OLE DB entry point provided by ADSI can
be used “transparently” in the scripts. (See the first part of this study: “Understanding the
Microsoft Windows Script Host and the Active Directory Service Interfaces in Windows 2000” for
an overview of the ADSI structure.)

Having a search function will simplify access to some objects or attributes in the Active Directory.
By using a simple syntax, it is possible to obtain an ADsPath pointer to the searched object. More
than a pointer, an attribute list can be retrieved by this search function.

Whatever the manner the search function is written in, a LDAP search operation needs four key
elements:

1. The base object in which the search will start. (This is an object in the Active Directory such
as an organizationalUnit. The script Sample 1 also accepts a naming context such as the
defaultNamingContext, SchemaNamingContext).

If a specific naming context is passed, the function will resolve the context name given to the
corresponding ADsPath (See Sample 1 on page 10).

2. The filter determines which elements have to be selected (based on conditions) from the
Active Directory.

The syntax for queries can be SQL syntax or LDAP syntax. Of course, SQL syntax is relevant
for applications making SQL queries and Active Directory queries. In the next sample, the
LDAP syntax query is used.

Any accessible characteristics of an object can be used to make a query. Some examples are:

• (|(objectClass=domainDNS)(objectClass=organizationalUnit))

This will return the list of all the objectClass equal to domainDNS or equal to
organizationalUnit. Note the ‘|’ sign for the ‘or’ statement.

• (&(objectClass=user)(objectCategory=person))

This will return the list of all objectClass equal to user for which the objectCategory is
equal to person. Actually this will provide a list of all users available in the selected
naming context. In this example, the objectClass contact will be discarded, as it is also an
objectCategory person. Note the ‘&’ sign for the ‘And’ statement.

To get both contact and user objectClass, following syntax can be use:

• (&(|(objectClass=user) (objectClass=contact)) (objectCategory=person))

or to make the things simpler (because an object class user or contact is an object
category equal to person), use:

• (objectCategory=person)

In the first version note the possibility to combine search conditions ‘|’ and ‘&’.

3. The attributes of the retrieved objects that are desired. This can be any attribute associated
with the retrieved objects (ADsPath, cn, distinguishedName, …).

4. How deep the search has to run in the Active Directory.

WHITE PAPER (cont.)

10 WSH and ADSI – Part 2

Base: A Base search is limited to the base object selected. If the base object has
children, they will not be included in the search. Only elements that are direct
members of the base object are examined.

OneLevel: A OneLevel search is restricted to the immediate children of a base object, but
excludes the base object itself. This scope is perfectly adapted for a search inside
the schemaNamingContext. This is used in Sample 10 on page 29.

Subtree: A Subtree search includes the entire subtree below the base object.

Choosing the right scope is important for search performance.

Sample 1 below shows the complete search request formulation.

Sample 1: The Active Directory search function
1:' VB Script making search operations in AD through ADSI OLE DB interface via ADO '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:' ---
11:Function ADSearch _
12: (strNamingContextSearch, strFilterSearch, strAttribsToReturnSearch, _
13: strDepthSearch, boolEcho)
14:
15: Dim objDictionary
16:
17: Dim objRoot
18: Dim strNamingContext
19: Dim objNamingContext
20:
21: Dim objADOConnnection
22: Dim objCommand
23: Dim objRecordSet
24:
25: Dim strADsPathSearch
26:
27: Dim intIndice
28:
29: Set objDictionary = CreateObject ("Scripting.Dictionary")
30:
31: Set objADOConnnection = CreateObject("ADODB.Connection")
32: objADOConnnection.Provider = "ADsDSOObject"
33: objADOConnnection.Open "Active Directory Provider"
34:
35: Set objCommand = CreateObject("ADODB.Command")
36: Set objCommand.ActiveConnection = objADOConnnection
37:
38: If Ucase (Mid (strNamingContextSearch, 1, 7)) = "LDAP://" Or _
39: Ucase (Mid (strNamingContextSearch, 1, 5)) = "GC://" Then
40:
41: Set objNamingContext = GetObject(strNamingContextSearch)
42: Else
43: Set objRoot = GetObject("LDAP://RootDSE")
44: strNamingContext = objRoot.Get(strNamingContextSearch)
45: Set objRoot = Nothing
46:
47: ' Search is executed in LDAP: namespace.
48: ' Search in Global Catalog (GC:) instead of classical directory (LDAP:) can
49: ' increase search speed but be aware if attributes searched are not
50: ' replicated in GC. (Such as data in the schema or some context attributes)
51: Set objNamingContext = GetObject("LDAP://" & strNamingContext)

WHITE PAPER (cont.)

11 WSH and ADSI – Part 2

52: End If
53:
54: strADsPathSearch = "<" & objNamingContext.ADsPath & ">"
55:
56: objCommand.CommandText = strADsPathSearch & ";" & _
57: strFilterSearch & ";" & _
58: strAttribsToReturnSearch & ";" & _
59: strDepthSearch
..:
65: objDictionary.Add "RecordCount", objRecordSet.RecordCount
66:
67: While Not objRecordSet.EOF
68: For intIndice = 0 To objRecordSet.Fields.Count - 1
..:
76: objDictionary.Add objRecordSet.Fields(intIndice).Name & ":" & _
77: objRecordSet.AbsolutePosition & intIndice, _
78: objRecordSet.Fields(intIndice).Value
79: Next
80:
81: If boolEcho Then WScript.Echo
82:
83: objRecordSet.MoveNext
84: Wend
..:
88: Set ADSearch = objDictionary
89:
90: Set objNamingContext = Nothing
91:
92: WScript.DisconnectObject objCommand
93: Set objCommand = Nothing
94:
95: WScript.DisconnectObject objADOConnnection
96: Set objADOConnnection = Nothing
97:
98: WScript.DisconnectObject objDictionary
99: Set objDictionary = Nothing
100:
101:End Function

The access to the search engine provided by the ADSI OLE DB COM object is at line 31, 32, 33, 35 and 36. At line 33, note
the name of the provider; that is where the reference to the ADSI OLE DB provider is made. On line 35, the object command is
created to formulate the query. Line 36 links the command object to the current ADSI OLE DB connection.

On lines 38 to 52, the script binds to the selected context or ADsPath given. The function accepts two kinds of parameter: a
RootDSE context name or an ADsPath beginning with LDAP// or GC://. In case of a context parameter, to have its ADsPath,
the script binds to the RootDSE object to get the context distinguishedName attribute (line 43 to 51). The ADsPath
determines the starting point of the search. The function accepts (as a parameter) one of the three available contexts from the
RootDSE.

Note: To make the code easier to read, the test to validate the passed parameters is not included. The purpose is to show the
basic principles of ADSI usage and not to provide production quality code.

The rest of the script is very simple. The only peculiarity is the need to build the right command syntax to formulate the query.
The script builds a command syntax string. Note the ADsPath inclusion between ‘<>’ (line 54). All other parts of the query
command are concatenated together and separated by a semi-column ‘;’ (line 56).

Here is an LDAP query syntax string as an example:

<LDAP://DC=w2k-home,DC=com>;(|(objectCategory=domainDNS)(objectClass=organizationalUnit));cn,name,distinguishedName;subTree

Next, the query is executed (line 63). Once the query completes, the results need to be returned. The ‘Dictionary’ object will
help in this task.

WHITE PAPER (cont.)

12 WSH and ADSI – Part 2

The Dictionary Object returns the query results

The Dictionary Object is part of the Scripting Run-Time Library. (See Microsoft Visual Basic Scripting/Java Scripting on-line
Documentation for more information about the Scripting Run-Time Library.) The dictionary is a “repository” where data of
any kind can be stored. Moreover, the dictionary lets you retrieve the stored data based on a key. The key can be a number or a
string. The key has to be unique. A script can fetch a complete list of all existing keys just by using a ‘For Each’ loop and
some dictionary methods (see Sample 2 on page 13). The dictionary object is a like an array where a script can retrieve
heterogeneous data associated to an ordinal position (or a string) used as key.

The ADSearch function builds a dictionary with all the data retrieved from the RecordSet containing the query result (line 76).
This will makes it easier to return the query result to a routine calling the ADSearch function. In such case, only one parameter
is returned: the dictionary object (line 88).

Building the dictionary object is easy. First the script must create an instance of the object (line 29). Once created, the
dictionary is ready to be used. To add elements to the dictionary, the ‘Add’ method is used (line 76). Note that the first element
added is the number of matches found for that particular query (key=‘RecordFound’). This will help the calling module to
determine the number of ‘RecordSet’ found (line 65).

The ‘Add’ method has two parameters:

1. The key to be used in the dictionary.
2. The value to be inserted in the dictionary.

As it can be noticed in the ADSearch function, the script has a parameter called boolEcho. Setting this parameter to ‘True’ will
echo any object found in the record set. This will ease the understanding and debugging of the search function. (The code is not
included in Sample 1 to clarify the view)

Below is an example of calling the ADSearch function:

Set objResultList = ADSearch ("DefaultNamingContext", _

"(|(objectClass=domainDNS)(objectClass=organizationalUnit))", _
"name,distinguishedName", _
"subTree", _
True)

The following output will be produced (the last parameter, boolEcho, is set to True for internal echoing):

Searching ...

(10) name = w2k-home
(11) distinguishedName = DC=w2k-home,DC=com

(20) name = Domain Controllers
(21) distinguishedName = OU=Domain Controllers,DC=w2k-home,DC=com

(30) name = Company Users
(31) distinguishedName = OU=Company Users,DC=w2k-home,DC=com

(40) name = New Marketing Division
(41) distinguishedName = OU=New Marketing Division,OU=Company Users,DC=w2k-home,DC=com

(50) name = Marketing
(51) distinguishedName = OU=Marketing,OU=Company Users,DC=w2k-home,DC=com

(60) name = Technical
(61) distinguishedName = OU=Technical,OU=Company Users,DC=w2k-home,DC=com

(70) name = Financial
(71) distinguishedName = OU=Financial,OU=Company Users,DC=w2k-home,DC=com

WHITE PAPER (cont.)

13 WSH and ADSI – Part 2

(80) name = Management
(81) distinguishedName = OU=Management,OU=Company Users,DC=w2k-home,DC=com

8 record(s) found.

The keys (with the associated data) used for the dictionary have the following form:

Dictionary Keys Dictionary Data
name:10 w2k-home
distinguishedName:11 DC=w2k-home,DC=com
name:20 Domain Controllers
distinguishedName:21 OU=Domain Controllers,DC=w2k-home,DC=com
name:30 Company Users
distinguishedName:31 OU=Company Users,DC=w2k-home,DC=com
name:40 New Marketing Division
distinguishedName:41 OU=New Marketing Division,OU=Company Users,DC=w2k-home,DC=com
name:50 Marketing
distinguishedName:51 OU=Marketing,OU=Company Users,DC=w2k-home,DC=com
name:60 Technical
distinguishedName:61 OU=Technical,OU=Company Users,DC=w2k-home,DC=com
name:70 Financial
distinguishedName:71 OU=Financial,OU=Company Users,DC=w2k-home,DC=com
name:80 Management
distinguishedName:81 OU=Management,OU=Company Users,DC=w2k-home,DC=com

The name of the retrieved attribute is associated with the dictionary key. This simplifies the calling module to retrieve the
attribute name. Because the dictionary key has to be unique, the script associates the RecordSet.AbsolutePosition and
RecordSet.Fields in the key composition (line 76). This guarantees the uniqueness of the key. Between the attribute name and
the RecordSet.AbsolutePosition, a column ‘:’ is inserted to make it easier for the caller to split the string. (See line 18 of
Sample 2)

The complete data set returned by the ADSearch function is in the dictionary object. It is the calling module’s responsibility to
look inside the dictionary to extract the query results. The following sample code calls the ADSearch function and then extracts
the query results from the dictionary object.

Sample 2: The main function calling the ADSearch function.
1:' VB Script to show how to use the ADSearch function within the same script '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:Dim objResultList
11:Dim objResult
12:Dim intColumnPosition
13:
14:Set objResultList = ADSearch ("DefaultNamingContext", _
15: "(|(objectClass=domainDNS)(objectClass=organizationalUnit))", _
16: "name,distinguishedName", _
17: "subTree", _
18: False)
19:WScript.Echo
20:WScript.Echo "Number of record found is " & objResultList.Item ("RecordCount")
21:WScript.Echo "Number of elements in the Scripting Dictionary object is " & objResultList.Count
22:
23:For Each objResult in objResultList

WHITE PAPER (cont.)

14 WSH and ADSI – Part 2

24: intColumnPosition = InStr (objResult, ":")
25: If intColumnPosition Then
26: Wscript.Echo Mid (objResult, 1, intColumnPosition - 1) & "=>" & _
27: objResultList.Item (objResult)
28: End If
29:Next
..:
..:
..:

Running that code gives the following output from the caller routine (the internal Echo is set to False) :

Number of record found is 8
Number of elements in the Scripting Dictionary object is 17
name=>w2k-home
distinguishedName=>DC=w2k-home,DC=com
name=>Domain Controllers
distinguishedName=>OU=Domain Controllers,DC=w2k-home,DC=com
name=>Company Users
distinguishedName=>OU=Company Users,DC=w2k-home,DC=com
name=>New Marketing Division
distinguishedName=>OU=New Marketing Division,OU=Company Users,DC=w2k-home,DC=com
name=>Marketing
distinguishedName=>OU=Marketing,OU=Company Users,DC=w2k-home,DC=com
name=>Technical
distinguishedName=>OU=Technical,OU=Company Users,DC=w2k-home,DC=com
name=>Financial
distinguishedName=>OU=Financial,OU=Company Users,DC=w2k-home,DC=com
name=>Management
distinguishedName=>OU=Management,OU=Company Users,DC=w2k-home,DC=com

This versatile Active Directory search function needs now to be made reusable for other scripts and languages.

Code reusability

The code for a function in an external file is not reusable under WSH 1.0. The only way to reuse the function is to copy and
paste the code to include it in the new .VBS file. Unfortunately, this will generate several copies of the same function. Under
Windows 2000, and with WSH 2.0, some new possibilities are offered to the programmer.

By file inclusion

WSH 2.0 permits miscellaneous script inclusions even if different languages are mixed. This possibility is realized by
encapsulating the core main function (the caller) in an XML definition. The XML definition lets you define a file inclusion
and the language used in the included script. This XML file is called a Windows Script File. (.WSF extension)

The next sample contains the same ADSearch caller code as in Sample 2 on page 13, except that two different versions of
that code are presented. The first version is as before in VB Script (line 9 to 41). The second version is in Java script (line
43 to 77). They are both in different <job></job> identifiers.

Sample 3: Making an external VB Script function reusable from other scripting languages such as Java with XML
encapsulation.

1:' VB Script to show how to use the ADSearch from VB Script and Java script '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:<Package>
9:<job id="ADSearchVBSCaller">
10:
11: <script language="VBScript" src="ADSearchFunction.vbs" />
12:

WHITE PAPER (cont.)

15 WSH and ADSI – Part 2

13: <script language="VBScript">
14:
15: Option Explicit
..:
21: Set objResultList = ADSearch ("DefaultNamingContext", _
22: "(|(objectClass=domainDNS)(objectClass=organizationalUnit))",_
23: "name,distinguishedName", _
24: "subTree", _
25: False)
26:
27: WScript.Echo
28: WScript.Echo "Number of record found is " & objResultList.Item ("RecordCount")
29: WScript.Echo "Number of elements in the Scripting Dictionary object is " & _
30: objResultList.Count
31:
32: For Each objResult in objResultList
33: intColumnPosition = InStr (objResult, ":")
34: If intColumnPosition Then
35: Wscript.Echo Mid (objResult, 1, intColumnPosition - 1) & "=>" & _
36: objResultList.Item (objResult)
37: End If
38: Next
39:
40: </script>
41:</job>
42:
43:<job id="ADSearchJSCaller">
44:
45: <script language="VBScript" src="ADSearchFunction.vbs" />
46:
47: <script language="JScript">
..:
54: objResultList = ADSearch ("DefaultNamingContext",
55: "(|(objectClass=domainDNS)(objectClass=organizationalUnit))",
56: "name,distinguishedName",
57: "subTree",
58: false);
59:
60: WScript.Echo ("Number of record found is " + objResultList.Item ("RecordCount"));
61: WScript.Echo ("Number of elements in the Scripting Dictionary object is " & _
62: objResultList.Count);
63:
64: enumResultList = new Enumerator (objResultList)
65:
66: for (;!enumResultList.atEnd();enumResultList.moveNext())
67: {
68: intColumnPosition = enumResultList.item().indexOf (":");
69: if (intColumnPosition > 0)
70: {
71: WScript.Echo (enumResultList.item().substr (0, intColumnPosition) + "=>"
72: + objResultList.Item (enumResultList.item()));
73: }
74: }
75:
76: </script>
77:</job>
78:</Package>

Both versions will produce the same output result. More than making a simple reuse of the ADSearch function, the Windows
Script File is also shared between different languages. Of course, including two functions in different languages doing the same
process in a single Windows Script file does not make much sense. But including different scripts inside the same Windows
Script file and the ability to call miscellaneous functions written in different languages is really interesting. Inside one
Windows Script file, it is possible to group all the scripts needed for the administration or logon process.

To start the script job, the following DOS prompt command must be used:

Cscript //Job:ADSearchVBSCaller TestADSearchFunction.wsf to run the VB Script version.

WHITE PAPER (cont.)

16 WSH and ADSI – Part 2

Cscript //Job:ADSearchJSCaller TestADSearchFunction.wsf to run the Java Script version.

In Sample 3 above, each script version is included inside a <Job></job> marker. The <Job></job> has its associated identifier.
For each job, the inclusion of the ADSearch Function is made by referencing the language used and the file containing the
function (line 11 and 45).

A simple change in the script by inserting some XML markers produces a powerful result.

By COM object registration

Is it possible to make the ADSearch function a COM object? Yes, it is possible, but for this some changes to the ADSearch
script code have to be made. This special type of script is called a Windows Script Component (.WSC extension).

To publish the script as a COM object, a set of information must be provided:

1. The COM object is a binary file, so a well-known binary file must be doing the job for the script.
2. To build a COM object, available interfaces and methods must be exposed.
3. To register the COM object, a registration and CLSID are needed.

In the sample, some references to existing COM objects are used (i.e. ADSI OLE DB Provider). Windows Script Components
(WSC) work in the same way. Each time a .WSC script is registered, a pointer in the registry to a COM compliant binary object
called SCROBJ.DLL is created. This creates the definition of the WSC in the system.

WHITE PAPER (cont.)

17 WSH and ADSI – Part 2

The .WSC file can be easily registered from the Windows NT Explorer as shown on Figure 1 below.

Figure 1 Registration of a Windows Script Component

Once the registration is complete, a registry entry is created for the ADSearch.WSC.

1:Windows Registry Editor Version 5.00
2:
3:[HKEY_CLASSES_ROOT\CLSID\{4ABB10F7-5307-11D3-8E5B-0008C7A92756}]
4:@="ADSearch"
5:
6:[HKEY_CLASSES_ROOT\CLSID\{4ABB10F7-5307-11D3-8E5B-0008C7A92756}\InprocServer32]
7:@="C:\\WINNT\\System32\\scrobj.dll"
8:"ThreadingModel"="Apartment"
9:
10:[HKEY_CLASSES_ROOT\CLSID\{4ABB10F7-5307-11D3-8E5B-0008C7A92756}\ProgID]
11:@="ADSearch.WSC.1.00"
12:
13:[HKEY_CLASSES_ROOT\CLSID\{4ABB10F7-5307-11D3-8E5B-0008C7A92756}\ScriptletURL]
14:@="file://C:\\Data\\WSH\\Script for WP\\ADSearch\\ReUse by COM\\ADSearch.wsc"
15:
16:[HKEY_CLASSES_ROOT\CLSID\{4ABB10F7-5307-11D3-8E5B-0008C7A92756}\VersionIndependentProgID]
17:@="ADSearch.WSC"

Of course, a CLSID must be provided to make the registration. To assist in this task, Microsoft provides a Wizard called the
Windows Script Component Wizard.

This Wizard helps to build a .WSC core file with all the requested data for a COM object definition:

• CLSID
• Properties definition with variables mapping
• Methods definition

WHITE PAPER (cont.)

18 WSH and ADSI – Part 2

A Windows Script component is created through four important steps in the Windows Script Component Wizard. During step
1, the WSC Name and its associated ProgID are given. During step 2, the language used by the script must be specified. Step 3
and 4 are related to the definition of the properties and methods available from the script. The names entered during step 3 and
4 will be the reference to properties and methods used from any automation client using the COM object.

Figure 2 The Windows Script Component Wizard.

The “dummy” ADSearch.WSC that the wizard generates is ready to receive the ADSearch function. Of course, the generated
file needs to be adapted in order to suit the input parameters used for the ADSearch function. Before examining those changes,
Sample 4 shows the “dummy” ADSearch Windows Script Components generated by the Wizard. Note the CLSID in the
registration section generated by the Wizard. (Line 8)

 Sample 4: The XML dummy file generated by the Wizard Script Component.
1:<?xml version="1.0"?>
2:<component>
3:
4:<registration
5: description="ADSearch"
6: progid="ADSearch.WSC"
7: version="1.00"
8: classid="{4abb10f7-5307-11d3-8e5b-0008c7a92756}"
9:>

WHITE PAPER (cont.)

19 WSH and ADSI – Part 2

10:</registration>
11:
12:<public>
13: <property name="NamingContext">
14: <put/>
15: </property>
16: <property name="Filter">
17: <put/>
18: </property>
19: <property name="Attributes">
20: <put/>
21: </property>
22: <property name="Depth">
23: <put/>
24: </property>
25: <method name="Execute">
26: </method>
27:</public>
28:
29:
30:
31:<script language="VBScript">
32:<![CDATA[
33:
34:Dim NamingContext
35:Dim Filter
36:Dim Attributes
37:Dim Depth
38:
39:Function put_NamingContext(newValue)
40: NamingContext = newValue
41:End Function
42:
43:Function put_Filter(newValue)
44: Filter = newValue
45:End Function
46:
47:Function put_Attributes(newValue)
48: Attributes = newValue
49:End Function
50:
51:Function put_Depth(newValue)
52: Depth = newValue
53:End Function
54:
55:Function Execute()
56: Execute = "Temporary Value"
57:End Function
58:
59:]]>
60:</script>
61:
62:</component>

The XML file that the wizard creates has the following sections:

1. <Components></Components> section:

This section (lines 2 to 62) is equivalent to the <job></job> section seen in Sample 3. This element encloses the entire
source code. As for the <job></job> element; an identifier attribute can be specified. This id attribute is only mandatory
when several components are included in the same file.

2. <Registration></Registration> section:
This section (lines 4 to 10) contains all the information necessary to perform a correct registration of the script as a COM
object. All data entered during step 2 of the Wizard is entered in this section. The only new element in this section is the
CLSID generated by the Wizard (line 8).

WHITE PAPER (cont.)

20 WSH and ADSI – Part 2

3. <Public></Public> section

This section (lines 12 to 27) defines the properties and methods available from the module. In step 3, all the properties were
defined as Write-Only. This is why there is only the <put/> statement. For Read-Only properties, the <get/> statement is
used instead. Both can be combined for read and write properties. The <Public></Public> section always contains the
<property></property> and <method></method> sections. Sample 5 below shows how to enhance and correlate the
selected names with the variable originally used by the ADSearch function (Sample 1 on page 10).

4. <Script></Script> section
This section (lines 31 to 60) has the same role as in the Windows Script File in Sample 3 on page 14. It encapsulates the
script code to be executed and defines the script language in order to invoke the right script engine.

5. <![CDATA[…]]> section
This is the character data delimiter. (Lines 32 and 59) This delimiter guarantees the XML 1.0 compliance (line 1). VB
Script uses some characters (such as ‘&’) that will confuse the XML parser because the XML parser expects version 1.0
compliant coding. The CDATA delimiter tells the XML parser to skip parsing operations on that piece of code.

The ADSearch function will be inserted into the CDATA section. From lines 34 to 57, the “dummy” implementation of
each property setting and method is included. The final ADSearch Windows Script Component shows how to interface the
existing ADSearch function with these COM interfaces and methods.

