
PACIFIC ELECTRO DATA
PED-4010

INITIATOR EMULATION PROGRAM
USER'S MANUAL

PACIFIC ELECTRO DATA, INC.
14 Hughes, Suite B205, Irvine, California 92718

(714) ·770-3244

c Copyright 1988

SOFTWARE LICENSE

1. COPYRIGHT: This software is protected by both United
States Copyright laws and International Treaty
provisions.

2. LICENSE: The license is granted to authorize the
Buyer, on a non-exclusive basis, to use each test
program on each particular designated Data Acquisition
and Emulation Module. The license is non-transferable.

3. COPIES: The buyer may make one (1) copy of each
licensed test program for use on a particular
designated Data Acquisition and Emulation Module for
back-up purposes only.

4. PROTECTION OF LICENSE PROGRAM: The buyer agrees not to
provide, or otherwise make available, any licensed test
program, in any form, to any person other than Buyer
and Buyer's premises with Buyer's permission for
purposes specifically related to Buyer's user of the
licensed test program. The Buyer agrees to take
appropriate action by instruction, agreement, or
otherwise with Buyer's employees or other persons
permitted access to licensed test programs to satisfy
his obligation under this license with respect to use,
copying, protection, and security of licensed test
programs.

ii

SOFTWARE WARRANTY

1. WARRANTY: Pacific Electro Data, Inc. ("PED") warrants
the physical diskette and physical documentation
enclosed herein to be free of defects in materials and
workmanship for a period of 90 days from the date of
purchase. PED further warrants that the software
conforms to all current specifications and samples for
a period of one Ill year from the date of purchase.
PED reserves the right to make changes in the software
described herein without notice. At Buyer's request,
PED will replace the obsolete software diskette and
documentation during the Software warranty period. All
software diskettes replaced hereunder shall become the
property of PED.

2. LIMITATIONS OF LIABILITY:

A. The previous express warranty is the only
warranty made by PED. PED grants no implied
warranties, including warranties or merchant­
ability or fitness and no other express
warranties. The express obligation stated
above is in lieu of all liabilities or
obligations of PED for damages including, but
not limited to, consequential damages arising
out of or in connection with the delivery,
use, or performance of PED test devices.

B. Buyer further agrees that PED will not be
liable for any lost profits or for any claim
or demand against the buyer by any other
party, except a claim for patent, copyright,
and trademark infringement as provided
herein.

c. In no event will PED be liable for special,
indirect, or consequential damages even if
PED has been advised of the possibility of
such damages. The risk of loss or damage for
any products supplied by buyer to PED will be
borne exclusively by buyer.

iii

Table of Contents

1. INTRODUCTION
1.1 General Information •
1.2 overview of This Manual
1.3 How To Use This Manual ••
l. 4 Notation • • • • • • • • •

.

1.5 Hardware and Software Requirements •••••
1.6 Reviewing PED-4000 Installation Procedures •

1.7
1.8
1.9
1.10

1.6.l Unpacking and Checking the System
Components • • • • • • • • • • • • •

1.6.2 Configuring & Installing the Module •
1.6.3 Creating the PED System Diskette ••••
System Start-up-Procedure ••••••••
Reconfiguring the Module for PED-4010
Bus Termination • • • • • • • • • • • • • • • •
Terminator Power • • • • • •

2. OPERATIONS AND PROCEDURES ••••
2.1 Device Description Library

2.2
2.3
2.4
2.5
2.6
2.7
2.8

2.1.l TYPE Definitions •••••••
2.1.2 Command Descriptor Block (COB)
2.1.3 FORM Definition •••••••
2.1.4 Running the Initiator Program •
System Data Buffers • • • •
Run-Time Interpreter • • • • • • • • •
Configuration Module • • • • •
DDL Editor •••••
SCSI Device Driver • • • • •
Program Utilities •
Typical Program Paths

3. KEYBOARD AND SCREEN FUNCTIONS
3.1 Keyboard Functions • • • ••••
3.2 Display Conventions •••••••••
3.3 How to Enter the PED-4010 Initiator Emulation
3.4 Menu Path ••••••

4. DEFINING THE TARGET • • • • • • • • • • • • • • • •
4.1 Defining the Device Description Library (DDL)
4.2 Defining the Command Descriptor Block

4.2.l Creating the Command Format Type· ••••
4.2.2 Editing the Command Type •••••
4.2.3 Defining a Command CDB ••

4.3 Creating Data Buffers ••••
4.3.1 Creating Data Forms ••
4.3.2 Editing the Data Form •
4.3.3 Creating a Data Buffer
4.3.4 Editing the D&ta Form •

iv

1-1
1-1
1-2
1-2
1-3
.l-4
1-4

1-4
1-5
1-5
1-7
1-7
1-9
1-9

2-1
2-2
2-2
2-3
2-4
2-4
2-5
2-5
2-s
2-6
2-6
2-6
2-6

3-1
3-1
3-2
3-5
3-7

4-1
4-2
4-7
4-8

4-10
4-11
4-16
4-17
4-20
4-21
4-23

4.4
4.5
4.6
4.7

Table of Contents (continued).

Deleting and Renaming Files from Directories
Exiting from the Emulation Editor
saving the Results •••••
Sample Definition Session

5. DDL CONFIGURATION •••••
5.1 Device Assignment
5.2 SCSI Addresses •••
5.3 Driver Options •••

6. INTERACTIVE MODE EMULATION ••••••••••
6.1 Entering Interactive Mode Emulation
6.2 Command Lines • • • • • • • • • •••

6.2.1 DDL Command Assignments: COB Commands •
6.2.2 DDL Command Assignments: Data Field

Commands • • • • • • • • • •
6.2.3 Emulation Commands

7. PROGRAM MODE EMULATION
7 .1 Creating a Program • • • • • • • • • • •. • •
7.2 Using the Program Edit Window ••••
7.3 Program Conventions •••••

7.3.1 Data and Variable Types ••••
7.3.2 Special Characters •••••••••••
7.3.3 Constants • • • • • •••
7.3.4 Operators • • • • • •••••••
7.3.5 Commands • • • • • • ••••

7 .4 •· Initia~ng the Program •
7 •. 5 Sample l'rograms • • • •

APPENDIX A. TCB PalMITIVE COMMANDS & STRUCTURE •
1. Task Control Primitives
2. Extreme Primitives •••
3. Conventional Primitives
4. Control Structures ••
5. TCB Flags ••••••
6. TCB Error Codes
7. SCSI Message System ••••••••

APJ?ENDJX B. SCSI-II DIRECT ACCESS DDL

APPENDIX C. SCSI-II SEQUENTIAL ACCESS DDL

v

4-24
4-25
4-25
4-26

5-1
5-1
5-4
5-6

6-1
6-1
6-4
6-4

6-6
6-8

7-1
7-1
7-4
7-5
7-6
7-8

7-10
7-11
7-13

7-57
7-59

A-1
A-2
A-3
A-5
A-9

A-12
A-13
A-14

B-1

c-1

Figures

Figure 2-1. Functional Units 2-1
Figure 2-3. Sample CDB. 2-3
Figure 3-1. Screen Display 3-3
Figure 3-2. Main Menu· 3-5
Figure 3-3. Initiator Emulation Window. 3-6
Figure 3-4. Normal Menu Path. . 3-8
Figure 4-1. Creating a DDL 4-2
Figure 4-2. Entering DDL Name. 4-3
Figure 4-3. Emulator Editor 4-4
Figure 4-4. Files Utility Window. 4-5
Figure 4-5. Loading DDL Files. 4-5
Figure 4-6. Editing DDL Files. 4-6
Figure 4-7. Creating the COB 4-7
Figure 4-8. Command Type Selection . 4-8
Figure 4-9. Command Type Edit Window. 4-8
Figure 4-10. Command Type Edit Window Example. . 4-10
Figure 4-11. Command COB Menu. 4-11
Figure 4-12. Command COB Edit Window. 4-12
Figure 4-13. COB Field Value Assignment Window. 4-13
Figure 4-14. Specifying Data Buffer •• . . . 4-15
Figure 4-15. Entering the Data Phases. 4-15
Figure 4-16. Data Form Directory Window. 4-17
Figure 4-17. Data Form Edit Window. 4-18
Figure 4-18. Data Form Edit Window Example. 4-20
Figure 4-19. Existing Data Directory Window. 4-22
Figure 4-20. Data Edit Window. 4-22
Figure 4-21. Entering Field Values. 4-23
Figure 4-22. Existing Library Files Window. 4-26
Figure 4-23. Existing Configuration Files Window. 4-26
Figure 4-24. Read usage Counters Command Structure. 4-27
Figure 4-25. Usage Counter Format 4-27
Figure 4-26. Command COB Edit Example. 4-29
Figure 4-27. Data Form Edit Sample. 4-30
Figure 5-1. Configuration Mode Window. 5-2
Figure 5-2. Device Assignment Table. 5-3
Figure 5-3. SCSI Addresses Window. 5-5
Figure 5-4. Driver Options Window. 5-7
Figure 6-1. Run Mode Screen. 6-2
Figure 6-2. Report Options Window. 6-2
Figure 6-3. ALL Data Window. 6-9
Figure 6-4. Buffer Dump Window. . . . 6•15
Figure 6-5. TCB View Window. 6-28
Figure 7-1. DDL Selection Window. . 7-2
Figure 7-2. Emulation Editor Window. 7-3
Figure 7-3. Program Selection Window. 7-3
Figure 7-4. Program Edit Window. 7-4
Figure 7-5. Program Format Sample. 7-7

vi

Tables

Table 1-1. NCR5380 Interrupt Select Jumpers 1-8
Table 1-2. NCR5380 OMA Select Jumpers . . . 1-9
Table 3-1. Menu Structure 3-7
Table 6-1. Interactive Command Summary 6-27
Table 7-1. Program Command Summary 7-53
Table A-1. Task Control Primitives. A-2
Table A-2. Extreme Primitives. A-3
Table A-3. Conventional Primitives. A-4
Table A-4. Control Structures. A-8
Table A-5. TCB Flags. A-10
Table A-6. Error Codes. A-11
Table A-7. SCSI Message System. A-12

vii

1.1 General Information

SECTION 1
INTRODUCTION

The PED-4010 Initiator Emulation Proqram is part of the PED-4000
Emulation and Analysis System. This packaqe enables the IBM PC
or compatible to emulate and analyze the Small Computer System
Interface (SCSI).

