PACIFIC ELECTRO DATA
PED-4010
INITIATOR EMULATION PROGRAM
USER'S MANUAL

PACIFIC ELECTRO DATA, INC.
14 Hughes, Suite B205, Irvine, California 92718
(714) 770-3244 .

¢ Copyright 1988

SOFTWARE LICENSE

COPYRIGHT: This software is protected by both United
States Copyright laws and International Treaty
provisions.

LICENSE: The license is granted to authorize the
Buyer, on a non-exclusive basis, to use each test
program on each particular designated Data Acquisition
and Emulation Module. The license is non-transferable.

COPIES: The buyer may make one (1) copy of each
licensed test program for use on a particular
designated Data Acquisition and Emulation Module for
back-up purposes only.

PROTECTION OF LICENSE PROGRAM: The buyer agrees not to
provide, or otherwise make available, any licensed test
program, in any form, to any person other than Buyer
and Buyer's premises with Buyer's permission for
purposes specifically related to Buyer's user of the
licensed test program. The Buyer agrees to take
appropriate action by instruction, agreement, or
otherwise with Buyer's employees or other persons
permitted access to licensed test programs to satisfy
his obligation under this license with respect to use,
copying, protection, and security of licensed test
programs.

ii

SOFTWARE WARRANTY

WARRANTY: Pacific Electro Data, Inc. ("PED") warrants
the physical diskette and physical documentation
enclosed herein to be free of defects in materials and
workmanship for a period of 90 days from the date of
purchase. PED further warrants that the software
conforms to all current specifications and samples for
a period of one (1) year from the date of purchase.
PED reserves the right to make changes in the software
described herein without notice. At Buyer's request,
PED will replace the obsolete software diskette and
documentation during the Software Warranty period. All
software diskettes replaced hereunder shall become the
property of PED.

LIMITATIONS OF LIABILITY:

A. The previous express warranty is the only
warranty made by PED. PED grants no implied
warranties, including warranties or merchant-
ability or fitness and no other express
warranties. The express obligation stated
above is in lieu of all liabilities or
obligations of PED for damages including, but
not limited to, consequential damages arising
out of or in connection with the delivery,
use, or performance of PED test devices.

B. Buyer further agrees that PED will not be
liable for any lost profits or for any claim
or demand against the buyer by any other
party, except a claim for patent, copyright,
and trademark infringement as provided
herein.

c. In no event will PED be liable for special,
indirect, or consequential damages even if
PED has been advised of the possibility of
such damages. The risk of loss or damage for
any products supplied by buyer to PED will be
borne exclusively by buyer.

iii

Table of Contents

1. INTRODUCTION . ¢« ¢ « o o « &«

1.1

NN NON
® o o s 0o ¢ o
oo WN

General Information .
Overview of This Manual
How To Use This Manual
Notation . . « « « « &

Hardware and Software Requxrements

Reviewing PED-4000 Installation Procedure
1.6.1 Unpacking and Checking the System

Components . . .

s o o o o

o o o o o

e o o o o

.
.
.
.
.
.
-]

1.6.2 Configuring & Installlng the Module

1.6.3 Creating the PED System Diskette
System Start-Up Procedure
Reconfiguring the Module for PED-4010

Bus Termination . o« e
Terminator Power . . .

TIONS AND PROCEDURES . .

.

Device Description Library .

2.1.1
2.1.2
2.1.3
2.1.4
System Data Buffers .
Run-Time Interpreter .
Configuration Module .
DDL Editor . «

TYPE Definitions

FORM Definition

SCS1 Device Driver .
Program Utilities .
Typical Program Paths

3. KEYBOARD AND SCREEN FUNCTIONS

3.1
3.2

3.3 How to Enter the PED-4010 Inltlator Emulation

3.4

Keyboard Functions . .
Display Conventions .

Menu Path . . « « .« &

4. DEFINING THE TARGET

4.1 Defining the Device Descrlptxon Library (DDL)
4.2 Defining the Command Descriptor Block

4.3

e o o o o o

Command Descriptor Block (CDB)

e o o o o o

.

.

Running the Initiator

* o o o o o

.

e o

Program

e o o o o o o

e o o o o o

3

e o o o o o

4.2.1 Creating the Command Format
4.2.2 Editing the Command Type

4.2.3 Defining a Command CDB

Creating Data Buffers

4.3.1 Creating Data Forms .

4,3.2 Editing the Data Form . .
4.3.3 Creating a Data Buffer .

4.3.4 Editing the Data Form .

iv

* o o o o o

e o o o o o o

3

® o o & o o ¢ o o 0 o s 0

Type

e 0 o o oo

.

e o ¢ o o o 0

e o o 0 ¢ o s o s s s o o

.

e o o o » o o

e o o o o

e 6 o o o o & o ¢ o o o o

.

* o o o o 0 o o

e o o o o o o

o o o o o

@ 6 e o o e o o o o s s

.

e o 0 6 0 0 0 o o

e o o ¢ o o o

o e 0 o o

o o o o o e & o o 6 0 0 o o o o s .

® 0 o 6 o 0 o 0 0 o o

HPwTwww
S WNNE

L]
WO NN >

]
@3N NU N OOV WNNE

L LR X WWwww NNNNN?NNNNNNN Lt et st sl sl sadl ool

4-10
4-11
4-16
4-17
4-20
4-21
4-23

Table of Contents (continued).

4.4 Deleting and Renaming Files from Directories . . 4-24
4.5 Exiting from the Emulation Editor . . . « . . . 4-25
4.6 Saving the ResultS . . o« ¢ ¢ o o o o o o o o o o 4-25
4.7 sSample Definition Session .« « ¢« ¢ ¢ ¢ ¢ ¢ o o . 4-26
S. DDL CONFIGURATION -
5 -

FIVEYY 9T 9999 ¢Uey
CONBRE OO BoHE S

5.2 SCSI Addresses . .
5.3 Driver Options . .

.1 Device Assignment .

« o o o
o o o o
o o o o
¢« o o e
¢ o o o
¢ o o .
o« o o o
o s s e
o o o o
o o s e
“ o e e
o o o o
o e s o
o o o o

6. INTERACTIVE MODE EMULATION . ¢ « ¢ o o o o o« o o &«
6.1 Entering Interactive Mode Emulation
6.2 Command Lines . . . o ¢« ¢ ¢ o ¢ o o o o o o
6.2.1 DDL Command Assignments: CDB Commands

6.2.2 DDL Command Assignments: Data Field
Commands e o o o o o o o o o o
6.2.3 Emulation Commands “ e e e s s s o o

« o e e
J

7. PROGRAM MODE EMULATION . « « ¢ « « o«
7.1 Creating a Program . . .
7.2 Using the Program Edit W1ndow
7.3 Program Conventions . . .
7.3.1 Data and Variable Types

e o o o 0 o 0 e &
@ ¢ o o s o o o o
o o o & s o o o o
® o o o 0 o 0 s o
* o o o o s o o s
e 6 s e o s o o o
s 6 ¢ o o 0 o o o
e e s s o o o o o
1

7.3.2 Special Characters . . . -
7.3.3 Constants . « ¢« ¢ ¢ o ¢ 7-10
7.3.4 Operators . « o« « o o o o« 7-11
7.3.5 Commands .« ¢« ¢ ¢ o o o & 7-13
7.4 ‘Initiating the Program « o e s 7-57
7.5 Sample Programs e o o o @ o o s 2 o a o s o o = 7-59
APPENDIX A. TCB PRIMITIVE COMMANDS & STRUCTURE . « « « .« & A-1
1. Task Control Primitives . . ¢« o o ¢ o o o o o o &« A-2
2. Extreme Primitives . . ¢ o o ¢ o ¢ o o o o o o o o A-3
3. Conventional Primitives . « ¢ « ¢ ¢ o o o o o o o A-5
4. Control Structures . . « « o e o o o o o « o o o » A-9
5. TCB FlagS =« ¢ ¢ ¢ o o o o o o o o o o o o o o o o A-12
6. TCB Error CodeS .« « « ¢ o o o« o o o o o o s s o =« A-13
7. SCSI Message SYSteM .« « « o o o o o o o o o o o o A-14

APPENDIX B. SCSI-II DIRECT ACCESS DDL o « « « « o o o « « B-1

APPENDIX C. SCSI-II SEQUENTIAL ACCESS DDL < « « « o « o & Cc-1

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

2-1.
2-3.
3-1.
3-2.
3-3.
3-4.
4-1.
4-2,
4-3.
4-4.

I
NNNNDNNNNE R R R B oodon

OB WNFHFOWLWEEJAUHWNEREO: ¢ ¢ o

UUSUSUSUSUSULUR.

hhbbbbbhbb-‘rbbbhhbbbhhh

Figures

Functional Units .
Sample CDB. . « .
Screen Display . .
Main Menu e o o o
Initiator Emulation

o o o o

Normal Menu Path.
Creating a DDL .
Entering DDL Name.
Emulator Editor . .
Files Utility Window.
Loading DDL Files. .
Editing DDL Files. .
Creating the CDB . .
Command Type Selection
Command Type Edit Window. . .
Command Type Edit Window Examp
Command CDB Menu. « . « « « &
Command CDB Edit Window. . .
CDB Field Value Assignment Win
Specifying Data Buffer. . . .
Entering the Data Phases. . .
Data Form Directory Window. .
Data Form Edit Window. . . .
Data Form Edit Window Example.
Existing Data Directory Window.
Data Edit Window. . . « « « « &
Entering Field Values.
Existing Library Files Window. . .
Existing Configuration Files Window.
Read Usage Counters Command Structure
Usage Counter Format « « « ¢« ¢« « « &
Command CDB Edit Example.
Data Form Edit Sample. « ¢« « ¢ ¢ o =«
Configuration Mode Window.
Device Assignment Table.
SCSI Addresses Window. .
Driver Options Window. .
Run Mode Screen.
Report Options Window. .

-
L] .
.o .
. .
Window
. .
. .
. .
.«
.

.
.
.
.
o
.
.
.
.

e e o o o s o o o

e

e o & o o o 0 0 0 0 0 6 o o 0 s o o

o

e o o o e o pte o o 0 0 o 0 0 ° s s s s 0 o
® o ¢ o o o o e F o o o s 0 s 0 0 0 s 6 0 s 0 s 0 0 0

e o e o o o o o
e ® o 9 6 o 0 6 ¢ 0 & % e 8 o & s 0 6 & s 0 0 0 0 0 s 0

ALL Data Window. . . .
Buffer Dump Window. . .
TCB View Window.
DDL Selection Window. .
Emulation Editor Window.
Program Selection Window.
Program Edit Window. . .
Program Format Sample. .

e ¢ o ¢ o o o s 0o o o o o
e 6 ¢ o o o 8 o o s e o 0 »
e 6 o o & o 0 0 0 s 0 0 o ¢
e @ o & & o s & o o o 0 o o
e 6 o o o o 0 0 o o s 0 o 0
e o 0 & o & o 0 e o 0 o o

vi

@ 6 o & o 6 o 6 o o o o 0 0+ 6 6 & & s s & s o s 0 e o s .

L8 8 o e o 8 ¢ . 0 e o o s o o

@ 6 ® 6 6 & 6 8 6 & 8 6 6 6 6 6 6 e 6 0 6 & 2 o s 8 & e 0 & s s & ¢ & 6 o 4 o 0 s s 0 s o 0+ 0

@ 6 6 & o & 5 & 6 6 & 8 6 8 6 6 0 & 6 4 0 6 8 6 e O & 6 & o 0 e O s s s 4 e o ° o 0 0 0 o 0 o

@ 6 @ 6 ¢ 6 6 9 € ¢ 0 6 0 & 6 ¢ & & & s 6 & & O 0 6 6 6 6 6 ¢ 0 & o & 0 & s o 0 0 0 0 s s o 0

SRR WWWWNON

HFOOONAUIEeWNOANTIWW -

ORORIRON
el el el ad = L L L R L L L L L
Vi WiN

4-15
4-17
4-18
4-20
4-22
4-22
4-23
4-26
4-26
4-27
4-27
4-29
4-30
5-2
5-3
5-5
5-7
6-2
6-2
6-9
6-15
6-28
7-2
7-3
7-3
7-4
7-7

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Tables

NCR5380 Interrupt Select Jumpers
NCR5380 DMA Select Jumpers . . .
Menu Structure < ¢ . . .
Interactive Command Summary . .
Program Command Summary . . .« .
Task Control Primitives.
Extreme Primitives. . . .
Conventional Primitives.
Control Structures. . .
TCB Flags. . « o ¢ o« &
Error Codes. . . .+ .« .
SCSI Message System. .

¢ e s o o s o
[R T S
¢ o e s e e o
¢ e o o s o e

vii

.

¢ e ¢ o o o &

e o o e o o o

« e o 8 e o o

¢ e s o s 0 o

« e e e e s e

SECTION 1
INTRODUCTION

1.1 General Information

The PED-4010 Initiator Emulation Program is part of the PED-4000
Emulation and Analysis System. This package enables the IBM PC
or compatible to emulate and analyze the Small Computer System
Interface (SCSI).

The basic PED-4000 System consists of a PED-4001 Data Acquisition
and Emulation Mode, and the State Analysis program. The module
occupies a single, full-length expansion slot in the host
computer and connects to the SCSI bus through a 50-pin connector.
The programs the module uses can include the following:

PED-4001 State Analysis Program
PED-4002 Phase Analysis Program
PED-4010 Initiator Emulation Program
PED-4020 Target Emulation Program

0000

As part of the complete package, the PED-4010 Initiator Emulation
Program emulates the initiator (or source) device, and manipu-
lates the target device using a variety of commands, definitions,
and options. 1In this way, the user can analyze the function of
the initiator and its interface with one or more target devices.

Function Initiator Target Function
Origin Control Control Execution

The PED-4010 Initiator Emulation program is an extraordinarily
flexible programming environment, providing the user with great
latitude in planning and executing initiation simulations. All
operations are conducted through easy-to-use menus. Programmed
and interactive emulations use a language employing common
commands and syntax, facilitating writing and emulation
processing. Moreover, all programs in the PED-4000 package use a
uniform set of keyboard and display conventions, setup and
operation menus, function key responses, and common service
utilities, such as Help messages, File Load, File Save, and
Print.

1.2 Overview of This Manual

This manual describes the installation, operation, and user/pro-
gram interface procedures for using the PED-4010 Initiator
Emulation Program with the PED-4001 module. It takes you through
the entire process of defining the necessary host environments,
writing and editing the programs for batch mode emulation,
arranging and identifying command language for interactive mode
emulation, planning strategies for initiator emulation.

It is designed as a stand-alone manual, requiring only limited
reference to the PED-4001 State Analyzer Program User's Manual.

1.3 How To Use This Manual

This section tells you how to use this manual. If you are not
familiar with the PED-4000 system, we recommend that you read the
entire manual from beginning to end. If you have used some of
the programs before, then you might select only those sections
which directly concern you. This manual is set out in the
following manner.

Section 1 presents an overview of the PED-4000 System
and discusses the PED-4010 Initiator Emulation Program.
In addition, it identifies the hardware and software
required to run the initiator, and reviews installation
and configuration procedures.

Section 2 describes the major resources and functional
modules of the PED-4010 program, what they do, and how
they interact during initiator emulation. Recommen-
dations are then provided for the best tactics to
follow in creating an emulation, depending on your
particular requirements. Finally, the procedure for
booting and bringing up the emulation is detailed.

Section 3 describes the user/program interface conven-
tions. These include such keyboard operations as
function and action keys, cursor movement, and alpha-
numeric character entry. Menu conventions are then
discussed, including the window and prompt structure.

Section 4 tells how to define the target including the
use of the Device Description Library (DDL) and the
defining and creating of both Command Descriptor Blocks
(CDB) and Data Buffers.

Section 5 describes how to configure a DDL for device
assignment, SCSI addresses, and driver options.

Section 6 tells how to use the Interactive Mode
emulator, describing each command available.

Section 7 tells how to use the Program Mode emulator,
describing the expanded command set and variables
available for batch entry.

Appendix describes the interface to and operation of
the SCSI device driver. The field of the Task Control
Block (TCB) and each direct driver command is defined
and described.

1.4 Notation

This manual uses certain terms and notations you should become
familiar with. A few examples of these terms follow.

o The terms PED-4010, emulator, and program
refer to the Initiator Emulation Program.

o PED-4001 and board refer to the Data
Acquisition and Emulation module.

o Generally, acronyms are used in place of
program names and frequently used concepts.
For instance, CDB is used in place of Command
Descriptor Block.

o <> angle brackets refer to a required field
or expression you must enter. The type of
field required is described within the
brackets. For example, <expression> tells
you an expression is inserted here.

o [} square brackets refer to a key on the
keyboard. For instance, [Enter] refers to
the Enter key, otherwise called the [CR]) or
[Return]) key.

This notation can also refer to an optional
expression. For example, [expression] tells
you an expression can be inserted here as an

option.

) Commands you must enter are given in bold-
face.

o Whenever hexadecimal values are used, the

alphanumeric value is followed by an upper-
case H. The initial zero is understood (for
example, 380H stands for 0380H).

1-3

1.5 Hardware and Software Requirements

The following hardware and software is required to operate the
PED-4010 emulator:

o IBM PC, XT, AT, or compatible host computer
with keyboard.

o Minimum of 512 Kbytes RAM.

o Minimum of one 360 Kbyte floppy disk drive.

o Color/graphics or monochrome display adapter.
[¢] Color or .monochrome monitor.
o PC/MS-DOS version 2.0 or later.

o PED-4001 module.
o PED-4010 Initiator Emulation program
diskette.

1.6 Reviewing PED-4000 Installation Procedures
The section below provides a brief discussion on unpacking,
configuring, and installing the module and PED-4010 emulation
program.
1.6.1 Unpacking and Checking the System Components

After reéeivinq your PED-4010 software package, make sure the
following items are included:

o 5 1/4~inch floppy diskette (PED-4010
Initiator Emulation Program).

o Loose-leaf PED-4010 Initiator Emulation
User's Manual.

o Software registration card.
o SCSI Bus In-line Terminator.
o Board jumper block.

1.6.2 Configuring and Installing the Module and Software

For complete instructions on configuring and installing the PED-
4001 module, refer to Section 1.3 in the State Analysis Program
User's Manual.

1.6.3 Creating the PED System Diskette

The PED-4010 diskette that comes with the system contains all the
files needed to operate the PED-4001 module and PED-4010
emulator. However, it does not contain PC/MS-DOS. You may want
to copy all the files from the supplied program diskette to a
formatted system diskette and use that new system diskette to run
the emulation software.

If you plan to use a hard disk drive, you should copy all PED-

4000 files over to the hard disk. The procedures for these copy
operations are described here briefly.

Copying to a System Diskette

STEP 1

Install the PC/MS-DOS diskette in drive A: and turn on the
computer. When the computer has booted, remove the DOS diskette
and put a formatted system diskette in drive A: If the new
diskette has not been formatted, enter the following command
before removing the DOS diskette:

FORMAT /S [Enter]

Follow the instructions on the computer display to format the
diskette.

STEP 2

With a formatted system diskette in drive A:, put the PED-4010
Initiator Emulation program diskette in drive B: and copy all the
files from drive B: to drive A: by entering the following
command 3

COPY B:*.* A: [Enter])
You now have a formatted system diskette in drive A: that
contains all the PED-4010 software on it. This should be used as

your working diskette. Store the original PED-4010 program
diskette in a safe place.

- 1=5 ,

Copying to a Hard Disk

STEP 1

Install the DOS diskette in drive A: and turn on the computer.
When the computer has booted, direct the prompt to drive C: (if
it is not already). You should see this prompt:

C: »
If not, use this command:
C: [Enter]

STEP 2
Type the following command to create a directory for PED.

MD \PED [Enter]

A new directory called "PED" now exists on your hard disk.

STEP 3
Remove the DOS diskette from drive A: and insert the PED diskette
in drive A:. Type the following commands:

CD \PED [Enter]
COPY A: *.*

The hard disk drive now has all the PED files you need to conduct
Initiator emulations. Remove the original PED system diskette
and store it in a safe place.

Included on the disk is a configuration file (CONFIG.PED) and the
SCSI driver file (SCSI.SYS). The configuration and SCSI driver
file should be in the root directory. If you don't have a
CONFIG.SYS file in the root now, copy CONFIG.PED to the root as
CONFIG.SYS. If you do have a CONFIG.SYS file, attach the
contents of CONFIG.PED to your CONFIG.SYS file.

NOTE

The programs work best if you don't include
ANSI.SYS as a device.

1.7 System Start-Up Procedure

Once you have prepared either the system diskette or the hard
disk with the PED-4010 files, you can enter the program.

Follow this procedure:

STEP 1

Boot the system from the system diskette you have prepared (drive
A:) or from the hard disk (drive C:).

STEP 2
At the DOS prompt, type the following command.

PED4010 [Enter]
You are now at the main PED-4000 system menu.
If you want to boot directly into the PED menu, use an
AUTOEXEC.BAT file. For instructions on creating an AUTOEXEC.BAT
file, refer to your DOS User's Manual.
1.8 Reconfiguring the Module for PED-4010
If your system contains a hard disk drive, there can be a

conflict between it and the PED-4001 module in interrupt and DMA
channel assignments. Default settings for them are:

Parameter Default Setting
IRQ 2
DMA Channel 1

If they conflict, you need to change the jumper settings on the
module and the device installation line in the CONFIG.SYS file.
Add the following parameters to the SCSI driver device statement
in CONFIG.SYS:

DEVICE = SCSI.SYS vvv a d i

where:

vvv is the vector ihterrupt, default = 124; legal
values are 64 and 255.

a is the PED board number, default = 3; legal values
are 1, 2, and 3.

d is the DMA channel, default = 1; legal values are 1,
2, 3.

i is the interrupt, default = 2; legal values are 2, 3,
4, and 7.

A value of 0 or a comma (,) preserves the default, allowing you
to modify fields without knowing the other default settings.

For example:
DEVICE = SCSI.SYS 0 0 2 7

or
DEVICE = SCSI.SYs , , 2 17

results in an SCSI at vector 123, address 3, DMA channel 2, and
interrupt 7. Or, as another example:

DEVICE=SCSI.SYS vector 145 board 2 DMA 1 interrupt 3
results in an SCSI at vector 145, address 2, DMA channel 2, and
interrupt 3. Only decimal numbers are interpreted, allowing you
to comment the line with non-rumeric characters.

The following tables list the jumper positions for the interrupt
and DMA channels available on the module.

Table 1-1. NCR5380 Interrupt Select Jumpers

Jumpers Interrupt
E3 IRQ?
E4 IRQ4
E5 IRQ3
E6. IRQ2

Table 1-2. NCR5380 DMA Select Jumpers

Jumpers DMA Channel
E7, E8 3
E9, E10 2
El1,E12 1
NOTE

Install at most one jumper in locations E3
through E6. Install jumpers E7 through El12
in pairs (e.g. E7 and E8, E9 and E10, or El1l
and E12).

1.9 Bus Termination

Both ends of the SCSI cable should be terminated properly. If
you are installing the PED-4000 as an end device, use the in-line
SCSI bus terminator for that purpose. .

CAUTION

Observe correct connector and terminator
orientation. Orienting the connector and
terminator incorrectly can cause accidental
grounding and faulty connection of terminator
power which can damage the PED-4000, cable,
and other attached devices.

1.10 Terminator Power

The in-line bus terminator uses pin 26 (TERMPWR) to power the
internal terminating resistors. TERMPWR must be energized by a
single device on the bus. It is recommended that you use the
initiator as the power device.

If you want to use the PED-4000 for this purpdse, you must
install a jumper at E13 on the PED-4001 module. Refer to Section
1.3 of the PED-4001 State Analysis Program User's Manual for
information on installing a jumper -at this pesition.

SECTION 2
OPERATIONS AND PROCEDURES

The PED-4010 Initiator Emulation program provides a total SCSI
initiator emulation environment integrated with SCSI bus
analysis. The program gives you the tools to create a device
description of any SCSI target and use this description, referred
to as a DDL, to interact with the target device over the SCSI
bus.

Figure 2-1 provides a schematic representation of how the various
elements of the Initiator Program work togethors

DDL - DDL A
Editgrﬁf lTypeI Form

-

Program

CDB I Data

Keyboard |—e Emulation 'Module

utility . Task Control -

Buffers Block) Primitives
¥

Driver Interface -

Figure 2-1. Functional Units

2.1 Device Description Library

the Device Description Library (DDL) is resident in RAM and is
>oth created and managed by the Initiator Emulation program. A
)DL defines each command and expected data response in the
sommand set of a particular target device. 1Included in the
library is the Command Descriptor Block (CDB) and data buffer
(DATA) associated with each command. The DDL also includes
cemplates used in defining CDBs and DATA buffers. A command CDB
template is referred to as a command TYPE while a DATA buffer
template is referred to as a data FORM.

dhile many of the device descriptions you will use to analyze the
target exist in the DDL, you may choose to create a device
description of yout own using PED-4010. Whether you use the DDL
or create your own definitions, however, the device description
consists of five elements: CDB types, CDB definitions, data
pbuffer forms, data buffer definitions, and initiator programs.

-
Several DDLs may be resident at one time, allowing for a mix of
targets on the SCSI bus.. The current target ID assignment is
ased by the program to automatically select the DDL from the
system configuration table.

Each of the elements found in the DDL are described here briefly.
For more detailed information on creating and editing DDLs, refer
to Section 4.1.

2.1.1 TYPE Dpefinitions

TYPE definitions provide a template to construct CDBs. A CDB can
be six, ten, or twelve bytes in length with the first byte always
the command Op Code and the last byte always a control byte. The
use of the intervening bytes varies according to commands. The
CDB TYPE template enables you to identify the command type by
name as well as define the nature of all fields between the Op
Code and control byte barriers.