Sample 5: The ADSearch VB Script function exposed as a COM component with Windows Script Component.
1:<?xml version="1.0"?>
2:
3:<!-- Windows Script Component exposing the ADSearch function as a COM reusable -->
4:<!-- object. -->
5:<!-- -->
6:<!-- Version 1.00 - Alain Lissoir -->
7:<!-- Compaq Computer Corporation - Professional Services - Belgium - -->
8:<!-- -->
9:<!-- Any comments or questions: EMail:alain.lissoir@compaq.com -->
10:
11:<component>
12:
13:<registration
14: description="ADSearch"
15: progid="ADSearch.WSC"
16: version="1.00"
17: classid="{4abb10f7-5307-11d3-8e5b-0008c7a92756}"
18:>
19:</registration>
20:
21:<public>
22: <property name="NamingContext" internalname="strNamingContextSearch">
23: <put/>
24: </property>
25: <property name="Filter" internalname="strFilterSearch">
26: <put/>
27: </property>
28: <property name="Attributes" internalname="strAttribsToReturnSearch">
29: <put/>
30: </property>
31: <property name="Depth" internalname="strDepthSearch">
32: <put/>
33: </property>
34: <method name="Execute">
35: </method>
36:</public>
..:
40:<script language="VBScript">
41:<![CDATA[
42:

WHITE PAPER (cont.)

21 WSH and ADSI – Part 2

43:Option Explicit
44:
45:Dim strNamingContextSearch
46:Dim strFilterSearch
47:Dim strAttribsToReturnSearch
48:Dim strDepthSearch
49:
50:Function Put_strNamingContextSearch (newValue)
51: strNamingContextSearch = newValue
52:End Function
53:
54:Function Put_strFilterSearch (newValue)
55: strFilterSearch = newValue
56:End Function
57:
58:Function Put_strAttribsToReturnSearch (newValue)
59: strAttribsToReturnSearch = newValue
60:End Function
61:
62:Function Put_strDepthSearch (newValue)
63: strDepthSearch = newValue
64:End Function
65:
66:Function Execute()
..:
82: Set objDictionary = CreateObject ("Scripting.Dictionary")
83:
84: Set objADOConnnection = CreateObject("ADODB.Connection")
85: objADOConnnection.Provider = "ADsDSOObject"
86: objADOConnnection.Open "Active Directory Provider"
87:
88: Set objCommand = CreateObject("ADODB.Command")
89: Set objCommand.ActiveConnection = objADOConnnection
90:
91: If Ucase (Mid (strNamingContextSearch, 1, 7)) = "LDAP://" Or _
92: Ucase (Mid (strNamingContextSearch, 1, 5)) = "GC://" Then
93:
94: Set objNamingContext = GetObject(strNamingContextSearch)
95: Else
96: Set objRoot = GetObject("LDAP://RootDSE")
97: strNamingContext = objRoot.Get(strNamingContextSearch)
98: Set objRoot = Nothing
..:
104: Set objNamingContext = GetObject("LDAP://" & strNamingContext)
105: End If
...:
108: strADsPathSearch = "<" & objNamingContext.ADsPath & ">"
109:
110: objCommand.CommandText = strADsPathSearch & ";" & _
111: strFilterSearch & ";" & _
112: strAttribsToReturnSearch & ";" & _
113: strDepthSearch
114:
115: Set objRecordSet = objCommand.Execute
116:
117: objDictionary.Add "RecordCount", objRecordSet.RecordCount
118:
119: While Not objRecordSet.EOF
120: For intIndice = 0 To objRecordSet.Fields.Count - 1
121: objDictionary.Add objRecordSet.Fields(intIndice).Name & ":" & _
122: objRecordSet.AbsolutePosition & intIndice, _
123: objRecordSet.Fields(intIndice).Value
124: Next
125:
126: objRecordSet.MoveNext
127: Wend
128:
129: Set Execute = objDictionary

WHITE PAPER (cont.)

22 WSH and ADSI – Part 2

...:
136:End Function
137:
138:]]>
139:</script>
140:
141:</component>

To use the ADSearch function as Windows Script Component, some changes must be made to the “dummy” .WSC file. Here
are the changes:

• Line 22, 25, 28 and 31
The statement “InternalName” is added to map the exposed property to the variable used internally in ADSearch. This will
permit the use of the original variable name and expose a friendlier name for the COM properties.

property name="NamingContext" is mapped to the internal name variable "strNamingContextSearch"
property name="Filter" is mapped to the internal name variable "strFilterSearch"
property name="Attributes" is mapped to the internal name variable "strAttribsToReturnSearch"
property name="Depth" is mapped to the internal name variable "strDepthSearch"

• Line 45 to 48 and line 51, 55, 59 and 63

As with any other traditional function, it is necessary to declare the internal variables (line 45 to 48). When the exposed
property name is assigned, the internal variable name must be updated. This is the purpose of the property function. The passed
value is assigned to internal variable name (lines 51, 55, 59 and 63).

• Line 66

This is the location where the ADSearch function is inserted. No particular change to the original code is made except one: In
the original code, the ‘Wscript.Echo’ statement was used for debugging purposes (See Sample 1 on page 10). It is important to
know that the VB Script will run in a different context than WSH. The code will run in the SCROBJ.DLL context. In this
context WSH base objects are not available. Two choices are possible:

1. Create an instance of the Wscript object.
2. Remove any reference to the Wscript object and use another method for debugging purposes (Event Sinking).

The second option was chosen and as consequence the ‘boolEcho’ parameter from the original function is removed. The
‘boolEcho’ functionality will be implemented by event sinking (See Sample 8 on page 10).

Now, the ADSearch function can be called from any type of client application. The key condition is to use a client application
written in a language supporting automation such as VB, Java or Perl. The function is reusable, but this reusability suggests
some enhancements for a production usage. Here are only two suggested enhancements:

• One enhancement to the ADSearch function is to provide parameter checking to protect the function against any

invalid property (parameters) entered. This will avoid any curious or wrong behavior if the parameters given are not
correct.

• An error handling function can be added to manage any possible error.

It was possible to add these enhancements from the beginning, but to keep the code as simple and readable as possible, it was
decided to keep this out of the examples.

To complete the topic about the ADSearch COM object, the next two code samples show how to use the object: the first
sample is written in VB Script and the other in Java script.

Note the small change made in comparison to Sample 2 on page 13 above. Line 16 is creating the ADSearch object instance.
Lines 18 to 21 set the properties (pass the parameters). On line 23, the invocation of the method is executed.

WHITE PAPER (cont.)

23 WSH and ADSI – Part 2

Sample 6: Calling the ADSearch Windows Script Component from VB Script.
1:' VB Script to show how to use the ADSearch function from a Windows Script '
2:' component. '
3:' '
4:' Version 1.00 - Alain Lissoir '
5:' Compaq Computer Corporation - Professional Services - Belgium - '
6:' '
7:' Any comments or questions: EMail:alain.lissoir@compaq.com '
8:
9:Option Explicit
10:
11:Dim objADSearch
12:Dim objResultList
13:Dim objResult
14:Dim intColumnPosition
15:
16:Set objADSearch = CreateObject("ADSearch.WSC")
17:
18:objADSearch.NamingContext = "DefaultNamingContext"
19:objADSearch.Filter = "(|(objectClass=domainDNS)(objectClass=organizationalUnit))"
20:objADSearch.Attributes = "name,distinguishedName"
21:objADSearch.Depth = "subTree"
22:
23:Set objResultList = objADSearch.Execute
24:
25:WScript.Echo
26:WScript.Echo "Number of record found is " & objResultList.Item ("RecordCount")
27:WScript.Echo "Number of elements in the Scripting Dictionary object is " & objResultList.Count
28:
29:For Each objResult in objResultList
30: intColumnPosition = InStr (objResult, ":")
31: If intColumnPosition Then
32: Wscript.Echo Mid (objResult, 1, intColumnPosition - 1) & _
33: "=>" & objResultList.Item (objResult)
34: End If
35:Next

Sample 7 is exactly the same script as Sample 6 but written in Java script. No particular remark needs to be made concerning
this sample. It is the same logic as the VB script sample.

Sample 7: Calling the ADSearch Windows Script Component from Java Script.
1:/*
2:
3: Java Script to show how to use the ADSearch function from a Windows Script
4: component.
5:
6: Version 1.00 - Alain Lissoir
7: Compaq Computer Corporation - Professional Services - Belgium -
8:
9: Any comments or questions: EMail:alain.lissoir@compaq.com
10:
11:*/
12:
13:var objADSearch;
14:var objResultList;
15:var objResult;
16:var intColumnPosition;
17:var enumResultList
18:
19:objADSearch = new ActiveXObject("ADSearch.WSC");
20:
21:objADSearch.NamingContext = "DefaultNamingContext";
22:objADSearch.Filter = "(|(objectClass=domainDNS)(objectClass=organizationalUnit))";
23:objADSearch.Attributes = "name,distinguishedName";
24:objADSearch.Depth = "subTree";
25:

WHITE PAPER (cont.)

24 WSH and ADSI – Part 2

26:objResultList = objADSearch.Execute();
27:
28:WScript.Echo ("Number of record found is " + objResultList.Item ("RecordCount"));
29:WScript.Echo ("Number of elements in the Scripting Dictionary object is " + objResultList.Count);
30:
31:enumResultList = new Enumerator (objResultList)
32:
33:for (;!enumResultList.atEnd();enumResultList.moveNext())
34: {
35: intColumnPosition = enumResultList.item().indexOf (":");
36: if (intColumnPosition > 0)
37: {
38: WScript.Echo (enumResultList.item().substr (0, intColumnPosition) + "=>"
39: + objResultList.Item (enumResultList.item()));
40: }
41: }

Events sinking

Event sinking is a technology that implements mechanisms to create events inside the Windows Script Components. The
calling module can capture (sink) these events via a specific function reference during the object creation. This specific
function will capture the events from Windows Script Component object.

Sample 5 on page 20 can be used as it is. Only a few lines need to be added to enable event support in the Windows Script
Component and in the Windows Script File invoking the Execute method.

This can be done in four steps:

1. In the <public></public> section of the Windows Script File, the following lines are added:

<event name="Debug">
 <parameter name="Value" />
</event>

This new element in the section defines the event handler function name and the variable name to be used as
the parameter to the event handler function. The event handler function will be added in the script invoking
the Windows Script Component; in this case, the Windows Script File.

2. In the Execute Function code of the Windows Script Component, the following lines are added:

FireEvent "Debug", objRecordSet.Fields(intIndice).Name & ":" & _
objRecordSet.AbsolutePosition & intIndice & "=" & _
objRecordSet.Fields(intIndice).Value

To fire the event, the “FireEvent” function is used. Two parameters are needed: the event name defined in the
<public></public> section and the value assigned to the parameter named ‘Value’ at step 1. In the example,
the value assigned to the Dictionary object will be passed to the event.

3. In the Windows Script File (the caller), the following line is added:

Set objADSearch = Wscript.CreateObject("ADSearch.WSC", "ADSearch_")

In the Windows Script File, a reference between the event handler and the event name (defined in the
Windows Script Component) must be realized. This task is completed during the ADSearch object creation
by adding a new parameter; which is the “main” label used for the event handler function. In this case:
“ADSearch_”. Because, the main script needs to support event handling from the WSC script, you must

WHITE PAPER (cont.)

25 WSH and ADSI – Part 2

specify the Wscript.CreateObject method rather than the CreateObject native method of the VB script engine.
This is because the Wscript.CreateObject method lets you specify the additional parameter.

4. In the Windows Script File (the caller), an event handler function is added:

' Event Handler
sub ADSearch_Debug(Value)
 WScript.Echo "Debug: " & Value
end sub

This last change is the addition of the event handler function. This is a standard function definition. The only
restriction is that the function must match the prior definitions made for the event. The function must be
named by combining the names given at step 1 and step 3 (Event name and Main function name). The
parameter of the function is referenced as given during step 1.

In Sample 2 (on page 13) and in Sample 3 (on page 14), the last parameter of the function (boolEcho) enabled a debug mode
for the ADSearch function by echoing all the assigned values to the Dictionary object. By implementing an event in this
ADSearch object, it is possible to obtain the same result. If the event handler is defined in the calling module, all assigned
values to the Dictionary object will be echoed as shown in the output sample below.

Debug: name:10=w2k-home
Debug: distinguishedName:11=DC=w2k-home,DC=com
Debug: name:20=Home Business
Debug: distinguishedName:21=OU=Home Business,DC=w2k-home,DC=com
Debug: name:30=Accounting
Debug: distinguishedName:31=OU=Accounting,OU=Home Business,DC=w2k-home,DC=com
Debug: name:40=Technical
Debug: distinguishedName:41=OU=Technical,OU=Home Business,DC=w2k-home,DC=com
Debug: name:50=Management
Debug: distinguishedName:51=OU=Management,OU=Home Business,DC=w2k-home,DC=com
Debug: name:60=Marketing
Debug: distinguishedName:61=OU=Marketing,OU=Home Business,DC=w2k-home,DC=com
Debug: name:70=Assistants
Debug: distinguishedName:71=OU=Assistants,OU=Marketing,OU=Home Business,DC=w2k-home,DC=com
Debug: name:80=Domain Controllers
Debug: distinguishedName:81=OU=Domain Controllers,DC=w2k-home,DC=com

Number of record found is 8
Number of elements in the Scripting Dictionary object is 17
name=>w2k-home
distinguishedName=>DC=w2k-home,DC=com
name=>Home Business
distinguishedName=>OU=Home Business,DC=w2k-home,DC=com
name=>Accounting
distinguishedName=>OU=Accounting,OU=Home Business,DC=w2k-home,DC=com
name=>Technical
distinguishedName=>OU=Technical,OU=Home Business,DC=w2k-home,DC=com
name=>Management
distinguishedName=>OU=Management,OU=Home Business,DC=w2k-home,DC=com
name=>Marketing
distinguishedName=>OU=Marketing,OU=Home Business,DC=w2k-home,DC=com
name=>Assistants
distinguishedName=>OU=Assistants,OU=Marketing,OU=Home Business,DC=w2k-home,DC=com
name=>Domain Controllers
distinguishedName=>OU=Domain Controllers,DC=w2k-home,DC=com

To complete this topic, here are the Windows Script Component (below) and the Windows Script File (on page 28) code
samples.

WHITE PAPER (cont.)

26 WSH and ADSI – Part 2

Sample 8: Windows Script Component triggering event
1:<?xml version="1.0"?>
2:
3:<!-- Windows Script Component exposing the ADSearch function as a COM reusable -->
4:<!-- object. (With event sinking) -->
5:<!-- -->
6:<!-- Version 1.00 - Alain Lissoir -->
7:<!-- Compaq Computer Corporation - Professional Services - Belgium - -->
8:<!-- -->
9:<!-- Any comments or questions: EMail:alain.lissoir@compaq.com -->
10:
11:<component>
12:
13:<registration description="ADSearch"
14: progid="ADSearch.WSC"
15: version="1.00"
16: classid="{4abb10f7-5307-11d3-8e5b-0008c7a92756}">
17:</registration>
18:
19:<public>
20: <property name="NamingContext" internalname="strNamingContextSearch">
21: <put/>
22: </property>
23:
24: <property name="Filter" internalname="strFilterSearch">
25: <put/>
26: </property>
27:
28: <property name="Attributes" internalname="strAttribsToReturnSearch">
29: <put/>
30: </property>
31:
32: <property name="Depth" internalname="strDepthSearch">
33: <put/>
34: </property>
35:
36: <method name="Execute">
37: </method>
38:
39: <event name="Debug">
40: <parameter name="Value" />
41: </event>
42:</public>
43:
44:<script language="VBScript">
45:<![CDATA[
46:
47:Option Explicit
48:
49:Dim strNamingContextSearch
50:Dim strFilterSearch
51:Dim strAttribsToReturnSearch
52:Dim strDepthSearch
53:
54:Function Put_strNamingContextSearch (newValue)
55: strNamingContextSearch = newValue
56:End Function
57:
58:Function Put_strFilterSearch (newValue)
59: strFilterSearch = newValue
60:End Function
61:
62:Function Put_strAttribsToReturnSearch (newValue)
63: strAttribsToReturnSearch = newValue
64:End Function
65:
66:Function Put_strDepthSearch (newValue)

WHITE PAPER (cont.)

27 WSH and ADSI – Part 2

67: strDepthSearch = newValue
68:End Function
69:
70:Function Execute()
..:
87: Set objDictionary = CreateObject ("Scripting.Dictionary")
88:
89: Set objADOConnnection = CreateObject("ADODB.Connection")
90: objADOConnnection.Provider = "ADsDSOObject"
91: objADOConnnection.Open "Active Directory Provider"
92:
93: Set objCommand = CreateObject("ADODB.Command")
94: Set objCommand.ActiveConnection = objADOConnnection
95:
96: If Ucase (Mid (strNamingContextSearch, 1, 7)) = "LDAP://" Or _
97: Ucase (Mid (strNamingContextSearch, 1, 5)) = "GC://" Then
98:
99: Set objNamingContext = GetObject(strNamingContextSearch)
100: Else
101: Set objRoot = GetObject("LDAP://RootDSE")
102: strNamingContext = objRoot.Get(strNamingContextSearch)
103: Set objRoot = Nothing
...:
109: Set objNamingContext = GetObject("LDAP://" & strNamingContext)
110: End If
111:
112: strADsPathSearch = "<" & objNamingContext.ADsPath & ">"
113:
114: objCommand.CommandText = strADsPathSearch & ";" & _
115: strFilterSearch & ";" & _
116: strAttribsToReturnSearch & ";" & _
117: strDepthSearch
118:
119: Set objRecordSet = objCommand.Execute
120:
121: objDictionary.Add "RecordCount", objRecordSet.RecordCount
122:
123: While Not objRecordSet.EOF
124: For intIndice = 0 To objRecordSet.Fields.Count - 1
125: objDictionary.Add objRecordSet.Fields(intIndice).Name & ":" & _
126: objRecordSet.AbsolutePosition & intIndice, _
127: objRecordSet.Fields(intIndice).Value
128: FireEvent "Debug", objRecordSet.Fields(intIndice).Name & ":" & _
129: objRecordSet.AbsolutePosition & intIndice & "=" & _
130: objRecordSet.Fields(intIndice).Value
131: Next
132:
133: objRecordSet.MoveNext
134: Wend
135:
136: Set Execute = objDictionary
137:
138: Set objNamingContext = Nothing
139: Set objCommand = Nothing
140: Set objADOConnnection = Nothing
141: Set objDictionary = Nothing
142:
143:End Function
144:
145:]]>
146:</script>
147:
148:</component>

WHITE PAPER (cont.)

28 WSH and ADSI – Part 2

Sample 9 Windows Script File capturing events
1:' VB Script to show how to use the ADSearch function from a Windows Script '
2:' component. (With event sinking) '
3:' '
4:' Version 1.00 - Alain Lissoir '
5:' Compaq Computer Corporation - Professional Services - Belgium - '
6:' '
7:' Any comments or questions: EMail:alain.lissoir@compaq.com '
8:
9:Option Explicit
10:
11:Dim objADSearch
12:Dim objResultList
13:Dim objResult
14:Dim intColumnPosition
15:
16:Set objADSearch = Wscript.CreateObject("ADSearch.WSC", "ADSearch_")
17:
18:objADSearch.NamingContext = "DefaultNamingContext"
19:objADSearch.Filter = "(|(objectClass=domainDNS)(objectClass=organizationalUnit))"
20:objADSearch.Attributes = "name,distinguishedName"
21:objADSearch.Depth = "subTree"
22:
23:Set objResultList = objADSearch.Execute
24:
25:WScript.Echo
26:WScript.Echo "Number of record found is " & objResultList.Item ("RecordCount")
27:WScript.Echo "Number of elements in the Scripting Dictionary object is " & objResultList.Count
28:
29:For Each objResult in objResultList
30: intColumnPosition = InStr (objResult, ":")
31: If intColumnPosition Then
32: Wscript.Echo Mid (objResult, 1, intColumnPosition - 1) & _
33: "=>" & objResultList.Item (objResult)
34: End If
35:Next
36:
37:' ---
38:' Event Handler
39:Sub ADSearch_Debug(Value)
40: WScript.Echo "Debug: " & Value
41:End Sub

Using the ADSearch script to get more Schema information

In the first part of the study “Understanding the Microsoft Windows Script Host and the Active Directory Service Interfaces in
Windows 2000”, an Active Directory context was loaded in an Excel sheet. As explained, some supplemental characteristic of
Active Directory objects attributes called the systemFlags was needed. Before going further, some terms need to be clarified:

attributeSchema: An attributeSchema contains the definition of an attribute. This definition is composed of several

other attributes. It is located in the Active Directory schema.
systemFlags: The systemFlags attribute contains a flag enumeration defining:

• Domain-replicated, stored attributes
• Non-replicated, locally stored attributes
• Non-stored, constructed attributes
The systemFlags is an attribute of any attributeSchema.

LDAPDisplayName: The lDAPDisplayName attribute is the name visible when browsing object attributes with the
ADSIEDIT MMC (ADSIEDIT is available in the Support Tools on the Windows 2000 CD). The
lDAPDisplayName is also an attribute of any attributeSchema.

The reusable ADSearch function will facilitate the search of the attributeSchema for a given object attribute. All object
attributes are defined as an attributeSchema with a specific name. The lDAPDisplayName is different from the name used for

WHITE PAPER (cont.)

29 WSH and ADSI – Part 2

the attributeSchema. The problem resides in the way the lDAPDisplayName is linked with the name used in the
attributeSchema.

The attributeSchema is unique in the Active Directory. There is a rule to determine the lDAPDisplayName from the
attributeSchema name. (See Active Directory Service Interfaces SDK documentation for more details.) As consequence, the
lDAPDisplayName is unique too.

From that standpoint, a query of OneLevel search to retrieve the attributeSchema ADsPath can be made. The
attributeSchema having this known lDAPDisplayName attribute will be returned in the query result. Because the
attributeSchema common name is unique in the directory (and used to create the lDAPDisplayName based on a rule), there is
no risk of receiving several matches for the query.

For the ADSearch reuse, the new script will use the XML encapsulation technique (as shown in Sample 3 on page 14).

The ADSearch function can return more than one attribute from the query, so why return ADsPath only (see Sample 10 at line
240) instead of returning systemFlags? It is possible to return the needed attribute immediately, but having ADsPath allows
the calling module to bind to the object and perform any other operations on it as well.

To illustrate this, Sample 10 below retrieves the systemFlags after a bind operation to the attributeSchema. By doing so, we
can answer some other interesting questions, such as:

• Is this attribute copied to the Global Catalog?
• Is this attribute indexed?

Of course, again, it is possible to retrieve these values from the query, but in order to vary the samples; this case retrieves these
values via a bind operation on the retrieved ADsPath.

Sample 10: Loading all the Active Directory Tree objects with their attributes, attribute particularities and syntaxes into an
Excel sheet.

1:<!-- VB Script loading all objects from an AD context location into an Excel sheet -->
2:<!-- (with attributes, syntaxes and system Flags deciphering) -->
3:<!-- -->
4:<!-- Version 1.00 - Alain Lissoir -->
5:<!-- Compaq Computer Corporation - Professional Services - Belgium - -->
6:<!-- -->
7:<!-- Any comments or questions: EMail:alain.lissoir@compaq.com -->
8:
9:<Package>
10:<job>
11: <script language="VBScript" src="Include.vbs" />
12:
13: <script language="VBScript" src="ADSearchFunction.vbs" />
14: <script language="VBScript" src="PromptParametersFunction.vbs" />
15:
16: <script language="VBScript">
..:
..: < NO CHANGE IN THE CORE COMPONENT, SEE PART 1>
..:
85: ' ---
86: Private Sub LookInsideObject (strObject, intX)
...:
...: < NO CHANGE IN THE FUNCTION, SEE PART 1 >
...:
105: End Sub
106:
107: ' ---
108: Private Sub GetMemberInfo (objObject, objObjectClass, intX)
...:
...: < NO CHANGE IN THE FUNCTION, SEE PART 1 >
...:
122: End Sub

WHITE PAPER (cont.)