The basic PED-4000 System consists of a PED-4001 Data Acquisition
and Emulation Mode, and the State Analysis proqram. The module
occupies a single, full-length expansion slot in the host
computer and connects to the SCSI bus through a SO-pin connector.
The programs the module uses can include the following:

o PED-4001 State Analysis Program
o PED-4002 Phase Analysis Program
o PED-4010 Initiator Emulation Program
o PED-4020 Target Emulation Program

As part of the complete package, the PED-4010 Initiator Emulation
Program emulates the initiator (or source) device, and manipu­
lateF- the target device using a variety of commands, definitions,
and options. In this way, the user can analyze the function of
the initiator and its interface with one or more tarqet devices.

Function
Origin

Initiator
Control

Tarqet
Control

Function
Execution

The PED-4010 Initiator Emulation program is an extraordinarily
flexible programming environment, providing the user with qreat
latitude in planninq and executing initiation simulations. All
operations are conducted throuqh easy-to-use menus. Proqrammed
and interactive emulations use a language employinq common
commands and syntax, facilitating writing and emulation
processing. Moreover, all programs in the PED-4000 packaqe use a
uniform set of keyboard and display conventions, setup and
operation menus, function key responses, and common service
utilities, such as Help messages, Pile Lo.ad, Pile Save, and
Print.

1-1

1.2 Overview of This Manual

This manual describes the installation, operation, and user/pro­
gram interface procedures for using the PED-4010 Initiator
Emulation Program with the PED-4001 module. It takes you throuqh
the entire process of defining the necessary host environments,
writing and editing the programs for batch mode emulation,
arranging and identifying command language for interactive mode
emulation, planning strategies for initiator emulation.

It is designed as a stand-alone manual, requiring only limited
reference to the PED-4001 State Analyzer Program User's Manual.

1.3 How To Use This Manual

This section tells you how to use this manual. If you are not
familiar with the PED-4000 system, we recommend that you read the
entire manual from beginning to end. If you have used some of
the programs before, then you might select only those sections
which directly concern you. This manual is set out in the
following manner.

Section 1 presents an overview of the PED-4000 System
and discusses the PED-4010 Initiator Emulation Program.
In addition, it identifies the hardware and software
required to run the initiator, and reviews installation
and configuration procedures.

Section 2 describes the major resources and functional
modules of the PED-4010 program, what they do, and how
they interact during initiator emulation. Recommen­
dations are then provided for the best tactics to
follow in creating an emulation, depending on your
particular requirements. Finally, the procedure for
booting and bringing up the emulation is detailed.

Section 3 describes the user/program interface conven­
tions. These include such keyboard operations as
function and action keys, cursor movement, and alpha­
numeric character entry. Menu conventions are then
discussed, including the window and prompt structure.

Section 4 tells how to define the target including the
use of the Device Description Library (DDLI and the
defining and creating of both Command Descriptor Blocks
(CDB) and Data Buffers.

Section 5 describes how to configure a DDL for device
assignment, SCSI addresses, and driver options.

1-2

section 6 tells how to use the Interactive Mode
emulator, describing each command available.

section 7 tells how to use the Program Mode emulator,
describing the expanded command set and variables
available for batch entry.

Appendix describes the interface to and operation of
the SCSI device driver. The field of the Task Control
Block (TCB) and each direct driver command is defined
and described.

1. 4 N.>ta ti on

This l!llnual uses certain terms and notations you should become
famililr with. A few examples of these terms follow.

o The terms PED-4010, emulator, and program
refer to the Initiator Emulation Program.

o PED-4001 and board ref er to the Data
Acquisition and Emulation module.

o Generally, acronyms are used in place of
program names and frequently used concepts.
For instance, COB is used in place of Command
Descriptor Block.

o <> angle brackets refer to a required field
or expression you must enter. The type of
field required is described within the
brackets. For example, <expression> tells
you an expression is inserted here.

o [] square brackets refer to a key on the
keyboard. For instance, [Enter] refers to
the Enter key, otherwise called the [CR) or
[Return] key.

This notation can also refer to an optional
expression. For example, [expression] tells
you an expression can be inserted here as an
option.

o Commands you must enter are given in bold­
face.

o Whenever hexadecimal values are used, the
alphanumeric value is followed by an upper­
case H. The initial zero is understood (for
example, 380H stands for 0380H).

1-3

1.s Hardware and Software Requirement•

The following hardware and software is required to operate the
PED-4010 emulator:

o IBM PC, XT, AT, or compatible host computer·
with keyboard.

o Minimum of 512 Kbytes RAM.

o Minimum of one 360 Kbyte floppy disk drive.

o Color/graphics or monochrome display adapter.

o Color or.monochrome monitor.

o PC/MS-DOS version 2.0 or later.

o PED-4001 module.

o PED-4010 Initiator Emulation program
diskette.

1,6 Reviewing PED-4000 Installation Procedures

The section below provides a brief discussion on unpacking,
configuring, and installing the module and PED-4010 emulation
program.

1.6.1 Unpacking and Checking the System Components

After receiving your PED-4010 software package, make sure the
following items are included:

o 5 1/4-inch floppy diskette (PED-4010
Initiator Emulation Program).

o Loose-leaf PED-4010 Initiator Emulation
User's Manua •

o Software registration card.

o SCSI Bus In-line Terminator.

o Board jumper block.

1-4

. I

1.6.2 Configuring and Installing the Module and Software

For complete instructions on configuring and installing the PED-
4001 module, refer to Section 1.3 in the State Analysis Program
User's Manual.

1.6.3 Creating the PED System Diskette

The PED-4010 diskette that comes with the system contains all the
files needed to operate the PED-4001 module and PED-4010
emulator. However, it does not contain PC/MS-DOS. You may want
to copy all the files from the supplied program diskette to a
formatted system diskette and use that new system diskette to run
the emulation software.

If you plan to use a hard disk drive, you should copy all PED-
4000 files over to the hard disk. The procedures for these copy
operations are described here briefly.

~ing to a System Diskette

STEP 1
Install the PC/MS-DOS diskette in drive A: and turn on the
computer. When the computer has booted, remove the DOS diskette
and put a formatted system diskette in drive A: If the new
diskette has not been formatted, enter the following command
before removing the DOS diskette:

FORMAT /S [Enter)

Follow the instructions on the computer display to format the
diskette.

STEP 2
With a formatted system diskette in drive A:, put the PED-4010
Initiator Emulation program diskette in drive 8: and copy all the
files from drive 8: to drive A: by entering the following
command:

COPY B•*·* Al [Enter)

You now have a formatted system diskette in drive A: that
contains all the PED-4010 software on it. This should be used as
your working diskette. Store the original PED-4010 program
diskette in a safe place.

Copyinq to a Hard Disk

STEP 1
Install the DOS diskette in drive A: and turn on the computer.
When the computer has booted, direct the prompt to drive C: (if
it is not already). You should see this prompt:

C:

If not, use this command:

C: [Enter]

STBP 2
Type the followinq command to create a directory for PED.

MD \PED [Enter)

A new directory called "PED" now exists on your hard disk.

STBP 3
Remove the DOS diskette from drive A: and insert the PED diskette
in drive A:. Type the followinq commands:

CD \PED [Enter)
COPY A: *•*

The hard disk drive now has all the PED files you need to conduct
Initiator emulations. Remove the oriqinal PED system diskette
and store it in a safe place.

Included on the disk is a configuration file (CONFIG.PED) and the
SCSI driver file (SCSI.SYS). The configuration and SCSI driver
file should be in the root directory. If you don't have a
CONFIG.SYS file in the root now, copy CONFIG •. PED to the root as
CONFIG.SYS. If you do have a CONFIG.SYS file, attach the
contents of CONFIG.PED to your CONFIG.SYS file.

NOTE

The proqrams work best if you don't include
ANSI.SYS as a device.

1-6

1.7 System start-Up Procedure

Once you have prepared either the system diskette or the hard
disk with the PED-4010 files, you can enter the program.

Follow this procedure:

STEP 1
Boot the system from the system diskette you have prepared (drive
A:) or from the hard disk (drive C:).

STEP 2
At the DOS prompt, type the following command.

PED4010 [Enter]

You are now at the main PED-4000 system menu.

If you want to boot directly into the PED menu, use an
AUTOEXEC.BAT file. For instructions on creating an AUTOEXEC.BAT
file, refer to your DOS user's Manual.

1.8 Reconfiguring the Module for PED-4010

If your system contains a hard disk drive, there can be a
conflict between it and the PED-4001 module in interrupt and OMA
channel assignments. Default settings for them are:

Parameter Default Setting

IRQ 2
OMA Channel l

If they conflict, you need to change the jumper settings on the
module and the device installation line in the CONFIG.SYS file.
Add the following parameters to the SCSI driver device statement
in CONFIG.SYS:

DEVICE = SCSI.SYS vvv a d i

1-7

where:

vvv is the vector interrupt, default = 1241 leqal
values are 64 and 255.

a is the PED board number; default a 31 leqal values
are 1, 2, and 3.

d is the OMA channel, default = lJ leqal values are 1,
2, 3.

i is the interrupt, default • 21 leqal values are 2, 3,
4, and 7.