CDB TYPE

Op Code TYPE definition Control

Each field can be up to 32 contiguous bjts in length. Two kinds
of CDB fields are identified: Named and Enumerated. Named fields
are fields identified by a singular name; all fields larger than
eight bits must be named. Enumerated fields are fields with
several assigned names, each name conditional on a unique value;
enumerated fields cannot be larger than eight bits long.

2-2

During an emulation, you can refer to each CDB field by its
assigned name. You do not need to define a separate TYPE
template for each CDB; several CDBs can share the same TYPE
template.

For more on CDB TYPE definitions, refer to Section 4.2.

2.1.2 Command Descriptor Block (CDB)

A CDB is the definition of a particular target command. Each CDB
in a DDL is assigned a unique name. During emulation, you can
invoke the command by referring to its name as defined by the
CDB. CDBs carry default field values. You can modify these
field values when you invoke the command by assigning a modified
value to the field. You compose a command CDB by using a command
TYPE template.

For example, if there were a command CDB called READ with defined
fields ADDRESS and LENGTH, then executing the command line

READ ADDRESS = 0 LENGTH = 080

results in the program setting the ADDRESS field value to 0 and
the LENGTH field value to 80 hex.

NOTE
Defined values for such fields as ADDRESS and
LENGTH do not affect the default value of
these fields.

A typical CDB for a six-byte command might look like this:

BIT 7 6 5 4 | 3 2 1 0

Operation Code

Logical Unit No | Logical Block Address

Logical Block Address (if required)

Logical Block Address (if required)

Transfer Length (if required)

il WwWINIE=TO

Control Byte

Pigure 2-3. Sample CDB.

2-3

You can tailor a CDB to your own requirements, manipulating
addresses and defining the structure of the command to test any
specific target.

For more information on using and setting up CDBs, refer to
Section 4.2.

2.1.3 FORM Definition

Use the FORM template to define the form of the DDL data buffers
much as you use the TYPE template to define the form of a command
CDB. DDL data buffers act as a source of data during data output
operations, such as WRITE or MODE SELECT commands, or as buffers
for data during data input operations, such as INQUIRY or MODE
SENSE commands.

A data FORM can be from 1 to 1024 bytes in length, subdivided
into any number of fields, each field identified by a unique
name. Three kinds of data fields exist: named, enumerated, and
text.

For example, if theré were a data buffer named SENSED and the
FORM template defined fields called ERROR_CODE and SENSE_KEY,
then executing the command lines

SENSED.ERROR_CODE = 070
SENSED.SENSE_KEY = 5

would result in the ERROR_CODE field being set to 070H and the
SENSE_KEY field to 005H.

NOTE

The extension operator (.) is used
to separate data buffer names from
FORM field names.

For more information on using and setting up FORM templates,
refer to Section 4.3.

2.1.4 Running the Initiator Program

The PED-4010 emulation runs programs resident within the DDL or
from disk to exercise the SCSI target. Information gathered from
such programs can be displayed and saved for later analysis.
These programs are written in a programming language which is
like structured BASIC but without line numbers. PED-4010
supports both scalar and array variables within this language
structure and four data types are allowed: 32-bit long, 16-bit
integer, 8-bit character, and 16-byte text. All variables within

2-4

a program must be declared before they are referenced.

During an emulation session, data buffers defined in the DDL can
be treated as additional variables. There are also a number of
system variables which the program can access to facilitate
emulation, including .TARGET, .INITIATOR, and .LUN.

For a discussion of program conventions and syntax, refer to
Sections 6 and 7.

2.2 System Data Buffers

In addition to the data buffers defined in a DDL, two general-
purpose utility buffers are available in host RAM: a 512-byte
SMALL buffer and a 64K-byte LARGE buffer. Both are implemented
as circular buffers, in the same manner as all other DDL data
buffers.

2.3 Run=-Tim¢, Jnterpreter

The pivotal function of the initiator emulation is the run-time
interpreter. This interpreter scans an input expression, checks.
syntax, searches command tables, interprets and, i? valid,
executes the expression. The expression can be fri)m the key-
board, from a DDL program, or from a program file {xn disk.

Syntax and lexical errors are reported to the user.

While this function is transparent to the user, the result
manifests itself in two distinct ways. If you have created a
program file, the interpreter will go through the file, executing
each valid expression-as it is encountered. Results of the
program execution are either displayed or stored at a selected
site. If you choose the interactive mode, each command you enter
is immediately processed and the results are displayed.

For more information on interactive mode, see Section 6.

2.4 Configuration Module

PED-4010 includes an SCSI system configuration table which
identifies the resident DDL assigned to each SCSI bus address by
ID number. The module also assigns an ID number for the
currently active target, initiator, and LUN. In this way, you
may assign more than one targ:t for emulation, or more than one
program for each target selected”

For more inférﬁation_on-cénfiguring'yout system, see Section 5.

2-5

2.5 DDL Editor

The Device Description Libraries are managed by the DDL editor.
Using this utility, you can create, view, or-edit DDLs, TYPEs,
FORMs, data, CDBs, or DDL programs.

For a discussion of how to edit the DDL(s8), refer to Section 4.

2.6 SCSI Device Driver

All communication between the PED-4001 module and the host system
boards is handled by the SCSI Device Driver. It is this program
which conveys the PED-4010 emulation software between the two
hardware points and drives it. The interface between the device
driver and the emulation program is the Task Control Block (TCB)
~-- a 79-byte block of parameters residing in host RAM.

All bus transactions are initiated by loading of the correct
parameter values into the TCB and the generation of & software
interrupt (all calls to the driver are through hardware and
software interrupts). All interface instructions at the TCB and
driver are controlled by the PED-4010 and is transparent to the
user.

2.7 Program Utilities

The emulation and analysis program share FILE and HELP programs.
The FILE utility allows you to move DDLs to and from disk and to
rename and delete existing DDL disk files. The HELP utility
provides you with an on-line assistance to every area of the PED-
4010 program. The [Fl1] key gives you immediate, context-
selected, help messages. :

2.8 Typical Program Paths
During the course of a normal session, you must perform a number
of activities. The process of creating an initiator emulation
consists of several steps.

1. Creating a File.

2. Defining command types.

3. Specifying CDBs.

4. Defining data buffer forms.

S. Specifying data buffers (if needed).

6. Assigning the device description library to a
specific device ID.

7. Creating a batch program, or running the
interactive program.

8. Storing and analyzing the results.

2~7

SECTION 3
KEYBOARD AND SCREEN FUNCTIONS

All PED-4000 programs support a uniform set of keyboard and
display conventions. Learn to use these keys and screen
functions.

3.1 Keyboard Functions

There are three kinds of keyboard functions you use during
PED-4010 operation: .

a. Menu and Data Cursor Movement
b. Function Keys
c. Action Keys

Each is explained here.

Menu and Data Cursor Movement

[] Moves the cursor to the left or right one
character each time they are pressed
without erasing the previous character.
When choosing a file from the device
description directory, you must use the
up-arrow and down-arrow keys to move from
one column of the directory to another.

Moves the cursor up or down one line each
’ time they are pressed without erasing the

‘ character. Use these keys to move the
cursor between the DDL directory entries.

[Back Deletes one character at a time to the
Space] left of the cursor, moving the cursor and

characters to the left one position.

[Esc] - Causes you to exit the level of the
program you are presently in and return
to the next higher level.

Below most data or menu windows you will see a quick summary of
the possible cursor movements allowed. See more about this under
Screen Functions.)

Function Keys

There are ten function keys on the PC programmed as hot keys.
Pressing any of these causes the following reactions:

[F1] HELP. Describes the situation and your
alternatives at the point where you
invoked it.

[F2] FILE. Enters the emulation file menu.

[F3]) EDIT. Enters the emulation edit menu.

[F4] CONFIGURE. Enters the emulation con-
figuration menu.

[F5] RUN. Enters the emulation run menu.

[F6] SWAP. Shifts between emulation and
analysis programs.

[F7) SETUP. Enters analysis setup.

[F8] EXIT. Exits to the next higher menu.

[F9] CAPTURE. Enters the analysis capture
routine.

[F10] DISPLAY. Enters the analysis display
routine.

3.2 Display Conventions

The PED-4000 program presents you with a display that consists of
windows and entry areas. In general, the display looks like
Figure 3-1:

MENU SELECTION

Select desired operation: _

r"“"“—“‘PED-4000 SYSTEM STATUS

Pigure 3-1., Screen Display.

These three areas can be defined as follows:

Data/Menu
Window

In this field appear all the menu
selections and file options. Choose one
of these options either by using the up
and down keys or by entering the number
of the selection. For instance, if you
see these selections

1. EDIT
2., CONFIGURE
3. RUN

press "3" to highlight the RUN option or
use the down key. Press [Enter] to
select the option and enter the submenu.

Selection windows are identified by their
single-line borders.

3-3

Entry Area

Status
Window

In this field you enter data and make
selections. A prompt and cursor are
usually present, as in this example:

Select desired operation:_

In most situations, you can also make
action selections within a program. All
response entries must be followed by
[Enter]; this causes the selected action
to occur.

Status windows are identified by their
double-line borders. User information is
displayed in this window. Reverse, dark,
and bright video is used within the
windows to enhance recognition. Infor-
mation displayed within these windows
includes PED-4000 system status and SCSI
bus status.

Certain screens within the program differ from this standard.
These exceptions are explained during the discussions on the
respective routines.

3.3 How to Enter the PED-4010 Initiator Emulation

Before you can use the emulator,.you must first enter the system.
To do this, follow these instructions:

STEP 1 '
Put the PED-4010 system diskette in drive A. Boot the system.
This prompt is displayed:

Installing PEDRIVER version 2.10, 8/27/87
STEP 2
Bring up the DOS prompt. When it appears, enter
PED4010 [Enter]

You briefly see copyright information and then the following
screen appears:

PED4000 SYSTEM MENU

1. STATE ANALYSIS

2. PHASE ANALYSIS

3. INITIATOR EMULATION
4. TARGET EMULATION

S. FILE
6. HELP
7. EXIT

Select desired operation: _

COPYRIGHT 1985,86,87 PACIFIC ELECTRO DATA INC.
This Program is Protected by UNITED STATES COPYRIGHT
Unauthorized Reproduction is Expressly Prohibited

This program has been licensed to:
PACIFIC ELECTRO DATA, INC
IRVINE, CA
by written license Agreement 999999.

PED-4000 SYSTEM STATUS
“ ANALYZE EMULATE |
F1 for HELP ’ (C)1985,86,87 PED

Figure 3-2. Main Menu.

[

J

3-5

’his is the main menu.

From here you can enter any of the PED-

1000 emulations or analyses installed on your system.

3TEP 3

'o select the PED-4010 Initiator Emulation program, use [Down] to
1ighlight option 3, "Initiator Emulation," or enter the number

‘3" at the "Select desired operation" prompt.

the following window and prompt appears.

2.

INITIATOR EMULATION

EDIT
CONFIGURE
RUN

FILE

HELP

EXIT

Press [Enter].

Select desired operations_

Figure 3-3. Initiator Emulation Window.

rhis is the main menu for the PED-4010 Initiator Emulation
program. From here you can choose any of the three routines and
two utilities you need to create and run the emulation.

Notice that the words "EMULATE" and "INITIATOR" are highlighted
in the system status window at the bottom of the display. This
tells you that you are in the initiator emulation mode. From

this point, you can either enter a routine selection number at

the desired operation prompt or

highlight and select a routine.

Since there are several options
reviews possible menu paths you

use the up and down keys to

to choose from, the next section
can select.

3.4 Menu Path

The Initiator emulation is arranged in a series of routines.
Each routine contains a number of menus and submenus you can use
to complete the routine task. To get from one place to another
in this menu structure, see Table 3-1 below.

Table 3-1. Menu Structure.

1. Edit
Emulation Editor
Command Type
Existing Command Types
Command Type Edit
Command
Existing Command CDB
Command CDB Edit
Data Form
Existing Data Form
Data Form Edit
Data
Existing Data
Data Edit
Program
Existing Run Programs
Program Edit
2. Configure
Device Assignment
SCSI Addresses
Driver Options
3. Run
4. Files Utility
5. Help

If you are creating or editing a CDB, data buffer, or program
file, you would follow the menu path shown in Figure 3-4:

3-7

Select
File
LOAD

Select Select
ALL OR LIB
CONFIGURE
System

Command |
TYPE

OR
Data o]
FORM

[*>1 Select
DATA e Emulation
EDITOR

COMMAND =

PROGRAM |- Select
RUN

Figure 3-4. Normal Menu Path.

This is one approach to creating/editing a Device Description
Library, creating a program, and running the emulator.

In the next section, the procedures for creating or editing a DDL
are discussed.

SECTION 4
DEFINING THE TARGET

Before you can run the initiator emulation on a selected target
device, the emulator must first know what parameters constitute
this target: specifically, what are the size, block assignments,
and SCSI bus addresses for commands and data buffers recognized
by the target device. The emulator enables you to define these
parameters using the emulator editor.

Parameters are then stored in the Device Description Library
(DDL) for assignment when you run the emulator itself.
4.1 Defining the Device Description Library (DDL)

Before you can begin to define command and data buffers for the
emulation, you must first create a DDL.

To create a DDL:

Follow these steps:
STEP 1

Select EDIT from the main initiator emulation menu. The
following window and prompt appears:

[——————-—'Resident Device Description Library(s)'—'———"‘]

Select desired operation (Create Alter Rename Delete Exit]:_

Figure 4-1. Creating a DDL

If no names appear in the top window, it means there are no DDLs
loaded in the computer RAM (random-access memory) .

NOTE

If you are accessing libraries or files from
computer memory, the word “"Resident" appears
above many windows. If you are accessing
libraries or files from disk, the word
"Existing" appears instead.

STEP 2

Highlight CREATE either by using the (Left] and [Right] keys or
entering the first letter of the option -- in this case, "C".
Press [Enter].

The following screen appears:

Resident Device Description Library(s)

Enter name of desired Library:

PED-4000 SYSTEM STATUS
| ANALYZE EMULATE INITIATOR TARGET EDIT CONFIG RUN ARMED |
(C)1985,86,87 PED

F1 for HELP

Figure 4-2. Entering DDL Name.
The top window is highlighted and a cursor appears to the right
of the prompt "Enter name of desired Library."
STEP 3 ’
Enter a library name. A library name cannot consist of more than
thirty alphanumeric characters without extende:zs.
Press [Enter]. The new library name appears in the top window.
You are returned to the previous menu (see Figure 4-1).

4-2

If you wish to change the name you have created, select the
Rename option and enter a new name at the prompt. If you want to
delete the name you have just created, select the Delete option.
However, be careful. Once you have attached parameters to this
library, using the Delete option automatically erases all the
values previously entered.

STEP 4
Select the Alter option. Press [Enter]). The screen in
Figure 4-2 appears displaying your DDL.

1f you do not want to assign values to the DDL at this time,
press [Esc]. You are returned to the previous menu.

To assign values to this library, press [Enter]. The Emulator
Editor menu appears as shown in Figure 4-3.

Emulator Editor

1. COMMAND TYPE
2. COMMAND
3. DATA FORMAT

4. DATA
5. PROGRAM
6. EXIT

Select desired operation:_

PED-4000 SYSTEM STATUS
ANALYZE EMULATE INITIATOR TARGET EDIT CONFIG RUN ARMED I
F1 for HELP === (C) 1985,86,87 PED

Figure 4-3. Emulator Editor

From here you can create or edit the Command Descriptor Block
(CDB), the data buffer, or write a program. For more information
on creating or editing the CDB or data buffer, see Sections 4.1.1
and 4.1.2.

To edit an existing DDL:

If the DDL already exists as a disk file, use the followiné
procedure to enter and edit.

STEP 1
From the main initiator emulation menu, select the FILE opt1on.
Press [Enter].

The following window and prompt is displayed:

FILES Utility

LOAD
SAVE
DELETE
PRINT
EXIT

Select desired operations_

Figure 4-4. Files Utility Window.

gfgﬁlight LOAD by entering "L" at the prompt or by usxng the
cursor keys.
Press [Enter].
The following prompt appears:
Select type of file to load (LIB ALL SETUP DATA]:

STEP 3
Select LIB. Press ([Enter].

The following window and prompt is displayed:

EXISTING LIBRARY FILES
" libname DDL date time “

Enter name of file to be loaded:
Figure 4-5. Loading DDL Files.

4-4

Each file previously created is designated here by its file name,
and the date and time it was created. Only a certain number of
files can be displayed in the top window at the same time. Use
the [Up] and [Down] keys to move from file to file. Use the
[Left] and [Right] keys to move the character cursor on the entry
prompt line.

STEP 4

Either enter the name of the file you want at the entry prompt,
or select it with [Up] and [Down]. Press [Enter].

The DDL file is loaded into memory and the main Initiator
Emulation menu is re-displayed.

STEP 5

Once the DDL files are loaded, select EDIT.

The window and prompt shown in Figure 4-6 is displayed.

Resident Device Description Library(s)
Filenml Filenm3 .
#ilenm2

Enter desired operation [Create Alter Rename Delete Exit]:
Figure 4-6. Editing DDL Files.

In the top window appears the names of all the libraries you have
loaded.

STEP 6
To edit or continue defining CDBs and data buffers, select the
Alter option.

The screen shown in Figure 4-2 appears.

STEP 7)
Enter the name of the library you want to edit or highlight it.
Press [Enter].

The Emulation Editor menu appears. You are now ready to edit
command and data buffer blocks. You can either edit existing
definitions or create new blocks for the DDL files.

4.2 Defining the Command Descriptor Block (CDB)

Before you can exercise the target with the Initiation Emulator,
you must first load the Device Description Library with the
commands you will use to test the target.

NOTE

For definitions of the commands a target
responds to together with their assigned
values, refer to the SCSI interface manual or
operations guide for the individual target
device.

To define a CDB, complete these two tasks:

1. Defining the Command Type, and
2. Assigning a Command.

This means creating the form of command block you require, then
assigning a command word, op code, and default values to that
block. .

To begin this process, start at the Emulator Editor screen. To
get there, refer to Section 4.1. The top window of the screen
looks like the following:

Emulator Editor

1. COMMAND TYPE
2. COMMAND
3. DATA FORMAT

4. DATA
5. PROGRAM
6. EXIT

Select desired operations_
Figure 4-7. Creating the CDB

Each task is described on the following pages.

4.2.1 Creaéing the Command Format Type
Follow this procedure to create or edit a command Type.
STEP 1

Select COMMAND TYPE‘from the menu in Figure 4-7. Press [Enter].
The following window and prompt appears:

Resident command TYPEs

TYPE1
TYPE2
TYPE3

Enter desired operation [Create Alter Rename Delete Exit]:_
Figure 4-8. Command Type Selection
STEP 2
Select Create. Press [Enter].
At the prompt

Create name of desired Type:

enter a name. The name must not be longer than thirty
characters. No extensions are allowed. Press [Enter].

The following top window appears:

Command TYPE EDIT
BYTE -- bit 7-6-5-4-3-2-1-0
00 Operation code Type name: TYPEx
01 Unit# 0 0 0 0 0 CDB size: 6 10 12
02 000000O0O
03 00000000
04 000000O0O0
05 000000 F+L

Figure 4-9. Command Type Edit Window.

Notice that the first byte of the block is reserved for the Op
Code and that the first three bits of the second byte are
reserved for the Logical Unit Number (LUN). Assign the Op Code
when you create the command.

You cannot modify the last six bits of the last byte (in the

case of Figure 4-9, bits 5 through 0 of byte 05) from the edit
program. These are reserved bits. The last two bits of the last
byte (designated in this manual as "F+L") are reserved for the
Flag and Link bits.

STEP 3

Choose from one of three command block sizes: six-byte, ten-byte,
and twelve-byte. As you move the cursor, notice that the block
size increases. When you have selected an appropriate block
size, press [Enter].

The cursor jumps to the block.

STEP 4

Using the cursor arrow keys, move the cursor through the block
to the beginning bit position. This is the start of a designed
field.

Press [Ins]. The bit under the cursor is highlighted. Move the
cursor and more bits are highlighted. When you have defined the
field you need, press [Ins] again.
STEP 5
If you define a field of eight bits or less, the following prompt
appears in the top window:

Field type: Named Enumerated
Specify whether the field is named or enumerated. Press [Enter].

NOTE
If you define a field of more than eight
bits, the program assumes the field is named.

If you specify a named field, then below the field type designa-
tion the following prompt appears:

Field name =

If you specify an enumerated field, the program displays a list
of enumerated values in the window similar to the following:

Field value: 00
Field value: 01
Field value: 02

Up to 256 (0-OFFH) field values may be listed depending on the
field size (a one-bit field generates only two field values; a
two-bit field generates four values, and so on).

Define a field as enumerated to specify that several values can
be associated with the same field.

NOTE

If you want to go back to the block and
redefine the field, press [Enter]. The
cursor returns to the block. Redefine your
field using [Ins].

STEP 6

For a named field: enter a field name (such as LUN, LBA, and so
on). You must choose a name unique to the CDB for each named
field. Press [Enter] to confirm it.

For an enumerated field: select from the list of enumerated
values appearing in the window with the [Up] and [Down] arrow
keys. Enter a unique name for the enumerated field. Select the
next field value with the (Up] and [Down] arrow keys and name
that. When you have name all enumerated values in the field you
require, leave the definition by pressing [Enter].

STEP 7

As fields of bits are defined, the program assigns them letters,
starting with “a" and proceeding through the alphabet for each
field defined, as in this example:

Command TYPE EDIT

BYTE -- bit 7-6-5-4-3-2-1-0

00) Operation code Type name: DISK4

01 Unit# a aaaa CDB size: 6

02 aaaaaaaa

03 0000Dbbbb Field type: Named
04 bbbO0OO0cc 0 Field name: ADDRESS
05 000000 F+L

Figure 4-10. Command Type Edit Window Example.

Notice that enumerated fields are designated by capital letters,
while named fields are marked with small letters. Also notice
that several fields have not been defined in Figure 4-10. This
indicates the block area is reserved.

STEP 8

Once you have defined every field required within the block,
press [Esc]. You are returned to the command type directory menu
shown in Figure 4-8.

4.2.2 Editing the Command Type

If you want to edit existing command types, follow this
procedure.

NOTE

Be aware that if you edit any fields within a
command TYPE that is being used to define
existing commands, you run the risk of
corrupting or overwriting bits in that
existing command.

STEP 1 ’
Select COMMAND TYPE from the menu in Figure 4-6. Press [Enter].

STEP 2
Select Alter from the list of options. Press [Enter]

STEP 3

Use the [Up) and [Down] arrow keys to highlight existing command
types. When you have chosen one to edit, press [Enter].

4-10

The command type block is displayed with the first defined field
highlighted. The type and name(s) of the field appear to the
right of the block.

STEP 4 '

Change the field name(s) if you require. To highlight the next
field down, press [PgDn]. The field type and name(s) are
displayed. Change the values if you require.

Continue down the block, going from field to field. To go back
up through assigned fields, use [PgUp].

If you want to change the size of a particular field, press
[Enter]. The cursor jumps to the block. Use [Ins] to alter the
size of the field within the block. Press [Enter] to return to
the field type and name values.

STEP 5

Press [Esc] to leave the command type block. Changes are stored.
Select EXIT from the list of operations and press [Enter]. You
are returned to the Emulator Editor menu.

4.2.3 Defining a Command CDB

Once you have defined the size of a block for your command and
assigned fields to it, you are ready to assign a command name and
op code to it. Follow this procedure:

STEP 1
Select COMMAND from the Emulation Editor menu. Press [Enter].
The following window and prompt appears:

Resident command CDBs
COMMAND1 COMMAND4
COMMAND2 , ~ COMMANDS
COMMAND3

Enter desired operation [Create Alter Rename Delete Exit]:
Figure 4-11. Command CDB Menu.

In this top window appears a list of all the commands you have
created so far.

4-11

STEP 2
Select Create and press [Enter]. The following prompt appears
below the upper window:

Enter name of desired CDB:

STEP 3

Enter a command name. The name can be up to thirty-two
characters long, consisting of one or more words. Use an
underline (_) to indicate a space between words, such as
MODE_SENSE_3. Press [Enter].

The following top window appears:

Command CDB EDIT

BYTE -- bit 7-6-5-4-3-2-1-0

00 Operation code CDB name: XXXXXX
01 Unit# 0 0 0 0 O CDB type: TYPEL
02 00000O0O0CO0

03 00000OO0O0

04 00000000

05 000000 F+L

Figure 4-12. Command CDB Edit Window.

where

XXXXX = name you have assigned to the command.
typel = the command type you define for this CDB.

The cursor is located at the CDB type field.

STEP 4

Use the [Left] and [Right] arrow keys to go through the list of
existing command types. As each type appears, the block changes
to reflect the type definition.

When you have found the command type appropriate for the command,
press [Enter].

The following screen is displayed:

Command CDB EDIT
BYTE -- bit 7-6~5-4-3-2-1-0 :
00 00 00000OO0O CDB name: XXXXXX
01 00 00000000 CDB type: TYPEL
02 00 0000O0O0OO CDB data: 0000000
03 00 00000000 Field type: Operation Code
04 00 00000O0O0O0 Field value: 00
05 00 000000O0OO

Figure 4-13. CDB Field Value Assignment Window.

Notice that the first field of the block is highlighted and that
a new column of hexadecimal values appears to the right of the
byte column. Also, there are several new lines to the right of
the block assigned to the block by the command type. These lines
indicate the following:

Field Type Meaning
CDB data The total value of the block

in hexadecimal digits. There
are two digits per block line.

Field type Whether the field is named or
enumerated.
Field name The name of the field as assigned

by the command type.

Field value The hexadecimal value of each field.
There are two digits per field line.