30 WSH and ADSI – Part 2

123:
124: ' ---
125: Private Sub LoadPropertiesInXL (PropertyList, objObjectClass, intX)
...:
139: For Each strProperty in PropertyList
140: strADsPathAttributeSchema = ADsPathAttributeSchema (strProperty)
141: Set objPropertySchema = GetObject (strADsPathAttributeSchema)
142:
143: varSearchFlags = objPropertySchema.Get ("searchFlags")
144: If Err.Number = &h8000500D Then
145: varSearchFlags = ""
146: Err.Clear
147: End If
148:
149: varSystemFlags = objPropertySchema.Get ("systemFlags")
150: If Err.Number = &h8000500D Then
151: varSystemFlags = ""
152: Err.Clear
153: End If
154:
155: boolGCCopy = objPropertySchema.Get ("isMemberOfPartialAttributeSet")
156: If Err.Number = &h8000500D Then
157: boolGCCopy = False
158: Err.Clear
159: End If
160:
161: Set objProperty = GetObject(objObjectClass.Parent + "/" + strProperty)
162:
163: intY = intY + 1
164: objXL.activecell.offset(intY, intX).Value = objProperty.Name
165: objXL.activecell.offset(intY, intX + 1).Value = objProperty.Syntax
166: objXL.activecell.offset(intY, intX + 2).Value = objProperty.Multivalued
167:
168: If (varSearchFlags And 1) Then
169: objXL.activecell.offset(intY, intX + 3).Value = "Indexed"
170: Else
171: objXL.activecell.offset(intY, intX + 3).Value = ""
172: End If
173:
174: If (boolGCCopy) Then
175: objXL.activecell.offset(intY, intX + 4).Value = "GC Copy"
176: Else
177: objXL.activecell.offset(intY, intX + 4).Value = ""
178: End If
179:
180: If varSystemFlags <> "" Then
181: objXL.activecell.offset(intY, intX + 5).Value = SystemFlags (varSystemFlags)
182: End If
183:
184: Set objProperty = Nothing
185: Set objPropertySchema = Nothing
186: Next
187:
188: End Sub
189:
190: ' ---
191: Function SystemFlags (varSystemFlags)
192:
193: Dim strTemp
194:
195: If (varSystemFlags And ADS_SYSTEMFLAG_DISALLOW_DELETE) Then
196: strTemp = strTemp & "ADS_SYSTEMFLAG_DISALLOW_DELETE;"
197: End If
...:
222: If (varSystemFlags And ADS_SYSTEMFLAG_ATTR_IS_CONTRUCTED) Then
223: strTemp = strTemp & "ADS_SYSTEMFLAG_ATTR_IS_CONTRUCTED;"
224: End If
225:

WHITE PAPER (cont.)

31 WSH and ADSI – Part 2

226: SystemFlags = strTemp
227:
228: End Function
229:
230: ' ---
231: Private Function ADsPathAttributeSchema (strPropertyName)
...:
237: Set objResultList = ADSearch ("SchemaNamingContext", _
238: "(&(objectCategory=attributeSchema)(lDAPDisplayName=" _
239: & strPropertyName & "))",_
240: "ADsPath", _
241: "OneLevel", _
242: False)
243:
244: If objResultList.Item ("RecordCount") = 1 Then
245: For Each objResult in objResultList
246: intColumnPosition = InStr (objResult, ":")
247: If intColumnPosition Then
248: ADsPathAttributeSchema = objResultList.Item (objResult)
249: Exit Function
250: End If
251: Next
252: Else
253: ADsPathAttributeSchema = ""
254: End If
255:
256: End Function
257:
258: </script>
259:</job>
260:
261:</Package>

The core structure of Sample 10 is the same as that presented in the first part of the study “Understanding the Microsoft
Windows Script Host and the Active Directory Service Interfaces in Windows 2000”. Some modifications were made from the
original code to complete the Excel sheet with the new information (systemFlags, searchFlags,
isMemberOfPartialAttributeSet).

Line 11 includes the ‘Include.vbs’ file defining the systemFlags constants to interpret its value. This will be used in the new
function called ‘SystemFlags’ (line 191). The functions ‘LookInsideObject’ (line 86) and ‘GetMemberInfo’ (line 108) are
exactly the same as in the first part “Understanding the Microsoft Windows Script Host and the Active Directory Service
Interfaces in Windows 2000”.

The most important change is made to the ‘LoadPropertiesInXL’ function (line 125). At line 140, the script calls the function
‘QueryADsPathAttributeSchema’ with the attribute name as parameter. This will return the ADsPath to the attributeSchema
defining that attribute. After, it binds to the attributeSchema (line 141 and retrieves the following attributes:

• searchFlags (line 143)

It is an integer value containing a bit flag that defines whether the attribute is indexed (if the least significant bit is set
to 1) or non-indexed (if the bit is zero). See Active Directory programmer’s guide for other bits significations.

• systemFlags (line 149)

It is an integer value containing flags that define additional properties of the attribute such as whether the attribute is
constructed, whether it is non-replicated, and whether it is category 1 or 2.

• isMemberOfPartialAttributeSet (line 155)

It is a Boolean value that defines whether the attribute is replicated to the global catalog (it is in the global catalog if it
has a value of True and not in the global catalog if the value is False).

Note: Restrictions are imposed on modification of existing schema objects. The schema is categorized into two categories.
The schema objects that ship with Windows 2000 in the base schema belong to Category 1. Any schema objects added

WHITE PAPER (cont.)

32 WSH and ADSI – Part 2

later by other applications or users through dynamic schema extension belong to Category 2. Objects of Category 1
can be altered in a very limited way. See Active Directory Service Interfaces SDK for more details about object
Category.

On lines 168, 174, 180, some formatting operations are executed based on the value retrieved from the Active Directory. The
purpose is to have a nice display output in the Excel Sheet. For this, the ‘SystemFlags’ function (line 191) decomposes the flag
values.

The ‘QueryADsPathAttributeSchema’ function is nothing other than the standard function call to the ADSearch function. The
main difference is the query formulation (lines 237 to 242). First of all, the query is concentrated in the Active Directory
Schema context; next, the query string is built to filter only the attributeSchema having the lDAPDDisplayName attribute
equal to the attribute examined in the original ‘LoadPropertiesInXL’ function. As result of the query, the ADsPath is returned.
Because the search is done through the schema, the OneLevel search is used.

237: Set objResultList = ADSearch ("SchemaNamingContext", _
238: "(&(objectCategory=attributeSchema)(lDAPDisplayName=" _
239: & strPropertyName & "))", _
240: "ADsPath", _
241: "OneLevel", _
242: False)

To complete the information, Table 1 on page 80 shows the worksheet output by the script when when a user object
distinguished name is entered.

Note: Sample 10 on page 29 includes a new function called ‘PromptParametersFunction.vbs’ (line 14). This function is a

simple helper to prompt the user for the desired parameters. The code is presented below.

Sample 11 Prompting for some parameters
1:' VB Script to prompt the user for parameters '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:' ---
11:Private Function PromptBasicParameters (strTitle, strPrompt, strInitial)
12:
13:Dim strInput
14:
15: strInput = InputBox (strTitle, strPrompt, strInitial)
16:
17: If strInput = "" Then
18: Wscript.Echo "Sorry, but you didn't enter anything !"
19: WScript.Quit (0)
20: Else
21: PromptBasicParameters = strInput
22: End If
23:
24:End Function

WHITE PAPER (cont.)

33 WSH and ADSI – Part 2

Accessing security settings on File System and Active Directory Objects

Accessing security settings of Active Directory objects requires the use of a new kind of object.
Each object in the Active Directory has an attribute called nTSecurityDescriptor. The
nTSecurityDescriptor contains what it is called a ‘Security Descriptor’ pointer.

Owner

AccessControlEntry

SystemACLDiscretionaryACL

Security Descriptor

ADSI ntSecurityDescriptor

Trustee
AccessMask

AceType
AceFlags

Flags

Trustee
AccessMask

AceType
AceFlags

Flags

Group

Revision

Control

Figure 3 The security descriptor and the relationship between each of its components.

The security descriptor has four particular properties:

• Owner: It identifies the owner of the security descriptor.
• Group: It identifies the group of the security descriptor.
• Revision: Specifies the ACL's revision level. All ACEs in an ACL must be at the same

revision level.
• Control: It is a set of bit flags that describe a security descriptor and/or its components.

The ACLs are a kind of container holding Access –Control –Entries (ACEs). ACEs are objects that
define, on a per user basis, what the user is authorized to do. This is the smallest data element
really defining the user privileges and permissions of an object.

There are two kinds of ACLs: the Discretionary ACL (DACL) and the System ACL (SACL). The
DACL handles access control on objects. The SACL handles the system auditing on objects. This
paper concentrates on DACL because it is the security entity granting privileges and permissions.

To define each privilege and permission for a given user, an ACE has several entries (properties).
An ACE is composed of:

WHITE PAPER (cont.)

34 WSH and ADSI – Part 2

� Trustee: A trustee is a user, a group or a computer with access rights to an object (i.e.
DomainName\UserName).

� AccessMask: The AccessMask contains the values assigned from an enumeration list called
ADS_RIGHTS_ENUM. This AccessMask is a sequence of bits turned on or off to set or
remove a specific right.

� AceType: The value assigned to this ACE entry determines the type of permissions granted for
the corresponding AccessMask. (Allowed, Denied, Audit) The value entered here comes from
the ADS_ACETYPE_ENUM enumeration.

� AceFlags: This entry contains the inheritance control flags. The value entered here comes from
the ADS_ACEFLAG_ENUM enumeration.

� Flags: The flags value can be used to indicate the presence of the ObjectType or
InheritedObjectType fields in the ACE. The value entered here comes from the
ADS_FLAGTYPE_ENUM enumeration.

� ObjectType: It indicates what object type, property set, or property an ACE refers to. It takes a
GUID as a value.

� InheritedObjectType: It specifies the GUID of an object that will inherit the ACE.

Note: For more information about Windows 2000 security architecture, please refer to the

White Paper by Jan De Clercq called ‘Security Fundamentals as implemented in
Windows 2000’.

Security descriptors are objects coming from the Windows NT System. The security descriptor
structure is not defined in the Active Directory Schema. Only the attributes containing a security
descriptor pointer are defined in the Active Directory Schema. This means that the structural view
of the security descriptor is the same for any object in a Windows NT System (Active Directory or
File System objects). ADSI only provides objects representing the security descriptor (and methods
to retrieve different elements that are part of a security descriptor) coming from an Active
Directory (or Exchange Directory).

To access the security descriptor on an object from the file system (a folder or a file), ADSI is not
directly helpful because it does not provide methods to read the security descriptor from the file
system. A file system ‘Security Descriptor’ is not stored in an Active Directory attribute; it is
stored in the file system itself.

To solve that problem, a specific .DLL provides, as a COM object, different properties and
methods to get a security descriptor from “any” object type. This .DLL must be registered in the
system. This .DLL is called ADsSecurity.DLL.

RegSvr32.Exe ADsSecurity.DLL

Note: This COM extension is not dedicated to Active Directory and Windows 2000. Sample
12 will run properly under Windows NT 4.0 if WSH 2.0 is installed, if the
ADsSecurity.DLL is registered and if a File System object is accessed.

Warning: This .DLL is part of the Active Directory Service Interfaces SDK. This component is
unsupported by Microsoft and is not part of the released ADSI that is included with
Windows 2000.

Viewing the rights set on a File System Object or on an Active Directory object

It is time to examine how to decipher the security descriptors associated with an object coming
from the File System or from the Active Directory. The scope of the security descriptor
examination is limited to the standard rights. Active Directory Extended-Rights can also be
examined via the same technique but requires a more complex algorithm and is outside of the
scope of this document.

WHITE PAPER (cont.)

35 WSH and ADSI – Part 2

It is important to understand how to decipher a security descriptor (Sample 12) because this will
be the basis for examining the Add/Remove rights functions later. Sample 12 is written to support
security descriptor access for objects coming from the File System or from the Active Directory.
Once the security descriptor pointer is retrieved, the process for deciphering the descriptor is
always the same.

First of all, the different ENUM tables are defined in the ‘Include.vbs’ in order to identify the
different flag values. It is the calling script’s responsibility to make this inclusion. These values
come from the Windows NT SDK include files.

Note: To have a complete understanding of all the flags defined, please refer to the Active
Directory Service Interfaces SDK documentation and to the Windows 2000 SDK
documentation.

To understand the relationship between the effective rights set via the GUI and
existing flags, please refer to the Table 2 on page 90 and Table 3 on page 91.

Sample 12: Deciphering a security descriptor from the File System or from the Active Directory.
1:' VB Script to view ACE on File System and Active Directory objects '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:' ---
11:Public Sub ViewRights (strObject, strObjectType)
..:
17: Select Case strObjectType
18: Case FS_OBJECT
19: Set objSecurity = CreateObject("ADsSecurity")
20: Set objSD = objSecurity.GetSecurityDescriptor("FILE://" & strObject)
21: WScript.DisconnectObject objSecurity
22: Set objSecurity = Nothing
23: Case AD_OBJECT
24: Set objADObject = GetObject("LDAP://" & strObject)
25: Set objSD = objADObject.Get("ntSecurityDescriptor")
26: WScript.DisconnectObject objADObject
27: Set objADObject = Nothing
28: Case Else
29: Exit Sub
30: End Select
31:
32: WScript.Echo "Deciphering Security Descriptor " & _
33: "'ntSecurityDescriptor'" & vbCRLF & _
34: "of Object '" & strObject & "'" & vbCRLF
35: Call Decipher_SD (strObjectType, objSD)
..:
40:End Sub
41:
42:' ---
43:Private Sub Decipher_SD (strObjectType, objSD)
..:
47: ' ---
48: ' Security Descriptor
49: WScript.Echo "Security Descriptor Owner: '" & objSD.Owner & "'"
50: WScript.Echo "Security Descriptor Group: '" & objSD.Group & "'"
51: WScript.Echo "Security Descriptor Revision: '" & objSD.Revision & "'"
52:
53: '---- SECURITY_DESCRIPTOR_CONTROL ----
54: WScript.Echo "Security Descriptor Control: '0x" & Hex(objSD.Control) & "'"
55:
56: If (objSD.Control And SE_OWNER_DEFAULTED) Then

WHITE PAPER (cont.)

36 WSH and ADSI – Part 2

57: WScript.Echo "-SE_OWNER_DEFAULTED"
58: End If
..:
92: If (objSD.Control And SE_SELF_RELATIVE) Then
93: WScript.Echo "-SE_SELF_RELATIVE"
94: End If
95:
96: WScript.Echo "Security Descriptor OwnerDefaulted: '" & objSD.OwnerDefaulted & "'"
97: WScript.Echo "Security Descriptor GroupDefaulted: '" & objSD.GroupDefaulted & "'"
98: WScript.Echo "Security Descriptor DaclDefaulted: '" & objSD.DaclDefaulted & "'"
99: WScript.Echo "Security Descriptor SaclDefaulted: '" & objSD.SaclDefaulted & "'" & vbCRLF
100:
101: ' ---
102: ' Discretionary ACL
103: Set objDACL = objSD.DiscretionaryAcl
104:
105: Select Case strObjectType
106: Case FS_OBJECT
107: Call DecipherFS_ACE (objDACL)
108: Case AD_OBJECT
109: Call DecipherAD_ACE (objDACL)
110: End Select
111:
112: ' Show the number of trustees present in DACL
113: WScript.Echo "ACL Revision: " & objDACL.ACLRevision
114: WScript.Echo "ACE Count: " & objDACL.AceCount
115: WScript.Echo
...:
120:End Sub
121:
122:' ---
123:Private Sub DecipherAD_ACE (objDACL)
...:
127: For Each objACE In objDACL
128: WScript.Echo "Trustee: '" & objACE.Trustee & "'"
129: WScript.Echo " ACE Type: '" & objACE.AceType & "'"
130:
131: '---- ADS_ACETYPE_ENUM -----
132: Select Case objACE.AceType
133: Case ADS_ACETYPE_ACCESS_ALLOWED
134: WScript.Echo " -ADS_ACETYPE_ACCESS_ALLOWED"
135: Case ADS_ACETYPE_ACCESS_DENIED
136: WScript.Echo " -ADS_ACETYPE_ACCESS_DENIED"
...:
145: Case Else
146:
147: End Select
148:
149: '--- ADS_RIGHTS_ENUM ------
150: WScript.Echo " Access Mask: '0x" & Hex(objACE.AccessMask) & "'"
151:
152: If (objACE.AccessMask = ADS_RIGHT_GENERIC_READ) Then
153: WScript.Echo " -ADS_RIGHT_GENERIC_READ"
154: End If
...:
219: If (objACE.AccessMask And ADS_RIGHT_DS_CONTROL_ACCESS) Then
220: WScript.Echo " -ADS_RIGHT_DS_CONTROL_ACCESS"
221: End If
222:
223: '--- ACE FLAGS ------
224: WScript.Echo " ACE Flags: '" & objACE.AceFlags & "'"
225:
226: If (objACE.AceFlags And OBJECT_INHERIT_ACE) Then
227: WScript.Echo " -OBJECT_INHERIT_ACE"
228: End If
...:
247: If (objACE.AceFlags And FAILED_ACCESS_ACE_FLAG) Then
248: WScript.Echo " -FAILED_ACCESS_ACE_FLAG"

WHITE PAPER (cont.)

37 WSH and ADSI – Part 2

249: End If
250:
251: '--- ADS_FLAGTYPE_ENUM ------
252: WScript.Echo " Flag Type: '" & objACE.Flags & "'"
253:
254: If (objACE.Flags And ADS_FLAG_OBJECT_TYPE_PRESENT) Then
255: WScript.Echo " -ADS_FLAG_OBJECT_TYPE_PRESENT"
256: End If
257: If (objACE.Flags And ADS_FLAG_INHERITED_OBJECT_TYPE_PRESENT) Then
258: WScript.Echo " -ADS_FLAG_INHERITED_OBJECT_TYPE_PRESENT"
259: End If
260:
261: WScript.Echo " Object Type: '" & objACE.ObjectType & "'"
262: WScript.Echo " Object Inherited Type: '" & objACE.InheritedObjectType & "'" & vbCRLF
263: Next
264:
265:End Sub
266:
267:' ---
268:Private Sub DecipherFS_ACE (objDACL)
...:
272: For Each objACE In objDACL
273: WScript.Echo "Trustee: '" & objACE.Trustee & "'"
274: WScript.Echo " ACE Type: '" & objACE.AceType & "'"
275:
276: '---- FILE_ACETYPE_ENUM -----
277: Select Case objACE.AceType
278: Case ACCESS_ALLOWED_ACE_TYPE
279: WScript.Echo " -ACCESS_ALLOWED_ACE_TYPE"
280: Case ACCESS_DENIED_ACE_TYPE
281: WScript.Echo " -ACCESS_DENIED_ACE_TYPE"
282: Case SYSTEM_AUDIT_ACE_TYPE
283: WScript.Echo " -SYSTEM_AUDIT_ACE_TYPE"
284: Case SYSTEM_ALARM_ACE_TYPE
285: WScript.Echo " -SYSTEM_ALARM_ACE_TYPE"
286: Case Else
287:
288: End Select
289:
290: '--- FILE_RIGHTS_ENUM ------
291: WScript.Echo " Access Mask: '0x" & Hex(objACE.AccessMask) & "'"
292:
293: If (objACE.AccessMask = FILE_ALL_ACCESS) Then
294: WScript.Echo " -FILE_ALL_ACCESS"
295: End If
...:
357: If (objACE.AccessMask And FILE_SYNCHRONIZE) Then
358: WScript.Echo " -FILE_SYNCHRONIZE"
359: End If
360:
361: '--- ACE FLAGS ------
362: WScript.Echo " ACE Flags: '" & objACE.AceFlags & "'"
363:
364: If (objACE.AceFlags And OBJECT_INHERIT_ACE) Then
365: WScript.Echo " -OBJECT_INHERIT_ACE"
366: End If
...:
385: If (objACE.AceFlags And FAILED_ACCESS_ACE_FLAG) Then
386: WScript.Echo " -FAILED_ACCESS_ACE_FLAG"
387: End If
388:
389: '--- ADS_FLAGTYPE_ENUM ------
390: WScript.Echo " Flag Type: '" & objACE.Flags & "'"
391: WScript.Echo " Object Type: '" & objACE.ObjectType & "'"
392: WScript.Echo " Object Inherited Type: '" & objACE.InheritedObjectType & "'" & vbCRLF
393: Next
394:
395:End Sub

WHITE PAPER (cont.)

38 WSH and ADSI – Part 2

When an access to the File System object is made to get the security descriptor, an instance of the ADsSecurity object (line 19)
is created. The ADsSecurity.DLL provides this ADsSecurity object. Next, the method ‘GetSecurityDescriptor’ is invoked to get
the File System security descriptor. This will assign the ‘objSD’ variable (line 20). On the other hand, when an access to the
Active Directory is made to read the security descriptor attribute of the selected object, no instance of the ADsSecurity object
must be created. Instead of using the ‘GetSecurityDescriptor’ method, the script binds to the object and it invokes a traditional
‘Get’ method to get the security descriptor pointer (lines 24 and 25). This is because ADSI provides an object representing a
security descriptor (such as AccessControlList and AccessControlEntry object).

Actually to get the security descriptor from the Active Directory, it is possible to use the same method as for the File System
access. (Lines 19 to 22) In this case, the lines 24 to 27 could be easily replaced by:

Set objSecurity = CreateObject("ADsSecurity")
Set objSD = objSecurity.GetSecurityDescriptor("LDAP://" & strObject)
WScript.DisconnectObject objSecurity
Set objSecurity = Nothing

which is functionally equivalent to the original code:

Set objADObject = GetObject("LDAP://" & strObject)
Set objSD = objADObject.Get("ntSecurityDescriptor")
WScript.DisconnectObject objADObject
Set objADObject = Nothing

Note that instead of using a “FILE://” pointer, an “LDAP://” pointer is used; this is the only real difference. The
‘GetSecurityDescriptor’ method accepts both pointers. Why use two different methods: one for the File System security
descriptor retrieval and another one for the security descriptor located in the Active Directory?

The nTSecurityDescriptor attribute is not the only attribute on a user object in the Active Directory containing a security
descriptor pointer. When Exchange 2000 is installed under Windows 2000, there are a lot of schema modifications. One of
these modifications is the addition of a new attribute associated with the user object: msExchMailboxSecurityDescriptor. The
problem with invoking the ‘GetSecurityDescriptor’ method is that it returns only the nTSecurityDescriptor attribute. There is
no way (up to now) to get the msExchMailboxSecurityDescriptor when invoking that method. So, using the general ‘Get’
method allows reading the ntSecurityDescriptor or msExchMailboxSecurityDescriptor. In fact, this is a more general
method. It will be useful later.

Note: It is important to know that the ADSI SDK 2.5 provides the ADsSecurity.DLL. This ADSI SDK is not part of

Windows 2000 or Exchange 2000. It is possible that a new or updated version of ADsSecurity.DLL (or an
equivalent solution) will be provided with future releases to support an access method to the
msExchMailboxSecurityDescriptor attribute.

Unfortunately, to decipher the msExchMailboxSecurityDescriptor, the flag values are not the same as flag values used to
decipher ntSecurityDescriptor. Even if the method to get the specific security descriptor is the same, the flag values and their
meaning are different. It will be explained later in this document how to build a security descriptor for Exchange 2000 (see
Sample 17 on page 49).

Once the security descriptor is assigned to the ‘objSD’ variable (lines 20 and/or 25), it is possible to decompose the security
descriptor to each of its components:

• .Owner property to get the security descriptor owner (line 49).
• .Group property to get the security descriptor group (line 50).
• .Revision property to get the security descriptor revision (line 51).
• .Control property to get the security descriptor control flags (line 54).
• .DiscretionaryAcl method to extract the Discretionary ACL (line 103).

http://vcmproapp02.compaq.com/ActiveAnswers/Global/en/solutions.1128/offline.8588/default.asp

WHITE PAPER (cont.)

39 WSH and ADSI – Part 2

From lines 56 to 94, the Control flag is deciphered to identify the SECURITY_DESCRIPTOR_CONTROL flag values. From
line 96 to 99, different Boolean values are retrieved from properties associated with the security descriptor object:

• .OwnerDefaulted
• .GroupDefaulted
• .DaclDefaulted
• .SaclDefaulted

These Boolean values are used during the creation of a security descriptor. They indicate if the information is derived from a
default mechanism rather than explicitly set by the original provider of the security descriptor (in other words, the script).
These values are not really a property of the security descriptor but they are properties of the security object created at line 20
and/or 25. When running the script, these flags will be always False.