A value of 0 or a comma (,) preserves the default, allowing you
to modify fields without knowing the other default settings.

For example:

DEVICE = SCSI.SYS 0 0 2 7

or

DEVICE = SCSI.SYS I I 2 7

results in an SCSI at vector 123, address 3, OMA channel 2, and
interrupt 7. Or, as another example:

DEVICE=SCSI.SYS vector 145 board 2 OMA 1 interrupt 3

results in an SCSI at vector 145, address 2, OMA channel 2, and
interrupt 3. Only decimal numbers are interpreted, allowing you
to comment the line with non-r.umeric characters.

The following tables list the jumper positions for the interrupt
and OMA channels available on the module.

Table 1-1. NCR5380 Interrupt Select Jumpers

Jumpers Interrupt

E3 IRQ7
E4 IRQ4
ES IRQ3
E6· IRQ2

1-8

Table 1-2. NCR5l80 DNA Select Jumpers

Jumpers OMA Channel

E7, EB l
E9, ElO 2
Ell,El2 1

NOTE

Install at most one jumper in locations El
through E6. Install jumpers E7 through El2
in pairs (e.g. E7 and ES, E9 and ElO, or Ell
and El21.

1.9 Bus Termination

Both ends of the SCSI cable should be terminated properly. If
you are installing the PED-4000 as an end device, use the in-line
SCSI bus terminator for that purpose.

CAUTION

Observe correct connector and terminator
orientation. Orienting the connector and
terminator incorrectly can cause accidental
grounding and faulty connection of terminator
power which can damage the PED-4000, cable,
and other attached devices.

1.10 Terminator Power

The in-line bus terminator uses pin 26 (TERMPWR) to power the
internal terminating resistors. TERMPWR must be energized by a
single device on the bus. It is recommended that.tou use the
initiator as the power device.

If you want to use the PED-4000 for this purp6ae, you must
install a jumper at Ell on the PED-4001 module. Refer to Section
1.l of the PED-4001 State Analysis Program User's Manual for
information on installing a jumper .at,.~bis pQaition.

1-9

SECTION 2
OPERATIONS AND PROCEDURES

The PED-4010 Initiator Emulation program provides a total SCSI
initiator emulation environment integrated with SCSI bus
analysis. The program gives you the tools to create a device
description of any SCSI target and use this description, referred
to as a DOL, to interact with the target device over the SCSI
bus.

Figure 2-1 provides a schematic representation of how the various
elements of the Initiator Program work togeth·~n.

DDL
EditorP·

~ .

Keyboard

Utility
Buffers

DDL j Type j · I Form I
I Program J

~ loata I

Emulation 'Module

Taslc Control ·
Block

Driver Interface

Figure 2-1. Functional Units

Primitives

~.l Device Description Library

,'he Device Description Library (DDL) is resident in RAM and is
)Oth created and managed by the Initiator Emulation program. A
)DL defines each command and expected data response in the
~ommand set of a particular target device. Included in the
library is the Command Descriptor Block (COB) and data buffer
{DATA) associated with each command. The DDL also includes
cemplates used in defining CDBs and DATA buffers. A command COB
template is referr.ed to as a command TYPE while a DATA buffer
template is referred to as a data FORM •

. '1hile many of the device descriptions you will use to analyze the
target exist in tll~ DDL, you may choose to create a device
description of youn cwn using PED-4010. Whether you use the DDL
~r create your own definitions, however, the device description
consists of five elements: COB types, COB definitions, data
buffer forms, data buffer definitions, and initiator programs • . ~·-·

several DDLs may be resident at one time, allowing for a mix of
targets on the SCSI bus •. The current target ID assignment is
~sed by the program to automatically select the DDL from the
system configuration table.

Each of the elements found in the DDL are described here briefly.
Por more detailed information on creating and editing DDLs, refer
to Section 4. 1.

2.1.1 TYPE Definitions

TYPE definitions provide a template to construct CDBs. A COB can
be six, ten, or twelve bytes in length with the first byte always
the command Op Code and the last byte always a control byte. The
use of the intervening bytes varies according to commands. The
COB TYPE template enables you to identify the command type by
name as well as define the nature of all fields between the Op
Code and control byte barriers.

COB TYPE

Op Code TYPE definition Control

Each field can be up to 32 contiguous btts ~n·length. Two kinds
of COB fields are identified: Named and Enumerat'ed. Named fields
are fields identified by a singular name1 all fields larger than
eight bits must be named. Enumerated fields are fields with
several assigned names, each name conditional on a unique value;
enumerated fields cannot be larger than eight bits long.

2-2

During an emulation, you can refer to each COB field by its
assigned name. You do not need to define a separate TYPE
template for each COB; several COBS can share the same TYPE
template.

For more on COB TYPE definitions, refer to Section 4.2.

2.1.2 Command Descriptor Block (COB)

A COB is the definition of a particular target command. Each COB
in a DDL is assigned a unique name. During emulation, you can
invoke the command by referring to its name as defined by the
COB. CDBs carry default field values. You can modify these
field values when you invoke the command by assigning a modified
value to the field. You compose a command COB by using a command
TYPE template.

For example, if there were a command COB called READ with defined
fields ADDRESS and LENGTH, then executing the command line

READ ADDRESS = 0 LENGTH = 080

results in the program setting the ADDRESS field value to O and
the LENGTH field value to 80 hex.

NOTE

Defined values for such fields as ADDRESS and
LENGTH do not affect the default value of
these fields.

A typical COB for a six-byte command might look like this:

BIT 7 I 6 1 5 I 4 I 3 I 2 1 1 l 0

0 Operation Code

1 Logical Unit No l Logical Block Address

2 Logical Block Address (if required)

3 Logical Block Address (if required)

4 Transfer Length (if required)
-

5 Control Byte

figure 2-3. Sample CDB.

2-3

You can tailor a COB to your own requirements, manipulating
addresses and defining the structure of the command to test any
specific target.

For more information on using and setting up CDBs, refer to
Section 4.2.

2.1.3 FORM Definition

Use the FORM template to define the form of the DDL data buffers
much as you use the TYPE template to define the form of a command
CDS. DDL data buffers act as a source of data during data output
operations, such as WRITE or MODE SELECT commands, or as buffers
for data during data input operations, such as INQUIRY or MODE
SENSE commands.

A data FORM can be from 1 to 1024 bytes in length, subdivided
into any number of fields, each field identified by a unique
name. Three kinds of data fields exist: named, enumerated, and
text.

For example, if there were a data buffer named SENSED and the
FORM template defined fields called ERROR_CODE and SENSE_KEY,
then executing the command lines

SENSED.ERROR CODE = 070
SENSED.SENSE-KEY = 5

would result in the ERROR CODE field being set to 070H and the
SENSE_KEY field to OOSH.

NOTE

The extension operator (.) is used
to separate data buffer names from
FORM field names.

For more information on using and setting up FORM templates,
refer to Section 4.3.

2.1.4 Running the Initiator Program

The PED-4010 emulation runs programs resident within the DDL or
from disk to exercise the SCSI target. Information gathered from
such programs can be displayed and saved for later analysis.
These programs are written in a programming language which is
like structured BASIC but without line numbers. PED-4010
supports both scalar and array variables within this language
structure and four data types are allowed: 32-bit long, 16-bit
integer, 8-bit character, and 16-byte text. All variables within

2-4

a program must be declared before they are referenced.

During an emulation session, data buffers defined in the DDL can
be treated as additional variables. There are also a number of
system variables which the program can access to facilitate
emulation, including .TARGET, .INITIATOR, and .LUN.

For a discussion of program conventions and syntax, refer to
sections 6 and 7.

2.2 System Data Buffers

In addition to the data buffers defined in a DDL, two general­
purpose utility buffers are available in host RAM: a 512-byte
SMJl.LL buffer anu a 64K-byte LARGE buffer. Both are implemented
as cirt?ular buffe~.s, in the same manner as all other DDL data
buffers.

The pivotal function of the initiator emulation is the run-time
interpreter. This interpreter scans an input expression, checks
syntnx, searches command tables, interprets and, i:': val:l.d,
executes the expression. The expression can be fr')m the key­
board, from a DDL program, or from a program file <l;- disk.
Syntax and lexical errors are reported to the user.

While this function is transparent to the user, the result
manifests itself in two distinct ways. If you have created a
program file, the interpreter will go through the file, executing
each valid expression as it is encountered. Results of the
program execution are either displayed or stored at a selected
site. If you choose the interactive mode, each command you enter
is immediately processed and the results are displayed.

For more information on interactive mode, see Section 6.

2.4 Configuration Module

PED-4010 includes an SCSI system configuration table which
identifies the resident DDL assigned to each SCSI bus address by
ID·nu!l!ber. The module also assigns an ID number for the
currently active target, initiator, and LUN. In this way, you
may assign more than one tarc;.!t for emulation, or more than one
program for each target selected~

For more inforiitation on .configuring. your system, see Section s.

2-s

2.5 DDL Editor

The Device Description Libraries are managed by the DDL editor.
Using this utility, you can create, view, or· edit DDLs, TYPEs,
FORMs, data, CDBs, or DDL programs.

For a discussion of how to e1it the DDL(s), refer to Section 4.

2.6 SCSI Device Driver

All communication between the PED-4001 module and the host system
boards is handled by the SCSI Device Driver. It is this program
which conveys the PED-4010 emulation software between the two
hardware points and drives it. The interface between the device
driver and the emulation program is the Task Control Block (TCB)
-- a 79-byte block of parameters residing in host RAM.

All bus transactions are initiated by loading of the correct
parameter values into the TCB and the generation of i. software
interrupt (all calls to the driver are through hardware and
software interrupts). All interface instructions at the TCB and
driver are controlled by the PED-4010 and is transp~rent to the
user.