You cannot manipulate the CDB data line directly. This line
changes as you assign field values. The two-digit bit column to
the left of the block also changes to reflect changes in the
field value.

STEP 5

At the cursor to the right of the field value prompt, enter the
two-digit hexadecimal value for each line of the highlighted
field. This value should reflect the op code assignment of that
field as stipulated in your SCSI device manual. Allowable values
range from O0OH through FF.

Press [Enter]). The CDB data line, the bit column line, and the
block line all change to reflect the change in the op code
assignment.

The next block field is highlighted.

STEP 6

Into each name field enter a default hex value, or select the
default enumerated value with the [Up] and [Down] arrow keys.
Press [Enter].

Once you have assigned default values to all the fields in the
block, you can move up or down the block, review or edit values,
using [PgUp] and ([PgDn].

NOTE
The program does not let you enter restricted
fields, such as the LUN field.
STEP 7
When you are finished defining the field, press [Ecc].
You are now prompted to select the default data buffer used when

this command is executed. A top window like the one shown in
Figure 4-14 is displayed:

Command CDB EDIT
BYTE -- bit 7-6-5-4-3-2~1-0
00 03 00000011 CDB name: REQUEST SENSE
01 00 00000O0OO CDB type: DISK2
02 01 0000O0OOO CDB data: 030000001BOO
03 01 0000O0O0OO0 Data data: SENSED
04 1B 00011011
05 00 00000000

Pigure 4-14. Specifying Data Buffer.

At the "data data:" prompt, select and enter the name of the

default data buffer you require when this command is executed.
¥ou can choose from any of the data buffers defined in the DDL,
as well as the 512 byte SMALL or 64K byte LARGE system buffers.

Use one of the following keys to specify one of these existing

data buffers:

Key
[Home]
[End]

(Left] or
[Right]

Result

.SMALL (512 byte) data buffer
.LARGE (64K byte) data buffer
Available DDL data buffers. See

Section 4.3 for instructions
on creating data buffers.

Confirm your selection by pressing [Enter].

STEP 8

You are now prompted to specify the direction of data transfer
expected when the command is executed. The top window looks like

this example:

BYTE ~-- bit
00 03
01 00
02 01
03 01
04 1B
05 00

OOOOOO\.I

Command CDB EDIT

6~5-4-3-2-1~0

0000011 CDB name: REQUEST_SENSE
0000O0OO CDB type: DISK2
000O0O0OO0O CDB data: 030000001B0O
0000O0OO0 Dpata data: SENSED
0011011 Dpata phase(s): Either Write
0000000 Read None

Figure 4-15. Entering the Data Phases.

Use the [Left] and ([Right] arrow keys to select a value. Enter
your choice by pressing [Enter].

4-15

The data phases designate the following:
Phase Definition

Eicher Both directions are allowéd with
the data buffer; either the source or
destination for the target data.

Write Only allow data transfers from the
initiator to the target with the
selected data buffer the source of
the data.

Read Only allow data transfers to the
initiator from the host with the
selected data buffer the destina-
tion for the data.

None Do not allow any data to be
transferred.

STEP 9
After assigning data buffer locations, press [Esc]. The previous
Edit Emulator menu is displayed.

4.3 Creating Data Buffers

As indicated in the previous section, a data buffer can be
assigned to a command. Select between one of two default system
buffers or create one of your own. Information placed in these
buffers can then be used when the command is executed to exercise
the target according to parameters designated by the buffer.

Like CDBs, data buffers are created in two stages:

1. Create the buffer form (Data Form), and
2. Specify buffer parameters within that
designated area.

You can also edit buffers by using the Alter option. See the
following procedure for creating and editing data forms and
buffers.

NOTE

Be aware that if you edit any fields within a
data FORM that is already being used to
define an existing data buffer, you run the
risk of corrupting or overwriting bits in
that existing buffer.

4-16

4.3.1 Creating Data Forms

The first step in developing a data buffer is to create the
buffer template (called a data form). Use the following
procedure:

STEP 1

Enter the program and proceed to the Emulator Editor menu as you
did in Section 4.1. Remember: you must first load or create a
DDL before you can enter the editor menu.

At the menu, select the DATA FORM entry. Press [Enter]. The
following menu window appears:

Resident DATA FORMS ————
FORM1 FORM4
FORM2 FORMS
FORM3

Enter desired operation [Create Alter Rename Delete Exit]:_

Figure 4-16. Data Form Directory Window.
This window contains all the existing data forms previously
created.

STEP 2

Select the Create option to define a new data form. Press
[Enter].

The program displays this prompt beneath the window:

Enter name of desired Form:_
STEP 3

Use [BkSp] or [Del] to erase the form in the field and enter a
new form name. Press [Enter].

4-17

fhe following window appears:

-

BYTE -- bit 7- 0 '
00 0 0 Format name: XXXXX

Format size: 001

Select: «— == Char f * Binary Size +,- Byte Size
Figure 4-17. Data Form Edit Window.
The cursor is positioned in the Format size field.

STEP 4)

Choose the size of the data buffer. Select a size from 1 to 1024
bytes. Press [Up] arrow to increase the format size by 2; press
[Down] arrow to decrease by one-half. Press [+] to increase the
size by 1; press [-] to decrease the size by 1. Press [Home] to
return to zero; press [End] to go to the upper limit of format
size. You can also type in a value (less than 400) to specify an
exact size. Notice, that as the size increases, the block size
increases, and vice versa.

When you have chosen a data buffer 'size, press [Enter].

The cursor moves to the first bit of the first byte in the data
buffer block.

STEP 5
Use the arrow keys to locate the cursor at the beginning bit
position of a field you want to define.

Press [Ins] to start the field definition. Use the arrow keys to
move to the end bit of the field being defined. The field is
highlighted. Press [Ins] again. The field is defined.

STEP 6 .
If the field you have defined has eight or fewer bits, then you
are prompted with this message: .

Field type: Named Enumerated
Use [Right] and [Left] arrow keys to move between these two
options. Press [Enter] to select one. If the field you defined
is more than eight bits, the field type is designated as Named
and the following prompt appears:

Field name = _

4-18

NOTE

A defined field of 8 or fewer bits can be
defined as an enumerated type. A named field
type can be from 1 to 32 bits in length. A
field of from 2 to 16 bytes, starting and
ending on byte boundaries, can be defined as
a text field type.

1f you specify an enumerated field, the program displays a list
of enumerated values in the window similar to the following:

Field value: 00
Field value: 01
Field value: 02

Up to 256 (0-OFFH) field values may be listed depending on the
field size (a one-bit field generates only two field values; a
two-bit field generates four values, and so on).

Define a field as enumerated to specify that several values can
be associated with the same field. :

NOTE

I1f you want to go back to the block and
redefine the field, press [Enter]. The
cursor returns to the block. Redefine your
field using [Ins].

STEP 7
For a named field: enter a field name (such as LUN, LBA, and so

on). You must Choose a name unique to the data form for each
named field. Press [Enter] to confirm it.

For an enumerated field: select from the list of enumerated
values appearing in the window with the (Up] and [Down] arrow
keys. Enter a unique name for the enumerated field. Select the
next field value with the [Up] and [Down] arrow keys and name
that. When you have named all enumerated values in the field you
require, leave the definition by pressing [Enter].

STEP 8
As fields are defined, the program assigns them letters, starting

with "a" and proceeding through the alphabet for each field
defined, as in Figure 4-18:

4-19

DATA FORM EDIT
BYTE -~ bit 7-6-5-4-3-2~-1-0
00 AA0OO0OOOOO Format name: Forml
01 bbbbbbb0 Format size: 004
02 0000cccc
03 ccccccacc Field type: Named
Field name: ADDRESS

Figure 4-18. Data Form Edit Window Example.

Jotice that enumerated fields are designated by capital letters,
7shile named and text fields are marked with small letters. Also
1otice that several fields have not been defined in Figure 4-18.
this indicates the block area is reserved.

STEP 9

Jnce you have defined every field required within the block,
ress [Esc]. You are returned to the data forms directory menu
shown in Figure 4-16.

the data form you just created appears in the directory window.

1.3.2 Editing the Data Form

I[f you want to edit existing data forms, follow this procedure.

STEP 1
Select DATA FORM from the emulation editor menu. Press [Enter].

STEP 2
Select Alter from the list of options. Press [Enter]. The first
jata form name is highlighted.

STEP 3
Jse the [Up] and [Down) arrow keys to highlight existing data
forms. When you have chosen one to edit, press [Enter].

The data form block is displayed with the first defined field
1ighlighted. The type and name(s) of the field appear to the
right of the block.

STEP 4

“hange the field name(s) if you require. To highlight the next
field down, press [PgDn]. The field type and name(s) are
displayed. Change the values if you require.

4-20

If the highlighted field is enumerated, use the [Up] and [Down]
arrow keys to move between the field values. Change these values
as required.

Continue down the block, going from field to field. To go back
up through assigned fields, use [PgUp].

If you want to redefine the size of a particular field, press
[Enter]. The cursor jumps to the block. Use [Ins] to redefine
the size of the field within the block. Press [Ins] again to
return to the field type and name values.

STEP 5

Press [Esc] to leave the data form block. Changes are stored.
Select EXIT from the list of operations and press [Enter]. You
are returned to the Emulator Editor menu.

4.3.3 Creating a Data Buffer

Use the data format templates to create one or more data buffers
for use in writing and running your emulation program. Follow
the procedure below for creating a buffer.

STEP 1
Select DATA at the Emulation Editor menu. Press [Enter]. The
following window appears.

Resident DATA
DATAl DATA4
DATA2 DATAS
DATA3)

Enter desired operation [Create Alter Rename Delete Exit]:

Figure 4-19. Resident Data Directory Window.
This window expands as the number of data files grows.
STEP 2 :
Select Create from the optiom list. Press [Enter]. The
following prompt appearsse.

Enter name of desired Data: _

4-21

STEP 3

Move the cursor to the right of the prompt and enter a new data
buffer name. Press [Enter]. A menu similar to Figure 4-20
appears:

DATA EDIT
BYfE == bit 7-6-5-4-3-2-1-0
00 AAO0OO0OOOOO Format name: Datal
01 bbbbbbb0 Format size: Forml
02 0000cccc
03 ccceccecceccecc

Figure 4-20. Data Edit Window.
The cursor is positioned to the right of the Data format field.
STEP 4
Use the [Left] and [R1ght1 arrow keys to go through the existing
data forms. As a data form name appears, the data block changes
to reflect that change.

To match a data form to the present data buffer definition, press
[Enter].

A window similar to the Figure 4-21 appears: '

DATA EDIT
BYTE =-=- bit 7-6-5-4=3-2-1-0
00 00 00000O0O0OO0 Format name: DATAl
01 00 00000000 Format size: FORM1
02 00 00000O0CO0QCO
03 00 0000000 Field type: Named
Field name: ERR_CL
Field value: 0

Figure 4-21. Entering Field Values.

A new column appears to the left of the data block and several
new prompt lines appear to the right.

STEP 5
Enter a field value, if required. The data block and bit column
change to reflect the change in the value.

STEP 6
When you have assigned field values to all required fields, press
[Esc]. You are returned to the data buffer directory.

4.3.4 Editing the Data Form
If you want to edit existing data buffers, follow this procedure.

STEP 1
Select DATA from the emulation editor menu. Press [Enter].

STEP 2
Select Alter from the list of options. Press [Enter]. The first
data buffer name is highlighted. '

STEP 3 .
Use the [Up] and [Down] arrow keys to highlight existing data
buffers. When you have chosen one to edit, press [Enter].

The data buffer block is displayed with the first defined field
highlighted. The type and name(s) of the field appear to the
right of the block.

STEP 4
Change the field values, if you require.: - To highlight the next
field down, press [PgDn]. The field type and name is displayed.

Change the values if you require. Press [Enter]. This moves you
down to the next field.

If the highlighted field is enumerated, use the (Up] and [Down]
arrow keys to move between the field values. Change these values
as required.

Continue down the block, going from field to field. To go back
up through assigned fields, use [PgUp]. Use [Home] to go back to
‘the top field; use [End] to highlight the last field.

STEP §

Press [Esc] to leave the data buffer. Changes are stored.
Select EXIT from the list of operations and press [Enter]. You
are returned to the Emulator Editor menu.

'4-23

4.4 Deleting and Renaming a DDL Entry

So far you have used the Create and Alter options that appear
under the directory windows for Command Type, Command, Data Form,
and Data. However, there are two other options you can also use
to manage the directory: Rename and Delete.

To Delete a DDL Entry

STEP 1
Use the [Right] arrow key to highlight the Delete option. Select
Delete from the list by pressing [Enter].

The top entry in the directory window is highlighted and the
following prompt appears:

Enter name of desired [class]: _
where ([class] can be TYPE, CDB, FORM, DATA, or PROGRAM.
STEP 2
Use the [Up] and (Down] arrow keys to highlight the entry you
want to delete.
When you have highlighted the entry to be deleted, press [Enter].
The entry disappears from the directory window.

To Rename a DDL Entry

STEP 1
Use the [Right] arrow key to highlight the Rename option. Select
it by pressing [Enter].

The top entry in the directory window is highlighted and the
following prompt appears:

Enter name of desired [class]: _
where [class] can be TYPE, CDB, FORM, DATA, or PROGRAM.
STEP 2
Use the [Up] and (Down] arrow keys to highlight the entry you
want to rename.
When you have highlighted the entry to be renamed, enter the new

entry name at the prompt. Press [Enter]. The old entry name is
replaced by the new one in the directory window.

4-24

4.5 Exiting from the Emulation Editor

There are two ways to exit from the editor. Either press [Esc]
or select the Exit option from the operation list below the
window and press [Enter]. Both return you to the previous menu.

The PROGRAM option in the Editor menu is discussed in Section 5.

4.6 Saving the Results

Your last task is to store the DDLs you have created or edited.
To do this, follow this procedure:

STEP 1
Return to the main Initiator menu and select the FILE option.

STEP 2
From the File window, select SAVE. Press [Enter].

STEP 3
The following prompt appears:

Select type of file to save [LIB ALL SETUP DATA]:_
Select the type of file you want to save. Pick LIB to save a
specific DDL file. Pick ALL to save all resident DDLs in RAM to
one file. This option also saves all the emulation configuration
and State Analyzer setup data in the same file.

If you pick LIB, the following window and prompt appears:

EXISTING LIBRARY FILES
LIB1 DDL [] LIB2 DDL []

Enter name of file to be saved:_

Figure 4-22. Resident Library Files Window.

The file name and the date the file was created appears in this
window.

If you pick ALL, the following window and prompt appears:

EXISTING CONFIGURATION FILES
FILEl ALL |] FILE2 ALL {]

Enter name of file to be saved:_

Figure 4-23. Resident Configuration Files Window.

The file name and the date the file was created appears in this
window.

STEP 4
Enter the name of the file to be saved at the cursor. Press
[Enter]. .

The DDL or configuration file is saved on disk under the selected
file name. The first time you save a file, DDL files are given
the extension ".DDL"; configuration files are given the extension
" .ALL".

4.7 sSample Definition Session

Here is an example of how the Emulation Editor can be used to
create a CDB and data buffer.

Take the SCSI command READ USAGE COUNTERS. This command is used
by hard disks to track the number of blocks read, the number of
seeks requiring carriage motion, the number of correctable or
uncorrectable Read errors, and the number of seek errors.
Execution of this command sets the usage counters to zero.
Counter information is stored in RAM.

This command therefore requires not only the creation of a
command block but a data buffer block into which the usage
counter information is stored.

The command block as stipulated by the SCSI interface manual is a
basic six-byte structure that looks like the following:

BIT :
BYTE 7 6 5 4 3 2 1 0
0 Operation Code
1 LUN Reserved
2 Reserved
3 Reserved
4 Reserved
5 Reserved FlagjLink

Figure 4-24. Read Usage Counters Command Structure.
For this example, the op code is specified as 113.
The data buffer where counter information is stored is also

stipulated in the Interface Manual. The structure of this buffer
is shown in Figure 4-25.

Blocks Read (MSB)

Blocks Read

Blocks Read (LSB)

Seeks (MSB)

Seeks

Seeks (LSB)

Uncorrectable Read Errors

Recoverable -Read Errors

il iealw]lv]lr o

Seek_Errors

Figure 4-25. Usage Counter Format

4-27

Now that we know the parameters of this command, we can add it
the DDL. The sequence we will use here is:

1. Create Command Type.
2. Create Data Form.

3. Define Data Buffer.
4. Define CDB.

NOTE

Be aware that you don't have to create a new
Command Type each time you define a new CDB.
Many CDBs are subsets of existing CDBs and
therefore use the same Command Type template.
Command Type creation is included here to
illustrate this specific example.

Follow this procedure.

STEP 1
At the Initiator Emulation main menu, select FILE.

STEP 2
From the FILES Utility, select LOAD.

STEP 3
Select LIB. Choose a specific DDL file from the disk.

STEP 4
Back at the main menu, select EDIT.

STEP 5
Select the Alter option and specify the DDL you just loaded.

This brings you to the Emulation Editor.

STEP 6
Select COMMAND TYPE.

STEP 7

to

Select Create. At the prompt, enter the new name of the command

type. Call it "DISKX."

(Normally you would choose Alter and check the existing command
types to see if the specific six-byte block you need for Read
Usage Counters already exists before creating a new type.)

STEP 8

In the Command Type Edit window, specify a CDB size of 6. The
basic block appears. Since the only field defined for this
simple example is the operation code, press [Esc]. You are
returned to the main Editor menu.

STEP 9
At the Editor menu, select DATA FORM.

STEP 10 .
Select Create. Enter the name of the buffer for this command.
Call it COUNTS.

STEP 11
At the Format Size prompt, use the [Right] arrnw key to expand
the size of the data form to nine bytes. Prest [Enter].

The cursor jumps to the first bit of the data block.

STEP 12

Look at the buffer depicted in Figure 4-25. The first three
bytes are designated Block Read, the second three are seeks, byte
06 is Uncorrectable Read Errors, 07 is Recoverable Errors, and 08
is Seek Errors.

Press [Ins] and use the arrows keys to highlight the first three
bytes. Press [Ins] again. This prompt appears:

 Field type: Named
Field name: _

STEP 13
Enter BLOCKS_READ. Press [Enter]. The cursor returns to the
data form. :

STEP 14
Use [Ins] to define bytes 03 through 05. Press [Enter]. At the
field name prompt, enter SEEKS.

STEP 15
Use [Ins] to define byte 06. Give it a field name of
READ_ERRORS.

STEP 16
Use [Ins) to define byte 07. Give it a field name of
RECOVERED_ERRORS . -

STEP 17

Use [Ins] to define bytz 08. Give it a field name of
SEEK_ERRORS. The data form should now look like the window in
Pigure 4-26: :

4-29

-

[}
5>
-3
OQLQOUDUoDUNY MO

ORRQATDTUTNNE VY
OO TURND

L]
O
4
=

OO UTUNDD W

BYTE -- bit
00
01
02
03
04
05
06
07
08

Format name: Forml
Format size: 004

Field type: Named
Field name: SEEK_ERRORS

PRATTON N M
PROTTT NN PO
PROTDTTNN PN
PRONTTTNN MO

Figure 4-26. Data Form Edit Sample.

STEP 18
From the Editor menu, select DATA.

STEP 19
Select Create. Enter a new data buffer name. Use the name
COUNTERS.

STEP 20
At the data format prompt, use the [Right] arrow key until the
format you just created, COUNTS, is displayed. Press [Enter].

The first field, BLOCKS_READ is highlighted and the following
prompt appears:

Field type: Named
Field name: BLOCKS_READ
Field value: 000000

STEP 21
Enter a specified field value for BLOCKS_READ. In this case,
0000A3. Press [Enter].

STEP 22
SEEKS is highlighted. Give this a field value of 0000. Press

[Enter] .

STEP 23
READ_ERRORS is highlighted. Enter no value (00) for this field.

Press [Enter].
STEP 24

RECOVERED_ERRORS is highlighted} 'Enter no value (00) for this
field. Press [Enter].

. 4-30

STEP 25
SEEKS_ERRORS is highlighted. Enter no value (00) for this field.
Press [Esc].

STEP 26
Using [Esc], exit DATA and return to the main Editor menu.

STEP 27
At the Editor, select COMMAND.

STEP 28
Select the Create option and specify the command name, in this
case call it "Read Usage_Counters."

STEP 29

At the Command CDB Edit window, use the [Right] arrow key to run
through available CDB types until your new Command Type appears.
Press [Enter].

The following window appears:

Command CDB EDIT

BYTE -- bit 7-6-5-4-3-2-1-0
00 00 00000000 CDB name: READ_USAGE_COUNTERS
01 00 00000000 CDB type: DISKX
02 00 0000O0O0OO cCDB data: 000000000000
03 00 00000O0O0O Field type: Operation Code
04 00 0000000O00O Field value: _
05 00 0000000O00O0

Figure 4-27. Command CDB Edit Example.

STEP 30

Enter the op code specified in the manual. In this case, "11".
The window changes to reflect your entry. Press [Esc]. The
following field appears:

Data data: .SMALL (512 byte buffer)

STEP 31 _
Press the [Right] and [Left] arrow keys until COUNTS appears.

STEP 32
Press [Enter]. The following prompt appears:

Data phase(s): Either Write Read None

4-31

STEP 33
Select Read.

STEP 34
Press [Enter]. You are returned to the Resident command CDBs
menu. :

STEP 35 .

Press [Esc] or select Exit from the option list. You are
returned to the Emulation Editor menu. Press [Esc] again to
return to the main Initiator menu. Select FILE.

STEP 36
At the File window, select SAVE. Your new files are saved. Exit
the program by a combination of ESC and Exit option selections.

You have completed the command and data buffer assignment.

NOTE

READ_USAGE_COUNTERS is a unique vendor
command. Therefore, it isn't necessarily
useful to all users. However, it does
illustrate how easy it is to create a vendor
unique CDB using the PED-4000 system.

4-32

SECTION 5
SCSI SYSTEM CONFIGURATION

Before the emulator can use a DDL, you must assign it to a
specific SCSI address. The emulator uses the active target
address to select the DDL it will access. In PED-4010 you assign
SCSI addresses by using CONFIGURE.

Use the CONFIGURE menu to:

o Assign discrete SCSI addresses to the
Initiator, Target, and LUNs.

o Re-select of driver options.

5.1 Device Assignment

After you have completed a DDL, you must attach it to the ID of
the target address. You may attach a DDL to each of the eight
SCS1 target IDs by following this procedure:

STEP 1

Enter the main Initiator menu as described in Section 2. If you
have not done so already, enter FILE and load the SCSI device
DDLs into the computer RAM.

STEP 2
Return to the main Initiator menu and select the CONFIGURE option
from the menu list. Press [Enter].

This window and prompt appears:

Configuration Mode

1. DEVICE ASSIGNMENT
2, SCSI ADDRESSES

3. DRIVER OPTIONS

4. EXIT

Select desired operation:_'

Figure 5-1. Configuration Mode Window.

STEP 3
Select the DEVICE ASSIGNMENT option. Press [Enter].

The windows and prompts shown in Figure 5-2 appear:

Resident Device Description Library(s)
FILEl FILE3
FILE2 FILE4

e SCS1 System Configuration

.
H
.
.
-
.

NSO
o oo oo oo

Select: Esc EXIT ﬂ Address <= -» Library

Figure 5-2. Device Assignment Table.

In the top window appear the DDLs resident in the computer. The
"0" field in the SCSI system configuration window is highlighted.

STEP 4
Use the [Up] and [Down] arrow keys to highlight the bus ID number
of the target.

STEP 5

Use the [Right] arrow key to bring up each existing DDL in turn.
The DDL appears to the right of the highlighted ID number. Use
the [Left] arrow key to return through the DDL list. The first
selection is a blank.

Continue through the Device Assignment table until you have
attached DDLs to all the IDs you require.

STEP 6
When you are finished, press [Esc].

Once your targets are properly identified by a DDL, you must
select the ID of the active target as well as assign the current
LUN and initiator an address.

5.2 SCSI Addresses

Before you can run an emulation, you must attach a DDL to a SCSI
ID in the configuration table (defined in Section 5.1) and set
the current target, initiator, and LUN IDs. Once set, you may
need to reassign these addresses given the following conditions:

o If you have several targets to test, you must
reassign the target ID for each emulation you
plan to run.

o If you have a target with multiple logical
units (LUNs) attached to it, as in the case
of target definitions loaded on separate disk
drives.

o If you plan to test multiple initiators.

Normally, the Initiator ID will not change. It is assigned a
unique ID number. However, you can assign up to eight LUNe for
each target, and up to seven different targets.

NOTE

Make sure there is no overlap of target and
initiator assignments. For example, if you
designate ID 0 as the target address, then
the initiator address can't occupy the same
ID 0.

To assign SCSI addresses, follow this procedure:
STEP 1
Select the CONFIGURE mode from the main Initiator menu.

STEP 2
Select SCS1 ADDRESSES. Press [Enter].

The window and prompt in Figure 5-3 is displayed:

SCSI Addresses

INITIATOR
TARGET
LUN

Select: Esc EXIT f_‘ Address - -+ Value [0 1 23 456 7]:

Figure 5-3. SCSI Addresses Window.

STEP 3
Use the [Up] and ([Down] arrow keys to highlight one of the three

options.

STEP 4
Use the [Left] and [Right] arrow keys to highlight one of the

eight possible values.

STEP 5
When you have assigned values to the options you require, press

[Esc]. Emulations now use the values assigned.

You can return to this function and reconfigure address values
whenever you need to.

NOTE

You can also assign Target and LUN address
values while in either interactive or program
mode. For more details, see Sections 6 and
7. ‘ '

5.3 Driver Options

You can also enable
These options are:

EXTRA

TIME

MESSAGE

DISCONNECT

PARITY

LINK

FLAG

or disable options for your device driver.