From line 105, the Discretionary ACL is deciphered down to each of its components. This operation is performed differently
based on the type of object examined: a File System object (line 107) or an Active Directory object (line 109). The deciphering
method is not really different between a Discretionary ACL coming from the File System and a Discretionary ACL coming
from the Active Directory. This operation is divided into two different functions because flag values and flag meanings are not
the same. This will give a coherent output regardless of the object type analyzed.

The extraction (at line 107 for the ‘DecipherFS_ACE’ function and at line 109 for the ‘DecipherAD_ACE’ function) of each
ACE contained in the Discretionary ACL is done by a simple enumeration. This allows decomposing each ACE present in the
Discretionary ACL. For the ‘DecipherAD_ACE’ function:

• .Trustee is shown at line 128.
• .AceType is shown at line 129 and deciphered from lines 132 to 147.
• .AccessMask is shown at line 150 and deciphered from lines 152 to 221.
• .AceFlags is shown at line 224 and deciphered from lines 226 to 249.
• .Flags is shown at line 252 and deciphered from lines 254 to 259.
• .ObjectType, is shown at lines 261.
• .InheritedObjectType is shown at lines 262.

This is exactly the same principle for the ‘DecipherFS_ACE’ function.

The Flags property determines if the ObjectType or InheritedObjectType properties are set:

• ObjectType indicates what object type, property set, or property the ACE refers to. It takes a GUID as its value. The GUID

referenced by ObjectType is not physically present in the ACE unless ADS_FLAGS_OBJECT_TYPE_PRESENT is set
(see ADS_FLAGTYPE_ENUM). This property plays the role of a pointer (the GUID number) to the Extended Rights set
located in the Extended Right container in the configuration context.

• InheritedObjectType specifies the schemaIDGUID of an object that will inherit the ACE. The GUID is not physically
present in the ACE unless the ADS_FLAG_INHERITED_OBJECT_TYPE_PRESENT bit is set.

Note: For more information about Windows 2000 security inheritance and delegation, please refer to the White Paper by Jan
De Clercq called ‘Security Fundamentals as implemented in Windows 2000’.

Finally, on lines 113 and 114, the script shows two properties from the Discretionary ACL.

• .ACLRevision: The revision level of an access-control list. All ACEs in an ACL must be at the same revision level.
• .AceCount: The number of access control entries in the access-control list.

To conclude, here is sample code using the ViewRightFunction.VBS.

The script reusability principle is always the same. The core is included in a function and a Windows Script File includes that
function in an XML frame.

WHITE PAPER (cont.)

40 WSH and ADSI – Part 2

Sample 13: Using the ‘ViewSecurityDescriptor.VBS’ script from a Windows Script file.
1:<!-- Windows Script File viewing rights on File System and Active Directory -->
2:<!-- objects -->
3:<!-- -->
4:<!-- Version 1.00 - Alain Lissoir -->
5:<!-- Compaq Computer Corporation - Professional Services - Belgium - -->
6:<!-- -->
7:<!-- Any comments or questions: EMail:alain.lissoir@compaq.com -->
8:
9:<job>
10: <script language="VBScript" src="Include.vbs" />
11: <script language="VBScript" src="ViewRightFunction.vbs" />
12:
13: <script language="VBScript">
..:
20: WScript.Echo "********** Accessing File System through a remote share **********"
21: Call ViewRights("\\MYW2KDC\HOME$\JAMES.WEST", FS_OBJECT)
22: WScript.Echo
23:
24: WScript.Echo "******************** Accessing Active Directory ******************"
25: Set objRoot = GetObject ("LDAP://RootDSE")
26: strNamingContext = objRoot.Get ("defaultNamingContext")
27: Call ViewRights("CN=WEST James,CN=Users," & strNamingContext, AD_OBJECT)
28: WScript.Echo
29:
30: </script>
31:</job>

Here is the partial display output of an object access to the File System first and to the Active Directory next. Note that the
security descriptor for the File System object is accessed through a remote share (UNC).

********** Accessing File System through a remote share **********
Deciphering Security Descriptor 'ntSecurityDescriptor'
of Object '\\MYW2KDC\HOME$\LissoirA'

Security Descriptor Owner: 'BUILTIN\Administrators'
Security Descriptor Group: 'W2K-HOME\Domain Users'
Security Descriptor Revision: '1'
Security Descriptor Control: '0x9404'
-SE_DACL_PRESENT

-............
-SE_SELF_RELATIVE
Security Descriptor OwnerDefaulted: 'False'
Security Descriptor GroupDefaulted: 'False'
Security Descriptor DaclDefaulted: 'False'
Security Descriptor SaclDefaulted: 'False'

Trustee: 'W2K-HOME\LissoirA'
ACE Type: '0'
-ACCESS_ALLOWED_ACE_TYPE
Access Mask: '0x1301BF'
-FILE_READ_DATA
-............
-READ_CONTROL
-SYNCHRONIZE
ACE Flags: '3'
-OBJECT_INHERIT_ACE
-CONTAINER_INHERIT_ACE
-VALID_INHERIT_FLAGS
Flag Type: '0'
Object Type: ''
Object Inherited Type: ''

........................

ACL Revision: 2

WHITE PAPER (cont.)

41 WSH and ADSI – Part 2

ACE Count: 2

******************** Accessing Active Directory ******************
Deciphering Security Descriptor 'ntSecurityDescriptor'
of Object 'CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com'

Security Descriptor Owner: 'W2K-HOME\Domain Admins'
Security Descriptor Group: 'W2K-HOME\Domain Admins'
Security Descriptor Revision: '1'
Security Descriptor Control: '0x9C04'
-SE_DACL_PRESENT
-............
-SE_SELF_RELATIVE
Security Descriptor OwnerDefaulted: 'False'
Security Descriptor GroupDefaulted: 'False'
Security Descriptor DaclDefaulted: 'False'
Security Descriptor SaclDefaulted: 'False'

Trustee: 'NT AUTHORITY\Authenticated Users'
ACE Type: '0'
-ADS_ACETYPE_ACCESS_ALLOWED
Access Mask: '0x20094'
-ADS_RIGHT_READ_CONTROL
-............
-ADS_RIGHT_DS_LIST_OBJECT
ACE Flags: '0'
Flag Type: '0'
Object Type: ''
Object Inherited Type: ''

........................

Trustee: 'W2K-HOME\Domain Admins'
ACE Type: '0'
-ADS_ACETYPE_ACCESS_ALLOWED
Access Mask: '0xE01BF'
-ADS_RIGHT_READ_CONTROL
-............
-ADS_RIGHT_DS_CONTROL_ACCESS
ACE Flags: '0'
Flag Type: '0'
Object Type: ''
Object Inherited Type: ''

Trustee: 'NT AUTHORITY\SYSTEM'
ACE Type: '0'
-ADS_ACETYPE_ACCESS_ALLOWED
Access Mask: '0xF01FF'
-ADS_RIGHT_DELETE
-............
-ADS_RIGHT_DS_CONTROL_ACCESS
ACE Flags: '0'
Flag Type: '0'
Object Type: ''
Object Inherited Type: ''
ACL Revision: 2
ACE Count: 5

WHITE PAPER (cont.)

42 WSH and ADSI – Part 2

Adding rights to a File System Object or to an Active Directory object

Considering the Active Directory Users and Computers MMC interface showing permissions on an
Active Directory object (only available by selecting the advanced view mode), there are many
different rights you can set. For each, there is a particular set of flags.

Figure 4 Advanced view of File System

rights.

Figure 5 Advanced view of Active

Directory rights.

A good exercise with Sample 12 on page 35 is to set different rights on a particular object and to
discover which flag is activated in respect of the GUI right settings selected. The summary of the
standard rights (and inheritance) can be found in Table 2 to Table 5 on page 90.

Note: Extended rights are more complex to manipulate because the ACE Flags property is used

as a switch to determine the presence of a GUID pointer to the Configuration Context.
The ObjectType property of the ACE contains this GUID if the Flag property is set to
ADS_FLAG_OBJECT_TYPE_PRESENT. The Configuration context contains in its
Extended rights container all the extended rights created in the Active Directory. The
extended rights container is located in the Configuration context because this particular
context is replicated across all the Forest; which makes them available everywhere. In
order to simplify this document, the examples are limited to the standard rights only.

WHITE PAPER (cont.)

43 WSH and ADSI – Part 2

Figure 6 The extended rights location in the Configuration Context.

Setting rights
A right is a combination of different flags. By looking at Table 2 on page 90 for Active Directory
rights and Table 3 on page 91 for File System rights, it is easy to determine the flags needed to set
a right as shown in the GUI. For example, to set the ‘Read’ right, the following flags must be used:

• ADS_ACETYPE_ACCESS_ALLOWED to grant the right

or

• ADS_ACETYPE_ACCESS_DENIED to deny to the right.

And then, to explicitly select the ‘Read’ right, the following flags must be combined:

• ADS_RIGHT_READ_CONTROL
• ADS_RIGHT_ACTRL_DS_LIST
• ADS_RIGHT_DS_READ_PROP
• ADS_RIGHT_DS_LIST_OBJECT

The particularity of the ‘Read’ right is that the same result can be obtained by using the
ADS_RIGHT_GENERIC_READ. After setting an ACE by using the
ADS_RIGHT_GENERIC_READ flag, reading back the result will give the flags combination
presented before.

The principle is exactly the same for other generic rights (see Table 2 on page 90 for more details):

• ADS_RIGHT_GENERIC_WRITE
• ADS_RIGHT_GENERIC_EXECUTE
• ADS_RIGHT_GENERIC_ALL

Note: The generic rights principle is also applicable for File System objects. Please refer to
Table 3 on page 91 for a complete list of generic rights.

WHITE PAPER (cont.)

44 WSH and ADSI – Part 2

Inheritance
As rights, inheritance is a flag combination. By looking at Table 4 on page 92 for Active Directory
inheritance and at Table 5 on page 92 for File System inheritance, it is easy to determine the flags
needed to set an inheritance as shown in the GUI (See Figure 4 and Figure 5 on page 42). For
example to set the ‘Child objects only’ inheritance, the following flags must be used:

• CONTAINER_INHERIT_ACE
• INHERIT_ONLY_ACE

When viewing the rights of an Active
Directory object, it is possible to protect the
object against inheritance (coming from
parent objects). This operation can be
completed via the checkbox in the user
interface (see Figure 7).

When deciphering a security descriptor,
setting the flag value
‘SE_DACL_PROTECTED’ on the security
descriptor object control flag will have the
same effect as deselecting the checkbox in
the user interface.

This setting is set on the security descriptor
object level and not on the ACE or ACL
level.

Figure 7 Blocking inheritance

Now the missing part to complete the operation is to have a function adding rights to an object
security descriptor. This is the purpose of Sample 14 below.

Sample 14: Adding rights to a File System object or to an Active Directory object.
1:' VB Script to add ACE on File System and Active Directory objects '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:' ---
11:Public Sub AddRights(strObject,strTrustee,intACEType,intAccessMask,intACEFlags,strObjectType)
..:
20: Select Case strObjectType
21: Case FS_OBJECT
22: Set objSecurity = CreateObject("ADsSecurity")
23: Set objSD = objSecurity.GetSecurityDescriptor("FILE://" & strObject)
24: Case AD_OBJECT
25: Set objADObject = GetObject("LDAP://" & strObject)
26: Set objSD = objADObject.Get("ntSecurityDescriptor")
27: Case Else

WHITE PAPER (cont.)

45 WSH and ADSI – Part 2

28: Exit Sub
29: End Select
30:
31: Set objDACL = objSD.DiscretionaryAcl
32:
33: Set objNewACE = CreateObject("AccessControlEntry")
34:
35: ' Add the new Trustee with his specific rights
36: objNewACE.Trustee = strTrustee
37: objNewACE.AceType = intACEType
38: objNewACE.AccessMask = intAccessMask
39: objNewACE.AceFlags = intACEFlags
40:
41: objDACL.AddAce objNewACE
42: objSD.DiscretionaryAcl = objDACL
43:
44: Select Case strObjectType
45: Case FS_OBJECT
46: objSecurity.SetSecurityDescriptor objSD
47: WScript.DisconnectObject objSecurity
48: Set objSecurity = Nothing
49: Case AD_OBJECT
50: objADObject.Put "ntSecurityDescriptor", objSD
51: objADObject.SetInfo
52: WScript.DisconnectObject objADObject
53: Set objADObject = Nothing
54: End Select
55:
56: Wscript.Echo " Trustee '" & strTrustee & "' has been added to '" & strObject & "'"
..:
65:End Sub

In Sample 14 (Adding rights to a File System object or to an Active Directory object.) on page 44, the script extracts the security
descriptor from the given object (line 20 to 29). Next, it extracts the Discretionary ACL (line 31) in order to add the new desired
ACE to the ACL. To accomplish this, the script needs to build a new ACE object. That’s what it does at line 33. It creates an
instance of the ‘AccessControlEntry’ object.

The next operations are obvious. It assigns the Trustee, the AceType, the AccessMask and AceFlags to the corresponding
properties of the new ACE object.

The Discretionary ACL exposes a method to add a new ACE: ‘AddAce’ (line 41). After this, it puts back the modified
Discretionary ACL to the Security Descriptor.

The operation is not complete until it puts back the modified security descriptor to the original object. Here again, as the
‘GetSecurityDescriptor’ method, if the object is a File System object or an Active Directory object, it uses two different methods.
As explained before, it was possible to use the ‘SetSecurityDescriptor’ method to save the modified security descriptor to the
Active Directory. The ‘Put’ and ‘SetInfo’ methods combination are used because the ‘SetSecurityDescriptor’ method has the
same limitation as ‘GetSecurityDescriptor’: These methods only address the nTSecurityDescriptor LDAP attribute.

WHITE PAPER (cont.)

46 WSH and ADSI – Part 2

Removing rights from a File System Object or from an Active Directory object

To remove rights, the next script uses the same general structure as Sample 14 above. The difference
is in the method used to remove the desired trustee. Because Trustee is a “member“ of an ACE and
ACEs “members” of the Discretionary ACL, the script makes a ‘For Loop’ to enumerate all ACEs
until it finds the desired one.

Sample 15 uses this method to remove rights from a File System object.

Sample 15: Removing rights from a File System object or from an Active Directory object.
1:' VB Script to remove ACE on File System and Active Directory objects '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:' ---
11:Public Sub RemoveRights(strObject, strTrustee, strObjectType)
..:
21: Select Case strObjectType
22: Case FS_OBJECT
23: Set objSecurity = CreateObject("ADsSecurity")
24: Set objSD = objSecurity.GetSecurityDescriptor("FILE://" & strObject)
25: Case AD_OBJECT
26: Set objADObject = GetObject("LDAP://" & strObject)
27: Set objSD = objADObject.Get("ntSecurityDescriptor")
28: Case Else
29: Exit Sub
30: End Select
31:
32: Set objDACL = objSD.DiscretionaryAcl
33:
34: For Each objACE In objDACL
35: Select Case strTrustee
36: Case "REMOVE_ALL_RIGHTS"
37: objDACL.RemoveAce (objACE)
38:
39: Case Else
40: If (objACE.Trustee = strTrustee) Then
41: Wscript.Echo " Trustee '" & strTrustee & _
42: "' has been removed from '" & strObject & "'"
43: objDACL.RemoveAce (objACE)
44:
45: Exit For
46: End If
47: End Select
48: Next
49:
50: If strTrustee = "REMOVE_ALL_RIGHTS" Then
51: Set objNewACE = CreateObject("AccessControlEntry")
52:
53: ' Add the new Trustee with his specific rights
54: objNewACE.Trustee = "Everyone"
55: objNewACE.AceType = ADS_ACETYPE_ACCESS_ALLOWED
56: objNewACE.AccessMask = ADS_RIGHT_GENERIC_ALL
57: objNewACE.AceFlags = CONTAINER_INHERIT_ACE Or OBJECT_INHERIT_ACE
58:
59: Wscript.Echo " All rights are removed, Trustee '" & objNewACE.Trustee & _

WHITE PAPER (cont.)

47 WSH and ADSI – Part 2

60: "' (Full Control) has been added."
61:
62: objDACL.AddAce objNewACE
..:
67: End If
68:
69: objSD.DiscretionaryAcl = objDACL
70:
71: Select Case strObjectType
72: Case FS_OBJECT
73: objSecurity.SetSecurityDescriptor objSD
..:
76: Case AD_OBJECT
77: objADObject.Put "ntSecurityDescriptor", objSD
78: objADObject.SetInfo
..:
81: End Select
..:
86:End Sub

The only difference between Sample 15 above and Sample 14 on page 44 resides on lines 34 to 48. These lines contain the ‘For
Each’ loop making the ACE enumeration until the Trustee you want to remove is found. The next lines contain the usual
Discretionary ACL and Security Descriptor saving procedures. Note that it is possible to remove all the rights in one step by
assigning the variable ‘Trustee’ to “REMOVE_ALL_RIGHTS” (lines 36 and 37). For accessibility reasons, after this removal, the
script gives the ‘Everyone’ Full Control right to the same object to be sure that the object is still accessible.

Note: Giving ‘Everyone’ Full Control is equal to suppressing the concept of controlling the access. From a human point of view,
this makes sense but from a computer point of view, removing all access controls means no access. That’s why we add this
trustee (lines 50 to 67).

Finally, below, this sample code is using the three new functions to view, add and remove rights. Note the four include statements.
“Include.vbs” is included first (line 10) in order to have all constant definitions loaded. This sample script adds a right for
‘Everyone’ to a remote directory (via UNC) on the File System (line 26). Afterwards, the script removes the right just set (line
41). Before and after each operation, the script uses the “ViewRightFunction.VBS” to show the effective rights set on the object.

The script repeats the same operation for an Active Directory Object (lines 48 to 73).

Sample 16: Windows Script demonstrating the miscellaneous right functions usage.
1:<!-- Windows Script File setting right on File System and Active Directory -->
2:<!-- objects and showing result between each operation -->
3:<!-- -->
4:<!-- Version 1.00 - Alain Lissoir -->
5:<!-- Compaq Computer Corporation - Professional Services - Belgium - -->
6:<!-- -->
7:<!-- Any comments or questions: EMail:alain.lissoir@compaq.com -->
8:
9:<job>
10: <script language="VBScript" src="Include.vbs" />
11: <script language="VBScript" src="ViewRightFunction.vbs" />
12: <script language="VBScript" src="AddRightFunction.vbs" />
13: <script language="VBScript" src="RemoveRightFunction.vbs" />
14:
15: <script language="VBScript">
..:
22: WScript.Echo "********** Accessing File System through a remote share ******"
23: Call ViewRights("\\MYW2KDC\HOME$\JAMES.WEST", FS_OBJECT)
24: WScript.Echo
25:
26: Call AddRights("\\MYW2KDC\HOME$\JAMES.WEST", _
27: "Everyone", _

WHITE PAPER (cont.)

48 WSH and ADSI – Part 2

28: ADS_ACETYPE_ACCESS_ALLOWED, _
29: ADS_RIGHT_GENERIC_READ Or _
30: ADS_RIGHT_GENERIC_WRITE Or _
31: ADS_RIGHT_DELETE Or _
32: ADS_RIGHT_GENERIC_EXECUTE, _
33: CONTAINER_INHERIT_ACE Or _
34: OBJECT_INHERIT_ACE, _
35: FS_OBJECT)
..:
38: Call ViewRights("\\MYW2KDC\HOME$\JAMES.WEST", FS_OBJECT)
..:
41: Call RemoveRights("\\MYW2KDC\HOME$\JAMES.WEST", _
42: "Everyone", _
43: FS_OBJECT)
..:
46: Call ViewRights("\\MYW2KDC\HOME$\JAMES.WEST", FS_OBJECT)
47:
48: WScript.Echo "******************** Accessing Active Directory ***********"
49: Set objRoot = GetObject ("LDAP://RootDSE")
50: strObjectADsPath = "CN=WEST James,CN=Users," & _

objRoot.Get ("defaultNamingContext")
51: Call ViewRights(strObjectADsPath, AD_OBJECT)
52: WScript.Echo
53:
54: Call AddRights(strObjectADsPath, _
55: "Everyone", _
56: ADS_ACETYPE_ACCESS_ALLOWED, _
57: ADS_RIGHT_GENERIC_READ Or _
58: ADS_RIGHT_GENERIC_WRITE Or _
59: ADS_RIGHT_DELETE Or _
60: ADS_RIGHT_GENERIC_EXECUTE, _
61: 0, _
62: AD_OBJECT)
..:
65: Call ViewRights(strObjectADsPath, AD_OBJECT)
..:
68: Call RemoveRights(strObjectADsPath, _
69: "Everyone", _
70: AD_OBJECT)
..:
73: Call ViewRights(strObjectADsPath, AD_OBJECT)
74:
75: </script>
76:</job>

Creating a Security Descriptor for an Exchange 2000 mailbox

The purpose of this section is to show how to create a security descriptor for the
msExchMailboxSecurityDescriptor user object attribute. The msExchMailboxSecurityDescriptor
attribute is only present if Exchange 2000 is installed under Windows 2000. The installation of
Exchange 2000 makes a huge schema modification to permit E-Mail enabled functions with some
Active Directory objects (Group Object, User Object, and so on). In order to access the mailbox, as
with any other Active Directory object, a security descriptor must be defined. This is the mailbox
access right definition under the Active Directory.

Under Windows NT 4.0, the SAM database is not extensible. This means that the installation of
Exchange is not able to modify the SAM database “schema”. This forces Microsoft to store mailbox
access rights in the “dedicated” Exchange Directory Service. More than setting an access right via a
security descriptor, it is necessary to map the primary user mailbox with an NT legacy account
(Security ID). Under Exchange 5.5, those two values are visible via LDAP and are as follows:

WHITE PAPER (cont.)

49 WSH and ADSI – Part 2

• Assoc-NT-Account: For the primary owner of the mailbox. This attribute contains a
Security ID.

• NT-Security-Descriptor: For the access rights to the mailbox. This attribute contains a
Security Descriptor.

Under Windows 2000, the user object itself contains the mailbox definition. The only difference from
a Security Descriptor point of view is that there is a second Security Descriptor definition for the
mailbox access right. So, user object has:

• The Security Descriptor defining the access rights to the user object and is stored in a user
object attribute called: ntSecurityDescriptor.

• The Security Descriptor defining the access rights to the mailbox and is stored in a user
object attribute called: msExchMailboxSecurityDescriptor.

To summarize, the msExchMailboxSecurityDescriptor of Exchange 2000 under Windows 2000 is
the equivalent to the NT-Security-Descriptor attribute of Exchange 5.5. The
msExchMailboxSecurityDescriptor uses different flag values than those used by Exchange 5.5 to
set the mailbox rights (See Table 6 on page 93).

The purpose of the next script is to build a valid security descriptor for the
msExchMailboxSecurityDescriptor attribute.

Note: When creating Windows 2000 users via LDAP, a default Security Descriptor is built to

define the security access rules to the newly created object. On the other hand, the Security
Descriptor used for mailbox access rights is not initialized. It must be enabled from the
script. This task cannot be delegated to a default mechanism.

Active Directory provides the capability to specify a default security for each type of
object. This is specified in the defaultSecurityDescriptor attribute of the classSchema
object definition. This security descriptor is used to provide default protection on the object
if there is no security descriptor specified during the creation of the object and if there is no
specific inherited permissions from the parent. (See Microsoft Active Directory Service
Interfaces 2.5 SDK for more details.)

Sample 17 Creating a security descriptor
1:' VB Script creating Security Descriptor for Active Directory objects and '
2:' saving it in the associated Security Descriptor attribute '
3:' (Exchange 2000 mailbox or Active Directory object are supported) '
4:' '
5:' Version 1.00 - Alain Lissoir '
6:' Compaq Computer Corporation - Professional Services - Belgium - '
7:' '
8:' Any comments or questions: EMail:alain.lissoir@compaq.com '
9:
10:Option Explicit
11:
12:' ---
13:Public Sub SetSD(varObject, ACE_Entries, strObjectType)
..:
21: Select Case strObjectType
22: Case AD_OBJECT, MB_OBJECT
23:
24: Case Else
25: Exit Sub
26: End Select

WHITE PAPER (cont.)