2.7 Program Utilities

The emulation and analysis program share FILE and HELP programs.
The FILE utility allows you to move DDLs to and from disk and to
rename and delete existing DDL disk files. The HELP utility
provides you with an on-line assistance to every area of the PED-
4010 program. The [Fl) key gives you immediate, context­
selected, help messages.

2-6

2.8 Typical Program Path•

During the course of a normal session, you must perform a number
of activities. The process of creating an initiator emulation
consists of several steps.

1. Creating a File.

2. Defining command types.

3. Specifying COBS.

4. Defining data buffer forms.

s. Specifying data buffers (if needed).

6. Assigning the device description library to a
specific device ID.

7. Creating a batch program, or running the
interactive program.

8. Storing and analyzing the results.

SECTION 3
KEYBOARD AND SCREEN FUNCTIONS

All PED-4000 programs support a uniform set of keyboard and
display conventions. Learn to use these·keys and screen
functions.

3.1 Keyboard Functions

There are three kinds of keyboard functions you use during
PED-401p operation:

a. Menu and Data Cursor Movement
b. Function Keys
c. Action Keys

Each is explained here.

Menu and Data Cursor Movement

1--1

t
•

(Back
Space)

(EscJ

Moves the cursor to the left or right one
character each time they are pressed
without erasing the previous character.
When choosing a file from the device
description directory, you must use the
up-arrow and down-arrow keys to move from
one column of the directory to another.

Moves the cursor up or down one line each
time they are pressed without erasing the
character. Use these keys to move the
cursor between the DDL directory entries.

Deletes one character at a time to the
left of the cursor, moving the cursor and
characters to the left one position.

Causes you to exit the level of the
program you are presently in and return
to the next higher level.

Below most data or menu windows you will see a quick summary of
the. possible cursor movements allowed. See more about this under
Screen Functions.

3-1

Function Keys

There are ten function keys on the PC programmed as hot keys.
Pressing any of these causes the following reactions:

(Fl]

(F2]

(F3]

(F4]

(FS]

(F6]

[F7]

(FS]

[F9]

[FlO]

HELP. Describes the situation and your
alternatives at the point where you
invoked it.

FILE. Enters the emulation file menu.

EDIT. Enters the emulation edit menu.

CONFIGURE. Enters the emulation con­
figuration menu.

RUN. Enters the emulation run menu.

SWAP. Shifts between emulation and
analysis programs.

SETUP. Enters analysis setup.

EXIT. Exits to the next higher menu.

CAPTURE. Enters the analysis capture
routine.

DISPLAY. Enters the analysis display
routine.

3.2 Display Conventions

The PED-4000 program presents you with a display that consists of
windows and entry areas. In general, the display looks like
Figure 3-1:

3-2

.--------MENU SELEC'l'ION ------~

Select desired operations _

lr;::I ==== PED-4000 SYSTEM STATUS ====:::::;ill

Piq~r• 3-1. Screen Display.

These three areas can be defined as follows:

Data/Menu
Window

In this field appear all the menu
selections and file options. Choose one
of these options either by using the up
and down keys or by entering the number
of the selection. For instance, if you
see these selections

1. EDIT
2. CONFIGURE
3 •. RUN

press •3• to highlight the RUN option or
use the down key. Press [Enter] to
select the option and enter the submenu.

Selection windows are identified by their
single-line borders.

3-3

Entry Area

Status
Window

In this field you enter data and make
selections. A prompt and cursor are
usually present, as in this example:

~elect desired operation:_

In most situations, you can also make
action selections within a program. All
response entries must be followed by
[Enter]; this causes the selected action
to occur.

Status windows are identified by their
double-line borders. User information is
displayed in this window. Reverse, dark,
and bright video is used within the
windows to enhance recognition. Infor­
mation displayed within these windows
includes PED-4000 system status and SCSI
bus status.

Certain screens within the program differ from this standard.
These exceptions are explained during the discussions on the
respective routines.

3-4

3.3 How to Enter the PED-4010 Initiator Emulation

Before you can use the emulator, you must first enter the system.
To do this, follow these instructions:

STEP l
Put the PED-4010 system diskette in drive A. Boot the system.
This prompt is displayed:

Installing PEDRIVER version 2.10, 8/27/87

STEP 2
Bring up the DOS prompt. When it appears, enter

PED4010 [Enter]

You briefly see copyright information and then the following
screen appears:

PED4000 SYSTEM MENU

l. STATE ANALYSIS
2. PHASE ANALYSIS
3. INITIATOR EMULATION
4. TARGET EMULATION
5. FILE
6. HELP
7. EXIT

Select desired operations

r.=== COPYRIGHT 1985, 86, 87 PACIFIC ELECTRO DATA INC. ==:::;i
This Program is Protected by UNITED STATES COPYRIGHT

Unauthorized Reproduction is Expressly Prohibited
This program has been licensed to:

PACIFIC ELECTRO DATA, INC
IRVINE, CA

by written license Agreement 999999.

r.====== PED-4000 SYSTEM STATUS =========J=;t
EMULATE -.-J

======================!C)1985,86,87 PED

Figure 3-2. Main Menu.

3-5

~his is the main menu. From here you can enter any of the PED-
1000 emulations or analyses installed on your system.

>TEP 3
~o select the PED-4010 Initiator Emulation program, use (Down] to
1ighlight option 3, "Initiator Emulation," or enter the number
'3" at the "Select desired operation" prompt. Press [Enter).

rhe following window and prompt appears.

--~~~~~~~~INITIATOR EMULATION~~~~~~~~~-

1. EDIT
2. CONFIGURE
3. RUN
4. PILE
S. HELP
6. EXIT

Select desired operations~

Figure 3-3. Initiator Emulation Window.

rhis is the main menu for the PED-4010 Initiator Emulation
program. From here you can choose any of the three routines and
two utilities you need to create and run the emulation.

~otice that the words "EMULATE" and "INITIATOR" are highlighted
in the system status window at the bottom of the display. This
tells you that you are in the initiator emulation mode. From
this point, you can either enter a routine selection number at
the desired operation prompt or use the up and down keys to
highlight and select a routine.

Since there are several options to choose from, the next section
reviews possible menu paths you can select.

3-6

3.4 Menu Path

The Initiator emulation is arranged in a series of routines.
Each routine contains a number of menus and submenus you can use
to complete the routine task. To get from one place to another
in this menu structure, see Table 3-1 below.

Table 3-1. Menu Structure.

1. Edit
Emulation Editor

Command Type
Existing Command Types
Command Type Edit

Command
Existing Command COB
Command COB Edit

Data Form

Data

Existing Data Form
Data Form Edit

Existing Data
Data Edit

Program
Existing Run Programs
Program Edit

2. Configure
Device Assignment
SCSI Addresses
Driver Options

3. Run
4. Piles Utility
5. Help

If you are creating or editing a COB, data buffer, or program
file, you would follow the menu path shown in Figure 3-4:

3-7

Command
TYPE

Data
PORM

DATA

COMMAND

PROGRAM

Select
ALL

Select
Emulation

EDITOR

OR

Select
Pile
LOAD

OR

Select
RUN

Figure 3-4. Normal Menu Path.

This is one approach to creating/editing a Device Description
Library, creating a program, and running the emulator.

In the next section, the procedures for creating or·editing a DDL
are discussed.

3-8.

SECTION 4
DEFINING THE TARGET

Before you can run the initiator emulation on a selected target
device, the emulator must first know what parameters constitute
this target: specifically, what are the size, block assignments,
and SCSI bus addresses for commands and data buffers recognized
by the target device. The emulator enables you to define these
parameters using the emulator editor.

Parameters are then stored in the Device Description Library
(DDL) for assignment when you run the emulator itself.

4.1 Defining the Device Description Library (DDL)

Before you can begin to define command and data buffers for the
emulation, you must first create a DDL.

To create a DDL:

Follow these steps:

STEP 1
Select EDIT from the main initiator emulation menu. The
following window and prompt appears:

---~~~-Resident Device Description Library(s)

Select desired operation [Create Alter Rename Delete Exit]:_

Figure 4-1. Creating a DDL

If no names appear in the top window, it means there are no DDLs
loaded in the computer RAM (random-access memory).

STEP 2

NOTE

If you are accessing libraries or files from
computer memory, the word •Resident• appears
above many windows. If you are accessing
libraries or files from disk, the word
"Existing• appears instead.

Highlight CREATE either by using the [Left) and [Right] keys o:r
entering the first letter of the option -- in this case, "C".

Press [Enter].

The following screen appears:

.-~~~-Resident Device Description Library(s)

Enter name of desired Library:

PED-4000 SYSTEM STATUS ===========o1
~ALYZE EMULATE INITIATOR TARGET EDIT CONFIG RUN ARMED~

Fl for HELP (C)1985,86,87 PED

Figure 4-2. Entering DDL Name.

The top window is highlighted and a cursor appears to the right
of the prompt "Enter name of desired Library.•

STEP 3
Enter a library name. A library name cannot consist of more than
thirty alphanumeric characters without extenders.

Press [Enter]. The new library name appears in the top window.
You are returned to the previous menu (see Figure 4-1).

4-2

If you wish to change the name you have created, select the
Rename option and enter a new name at the prompt. If you want to
delete the name you have just created, select the Delete option.
However, be careful. Once you have attached parameters to this
library, using the Delete option automatically erases all the
values previously entered.

STEP 4
Select the Alter option. Press [Enter]. The screen in
Figure 4-2 appears displaying your DDL.

If you do not want to assign values to the DDL at this time,
press [Esc]. You are returned to the previous menu.