When enabled, the driver will fill
the circular buffer and not over-
write it. If more data is sent, it
will be thrown away. When more data
is requested, zeros will be sent.
This avoids buffer overwrite when
more data is sent to a buffer than
the buffer was designed to hold.
Default is NO.

When enabled, it times out many bus
transactions such as READ or WRITE.
If bus does not pick up a request
within .25 seconds, the driver drops
the line. Default is NO.

Enables or disables message system.
This is important in differentiating
SASI from SCSI devices. SASI is
usually disabled; SCSI is enabled.
Default is YES.

When the message system is disabled,
disconnect is inactivated. When it
is enabled, disconnect sets bit 6 of
the IDENTIFY message allowing the
target to disconnect. Default is
YES.

Enables parity. Default is YES.

Enables the link bit. Default is
NO.

Enables the flag bit. Default is
NO.

To change the default driver option, follow this procedure:

STEP 1

Select DRIVER OPTIONS from the Configuration mode menu. Press

[(Enter].

The window and prompts shown in Figure 5-4 are displayed.

5§-5

Driver Options

EXTRA
TIME
MESSAGE
DISCONNECT
PARITY
LINK
FLAG

Select: Esc EXIT f‘ Option <= -» State [Yes Nol:
Figure 5-4. DPriver Options Wwindow.

STEP 2

Use the [Down] and [Up] arrow keys to highlight an option, or
enter the first letter of the option name. The present state of
the option appears in the State field below the window.

STEP 3 ’ .
Use the [Right] and (Left] arrow keys to turn the option ON (Yes)
or OFF (No).

STEP 4

When you have configured all the options you require, press [Esc]
to assign the driver options and return to the Configuration mode
menu.

NOTE

You can also enable or disable many of these
options while in the interactive or program
mode. For more details on how to do this,
see Sections 6 and 7.

SECTION 6
INTERACTIVE MODE EMULATION

There are two ways to run the Initiator Emulation:

o Interactive Mode emulation
O Program Mode emulation

The Interactive Mode is keyboard-driven. 1In this section, you
will learn how to:

o0 Issue SCSI commands defined in the DDL.

o Assign’values to data buffers in the active DDL.
O Issue emulation system commands.

See Section 7 for a discussion of Program Mode.

6.1 Entering Interactive Mode Emulation

Before you invoke the Interactive Mode, create the appropriate
DDL and define all command and data buffers required to run the
Initiator emulation on the target device.

Follow this procedure to enter Interactive Mode.
STEP 1

At the main Initiator Emulation menu, select RUN. The screen in
Figure 6-1 appears:

SCSI BUS STATUS

BUS FREE INTERPHASE COMMAND STATUS INITIATOR ID: CONDITION:

BUS CLEAR ARBITRATIONMESSAGE OUTMESSAGE IN TARGET ID: ~ TRANSFER:
SELECTION RESELECTION DATA OUT DATA IN BD'S PENDING:

Select RUN mode [INTERACTIVE PROGRAM]s I

= PED-4000 SYSTEM STATUS
ANALYZE EMULATE INITIATOR TARGET EDIT CONFIG RUN ARMED INDEXED FULL

BUSY F1 for HELP

Figure 6-1. Run Mode Screen.

Using this screen you can enter either the Interactive or Program
mode. Default is Interactive.

STEP 2
Press [Enter]. Below the Bus Status window, another window

appears:

REPORT OPTIONS

1. NONE

2. EMULATION STATUS
3. ACTIVITY LOG
4. BOTH

Select REPORT level:_

Figure 6~2. Report Options Window.

When you run the emulator, you can receive several reports on
activity. Select NONE to see normal status reports. Select
EMULATION STATUS or ACTIVITY LOG to see optional report screens.
Select BOTH, to review both the EMULATION STATUS and ACTIVITY LOG
report screens. BOTH is the default status mode.

The various status windows are defined below:

Bus Status is always supplied by the top window. This
window provides you with information on what the SCSI
bus is doing at any specific moment. All messages in
this window are basic SCSI bus phase signals. For more
information about these signals, refer to your SCSI
interface manual or the State Analysis Program User's
Manual. .

Normal Status is supplied by the middle window if you
select the NONE option. This leaves the middle of the
screen free for any data you may wish to see during
Interactive Mode.

Emulation Status reports on how the emulation is
progressing indexed by signals. This is optional and
is directly below the bus status window, if selected.

Activity Log provides a historical log of activity on
the bus. This is optional and is above the system
status window, if selected.

STEP 3

Depending on your requirements, highlight one of the four report

options using either the [Up] and [Down] arrow keys or by

?nteri?g the number which precedes the option you want. Press
Enter].

"If you picked either option, a new window appears in the middle.
If you picked both options, two windows appear in the middle. ' If
you picked none, no window appears.

Whichever option you choose, this prompt appears above the System
Status window:

Command = _
STEP 4 '
Enter commands and qualifiers as required. To initiate the
command, press [Enter]. Responses to commands appear in both the
top and middle windows. .o

See the next section for a discussion of commands you can use.

6 -3

-«2 Command Lines

. line can contain only one command together with any.associated
ualifiers or arguments. Commands are initiated once you press
Enter]. Specific conventions apply to the particular command
ypes and are discussed in the following sections.

ommands are of two types:

) DDL Commands
o Emulation Commands

‘DL Commands are the defined CDBs. Define these commands using
he Emulation Editor as discussed in Chapter 4.

‘mulation Commands are the set of pre-defined commands recognized
)y the emulator. Use these commands at any time during the
‘mulation.

NOTE
While many emulation commands are shared by
both the interactive and program modes, there

are several specific to each mode. For more
information on this, see Section 6.2.2.

’e2.1 DDL Command Assignments: CDB Commands

‘he first entry on a DDL CDB command line must be a DDL CDB name.
‘nvoke any CDB name from the currently active DDL.

‘ollow the CDB name by any number of expressions assigning
srarious DDL TYPE field values. Each expression must be separated -
)y a space.

the general form of the expression must conform to this
convention:

<CDB name> [<TYPE field)-constant...]

for example, if the CCS DDL were active, the command line

READ ADDRESS = 0200

jould set the ADDRESS field of the READ CDB to 200H and execute
che command using that CDB. Results of the emulation would then
se saved in the previously-assigned data buffer (.SMALL is
jefault). .

You can assign as many variables per CDB name as you can fit on a
line up to a maximum of 70 characters per line. For instance, if
you had defined a WRITE CDB, you could invoke a command line
looking like this:

WRITE ADDRESS = 0400 LENGTH = 0020

Where the address field is set to 400H and the transfer length is
set to 20H. However, if you were to invoke this command,

WRITE LENGTH = 0020 LENGTH = 003F

the last assignment of the transfer length value would be used,
since the emulator would overwrite the first value.

To assign values to an enumerated field, invoke the enumerated
field name as defined by the Command TYPE. If you defined a two-
bit field within the CDB WRITE_BUFFER ‘as 00 = HEAD_AND_DATA and
02 = DATA, then you could designate DATA by using this argument:

WRITE_BUFFER DATA

This would set the enumerated field of the CDB WRITE_BUFFER to
02. To set the other enumeration of this field, use this
argument:

WRITE_BUFFER HEADER_AND_DATA.

If you have enumerated fewer than the allowable values per field
in your Command TYPE definition, you can use the command line to
set others. For instance, in the case of the two-bit field
within WRITE_BUFFER, there are only two values enumerated for
four possible value entries: 00 = HEADER_AND_DATA and 02 = DATA.
This means you can enumerate the 01 and 03 value of this field.
To do this, override an existing enumerated value and set it to
another field value, as in this example:

WRITE_BUFFER DATA = 03

In effect this creates an enumerated value using the existing
enumerated label of DATA. This does not effect the default value
of DATA, merely creates an enumerated value for this one command
only.

6.2.2 Emulation Commands
Besides setting command and data fields, you can also use many

emulation commands to exercise and analyze the target. These
commands are listed below, grouped by categories.

Configuration: commands that assigns SCSI addresses.
INITIATOR
LUN
TARGET

Driver Control: commands that control the driver.

DISCONNECT MESSAGE
EXTRA . PARITY
FLAG .* RESET *
LINK

Diagnosis: commands that report the emulator state.

ALL REPORT
DUMP VIEW
MARK »
Staﬁe Analysis: commands that control the State Analyzer while in
emulation.
ARM *
DISARM *
INDEX *

System: commands that control the emulator.

BYE
CLEAR *
EDIT
CONFIGURE

* = used in both Interactive and Program mode.

Consult the following pages for discussions of each command.
Commands are listed alphabetically.

ALL

Syntax:
ALL [<DDL_name> <Element_class>]
Function:
Use this command to view size and address locations for

either the active DDL or another specified DDL. The
ALL report looks like this example:

DEMO
The active .DDL is DEMO

aaaa allocated bytes at bbbb
Table cccc Free dddd

Figure 6-3. AhL Data Window.

where:

aaaa = number of bytes allocated for this DDL.

bbbb = address location where DDL begins.

ccce = base address for table of last-referenced DDL.

dddd = address location from where code starts compiling.
Comments:

Use ALL without parameters to show resident DDLs per
box.

Use ALL with parameters to show resident entries per
class. Both parameters must be incladed. Allowable
-parameters are listed below.

Parameters:
DDL_name = name of specific DDL.

Element_class = TYPE, FORM, DATA, or PROG.

ARM

Syntax:
ARM

Function:

Use this command to arm the State Analyzer. When
invoked, the message ARMED is highlighted in the System
Status window at the bottom of the screen.

Comments:

Use this function if you intend to capture data using
the State Analyzer. To disarm the analyzer, use the
DISARM command.

BYE

Syntax:
BYE
Function:

Use this command to gquit the Interactive Mode and
return to the main Initiator Emulation menu.

CLEAR

Syntax:
CLEAR [name] ([value]
Function:

Use this command to clear the initiator's data buffers.
.OFFSET and .FILE buffers are automatically cleared to
zero.

Comments:

Invoking the command without parameters clears the
.LARGE buffer to zero.

Invoking the command with a buffer name clears the
specified buffer to zero.

When invoked with a buffer name and number, the program
uses the number to create a pseudo-random sequence in
the named buffer. For instance, a value of 2 jives an
incremented sequence; 3 provides a decremented
sequence. Any value greater than 8 adds the low 8 bits
to the high 8 bits. Sequences are repeated ‘every 256
bytes. Default buffer is .LARGE.

Parameters:

name = .LARGE, .SMALL, or a DDL DATA name.
value = 0, 1, 2, 3, and so on.

2 3 4 b

o | '
0 A1 2348567T % A A —>
L FFFF ~

6 - 10

CONFIGURE

Syntax:
CONFIGURE
Function:

Use this command to enter the CONFIGURE mode while in
the Interactive mode and assign a DDL to a SCSI Bus ID.

Comments:
Invoke CONFIGURE by itself to enter the CONFIGURE mode.
Use the command to check and edit the current SCSI
system configuration.

When you are finished, press [Esc] to return to the
Interactive mode.

6 - 11

JISARM

syntax:
DISARM
*unction:
Use this command to disarm the Logic Analyzer. When
invoked, the message ARMED is not highlighted in the
System Status window at the bottom of the screen.
omments:
Use this function if yod do not intend to capture data

using the Logic Analyzer. To arm the analyzer, use the
ARM command.

6 - 12

DISCONNECT

Syntax:
DISCONNECT [ON/OFF]

Function:

Use this command to enable or disable disconnects on
the current target device. If the disconnect is ON,
disconnect is enabled. If disconnect is OFF,
disconnect is disabled. Default is ON.

Comments:

Invoke this command without parameters to see the
current disconnect state. If it is disabled, the word
"OFF" appears above the commané prompt until you enter
the next command. If the word "ON"™ appears above the
command prompt,'it is enabled.

Invoke this command with either ON or OFF to change the
disconnect state.

SCSI devices require disconnect to be enabled; SASI
devices usually require disconnect is disabled.

This function is also controlled by the CONFIGURE mode.
See Chapter 4.

6 - 13

DUMP

Syniax:
DUMP [buffer name)
Function:
Use this command to view the contents of the specified

.SMALL, .LARGE, or user-defined data buffer. The dump
display looks like this:

Displayed buffer = SAMPLE_BUFFER

0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F~-...
000000000000000000000000000000000...
000000000000000000000000000000000...
000000000000000000000000000000000...

Command or buffer: _

Figure 6-4. Buffer Dump Window.

Comments:

After invoking a DDL command, use this emulation
command to review the code dumped into the attached
data buffer. Only specify one buffer per command.

If you specify the .LARGE (64K) buffer, you can advance
through the buffer by pressing [Enter]. This takes you
forward one block at a time. To go back a block, press
[-] and [Enter]. To specify a particular buffer block,
enter a buffer number at the cursor and press [Enter],
or enter another command to exit the dump window.

Go forward in the .LARGE buffer a specified number of

blocks by using the command, +n, where n is the number
of blocks. Go backward a specified number of blocks by
using the command, -n, where n is the number of blocks.

You can display a maximum 512 bytes on the screen.

6 - 14

EDIT

Syntax:
EDIT [<DDL_name> <element_class> <name>]
Function:

Use this command to edit specified DDL formats while
still in the interactive mode.

Comments:
Invoking EDIT without parameters'causes the program to
go through all menu selections. Use the optional
parameters to specify DDL_name, element_type, and name.
Leave spaces between parameters.
When you are finished, the program returns to Inter-
active Mode (even if you used the menu mode to select
the entry to edit).

Parameters:

DDL_name Specify name of the particular DDL you want
to edit.

element_class Indicate Command Type, Command, Data Form, or
Data options.

name Specify existing TYPE, CDB, FORM, DATA, or
PROG. }
'For example:
EDIT SG FORM SENSE

tells the program you want to edit the DDL file called
SG for a data form called SENSE.

You are taken to that block for editing.

6 - 15

EXTRA

Syntax:
EXTRA (ON/OFF]
Function:

Use this command to enable or disable an extra buffer
on the current target device. Default is OFF.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

When enabled, the driver will file the circular buffer
and not overwrite it. If more data is sent, it will be
thrown away. When more data is requested, zeros will
be sent.

This function can also be controlled by using the
CONFIGURE mode. See Section 5.

. 6 - 16

FLAG

Syntax:
FLAG ([On/Off]
Function:

Use this function to enable or disable the flag bit on
the current target device. Default is OFF.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled. .

Invoke this command with either ON or OFF to change the
state.

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 17

INDEX

Syntax:
INDEX
Function:

Use this command to force the logic analyzer to save
time and state data around some key index event.

Comments:

The command halts the capture operation after a
specified number of writes to the acquisition memory,
protecting data saved on either side of the INDEX
command. When the analyzer is armed (see ARM and
DISARM commands), time and state data is written in
memory starting at address 000. At each write, the
memory address register is incremented by 1. At a
certain point the data will wrap back around on itself
and begin to overwrite unless INDEX is invoked.

INDEX controls the capture process, loading the index
count value, - setting the counter to increment at every
write, forcing a write to the memory when time and
state data occurs, and halting capture when the index
counter reaches its maximum count.

Once you have issued this command, the system status
window highlights the word "INDEXED".

, v 6 - 18

INITIATOR

Syntax:
INITIATOR [value]
Function:

Use this command and argument to assign a SCSI address
to the current target device ID.

Comments:

Invoke this command without parameters to see the
current device address assignment. The program then
prompts for a change of address.

Invoke this command with a value from 0 through 7 to
change the SCSI device address. A test is performed to
determine whether there is any conflict with the target
assignment. (If the value is greater than or equal to
zero, less than or equal to 7, and is not equal to the
target, the new value is used. Otherwise, you will be
prompted for a new value.)

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 19

LINK

Syntax:
LINK [YES/NO]
Function:

Use this function to enable or disable the link bit for
the current target device. Default is OFF.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 20

LUN

Syntax:
LUN [value]
Function:

Use this command and argument to assign a LUN address
to the current target device ID.

Comments:

Invoke this command without parameters to see the
current device address assignment. The program then
prompts for a change of address.

Invoke this command with an address number from 0
through 7 to change the SCSI device address, otherwise,
it will prompt you.

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 21

MARK

Syntax:
MARK [ON/OFF] ([valuel] [value2]
Function:

Use this command to mark blocks you write to the .LARGE "
(64K) buffer.

Comments:
MARK instructions reside in the 6-byte header of each

512-byte block. The first two bytes name the file, the
next four name the block in this manner:

File Block

When you use this command, each block sent to the
buffer is marked with a block number. Block numbering
is automatic. File numbering is user-defined.

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state. Use the MARK ON argument without additional
parameters invoke the automatic block numbering
function.

Follow the command with a value to assign a specific
file number.

6 - 22

Follow the command with a second value to assign a
specific block number to the block. From here, the
designated number is incremented for each new block.

If you don't want to change the file number but do want
to change the block number, enter a "-1" for the first
value, as in this case:

MARK -1 100

NOTE

The CLEAR command clears both the block and
file numbers.

6 - 23

MESSAGE

Syntax:

MESSAGE [ON/OFF]
Function:

Use this function to enable or disable the message
system of the current target device. Default is ON.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

This is important in differentiating SASI from SCSI
devices. SASI usually disables the message system;
SCS1 enables it.

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 24

PARITY

Syntax:
PARITY [ON/OFF]

Function:

Use this function to enable or disable the parity bit
on the current target device. Default is ON.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.)

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 25

REPORT

Syntax:
REPORT [ON/OFF])
Function:

Use this command to enable or disable the emulator
report function.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

) 6 - 26

RESET

Syntax:

RESET
Function:

Use this command to issue a hardware reset to the bus.
Comments:

Invoke this command when you want to reset the bus to

initial states and begin emulating. It also clears all
the internal driver assignments.

6 - 27

TARGET

Syntax:
TARGET [value]
Function:

Use this command and argument to assign a SCSI address
to the target device.

Comments:

Invoke this command without parameters to see the
current device address assignment. The program then
prompts for a change of address.

Invoke this command with a value from 0 through 7 to
change the SCSI device address. A test is performed to
determine whether there is any conflict with the
initiator assignment. (If the value is greater than or
equal to zero, less than or equal to 7, and is not
equal to the target, the new value is used. Otherwise,
you will be prompted for a new value.)

This function is also contrclled by the CONFIGURE mode.
See Chapter 5.

' 6 - 28

VIEW

Syntax:
VIEW

Function:

Use this command to view all of the parameters defined

for the last TCB used.
the middle window.

this:

The image of the TCB appears in
The image looks something like

Image of OUR TCB

TCB_GATE
TCB_ID_MSG
TCB_STATUS
TCB_COUNT_SPC
TCB_DATA_SEG
TCB_OPTION
TCB_MESSAGE
TCS_DMA_MODE
TCB_DMA_HIGH
TCB_DMA_ADDR
TCB_DMA_COUNT
TCB_ACT_COUNT

TCB INTERRUPT _LOCATION 0000
TCB_ LINK . SEGMENT 00 TCB_LINK_ OFFSET
TCB ASSIGNHENT 0000 TCB GROUP

00~ TCB_PRIMITIVE 00

TCB_STATE 0000

00 TCB_CDB 00000000000000

00 TCB_COMPLETION 00

0000 TCB_COUNT ACT 0000
00 TCB_DATA_OFFSET 0000
00 TCB_BLK_S2 0000
0000000000000000000000

00 TCB_CURRENT_MODE 00
00 TCB_CURRENT HIGH 00
0000 TCB_CURRENT_ADDR 000
0000 TCB_CURRENT COUNT 00
0000 TCB CURRENT PHASE 00

TCB_INITIATOR_ID 00
TCB_TARGET_ID 00
TCB_LUN_ID 00

TCB_SAVED_MODE 00
TCBSAVED_HIGH 00
TCB_SAVED_ADDR 000
TCB_SAVED_COUNT 000
TCB_SAVED_PHASE 00

TCB RETURN_ LOCATION 0000
0000~
0000

Comments:

Figure 6-5. TCB View Window.

Use this command to view the most recent TCB

settings for the device driver.

Loading another

device file into the program causes the TCB image

to change.

You cannot change the TCB image using

this command, nor can you change most of the TCB
parameters using the interactive emulation.

See Section 7 and Appendix A for information on
modifying the TCB image.

6 - 29

Table 6-1. Interactive Command Summary

Command Function

ALL Views size and address locations for
current DDL.

ARM Arms the State Analyzer.

BYE Quits the Interactive mode.

CLEAR Clears the initiator's data buffers.

CONFIGURE Enters the Configure mode while in
the Interactive mode and allows ID
assignment.

DISARM Disarms the State Analyzer.

DISCONNECT Enables or disables the disconnect
on the current target device.

DUMP Views the contents of the specified
data buffer.

EDIT Edits specified DDL formats while in
the Interactive mode.

EXTRA Enables or disables an extra buffer
on the current target device.

FLAG Enables or disables the flag bit on
the current target device.

INDEX Forces the Logic Analyzer to save
time and state data around a key
index event.

INITIATOR Assigns a SCSI address to the
current target device ID.

LINK Enables or disables the link bit for

" the current target device.

6 - 30

Table 6-1. Interactive Command Summary (continued).

Command Function

LUN Assigns a LUN address to the current
target device ID.

MARK Marks blocks you write to the .LARGE
buffer.

MESSAGE Enables or disables the message
system of the current target device.

PARITY Enables or disables the parity bit
on the current target device.

REPORT Enables or disables the emulator
report function.

RESET Issues a hardware reset to the bus.

TARGET Assigns a SCSI address to the

current target device.

VIEW Views all parameters defined for the
last TCB used.

6 - 31

SECTION 7
PROGRAM MODE EMULATION

The PED-4010 Initiator enables you to create programs for running
multiple emulation operations without having to enter commands
after the completion of each one. Once the program is activated
by the emulator, it runs through all operations stipulated and
puts the data into buffers specified by the program.

In this section you will learn how to:

Enter Program mode.

Write a program.

Use operators.

Use reserved words and system variables.
Invoke the program mode emulator.

00000

7.1 Enter Program Mode

Before you can write a program you must enter the program mode
emulator. Follow this procedure to enter the program mode:

STEP 1

Select FILE and load the DDL files you want to use. If the
proper files are not loaded, the emulator will not understand
your DDL commands.

You are returned to the main Initiator menu.

STEP 2
Select EDIT. This window is displayed:

Resident Device Description Library(s)
DDL1 DDL3
DDL2 DDL4

Select desired operation [Create Alter Rename Delete Exit]:_

Figure 7-1. DDL Selection Window.

STEP 3
Select the DDL you want to use (Alter), or create a new DDL.
(See Chapter 3 for details on creating a DDL.)

The window shown in Figure 7-2 appears.

Emulation Editor

1. COMMAND TYPE
2. COMMAND
3. DATA FORMAT

4. DATA
5. PROGRAM

6. EXIT

Select desired operation:_

Figure 7-2. Emulation Editor Window.

STEP 4
Select PROGRAM. You are presented with a list of programs
already existing in this file, as shown in Figure 7-3.

Resident RUN PROGRAMS =
PROGRAM1 PROGRAM3
PROGRAM2

Select desired operation [Create Alter Rename Delete Exit]:_
Figure 7-3. Program Selection Window.

STEP 5
If you creating a new program, select the Create option. (If you
are editing an existing program, select the Alter option.)

STEP 6 ’
Select the resident program you want to edit or enter the name of
the new program you want to create. Press [Enter].

The window in Figure 7-4 appears:

PROGRAM EDIT

L..File character xxxxxx

Cursor:<-->| |Pgup PgDn Home End Delete:
“Y line °T word “G,Del ch Exit: Esc

Figure 7-4. Program Edit Window.

7.2 Using the Program Edit Window

There are several function keys to help you edit the program
while you are in the Program Edit window. These are defined in
the list below:

Keys Function

Cursor Keys Move left or right along a line using the

by <= [Left] and [(Right) arrow keys. Move up
or down using the [Up] and [Down] arrow
keys.

[PgUp] Move up or down approximately 20 lines.

[PgDn]

[Home] Move to the top of the program.

[End] Move to the end of the program.

[ctrl) Y Delete the line under which the cursor is

: positioned.

[ctrl]) T Delete the word under which the cursor is

positioned.

[Ctrl) G or Delete the charécte: under which the
[Del] cursor is positioned.

leys Function

‘Backspace) Delete the character to the left of the
cursor.
.Esc] Exit from the program. Return to the

Emulation Editor menu.

[n the lower left corner of the Program Edit screen is the file
~haracter counter. The counter changes each time the cursor
noves to a different line of the program. Use this counter to
<eep track of the number of characters on each line, the number
>f characters in the program.

Jsing the function keys, write in your program. Program conven-
tions and commands are simple, resembling a structured BASIC but
vithout the line numbers. Both scalar and array variables are
supported and four data types.

“onventions and commands are explained in the next sections.

7.3 Program Conventions

Observe these conventions while writing your program:

1. Variables must be declared first before any
instructions. Therefore, the first line of
the program must include a statement of the
variables to be used in the program. See
7.3.1 for details.

2. Use only one statement per line. This means
one command word together with arguments and
qualifiers can go on a line. A maximum of 70
characters can fit on a line.

3. Indentation is not required. However, you
may find it easier to keep track of state-
ments if you indent them in this way:

A
B

C

D

4. Line numbers are not supported.

5. Use only valid language and symbols. This
includes:

Special characters (see Section 7.3.2)
Constants (see Section 7.3.3)
Operators (see Section 7.3.4)

Commands (see Section 7.3.5)

6. Precede each comment on a line by a semicolon
(;). For other special character conven-
tions, refer to Section 7.3.2.

7. Use either lower- or uppercase alphabetic
characters to compose your program. (The
program processes uppercase slightly faster
than lowercase.)