50 WSH and ADSI – Part 2

27:
28: Set objSD = CreateObject("SecurityDescriptor")
29: Set objDACL = CreateObject("AccessControlList")
30:
31: objDACL.AceCount = Ubound (ACE_Entries) / 4
32: objDACL.AclRevision = ADS_ACL_REVISION_DS
33:
34: For intIndice = 0 To (Ubound (ACE_Entries) - 1) Step 4
35: ' Create an Access Control Entry (ACE_Entries)
36: Set objACE = CreateObject("AccessControlEntry")
37:
38: objACE.Trustee = ACE_Entries (intIndice)
39: objACE.AceType = ACE_Entries (intIndice + 1)
40: objACE.AccessMask = ACE_Entries (intIndice + 2)
41: objACE.AceFlags = ACE_Entries (intIndice + 3)
42:
43: ' Add the newly created ACE objects to the new access-control list (ACL)
44: objDACL.AddAce objACE
45:
46: WScript.DisconnectObject objACE
47: Set objACE = Nothing
48: Next
49:
50: ' Use the created DACL instead of the default.
51: objSD.Revision = ADS_SD_REVISION_DS
52: objSD.OwnerDefaulted = True
53: objSD.GroupDefaulted = True
54: objSD.DaclDefaulted = False
55: objSD.SaclDefaulted = True
56: objSD.DiscretionaryAcl = objDACL
57:
58: Select Case strObjectType
59: Case AD_OBJECT
60: varObject.Put "nTSecurityDescriptor", objSD
61: varObject.SetInfo
62: Wscript.Echo " Security Descriptor for AD object initialized."
63: Case MB_OBJECT
64: varObject.Put "msExchMailboxSecurityDescriptor", objSD
65: varObject.SetInfo
66: Wscript.Echo " Security Descriptor for MB object initialized."
67: End Select
..:
75:End Sub

The security descriptor creation follows the same logic used to create an ACE (see Sample 14 on page 44). The principle is to
create an instance of the new objects. To create a new ACE, the script has to create an instance of the AccessControlEntry
object. For a security descriptor, the script must create all object instances constituting a security descriptor. In this case, the
instances to create are:

• The SecurityDescriptor object (SD) at line 28
• The AccessControlList object (ACL) at line 29
• The AccessControlEntry object (ACE) at line 36

Creating a security descriptor also means assigning rights. To ease the operation, Sample 17 above accepts an array of ACE
entries as a parameter. During the security descriptor initialization, the script will assign the ACE array to each ACE entry of the
new Discretionary ACL (line 34 to 48). The number of ACE entries is determined from the array size used to pass the ACE list
(line 31). Once a new ACE object instance is created (line 36), the corresponding ACE element is assigned from the array. The
script loops until all the ACE array entries are assigned. Each time an ACE from the array is assigned (line 38 to 41), it puts the
new ACE into the Discretionary ACL (line 44).

WHITE PAPER (cont.)

51 WSH and ADSI – Part 2

The next piece of code is specific to the security descriptor creation (line 51 to 56). This step defines how the different
components constituting a security descriptor are created. For each element of a security descriptor (see Figure 3 on page 33), a
flag must be set to define the method used for the creation. All elements are created by a default mechanism except the
Discretionary ACL (because the script will set this one). This is the reason why DaclDefaulted is set to False (line 54). On line
56, the script sets the new Discretionary ACL to the security descriptor.

The next operation is the usual save process to the Active Directory object having the nTSecurityDescriptor (line 60 and 61) or
msExchMailboxSecurityDescriptor attribute (line 64 and 65).

The array of ACE entries must be organized as follows:

Array (Trustee1, ACEType1, AccessMask1, ACEFlags1, _
Trustee2, ACEType2, AccessMask2, ACEFlags2, _

..............).

Sample 22 on page 68 shows how to use this function.

Note: Now we are able to create a security descriptor for msExchMailboxSecurityDescriptor attribute. An enhancement to

be able to manipulate rights for that particular security descriptor is to make the following changes:

• Sample 12 (Deciphering a security descriptor from the File System or from the Active Directory.) on page 35
• Sample 14 (Adding rights to a File System object or to an Active Directory object.) on page 44
• Sample 15 (Removing rights from a File System object or from an Active Directory object.) on page 46

WHITE PAPER (cont.)

52 WSH and ADSI – Part 2

Creating security groups based on OU membership

Organizational units under Active Directory allow creating a container hierarchy to reflect the needs
of an organization. The organizational unit is a general-purpose container that can be used to group
most other object classes together for purposes of administration. Windows 2000 allows
administrators to apply very fine-grained access control to objects in the directory and to delegate
administrative authority to other users grouped in the organizational unit.

An organizational unit has a security descriptor to define access rights to the container. It is important
to note that an organizational unit is NOT a security principal. This means that no SID is assigned to
an organizational unit. The consequence is that an administrator cannot use this kind of object to grant
permissions to access resources. On the other hand, users and groups are security principals because
they have a SID associated with them (that is, the objectSID attribute).

If an administrator needs to grant permissions to organizational unit members for a shared directory
access (for instance), he must create a security group including the organizational unit members. This
creates administrative work. To facilitate this, Microsoft adds an option to the user interface to
populate a group based on the organizational unit members.

Figure 8 Adding organizational unit members to a group.

This GUI function facilitates the work but the administrator first needs to create the group planned to
receive the members. Next, each time he adds new users, he must update each related group. Now, if
the Active Directory has many organizational units, the administrator must repeat this operation for
each of them. This can generate a non-negligible amount of administrative work.

WHITE PAPER (cont.)

53 WSH and ADSI – Part 2

It would be nice if a script could do this job. That is the purpose of Sample 18 on page 54. The script
looks through the Active Directory for all existing organizational units and each time it finds one, it
creates the associated group in that container. Then, the script adds all organizational unit members to
the newly created group.

Moreover, the script will update new added users inside an organizational unit to the related group.

At this stage, organizational unit members are members of a group. So, an administrator is able to add
that group to a resource access to grant permissions to all organizational unit members.

What happens if a resource used by organizational unit members is not available for a while? It would
be nice to address organizational unit members via E-Mail to notify them of the problem. But an
organizational unit is not mail-addressable; on the other hand, a group is mail-addressable. So, the
next script will also enable the mail function to the created group to make it addressable from the
Exchange 2000 Global Address List.

Creating a group object

Groups are distinct from organizational units. Organizational units are useful for creating an
administrative hierarchy (delegation) or for setting group policies. Groups are used for granting
access and creating distribution lists.

Groups and organizational units also differ in regard to the domain boundaries they apply to. Groups
can be created to contain users, computers, a single domain, or multiple domains in a Forest.
Organizational units represent a collection of objects (including group objects) only within the
context of a single domain.

Under Windows 2000, several types of groups exist:

• Universal
Members can come from any Windows NT/Windows 2000 domain in the Forest: Universal
Groups, Global Groups and users from any domain in the Forest. Permissions can be granted
in any domain in the Forest. Universal groups can be members of the following groups in the
Forest: Local Groups and Universal Groups. If Universal groups are a security-enabled group,
they are only usable when the domain is in native mode.

• Global
Members can come from the domain containing the group: Global Groups and users (including
contacts). Permissions can be granted in any domain in the Forest. Global groups can be
members of any group in the forest: Global Groups, Local Groups, and Universal Groups.

• Local
Members can come from any domain in the forest: Global Groups, Universal Groups and users
from any domain in the forest and domain local groups from the domain containing the group.
Permissions can be granted only on the domain containing the group. Local groups can only be
a member of Local Groups in the domain containing the group.

When the administrator creates a group, he must determine if the group is security-enabled or not. If
the group is not security-enabled, it is called a distribution group.

WHITE PAPER (cont.)

54 WSH and ADSI – Part 2

Some group types are available in regards of the Windows 2000 mode used (mixed or native mode),
such as universal security-enabled groups.

Note: For more information on mixed and native mode, please refer to the White Paper by Micky
Balladelli, “Active Directory - A technical overview”.

To summarize the possible group operations with regards to the Windows 2000 mode:

In mixed mode:

• Global security groups can only contain user accounts.
• Domain local security groups can contain other global groups and user accounts.
• Universal security groups cannot be created.
• Universal distribution groups can be created.
• Only distribution groups can be nested.

In native mode:

• Universal groups are available as security groups and distribution groups.
• Full group nesting is allowed.
• Groups can be converted freely between security groups and distribution groups.
• Global groups and domain local groups can be converted to universal groups.

To create a group via ADSI, the script must use flag values specifying the type of group to be created:

ADS_GROUP_TYPE_GLOBAL_GROUP = &H2
ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP = &H4
ADS_GROUP_TYPE_UNIVERSAL_GROUP = &H8
ADS_GROUP_TYPE_SECURITY_ENABLED = &H80000000

So, if the script uses the following combination:

ADS_GROUP_TYPE_SECURITY_ENABLED Or
ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP

It will create a security-enabled Domain Local Group. This group corresponds to the current Local
Domain group known under Windows NT 4.0.

To create groups, it can be helpful to determine the Windows 2000 operation mode. To know if a
Windows 2000 Domain is in mixed mode or in native mode, the ntMixedDomain attribute of the
selected domain must be read. A zero value means the domain is in native mode. A value of one
means the domain is in mixed mode.

Better than a long description, here is Sample 18.

Sample 18 Creating groups for organizational unit members
1:<!-- Windows Script File creating a security group per Organizational Unit with -->
2:<!-- each OU user object member included in the created group -->
3:<!-- -->
4:<!-- Version 1.00 - Alain Lissoir -->
5:<!-- Compaq Computer Corporation - Professional Services - Belgium - -->
6:<!-- -->
7:<!-- Any comments or questions: EMail:alain.lissoir@compaq.com -->
8:

WHITE PAPER (cont.)

55 WSH and ADSI – Part 2

9:<Package>
10:<job>
11: <script language="VBScript" src="Include.vbs" />
12:
13: <script language="VBScript" src="ADSearchFunction.vbs" />
14: <script language="VBScript" src="VerifyMSExchangeFunction.vbs" />
15: <script language="VBScript" src="EnableE-MailFunction (ADSI).vbs" />
16: <script language="VBScript" src="PromptParametersFunction.vbs" />
17:
18: <script language="VBScript">
19:
20: Option Explicit
21:
22: ' Error code to test when object doesn't exist (Used for group presence checking)
23: Const LDAP_NO_SUCH_OBJECT = &h80072030
24:
25: ' ---
..:
35: strExchangeOrganization = "Home Business"
36: strExchangeAdminGroup = "First Administrative Group"
37: strCountry = "BE"
..:
49: ' ---
50: ' Check if Exchange 2000 is installed and if the given organization is created too.
51: boolEnableEmail = VerifyExchangeOrg (strExchangeOrganization)
52:
53: ' Search for all the OU
54: Set objResultList = ADSearch ("DefaultNamingContext", _
55: "(objectClass=organizationalUnit)", _
56: "ADsPath", _
57: "subTree", _
58: False)
..:
62: For Each objResult in objResultList
63: intColumnPosition = InStr (objResult, ":")
64: If intColumnPosition Then
65: Call AddOUMember(objResultList.Item (objResult))
66: End If
67: Next
68:
69: ' ---
70: Private Sub AddOUMember (strOUPath)
..:
78: Set objOU = GetObject (strOUPath)
79: objOU.GetInfo
..:
83: ' We look for the first user object
84: For Each varMember In objOU
85: If varMember.Class = "user" Then
86: boolUsersExist = True
87: ' We found at least one user,the group can be created.
88: Exit For
89: End If
90: Next
91:
92: ' Get the name of the OU to build the name of the group.
93: strGroup = objOU.ou
94:
95: If (boolUsersExist) Then
96: ' We have at least one user, we bind the group
97:
98: ' Continue even if the group doesn't exists
99: On Error Resume Next
100: ' Clear any prior error to avoid confusion during next test

WHITE PAPER (cont.)

56 WSH and ADSI – Part 2

101: Err.Clear
102:
103: Set objGroup = objOU.GetObject("group", "CN=" & strGroup)
104: If Err.Number = LDAP_NO_SUCH_OBJECT Then
105: ' The object doesn't exist yet, we create it.
106: Wscript.Echo " Creating group '" & strGroup & "'"
107: Set objGroup = objOU.Create("group", "CN=" & strGroup)
108: objGroup.Put "groupType", ADS_GROUP_TYPE_DOMAIN_LOCAL_GROUP Or _
109: ADS_GROUP_TYPE_SECURITY_ENABLED
110: objGroup.Put "sAMAccountName", Left(strGroup, 20)
111: objGroup.Put "name", strGroup
112: objGroup.Put "displayName", strGroup
113: objGroup.Put "description", strGroup & " OU Security Group"
114: objGroup.SetInfo
115: Else
116: ' The group exists, we will update it.
117: Wscript.Echo " Updating group '" & strGroup & "'"
118: End If
119:
120: ' Enable all attributes needed to address the created
121: ' group from Exchange 2000
122: If boolEnableEmail Then
123: ' Show any error for the E-Mail enabling process
124: On Error Goto 0
125: ' We do not give any Exchange server or Storage group
126: ' because there is no mailbox.
127: Call EnableEmailAddress (objGroup, _
128: strExchangeOrganization, _
129: strExchangeAdminGroup, _
130: "", _
131: "", _
132: NO_CREATE_MB)
133: End If
134:
135: ' Suppress any error if user is already in the group
136: On Error Resume Next
137: ' All users present in the OU are added to the created/retrieved group.
138: For Each varMember In objOU
139: If varMember.Class = "user" Then
140: WScript.Echo " Adding '" & varMember.Name & _
141: " (" & varMember.displayName & _
142: ")' to associated security group."
143: objGroup.Add (varMember.ADsPath)
144: End If
145: Next
146:
147: ' Commit the membership assignment
148: objGroup.SetInfo
149:
150: WScript.DisconnectObject objGroup
151: Set objGroup = Nothing
152: Else
153: ' No user in the OU, so we delete the associated group.
154:
155: ' Avoid any problem if the Group doesn't exists
156: On Error Resume Next
157: ' Clear any prior error to avoid confusion during next test
158: Err.Clear
159:
160: Set objGroup = objOU.GetObject("group", "CN=" & strGroup)
161: If Err.Number = LDAP_NO_SUCH_OBJECT Then
162: ' Do nothing, the group doesn't exist because no user exist.
163: Wscript.Echo " No user found."
164: Else

WHITE PAPER (cont.)

57 WSH and ADSI – Part 2

165: ' We delete the existing group because no user were found in the OU.
166: Wscript.Echo " Deleting group '" & strGroup & "'"
167: objOU.Delete "group", "CN=" & strGroup
168: End If
169:
170: End If
171:
172: Set objOU = Nothing
173:
174: End Sub
175:
176: </script>
177:</job>
178:
179:</Package>

In the beginning of the script (line 11 and 16), there are five separate functions included to help in this task.

• Include.vbs: This function defines all labels and constants (such as Group constant definitions) used in other functions.
• ADSearchFunction.vbs: This function helps to locate any organizationalUnit object class present in the Active

Directory.
• VerifyMSExchangeFunction.vbs: This function verifies the presence of Exchange 2000 in the forest and checks if the

given Exchange organization is present.
• EnableE-MailFunction (ADSI).vbs: This function enables the E-Mail function on an object. Moreover, this function

will help to create an Exchange 2000 Mailbox for Sample 22 on page 68.
• PromptParametersFunction.vbs: This function prompts the user for specific parameters.

We will come back to these functions later.

One of the purposes is to enable E-Mail addressing on the created groups. Therefore, the script defines the Exchange Organization
and the Exchange 2000 Administrative Group (lines 35 and 36). After prompting the user for some external parameters (line 43 to
50 not visible here), it checks the presence of Exchange 2000 and the existence of the given Exchange Organization (line 51).

Next, the script reuses the well-known ‘ADSearch’ function to locate all the organizational units in the current domain (lines 54 to
58). Then, it enumerates the Dictionary object to extract each organizational unit found (lines 62 to 67). For each organizational
unit, it calls the ‘AddOUMember’ function (line 65).

The ‘AddOUMember’ function is the intelligence of the script. It uses the organizational unit ADsPath as a parameter. The first
operation is to bind to the organizational unit (line 78) to see if some users exist in the container (lines 84 to 90). If there is no user
in the organizational unit, it is useless to create a group with no members. Note that if no user exists in the organizational unit, the
script tries to delete the existing group because there is no reason anymore to maintain the group in the Active Directory (line 161
to 168).

Next, the script binds to the existing group in the organizational unit (line 103). The group has the same name as the
organizational unit (design choice). If the group exists, the script updates the group. If the group does not exist, it creates the
group (lines 105 to 114). Note the flag value combination to determine the group type created (lines 108 and 109). During the
group creation process, the mandatory attributes and some optional attributes are created.

After, the creation process (if the group does not exist) or the bind process (if the group already exists), the actions taken are the
same for an existing group or a new group. The mail function of the group is enabled if the Exchange 2000 tests were successful
(lines 122 to 133). Next, the script adds each user present in the organizational unit to the group (lines 138 to 145). Then, changes
are committed to the Active Directory (line 148).

WHITE PAPER (cont.)

58 WSH and ADSI – Part 2

Working with Exchange 2000

Checking the presence of Exchange 2000, checking the presence of an Exchange Organization name

When performing an Exchange 2000 installation, significant changes are made to the Active
Directory. The schema is modified; new objects and new attributes are created. Checking the presence
of some specific objects related to Exchange 2000 is the way to test if Exchange 2000 is present in the
Forest. These objects are located in the configurationNamingContext.

This context contains a container called ‘Services’. This container contains all the services available
in the Forest. If Exchange 2000 is installed, the script will find a container called ‘Microsoft
Exchange’.

In this last container, the created Exchange 2000 Organization is present. The script can determine the
organization object by looking for an objectClass called msExchOrganizationContainer. Based on
this structure, it is easy to check the presence of an Exchange Organization just by looking for the
desired objectClass and name.

This is the purpose of Sample 19 below.

Sample 19 Checking the presence of Exchange 2000 with a specific Exchange Organization name.
1:' VB Script to verify the presence of Exchange 2000 and a given organization '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:' ---
11:Private Function VerifyExchangeOrg (strExchangeOrganization)
..:
18: Set ObjRoot = GetObject("LDAP://RootDSE")
19: strConfigNC = ObjRoot.Get("configurationNamingContext")
..:
23: On Error Resume Next
24: Set objExchangeContainer = GetObject ("LDAP://CN=Microsoft Exchange,CN=Services," & _
25: strConfigNC)
26: If Err.Number Then
27: ' Exchange container in services not present, Exchange 2000 is not installed
28: VerifyExchangeOrg = False
29: Exit Function
30: End If
31:
32: For Each objExchangeChild In objExchangeContainer
33: If (objExchangeChild.Class = "msExchOrganizationContainer") And _
34: (objExchangeChild.Get ("cn") = strExchangeOrganization) Then
35: Wscript.Echo "Found Exchange Organization called '" & _
36: objExchangeChild.Get ("cn") & "'."
37: Wscript.Echo
38: VerifyExchangeOrg = True
39: Exit Function
40: End If
41: Next
42:
43: VerifyExchangeOrg = False
44:

WHITE PAPER (cont.)

59 WSH and ADSI – Part 2

45:End Function

Enabling E-Mail on objects

Enabling E-Mail on an object requires defining more attributes associated with the object. To
determine the value assigned to those new attributes, more information about the Exchange 2000
installation needs to be taken from the Active Directory. Once this information is known, it is
possible to construct, for instance, the SMTP address, the X400 address, the mail alias and so on. This
is the purpose of Sample 20 below.

Sample 20 Enabling E-Mail on object for Exchange 2000 with ADSI
1:' VB Script enabling Email functions on Groups or Users objects. '
2:' Email can be enabled with or without an Exchange 2000 mailbox '
3:' for a user object only. '
4:' '
5:' The Exchange 2000 mailbox creation via ADSI is a method not '
6:' supported by Microsoft. '
7:' CDO for Exchange Management (CDOEXM) must be used instead. '
8:' '
9:' Version 1.01 - Alain Lissoir '
10:' Compaq Computer Corporation - Professional Services - Belgium - '
11:' '
12:' Any comments or questions: EMail:alain.lissoir@compaq.com '
13:
14:Option Explicit
15:
16:Const NO_CREATE_MB = 0
17:Const CREATE_MB = 1
18:
19:' --
20:Private Sub EnableEmailAddress (objObject, _
21: strExchangeComputer, _
22: strOrganization, _
23: strExchangeAdminGroup, _
24: strExchangeStorageGroup, _
25: strExchangeMailboxStore, _
26: boolMB)
..:
45: Set ObjRoot = GetObject("LDAP://RootDSE")
46: strRootDomainNC = objRoot.Get("RootDomainNamingContext")
47: strConfigNC = ObjRoot.Get("configurationNamingContext")
..:
51: ' --
52: Set objRootDomainNC = GetObject("LDAP://" & strRootDomainNC)
53:
54: ' Retrieve a constructed property, so 1st we do a GetInfoEx
55: objRootDomainNC.GetInfoEx Array("canonicalName"), 0
56: strRootDNSDomainName = objRootDomainNC.Get("canonicalName")
57: ' Remove the / at the end
58: strRootDNSDomainName = Mid (strRootDNSDomainName, 1, Len(strRootDNSDomainName) - 1)
..:
63: ' Build the path with the Microsoft Exchange organization path
64: strOrganizationDN = "CN=" & strOrganization & _
65: ",CN=Microsoft Exchange,CN=Services," & strConfigNC
66:
67: ' --
68: Select Case objObject.Class
69: Case "user"
70: strRecipient = EliminateSpaces (LCase (objObject.FirstName) & _
71: "." & LCase (objObject.LastName))
72: ' Set the Alias name

WHITE PAPER (cont.)

60 WSH and ADSI – Part 2

73: objObject.put "mailNickName", strRecipient
74:
75: ' Build the SMTP Address
76: strSMTPAddress = strRecipient & "@" & strRootDNSDomainName
77: ' Build the X400 Address
78: strX400Address = "c=" & strCountry & _
79: ";a= " & _
80: ";p=" & Left (strOrganization, 16) & _
81: ";o=Exchange" & _
82: ";s=" & Lcase (objObject.LastName) & _
83: ";g=" & Lcase (objObject.FirstName) & _
84: ";"
85:
86: ' Set in which GAL to show the user
87: strDefaultGAL = "CN=Default Global Address List," & _
88: "CN=All Global Address Lists,CN=Address Lists Container," & _
89: strOrganizationDN
90: objObject.PutEx ADS_PROPERTY_UPDATE, "showInAddressBook", _
91: Array(strDefaultGAL)
92:
93: ' Set the legacy Exchange distinguished name of the created user
94: strLegacyExchangeDN = "/o=" & strOrganization & _
95: "/ou=" & strExchangeAdminGroup & _
96: "/cn=Recipients/cn=" & strRecipient
97:
98: Case "group"
99: strRecipient = EliminateSpaces (objObject.Get ("sAMAccountName"))
100:
101: ' Set the Alias name
102: objObject.put "mailNickName", strRecipient
103:
104: ' Build the SMTP Address
105: strSMTPAddress = strRecipient & "@" & strRootDNSDomainName
106: ' Build the X400 Address
107: strX400Address = "c=" & strCountry & _
108: ";a= " & _
109: ";p=" & Left (strOrganization, 16) & _
110: ";o=Exchange" & _
111: ";s=" & strRecipient & _
112: ";"
113:
114: ' Set in which GAL to show the group
115: strDefaultGAL = "CN=Default Global Address List," & _
116: "CN=All Global Address Lists,CN=Address Lists Container," & _
117: strOrganizationDN
118: strGroupGAL = "CN=All Groups,CN=All Address Lists," & _
119: "CN=Address Lists Container," & _
120: strOrganizationDN
121: objObject.PutEx ADS_PROPERTY_UPDATE, "showInAddressBook", _
122: Array(strGroupGAL, strDefaultGAL)
123:
124: ' Set the legacy Exchange distinguished name of the created group
125: strLegacyExchangeDN = "/o=" & strOrganization & _
126: "/ou=" & strExchangeAdminGroup & _
127: "/cn=Recipients/cn=" & strRecipient
...:
131: End Select
132:
133: objObject.PutEx ADS_PROPERTY_UPDATE, "proxyAddresses", _
134: Array("X400:" & strX400Address, "SMTP:" & strSMTPAddress)
135:
136: ' Other LDAP value with X400 address
137: objObject.put "textEncodedORAddress", strX400Address
138:

WHITE PAPER (cont.)