To assign values to this library, press [Enteri. The Emulator
Editor menu appears as shown in Figure 4-3.

r-~~~~~~~~-Emulator Editor

1. COMMAND TYPE
2. COMMAND
3. DATA FORMAT
4. DATA
5. PROGRAM
6. EXIT

Select desired operation:_

r.==========PED-4000 SYSTEM STATUS====================~
ANALYZE EMULATE INITIATOR TARGET EDIT CONFIG RUN

Fl for HELP========================

Figure 4-3. Emulator Editor

From here you can create or edit the Command Descriptor Block
(COB}, the data buffer, or write a program. For more information
on creating or editing the COB or data buffer, see Sections 4.1.1
and 4.1.2.

4-3

To edit an existing DDL:

If. the DDL already exists as a disk file, use the following
procedure to enter and edit.

STEP 1
From the main initiator emulation menu, select the PILE option.
Press [Enter).

The following window and prompt is displayed:

.--~~~~~~~~~FILES Utility~~~~~~~~~~

LOAD
SAVE

DELETE
PRINT
EXIT

Select desired operations_

Figure 4-4. Files Utility Window.

STEP 2
Highlight LOAD by entering "L" at the prompt or by using the
cursor keys.

Press [Enter).

The following prompt appears:

Select type of file to load [LIB ALL SETUP DATA);

STEP 3
Select LIB. Press [Enter).

The following window and prompt is displayed:·

lr.=I ======EXISTING LIBRARY FILES =======t1,,
_. libname DDL date time __

Enter name of file to be loaded:

Figure 4-5. Loading DDL Files.

4-4

Each file previously created is designated here by its file name,
and the date and time it was created. Only a certain number of
files can be displayed in the top window at the same time. Use
the [Up) and [Down) keys to move from file to file. Use the
[Left] and [Right] keys to move the character cursor on the entry
prompt line.

STEP 4
Either enter the name of the file you want at the entry prompt,
or select it with [Up] and [Down]. Press [Enter].

The DDL file is loaded into memory and the main Initiator
Emulation menu is re-displayed.

STEP 5
Once the DDL files are loaded, select EDIT.

The window and prompt shown in Figure 4-6 is displayed •

..-~~-Resident Device Description Library(s) --------.
Filenml Filenm3
lilenm2

Enter desired operation [Create Alter Rename Delete Exit] :

Figure 4-6. Editing DDL Piles.

In the top window appears the names of all the libraries you have
loaded.

STEP 6
To edit or continue defining CDBs and data buffers, select the
Alter option.

The screen shown in Figure 4-2 appears.

STEP 7
Enter the name of the library you want to edit or highlight it.
Press [Enter).

The Emulation Editor menu appears. You are now ready to edit
command and d~ta buffer blocks. You can either edit existing
definitions or create new blocks for the DDL files.

4-5

4.2 Defining the Command Descriptor Block (CDB)

Before you can exercise the target with the Initiation Emulator,
you must first load the Device Description Library with the
commands you will use to test the target.

NOTE

For definitions of the commands a target
responds to together with their assigned
values, refer to the SCSI interface manual or
operations guide for the individual target
device.

To define a COB, complete these two tasks:

1. Defining the Command Type, and
2. Assigning a Command.

This means creating the form of command block you require, then
assigning a command word, op code, and default values to that
block.

To begin this process, start at the Emulator Editor screen. To
get there, refer to Section 4.1. The top window of the screen
looks like the following:

Emulator Editor

1. COMMAND TYPE
2. COMMAND
3. DATA FORMAT
4. DATA
S. PROGRAM
6. EXIT

Select desired operations_

Figure 4-7. Creating the COB

Each task is described on the following pages.

4-6

4.2.1 Creating the Command rormat Type

Follow this procedure to create or edit a command Type.

STEP 1
Select COMMAND TYPE from the menu in Figure 4-7. Press [Enter).
The following window and prompt appears:

,____________ Resident command TYPES

TYPEl
TYPE2
TYPE3

Enter desired operation [Create Alter Rename Delete Exit):_

Figure 4-8. Command Type Selection

STEP 2
Select Create. Press [Enter].

At the prompt

Create name of desired Type:

enter a name. The name must not be longer than thirty
characters. No extensions are allowed. Press [Enter).

The following top window appears:

..--------------- Command TYPE EDIT --------------------~
BYTE
00
01
02
03
04
05

-- bit 7-6-5-4-3-2-1-0
Operation code
Unitt 0 0 0 0 0
0 0 0 0 0 0 0 0 .
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 F+L

Type name: TYPEX
CDB size: ! 10 12

Pigqre 4-9. Command Type Edit Window.

Notice that the first byte of the block is reserved for the Op
Code and that the first three bits of the second byte are
reserved for the Logical Unit Number (LUN). Assign the Op Code
wnen you create the command.

You cannot modify the last six bits of the last byte (in the
case of Figure 4-9, bits 5 through 0 of byte 05) from the edit
program. These are reserved bits. The last two bits of the last
byte (designated in this manual as "F+L") are reserved for the
Flag and Link bits.

STEP 3
Choose from one of three command block sizes: six-byte, ten-byte,
and twelve-byte. As you move the cursor, notice that the block
size increases. When you have selected an appropriate block
size, press [Enter). ·

The cursor jumps to the block.

STEP 4
Using the cursor arrow keys, move the cursor through the block
to the beginning bit position. This is the start of a designed
field.

Press [Ins]. The bit under the cursor is highlighted. Move the
cursor and more bits are highlighted. When you have defined the
field you need, press [Ins) again.

STEP 5
If you define a field of eight bits or less, the following prompt
appears in the top window:

Field type: Named Enumerated

Specify whether the field is named or enumerated. Press [Enter).

NOTE

If you define a field of more than eight
bits, the program assumes the field is named.

If you specify a named field, then below the field type designa­
tion the following prompt appears:

Field name =

4-8

If you specify an enumerated field, the program displays a list
of enumerated values in the window similar to the following:

Field value: 00 =
Field value: 01 =
Field value: 02 =

Up to 256 (0-0FFH) field values may be listed depending on the
field size (a one-bit field generates only two field values1 a
two-bit field generates four values, and so on).

Define a field as enumerated to specify that several values can
be associated with the same field.

STEP 6

NOTE

If you want to go back to the block and
redefine the field, press [Enter]. The
cursor returns to the block. Redefine your
field using [Ins].

For a named field: enter a field name (such as LUN, LBA, and so
on). You must choose a name unique to the CDB for each named
field. Press [Enter] to confirm it.

For an enumerated field: select from the list of enumerated
values appearing in the window with the [Up] and [Down] arrow
keys. Enter a unique name for the enumerated field. Select the
next field value with the [Up] and [Down) arrow keys and name
that. When you have name all enumerated values in the field you
require, leave the definition by pressing [Enter].

STEP 7
As fields of bits are defined, the program assigns them letters,
starting with •a• and proceeding through the alphabet for each
field defined, as in this example:

4-9

--------Command TYPE EDIT

BYTE -- bit
00

7-6-5-4-3-2-1-0
Operation code
Unitt a a a a a
a a a a a a a a
0 0 0 0 b b b b
b b b 0 0 c c 0
0 0 0 0 0 0 F+L

Type name: DISK4
CDB size: 6 01

02
03
04
05

Field type: Named
Field name: ADDRESS

Fiiure 4-10. Command Type Edit Window Example.

Notice that enumerated fields are designated by capital letters,
while named fields are marked with small letters. Also notice
that several fields have not been defined in Figure 4-10. This
indicates the block area is reserved.

STEP 8
Once you have defined every field required within the block,
press [Esc). You are returned to the command type directory menu
shown in Figure 4-8.

4.2.2 Editing the Command Type

If you want to edit existing command types, follow this
procedure.

STEP 1

NOTE

Be aware that if you edit any fields within a
command TYPE that is being used to define
existing commands, you run the risk of
corrupting or overwriting bits in that
existing command.

Select COMMAND TYPE from the menu in Figure 4-6. Press [Enter].

STEP 2
Select Alter from the list of options. press [Enter)

STEP 3
Use the [Up) and [Down] arrow keys to highlight existing command
types. When you have chosen one to edit, press [Enter].

4-10

The command type block is displayed with the first defined field
highlighted. The type and name(s) of the field appear to the
right of the block.

STEP 4
Change the field name(s) if you require. To highlight the next
field down, press [PgDn]. The field type and name(s) are
displayed. Change the values if you require.

Continue down the block, going from field to field. To go back
up through assigned fields, use [PgUp].

If you want to change the size of a particular field, press
[Enter]. The cursor jumps to the block. Use [Ins] to alter the
size of the field within the block. Press [Enter] to return to
the field type and name values.

STEP 5
Press [Esc] to leave the command type block. Changes are stored.
Select EXIT from the list of operations and press [Enter]. You
are returned to the Emulator Editor menu.

4.2.3 Defining a Command COB

Once you have defined the size of a block for your command and
assigned fields to it, you are ready to assign a command name and
op code to it. Follow this procedure:

STEP 1
Select COMMAND from the Emulation Editor menu. Press [Enter].
The following window and prompt appears:

--~~~~~~Resident command CPBs ~~~~~-.
COMMAND!
COMMAND2
COMMAND3

COMMAND4
COMMANDS

Enter desired operation [Create Alter Rename Delete Exit]:

Fiqure 4-11. Command CDB Menu.

In this top window appears a list of all the commands you have
cr·eated so far.

4-11

STEP 2
Select Create and press [Enter]. The following prompt appears
below the upper window:

Enter name of desired COB:

STBP 3
Enter a command name. The name can be up to thirty-two
characters long, consisting of one or more words. Use an
underline () to indicate a space between words, such as
MODE_SENSE_J. Press [Enter).