8. 'Space' is a delimiter and is required
between words, symbols, and argument
groupings. You may also use a comma as a
space delimiter in variable declarations.

Fox detailed information on commands, statements, and syntax, see
the sections below.

7.3.1 Variable Types and Naming Conventions
Conventions you must follow in naming variables are listed below:

1. All variables must begin with alphabetic
characters.

2. Variable names can contain either upper- (A-
Z) or lowercase (a-z) alphabetic characters,
numbers (0-9), and spaces designated by
underscores (_). The program converts all
alphabetic characters to uppercase
internally.

3. No operators are allowed in variable names.

4. Variables used in a program must be declared
on the first line(s) of that program.

5. A variable name cannot match a CDB name. If
this happens, you will get a syntax error.

Variables are divided into a number of different types. The
allowed variable types you can declare include:

Data:

Type Size

LONG 32 bit. Signed.
INT (EGER) 16 bit. Signed.

CHAR (ACTER) 8 bit. Signed.

TEXT 16 bytes. ASCII.

) 7 -6

There can be a singular occurrence of a variable (called a scalar
variable), or a multiple occurrence of the same variable (called
an array variable).

Scalar variables are the default and include the variable types
LONG, INT, CHAR, and TEXT.

Variables are identified as array in statements when they are
indexed in the following form:

TYPE variable[array size]
For example,

ndigit(10] = ndigit([0], ndigit([1l]... ndigit[9]
Arrays are only one-dimensional and the size is a constant
(usually a decimal). The array size should be enclosed by square
brackets; no space is allowed between the variable and its array
size value,

All variables must be assigned types. Arithmetic is done
internally as 32 bits and variables are sign-extended to fit.

Use one line for each variable type declared. For instance, if
you were declaring the variable "“size" as a long and "cursor" as
an integer, you would use this format:

long size
int cursor

As you can see, the type declaration is followed by the word or
character being declared as a variable. If you are declaring
several variables of the same variable type, you can declare them
in the same line, like this:

int cursor, repeat a array[10]

Reserved Words

You cannot use any of these reserved words as variablesé

ARM BREAK CASE CHAR CONTINUE
DEFAULT DISARM DO ELSE ENDIF
ENDSTRUCT ENDSWITCH FOR GOTO HALT

IF INDEX INPUT INT LONG
NEXT - NIF PRINT PROCEDURE RETURN
STRUCT SUSPEND SWITCH TEXT UNTIL
WHILE

7.3.2. Special Characters

Certain special characters have special meaning. The emulator
recognizes these characters and treats the word or character with
which it is associated in a specific way.

These special characters and their meanings are listed below.

Characters Meaning

0 When preceding a number, indicates
hexadecimal value. For instance, 070
tells the emulator to evaluate this
number as hexadecimal.

When preceding a symbol, indicates
hexadecimal output. For example, #x
tells the emulator to print the number
"x" in hexadecimal.

Preceding a string, indicates the
remainder of the line is a comment. For
example, ";this is a comment line" tells
the emulator this is a comment string.

~e

[Enter] Indicates the end of the line.

" Encloses an ASCII text string. For
example, "this is a text string® tells
the emulator that the characters inside
the quotation marks is an ASCII string.

[1] Encloses an array index. For example,
CURSOR([10]

tells the emulator this statement is
array and should be treated as multiple
examples of the same variable. No space
is allowed between the variable and its
index size.

When used as a prefix to a word, indi-
cates the word to follow is a system
variable command. For example,

«PARITY

tells the emulator that this is a system
variable command applying to the state of
the parity bit in this program. For
information on System Variable commands,
refer to Section 7.3.5.

7.3.3 Constants

Several characters are defined as constants. These characters
maintain their value wherever they are found.

These constants are shown below:

Constants Description
0-9 Standard numbers are used in decimal
form.
0 -9 Hexadecimal format requires a 0 prefix,
A-F as in this example:
0700
The letters A through F are also valid
characters for hex format.

7 -10

7.3.4 Operators and Expressions

Operators are symbols indicating the type of operation the
emulator should perform on one or more values (variables or
constants). Operators involve logical, mathematical, and
relational operations. Expressions are a series of values
separated by operators.

Operators

The operators used as conventions in the program mode are
described below:

Symbol Function

+ - Additive:

"add" as in 4 + 3 = 7,
"subtract" as in 6 - 4 = 2,

+

* /% Multiplicative:
* = "multiply by" as in 3 * 6 = 18.
/ = "divide by" as in 6 / 3 = 2.
% = modulo divide as in 7 % 4 = 3.
&= == Relational:
> >= 1=
< = "less than" as in 4 < 5.
> = "greater than® as in 5 > 4.
=€ = "less than or equal to" as in
x =€ Y.
=> = "greater than or equal to" as in
y => z.
{= = "not equal to" as in 2 != 1.
== = “equal to" as in 2 == 2
& | © &s& || Logical:

& = binary AND.
| = binary OR.
. © = binary exclusive OR.
, && = logical AND.
. || = logical OR.

7 -11

7 -= 4= Ta Assignment:
&= A =B-->A=8B
A-=B-->A=A-B
A +=B-->A=A+8B
A*B-->A=A%*B
A/=B-->A=A/B
A "=B~-->A=0-B
A |=B -=>
A = A <logical OR> B
A "= B -=>
A = A <logical exclusive OR> B
A &= B =->)
A = A <logical AND> B

where:

= a named variable.
an expression.

w >
0

Expressions

There are two tyées of expressions allowed by this program:

o Arithmetic expressions
o Logical expressions

Arithmetic expressions take this form:

{variable> <assignment operator> <value> [<operator> <valued...l]

where,
<assignment operator> can be one of the assignment
operators (=, -=, +=, *=, /=, "=, |=, “=) or one of
three binary logical operators (&, |, “).
<operator> can be any one of the assignment operators
listed above plus one of the additive (+, =) or
multiplicative (*,/,%) operators. (Relational
operators, &&, and || operators cannot be used.)

<value> can be either a variable or a constant.

) 7 - 12

Therefore, the first operator must be an assignment operator.
Subsequent operators may include arithmetic operators.
Expressions may take up an entire line (72 characters) and cannot
end with an operator.

All expressions are evaluated left-to-right. This means that an
expression like,

A=8+2%*2/4+2
will not be evaluation like this:

A =28+ ((2%*2)/4) +2-=13
but rather, like this:

A= (((8+2) *2)/ 4) +2=7

When writing an expression, you should plan accordingly.

Logical expressions follow the form:
<variable> [<operator> <valued>...]

where,
<operator> can be one of the relational operators (<,
>, =X, =>, l=, ==) or one of two logical operators (&&,
|]) defined above.
<value> can be either a variable or a constant.

A typical use of a logical expression is within a variable
statement such as,

if .tcb_status == 02
where if a value of TCB_STATUS is equal to 2, the variable will

be logically true and the statements following the IF statement
will be executed.

7 -13

7.3.5 Statements
Program statements can be divided logically into four groups:

DDL statements
System variables
System commands

Flow control commands

0000

Each type is discussed in this section.

' ' 7 - 14

DDL Statements

DDL statements are of two types:

o CDB Commands
o DDL DATA Variables

You must define these commands and variables in advance using the
Emulation Editor. This procedure is discussed in Section 4.

CDB Commands

Invoke any CDB names within the DDL currently defined as the
target and they will be executed as commands.

NOTE

Assign a DDL to the target address by using
the Configure mode (see Section 5) or the
.TARGET variable. Use .TARGET to redefine
the CDB and DATA assignments (see Section
7.3.5).

Follow the CDB name by any number of expressions assigning
various DDL TYPE field values. Each expression must be separated
by a space.

The general form of the expression must conform to this
convention:

[CDB name] [TYPE field] <assignment op> <value> [<op> <valued...]

where,

<value> = constant or variable.
<assignment op> = any assignment operator.
<op> = any operator excluding any relational operator
: or the logical operators && and ||. (The
preferred value, however, is =.

For example, if the CCS DDL were active, the command line

READ ADDRESS = 0200
would set the ADDRESS field of the READ CDB to 200H and execute
the command using that CDB. Results of the emulation would then
be saved in the previously-assigned data buffer (SMALL is

default). A default data length of 1 block is used unless
otherwise stipulated.

7 -15

You can assign as many variables per CDB name as you can fit on a
line up to a maximum of 70 characters per line. For instance, if
you had defined a WRITE CDB, you could invoke a command line
looking like this:

WRITE ADDRESS = 0400 LENGTH = 0020

Where the address field is set to 400H and the transfer length is
set to 20H. However, if you were to invoke this command,

WRITE LENGTH = 0020 LENGTH = 003F

only the last assignment of the transfer length value would be
stored in the buffer, since the emulator would overwrite the
first value.

To assign values to an enumerated field, invoke the enumerated
field name as defined by the Command TYPE. If you defined a two-
bit field within the CDB WRITE_BUFFER as 00 = HEAD AND DATA and
02 = DATA, then you could designate DATA by using this argument:

WRITE_BUFFER DATA

This would set the data buffer in this enumerated field to 2. To
set the other enumeration of this field, use this argument:

WRITE_BUFFER HEADER_AND_DATA.

You can use both enumerations of the field in the same argument,
but only the last enumerated value would actually be available in
the buffer. The other value(s) would be overwritten.

If you have enumerated fewer than the allowable values per field
in your®Command TYPE definition, you can use the command line
here to set additional values. For instance, in the case of the
two-bit field within WRITE_BUFFER, there are only two values
enumerated for four possible value entries: 00 = HEADER_AND_DATA
and 02 = DATA. This means you can enumerate the 01 and 03 Value
of this field. To do this, override an existing enumerated value
and set to another field value, as in this example:

WRITE_BUFFER DATA = 03
In effect, this creates an enumerated value using the existing
enumerated label of DATA. This does not effect the default value

of DATA, merely creates an enumerated value for this one command
only.

7 - 16

DDL DATA Variables

While CDB commands are determined by CDB TYPEs and COMMANDs you
have previously defined, data commands are determined by DATA
FORMAT and DATA definitions.

A data command is accessed from the currently active DDL, deter-
mined by the current target assignment and configuration table.

You can follow the data name by any number of expressions
assigning various DDL FORM field values. The data name is
separated from the data field and constants by a period (.).

The general form of the expression must conform to this
convention:

Data_Name. [Data_Field Name] <assignment op> <value> [<op> <value>..

where,
<value> = constant or variable.
<assignment op> = any assignment operator.
<op> = any operator excluding any relational operator

or the logical operators && and ||. (The
preferred value, however, is =.
For example, the command line
SENSED.SENSE_CODE = 04
would set the SENSE_CODE field of the SENSED buffer to 04H.
You can also assign a data field a constant value. For instance,
SENSED.LENGTH = 010
sets the LENGTH field in SENSED to 010H.
Constants can consist of decimals from 0 through 9, hexadecimals
0 through F, or strings enclosed in quotes ("string”). Maximum
length of a string is 32 characters.
Assign values to as many variables as you require, but remember
that data assignments follow the same rule as CDB assignments:
only one statement is allowed per line. For instance, you might
assign values to three fields within a SENSE buffer in this way:
SENSED.ERROR_CODE = OF

SENSED.SENSE_CODE = 04
SENSED.FPV = 3

7 - 17

Here, error code is set to OFH, the sense code is set to 04H, and
FPV is set to 3.

However, if you were to define the same field twice, like this:

SENSED.ERROR_CODE = OF
SENSED.ERROR_CODE = 02

only the last assignment of the error code value would be stored
in the buffer, since the emulator would overwrite the first
value.

To assign values to an enumerated field, simply invoke the
enumerated field name as defined by the DATA TYPE. If you
defined a four-bit field within the data buffer SENSED as 02 =
NOT_READY and 03 = MEDIUM_ERROR, then you could designate .
NOT_READY by using this argument:

SENSED.NOT_READY = 004F

This would set the data buffer in this enumerated field to OF. To
test the other enumeration of this field, invoke MEDIUM_ERROR.
You can use both enumerations of the field in the sume argument,
but only the last enumerated value would actually be available in
the buffer. The other value(s) would be overwritten.

If you have enumerated fewer than the allowable values per field
in your DATA TYPE definition, use the command line to set others.
For instance, in the case of the four-bit field within SENSED,
there are fourteen values enumerated for sixteen possible value
entries -- 09 and OF are still empty. To enumerate these
entries, reassign an existing enumerated value to the empty field
value, as in this example:

SENSED.NOT_READY = 09
In effect this creates a new enumerated value using the existing
enumerated label of NOT _READY. This does not effect the default

value of NOT_READY, merely creates a new enumerated value for
this one command only.

7 - 18

System Variables

System variables control some aspect of the emulator set-up.
Using these variables, you can reassign values to various para-
meters, such as target or LUN addresses, TCB variables, or block
address numbers.

As with any variable, system variables can be set to a value or
expression. They can either start a line, as in this example,

.CURSOR = CURSOR

or serve as a component within an argqument on the line, as in
this example:

If .TCB_STATUS l= 0

Here is a list of the system variables:

.BLOCK } .LINK
.CURSOR +<LUN
.DISCONNECT .OFFSET
.FILE +«PARITY
.FLAG -TARGET
«INITIATOR .TCB_n

To learn how these variables work, refer to the following pages.
NOTE

All system variables are preceded by a period
(.), as in .FLAG or .OFFSET. ’

7 -19

+BLOCK

Type:
long
Function:

Use this variable to uniquely identify data "blocks"
written from the 64K .LARGE buffer with a block number.

Comments:

This variable does housekeeping for storage of data in
the LARGE buffer. If MARK is enabled, .FILE and .BLOCK
bytes are inserted as the first 6 bytes of every 512-
byte boundary written from the 64K .LARGE buffer. The
value in .BLOCK will be incremented for each 512 byte
block so that "unique" values can be placed in every
512-byte boundary written.

F F B B B B

A

512-byte block

The first two bytes of the header are reserved for the
file number. The next four bytes are reserved for the
block number. For information on identifying the file
number, see .FILE. :

7 - 20

«CURSOR

Type:
int
Function:

Use this variable to set the cursor on the screen.

Comment:

Reload the cursor location on the screen using this
command. Default location is upper lefthand corner
(column 1, line 1). However, you can change this
location by specifying the cursor location in several
ways.

You can specify an relative position using the @ ("at")
command, as in)

e 5,10
which tells the program to move the cursor position to
line 5 column 10. See Program Commands in this section
for more details.

You can also specify an absolute position by assigning
a variable or expression, as in

.CURSOR = CURSOR
then attach values to this variable.
Be aware of the window you're working in. The cursor

will move only in relation to a previous position and
its present window.

7 - 21

«DISCONNECT

Type:

char

Function:
Use this variable to enable or disable the disconnect
on the current target device. Default value is -1.
Comments:
Any non-zero value enables the disconnect.
[value] = 0 or non-0. If 0 then disconnect is off. 1If
you specify a non-zero value (e.g. 1, 2, 3, and so on)
the disconnect is enabled.
Invoke the disconnect to disable the message system.
SCSI requires the message system be enabled (disconnect
is disabled). SASI devices usually require that the
message system is disabled (disconnect is enabled);

This function is also controlled by the CONFIGURE mode.
See Section 5.

' 7 - 22

.FILE

Type:
long

Function:

Use this variable to uniquely identify data "blocks"
written from the 64K .LARGE buffer with a file number.

Comments:

This variable does housekeeping for storage of data in
the LARGE buffer. If MARK is enabled, .FILE and .BLOCK
bytes are inserted as the first 6 bytes of every 512-
byte boundary written from the 64K .LARGE buffer. The
value in .FILE will be incremented for each 512 byte
block so that "unique" values can be placed in every
512-byte boundary written.

F F B B B B

I

512-byte block

The first two bytes of the header are reserved for the
file number. The next four bytes are reserved for the
block number. For information on identifying the block
number, see .BLOCK.

7 -'23

.FLAG

Type:

char

Function:

Use this variable to enable or disable the flag bit on
the current target device. Default value is 0.

Comments:
Any non-zero value enables the flag bit.
[value] = 0 or non-0. If 0 then flag is off. If you
specify a non-zero value (e.g. 1, 2, 3, and so on) the
flag is enabled.

This function is also controlled by the CONFIGURE mode.
See Section 5.

) 7 - 24

« INITIATOR

Type:
char
Function:

Use this variable to assign a SCSI device address to
the current initiator. Default value is 7.

Comments:

Enter this command followed by an address number from 0
_through 7.

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

7-25

.LINK

Type:
char
Function:

Use this variable to enable or disable the link bit for
the current target device. Default value is 0.

Comments:
Any non-zero value enables the link bit.

[value] = 0 or non-0. If 0 then link is off. If you
specify a non-zero value (e.g. 1, 2, 3, and so on) the
link is enabled.

This function is also controlled by the CONFIGURE mode.
See Section 5.

: 7 - 26

.LUN

Type:
char
Function:

Use this variable to assign the LUN field to the SCSI
device address of the current target device driver.
Default value is 0.

Comments:
Enter this command followed by an address number from 0

through 7. You can also control this function in the
CONFIGURE mode. See Section 5.

7 - 27

-OFPSET

Type:
int
Function:

Use this variable to partition the .LARGE buffer.
.OFFSET defines the starting address for the next data
transfer from .LARGE.

Comments:

Use this variable if you are using the 64K .LARGE
buffer. It automatically advances to the next 512 byte
boundary after every .LARGE data transfer.

) 7 - 28

.PARITY

Type:
char
Function:

Use this variable to enable or disable the parity bit
on the current target device. Default value is -1.

Comments:

Any non-zero value enables the parity function. Use
[value] = 0 to disable parity.

This function is also controlled by the CONFIGURE mode.
See Section 5.

7 - 29

+«TARGET

Type:
char
Function:

Use this variable to assign a SCSI address to the
target device. Default value is 0.

Comments:

Enter this variable followed by an address from 0
through 7.

This function is also controlled by the CONFIGURE mode.
See Section 5.

7 - 30

.TCB_<parameter>

Function:
Use these variables to reference one of the task
command block parameters.

Comments:

Reference a TCB_parameter by designating the parameter
type, such as TCB_status or TCB_ID_MSG. This variable
is used like any other variable except some cannot be

written to.

Parameters:

For a complete list of TCB_parameters refer to
Table A-4 of Appendix A.

7 - 31

Program Commands

Program commands control various aspects of the emulator and the
program you are running on it.

These commands are listed below by their functional categories
and discussed in more detail on the following pages.

Conditionals/Flow Control: commands that place conditions on the
program or control program flow. (See Flow Control Commands
section,)

BREAK FOR... NEXT
CONTINUE IF... ELSE... ENDIF
DO... UNTIL NIF... ELSE... ENDIF

DO... WHILE

I/0 Control: commands that control input/output operations.

@ INPUT
@LPRINT LPRINT
@PRINT PRINT

State Analysis: commands that control the State Analyzer while in
emulatlon.

ARM *
DISARM *
INDEX *

System: commands that control the emulator.

CLEAR *
HALT

RESET *
SUSPEND

Variable Declarations: commands that declare a variable type.

CHAR
INT

LONG
TEXT

* = used in both Interactive and Program mode.

7 - 32

ARM

Syntax:
ARM

Function:
Use this command to arm the Logic Analyzer. When
invoked, the message ARMED is highlighted in the System
Status window at the bottom of the screen.

Comments:
Use this function if you intend to capture data using

the Logic Analyzer. To disarm the analyzer, use the
DISARM command.

7 - 33

Syntax:
@ [<value> <value>]
Function:
Use this command to declare a position on the screen.
Comment :
When @ ("at") is placed alone on a line, this tells the
emulator to clear the screen and place the cursor at

the upper left-hand corner position (line 1, column 1),
as in this example:

long block
int cursor
Q

You can also specify an exact line and column location
using this form:

@ line column
as in this example:
long block
int cursor
Q22
You can also specify the cursor position as ‘a variable

relative to the previous cursor position by using the
.CURSOR command (see System Variables in this section).

-7 - 34

CHAR

Syntax:
CHAR <variable name)>
Function:

Use this command at the top of the program to declare
variable(s) to follow as 8-bit data variables.

Comment:

Refer to Section 7.3.1 for a discussibn of this
command. Follow this command by one or more variable
names. Each variable shoulua be separated by a space or
comma .

7 - 35

CLEAR

Syntax:

CLEAR [buffer] [value]
Function:

Use this command to clear data buffers.
Comments:

When you invoke this command, you clear all data from
the specified buffer and prepare it for a new
emulation. Default is the .LARGE buffer. Specify the
.SMALL or DDL buffer. .

You can also specify a pattern to the cleared buffer
using an optional value. Default is cleared to zeros.
However, by specifying a non-zero value, you create a
pseudo-random sequence in the named buffer. (The
pattern is repeated every 256 bytes.) For instance, a
value of 2 gives an incremented sequence; 3 provides a
decremented sequence. Any value greater than 7 adds
the high 8 bits to the low 8 bits. (See the table
below for details.)

CLEAR automatically clears .OFFSET and .FILE to zero.

Value Byte Range

02201H
000FFH
01001H
OFFFFH
007FFH
089ABH
" 055AAH
0SSFFH

NouUusWwNEO

The low byte is placed into the specified buffer and
the "high" byte is added to the "low byte"; the buffer
address is then incremented.

" 7 - 36

DISARM

Syntax:
DISARM
Function:
Use this command to disarm the Logic Analyzer. When
invoked, the message ARMED is not highlighted in the
System Status window at the bottom of the screen.
Comments:
Use this function if you do not intend to capture data

using the Logic Analyzer. To arm the analyzer, use the
ARM command.

7 - 37

HALT

Syntax:
HALT
Function:

Use this command to halt the operation of the program.

Comments:

wWhen invoked, this command stops the program.

7 - 38

INDEX

Syntax:
INDEX
Function:

Use this command to force the logic analyzer to save
time and state data around’ some key index event.

Comments:

The command halts the capture operation after a
specified number of writes to the acquisition memory,
protecting data saved on either side of the INDEX
command. When the analyzer is armed (see ARM and
DISARM commands), time and state data is written in
memory starting at address 000. At each write, the
memory address register is incremented by 1. At a
certain point the data will wrap back around on itself
and begin to overwrite unless INDEX is invoked.

INDEX controls the capture process, loading the index
count value, setting the counter to increment at every
write, forcing a write to the memory when time and
state data occurs, and halting capture when the index
counter reaches its maximum count.

Once you have issued this command, the system status
window highlights the word "INDEXED".

7 -39

INPUT

Syntax:
INPUT ["prompt message string®] (variable]
Function:

Use this command to enter the value of a variable
interactively while the program is running.

Comment:

When you invoke this command, the program stops and
prompts you.

If there are no other arguments on the command line,
the program stops and displays this message:

Press Any Key to Continue...
You can insert your own prompt by entering a taxt
string after the command. (The text string must be
enclosed in quotation marks, " “.) For instance,
INPUT "Text"
would cause the program to stop at a specific spot and
display the prompt, "Text". You would then press any
key to continue.

You can also insert a variable into the program. For
instance,

INPUT variable_ name

causes the program to stop and prompt you with this
message:

?

Enter the variable name and press [Enter].

7 - 40

You can also combine a prompt string with a variable.
For instance,

INPUT "Text" variable_ name

causes the program to stop, display the prompt, and
wait until you have entered a variable name and [Enter]
before continuing.

7 - 41

INT

syntax:
INT <variable name>
function:

Use this command at the top of the program to declare
the variable(s) to follow are 16-bit data variables.

Zomment:
See 7.3.1 for details on using variable commands.

Follow this command by one or more variable names.
Each variable should be separated by a space or comma.

! 7 - 42

LONG

Syntax:
LONG <variable name)>
Function:

Use this command to declare one or more 32-bit integers
as variables.

Comments:

Follow this command with the variable names you wish to
declare. Each variable should be separated by a space
or comma. .

LONG variables are more quickly processed by the
emulator program since everything is converted to LONG
before processing. However, LONG variables take up
more space.

Refer to 7.3.1 for more details.

7 - 43

LPRINT

Syntax:
[@]LPRINT ["text string”] [[#]variable]
Function:

Use this command to instruct the program to print out a
text string to a designated line printer.

Comments:
When you invoke this command, the program looks for a
text string or a variable specified to the right of the
command and prints it out to an output printer.
Printing begins at the start of the next line unless
the @ prefix is used. This causes the string to be
printed at the current cursor position.

Enclose any text string to be printed with quotation
marks (" ") as discussed in Section 7.3.2.

Use the optional # sign to indicate you want the
variable printed in hexadecimal. Default printing is
decimal.

See PRINT also.

: 7 - 44

PRINT

Syntax:
[@]PRINT ["text string"] [[#])variable]
Function:

Use this command to instruct the program to print out a
text string or variable to the screen.

Comments:
When you invoke this command, the program looks for a
text string or variable to the right of the command and
prints it to the screen as part of the program results.
Printing begins at the start of the next line unless
the @ prefix is used. This causes the string to be
printed at the current cursor position.

Enclose the text string to be printed with quotation
‘marks (" ").

Use the optional # sign to indicate you want the
variable printed in hexadecimal. Default printing is
in decimal.

To print hardcopy, use the LPRINT command.

7 - 45

SUSPEND

Syntax:
SUSPEND
Function:
Use this command to suspend program operation.
Comment:
When you insert this command in a program it instructs
the emulator to stop the program temporarily and return

to the user.

If you are in Interactive mode, return to the suspended
program by typing,

RUN [Enter]
If you are in the State Analysis program, return to the
suspended program through menu selections by following
these instructions:
1. Select the RUN option.
2a. Select the PROGRAM mode or,
2b. Select the INTERACTIVE mode and type

RUN (Enter]

7 - 46

TEXT

Syntax: -
TEXT <variable name>
Function:

Use this command at the top of the program to declare
the variable(s) to follow are 16-byte ASCII variables.