61 WSH and ADSI – Part 2

139: ' Other LDAP value with SMTP Address
140: objObject.put "mail", strSMTPAddress
141:
142: objObject.put "msExchHideFromAddressLists", False
143:
144: objObject.put "legacyExchangeDN", strLegacyExchangeDN
145:
146: objObject.SetInfo
147:
148: ' --
149: If (objObject.Class = "user" And boolMB) Then
150: objObject.put "mDBUseDefaults", True
151:
152: strHomeMTA = "CN=Microsoft MTA,CN=" & strExchangeComputer & _
153: ",CN=Servers,CN=" & strExchangeAdminGroup & _
154: ",CN=Administrative Groups," & strOrganizationDN
155: objObject.put "HomeMTA", strHomeMTA
156:
157: strHomeMDB = "CN=" & strExchangeMailboxStore & ",CN=" & _
158: strExchangeStorageGroup & _
159: ",CN=InformationStore,CN=" & strExchangeComputer & _
160: ",CN=Servers,CN=" & strExchangeAdminGroup & _
161: ",CN=Administrative Groups," & strOrganizationDN
162: objObject.put "HomeMDB", strHomeMDB
163:
164: ' Set the Exchange Home server of the created user
165: strExchangeComputerDN = "/o=" & strOrganization & _
166: "/ou=" & strExchangeAdminGroup & _
167: "/cn=Configuration/cn=Servers/cn=" & _
168: strExchangeComputer
169: objObject.put "msExchHomeServerName", strExchangeComputerDN
170: objObject.SetInfo
171:
172: Wscript.Echo " Successfully created Microsoft " & _
173: "Exchange 2000 Mailbox for user '" & _
174: objObject.Get ("cn") & "'."
175:
176: ' ---
177: ' Create the Exchange 2000 Security Descriptor
178: SetSD objObject, _
179: Array ("Self", _
180: ADS_ACETYPE_ACCESS_ALLOWED, _
181: RIGHT_MB_READ_PERMISSIONS Or _
182: RIGHT_MB_FULL_MB_ACCESS Or _
183: RIGHT_MB_SEND_AS, _
184: CONTAINER_INHERIT_ACE), _
185: MB_OBJECT
186: Else
187: ' If mail-enabled object, initialize targetAddress with the SMTP Address
188: objObject.put "targetAddress", "SMTP:" & strSMTPAddress
189:
190: ' Make this for the X400 address if necessary (instead of SMTP:)
191: ' objObject.put "targetAddress", "X400:" & strX400Address
192: objObject.SetInfo
193:
194: Wscript.Echo " Successfully enabled Microsoft Exchange 2000 E-Mail for '" & _
195: objObject.Get ("cn") & "'."
196:
197: End If
198:
199:End Sub
...:
...:
...:

WHITE PAPER (cont.)

62 WSH and ADSI – Part 2

The script starts by getting some information from the Active Directory, such as the RootDomainNamingContext (line 46). The
RootDomainNamingContext makes it possible to determine the canonicalName (lines 55 and 56). This name is used to
construct the domain name for the SMTP Address construction (lines 76 and 105).

The configurationNamingContext is also important for building the Exchange organization distinguished name. With the help of
the Exchange Organization name, the Exchange Organization distinguished name is created (lines 64 and 65). The Exchange
Organization name is also used to build the private management domain name of the X400 address (lines 78 and 107). The
Exchange organization distinguished name is used for the miscellaneous attribute initialization:

• DefaultGAL (lines 87 and 115)
• GroupGAL (line 118) for group objects only
• HomeMTA (line 152)
• HomeMDB (line 157)

It is important to have an alias for the enabled mail objects. The alias is constructed from the sAMAccountName attribute for
group objects (line 99). For the user objects, the alias is constructed from the first name and last name (line 70). The script
eliminates all spaces to construct this attribute. Next, the mailNickName attribute is assigned (line 73 for user objects or line 102
for group objects). The mailNickName attribute is the Exchange alias.

The object class determines how to set addresses for a given object. For instance, for a group, there is no first name. This requires
an adapted method to construct the addresses. This is why the object type is tested on its class (lines 69 and 98).

• For a user class:

The strRecipient variable is initiated at line 70. This variable contains the “FirstName.LastName” string. The script will
use that variable content as the SMTP recipient name. The domain name comes from the canonicalName attribute
(lines 55 and 56 above).

The X400 address is constructed from different attributes:

o The country: The strCountry variable (line 78) is a public variable defined in the script calling the ‘EnableE-

MailFunction (ADSI).vbs’ function (see Sample 22 on page 68).

Note: It was decided to put all user parameters in public variables with an explicit name. Using public variables inside a
function is not the cleanest style of programming. Ideally, it was possible to use an array containing all the user
attributes. This is a better programming method. Unfortunately, in that case, the meaning and the origin of the values
are not so clear for the reader. The underlying philosophy of this document is to ease the understanding. It was decided
to use an explicit variable for each user attribute. This makes the script easier to read.

o The private management domain: As explained before, this value gets the Exchange Organization name passed

to the script function as a parameter (line 80). Note that the private management domain is truncated on 16
positions.

o The organization: The ‘Exchange’ keyword is assigned to this X400 field (line 81).
o The surname and the givenname: They are assigned from two public variables (strLastName and strFirstName).

Both variables must be defined in the script calling the ‘EnableE-MailFunction (ADSI).vbs’ function (Lines 82
and 83).

Both addresses (SMTP and X400) are assigned to the multi-valued proxyAddresses attribute (lines 133 and 134).
Next, the script assigns, respectively, the X400 address and the SMTP address to the textEncodedORAddress attribute
and the mail attribute (lines 137 and 140).

WHITE PAPER (cont.)

63 WSH and ADSI – Part 2

The Exchange Organization distinguished name is used to complete the distinguished name of the default Global
Address List (line 89). This default Global Address List is set to the showInAddressBook attribute (line 90), a multi-
valued attribute able to receive more than one Address book distinguished name value.

Finally, it is necessary to construct an attribute called legacyExchangeDN. This attribute contains a legacy Exchange
5.5 distinguished name with ‘o=OrgName’ property (for Organization), ‘ou=SiteName’ property (for Site),
‘cn=Recipients’ property (for the recipients container) and ‘cn=Alias’. For the user object, the mail alias used is the
mailNickName attribute (lines 94 to 96) contained in the strRecipient variable. The attribute assignment in the Active
Directory is completed at line 144.

• For a group class:

Like the user class, the group class also has an SMTP address. The difference resides only in the recipient name
construction for the group class. Because there is no first name and last name, the script builds an alias from the
sAMAccountName (line 99). The script uses this alias to define the recipient name of the SMTP address (line 105).
The domain name comes from the canonicalName attribute (lines 55 and 56, see above) like the user class.

For the X400 address, there is the same problem as the SMTP address. There is no first name for a group class, so the
script uses the alias again. The alias is assigned to the surname field of the X400 address (line 111).

Once the SMTP address and X400 address are constructed, they are saved in the multi-valued attribute
proxyAddresses (line 137 and 140). The mail (SMTP) and textEncodedORAddress (X400) are also assigned with
their respective address types.

In the same way as for the user class, the script builds the distinguished names for the address lists with the Exchange
Organization distinguished name. For the group class, two address lists are defined: the default address list known as
the Global Address List (line 115) and the Group address list (line 118), which is a Global Address List view on
Windows 2000 E-Mail enabled groups (distribution lists). Next, the showInAddressBook attribute is saved with these
address list distinguished names (line 121).

Finally, to construct the legacyExchangeDN attribute for the group object, the alias built on line 99 is used again (lines
125 to 127). The final attribute assignment is completed at line 144.

On line 142, the msExchHideFromAddressLists is set to False in order to show this address in the address list. This is the GUI
property equivalent to ‘hide from address book’ in Exchange 5.5.

At line 149, the function makes a test to determine if the object class is a user and if the mail operation to perform is related to the
creation of a mail-enabled object or mailbox-enabled object. If the variable boolMB is True and the object class is a user, the
object will be mailbox-enabled (lines 150 to 185). In any other case the object will be a mail-enabled object (lines 187 to 195).

To create a mail-enabled object, the targetAddress attribute must be set (line 188). This attribute can contain the SMTP address
(line 188) or the X400 address (line 191) of the recipient. This is a single-valued attribute.

At this stage of the script, the object is E-Mail enabled. This means that the object is addressable from the Exchange 2000 address
book. This does not mean that the object has an associated mailbox. To create an Exchange 2000 mailbox, some more attributes
need to be set.

WHITE PAPER (cont.)

64 WSH and ADSI – Part 2

Creating the Exchange 2000 mailbox with ADSI

Under Exchange 5.5, creating a mailbox is equal to creating an object under the Recipient container
with some specific attribute settings. Under Windows 2000, this is different because there is no
separate directory for the mailboxes. This means that it is not necessary to create a new object in
order to create a mailbox. The principle is to set some user object attributes that define the mailbox
settings. These attributes are the mailbox location (HomeMTA), the mailbox database location
(HomeMDB), the server hosting the mailbox (msExchHomeServerName) and the mailbox access
rights (msExchMailboxSecurityDescriptor).

To come back to the Sample 20 on page 59, lines 149 to 186 define the miscellaneous attributes to enable the mailbox definition
in the directory. The mDBUseDefaults attribute has a flag referring the mailbox default settings to the Information Store defaults
(line 150).

The HomeMTA attribute must also be set with the Home MTA distinguished name. This value is constructed from several
elements such as the Exchange computer name, the Exchange Admin group and the Exchange organization distinguished name
(lines 152 to 155).

The HomeMDB attribute determines the Information Store location hosting the mailbox. This value is constructed from several
elements such as the Exchange Storage group, the Exchange computer, the Exchange Admin group and the Exchange
organization distinguished name (lines 157 to 162).

The msExchHomeServerName attribute is constructed from the same set of information as the HomeMTA and the HomeMDB
attributes. This value is the Exchange computer distinguished name hosting the mailbox (lines 165 to 169). Warning, this attribute
is an Exchange computer distinguished name and must not be confused with the DC distinguished name also located in the
Configuration context but below the site level definition.

The msExchMailboxSecurityDescriptor contains the security descriptor defining the mailbox access rights. The script code will
complete the mailbox creation process by assigning the necessary permissions (lines 178 to 185) with the SetSDFunction.vbs
function (See Sample 17 “Creating a security descriptor” on page 49 above). This is why the function is included at line 22 of
Sample 22 on page 68.

The Sample 20 stores all the ACE entries to set the access rights on the mailbox (lines 179 to 185) and calls the SetSD function
(line 178). See Table 6 on page 93 for Exchange 2000 flag values. The security descriptor set in the script is the same as the
security descriptor set by the Administrator GUI by default. Once this operation is complete, the Exchange 2000 mailbox
definition is created in the Active Directory.

The routine is the complete set of operations to create an Exchange 2000 mailbox-enabled user with ADSI. This routine will be
required in a following script sample (Sample 22 on page 68).

Creating the Exchange 2000 mailbox with CDO for Exchange Management

With Exchange 2000, Microsoft has included a new version of the Collaboration Data Object (CDO)
to help in the management of Exchange. This is formally called CDO for Exchange Management
(CDOEXM). CDOEXM provides objects and interfaces for the management of many Exchange 2000
components. One of these components is the mailbox. CDOEXM acts as an extension for ADSI to
ease the creation of and access to mailbox definitions stored in the Active Directory.

CDOEXM is an important companion to ADSI when working with Exchange 2000.

WHITE PAPER (cont.)

65 WSH and ADSI – Part 2

Note: This document does not focus on Exchange 2000 and its related COM components. For
more information about CDO for Exchange management, the reader may refer to other
publications (from the same author) available on the Compaq Active Answer web site.

http://vcmproapp02.compaq.com/ActiveAnswers/Global/en/solutions.1128/offline.8588/default.asp

• “Part 1 - Introduction to the use of Exchange 2000 with Windows Script Host”
• “Part 2 - Managing Exchange with Scripts, Advanced Topics”

The Sample 21 below is using CDOEXM for the Exchange 2000 mailbox creation. This sample is
given for reference only. The script is using the exact same parameters as Sample 20 on page 59. The
purpose is to ease the switch of the EnableEmailAddress function from the ADSI method (Sample 20)
to the CDOEXM method (Sample 21).

Note: It is important to know that the only supported method by Microsoft is the CDOEXM

method. Even if the ADSI method works fine with Exchange 2000, there is no guarantee
that this method will continue to work with the future versions of Exchange. CDOEXM
encapsulates the business logic required to create a fully functional mailbox. The ADSI
method uses a raw access method to create the mailbox and does not protect the code from
any change made in the future Exchange versions.

Sample 21 Enabling E-Mail on object for Exchange 2000 with CDOEXM
1:' VB Script enabling Email functions on Groups or Users objects. '
2:' Email can be enabled with or without an Exchange 2000 mailbox '
3:' for a user object only. '
4:' '
5:' Version 1.00 - Alain Lissoir '
6:' Compaq Computer Corporation - Professional Services - Belgium - '
7:' '
8:' Any comments or questions: EMail:alain.lissoir@compaq.com '
9:
10:Option Explicit
11:
12:Const NO_CREATE_MB = 0
13:Const CREATE_MB = 1
14:
15:Const OBJECT_ALREADY_MAIL_ENABLED = &h80004005
16:
17:' --
18:Private Sub EnableEmailAddress (objObject, _
19: strExchangeComputer, _
20: strOrganization, _
21: strExchangeAdminGroup, _
22: strExchangeStorageGroup, _
23: strExchangeMailboxStore, _
24: boolMB)
..:
35: Set ObjRoot = GetObject("LDAP://RootDSE")
36: strRootDomainNC = objRoot.Get("RootDomainNamingContext")
37: strConfigNC = ObjRoot.Get("configurationNamingContext")
38: WScript.DisconnectObject ObjRoot
39: Set ObjRoot = Nothing
40:
41: ' --
42: Set objRootDomainNC = GetObject("LDAP://" & strRootDomainNC)
43:
44: ' Retrieve a constructed property, so 1st we do a GetInfoEx
45: objRootDomainNC.GetInfoEx Array("canonicalName"), 0

http://vcmproapp02.compaq.com/ActiveAnswers/Global/en/solutions.1128/offline.8588/default.asp

WHITE PAPER (cont.)

66 WSH and ADSI – Part 2

46: strRootDNSDomainName = objRootDomainNC.Get("canonicalName")
47: ' Remove the / at the end
48: strRootDNSDomainName = Mid (strRootDNSDomainName, 1, Len(strRootDNSDomainName) - 1)
49:
50: WScript.DisconnectObject objRootDomainNC
51: Set objRootDomainNC = Nothing
52:
53: ' Just make this to avoid a CDOEXM error if already mail-enabled or mailbox-enabled.
54: On Error Resume Next
55:
56: ' --
57: Select Case objObject.Class
58: Case "user"
59: If boolMB Then
60: objObject.CreateMailbox "LDAP://" & strAccountComputer & "/" & _
61: "cn=" & strExchangeMailboxStore & "," & _
62: "cn=" & strExchangeStorageGroup & "," & _
63: "cn=InformationStore," & _
64: "cn=" & strExchangeComputer & ",cn=Servers," & _
65: "cn=" & strExchangeAdminGroup & "," & _
66: "cn=Administrative Groups," & _
67: "cn=" & strOrganization & "," & _
68: "cn=Microsoft Exchange,CN=Services," & strConfigNC
69: If Err.Number = OBJECT_ALREADY_MAIL_ENABLED Then
70: WScript.Echo Err.Description
71: Err.Clear
72: End If
73: Else
74: strRecipient = EliminateSpaces (LCase (objObject.FirstName) & _
75: "." & LCase (objObject.LastName))
76:
77: strSMTPAddress = strRecipient & "@" & strRootDNSDomainName
78: strX400Address = "c=" & strCountry & _
79: ";a= " & _
80: ";p=" & Left (strOrganization, 16) & _
81: ";o=Exchange" & _
82: ";s=" & LCase (objObject.LastName) & _
83: ";g=" & LCase (objObject.FirstName) & _
84: ";"
85:
86: ' If mail-enabled object, initialize targetAddress with the SMTP Address
87: objObject.MailEnable "SMTP:" & strSMTPAddress
88: If Err.Number = OBJECT_ALREADY_MAIL_ENABLED Then
89: WScript.Echo Err.Description
90: Err.Clear
91: End If
92:
93: ' Make this for the X400 address if necessary (instead of SMTP:)
94: ' objObject.MailEnable "X400:" & strX400Address
95: ' If Err.Number = OBJECT_ALREADY_MAIL_ENABLED Then
96: ' WScript.Echo Err.Description
97: ' Err.Clear
98: ' End If
99: End If
100:
101: Case "group"
102: ' If mail-enabled object, initialize targetAddress with the SMTP Address
103: objObject.MailEnable
104: If Err.Number = OBJECT_ALREADY_MAIL_ENABLED Then
105: WScript.Echo Err.Description
106: Err.Clear
107: End If
108:
109: Case Else

WHITE PAPER (cont.)

67 WSH and ADSI – Part 2

110: Exit Sub
111: End Select
112:
113: ' Reset the 'On Error Resume Next' statement.
114: On Error Goto 0
115:
116: objObject.SetInfo
117:
118: If objObject.Class = "user" And boolMB Then
119: Wscript.Echo " Successfully created Microsoft " & _
120: "Exchange 2000 Mailbox for user '" & _
121: objObject.Get ("cn") & "'."
122: Else
123: Wscript.Echo " Successfully enabled Microsoft Exchange 2000 E-Mail for '" & _
124: objObject.Get ("cn") & "'."
125: End If
126:End Sub
...:
...:
...:

WHITE PAPER (cont.)

68 WSH and ADSI – Part 2

Building Active Directory user accounts and Exchange 2000 mailboxes

This last script is the final use of all the scripts written before. The creation of the Active Directory
user object and the Exchange 2000 associated mailbox completely re-use the prior developed
functions. This is where the script will take the benefit of all the "general" functions written before.

The core logic of the script

The only new task is the user object creation process (with its associated attributes). This involves the
following operations:

• Creation of miscellaneous names such as first name, last name, SAM name and full name
• User profile and Home directory definitions
• User profile and home directory creation on the File System
• Share creation for the home directory
• Default Security Settings such as:

o Logon and password policies
o User rights on the Home Directory
o User rights on the Profile Directory

With all previously developed functions, the script will handle the following tasks:
• Setting access rights on the Home directory
• Setting access rights on the Profile directory
• Checking the presence of Exchange 2000 in the Configuration context
• Checking the presence of Exchange 2000 Organization name given
• Creating the Exchange 2000 mailbox-enabled or mail-enabled attribute definition.

All data needed for the user object creation and its associated attributes will come from an Excel
sheet. Sample 22 below handles these operations.

Sample 22 Creating users under Windows 2000 with their associated Exchange 2000 mailboxes
1:<!-- Windows Script File to create users in Windows 2000 Active Directory -->
2:<!-- (creating users, Home and Profile Directories, Home share and Exchange 2000 -->
3:<!-- mailboxes with security access) -->
4:<!-- -->
5:<!-- Version 1.00 - Alain Lissoir -->
6:<!-- Compaq Computer Corporation - Professional Services - Belgium - -->
7:<!-- -->
8:<!-- Any comments or questions: EMail:alain.lissoir@compaq.com -->
9:
10:<job>
11: <script language="VBScript" src="..\Functions\Include.vbs" />
12:
13: <script language="VBScript" src="..\Functions\PromptParametersFunction.vbs" />
14:
15: <script language="VBScript" src="..\Functions\VerifyMSExchangeFunction.vbs" />
16: <script language="VBScript" src="..\Functions\EnableE-MailFunction (ADSI).vbs" />
17:
18: <script language="VBScript" src="..\Functions\AddRightFunction.vbs" />
19: <script language="VBScript" src="..\Functions\RemoveRightFunction.vbs" />
20:
21: ' Function needed only if using "EnableE-MailFunction (ADSI).vbs"
22: <script language="VBScript" src="..\Functions\SetSDFunction.vbs" />

WHITE PAPER (cont.)

69 WSH and ADSI – Part 2

23:
24: <script language="VBScript" src="..\Functions\CreateFolderFunction.vbs" />
25: <script language="VBScript" src="..\Functions\CreateShareFunction.vbs" />
26:
27: <script language="VBScript">
28:
29: Option Explicit
30:
31: ' ---
32: ' Constants Declaration Section
33:
34: ' ---
35: ' Account settings for user creation
36: ' Error code to test when object user doesn't exist
37: Const LDAP_NO_SUCH_OBJECT = &h80072030
38:
39: ' Put variables installation parameters in constant labels
40: ' (Easier for future adaptation)
41:
42: ' Machine member of the Domain homing the user accounts
43: Const cAccountComputer = "MYW2KDC"
44: ' Machine running Microsoft Exchange 2000
45: Const cExchangeComputer = "MYW2KDC"
46: ' Organization parameters with specific Exchange 2000 Admin Group and Storage
47: Const cExchangeOrganization = "First Organization"
48: Const cExchangeAdminGroup = "First Administrative Group"
49: Const cExchangeStorageGroup = "First Storage Group"
50: Const cExchangeMailboxStore = "Mailbox Store (A)"
51:
52: ' Misc. user settings for default assignements
53: Const cLogonScript = "LOGON_SCRIPT.CMD"
54: Const cDefaultPassword = "password"
55: Const cHomeDrive = "U:"
56:
57: ' Misc. settings for Profile and Home Directory paths (Local and Remote via UNC)
58: ' Letter mapping used locally on the server having the homedirectories.
59: ' This is the local path base used on the server himself.
60: ' (From a local filesystem point of view)
61: Const cHomeDirLocalAccess = "C:\DATA\HOME\"
62:
63: Const cProfileShare = "\Profile$\"
64: Const cHomeShare = "\HOME$\"
65:
66: ' Default Excel datasheet to use when nothing is given on the command line
67: Const cXLDataSheetName = "C:\Data\Excel\PopulateUsers.xls"
...:
140:
141: ' Path for a remote access to the filesystem having homedirectories
142: ' This is the path to use to access the base directory containing
143: ' the Home directory. You should UNC because WSH script will probably
144: ' not run on the machine homing directories.
145: ' This supposes that the base directory is shared.
146: '
147: ' This value is not prompted
148: strHomeDirRemoteAccess = "\\" & strAccountComputer & cHomeShare
149: ' This value is not prompted
150: strProfileDirRemoteAccess = "\\" & strAccountComputer & cProfileShare
151: ' This value is not prompted
152: strHomeDirLocalAccess = cHomeDirLocalAccess
...:
...: < SKIP THE MISC. PARAMETERS PROMPTING >
...:
197: ' ---
198: ' Check if Exchange 2000 is installed and if the given organization is created too.

WHITE PAPER (cont.)

70 WSH and ADSI – Part 2

199: boolEnableEmail = VerifyExchangeOrg (strExchangeOrganization)
200:
201: ' ---
202: ' Get the Default Domain name where we will create Windows 2000 users
203: ' based on the computer name given
204: Set objRoot = GetObject("LDAP://" & strAccountComputer & "/RootDSE")
205: strAccountDomain = objRoot.Get("DefaultNamingContext")
206: strRootDomain = objRoot.Get("RootDomainNamingContext")
207: WScript.DisconnectObject objRoot
208: Set objRoot = Nothing
209:
210: ' Bind to the current account Domain to get its Netbios name
211: Set objDomain = GetObject ("LDAP://" & strAccountDomain)
212:
213: ' The domain name will be used to set access rights on directories
214: strAccountNBDomain = UCase (objDomain.get ("name"))
215: WScript.DisconnectObject objDomain
216: Set objDomain = Nothing
217:
218: ' Bind to the Root Domain to get its canonical name for UPN contruction
219: Set objRootDomain = GetObject("LDAP://" & strRootDomain)
220:
221: ' Retrieve a constructed property, so 1st we do a GetInfoEx (For UPN construction)
222: objRootDomain.GetInfoEx Array("canonicalName"), 0
223: strRootDNSDomainName = objRootDomain.Get("canonicalName")
224: ' Remove the / at the end
225: strRootDNSDomainName = Mid (strRootDNSDomainName, 1, Len(strRootDNSDomainName) - 1)
...:
230: ' ---
231: ' Start the Excel Worksheet reading
232:
233: ' Bind to an Excel worksheet object
234: Set objXL = WScript.CreateObject("EXCEL.application")
235:
236: Wscript.Echo "Reading Excel datasheet '" & strExcelSheetPath & "'"
237: Wscript.Echo
238:
239: ' Make it visible
240: objXL.Visible = True
241:
242: ' Open the desired workbook containing the users list
243: objXL.workbooks.open strExcelSheetPath
244:
245: ' Activate the named page "Export"
246: objXL.sheets("Export").Activate
247:
248: ' Put the cursor on the A2 cell
249: objXL.ActiveSheet.range("A2").Activate
250:
251: ' Until we run out of rows
252: Do While objXL.activecell.Value <> ""
253:
254: ' ---
255: ' Parameters for the user's mailbox creation under LDAP: namespace
256: strFirstName = objXL.activecell.offset(0, 0).Value
...:
280: strInfo = objXL.activecell.offset(0, 19).Value
281:
282: strUserID = CreateUserID (strFirstName, strLastName)
283:
284: ' Step to the next row to get next user.
285: objXL.activecell.offset(1, 0).Activate
286:
287: ' ---

WHITE PAPER (cont.)