The following top window appears:

..-~~~~~~~~ Command COB EDIT ~~~~~~~-

where

BYTE -- bit
00
01
02
03
04
05

7-6-5-4-3-2-1-0
Operation code COB name: XXXXXX
Unitt 0 0 0 0 0 COB type: TYPE!
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 F+L

Figure 4-12. Command COB Edit Window.

xxxxx = name you have assigned to the command.
typel = the command type you define for this COB.

The cursor is located at the COB type field.

STEP 4
Use the [Left) and [Right] arrow keys to go through the list of
existing command types. As each type appears, the block changes
to reflect the type definition.

When you have found the command type appropriate for the command,
press [Enter].

. 4-12

The following screen is displayed:

Command COB EDIT
BYTE -- bit 7-6-5-4-3-2-1-0
00 00 0 0 0 0 0 0 0 0 COB name: XXXXXX
01 00 0 0 0 0 0 0 0 0 COB type: TYPEl
02 00 0 0 0 0 0 0 0 0 COB data: 0000000
03 00 0 0 0 0 0 0 0 0 Field type: Operation Code
04 00 0 0 0 0 0 0 0 0 Field value: 00
05 00 0 0 0 0 0 0 0 0

Figure 4-13. COB Field Value Assignment Window.

Notice that the first field of the block is highlighted and that
a new column of hexadecimal values appears to the right of the
byte column. Also, there are several new lines to the right of
the block assigned to the block by the command type. These lines
indicate the following:

Field Type

COB data

Field type

Field name

Field value

Meaning

The total value of the block
in hexadecimal digits. There
are two digits per block line.

Whether the field is named or
enumerated.

The name of the field as assigned
by the command type.

The hexadecimal value of each field.
There are two digits per field line.

You cannot manipulate the COB data line directly. This line
changes as you assign field values. The two-digit bit column to
the left of the block also changes to reflect changes in the
field value.

STEP 5
At the cursor to the right of the field value prompt, enter the
two-digit hexadecimal value for each line of the highlighted
field. This value should reflect the op code assignment of that
field as stipulated in your SCSI device manual. Allowable values
range from OOH through FF.

4-13

Press [Enter]. The COB data line, the bit column line, and the
block line all chanqe to reflect the chanqe in the op code
assignment.

The next block field is hiqhliqhted.

STEP 6
Into each name field enter a default hex value, or select the
default enumerated value with the [Up) and [Down) arrow keys.
Press [Enter].

Once you have assiqned default values to all the fields in the
block, you can move up or down the block, review or edit values,
using [PgUp) and [PqonJ.

NOTE

The program does not let you enter restricted
fields, such as the LUN field.

STEP 7
When you are finished defininq the field, press [Ecc].

You are now prompted to select the default data buffer used when
this command is executed. A top window like the one shown in
Figure 4-14 is displayed:

..----------command COB EDIT-----------
BYTE -- bit
00 03
01 00
02 01
03 01
04 lB
05 00

7-6-5-4-3-2-1-0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0

COB name: REQUEST SENSE
COB type: DJSK2 -
COB data: 030000001800
Data data: SENSED

Piqure 4-14. Specifying Data Buffer.

At the "data data:" prompt, select and enter the name ·Of the
default data buffer you require when this command is executed.
~ou can choose from any of the data buffers defined in the DDL,
as well as the 512 byte SMALL or 64K byte LARGE system buffers.

4-14

Use one of the following keys to specify one of these existing
data buffers:

Key Result

(Home] .SMALL (512 byte) data buffer

(End] .LARGE (64K byte) data buffer

[Left] or Available DDL data buffers. See
[Right] Section 4.3 for instructions

on creating data buffers.

Confirm your selection by pressing (Enter].

STEP 8
You are now prompted to specify the direction of data transfer
expected when the command is executed. The top window looks like
this example:

r---------- Command COB EDIT
BYTE -- bit
00 03
01 00
02 01
03 01
04 lB
05 00

7-6-5-4-3-2-1-0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 1 0 1 1
0 0 0 0 0 0 0 0

COB name: REQUEST SENSE
COB type: DISK2 -
COB data: 030000001BOO
Data data: SENSED
Data phase(s): Either Write

Read None

Fiqure 4-15. Enterinq the Data Phases.

use the [Left] and [Right] arrow keys to select a value. Enter
your choice by pressing (Enter].

4-15

The data phases designate the following:

Phase Definition

Ei~her Both directions are allowed with
the data buffer; either the source or
destination for the target data.

Write Only allow data transfers from the
initiator to the target with the
selected data buffer the sourct of
the data.

Read Only allow data transfers to the
initiator from the host with the
selected data buffer the destina-
tion for the data.

None Do not allow any data to be
transferred.

STEP 9
After assigning data buffer locations, press [Esc]. The previous
Edit Emulator menu is displayed.

4.3 Creating Data Buffers

As indicated in the previous section, a data buffer can be
assigned to a command. Select between one of two default system
buffers or create one of your own. Information placed in these
buffers can then be used when the command is executed to exercise
the target according to parameters designated by the buffer.

Like CDBs, data buffers are created in two stages:

1. Create the buffer form (Data Form}, and
2. Specify buffer parameters within that

designated area.

You can also edit buffers by using the Alter option. See the
following procedure for creating and editing data forms and
buffers.

NOTE

Be aware that if you edit any fields within a
data FORM that is already being usect to
define an existing data buffer, you run the
risk of corrupting or overwriting bits in
that existing buffer.

4-16

4.3.1 creating Data Forma

The first step in developing a data buffer is to create the
buffer template (called a data form). Use the following
procedure:

STEP 1
Enter the program and proceed to the Emulator Editor menu as you
did in Section 4.1. Remember: you must first load or create a
DDL before you can enter the editor menu.

At the menu, select the DATA FORM entry. Press [Enter]. The
following menu window appears:

-------Resident DATA FORMS -----
FORM!
FORM2
FORM3

FORM4
FORMS

Enter desired operation [Create Alter Rename Delete Exit]:

Figure 4-16. Data Form Directory Window.

This window contains all the existing data forms previously
created.

STEP 2
Select the Create option to define a new data form. Press
[Enter].

The program displays this prompt beneath the window:

Enter name of desired Form:

STEP 3

Use [BkSp] or [Del] to erase the form in the field and enter a
new form name. Press [Enter].

4-17

rhe following window appears:

-----------DATA FORM EDIT ----------"""I
7-6-5-4-3-2-1-0 BYTE -- bit

00 O 0 0 0 0 0 0 0 Format name: xxxxx
Format size: 001

Select:--char t ~Binary Size +,-Byte Size

Pi9ure 4-17. Data Form Edit Window.

'l'he cursor is positioned in the Format size field.

STEP 4
Choose the size of the data buffer. Select a size from 1 to 1024
bytes. Press [Up] arrow to increase the format s.ize by 21 press
[Down] arrow to decrease by one-half. Press [+) to increase the
size by 11 press [-] to decrease the size by 1. Press [Home) to
return to zero1 press [End] to go to the upper limit of format
size. You can also type in a value (less than 400) to specify an
exact size. Notice, that as the size increases, th~ block size
increases, and vice versa.

When you have chosen a data buffer·size, press [Enter].

The cursor moves to the first bit of the first byte in the data
buffer block.

STEP 5
Use the arrow keys to locate the cursor at the beginning bit
position of a field you want to define.

Press [Ins] to start the field definition. Use the arrow keys to
move to the end bit of the field being defined. The field is
highlighted. Press [Ins] again. The field is defined.

STEP 6
If the field you have defined has eight or fewer bits, then you
are prompted with this message:

Field type: Named Enumerated

use [Right] and [Left] arrow keys to move between these two
options. Press (Enter) to select one. If the field you defined
is more than eight bits, the field type is designated as Named
and the following prompt appears:

Field name •

4-18

NOTE

A defined field of 8 or fewer bits can be
defined as an enumerated type. A named field
type can be from 1 to 32 bits in length. A
field of from 2 to 16 bytes, starting and
ending on byte boundaries, can be defined as
a text field type.

If you specify an enumerated field, the program displays a list
of enumerated values in the window similar to the following:

Field value: 00
Field value: 01
Field value: 02

Up to 256 (0-0FFH) field values may be listed depending on the
field size (a one-bit field generates only two field values1 a
two-bit field generates four values, and so on).

Define a field as enumerated to specify that several values can
be associated with the same field.

STEP 7

NOTE

If you want to go back to the block and
redefine the field, press [Enter). The
cursor returns to the block. Redefine your
field using [Ins].

For a named field: enter a field name (such as LUN, LBA, and so
on). You must choose a name unique to the data form for each
named field. Press [Enter] to confirm it.

For an enumerated field: select from the list of enumerated
values appearing in the window with the [Up) and [Down) arrow
keys. Enter a unique name for the enumerated field. Select the
next field value with the [Up] and [Down] arrow keys and name
that. When you have named all enumerated values in the field you
require, leave the definition by pressing [Enter].

STEP 8
As fields are defined, the program assigns them letters, starting
with •a• and proceeding through the alphabet for each field
defined, as in Figure 4-18:

4-19

.--~~~~~~~-DATA FbRM EDIT~~~~~~~~~~--.
BYTE -- bit
00
01
02
03

7-6-5-4-3-2-1-0
A A 0 0 0 0 0 O Format name: Forml
b b b b b b b 0 Format size: 004
0 0 0 0 c c c c
c c c c c c c c Field type: Named

Field name: ADDRESS

Figure 4-18. Data Form Edit Window Example.

'otice that enumerated fields are designated by capital letters,
1hile named and text fields are marked with small letters. Also
1otice that several fields have not been defined in Figure 4-18.
Phis indicates the block area is reserved.

>TEP 9
)nee you have defined every field required within the block,
)ress [Esc] • You are returned to the data forms directory menu
;hewn in Figure 4-16.

rhe data form you just created appears in the directory window.

i.3.2 Editing the Data Form

If you want to edit existing data forms, follow this procedure.