Comment:
See 7.3.1 for details on using variable commands.

Follow this command by one or more variable names.
Each variable should be separated by a space or comma.

7 - 47

Flow Control Commands

There are several commands used in the Program Mode enabling you
to set conditions on the movement of the emulator through the
program. Several of these commands enclose statements or series
of statements. For the most part, they follow syntactical and
grammatical conventions of BASIC.

The commands are discussed below.

7 - 48

BREAK

Syntax:

BREAK
Function:

Use this command to exit a program loop.
Comments:

Most program loops exit after a prescribed number of
operations or tries. However, if certain conditions
occur, it is often desirable to leave the loop
prematurely. BREAK facilitates this by causing the
program to immediately exit from the DO or FOR loop in
which the command occurs. For example,

BLOCK = 0
DO
READ ADDRESS = BLOCK
IF .TCB_STATUS == 02
BREAK
ENDIF
BLOCK += 100
WHILE BLOCK < 1000

This sample program would normally execute ten READ
commands before satisfying the DO... WHILE loop.
However, if .TCB_STATUS were 02 after any READ, the
program immediately exits the DO... WHILE loop.

7 - 49

CONTINUE

Syntax:

CONTINUE
Function:

Use this command to advance a program loop.
Comments:

If you have specified a loop or routine within a
program, then you can advance within this loop by using
this command. For instance, in this case,

FORA =1 TO 5
IF .TCB_STATUS != A
CONTINUE
ENDIF
PRINT #A
NEXT

CONTINUE causes the program to go to the next value of

A without printing its value as long as .TCB_STATUS is
not equal to A.

! 7 - 50

DO... UNTIL

Syntax:

DO

UNTIL [logical expression]
Function:

Use this command to instruct the program to perform the
operations specified in the body of the loop until a
specific condition occurs.

Comment:

This command instructs the emulator to run one or more
operations as set forth: in the statements until the
logical (non-zero) expression is met. For example,

t =0
DO
sense
t += 1
UNTIL == 100

This argument instructs the emulator to run the SENSE
command until t reaches 100.

Nested Loops

DO... UNTIL loops may be nested; that is, a DO... UNTIL
loop may be placed within another loop. When loops are
nested, each loop should have a unique variable name in
‘the logical expression. Also, the DO statement of the
inside loop must appear before the, UNTIL or end
' statement for the outside loop.

w..‘ WHILE

Syntax:
DO

.

WHILE [logical expression]
Function:

Use this command to instruct the program to perform the
operations specified in the body of the loop while a
specified condition exists.

Comment:

This command instructs the emulator to run one or
several operations as set forth in the argument
statements if or while logical expression is being met.
For example,

t=0

DO

sense

t += 1
WHILE t 1= 100

This argument instructs the emulator to run the SENSE
command while t is not equal to 100.

Nested Loops

DO... WHILE loops may be nested; that is, a DO... WHILE
loop may be placed within another loop. When loops are
nested, each loop should have a unique variable name in
the logical expression. Also, the DO statement of the
inside loop must appear before the WHILE or end
statement for the outside loop.

. 7 - 52

FOR... NEXT

Syntax:

FOR <variable> = x TO y [STEP z]

.

NEXT

Function:

Use this command statement to enable a series of
instructions to be performed in a loop a given number
of times.

Comment:

<Variable> is used as a counter. x is the initial
value of the counter. y is the final value of the
counter.

Lines following the FOR statement are executed until
the NEXT statement is encountered. Then the counter is
incremented by the amount specified by STEP and checked
to see if its value is now greater than the final
value, y. If not, the program returns the statement
after the FOR statement and the process is repeated.

If the value is greater, the program execution
continues with the statement following the NEXT
statement. For example,

FOR block = 1 to 10 step 1

This indicates that you want the emulator to proceed
through all possible conditions for the block, starting
from 1 and proceeding to 2, 3, 4 and so forth until 10
is reached. The "to" value is included in the FOR...
NEXT execution.

If STEP is not specified, the increment is assumed to
be 1. If STEP is negative, the final value of the
counter must be less than the initial value. The value
of the counter decreases by increments each time
through the loop until the counter value is less than
the final value.

7 - 53

In specifying the step progress, you can stipulate
steps like this:

step n Increment upward through the range by n
amount.

step -n Progress backward through the range.

step var Use the value of the variable as the STEP
amount.

Nested Loops

FOR... NEXT loops may be nested; that is, a FOR... NEXT
loop may be placed within another loop. When loops are
nested, each loop should have a unique variable name.
Also, the NEXT statement of the inside loop must appear
before the NEXT or end statement for the outside loop.

) 7 - 54

IF...ELSE... ENDIP

Syntax:

IF <logical expression>

.

[ELSE

.

ENDIF

Function:

]

Use this command to set conditions for the running of a
particular operation based on the value of specified
variables.

Comments:

Stipulate conditions after the IF command. The
condition is written in the form of a logical
expression. Follow the condition by any statements you
want the emulator to run, if the logical expression is
non-zero.

Use the optional ELSE command to specify any command or
procedure you might want the emulator to run, given the
logical expression in the IF statement evaluates to

zZero.

End the IF... ELSE argument with ENDIF. ENDIF occupies
its own line.

For example,

IF .TCB_STATUS ==
READ_USAGE_COUNTERS
PRINT "BLOCKS READ=" COUNTERS.BLOCK_READ
PRINT "RECOVERABLE ERRORS=" COUNTERS.RECOVERED_ERRORS
ELSE :
PRINT "CHECK CONDITION"
ENDIF

7 - 55

This statement instructs the emulator that if
TCB_STATUS is 0, the DDL command READ_USAGE_COUNTERS 1s
sent out to the target and two buffer fields,
COUNTERS.READ_ERRORS and COUNTERS.RECOVERED_ERRORS, are
displayed with appropriate labels.

If the TCB_STATUS block is non-zero, then the emulator
is instructed to display the message, "Check
Condition."

Nested IF statements

IF... [ELSE...] ENDIF constructs may be nested. That
is, an IF... ENDIF construct can be placed within loop
construct. However, the ENDIF statement of the inside
loop must appear before the ENDIF, UNTIL, WHILE, or
NEXT statement of the outside loop. They may not
overlap.

. 7 - 56

NIF...ELSE... ENDIP

Syntax:

NIF <logical expression>

.

[ELSE

.

ENDIF

Function:

Use this command statement to set conditions for the
running of a particular operation based on the value of
specified variables. This statement is the explicit
opposite of the IF... ELSE statement.

Comments:

NIF literally means "not if" and can be stated using
the IF command. For example,

NIF a == 1
is equivalent to,
IF al=1

NOTE

When testing a variable for equality to a
constant, the constant must appear on the
right side of the argument. Therefore,

1 == A is wrong; A == 1 is the correct form.

Stipulate conditions after the NIF command. The
condition is written in the form of a logical
expression. Follow the condition by the procedure(s)
or command(s) you want the emulator to run if the
logical expression is zero.

7 - 57

End the NIF... ELSE argument with ENDIF. ENDIF
occupies its own line.

For example,

NIF .TCB_STATUS == 2

READ_USAGE_COUNTERS

PRINT “"BLOCKS READ=" COUNTERS.BLOCK_READ

PRINT "RECOVERABLE ERRORS=" COUNTERS. RECOVERED_ERRORS
ELSE

PRINT "CHECK CONDITION"
ENDIF

This statement instructs the emulator that in the event
that .TCB_STATUS is not equal to 2, the DDL command
READ_| USAGE _COUNTERS is sent out to the target and two
buffer fields, COUNTERS. READ_ERRORS and

COUNTERS . RECOVERED_ERRORS, are displayed with
appropriate labels?

If the TCB_STATUS block is equal to 2, then the
emulator is instructed to display the message, "Check
Condition."

Nested NIF statements

NIF... [ELSE...] ENDIF constructs may be nested. That
is, a NIF... ENDIF construct can be placed within loop
construct. However, the ENDIF statement of the inside
loop must appear before the ENDIF, UNTIL, WHILE, or
NEXT statement of the outside loop. They may not
overlap.

7 - 58

Table 7-1. Program Command Summary

System Variables

Variables Type Function

«BLOCK Long Identifies 512-byte data "blocks"
written from the 64K .LARGE buffer
with a block number.

.CURSOR Int Sets the cursor on the screen.

+«DISCONNECT Char Enables or disables the disconnect
on the current target device.

.FILE Int Identifies data "blocks"™ written
from the 64K .LARGE buffer with a
file number.

.FLAG Char Enables or disables the flag bit on
the current target device. .

+INITIATOR Char Assigns a SCSI address to the
current initiator.

+«LINK Char Enables or disables the link bit on
the current target device.

.LUN Char Assigns the LUN field to the SCSI
device address of the current target
device driver.

.OFFSET Int Partitions the .LARGE buffer into
address blocks.

«PARITY Char Enables or disables the parity bit
on the current target device.

«TARGET Char Assigns a SCSI address to the
current target device.

.TCB_x Int Sets a designated task command block

parameter and changes the TCB image
of the current target device. For a
complete list of .TCB parameters,
see Table A-4 of Appendix A. -

7 - 59

Table 7-1. Program Command Summary (continued).

Program Commands

'cOmmand Function

ARM Arms the Logic Analyzer.

@ . Declares a position on the screen or
prefixes PRINT or LPRINT.

CHAR Declares variable(s) as 8-bit signed
variables.

CLEAR Clears designated data buffers.

DISARM Disarms the Logic Analyzer.

HALT Halts the operation of the program.
INDEX Forces the Logic Analyzer to save time
S and state data around some key index

y event.
INT Declares variable(é) as 16-bit signed
variables.
INPUT Allows entry of a variable value
interactively while the program is
running. i
LPRINT Instructs the program to print out a text

string to a designated line printer at
start of next line. E@LPRINT causes
string to be printed at current cursor

position.

LONG Declares variable(s) as 32-bit signed
variables.

PRINT ~ Instructs the program to print out a text

string or variable to the screen.
@PRINT causes string to be printed at
current cursor position.

SUSPEND Suspends program operation.
TEXT Declares variable(s) as 16-byte ASCII
variables.

7 - 60

Table 7-1. Program Command Summary (continued).

Flow Control Commands

Command Function

BREAK Exits a program loop.

CONTINUE Advances a program loop.

DO.. UNTIL Instructs the program to perform
specified operations in the body of the
loop until a specific condition occurs.

DO.. WHILE Instructs the program to perform

FOR.. NEXT

IF.. ELSE..
ENDIF

NIF..ELSE..
ENDIF

specified operations in the body of the
loop while a specified condition exists.

Causes a series of instructions to be
performed in a loop a given number of
times.

Sets conditions for the running of a -
particular operation based on the value
of specified variables. o

The explicit opposite of the IF.. ELSE
construct.

7 - 61

7.4 Initiating the Program
o run a program, follow this procedure:

STEP 1 ‘
Return to the main Initiator Emulation menu.

(If you are still in the program, press [Esc] several times until
you see this menu.)

STEP 2
Select RUN from the options. Press [Enter].

The following prompt appears below the SCSI Bus Status window:
Select RUN mode [INTERACTIVE PROGRAM]:

STEP 3
Select PROGRAM. This prompt appears:

Location of RUN program [MEMORY DISK]:

STEP 4

Select either memory or disk depending on whether the program you
want resides in the computer memory or on diskette. If you
select memory, follow step 5a; if you select diskette, follow
step 5b.

3TEP 5a
If you select memory, the following w1ndow and prompt appears:

Resident Device Description Library(s) =
Libraryl Library2

Enter name of desired Liﬁrary:

Press [Down] to select the DDL that contains the program you want
%o run, or enter a DDL library name at the prompt. Press
{Enter].

.7 - 62

The following window and prompt appears:

Resident RUN PROGRAMS
Programl. Program2.

Enter name of desired RUN file:

Press [Down) to select the program you want to run, or enter a
new program name at the prompt. Press [Enter].

STEP 5b
If you select diskette, the following window and prompt appears:

Existing Program Files —————
Programl.RUN Program2.RUN

Enter name of desired RUN file:

Press [Down] to select the program you want to run, or enter a
new program name at the prompt. Press [Enter].

If no program exists on the disk, then the program returns to the
initial RUN menu:

Press [Down] to select the resident DDL file you want to run, or
enter a new library name at the prompt. Press [Enter]. If the
DDL library you entered is valid, you are returned to the
previous window and prompted for a program. Select one of the
resident run programs.

STEP 6

Once you have selected a run program, the program is initiated.
When the emulator is finished running the program, it displays
this message:

Program execution complete, hit any key to resume
STEP 7

. Press any key and you are returned to the main Initiator
Emulation menu.

7 - 63

7.5 Sample Programs

To help you in learning the syntax of this program, several
sample programs are presented for your review.

NOTE
To assist in describing each program line,
line numbers are pictured in these examples.

Line numbers are not required for the actual
programs.

Sample 1

Below is a program designed to test cursor position and print
entry.

Program:
1 char repeat
2 int spot
3 @ ;clear screen
4 " @print “Start cursor test”
5 spot = .cursor ;save cursor location
6 @print #.cursor
7 print
8 input "Start spot test" repeat
9 .cursor = spot ;restore cursor
10 dprint repeat "that's all folks"

Explanation:

1-2 On the first two lines the variables are declared.
Repeat is defined as an 8-bit variable type while spot
is identified as a 16~bit integer. Note that the
system variable .CURSOR is an integer type.

3 On the third 1line the‘@ command clears the screen.
(The comment line following this command describes the
action.)

4 The next line invokes the @print command which tells

the emulator to print the string "Start cursor test" to
the screen, starting at the current cursor position.

7 - 64

10

The variable 'spot' is then assigned the value of the

system variable .CURSOR. This causes the variable to

"save" the current cursor location. (The comment line
once again underlines this.)

The current cursor position is then displayed on the
screen in hexadecimal form (remember: # instructs the
emulator to output in hex).

'‘Print' instructs the emulator to do a carriage return
and line feed, moving the cursor to the first position
on the next line.

'Input' instructs the emulator to place a prompt "Start
spot test" and this is associated with the character
variable 'repeat’'.

The cursor is then restored by assigning the system
variable .CURSOR the value of CURSOR.

The value of the variable ‘'repeat' is printed on the

screen followed by the words "That's all folks"
starting at the present cursor position.

7 - 65

Sample 2

This is a program designed to read 0780H blocks of data and
display the current and last address of the address field in the
DDL command READ.

Program:

1 int a

2 e

3 for a = 0 to 0780 step 080

4 read address = a length = 080

5 if .TCB_GATE

6 break

7 else

8 print “Current address =" #a

9 . endif

10 next

11 print "Last address =" #a
Explanation:
1 This declares "a" as a 16-bit integer variable.
2 The screen is cleared.

3-10 FOR.. NEXT loop wherein conditions of the emulation are
set out as explained below.

3 . This instructs an iteration of the loop for variable
'a' from value 0 to 0780. The emulator is alerted to
hex ranges by a prefix 0. The command word 'step'
instructs the emulator to proceed through the loop in
080 increments.

4 Given this range and interval, 'a' is now assigned to
the address field in the DDL command READ. At the same
time, the length field is defined as 080.

5-6 The condition is placed on this simulation that if the
parameter .TCB_GATE is non-zero, the program is to
break to line 11 immediately.

7-8 Otherwise, indicated by ‘'else’', if .TCB_GATE is zero,
the emulator is to display the string "Current address
=" on the screen at the default position followed by
the value of 'a' at that moment, outputted in hex form.

9-10 This ends the FOR.. NEXT loop and instructs the

emulator to keep doing this loop ('next') in 080
increments until the upper limit, 0780, is exceeded.

: 7 - 66

Sample 3

This sample causes the target to display information about its
name, serial number, and the capacity of the device.

Program:
1 long size
2 int cursor
3 @6 2

arm ;arm analyzer
test_unit_ready jwake up target

request sense
print "“Sense Requested"
9 endif
10 clear inquired
11 clear capacity
12 read capacity ;get target info
13 inquiry
14 cursor = .cursor
15 @print inquired.model
16 .CUrsoxr = Ccursor
17 = @print " model:"
18 prlnt * Serial Number:" inquired.serial_number
19 size = capacity.last_block
20 size += 1
21 size *= capacity.block size
22 print " Capacity:" size
23 print * bytes with" capacity.block_size
24 @print " bytes/block" -

4
5
6 if .tcb_status == 02 ; check condition
7
8

Explanation:

1-2 The variables size and cursor are declared -- one as
long, the other as integer.

3 The screen is cleared and the cursor is positioned at
line 6 column 2.

The analyzer is armed.

The target is awakened with a DDL command.

A U

-9 If a “"check condition" status is returned by the
target, the REQUEST_SENSE command is sent to the target
and the message "Sense Requested” is sent to the
screen.

7 - 67

10
11
12

13
14
15
16
17

18

19

20

21
22

23

24

The buffer INQUIRED is cleared.
The buffer CAPACITY is cleared.

Once these buffers are cleared, the command
READ_CAPACITY is invoked followed" by INQUIRY. Data
from these commands is deposited iq the cleared
buffers.

The string "Manufacture:" is followed by the value of
the INQUIRED.MANUFACTURE buffer field from the INQUIRY
command.

The screen position is saved.

The buffer field INQUIRED.MODEL is printed at tte
former cursor point.

The cursor is restored to the screen at the point just
previous to the last buffer field.

The string " Model:" is displayed on the screen at the
new cursor point.

The string "Serial Number:"™ is displayed on the screen
followed by the value from the buffer
INQUIRED.SERIAL_NUMBER.

The size variable is equated to the data buffer field
CAPACITY.LAST_ BLOCK.

The size variable is incremented by 1.

Size is multiplied by the CAPACITY.BLOCK SIZE data
field

The resulting value of size is displayed after the
string "Capacity =",

The "Capacity =" string is followed by the another
string, "bytes with", followed by the value of the
CAPACITY.BLQCK_SIZE data field.

At the last cursor position, the string "bytes/block"”
is displayed.

7 - 68

The screen produced by this program should look something like
this:

Manufacture: xxxxxx

Model: yyyyyyy
Serial Number: zzzzzz

Capacity: nnnnn bytes with aaaaa bytes/block

7 - 69

1. Task Control Primitives

Table A-1 contains a list of all Task Control primitives
currently defined for the Initiator Emulation. Hex values
associated with each primitive appear after the primitive
notation, i.e. #00H. Access these values using either
TCB_PRIMITIVE or VIEW in Interactive mode.

Table A~1. Task Control Primitives.

Primitives Value Description

T_OPEN 01 Opens a task, using the current
INITIATOR, TARGET, and LUN IDs.

T_CLOSE 05 Closes the task.

T_SET_UP 09 This converts the TCB_DATA OFFSET

and TCB_DATA_SEGMENT into TCB DMA
pointer format.

T_SAVE 0B This transfers the TCB_DMA pointers
into the TCB_SAVE pointers.

T_RESTORE oD This transfers the TCB_SAVE pointers
into the current TCB_ DMA pointers.

T_STATUS OF This places an image of the SCSI
data bus into TCB MESSAGE([0], while
the TCB_MESSAGE[1] contains the
BUS_STATUS_REG and TCB_MESSAGE[2]
contains the BUS_STATUS image.

BUS _STATUS_REG and BUS _STATUS are
- registers within the SCSI hardware
interface.

2. Extreme Primitives

Use the extreme drive primitives listed in Table A-2 to assert or
deassert a single SCSI bus control signal or transfer a single
byte across the bus. Although the following commands may be used
to implement normal SCSI transactions, they are intended for
negative testing and don't check for the validity of the desired
operation.

Table A-2. Extreme Primitives.

Primitive Value Description

P_SET_ACK 13* This asserts ACK on the SCSI bus.
P_CLR_ACK 15% This deasserts ACK on the SCSI bus.
P_SET_ADR 17 This sets the SELECTION address

register in the SCSI controller to
the value in TCB_MESSAGE([0]. The
bit position of any address the chip
should respond to should be set to

one.
P_SET ARB 19 This asserts ARB on the SCSI bus.
P_CLR_ARB 1B This deasserts ARB on the SCSI bus.
P_SET_ATN 1Dp* This asserts ATN on the SCSI bus.
P_CLR_ATN 1F* This deasserts ATN on the SCSI bus.
P_SET_BSY 21 This asserts BSY on the SCSI bus.
?_CLR_BSY 23 This deasserts BSY on the SCSI bus.
P_SET_BUS 25 This asserts the DATA on the SCSI
bus.
P_CLR_BUS 27 This deasserts the DATA on the SCSI
bus.
P_SET_DATA 2D This sets the DATA register in the

SCSI controller with the value in
TCB_MESSAGE([0]. If the BUS is
enabled, the data will appear on the
SCSI bus.

Table A-2. Extreme Primitives (continued).

Primitive Value Description
P_SET_RST 3B* This asserts RST on the SCSI bus.
P_CLR_RST 3D* This deasserts RST on the SCSI bus.

* = Initiator-specific primitive. All others can
be used by both Initiator and Target emulators.

3. Conventional Primitives

This is a list of all conventional primitives currently defined
for the Initiator Emulation. Values associated with each primi-
tive appear after primitive notation.

Table A-3. Conventional Primitives.

Primitive Value Description

P_MSG_R 00 This sets ATN and provides
TCB_ACT_COUNT with the number of
message bytes received.

P_MSG_W 02 This sets ATN and waits for the
- target to go into a message out
phase. Use the primitive with a
message in the form:

P_MSG_W [message]

where [message] is one of the SCSI
messages discussed in part 7. If no
message is appended to the primi-
tive, TCB_MESSAGE([0] is sent.
(Default only supplied in Program
mode; you must supply your own mess-
age name in Interactive.)

P_STAT_R 04 Returns with TCB_STAT byte if succe-
ssful. Or TCB GATE will have excep-
tion code.

P_DATA_R 08 Receives 'TCB_DATA OFFSET/_SEGMENT,
TCB_COUNT_SPC data if successful. Or
TCB_GATE will have exception code.
TCB_COUNT_ACT contains the number of
bytes transferred.

P_DATA_W 0A Sends TCB_DATA_OFFSET/_SEGMENT,
TCB COUNT SPC data if successful.
Or TCB_GATE will have exception
code. ~TCB ,_COUNT_ACT contains the
number of bytes transferred.

Table A-3. cOnventiohal Primitives (continued).

Primitive

Value

Description

P_CMD_W

P_DISC

P_SELT

P_RSEL

P_RESET

D_SELT
D_RSEL

D_DATA_R

D_DATA_W -

OE

10

12
14

16

22
24

26

28

Sends TCB_CDB if successful. Or
TCB_GATE will have exception code.
This primitive requires a CMD name
to execute. Field names are :
optional. Thus:)

P_CMD_W [CMD_name] [field nm=val..]

Otherwise, if no CMD name is provi-
ded, the system will use whatever

~values are already in the TCB_CDB.

(Default only supplied in Program
mode; you must supply your own
field names in Interactive.)

Sets driver internally tc
disconnect.

The desired target will be selected.

Enables a target'to reselect the
initiator.

This issues a reset message to the
target if possible. Optionally the
initiator can reselect the target
and LUN to force a reset.

Like P_SELT only sends
IDENTIFY_ MESSAGE as well.

Like P_RSEL only accepts
IDENTIFY_ MESSAGE as well.

This functions as P _DATA R with the
additional capability to deal with
disconnect reselect automatically.

- This functions as P_DATA_W with the

additional capability to deal with
disconnect reselect automatically.

Table A-3. Conventional Primitives (continued).

Primitive

Value

Description

D_CMD_W

D_TERM

D_READ

32

34

3A

Functionally, this is a composite of
P_SELT and P_CMD_W. This primitive
requires a CMD name to execute.
Field names are optional. Thus:

D_CMD_W [<CMD_nm> [Field_nm=val..]]

If no field names are appended, the
system will use whatever values are
currently available. (Default only
supplied in Program mode; you must
supply your own field names in
Interactive.)

The TCB_STAT receives the status
byte and TCB_MESSAGE the completion
byte.

Functional composite of D_CMD_W and
D_DATA_R. This primitive requires a
CDB name to execute. Field values
are optional. Thus:

D_READ [<CDB_nm> [field nm=val..]
[data_buffer]]

If no field names are appended, the
system will use whatever values are
currently available. (Default only
supplied in Program mode; you must
supply your own field names in
Interactive.) 1If CDB name is
provided, all parameters are set
automatically. If not, in addition
to setting TCB_CDB, this command
requires you to set TCB_COUNT_SPCD,
TCB_DATA_OFFSET, and TCB_DATA_SEG.

Table A-3. Conventional Primitives (continued).

Primitive

Value

Description

D_WRITE

D_INITIATOR

3C

3E

Functional composite of D_CMD_W and
D_DATA_W. This primitive . requires a
CDB name to execute. Field values
are optional. Thus:

D_WRITE [<CDB_nm> [field nm=val..]
[buffer]]

If no field names are appended, the
system will use whatever values are
currently available. (Default only
supplied in Program mode; you must
supply your own field names in
Interactive.) If CDB name is
provided, all parameters are set
automatically. If not, in addition
to settlnq TCB_CDB, this command
requires you to set TCB_COUNT_SPCD,
TCB_DATA_OFFSET, and TCB DATA SEG.

Functional composite of D_CMD_W and
D_DATA_R or D_DATA_W and D TERM.
This primitive requires a CDB name
to execute. Field values are
optional. Thus:

D_INITIATOR [<CDB nm>
[field nm= val..] (buffer]]

If no field names are appended, the
system will use whatever values are
currently available. (Default only
supplied in Program mode; you must
supply your own field names in
Interactive.) If CDB name is
provided, all parameters are set
automatically. If not, in addition
to setting TCB_CDB, this command
requires you to set TCB_COUNT_SPCD,
TCB_DATA_OFFSET, and TCB DATA SEG.