71 WSH and ADSI – Part 2

288: ' Create the user in the Active Directoty
289: Set objUser = CreateDomainUser ()
290:
291: ' Create the settings to enable the mailbox for Exchange 2000
292: If boolEnableEmail Then
293: Call EnableEmailAddress (objUser, _
294: strExchangeComputer, _
295: strExchangeOrganization, _
296: strExchangeAdminGroup, _
297: strExchangeStorageGroup, _
298: strExchangeMailboxStore, _
299: CREATE_MB)
300: End If
...:
307: ' ---
308: ' Create the home directory for the user on the given server
309: CreateFolder (strHomeDirRemoteAccess & strUserID)
310: ' First remove all the rights to clean all ACE entries
311: Call RemoveRights(strHomeDirRemoteAccess & strUserID, _
312: "REMOVE_ALL_RIGHTS", _
313: FS_OBJECT)
314: ' Set the rights on the Home directory for "Domain Admins"
315: Call AddRights(strHomeDirRemoteAccess & strUserID, _
316: strAccountNBDomain & "\" & "Domain Admins", _
317: ADS_ACETYPE_ACCESS_ALLOWED, _
318: ADS_RIGHT_GENERIC_ALL, _
319: OBJECT_INHERIT_ACE Or _
320: CONTAINER_INHERIT_ACE, _
321: FS_OBJECT)
322:
323: ' Set the rights on the Home directory for the user himself
324: Call AddRights(strHomeDirRemoteAccess & strUserID, _
325: strAccountNBDomain & "\" & strUserID, _
326: ADS_ACETYPE_ACCESS_ALLOWED, _
327: FILE_READ_DATA Or _
...:
340: FILE_READ_CONTROL Or _
341: FILE_SYNCHRONIZE, _
342: OBJECT_INHERIT_ACE Or _
343: CONTAINER_INHERIT_ACE, _
344: FS_OBJECT)
345: ' Remove 'Everyone' Full Control from the REMOVE_ALL_RIGHTS
346: Call RemoveRights(strHomeDirRemoteAccess & strUserID, _
347: "Everyone", _
348: FS_OBJECT)
349:
350: ' ---
351: ' Create a profile directory to the name of the created user.
352: CreateFolder (strProfileDirRemoteAccess & strUserID)
353: ' First remove all the rights to clean all ACE entries
354: Call RemoveRights(strProfileDirRemoteAccess & strUserID, _
355: "REMOVE_ALL_RIGHTS", _
356: FS_OBJECT)
357: ' Set the rights on the Profile directory for "Domain Admins"
358: Call AddRights(strProfileDirRemoteAccess & strUserID, _
359: strAccountNBDomain & "\" & "Domain Admins", _
360: ADS_ACETYPE_ACCESS_ALLOWED, _
361: ADS_RIGHT_GENERIC_ALL, _
362: OBJECT_INHERIT_ACE Or _
363: CONTAINER_INHERIT_ACE, _
364: FS_OBJECT)
365: ' Set the rights on the Profile directory for the user himself
366: Call AddRights(strProfileDirRemoteAccess & strUserID, _
367: strAccountNBDomain & "\" & strUserID, _

WHITE PAPER (cont.)

72 WSH and ADSI – Part 2

368: ADS_ACETYPE_ACCESS_ALLOWED, _
369: FILE_READ_DATA Or _
...:
382: FILE_READ_CONTROL Or _
383: FILE_SYNCHRONIZE, _
384: OBJECT_INHERIT_ACE Or _
385: CONTAINER_INHERIT_ACE, _
386: FS_OBJECT)
387: ' Remove 'Everyone' Full Control from the REMOVE_ALL_RIGHTS
388: Call RemoveRights(strProfileDirRemoteAccess & strUserID, _
389: "Everyone", _
390: FS_OBJECT)
391:
392: ' ---
393: ' Create the share for the Home Directory
394: CreateShare strAccountComputer, _
395: strUserID & "$", _
396: strHomeDirLocalAccess & strUserID, _
397: 2, _
398: "Home directory share for " & strDisplayName
399:
400: Loop
...:
408: Wscript.Echo vbCRLF & "Operation completed."
409:
410: Wscript.Quit (0)
411:
412: ' ---
413: Public Function CreateDomainUser ()
...:
422: ' ---
423: ' Create the user in the given Domain
424: strUserPath = "LDAP://" & strAccountComputer & _
425: "/CN=Users," & strAccountDomain
426: Set objUserContainer = GetObject(strUserPath)
427:
428: strDisplayName = UCase (strLastName) & " " & strFirstName
429:
430: ' Continue even if the group doesn't exists
431: On Error Resume Next
432: ' Clear any prior error to avoid confusion during next test
433: Err.Clear
434:
435: Set objUser = objUserContainer.GetObject("user", "CN=" & strDisplayName)
436: If Err.Number = LDAP_NO_SUCH_OBJECT Then
437: ' Create a user in the Domain
438: Set objUser = objUserContainer.Create("user", "CN=" & strDisplayName)
439:
440: objUser.Put "sAMAccountName", strUserID
441: ' Create the account with the minimal set
442: objUser.SetInfo
443: strEndMessage = "Successfully created Account for user '" & _
444: strDisplayName & "'."
445: Else
446: strEndMessage = "Successfully updated Account for user '" & _
447: strDisplayName & "'."
448: End If
449:
450: ' Reset the error to no handler
451: On Error Goto 0
452:
453: ' Associates properties to the just created account
454: objUser.Put "userPrincipalName", strUserId & "@" & strRootDNSDomainName
455: objUser.Put "sn", strLastName

WHITE PAPER (cont.)

73 WSH and ADSI – Part 2

456: objUser.Put "givenName", strFirstName
457: objUser.Put "displayName", strDisplayName
458: If Len(strDescription) <> 0 Then objUser.Put "description", strDescription
459:
460: objUser.Put "homeDirectory", "\\" & strAccountComputer & _
461: "\" & strUserID & "$"
462: objUser.Put "homeDrive", cHomeDrive
463:
464: ' Those properties are not mandatory.
465: If Len(strTitle) <> 0 Then objUser.Put "title", strTitle
...:
483: If Len(strMobileNumber) <> 0 Then objUser.Put "mobile", strMobileNumber
484: If Len(strFaxNumber) <> 0 Then _
485: objUser.Put "facsimileTelephoneNumber", strFaxNumber
486:
487: If Len(strInfo) <> 0 Then objUser.Put "info", strInfo
488:
489: objUser.Put "profilePath", "\\" & strAccountComputer & _
490: cProfileShare & strUserID
491: objUser.Put "scriptPath", cLogonScript
492:
493: ' Get the current Account Control value
494: intAccountControl = objUser.get ("userAccountControl")
495: ' Turn off the Disable Account bit to enable the account.
496: intAccountControl = intAccountControl And (NOT ADS_UF_ACCOUNTDISABLE)
497: ' Set the value back to AD to enable account.
498: objUser.put "userAccountControl", CLng (intAccountControl)
499:
500: ' First password = password
501: objUser.SetPassword cDefaultPassword
502:
503: ' Force password change at next logon
504: objUser.put "pwdLastSet", CLng(0)
505:
506: ' Commit all the complementary data
507: objUser.SetInfo
508:
509: Wscript.Echo
510: Wscript.Echo strEndMessage
511:
512: Set CreateDomainUser = objUser
...:
520: End Function
521:
522: ' ---
523: Public Function CreateUserID (strFirstName, strLastName)
...:
527: strTemp = EliminateSpaces (Lcase(strFirstName) & "." & LCase(strLastName))
528:
529: If Len (strTemp) > 20 Then strTemp = Left (strTemp, 20)
530:
531: CreateUserID = strTemp
532:
533: End Function
534:
535: </script>
536:</job>

The first part of the script (lines 11 to 25) includes all the needed functions. The line 16 includes the EnableE-
MailFunction(ADSI).vbs to create the Exchange 2000 mailbox via the ADSI method (See Sample 20 on page 59). This include
statement can be changed to include the EnableE-MailFunction(CDOEXM).vbs to use the CDOEXM method (See Sample 21 on
page 65). Note that the include statement of the SetSDFunction.vbs at line 22 is mandatory if the script uses the ADSI method.

WHITE PAPER (cont.)

74 WSH and ADSI – Part 2

Lines 39 to 67 define all variable parameters from the Windows 2000 installation to allow the script usage with another Windows
2000 installation:

• Domain Controller for Account (line 43)
• Exchange 2000 Server (line 45)
• Organization Name (line 47)
• Administrative Group (line 48)
• Storage Group (line 49)
• Mailbox Private Store (line 50)
• Logon script name (line 53)
• Default password set at user creation (line 54)
• Home drive letter (line 55)
• Home directory main path (line 61)
• Miscellaneous shares for the Home directory and user Profiles (lines 63 and 64)

Next, the script prompts the user for some default parameters. The presence of Exchange 2000 and the Organization name are
checked at line 199 by reusing the “VerifyMSExchangeFunction.vbs” function (included at line 15).

Then, after retrieving some domain characteristics, the script enters the main loop for user creation (lines 252 to 400). First, the
script reads the Excel sheet to get all the user parameters for creation (line 256 to 282). Note at line 282, the UserID creation calls
a function CreateUserID (line 523). This function is based on a reusable function (EliminateSpaces) included in the “EnableE-
MailFunction (ADSI).vbs” include file. The operations in the loop are completed in the following order:

1. Read a row of data from the Excel sheet (lines 256 to 282)
2. Create the user object (line 289)
3. Create the Exchange 2000 Mailbox (lines 292 to 300)
4. Create the Home directory folder (line 309)
5. Set access rights for the Home directory folder (lines 309 to 348):

• Remove any existing rights defined by the directory creation process (inheritance from the parent directory) at
lines 311 to 313.

• Set full access rights for the “Domain Admins” group (lines 315 to 321)
• Change access rights for the created user (lines 324 to 344)
• Remove everyone access ACE from the ACL (lines 346 to 348)

6. Create the Profile directory folder (line 352)
7. Set access right for the Profile directory folder (lines 354 to 390):

• Remove any existing rights defined by the directory creation process (inheritance from the parent directory) at
lines 354 to 356.

• Set full access rights for the “Domain Admins” group (lines 358 to 364)
• Change access rights for the created user (lines 366 to 386)
• Remove everyone access ACE from the ACL (lines 388 to 390)

8. Create the share on the home directory (lines 394 to 398).

This describes the core logic of the script.

The user object creation

The script creates users in the default container named ‘Users’. The script tries to bind to the user in this container (lines 424 to
426). If the user does not exist, it creates the object in the container (lines 436 to 445).

WHITE PAPER (cont.)

75 WSH and ADSI – Part 2

Note: A possible script enhancement is the inclusion of the Organization Unit where the user must be created.

The creation process also initiates the mandatory attributes of a user object, such as sAMAccountName. sAMAccountName
must be initiated (line 440) before committing the changes to the directory (line 442).

sAMAccountName: The sAMAccountName attribute is the logon name used to support clients and servers from a previous

version of Windows (such as Windows NT 4.0, Windows 95, Windows 98, and LAN Manager). Note
that the sAMAccountName should be less than 20 characters to support these clients and servers. (See
CreateUserID function at line 523). The sAMAccountName must be unique among all security principal
objects within the domain.

Next, an important phase in the user object creation is the assignment of all other object attributes (lines 454 to 507) such as:

userPrincipalName: The User Principal Name (UPN) is an Internet-style login name for the user based on the Internet

standard RFC 822. It is shorter than the distinguished name and easier to remember. By convention, this
should map to the user's e-mail name. The point of the UPN is to consolidate the e-mail and logon
namespaces so that the user needs only to remember a single name. The UPN is constructed at line 454
by using the UserID created at line 282 and the Root DNS name.

sn: This is the family name or last name (line 455).

givenName: This is the first name of the user (line 456).

displayName: This is the name displayed in the address book. This is usually the combination of the users first name,

middle initial, and last name (line 428). The assignment is made at line 457.

description: This attribute contains a description for the user object. This attribute can be empty in the Excel sheet

because the script tests the presence of a value for the variable strDescription (line 458).

homeDirectory: The homeDirectory attribute specifies the path of the home directory for the user. If homeDrive is not

set, homeDirectory should be a local path. If homeDrive is set, homeDirectory should be a UNC (lines
460 and 461).

homeDrive: The homeDrive attribute specifies the drive letter used to map the UNC path specified by

homeDirectory (line 462).

profilePath: The profilePath attribute specifies a path to the user's profile. This value can be a local absolute path, or

a UNC path. On line 489, the profilePath is composed by the Account computer name, the root share
name (i.e. Profile$) and the UserID constructed at line 282.

scriptPath: The scriptPath is the logon script name to be used by the user at logon time (line 491).

From lines 494 to 498, the script sets some default security settings. First, the script reads (line 494) the userAccountControl
attribute to enable (line 496) the created user. Once enabled, the script replaces the new userAccountControl value (line 498).

userAccountControl: The ADSI user object exposes the AccountDisabled property. By setting this property to False, it is

possible to enable the user and perform the same operation as the lines 494 to 498. Behind the scene, the
AccountDisabled property modifies the userAccountControl attribute. The userAccountControl
attribute specifies flags that control password, lockout, disable/enable, script, and home directory
behavior for the user. Working with the userAccountControl attribute allows the control of the different

WHITE PAPER (cont.)

76 WSH and ADSI – Part 2

flags not exposed by ADSI. See Microsoft Active Directory Service Interfaces SDK for more information
about the miscellaneous flag values for the userAccountControl attribute.

A default password defined at line 54 is set (line 501) and has to be changed at next logon time (line 504).

pwdLastSet: The default value is 0. Zero means the user must change the password at next logon. The value -1 means

the user does not need to change the password at next logon. The system sets this value to -1 after the
user has set the password.

On the other hand, the following attributes can be empty in the Excel sheet because the script verifies if there is content. (lines 465
to 487):

title st
department postalCode
company c
physicalDeliveryOfficeName homePhone
telephoneNumber pager
wWWHomePage mobile
streetAddress facsimileTelephoneNumber
postOfficeBox info
l

Note: With ADSI, it is important to set an attribute with a variable containing a value, otherwise, an error will be returned to the

script.

Creating directories with the File System object

To manipulate the File System object from Windows Script Host, the script must create an instance of the File System Object
(line 16). The File System object is part of the Scripting Run-Time library (SCRRUN.DLL). The Scripting Run-Time library was
already used to instanciate the Dictionary Object (See on page 12 for more details about the Dictionary Object and see Microsoft
Visual Basic Scripting/Java Scripting on-line Documentation for details about the File System object.)

Note: Within the File System Object, several objects are available such as Drive, File, Folder and TextStream.

Once the File System Object instance is created (line 16), the object offers a method to check the presence of a given folder (line
19). The only parameter needed to invoke this method is the folder path. Note that the folder path can be an absolute path or UNC
path. In the current scripting case, the caller (Sample 22) will pass a UNC path (lines 309 and 352). Based on the result of test for
the folder’s existence, the script will create the new folder (line 22) by invoking the CreateFolder method. Sample 23 below is
very easy to understand.

Sample 23 Creating the directories for the home directory and the profile directory
1:' VB Script creating folder on the File System if folder does not exist '
2:' '
3:' Version 1.00 - Alain Lissoir '
4:' Compaq Computer Corporation - Professional Services - Belgium - '
5:' '
6:' Any comments or questions: EMail:alain.lissoir@compaq.com '
7:
8:Option Explicit
9:
10:' --
11:Private Sub CreateFolder (strFolderName)
12:
13:Dim objFileSystem

WHITE PAPER (cont.)

77 WSH and ADSI – Part 2

14:Dim objFolder
15:
16: Set objFileSystem = Wscript.CreateObject ("Scripting.FileSystemObject")
17:
18: ' Take care about the existance of the Homedirectory subfolder
19: If objFileSystem.FolderExists (strFolderName) Then
20: Wscript.Echo " Directory '" & strFolderName & "' already exists ..."
21: Else
22: Set objFolder = objFileSystem.CreateFolder (strFolderName)
23: Wscript.Echo " Successfully created directory '" & strFolderName & "'"
24:
25: WScript.DisconnectObject objFolder
26: Set objFolder = Nothing
27: End If
28:
29: WScript.DisconnectObject objFileSystem
30: Set objFileSystem = Nothing
31:
32:End Sub

The share object creation

A share creation must be processed in the WinNT: namespace and not in the LDAP: namespace. This is due to the location of the
share object inside a service object called LanManServer. The LanManServer object is only accessible from the WinNT:
namespace because it is not related to the Active Directory. This section provides a practical example of how the namespace
influences the objects/methods available.

Note: See Part 1: ”Understanding the Microsoft Windows Script Host and the Active Directory Service Interfaces in Windows

2000”, APPENDIX A to know which objects/methods are available for the namespace used.

Creating a share does not require any reference to the File System Object. As usual for an object creation, the script must bind to
the object container (that is, the parent of the new object you are creating).

The path of the LanManServer object service is: WinNT://MachineName/LanManServer (line 23). Once you bind to the parent,
the script can bind to the share object to check its existence (line 31). Based on the result, the script will create the share object
(line 34) or not. Before committing the changes in the WinNT: namespace, it is mandatory for a share creation to set some
properties:

• The absolute path of the share location
• The maximum user count of the share
• The share description

This operation is completed at line 36, 37 and 38. To create a hidden share, the caller (Sample 22 above) must append a ‘$’
character to the end of the share name (see line 395 in Sample 22).

Sample 24 Creating the share for the home directory
1:' VB Script creating a File System share via the WinNT: namespace if the given '
2:' share name does not exist. '
3:' '
4:' Version 1.00 - Alain Lissoir '
5:' Compaq Computer Corporation - Professional Services - Belgium - '
6:' '
7:' Any comments or questions: EMail:alain.lissoir@compaq.com '
8:
9:Option Explicit
10:
11:Const WINNT_SHARE_NOT_EXIST = &h80070906
12:

WHITE PAPER (cont.)

78 WSH and ADSI – Part 2

13:' --
14:Private Sub CreateShare (strComputer, strShareName, _
15: strDirLocalAccess, strShareCount, _
16: strShareDescription)
17:
18: ' Add the home directory share for the user on the given server
..:
23: strSharePath = "WinNT://" & strComputer & "/LanManServer"
24: Set objShareSrv = GetObject(strSharePath)
25:
26: ' Continue even if the share doesn't exists
27: On Error Resume Next
28: ' Clear any prior error to avoid confusion during next test
29: Err.Clear
30:
31: Set objShare = objShareSrv.GetObject ("FileShare", strShareName)
32: If Err.Number = WINNT_SHARE_NOT_EXIST Then
33: On Error Goto 0
34: Set objShare = objShareSrv.Create ("FileShare", strShareName)
35:
36: objShare.Path = strDirLocalAccess
37: objShare.MaxUserCount = strShareCount
38: objShare.Description = strShareDescription
39:
40: objShare.SetInfo
41:
42: Wscript.Echo " Successfully created Directory Share '\\" & _
43: strComputer & "\" & strShareName & "'."
44: Else
45: Wscript.Echo " Directory Share '\\" & strComputer & _
46: "\" & strShareName & "' already exists."
47: End If
..:
55:End Sub

Here is sample output when running Sample 22 (Creating users under Windows 2000 with their associated Exchange 2000
mailboxes) on page 68.

Reading Excel datasheet 'C:\Data\Excel\PopulateUsers.xls'

Found Exchange Organization called 'First Organization'.

Successfully created Account for user 'WEST James'.
Successfully created Microsoft Exchange 2000 Mailbox for user 'WEST James'.
Security Descriptor for MB object initialized.
Successfully created directory '\\MYW2KDC\HOME$\james.west'
All rights are removed, Trustee 'Everyone' (Full Control) has been added.
Trustee 'MYW2KDOMAIN\Domain Admins' has been added to '\\MYW2KDC\HOME$\james.west'
Trustee 'MYW2KDOMAIN\james.west' has been added to '\\MYW2KDC\HOME$\james.west'
Trustee 'Everyone' has been removed from '\\MYW2KDC\HOME$\james.west'
Successfully created directory '\\MYW2KDC\Profile$\james.west'
All rights are removed, Trustee 'Everyone' (Full Control) has been added.
Trustee 'MYW2KDOMAIN\Domain Admins' has been added to '\\MYW2KDC\Profile$\james.west'
Trustee 'MYW2KDOMAIN\james.west' has been added to '\\MYW2KDC\Profile$\james.west'
Trustee 'Everyone' has been removed from '\\MYW2KDC\Profile$\james.west'
Successfully created Directory Share '\\MYW2KDC\james.west$'.

WHITE PAPER (cont.)

79 WSH and ADSI – Part 2

CONCLU S ION

Windows Script Host under Windows 2000 offers a lot of new possibilities. The real limits come
from the number of reusable COM objects available in the scripting environment. As discovered in
Part 1: “Understanding the Microsoft Windows Script Host and the Active Directory Service
Interfaces in Windows 2000”, the challenge lies mainly in knowing what all the COM objects are
available in a Windows 2000 system.

Not only existing COM interfaces can be reused, but it is also possible to construct “scripted COM
objects” via XML encapsulation. This powerful feature offers scripting code reusability to other
scripting languages but also to other automation languages such as Visual Basic, Perl or Java.

By offering WSH to developers and administrators, Microsoft provides a powerful tool, usable from
the command line. This lets Windows handle scripting operations in a similar way as a Unix Shell.

In fact, WSH goes further than a simple scripting language because even if the basic engine is a
scripting engine (VB Script or Java Script), complex operations require clear structure and
organization of code, variables, functions and miscellaneous components, just as they do in the real
programming world.

The frontier between both worlds is seriously reduced because both can make use of each other. In the
past, a script generally started many applications in a clearly defined way. Now, with these new
possibilities, an application can invoke a script to perform some operations. This has advantages, such
as being able to change program logic (for example, a parsing procedure) without recompiling the
original software, because this logic is in a Windows Script Component.

WHITE PAPER (cont.)

80 WSH and ADSI – Part 2

APPENDIX A: US ER OB JECT ATTR IBUT E D EF IN IT IONS
Table 1 The user object attributes, the syntax properties and the property types.

 (Mandatory attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

ti-
va

lu
ed

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 cn DirectoryString False Yes Yes CR_NTDS_DOMAIN;
 instanceType INTEGER False Yes CR_NTDS_DOMAIN;
 nTSecurityDescriptor ObjectSecurityDescriptor False Yes CR_NTDS_DOMAIN;
 objectCategory DN False Yes Yes CR_NTDS_DOMAIN;
 objectClass OID True Yes CR_NTDS_DOMAIN;
 objectSid OctetString False Yes Yes CR_NTDS_DOMAIN;
 sAMAccountName DirectoryString False Yes Yes CR_NTDS_DOMAIN;

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 accountExpires INTEGER8 False
 accountNameHistory DirectoryString True
 aCSPolicyName DirectoryString False
 adminCount INTEGER False
 adminDescription DirectoryString False
 adminDisplayName DirectoryString False Yes
 allowedAttributes OID True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 allowedAttributesEffective OID True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 allowedChildClasses OID True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 allowedChildClassesEffective OID True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 altRecipient DN False Yes
 altRecipientBL DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 altSecurityIdentities DirectoryString True Yes Yes CR_NTDS_DOMAIN;

WHITE PAPER (cont.)