3TEP 1
3elect DATA FORM from the emulation editor menu. Press [Enter].

3TEP 2
3elect Alter from the list of options. Press [Enter]. The first
iata form name is highlighted.

3TEP 3
Jse the [Up] and [Down] arrow keys to highlight existing data
forms. When you have chosen one to edit, press [Enter).

rhe data form block is displayed with the first defined field
iighlighted. The type and name(s) of the field appear to the
eight of the block.

3TEP 4
:hange the field name(s) if you require. To highlight the next
field down, press [PgDn). The field type and name(s} are
jisplayed. Change the values if you require.

4-20

If the highlighted field is enumerated, use the [Up] and [Down]
arrow keys to move between the field values. Change thes~ values
as required.

Continue down the block, going from field to field. To go back
up through assigned fields, use [PgUp].

If you want to redefine the size of a particular field, press
[Enter]. The cursor jumps to the block. Use [Ins] to redefine
the size of the field within the block. Press [Ins] again to
return to the field.type and name values.

STEP 5
Press [Esc] to leave the data form block. Changes are stored.
Select EXIT from the list of operations and press [Enter]. You
are returned to the Emulator Editor menu.

4.3.3 Creating a Data Buffer

Use the data format templates to create one or more data buffers
for use in writing and running your emulation program. Follow
the procedure below for creating a buffer.

STEP 1
Select DATA at the Emulation Editor menu. Press [Enter]. The
following window appears.

DAT Al
DATA2
DATA3

DATA4
DATA5

Enter desired operation [Create Alter Rename Delete Exit]:

Figure 4-19. Resident Data Directory Window.

This window expands as the number of data files grows.

STEP 2
Select ~eate.f~om the optioa list. Press [Enter]. The
following prompt appeara:.

Enter name of desired Data:

4-21

STBP 3
Move the cursor to the right of the prompt and enter a new data
buffer name. Press (Enter]. A menu similar to Piqure 4-20
appears:

-----------DATA EDIT -----------.
BY'fE .,..- bit
00
01
02
03

7-6-5-4-3-2-1-0
A A 0 0 0 0 0 0 Format name: Datal
b b b b b b b O Format size: Forml
0 0 0 0 c c c c
c c c c c c c c

Pi;ure 4-20. Data Edit Window.

The cur$or is positioned to the right of the Data format field.

STEP 4
Use the (Left] and (Right} arrow keys to go through the existing
data forms. As a data form nam·e appears, the data block changes
to reflect that change.

To match a data form to the pre:;ent data buffer definition, press
(Enter].

A window si.milar to the Figure ·l-21 appears:

.-------------------~DATA EDIT-----------------~
BYTE
00
01
02
03

-- bit
00
00
00
00

7-6-5-4-3-2-1-0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 () 0
0 0 0 0 0 0 () 0
0 0 0 0 0 0 () 0

Format ~ame: DATAl
Format size: FORHl

Field type: Named
Field name: ERR CL
Field value: 0 -

Figure 4-21. EntE!rin9 Field Values.

A new column appears to the left. of the data block and several
new prompt lines appear to the J"ight.

STEP 5
Enter a field value, if required. The data block and bit column
change to reflect the change in the value.

4-22

STEP 6
When you have assigned field values to all required fields, press
[Esc]. You are returned to the data buffer directory.

4.3.4 Editing the Data Form

If you want to edit existing data buffers, follow this procedure.

STEP 1
Select DATA from the emulation editor menu. Press [Enter].

STEP 2
Select Alter from the list of options. , Press [Enter]. The first
data buffer name is highlighted.

STEP 3
Use the [Up) and [Down) arrow keys to highlight existing data
buffers. When you have chosen one to edit, press [Enter].

The data buffer block is displayed with the first defined field
highlighted. The type and name(s) of the field appear to the
right of the block.

STEP 4
Change the field values, if you require. , To highlight the next
field down, press [PgDn]. The field type and name is displayed.

Change the values if you require. Press [Enter]. This moves you
down to the next field.

If the highlighted field is enumerated, use the [Up] and [Down]
arrow keys to move between the field values. Change these values
as required.

Continue down the block, going from field to field. To go back
up through assigned fields, use [PgUp]. Use [Horne] to go back to
the top field1 use [End] to highlight the last field.

STEP 5
Press [Esc] to leave the data buffer. Changes are stored.
Select EXIT from the list of operations and press [Enter]. You
are returned to the Emulator Editor menu.

4-23

4.4 Deleting and Renaming a DDL Entry

so far you have used the Create and Alter options that appear
under the directory windows for Command Type, Command, Data Form,
and Data. However, there are two other options you can also use
to manage the directory: Rename and Delete.

To Delete a DDL Entry

STEP 1
Use the [Right] arrow key to highlight the Delete option. Select
Delete from the list by pressing [Enter].

The top entry in the directory window is highlighted and the
following prompt appears:

Enter name of desired [class]:

where [class] can be TYPE, COB, FORM, DATA, or PROGRAM.

STEP 2
Use the [Up] and [Down] arrow keys to highlight the entry you
want to delete.

When you have highlighted the entry to be deleted, press [Enter].
The entry disappears from the directory window.

To Rename a DDL Entry

STEP 1
Use the [Right] arrow key to highlight the Rename option. Select
it by pressing [Enter].

The top entry in the directory window is highlighted and the
following prompt appears:

Enter name of desired [class] :

where [class] can be TYPE, COB, FORM, DATA,· or PROGRAM.

STEP 2
Use the [Up] and [Down] arrow keys to highlight the entry you
want to rename.

When you have highlighted the entry to be renamed, enter the new
entry name at the prompt. Press [Enter]. The old entry name is
replaced by the new one in the directory window.

4-24

4.5 Exiting from the Emulation Editor

There are two ways to exit from the editor. Either press [Esc]
or select the Exit option from the operation list below the
window and press [Enter]. Both return you to the previous menu.

The PROGRAM option in the Editor menu is discussed in Section S.

4.6 Saving the Results

Your last task is to store the DDLs you have created or edited.
To do this, follow this procedure:

STEP 1
Return to the main Initiator menu and select the FILE option.

STEP 2
From the File window, select SAVE. Press [Enter].

STEP 3
The following prompt appears:

Select type of file to save [LIB ALL SETUP DATA]:

Select the type of file you want to save. Pick LIB to save a
specific DDL file. Pick ALL to save all resident DDLs in RAM to
one file. This option also saves all the emulation configuration
and State Analyzer setup data in the same file.

If you pick LIB, the following window and prompt appears:

...--------EXISTING LIBRARY FILES -------.
LIBl DDL [] LIB2 DDL [

Enter name of file to be saved:_

Figure 4-22. Resident Library Files Window.

The file name and the date the file was created appears in this
window.

4-25

If you pick ALL, the following window and prompt appears:

,....~~~~~ EXISTING CONFIGURATION FILES ~~~~~-.
FILEl ALL [] FILE2 ALL [

Enter name of file to be saved:_

Figure 4-23. Resident Configuration File• Window.

The file name and the date the file was created appears in this
window.

STEP 4
Enter the name of the file to be saved at the cursor. Press
[Enter].

The DDL or configuration file is saved on disk under the selected
file name. The first time you save a file, ODL files are given
the extension ".DDL"7 config~ration files are given the extension
".ALL".

4.7 Sample Definition Session

Here is an example of how the Emulation Editor can be used to
create a COB and data buffer.

Take the SCSI command READ USAGE COUNTERS. This command is used
by hard disks to track the number of blocks read, the number of
seeks requiring carriage motion, the number of correctable or
uncorrectable Read errors, and the number of seek errors.
Execution of this command sets the usage counters to zero.
Counter information is stored in RAM.

This command therefore requires not only the creation of a
command block but a data buffer block into which the usage
counter information is stored.

4-26

The command block as stipulated by the SCSI interface manual is a
basic six-byte structure that looks like the following:

BIT l 1 l l l J 1 l BYTE 7 6 5 4 3 2 0

0 Operation Code

1 LON l Reserved

2 Reserved

3 Reserved

4 Reserved

5 Reserved 1Fla9}Link

Figure 4-24. Read Usage Counters Command Structure.

For this example, the op code is specified as llH.

The data buffer where counter information is stored is also
stipulated in the Interface Manual. The structure of this buffer
is shown in Figure 4-25.

0 Blocks Read (MSB)

1 Blocks Read

2 Blocks Read (LSB)

3 Seeks (MSB)

4 Seeks

5 Seeks (LSB)

6 Uncorrectable Read Errors

7 Recoverable·Read Errors

8 Seek Errors

Figure 4-25. Usage Counter Format

4-27

Now that we know the parameters of this command, we can add it to
the DDL. The sequence we will use here is:

1. Create Command Type.
2. Create Data Form.
3. Define Data Buffer.
4. Define COB.

NOTE

Be aware that you don't have to create a new
Command Type each time you define a new COB.
Many CDBs are subsets of existing CDBs and
therefore use the same Command Type template.
Command Type creation is included here to
illustrate this specific example.

Follow this procedure.

STEP 1
At the Initiator Emulation main menu, select FILE.

STEP 2
From the FILES Utility, select LOAD.

STEP 3
Select LIB. Choose a specific DDL file from the disk.

STEP 4
Back at the main menu, select EDIT.

STEP 5
Select the Alter option and specify the DDL you just loaded.

This brings you to the Emulation Editor.

STEP 6
Select COMMAND TYPE.

STEP 7
Select Create. At the prompt, enter the new name of the command
type. Call it "DISKx.•

(Normally you would choose Alter and check the existing command
types to see if the specific six-byte block you need for Read
Usage Counters already exists before creating a new type.)

4-28

STEP 8
In the Command Type Edit window, specify a COB size of·6. The
basic block appears. Since the only field defined for this
simple example is the operation code, press (Esc]. You are
returned to the main Editor menu.