4. Control Structures

Table A-4 lists the Task Control Block variables. The type of
each variable is given and the variable itself is defined.

Table A-4. Control Structures.

Variable Type . Definition

TCB_GATE* char Gate byte, set by driver.

TCB_PRIMITIVE char " Primitive code such as
P_MSG_R.

TCB_STATE int State of SCSI transaction.

TCB_ID_MSG char ID message sent or received.

TCB_CDB([12] char array SCSI CDB for task.

TCB_STATUS char Status byte sent or received.

TCB_COMPLETION char Completion message for task.

TCB_COUNT_SPCD long Item count requested, 24-bit
capability.

TCB_COUNT_ACT long Item count actually
transferred.

TCB_DATA_OFFSET int Buffer memory address in data
segment. .

TCB_DATA_SEGMENT int Data segment to use

Current data pointers used internally by driver for housekeeping:

TCB_DMA_HIGH char Contents of DMA_HIGH.
TCB_DMA_MODE char Contents of DMA_MODE.
TCB_DMA_ADDRESS int Contents of DMA_ADR.
TCB_DMA_COUNT int . Contents of DMA_CNT.
TCB_ACT_COUNT int Difference at EOP.

Table A-4. Control Structures (continued).

Variable

Type

Definition

Driver task_control context:

TCB_INITIATOR_ID
TCB_TARGET_ID
TCB_LUN_ID
TCB_OPTION*
TCB_BLK_SZ

TCB_MESSAGE (8]

char

char

char

int
int

char
arra

Yy

SCSI initiator address.
SCSI target address.
SCS1 LUN address.
Working copy.

Block size unless = 0.

Transient message space large
enough for extended messages.

Current and saved data pointers, used by save and restore

- pointers:

TCB_CURRENT_ADDR*
TCB_CURRENT_HIGH*
TCB_CURRENT_COUNT*
TCB_CURRENT_PHASE*
TCB_CURRENT_MODE*
TCB_SAVED_ADDR*
TCB_SAVED_HIGH*
TCB_SAVED_COUNT*
TCB_SAVED_PHASE*

TCB_SAVED_MODE*

int
char
int
char
char
int
char
int
char

char

A - 10

DMA image address.

DMA image high nibble.
DMA image count.

DMA TCB image.

DMA MODE image.

DMA image address.

DMA imaée high nibble.
DMA image count.

DMA TCR image.

DMA MODE image.

Table A-4. Control Structures (cqntinued).

Variable Type Definition
TCB_INTERRUPT_LOCATION*| int Where to go on interrupt.
TCB_RETURN_LOCATION* int Where to go after interrupt.
- TCB_LINK_OFFSET int Next TCB in linked command.
TCB_LINK_SEGMENT int Next TCB in linked segment.
TCB_ASSIGNMENT* int Driver fills this in.
TCB_GROUP* int Used by driver.

* = This command belongs to the driver. You can't write
into it. For example, writing

.TCB_GROUP = 12

would produce an error message.

A -11

5. TCB Flags -
Certain bits within the TCB structure provide you with valuable

information about the function of the system. To read these
bits, see Table A-S.

Table A-5. TCB Flags.

Flags

Definitions

TCB_GATE bits:

GATE_OWNER_FLAG

TCB_OPTION bits:

EXTRA_DATA_FLAG

RD_FLAG

WR_FLAG
TIME_OUT_FLAG
MESSAGE_FLAG
DISCONNECT_FLAG
PARITY_FLAG

INITIATOR_FLAG

bit 7 denotes ownership
1 = driver, 0 = application

bit 8 = throw away extra data
1 =-valid, 0 = invalid

bit 7 + 6 = transfer mode

00 = any transfer 01 = read only
10 = write only 11 = no transfer

bit 5 = timeout
1 = valid, 0 = invalid

bit 4 = use message system
1 = valid, 0 = invalid

bit 3 = disconnect
1 = valid, 0 = invalid

bit 2 = parity
1 = valid, 0 = invalid

bit 1 = device mode .
0 = target, 1 = initiator

A - 12

6. TCB Error Codes

1f, after a driver primitive is executed, TCB_GATE is not zeré
(COMMAND COMPLETE), it will contain one of these error codes:

Table A-6. Error Codes.

Code Name

Value

Meaning

SELECTION_ERROR
DISCONNECTED
PARITY_ERROR
BUS_RESET
CHIP_FAILURE
MESSAGE_BYTE
DIFFERENT_PHASE
ILLEGAL_CMD
OPERATOR_ABORT

TASK_CONFLICT

TASK_INACTIVE
NO_TASK_SPACE

BUS_NOT_FREE

1

S W

o © N o Wn;

13
14
15

Selection failed status.,
Disconnected status.

Parity error status.

SCSI bus reset status.

Chip failure status.

Message in byte being returned.
Unexpected phase requested.
Conflicting or unknown requests.
You aborted this operation.

Fields within T_OPEN DIS conflict
with prior T_OPEN.

Specified task is inactive.
No TCB's remaining.
SCSI bus appears to be hung.

A -13

7.

SCSI Message System

Table A-7 lists SCSI messages together with their value and the
signal direction (where IN indicates target was originator; OUT

indicates initiator was originator).

Table A-7. SCSI Message System.

Message Value|Direction| Meaning
COMMAND_COMPLETE 0 IN
ABORT 6 ouT - Command aborted.
MESSAGE_REJECT 7 IN/OUT Message was rejected.
NO_OPERATION 8 ouT This is a dummy message.
BUS_DEVICE_RESET OCH | ouT Device on the bus was

, reset.
DISCONNECT_MESSAGE | 4 IN Message was disconnected.
IDENTIFY_ MESSAGE 80H IN/OUT Identification of the.

' TARGET/LUN.
SAVE_DATA_POINTERS | 2 IN Data pointers were saved.
RESTORE_POINTERS 3 IN Data pointers were

‘ restored.
INIT_DETECT_ERROR 5 ouT Errors were detected at
initialization.
MSG_PARITY_ERR 9 ouT A message parity error wasj
detected.
LINKED_CMD_CMPL OAH IN Linked COMMAND COMPLETED.
LNKD_CMD_CMPL_FLG |OBH |IN

Linked COMMAND COMPLETE
flag. :

A - 14

APPENDIX B - SCSI-2 DIRECT ACCESS DDL

INTRODUCTION

This appendix is u catalog of the commands defined in the
Device Description Library provided on the program disk as
file SCS12_DA.DDL. This DDL file is based on a preliminary
draft of the proposed SCSI-2 standard dated October 31, 1986.
This rendition of the SCST-2 direct access DDL must be
considered only a prototype which requires editing by you to
match the specific implementation of your particular target.
To do this you will need to refer to the SCSI manual provided
by the target vendor. Presently the proposed standard is in
considerable flux and is undergoing changes by, and at the
sole discretion of, the ANST X3T9.2 Task Group.

Table B-1 provides an alphabetical list of the commands in the
catalog. Each catalog entry includes the template of the CDB,
the command name, the referenced TYPE definition, the CDB data
as a string of hex digits, the name of each defined field in

the CDB and
the example

the DATA buffer attached to the command (refer to
COPY command below).

Each bit of the CDB template is coded.
identifies the first bylte of each CDB.
to the right of the template.
inserted in the "Unit#" field when the command is
target.
field. The nume assigned each field can be found
of the template.
an enumerated field.
to the right of the letter in ascending order,
comas. Unnamed enumerations appear as blanks.
the enumerated value 1 of field A of the COPY CDB
assigned the label PAD while the value 0 has been
label. Bit positions not assigned to a field are
in the template by 0.

If there is a DATA buffer assigned to a CDB other

"Operation code"
Its assigned value is
The target LUN address is

issued to a

A string of a lower case letter identifies a named

to the right

A string of an upper case letter identifies

The nume of cach enumeration is listed

separated by
For example,

has been
assigned no
identified

than the

normal default buffer .SMALL, it is identified to the right of
the template.

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: COPY

000 Operation code CDR type: TYPE_004

001 Unit# 0 0 0 0 A CDB data: 180000001000

002 bbbbbbbb Operation code = 18h

003 bbbbbbbb A: , PAD

004 bbbbbbbb bb ... bb: LENGTH

005 0 00O0OO F+L DATA buffer: COPY_4

B-1

As mentioned above, you will need to edit this DDL to match
the implementation of your particular target. We suggest you
save any changes under a file name different than SCSI2_DA.
Below are some additional hints (cans and can’ts) for you to
consider as you edit the DDL.

First, you CAN:

create a new FORM or TYPE field by assigning bits
presently unassigned to the new field,

change the name of a TYPE or FORM field,
change the name of a CDB or DATA buffer,
change the DATA buffer attached to a CDB.

Second, you CAN, BUT not without impact elsewhere:
change the size or kind of a field. 1If a resized field
encroachs into another defined field, that other field is
deleted. :
change the size of a TYPE tcmplate. If you do you must
delete and recreate all CDB’s referencing the changed
template.
change the size of a FORM template. If you do you must
delete and recreate all DATA buffers referencing the
changed template.
rename or delete a TYPE or FORM template. If you do you
must delete and recreate all CDB’s or DATA buffers

referencing the renamed or deleted template.

delete a TYPE or FORM field. If you do all subsequent
fields in the TYPE or FORM will be deleted.

Lastly, you CAN'T:

change the TYPE of a CDB (You musi delete the existing
CDB and recreate it with the new TYPE assigned),

change the FORM of a DATA buffer (You must delete the
existing DATA and recreate is with the new FORM
assigned).

Long names for CDB's, DATA buffers and FORM and TYPE fields
should be avoided. They do impact program performance,

' 3’2

increase DDL size and require more typing at the keyboard.
For understandability, the names used in this DDL are
particularly verbose. You may wish to edit these names to

something equally meuaningful Lo you while reducing their
length.

Keep in mind that any edits you make on a TYPE or FORM
template (other than field name changes) may adversely impact
the CDB’s and DATA buffers referencing those templates.

Table B-1 Commands for Direct Assess Devices

JOMPARE (39) e, B-12
SOPY (I18) vevvvnrnnnnnnnns ettt Ceeereneenee. B= T
SOPY_AND_VERIFY (3A) v'vvvvvnnnnneennnnnnnnns tetieeen... B-12
"LUSH_CACHE (35) vvvvvurnnnennnns e e Ceeveee.. B-11
TORMAT_UNTT (04) v vvvvvnroeeeeernnneeenneeeeeeneeennnnes B- 5
INQUIRY (12) e ereeerrana it teiireee. B- B
LOCK/UNLOCK_CACHE (36)venvunn. R, e B-12
10DE_SELECT (15) e e O
AODE_SENSE (1A) o vvvnrneeennneenneennnnneennneeennns ... B= 17
SREFETCH (34) +vvvvvrnnnninnenernnnenennns e vee.. B-11
?REVENT/ALLOW_MEDIUM_REMOVAL (1E) e, B- 8
TBAD (08) o vt ittt etin et rteeenneesaneaeennaneeennnonns B= 6
READ_BUFFER (3C) tvvineetineerneeenonaneeanneeeeneennns B-13
IEAD _CAPACTTY (25) ©vvuerennneevnennnnnnnenns e B- 8
READ DEFECT_DATA (37) vttt ertieenneenernnunennnneennns B-12
IBAD _EXTENDED (28) o vvvtvttinnneennnrernnnneeeeennnnns B- 9
AEAD_LONG (BE) v vevrenevtieeenneenneeneennnneeennennnns B-13
AEASSIGN_BLOCKS (07) tvuueennnunneenneeennnnnnnneneeeans B- 5
RECETVE_DIAGNOSTIC_RESULTS (1C) uvvvveerennnnnnnnnnenn. B- 8
BELEASE (7)) tvttteettteee e eieeeeeenaeeeeenenennnnens B- 7
AEQUEST_SENSE (02) o'vvviinernnenneenennneeennnnns ee... B- 5
AESERVE (16) v.vvverrrnnnnennnnn e B- 7
REZERO_UNTT (01) &vvvtuineennenneennnnnneennoneeenaenns B- 5
SEARCH_DATA _EQUAL (B1) tuvvetvnerunnnneennnneeennannns B-10
SEARCH_DATA_HIGH (B0) . 'vvvevanenrnnnnnenrnnaeeennneens B-10
SEARCH_DATA_LOW (32) & ovvtvnneenneernnnnnenrnnneennnnnns B-10
SEEK (0B) & r e teeunnieineeereneeeeseeeeernnnnnneneens B- 6
SERK_EXTENDED (2B) +vvvvvneteennneeeneeeeennnnnnonnoens B- 9
SEND_DIAGNOSTIC (1D) wuvvvvvnrenernnnnneennnanens e B- 8
SET_LIMITS (33) tuvveennrunnnenennnennnnoeeeeoeonnnnnnns B- 7
START/STOP_UNIT (1B) tvvveunneennennnnnneeennnaeennanens B- 8
TEST UNIT_READY (00) «ovuuirrnnennenennnns e B- 5
VERTFY (2F) eevvnnenennunennnnsneerenuneeeonnenens B-10
WRITE (0A) v.vvvvvrnnnn e rienereieer e e raanas B- 6
WRITE_AND_VERIFY (2E) vrivvvnernnernnnenennns tetirieee.. B- 9
WRITE_BUFFER (3B) «vvvvrnnerenneneeeneeneonnsnnnannnns B- 9
WRITE_EXTENDED (2A) tvvvevnnerennennnnnnns P | T
WRITE _LONG (3F) e e e, B-14

TEST UNIT READY

BYTE -- bit 7-6-5-4--3-2-1-0 CDB name: TEST_UNIT_READY
000 Operation code CDB type: TYPE_001

001 Unit# 0 0 0 0 O CDB data: 000000000000
002 0000O0O0O0TO Operation code = 00h

003 0000O0O0OOO

004 00000O0O0O

005 000O0O0O0 F+L

REZERO UNITT

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: REZERO_UNIT
000 Operation code CDB type: TYPE_001

001 Unit# 0 0 0 0 O CDB data: 010000000000
002 00000O0O0CO Operation code = 0lh
003 00000O0COO

004 00000O0CO0O

005 000000 F+L

REQUEST SENSE

BYTE -~ bit 7-6-5-4-3-2-1-0 CDB name: REQUEST_SENSE
000 Operation code CDB type: TYPE_002

col Unit# 0 0 0 0 O CDB data: 030000000000
002 0000O0O0O0OO Operation code = 03h
003 0000O00O00O0 aaasaaaa: LENGTH

004 aaaaaaaa DATA buffer: SENSED
005 0000GO0O F+L

FORMAT UNIT

BYTE -~ bit 7-6-5-4--3-2-1-0 CDB name: FORMAT_UNIT
000 Operation code CDB type: TYPE_007

001 Unit# A B c ¢ ¢ CDR data: 040000000000
002 00000O0O0CO Operation code = 04h
003 dddddddd A: , FMTDATA

004 dddddddd B: , CMPLST

005 000000 F+L ccc: LIST_FORMAT

dd ... dd: INTERLEAVE
DATA buffer: DEFECTS

REASSIGN BLOCKS

BYTE -- bit 7-6-5-4-3--2-1-0 CDB name: REASSIGN_BLOCKS
000 Operation code CDB type: TYPE_001

001 Unit# 0 0 0 0 O CDB data: 070000000000
002 00000O0O0OTO Operation code = 07h

003 0000O0COOO DATA buffer: DEFECT_LIST
004 0000O0O0COO0

005
READ (6 byte

BYTE -- bit
000
001
002
003
004
005

000000 F+L

CDB)

7-6-5-4-3--2--
Operation ¢
Unit#
a a a
a a a
bbb
000

d

+

T2 O

1
o
a
a
a
b
F

cosps
cU o e
DU PM®

WRITE (6 byte CDB)

BYTE -- bit
000
001
o002
003
004

005
SEEK (6 byte

BYTE
000
001
o002
003
004
005

-- bit

INQUIRY

BYTE -- bit
000
001
002
003
004
005

MODE SELECT

BYTE -- bit
000
001
002
003
004

7-6-5-4-3-2-1-0
Operation code
Unit# a
aaaa
a4 a a a
bbbb
0000

STcepn
cTUsoe
HOE e
NT e LD

CDB)

7-6-5-4-3-
Operatio
Unit# a

L]

..,1_.
cod

o

a

a

n o
aa
aaaa
aaaaaaa
0000O0OCO
000000O0TF

7-6-5-4-3-2-
Operation ¢
Unit# A 0 O
000000O
0000O00O0
c ccce

CDB name: READ

CDB type: TYPE_008

CDB data: 080000000000
Operation code = 08h
aa ... aa: ADDRESS
bbbbbbbb: LENGTH

CDB name: WRITE

CDB type: TYPE_008
CDB data: 0A0000000000
Operation code = 0Ah
aa ... aa: ADDRESS
bbbbbbbb: LENGTH

CDB nume: SEEK

CDB type: TYPE_009

CDB data: 0B000000000O
Operation code = OBh
aa ... aa: ADDRESS

CDB name: INQUIRY

CDB type: TYPE_003

CDB data: 120000000000
Operation code = 12h
aaaa: FORMAT

bbbbbbbb: LENGTH

DATA buffer: INQUIRED

CDB name:
CDB type:
CDB data:
Operation
A: , PF
B: , SP

B-6

MODE_SELECT
TYPE_010
150000000000
code = 15h

005

RESERVE

BYTE -- bit
000
001
002
003
004
005

RELEASE

BYTE -- bit
000
001
002
003
004
005

COPY

BYTE - bit
000
001
002
003
004
005

MODE SENSE

BYTE ~- bit
000
001
002
003
004
005

000000 F+L

7-6-5-4-3-2-1-0
Operation code
Unit# AbbbC
ddd

dddd
e eee
eeee
00O0F

S0
So o
o ®

<+

o ®a

7-6-5-4-3-
Operation
Unit# 0

cToCTuUo

7-6-5-4-3-2-1-0
Operation code
Unit# A 00 0O

BBccccecec
00000000
dddddddd
00000O0O F+L

ccccceccc: LENGTH
DATA buffer: PAGE_4

CDB name: RESERVE

CDB type: TYPE_O011l

CDB data: 160000000000
Operation code = 16h

A: , TRDPTY

bbb: DEVICE

C: , EXTENT

dddddddd: IDENTIFICATION
ee ... ee: LENGTH

DATA buffer: EXTENTS

CDB name: RELEASE

CDB type: TYPE_O012

CDB data: 170000000000
Operation code = 17h

A: , TRDPTY
bbb: DEVICE
C: , EXTENT

dddddddd: IDENTIFICATION

CDB name: COPY

CDB type: TYPE_004

CDB data: 180000001000
Operation code: 18h

A: , PAD }

bb ... bb: LENGTH
DATA buffer: COPY_4

CDB name: MODE_SENSE
CDB type: TYPE_O013

CDB data: 1A0004000000
Operation code = 1lAh

A: , PF
BB: CURRENT, CHANGEABLE, DEFAULT
SAVED

ccccec: PAGE_CODE
dddddddd: LENGTH
DATA buffer: PAGE_4

"TART/STOP UNIT

BYTE -- bit 7-6-5-4-3-2-1-0 CDR name: START/STOP_UNIT
000 Operation code CDB type: TYPE_014

001 Unit# 0 0 0 0 A CDB data: 1B0000000000
002 0000O0O0CODO0 Operation code = 1Bh

003 00000000 A: , IMMED

004 00000O0BC B: , LOEJ

005 0000O0O0 F+L C: STOP, START

‘ECEIVE DIAGNOSTIC RESULTS

RYTE -- bit 7-6-5-4-3-2-1-0 CDB nume: RECEIVE_DIAGNOSTIC_RESULTS

000 Operation code CDB type: TYPE_005

001 Unit# 0 0 0 0 O CDB data: 1C0000000000
002 00000O0OCO Operation code = 1Ch
003 a a4 aaaaaa aa ... aa: LENGTH

004 aaaaaaaa

005 000000 F+L

END DIAGNOSTIC

BYTE ~-- bit 7-6-5-4-3-2-1-0 CDB name: SEND_DTAGNOSTIC
000 Operation code CDB type: TYPE_006

001 Unit# 0 0 ABC CDB data: 1D0000000000
002 0000O0O0OO0CO Operation code = 1Dh

003 dddddddd A: , SELFTEST

004 dddddddd B: , DEVOFL

005 000O0O0O0 F+L C: , UNITOFL

dddddddd: LENGTH
>REVENT/ALLOW MEDIUM REMOVAL

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: PREVENT/ALLOW_MEDIUM_REMOV

000 Operation code CDB type: TYPE_015

001 Unit# 0 0 0 0 0 CDB data: 1E0000000000
002 00000O0CGOO Operation code = lEh
003 00000O0CO0O A: ALLOW, PREVENT

004 0000O0O0GOA

005 000000 F+L

IEAD CAPACITY

BYTE -- bit 7-6-5-4- - CDB name: READ_CAPACITY

3-2-1-0
000 Operation code CDB type: TYPE_104
001 Unit# 0 0 0 0 A CDB data: 25000000000000000000
002 bbbbbbbb Operation code = 25h
003 bbbbbbbb A: , RELADR
004 bbbbbbbb bb ... bb: ADDRESS
005 bbbbbbbbd C: , PMI.

‘ ' 'B-8

006 0000O00O
007 00000
008 000©O0CO
009 0000O00O

READ (10 byte CDB)

BYTE - bit 7-6-5-4-3
000 Operation
001 Unit# A B
002 ddddd
003 ddddd
004 ddddd
005 ddddd
006 000O00O0
007 e e eee
008 eeeee
009 00000
WRITE (10 byte CDB)

BYTE -- bit 7-6-5--4-3

000 Operation
001 Unit# A B
002 ddddd
003 ddddd
004 ddddd
005 ddddd
006 000O0O
007 e e e ee
008 eeeee
009 00000

SEEK (10 byte CDB)

BYTE -~ bit 7-6-5-4-3
000 Operation
001 Unit# 0 0
002 aaaaa
003 aaaaa
004 aaaaa
005 aaaaa
006 00000O0
007 00000
008 00000
009 00000

WRITE AND VERIFY

BYTE -~- bit 7-6-5-4-3-2

HOoO0O0
Qoo

cooc
+
Bl

-

a.