81 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 assistant DN False
 attributeCertificate OctetString True Yes
 authOrig ORName True Yes
 authOrigBL DN True Yes CR_NTDS_NC;ATTR_NOT_REPLICATED;
 autoReply Boolean False Yes
 autoReplyMessage DirectoryString False
 badPasswordTime INTEGER8 False CR_NTDS_NC;ATTR_NOT_REPLICATED;
 badPwdCount INTEGER False CR_NTDS_NC;ATTR_NOT_REPLICATED;
 bridgeheadServerListBL DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 businessRoles OctetString False
 c DirectoryString False Yes CR_NTDS_DOMAIN;
 canonicalName DirectoryString True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 co DirectoryString False
 codePage INTEGER False
 comment DirectoryString False
 company DirectoryString False Yes
 controlAccessRights OctetString True
 countryCode INTEGER False
 createTimeStamp GeneralizedTime False DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 dBCSPwd OctetString False
 defaultClassStore DN True
 deletedItemFlags INTEGER False Yes
 delivContLength INTEGER False Yes
 deliverAndRedirect Boolean False Yes
 deliveryMechanism INTEGER False Yes
 delivExtContTypes OctetString True Yes
 department DirectoryString False Yes
 description DirectoryString True Yes
 desktopProfile DirectoryString False
 destinationIndicator PrintableString True
 directReports DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 displayName DirectoryString False Yes Yes
 displayNamePrintable PrintableString False Yes
 distinguishedName DN False Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;

WHITE PAPER (cont.)

82 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 division DirectoryString False
 dLMemDefault INTEGER False Yes
 dLMemRejectPerms ORName True Yes
 dLMemRejectPermsBL DN True Yes CR_NTDS_NC;ATTR_NOT_REPLICATED;
 dLMemSubmitPerms ORName True Yes
 dLMemSubmitPermsBL DN True Yes CR_NTDS_NC;ATTR_NOT_REPLICATED;
 dnQualifier DirectoryString False
 dSASignature OctetString False
 dSCorePropagationData GeneralizedTime True Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 dynamicLDAPServer DN False
 employeeID DirectoryString False
 employeeType DirectoryString False
 enabledProtocols INTEGER False Yes
 expirationTime UTCTime False Yes
 extensionAttribute1 DirectoryString False Yes
 extensionAttribute10 DirectoryString False Yes
 extensionAttribute11 DirectoryString False Yes
 extensionAttribute12 DirectoryString False Yes
 extensionAttribute13 DirectoryString False Yes
 extensionAttribute14 DirectoryString False Yes
 extensionAttribute15 DirectoryString False Yes
 extensionAttribute2 DirectoryString False Yes
 extensionAttribute3 DirectoryString False Yes
 extensionAttribute4 DirectoryString False Yes
 extensionAttribute5 DirectoryString False Yes
 extensionAttribute6 DirectoryString False Yes
 extensionAttribute7 DirectoryString False Yes
 extensionAttribute8 DirectoryString False Yes
 extensionAttribute9 DirectoryString False Yes
 extensionData OctetString True
 extensionName DirectoryString True
 facsimileTelephoneNumber DirectoryString False Yes
 flags INTEGER False Yes
 folderPathname DirectoryString False Yes

WHITE PAPER (cont.)

83 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 formData OctetString False
 forwardingAddress DirectoryString False
 fromEntry Boolean True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 frsComputerReferenceBL DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 fRSMemberReferenceBL DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 fSMORoleOwner DN False Yes
 garbageCollPeriod INTEGER False Yes
 generationQualifier DirectoryString False
 givenName DirectoryString False Yes Yes
 groupMembershipSAM OctetString False
 groupPriority DirectoryString True
 groupsToIgnore DirectoryString True
 heuristics INTEGER False Yes
 homeDirectory DirectoryString False
 homeDrive DirectoryString False
 homeMDB DN False Yes
 homeMTA DN False Yes
 homePhone DirectoryString False Yes
 homePostalAddress DirectoryString False
 houseIdentifier DirectoryString False
 importedFrom DirectoryString False Yes Yes
 info DirectoryString False Yes
 initials DirectoryString False Yes
 internationalISDNNumber NumericString True
 internetEncoding INTEGER False Yes
 ipPhone DirectoryString False Yes
 isCriticalSystemObject Boolean False
 isDeleted Boolean False Yes CR_NTDS_DOMAIN;
 isPrivilegeHolder DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 kMServer DN False
 l DirectoryString False Yes Yes CR_NTDS_DOMAIN;
 labeledURI DirectoryString True
 language DirectoryString False
 languageCode INTEGER False

WHITE PAPER (cont.)

84 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 lastKnownParent DN False
 lastLogoff INTEGER8 False CR_NTDS_NC;ATTR_NOT_REPLICATED;
 lastLogon INTEGER8 False CR_NTDS_NC;ATTR_NOT_REPLICATED;
 legacyExchangeDN CaseIgnoreString False Yes Yes
 lmPwdHistory OctetString True
 localeID INTEGER True
 lockoutTime INTEGER8 False
 logonCount INTEGER False CR_NTDS_NC;ATTR_NOT_REPLICATED;
 logonHours OctetString False
 logonWorkstation OctetString False
 mail DirectoryString False Yes Yes
 mailNickname DirectoryString False Yes Yes
 managedObjects DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 manager DN False Yes
 mAPIRecipient Boolean False Yes
 masteredBy DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 maxStorage INTEGER8 False
 mDBOverHardQuotaLimit INTEGER False Yes
 mDBOverQuotaLimit INTEGER False Yes
 mDBStorageQuota INTEGER False Yes
 mDBUseDefaults Boolean False Yes
 memberOf DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 mhsORAddress DirectoryString True
 middleName DirectoryString False
 mobile DirectoryString False Yes
 modifyTimeStamp GeneralizedTime False DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 mS-DS-ConsistencyChildCount INTEGER False
 mS-DS-ConsistencyGuid OctetString False
 mS-DS-CreatorSID OctetString False Yes
 msExchADCGlobalNames DirectoryString True Yes Yes
 msExchALObjectVersion INTEGER False
 msExchConferenceMailboxBL DN False CR_NTDS_NC;ATTR_NOT_REPLICATED;
 msExchControllingZone DN False
 msExchCustomProxyAddresses DirectoryString True Yes

WHITE PAPER (cont.)

85 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 msExchExpansionServerName DirectoryString False Yes
 msExchFBURL DirectoryString False Yes Yes
 msExchHideFromAddressLists Boolean False Yes
 msExchHomeServerName DirectoryString False Yes
 msExchIMACL OctetString True Yes
 msExchIMAddress PrintableString False Yes Yes
 msExchIMMetaPhysicalURL PrintableString False Yes Yes
 msExchIMPhysicalURL PrintableString False Yes Yes
 msExchIMVirtualServer DN False Yes Yes
 msExchInconsistentState INTEGER False
 msExchMailboxGuid OctetString False Yes Yes
 msExchMailboxSecurityDescriptor ObjectSecurityDescriptor False Yes
 msExchMailboxUrl DirectoryString False Yes
 msExchMasterAccountSid OctetString False Yes Yes
 msExchPfRootUrl DirectoryString False Yes
 msExchPoliciesExcluded DirectoryString True
 msExchPoliciesIncluded DirectoryString True
 msExchPolicyEnabled Boolean False
 msExchPolicyOptionList OctetString True
 msExchPreviousAccountSid OctetString False Yes Yes
 msExchProxyCustomProxy DirectoryString True
 msExchQueryBaseDN DN False Yes
 msExchRecipLimit INTEGER False Yes
 msExchResourceGUID DirectoryString True Yes Yes
 msExchResourceProperties DirectoryString True
 msExchTUIPassword OctetString False Yes
 msExchTUISpeed INTEGER False Yes
 msExchTUIVolume INTEGER False Yes
 msExchUnmergedAttsPt OctetString False Yes
 msExchUseOAB DN False Yes
 msExchUserAccountControl INTEGER False Yes Yes
 msExchVoiceMailboxID DirectoryString False Yes Yes
 mSMQDigests OctetString True Yes Yes
 mSMQDigestsMig OctetString True Yes

WHITE PAPER (cont.)

86 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 mSMQSignCertificates OctetString False Yes
 mSMQSignCertificatesMig OctetString False Yes
 msNPAllowDialin Boolean False
 msNPCallingStationID IA5String True
 msNPSavedCallingStationID IA5String True
 msRADIUSCallbackNumber IA5String False
 msRADIUSFramedIPAddress INTEGER False
 msRADIUSFramedRoute IA5String True
 msRADIUSServiceType INTEGER False
 msRASSavedCallbackNumber IA5String False
 msRASSavedFramedIPAddress INTEGER False
 msRASSavedFramedRoute IA5String True
 name DirectoryString False Yes Yes CR_NTDS_DOMAIN;
 netbootSCPBL DN False CR_NTDS_NC;ATTR_NOT_REPLICATED;
 networkAddress CaseIgnoreString True Yes
 nonSecurityMemberBL DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 ntPwdHistory OctetString True
 o DirectoryString True Yes CR_NTDS_DOMAIN;
 objectGUID OctetString False Yes Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 objectVersion INTEGER False
 operatorCount INTEGER False
 otherFacsimileTelephoneNumber DirectoryString True Yes
 otherHomePhone DirectoryString True Yes
 otherIpPhone DirectoryString True Yes
 otherLoginWorkstations DirectoryString True
 otherMailbox DirectoryString True
 otherMobile DirectoryString True Yes
 otherPager DirectoryString True Yes
 otherTelephone DirectoryString True Yes
 otherWellKnownObjects DNWithBinary True
 ou DirectoryString True Yes Yes CR_NTDS_DOMAIN;
 pager DirectoryString False Yes
 partialAttributeDeletionList OctetString False Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 partialAttributeSet OctetString False Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;

WHITE PAPER (cont.)

87 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 personalPager DirectoryString False
 personalTitle DirectoryString False
 physicalDeliveryOfficeName DirectoryString False Yes Yes
 pOPCharacterSet DirectoryString False
 pOPContentFormat DirectoryString False
 possibleInferiors OID True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 postalAddress DirectoryString True
 postalCode DirectoryString False Yes
 postOfficeBox DirectoryString True Yes
 preferredDeliveryMethod INTEGER True
 preferredOU DN False
 primaryGroupID INTEGER False Yes Yes CR_NTDS_DOMAIN;
 primaryInternationalISDNNumber DirectoryString False
 primaryTelexNumber DirectoryString False
 profilePath DirectoryString False
 protocolSettings DirectoryString True Yes
 proxiedObjectName DNWithBinary False Yes CR_NTDS_DOMAIN;
 proxyAddresses DirectoryString True Yes Yes
 publicDelegates DN True Yes
 publicDelegatesBL DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 pwdLastSet INTEGER8 False
 queryPolicyBL DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 registeredAddress OctetString True
 replicatedObjectVersion INTEGER False Yes
 replicationSensitivity INTEGER False
 replicationSignature OctetString False Yes
 replPropertyMetaData OctetString False Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 replUpToDateVector OctetString False Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 repsFrom OctetString True Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 repsTo OctetString True Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 revision INTEGER False
 rid INTEGER False
 sAMAccountType INTEGER False Yes Yes CR_NTDS_DOMAIN;
 scriptPath DirectoryString False

WHITE PAPER (cont.)

88 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 sDRightsEffective INTEGER False DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 secretary DirectoryString False
 securityIdentifier OctetString False
 securityProtocol OctetString True Yes
 seeAlso DN True
 serverReferenceBL DN False CR_NTDS_NC;ATTR_NOT_REPLICATED;
 servicePrincipalName DirectoryString True Yes Yes CR_NTDS_DOMAIN;
 showInAddressBook DN True Yes
 showInAdvancedViewOnly Boolean False Yes
 sIDHistory OctetString True Yes Yes CR_NTDS_DOMAIN;
 siteObjectBL DN True CR_NTDS_NC;ATTR_NOT_REPLICATED;
 sn DirectoryString False Yes Yes
 st DirectoryString False Yes CR_NTDS_DOMAIN;
 street DirectoryString False Yes CR_NTDS_DOMAIN;
 streetAddress DirectoryString False Yes
 submissionContLength INTEGER False Yes
 subRefs DN True Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 subSchemaSubEntry DN True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 supplementalCredentials OctetString True
 supportedAlgorithms OctetString False Yes
 systemFlags INTEGER False
 targetAddress DirectoryString False Yes Yes
 telephoneAssistant DirectoryString False
 telephoneNumber DirectoryString False Yes
 teletexTerminalIdentifier OctetString True
 telexNumber OctetString True
 terminalServer OctetString False
 textEncodedORAddress DirectoryString False Yes Yes
 thumbnailLogo OctetString False
 thumbnailPhoto OctetString False
 title DirectoryString False Yes
 tokenGroups OctetString True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 tokenGroupsGlobalAndUniversal OctetString True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;
 tokenGroupsNoGCAcceptable OctetString True DOMAIN_DISALLOW_RENAME;ATTR_IS_CONTRUCTED;

WHITE PAPER (cont.)

89 WSH and ADSI – Part 2

 (Optional attributes)

 CN=Alain Lissoir ClassObject=user AdsPath=LDAP://CN=Alain Lissoir,CN=Users,DC=w2k-home,DC=com

 A
ttr

ib
ut

e
N

am
e

Sy
nt

ax

M
ul

tiv
al

ue
d

In
de

xe
d

G
C

 C
op

y

Sy
st

em
Fl

ag
s

(A
D

S_
SY

ST
EM

FL
A

G
)

 unauthOrig ORName True Yes
 unauthOrigBL DN True Yes CR_NTDS_NC;ATTR_NOT_REPLICATED;
 unicodePwd OctetString False
 unmergedAtts OctetString False Yes
 url DirectoryString True Yes
 userAccountControl INTEGER False Yes Yes CR_NTDS_DOMAIN;
 userCert OctetString False Yes
 userCertificate OctetString True Yes
 userParameters DirectoryString False
 userPassword OctetString True
 userPrincipalName DirectoryString False Yes Yes CR_NTDS_DOMAIN;
 userSharedFolder DirectoryString False
 userSharedFolderOther DirectoryString True
 userSMIMECertificate OctetString True Yes
 userWorkstations DirectoryString False
 uSNChanged INTEGER8 False Yes Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 uSNCreated INTEGER8 False Yes Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 uSNDSALastObjRemoved INTEGER8 False
 USNIntersite INTEGER False Yes
 uSNLastObjRem INTEGER8 False Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 uSNSource INTEGER8 False
 versionNumber INTEGER False Yes
 wbemPath DirectoryString True
 wellKnownObjects DNWithBinary True Yes CR_NTDS_DOMAIN;
 whenChanged GeneralizedTime False Yes CR_NTDS_NC;CR_NTDS_DOMAIN;ATTR_NOT_REPLICATED;
 whenCreated GeneralizedTime False Yes
 wWWHomePage DirectoryString False Yes
 x121Address NumericString True

WHITE PAPER (cont.)

90 WSH and ADSI – Part 2

APPENDIX B: U S ER GU I RIGHT S

Note: Be sure to read the table carefully. First select a GUI right from the top and by looking

down in the same column, a ‘•‘ is placed each time the flag (in the left column) has to be
used for the selected right. Reading the table in the other direction (starting from the flag)
will not create the GUI right at run-time.

Table 2 The Active Directory standard GUI rights and their associated flag values.

 AD Standard Rights
 Standard View Advanced View

 Fu
ll

C
on

tro
l

R
ea

d

W
rit

e

C
re

at
e

Al
l C

hi
ld

 O
bj

ec
t

D
el

et
e

Al
l C

hi
ld

 O
bj

ec
t

Fu
ll

C
on

tro
l

Li
st

 C
on

te
nt

s

R
ea

d
Al

l P
ro

pe
rti

es

W
rit

e
Al

l P
ro

pe
rti

es

D
el

et
e

D
el

et
e

Su
bT

re
e

R
ea

d
Pe

rm
is

si
on

s

M
od

ify
 P

er
m

is
si

on
s

M
od

ify
 O

w
ne

r

Al
l V

al
id

at
ed

 R
ig

ht
s

Al
l E

xt
en

de
d

R
ig

ht
s

C
re

at
e

Al
l C

hi
ld

 O
bj

ec
ts

D
el

et
e

Al
l C

hi
ld

 O
bj

ec
ts

ACE Type

ADS_ACETYPE_ACCESS_ALLOWED

ADS_ACETYPE_ACCESS_DENIED
• • • • • • • • • • • • • • • • • •

ACE AccessMask

ADS_RIGHT_GENERIC_READ •

ADS_RIGHT_GENERIC_WRITE •

ADS_RIGHT_GENERIC_EXECUTE

ADS_RIGHT_GENERIC_ALL •

ADS_RIGHT_DELETE •

 • •

ADS_RIGHT_READ_CONTROL • •

 • •

ADS_RIGHT_WRITE_DAC •

 • •

ADS_RIGHT_WRITE_OWNER •

 • •

ADS_RIGHT_SYNCHRONIZE

ADS_RIGHT_ACCESS_SYSTEM_SECURITY

ADS_RIGHT_DS_CREATE_CHILD •

 •

 • •
ADS_RIGHT_DS_DELETE_CHILD •

 • • •

ADS_RIGHT_ACTRL_DS_LIST • •

 • •

ADS_RIGHT_DS_SELF •

 • • •

ADS_RIGHT_DS_READ_PROP • •

 • •

ADS_RIGHT_DS_WRITE_PROP •

 •

 • •

ADS_RIGHT_DS_DELETE_TREE •

 • •

ADS_RIGHT_DS_LIST_OBJECT •

 •

ADS_RIGHT_DS_CONTROL_ACCESS •

 • • •

WHITE PAPER (cont.)

91 WSH and ADSI – Part 2

 FS Rights
 Standard View Advanced View

 Fu
ll

C
on

tro
l

M
od

ify

R
ea

d
&

Ex
ec

ut
e

Li
st

 F
ol

de
r C

on
te

nt
s

R
ea

d

W
rit

e

Tr
av

er
se

 F
ol

de
r /

 E
xe

cu
te

 F
ile

Li
st

 F
ol

de
r /

 R
ea

d
D

at
a

R
ea

d
At

tri
bu

te
s

R
ea

d
Ex

te
nd

ed
 A

ttr
ib

ut
es

C
re

at
e

Fi
le

s
/ W

rit
e

D
at

a

C
re

at
e

Fo
ld

er
s

/ A
pp

en
d

D
at

a

W
rit

e
At

tri
bu

te
s

W
rit

e
Ex

te
nd

ed
 A

ttr
ib

ut
es

D
el

et
e

Su
bF

ol
de

rs
 a

nd
 F

ile
s

D
el

et
e

R
ea

d
Pe

rm
is

si
on

s

C
ha

ng
e

Pe
rm

is
si

on
s

Ta
ke

 O
w

ne
rs

hi
p

ACE Type

ACCESS_ALLOWED_ACE_TYPE

ACCESS_DENIED_ACE_TYPE
• • • • • • • • • • • • • • • • • • •

ACE AccessMask

FILE_ALL_ACCESS •

FILE_GENERIC_READ

 •

FILE_GENERIC_WRITE

 •

FILE_GENERIC_EXECUTE

 • •

FILE_READ_DATA • • • • •

 •

FILE_LIST_DIRECTORY • • • • •

 •

FILE_WRITE_DATA • •

 • •

FILE_ADD_FILE • •

 • •

FILE_APPEND_DATA • •

 • •

FILE_ADD_SUBDIRECTORY • •

 • •

FILE_READ_EA • • • • •

 •

FILE_WRITE_EA • •

 • •

FILE_EXECUTE • • • •

 •

FILE_TRAVERSE • • • •

 •
FILE_DELETE_CHILD •

 •

FILE_READ_ATTRIBUTES • • • • •

 •

FILE_WRITE_ATTRIBUTES • •

 • •

FILE_DELETE • •

 •

FILE_READ_CONTROL • • • • •

 •

FILE_WRITE_DAC •

 •

FILE_WRITE_OWNER •

 •

FILE_SYNCHRONIZE • • • • • • • • • • • • • • • • • • •

Table 3 The File System GUI rights and their associated flag values.

WHITE PAPER (cont.)

92 WSH and ADSI – Part 2

 Th
is

 o
bj

ec
t o

nl
y

Th
is

 o
bj

ec
t a

nd
 a

ll
ch

ild
 o

bj
ec

ts

C
hi

ld
 o

bj
ec

ts
 o

nl
y

ACE Flags

OBJECT_INHERIT_ACE

CONTAINER_INHERIT_ACE • •

NO_PROPAGATE_INHERIT_ACE

INHERIT_ONLY_ACE •

INHERITED_ACE

VALID_INHERIT_FLAGS

Table 4 The Active Directory GUI inheritance and their associated flag values.

Th
is

 F
ol

de
r O

nl
y

Th
is

 F
ol

de
r,

su
bf

ol
de

rs
 a

nd
 fi

le
s

Th
is

 fo
ld

er
 a

nd
 s

ub
fo

ld
er

s

Th
is

 fo
ld

er
 a

nd
 fi

le
s

Su
bf

ol
de

rs
 a

nd
 fi

le
s

on
ly

Su
bf

ol
de

r o
nl

y

Fi
le

s
on

ly

ACE Flags

OBJECT_INHERIT_ACE •

 • •

 •

CONTAINER_INHERIT_ACE • •

 • •

NO_PROPAGATE_INHERIT_ACE

INHERIT_ONLY_ACE • • •

INHERITED_ACE

VALID_INHERIT_FLAGS

Table 5 The File System GUI inheritance and their associated flag values.

WHITE PAPER (cont.)

93 WSH and ADSI – Part 2

 AD Exchange 2000 Rights
 Standard View Advanced View

 D
el

et
e

M
ai

lb
ox

 S
to

ra
ge

R
ea

d
Pe

rm
is

si
on

s

C
ha

ng
e

Pe
rm

is
si

on
s

Ta
ke

 O
w

ne
rs

hi
p

Fu
ll

M
ai

lb
ox

 A
cc

es
s

As
so

ci
at

ed
 E

xt
er

na
l

Ac
co

un
t

D
el

et
e

M
ai

lb
ox

 S
to

ra
ge

R
ea

d
Pe

rm
is

si
on

s

C
ha

ng
e

Pe
rm

is
si

on
s

Ta
ke

 O
w

ne
rs

hi
p

Fu
ll

M
ai

lb
ox

 A
cc

es
s

As
so

ci
at

ed
 E

xt
er

na
l

Ac
co

un
t

ACE Type

ADS_ACETYPE_ACCESS_ALLOWED

ADS_ACETYPE_ACCESS_DENIED
• • • • • • • • • • • •

ACE AccessMask

RIGHT_MB_FULL_MB_ACCESS
 • •

 • •
RIGHT_MB_SEND_AS • • • • • • • • • • • •
RIGHT_MB_EXTERNAL_ACCOUNT

 • •

RIGHT_MB_DELETE •

 •

RIGHT_MB_READ_PERMISSIONS •

 •

RIGHT_MB_CHANGE_PERMISSIONS •

 •

RIGHT_MB_TAKE_OWNERSHIP

 •

 •

Table 6 The Exchange 2000 GUI rights and their associated flag values.

Warning: The values presented in Table 6 above do not come from the SDK. At the time of
publication, no information was available about which flag values to apply to enable any
specific rights. The values presented here were found by deciphering each ACE entry set
via the GUI (in other words, by trial and error).

WHITE PAPER (cont.)

94 WSH and ADSI – Part 2

 Th
is

 o
bj

ec
t o

nl
y

In
he

rit
 o

nl
y

Th
is

 O
bj

ec
t a

nd
 S

ub
co

nt
ai

ne
rs

Th
is

 o
bj

ec
t a

nd
 c

hi
ld

re
n

ob
je

ct
s

Su
bc

on
ta

in
er

s
on

ly

C
hi

ld
re

n
ob

je
ct

 o
nl

y

Th
is

 o
bj

ec
t,

su
bc

on
ta

in
er

s
an

d
ch

ild
re

n
ob

je
ct

s

Su
bc

on
ta

in
er

s
an

d
ch

ild
re

n
ob

je
ct

s

ACE Flags

OBJECT_INHERIT_ACE

 • • • •

CONTAINER_INHERIT_ACE
 •

 • • •

NO_PROPAGATE_INHERIT_ACE

INHERIT_ONLY_ACE •

 • • •

INHERITED_ACE

Table 7 The Exchange 2000 GUI inheritance and their associated flag values.

	By COM object registration
	
	
	
	RegSvr32.Exe ADsSecurity.DLL

	The HomeMTA attribute must also be set with the Home MTA distinguished name. This value is constructed from several elements such as the Exchange computer name, the Exchange Admin group and the Exchange organization distinguished name (lines 152 to 155).