)
o toanaaQo O©

o oA N
mo o oaAanaCO
+

]

a

oo s oaQaagaac
mo 0oaQaaAo0 -
HeooLanae O

+

(-9
Hroocos e O O

HTOOoOoON PR OO -

CoOCOD Y OM O
+

-1-0

DATA buffer: CAPACITY

CDB name:
CDB type: TYPE_105

CDB data: 28000000000000000000
Operation code = 28h

A: , DPO

B: , FUA

C: , RELADR
dd ... dd:
ee . ee:

READ_EXTENDED

ADDRESS
LENGTH

CDB name:
CDB type:
CDB data:
Operation
A: , DPO

B: , FUA

C: , RELADR

dd ... dd: ADDRESS
ee ... ee: LENGTH

WRI1ITE_EXTENDED
TYPE_105
2A000000000000000000
code = 2Ah

CDB name:
CDB type:
CDB data:
Operation
aa ... aa:

SEEK_EXTENDED
TYPE_106
.2B000000000000000000
code = 2Bh

ADDRESS

CDB name: WRITE_AND_VERIFY

B-9 N

000
001
002
003
004
005
0086
007
008
009

VERIFY

BYTE -- bit
000
001
002
003
004
005
006
007
008
009

SEARCH DATA

BYTE -- bit
000
001
002
003
004
005
006
007
008
009

BYTE -- bit
000
001
002
003
004
005
006
007
oog
009

a

Operatio
Unit#

o]

0 0] O = = =h =y
Qo R O " = Hh ey
S R O =y = h -y
Qo 0 O Hy =y =y >
QR O ryth eyt
Q0RO =)y O
’ENN O =+ M - T O
£00 08 O = riy ™ = 3 @

(3

7-6-5-4-3-
Operation
Unit#

®

0o

®
1mnoaommOoT
a
ey = OO0 ® 0O 0D O

OOt odae O N
+

Mmoo o Do >
OHmHODaE B =

i
~
|

moooapaa®o =

7-6-5-4-
Operatio
Unit#

[- - N - Wy o ¢ Y =] roPTOQL AR O

3

a

(2]

cCotoanan
CoroL oo

(=]
°
o
=
OOG°&Q&Q§£Q oo 0oL s
+

2]
a.

ot o CaaAnld>D S oLafla >
ot oCaAOS W Co oo OI W
—_ooOARARREO —~

octeoppLaco N COBDOLALELO

+

CDB type: TYPE_107

CDB data: 2E000000000000000000
Operation code = 2Eh

A: , DPO

B: , FUA

C: , WRTSME

D: , BYTCHK

E: , RELADR

ff . ff: ADDRESS

g ... gg: LENGTH

CDB name: VERIFY

CDB type: TYPE_108

CDB data: 2F000000000000000000
Operation code = 2Fh

A: , DPO

B: , FUA

C: , BYTCHK

D: , RELADR :

ee ... ee: ADDRESS

ff ... ff: LENGTH

CDB name: SEARCH_DATA_HIGH
CDB type: TYPE_109

CDB data: 30000000000000000000
Operation code = 30h

A: , INVERT

B: , SPNDAT

C: , RELADR

dd ... dd: ADDRESS

ee ... ce: LENGTH

DATA buffer:

DATA buffer:

SEARCH_DATA

CDB name: SEARCH_DATA_EQUAL

CDB type: TYPE_109 :

CDB data: 31000000000000000000
. Operation code = 31h

A: , INVERT

B: , SPNDAT

C: , RELADR
. dd dd: ADDRESS

ee ee: LENGTH

SEARCH_DATA

BYTE -- bit 7-6-5-4-3-2-1-0

000 Operation code
001 Unit# A 0 0 B C
002 dddddddd
003 dddddddd
004 dddddddad
005 dddddddd
006 000000O0OTO
007 eeeeeeee
008 e e e ee ec e
009 000O0OGOC F+L
SET LIMITS
BYTE -- bit 7-6-5-4-3-2-1-0
000 Operation code
001 Unit# 0 0 0 A B
002 ccccceccecec
003 cececcecceccc
004 cccccccecece
005 cccceccececc
006 00000O0OO
007 dddddddd
008 dddddddd
009 000000 F+L
PRE-FETCH
BYTE -- bit 7-6-5-4-3-2-1-0
000 Operation code
001 Unit# 0 0 0 A B
002 cccccceccecec
003 ccccecceccecececec
004 cccccccecec
005 ¢ ccceccecceccece
006 000000O0OCO0
007 dddddddd
008 dddddddd
009 000O0O0O F+L
FLUSH CACHE
BYTE -- bit 7-6-5-4-3-2-1-0
000 Operation code
001 Unit# 0 0 0 0 A
002 bbbbbbbb
003 bbbbbbbbd
004 bbbbbbbb
005 bbbbbbbb

CDB name: SEARCH_DATA_LOW

CDB type: TYPE_109

CDB data: 32000000000000000000
Operation code = 32h

A: , INVERT

B: , SPNDAT

C: , RELADR

dd ... dd: ADDRESS

ee ... ee: LENGTH

DATA buffer: SEARCH_DATA

CDB name:
CDB type: TYPE_110

CDB data: 33000000000000000000
Operation code = 33h

A: , RDINH
B: , WRINH
cc ... cc:
dd ... dd:

SET_LIMITS

ADDRESS
BLOCKS

CDB name: PREFETCH

CDB type: TYPE_111

CDB data: 34000000000000000000
Operation code = 34h

A: , TMMED

.B: , RELADR

ADDRESS
LENGTH

cc ... cc:
dd ... dd:

CDB name:
CDB type: TYPE_112

CDB data: 35000000000000000000
Operation code = 35h

A: , RELADR

bb ... bb: ADDRESS

cc ... cc: LENGTH

FLUSH_CACHE

B-11

006 000000O0OC

007 ccccceocceccec

008 ceccccccece

009 0000O0OF+L

LOCK/UNLOCK CACHE

BYTE -- bit 7-6-5--4-3-2-1-0 CDB name: LOCK/UNLOCK_CACHE
000) Operation code CDB type: TYPE_1l11

001 Unit# 0 0 0 A B CDB data: 36000000000000000000
002 ccccceccc Operation code = 36h

003 ccceccccecc A: , IMMED

004 ccccececcec B: , RELADR

005 ccecccecceccc cc ... cc: ADDRESS

006 00000000 dd ... dd: LENGTH

007 dddddddd

008 dddddddd

009 000000 F+L

READ DEFECT DATA

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: READ_DEFECT_DATA
000 Operation code CDB type: TYPE_113

001 Unit# 0 0 0 0 0 CDB data: 37000000000000000000
002 000ABCcCECcocC Operation code = 37h

003 000000O0O A: , P

004 00000000 B: , G

005 00000O0O0O0 ccc: FORMAT

006 0000000O0O0 dd ... dd: LENGTH

007 dddddddd

008 dddddddd

009 00000 O F+L
COMPARE

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: COMPARE

000 Operation code CDB type: TYPE_101

001 Unit# 0 0 0 0 A CDB data: 39000000000000000000
002 000000O0CO0 Operation code = 39h

003 bbbbbbbdhb A; , PAD

004 bbbbbbbb bb ... bb: LENGTH

005 bbbbbbbDDL

006 00000O0O0O0

007 0000000O0O0

008 00000000

009 000000 F+L

COPY AND VERIFY

BYTE -- bit 7-6-

134]

-4-3-2-1-0 CDB uname: COPY_AND_VERIFY

. B-12

000
001
002
003
004
005
006
007
008
009

WRITE BUFFER

BYTE -- bit
000
001

002
003
004
005
006
007
008
009

READ BUFFER

BYTE -- bit
000
001
002
003
004
005
006
007
. 008
009

READ LONG

BYTE -~ bit
000
001
002
003
004
005
006
007

Operatio
Unit#
00

cooconnno
cCooonann oo
cCocontnnNoOs

coocoanC
cooconn0n

7-6-6-4-3-

Operation
Unit#

SaAapnnono
Saacpnonnoc
cCaoapgnntc
canaacnfao0oo
cSanannn To

7-6-5-4-3-

Operation
Unit# 0
b
c

caanconw
cCatpann 6T
CaLaAann T
oAt n0oUTo
Saacnaa

7-6-5-4-3-

Operation
Unit# 0

a.aoacana0
ao0n0aco0
A 0000
aonNnonono
o0 n00o-n

a

c

moooG6n OO0
fococnnNo®wao

cocooconnt OO
+

9
-

d

2]
tfaacaoonnot oo

THaaAannnNTe o -

cCaaannnNoo
+

2-

-0

a

[¢]
nNnoTeoe

coanann oo
Baat0o0oTd o
tafoanas

2-1-0
code
0

aocananae
aohono»>
aonnnNow

CDB type: TYPE_102

CDR data: 3A000000000000000000
Operation code = 3Ah

A: , BYTCHK

B: , PAD

cc. ... cec: LENGTH

CDB name: WRITE_BUFFER

CDB type: TYPE_103

CDB data: 3B000000000000000000
Operation code = 3Bh

aa: MODE

bbbbbbbb: BUFFER_ID

cc ... cc: BUFFER_OFFSET

dd ... dd: LENGTH

CDB name: READ_BUFFER

CbB type: TYPE_103

CDB data: 3€000000000000000000
Operation code = 3Ch

aa: MODE

bbbbbbbb: BUFFER_ID

cc ... cc: BUFFER_OFFSET

dd ... dd: LENGTH

CDB name: READ_LONG

CDB type: TYPE_114 .

CDB data: 3E000000000000000000
Operation code = 3Eh

A: , CORRCT

B: , RELADR

cc ... cc: ADDRESS

dd ... dd: LENGTH

008 dddddddd

009 000000 F+L

YRITE LONG

BYTE -- bit 7-6-5-4--3-2-1-0 CDB name: WRITE_LONG
000 Operation code CDB type: TYPE_112
001 Unit# 0 0 0 0 A CDB data: 3F000000000000000000
002 bbbbbbbb Operation code = 3Fh
003 bbbbbbbb A: , RELADR .
004 bbbbbbbb bb ... bb: ADDRESS
005 bbbbbbbb cc ... cc: LENGTH
006 00000O0O0CO

007 ccececaecceccecec

008 cccecceccec

003 000O0O0O F+L

APPENDIX C - SCST-2 SEQUENTIAL ACCESS DDL

INTRODUCTION

This appendix is a catulog of the commands defined in the
Device Description Library provided on the program disk as
file SCSI2_SA.DDL. This DDL file is based on a preliminary
draft of the proposed SCSI-2 standard dated October 31, 1986.
This rendition of the SCSI-2 sequential access DDL must be
considered only a prototype which requires editing by you to
match the specific implementation of your particular target.
To do this you will need to refer to the SCSI manual provided
by the target vendor. Presently the proposced standard is in
considerable flux and is undergoing changes by, and at the
sole discretion of, the ANSI X3T9.2 Task Group.

Table C-1 provides an alphabetical list of the commands in the
cutalog. Each catalog entry includes the template of the CDB,
the command name, the referenced TYPE definition, the CDB data
as a string of hex digits, the name of each defined field in
the CDB and the DATA buffer attached to the command (refer to
the example COPY command below).

Each bhit of the CDB template is coded. "Operation code"
identifies the first byte of each CDB. 1ts assigned value is
to the right of the template. The target LUN address is
inserted in the "Unit#" field when the command is issued to a
target. A string of a lower case letter identifies a named
field, The name assigned each field can be found to the right
of the template. A string of an upper case letter identifies
an enumerated field. The name of each enumeration is listed
to the right of the letter in ascending order, separated by
comas. Unnamed enumerations appear as blanks. For example,
the enumerated value 1 of field A of the COPY CDB has been
assigned the label PAD while the value 0 has been assigned no
label. Bit positions not assigned to a field are identified
in the template by 0.

If there is a DATA buffer assigned to a CDB other than the
normal default buffer .SMALL, it is identified to the right of
the template. .

BYTE -- bit 7-6--5-4-3-2-1-0 CDB name: COPY

000 Operation code CDB type: TYPE_004

001 Unit# 0 0 0 0 A CDB data: 180000001000
002 bbbbbbbb Operation code = 18h
003 . bbbbbbbb A: , PAD

004 bbbbbbbb bb ... bb: LENGTH

005 000000 F+L

DATA buffer: COPY_4

c-1

As mentioned above, you will need to edit this DDL to match
the implementation of your particular target. We suggest you
save any changes under a file name different than SCSI2_SA.
Below are some additional hints (cans and can'ts) for you to
consider as you edit the DDL.

First, you CAN:

create a new FORM or TYPE field by assigning bits
presently unassigned to the new field,

change the naﬁe of a TYPE or FORM field,
change the name of § CDB or DATA buffer,
change the DATk buffer attached to a CDB.
Second, you CAN, BUT not without impact elsewhere:
change the size or kind of a field. If a resized field

encroachs into another defined field, that other field is
deleted.

change the size of a TYPE template. If you do you must
delete and recreate all CDB’s referencing the changed
template.

change the size of a FORM template. If you do you iust
delete and recreate all DATA buffers referencing the
changed template.

renahe or delete a TYPE or FORM template¢e. If you do you
must delete and recreate all CDB’s or DATA buffers’
referencing the renamed or deleted template.

delete a TYPB or FORM field. If you do all subseduent
ficlds in the TYPE or FORM will be deleted.

Lastly, you CAN’'T:

change the TYPE of a CDB (You must delete the existing
CDB and recreate it with the new TYPER assigned),

change the FORM of a DATA buffér (You must delete the
existing DATA and recreate is with the new FORM
assigned).

Long names for CDB’s, DATA buffers and FORM and TYPE fields
should be avoided. They do impact program performance,

© -2

increase DDL size and require more typing at the keyboard.
For understandability, the names used in this DDL are
particularly verbose. You may wish to edit these names to
something equally meaningful to you while reducing their
length.

Keep in mind that any edits you make on a TYPE or FORM

template (other than field name chianges) may adversely impact
the CDB’s and DATA buffers referencing those templates.

Table B-1 Commands for Sequential Assess Devices

COMPARE (39)

........ Cererseaeane . sesrersssnsaes C-10
COPY (18) ...vvuunn.. e, .. eiteiee.. C- 8
COPY_AND_VERIFY (3A) ©uuierrnnnnnennnnnennnns teeierees. C-10
ERASE (19) e R vee... C- 8
INQUIRY (12) e e e e, ieee.. C= T
LOAD/UNLOAD (1B)ocvvn.. s e ... C- 8
LOCATE (2B) «..vvuevnnn. e e . c-9
MODE_SELECT (15) . 'vuunveennnnneeennnneennennnns eree.. €= T
MODE_SENSE (LA) «v'iviuineennnnneeennnnneennennnens e c- 8
PREVENT/ALLOW_MEDIUM_REMOVAL (1E) B
READ (08) e e e e e ettt e, c- 5
READ BLOCK LIMITS (05) wu'vvrvrinnnreenneennennenn .. c- 5
READ_BUFFER (3C) e e e c-11
READ_LOG (1F) ...vvnvnnn. ettt ver.. C~ 9
READ POSTTION (34) & vvvvnnenronnnnneeenneeneenneanens .. Cc-10
READ REVERSE (OF) uuuieennnnneneennnrnneeennneanneenns c- 6
RECEIVE_DIAGNOSTIC_RESULTS (1C)ovnvvnnnn e, c- 9
RECOVER BUFFERED DATA (14) +.vvvvnreirnnennernnennennns c- 7
RELEASE (17) & vtevtieenneeerenneneeeennenneenneenennes c- 8
REQUEST_SENSE (03) .v.vvvnrennnnn. B c- 5
RESERVE (1B) +tvevoneernneennssnnneeenneoneonnennenns .. C- 1
REWIND (01) wvvnemneenneeennnnnnnennns R iiee.. C- B
SPACE (11) v ttietieeeeneeenineeeennneennenseennonenns c- 6
SEND DTAGNOSTIC (ID) +vuvvrrnnnnnenennennnennennannnns c- 9
TEST_UNIT_READY (00) ..uvvvurunnnnennnnns e, . Cc-5
TRACK SELECT (O0B) «vuvvunrerrnnnnneeennnennennnns e c- 6
VERIFY (2F) vvvvennnnnn. et e i e e c-7
WRITE (OA) tvieretnnieennnneeenenneeeoneennennas eee.. C- 6
WRITE FILEMARKS (10) et e e c- 6
WRITE_BUFFER (3B) e ettt e c-11

TEST UNIT READY

BYTE -- bit 7-6-5-4-3-
000 Operation
001 Unit# 0 0
002 00000
003 00000
004 00000
005 0000O00O
REWIND

BYTE -~ bit 7-6-5-4-3~
000 Operation
001 Unit# 0 O
002 00000
003 00000
004 00000
005 0000O00O0

REQUEST SENSE

BYTE -- bit 7-6-5--4-3-
000 Operation
001 Unit# 0 0
002 00000
003 00000
004 aaaaa
005 00000

READ BLOCK LIMITS

2-1-0
code
000

BYTE -- bit 7-6-5-4-3-2-1-0
000 Operation code
001 Unit# 0 0 0 0 O
002 000000O0O0
003 000000CO0OTO
004 00000O0OCO
005 000000 F+L
READ

BYTE -~ bit 7-6-5-4-3-2-1-0
000 Operation code
001 Unit# 0 0 0 A B
002 ccceccccec
003 cceccecceccecce
004 ccceccccecc
005 00000O0O0FIL

CDB name:
CDB type:
CDB data:
Operation

CDB name:
CDB type:
CDB data:
Operation

CDB name:
CDB type:
CDB data:
Operation
aaaaaaaa:

DATA buffer:

CDB name:
CDB type:
CDB data:
Operation

CDB name:
CDB type:
CDB data:
Operation
A: , SILI
B: ,
cc

FIXED .
.+. cc: LENGTH

TEST_UNIT_READY
TYPE_001
000000000000
code = 00h

REWIND
TYPE_001
010000000000
code = Olh

REQUEST_SENSE
TYPE_002
030000000000
code = 03h
LENGTH

SENSED

READ_BLOCK_LIMITS
TYPE_001
050000000000

code = 05h

READ
TYPE_008
080000000000
code = 08h

WRITE

BYTKE —-- bit 7-6-5-4-3-2-1-0 CDB name: WRITE

000 Operation code CbB type: TYPE_009

001 Unit# 00 0 0 A CDB data: 090000000000
002 bbbbbbbb Operation code = 09h
003 bbbbbLDBbDLOD A: , FIXED

004 bbbbbbblb bb ... bb: LENGTH

005 00000 O F+T

TRACK SELECT

BYTE -- bit 7-6-5-4-3-2-1-0 CDR name: TRACK_SELECT
000 Operation code CDB type: TYPE_O010

001 Unit# 0 0 0 0 O CbB data: 0B0000000000
002 0000O0O0O0O Operation code = 0OBh
003 00000O0O0O0O aasaasaaa: TRACK

004 aaaaaaaa

005 000000 F+L

READ REVERSE

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: READ_REVERSE
000 Operation code CDB type: TYPE_008

001 Unit# 0 0 0 A B CDB data: OF0000000000
002 ccececceccecec Operation code = OFh
003 ceccecceccecaece e A: , SILI

004 ccccececceccecce B: , FIXED

005 000O0O0O0 F+L c¢ ... cc: LENGTH

WRITE FILEMARKS

BYTE -- bit 7-6-56-4-3 2 -1-0 CDR name: WRITE_FTLEMARKS
000 Operation code CDB type: TYPE_O11l

001 Unit# 0 0 0 0 A CDB data: 100000000000
002 bbbbbbbhb Operation code = 10h

003 bbbbbbbb A: , IMMED

004 bbbbbbbb bb ... bb: FILEMARKS

005 000000 F+L
SPACE

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: SPACE

000 Operation code CDB type: TYPE_012

001 Unit# 0 0 0 A A CDB data: 110000000000
002 bbbbbbbb Operation code = 1lh .
003 bbbbbbbb AA: BLOCKS, FILEMARKS

004 bbbbbbbb SEQUENTIAL, END-OF-DATA
005 0000O0O F+L bb ... bb: COUNT

INQUTRY

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: INQUIRY

000 Operation code CDB type: TYPE_003

001 Unit# 0 0 0 0 0 CDB data: 120000000000
002 000O0Oaaaa Operation code = 12h
003 00000O0O0OC aaaa: FORMAT

004 bbbbbbbb bbbbbbbb: LENGTH

005 000000 F+L DATA buffer: INQUIRED
VERIFY

BYTE -- bit 7-6-5-4-3-2-'1-0 CDB name: VERIFY

000 Operation code CDB type: TYPE_013

001 Unit# 0 0 A B C CDB data: 130000000000
002 dddddddd Operation code = 13h
003 dddddddd A: TMMED

004 dddddddd B: BYTCMP

005 000000 F+L C: FIXED

dd ... dd: LENGTH

RECOVER BUFFERED DATA

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: RECOVER_BUFFERED_DATA
000 Operation code CDBR type: TYPE_009

001 Unit# 0 0 0 0 A CDB data: 140000000000

002 bbbbbbbb Operation code = 14h

003 bbbbbbbb A: , FIXED

004 bbbbbbbb bb ... bb: LENGTH

005 000000 F+L

MODE SELECT

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: MODE_SELECT
000 Operation code CDB type: TYPE_014

001 Unit# A O 0 O B CDB data: 150000000000
002 0000O0O0O00O Operation code = 15h
003 000O0O0O0O0CO A: , PF

004 cCc¢C CCCCC B: , SP

005 000000 F+L ¢¢ ... cc: LENGTH

DATA buffer: PAGE_O

RESERVE UNIT

BYTE - bit 7--6--5-4-3-2--1-0 CDR name: RESERVE_UNIT
000 Operation code CDB type: TYPE_O015

001 Unit# Ab b b O CDB data: 160000000000
002 - 00000000 Operation code = 16h
003 000000O00O0 A: , THIRDPTY

004 00000O0COO bbb: THIRDPTY_ID

c-7

005
RELEASE UNIT

BYTE ---
000
001
002
003
004
005

bit

COPY

BYTE
000
001
002
003
004
005

bit

ERASE
BYTE - bit
000

001

o0l

003

004

005

MODE SENSE

BRYTE
000
001
002
003
004
005

= bit

LOAD/UNLOAD
BYTE - - bit
000 -

001

002

0 F+L
7-6-5-4-3-2-1-0
Operation code
Unit# Abbb O
00000O0OCO
0000O0OO0O
00000O0O0O
000O0O0O F+L
7-6-5-4-3-2-1-0
Operation code
Unit# 0 0 0 0 A
bbbbbbhbb
bbbbbbbb
bbbbbbbb
000O0O0O0O F+L
7-6-5-4-3-2-1-0
Operation code
Unit# 0 0 0 A B
0000O0O0COO
00000O0CO0O
00000O0TOCGO
00000O00O0 F+L

7-6-5-4-3-2-1-0

Operation code
Unit# 0 0 0 0 O
AAbbbbbb
0000O0O0COO
cecceccecceecec
000000 F+L

7-6-5-4-3-2-1-0
Operation code
Unit# 0 0 0 0 A
000000O0CO

CDB name:
CDB type:
CDB data:
Operation code =
A: , THIRDPTY

bbb: THIRDPTY_ID

RELEASE_UNIT
TYPE_015
170000000000
17h

CDB name: COPY

CDB type: TYPE_004

CDB data: 180000001000
Operation code = 18h
A: , PAD

bb bb: LENGTH

DATA buffer: COPY_4
CDR name: ERASE

CDB type: TYPE_O16

CDB data: 190000000000
Operation code = 1Sh
A: , IMMED

B: , LONG

CDB name: MODE_SENSE
CDR type: TYPE_O17

CDB data: 1A0000000000

Operation code = 1Ah
AA: CURRENT, CHANGEABLE
DEFAULT, SAVED

bbbbbb: PAGE_CODE
ccecccecc: LENGTH
DATA buffer: PAGE_O

LOAD/UNLOAD
TYPE_018
180000000000
code = 1Bh

CDB name:
CDB type:
CDB data:
Operation

» IMMED

003 00000000 A:
004 00000O08BRBC B: , RETEN
005 000000 F+L C: UNLOAD, LOAD

RECEIVE DYAGNOSTIC RESULTS

BYTE - - bit 7-6-5-4-3-2-1-0 CDB nume: RECEIVE_DIAGNOSTIC_RESULTS
000 Operation code CDB type: TYPE_005

001 Unit# 0 0 0 0 0O CDB data: 1C0000000000
002 000000O0CO Operation code = 1Ch
003 4 aaaadadyn aa ... aa: LENGTH

004 aaaaaaaa

005 000000 F+L

SEND DTAGNOSTIC

BYTE -~ bit 7-6-5--4-3-2-1-0 CDB name: SEND_DIAGNOSTIC
000 Operation code CDB type: TYPE_006

001 Unit# 0 0 A B C CUB data: 1D0000000000
002 0000O0O0O00O0 Operation code = 1Dh
0034 dddddddd A: , SELFTEST

004 dddddddd B: , DEVOFL

005 0 00O0O0O0 F+1 C: , UNITOFL

dd ... dd: LENGTH
PXEVENT/ALLOW MEDIUM REMOVAL

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: PREVENT/ALLOW_MEDIUM_REMOV

000 Operation code CDB type: TYPE_019

001 Unit# 0 0 0 0 0 CDB data: 1E0000000000
002 0 000O0O0O0O Operation code = 1lEh
003 00000O0O0O A: ALLOW, PREVENT

004 00000O0O0A)

005 000O0O0O0 F+1L
READ LOG

BYTE -- bit 7-6-5-4-3--2-1-0 CDB name: READ_LOG

000 Operation code CDB type: TYPE_020

001 Unit# 0 0 0 0 A CDB data: 1F0000000000
002 00000O0OO Operation code = 1Fh
003 bbbbbbbbd A: , NLR

004 : bbbbbbbb bb ... bb: LENGTH

005 000O0OO F+L
LOCATE

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: LOCATR

000 Operation code CDB type: TYPE_104

001 Unit#¥ 0 0 A B C CDB data: 2B000000000000000000

002 00000
003 ddddd
004 ddddd
005 ddddd
006 ddddd
007 00000O0
008 e eeee
009 00000

READ POSITION

BYTE -- bit 7-6-5-4-3-
000 Operation
001 Unit# 0 O
002 00000
003 000O00O
004 00000
005 00000
006 00000
007 00000
008 00000
009 00000
COMPARE
BYTE -- bit 7-6-5-4--3
000 Operation
001 Unit# 0 0
002 00000
003 bbbbbd
004 bbbbb
005 bbbbb
006 000O00O
007 000O00O
008 00000O0
009 000O00O0

COPY AND VERIFY

BYTE -- bit 7-6-5-4-3-

000 Operation
001 Unit# 0 O
002 000O0OO0
003 ccceec
004 cccce
005 cccce
006 00000
007 0 0000O0
00y 00000
009 00000

SooCcaaalxro
mpCasalo

+
roOaacao

i

N
'
oo CcCoOOooCn ©

2]
a.

[=N-NoNoN-NoN-NN]
?QQOCOOOOO:—'

+

rOoOCOoOTOTOoO>0n ©

X

=9

(2]
mMOoOCOUTUTOCoOs ~
+

cocoTTTOO

[N
a

oo noooEa O

,
5 .
mooconnaoO>»0 —

+
-

cooConnnNnoc

Operation code = 2Bh

At , BT
B: , CP
C: , IMMED

dd ... dd: ADDRESS
eceeeeee: LENGTH

CDB name: READ_POSITION

CDB type: TYPE_105

CDB data: 34000000000000000000
Operation code = 34h

DATA buffer: POSITION

CDB name: COMPARE
CDB type: TYPE_101

~CDB data: 39000000000000000000

Operation code = 3%h
A: , PAD
bb ... bb: LENGTH

CDB name: COPY_AND_VERIFY
CDB type: TYPE_102

CDB data: 3A000000000000000000 .
Operation code = 3Ah
A: , BYTCHK

B: , PAD

cc ... cc: LENGTH

WRITE BUFFER

BYTE -- bit 7-6-5-4-3-

000
001
002
003
004
005
006
007
008
009

READ BUFFER

BYTE -- bit
000
001
002
003
004
005
006
007
008
009

Operation

Unit#

caaanonao
SaaantacaoT
caaanano

7-6-5-4-3-

oo noTo

Saaann oo

Operation

Unit#
b

o aana0n
Sosann 0T
SatannnoT

Saaan0onooTc

Cacaanacoo

cCaadaxgano oo N

N

SCaarxnanona0To

—

o]

L2}

a i
o o

maSaAco oo o
aaoananN o

+
™

acatao oo oS

CDB name:
CDB type:
CDB data:
Operation
aa: MODE
bbbbbbbb:
cc ... cc!
dd ... dd:

CDB nawe:
CDB type:
CDB data:
Operation
aa: MODE
bbbbbbbb:
ce L..oce:
dd ... dd:

WRITE_BUFFER
TYPE_103
3B000000000000000000
code = 3Bh

BUFFER_ID
BUFFER_OFFSET
LENGTH

READ _BUFFER

TYPE_103
3¢000000000000000000
code = 3Ch

BUFFER_ID
BUFFER_OFFSET
LENGTH

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11