STEP 9
At the Editor menu, select DATA FORM.

STEP 10
Select Create. Enter the name of the buffer for this command.
Call it COUNTS.

STEP 11
At the Format Size prompt, use the (Right] arr~w key to expand
the size of the data form to nine bytes. PresL (Enter].

The cursor jumps to the first bit of the data block.

STEP 12
Look at the buffer depicted in Figure 4-25. The first.three
bytes are designated Block Read, the second three are seeks, byte
06 is uncorrectable Read Errors, 07 is Recoverable Errors, and 08
is Seek Errors.

Press (Ins] and use the arrows keys to highlight the first three
bytes. Press [Ins] again. This prompt appears:

Field type: Named
Field name:

STEP 13
Enter BLOCKS READ. Press [Enter] • The cursor returns to the
data form. -

STEP 14
Use [Ins] to define bytes 03 through 05. Press (Enter]. At the
field name prompt, enter SEEKS.

STEP 15
use [Ins] to define byte 06. Give it a field name of
READ_ERRORS.

STEP 16
Use [Ins] to define byte 07. Give it a field name of
RECOVERED_ERRORS.

STEP 17
Use [Ins] to define bY.te OB. Give it a field name of
SEEK ERRORS. The data form should now look like the window in
Figure 4-26:

4-29

DATA FORM EDIT
BYTE bit 7-6-5-4-3-2-1-0
00 a a a a a a a a Format name: Forml
01 a a a a a a a a Format size: 004
02 a a a a a a a a
03 b b bbbbbb Field type: Named
04 bbbbbbbb Field name: SEEK_ERRORS
05 bbbbbbbb
06 c c c c c c c c
07 d d d d d d d d
08 e e e e e e e e

Figure 4-26. Data Form Edit Sample.

STEP 18
From the Editor menu, select DATA.

STEP 19
Select Create. Enter a new data buffer name. Use the name
COUNTERS.

STEP 20
At the data format prompt, use the [Right] arrow key until the
format you just created, COUNTS, is displayed. Press [Enter].

The first field, BLOCKS READ is highlighted and the following
prompt appears:

Field type: Named
Field name: BLOCKS READ
Field value: QOOOOO

STEP 21
Enter a specified field value for BLOCKS_READ. In this case,
OOOOA3. Press [Enter].

STEP 22
SEEKS is highlighted. Give this a field value of 0000. Press
[Enter).

STEP 23
READ ERRORS is highlighted. Enter no value (00) for this field.
Press [Enter).

STEP 24
RECOVERED ERRORS is highlighted •. Enter no value (00) for this
field. Press [Enter].

4-30

STEP 25
SEEKS ERRORS is highlighted. Enter no value (00) for this field.
Press-[Esc].

STEP 26
Using [Esc], exit DATA and return to the main Editor menu.

STEP 27
At the Editor, select COMMAND.

STEP 28
Select the Create option and specify the command name, in this
case call it "Read_Usage_Counters."

STEP 29
At the Command CDB Edit window, use the [Right] arrow key to run
through available CDB types until your new Command Type appears.
Press [Enter).

The following window appears:

Command COB EDIT
BYTE -- bit 7-6-5-4-3-2-1-0
00 00 0 0 0 0 0 0 0 0 COB name: READ USAGE COUNTERS
01 00 0 0 0 0 0 0 0 0 COB type: DISKX -
02 00 0 0 0 0 0 0 0 0 COB data: 000000000000
03 00 0 0 0 0 0 0 0 0 Field type: Operation Code
04 00 0 0 0 0 0 0 0 0 Field value:
05 00 0 0 0 0 0 0 0 0 -

Figure 4-27. Command CDB Edit Example.

STEP 30
Enter the op code specified in the manual. In this case, "ll"•
The window changes to reflect your entry. Press [Esc]. The
following field appears:

Data data: .SMAIL (512 byte buffer)

STEP 31
Press the [Right} and [Left} arrow keys until COUNTS appears.

STEP 32
Press [Enter}. The following prompt appears:

Data phase(s): Either Write Read None

4-31

STEP 33
Select Read.

STEP 34
Press [Enter]. You are returned to the Resident command CDBs
menu.

STEP 35
Press [Esc] or select Exit from the option list. You are
returned to the Emulation Editor menu. Press [Esc] again to
return to the main Initiator menu. Select FILE.

STEP 36
At the File window, select SAVE. Your new files are saved. Exit
the program by a combination of ESC and Exit option selections.

You have completed the command and data buffer assignment.

NOTE

READ USAGE COUNTERS is a unique vendor
command. Therefore, it isn't necessarily
useful to all users. However, it does
illustrate how easy it is to create a ve~dor
unique COB using the PED-4000 system.

4-32

SECTION S
SCSI SYSTEM CONPIGURATIOH

Before the emulator can use a DDL, you must assign it to a
specific SCSI address. The emulator uses the active target
address to select the DDL it will access. In PED-4010 you assign
SCSI addresses by using CONFIGURE.

use the CONFIGURE menu to:

o Assign discrete SCSI addresses to the
Initiator, Target, and LUNs.

o Re-select of driver options.

5.1 Device Assignment

After you have completed a DDL, you must attach it to the ID of
the target address. You may attach a DDL to each of the eight
SCSI target IDs by following this procedure:

STEP 1
Enter the main Initiator menu as described in Section 2. If you
have not done so already, enter PILE and load the SCSI device
DDLs into the computer RAM.

STEP 2
Return to the main Initiator menu and select the CONFIGURE option
from the menu list. Press [Enter).

This window and prompt appears:

..-~~~~~~~-configuration Mode

1. DEVICE ASSIGNMENT
2. SCSI ADDRESSES
3. DRIVER OPTIONS
4. EXIT

Select desired operation:_

Pi9ure 5-1. Configuration Mode Window.

STEP 3
Select the DEVICE ASSIGNMENT option. Press [Enter).

The windows and prompts shown in Figure S-2 appear:

---Resident Device Description Library(s)---
FILEl FILE3
FILE2 FILE4

..-~~~~~-scsI System Configuration----------.....

0: 4:
1: s:
2: 6:
3: 7:

Select: Esc EXIT tt Address ...- ..., Library

Figure 5-2. Device Assignment Table.

In the top window appear the DDLs resident in the computer. The
"o• field in the SCSI system configuration window is ,.highlighted.

STEP 4
Use the [Up] and [Down] arrow keys to highlight the bus ID number
of the target.

STEP S
Use the [Right) arrow key to bring up each existing DDL in turn.
The DDL appears to the right of the highlighted ID number. Use
the [Left) arrow key to return through the DDL list. The first
selection is a blank.

Continue through the.Device Assignment table until you have
attached DOLS to all the IDs you require.

STEP 6
When you are finished, press [Esc].

once your targets are properly identified by a DDL, you must
select the ID of the active target as well as assign the current
LUN and initiator an address.

5 - 2

5.2 SCSI Addreaae1

Before you can run an emulation, you must attach a DDL to a SCSI
ID in the configuration table (defined in Section 5.1) and set
the ~urrent target, initiator, and LUN IDs. Once set, you may
need to reassign these addresses given the following conditions:

o If you have several targets to test, you must
reassign the target ID for each emulation you
plan to run.

o !f you have a target with multiple logical
units (LUNs) attached to it, as in the case
of target definitions loaded on separate disk
drives.

o If you plan to test multiple initiators.

Normally, the Initiator ID will not change. It is assigned a
unique ID number. However, you can assign up to eight LUN& for
each target, and up to seven different targets.

NOTE

Make sure there is no overlap of target and
initiator assignments. For example, if you
designate ID 0 as the target address, then
the initiator address can't occupy the same
ID O.

To assign SCSI addresses, follow this procedure:

STEP 1
Select the CONFIGURE mode from the main Initiator menu.

STBP 2
Select SCSI ADDRESSES. Press [Enter].

5 - 3

The window and prompt in Figure 5-3 is displayed:

INITIATOR
TARGET

LON

Select: Esc EXIT t ~ Address - - Value [O l 2 3 4 5 6 7):

Figure S-3. SCSI Addresses Window.

STEP 3
Use the [Up) and [Down) arrow keys to highlight one of the three
options.

STEP 4
Use the [Left] and [Right) arrow keys to highlight one of the
eight possible values.

STEP 5
When you have assigned values to the options you require, press
[Esc). Emulations now use the values assigned.

You can return to this function and reconf i9ure address values
whenever you need to.

NOTE

You can also assign Target and LON address
values while in either interactive or program
mode. For more details, see Sections 6 and
7.

s - 4

S.3 Driver Option•

You can also enable or disable options for your device dr~ver.
These options are:

EXTRA

TIME

MESSAGE

DISCONNECT

PARITY

LINK

FLAG

When enabled, the driver will fill
the circular buffer and not over­
write it. If more data is sent, it
will be thrown away. When more data
is requested, zeros will be sent.
This avoids buffer overwrite when
more data is sent to a buffer than
the buffer was designed to hold.
Default is NO.

When enabled, it times out many bus
transactions such as READ or WRITE.
If bus does not pick up a request
within .25 seconds, the driver drops
the line. Default is NO.

Enables or disables message system.
This is important in differentiating
SASI from SCSI devices. SASI is
usually disabled; SCSI is enabled.
Default is YES.

When the message system is disabled,
disconnect is inactivated. When it
is enabled, disconnect sets bit 6 of
the IDENTIFY message allowing the
target to disconnect. Default is
YES.

Enables parity. Default is YES.

Enables the link bit. Default is
NO.

Enables the flag bit. Default is
NO.

To change the default driver option, follow this procedure:

STBP 1
Select DRIVER OPTIONS from the Configuration mode menu. Press
(BnterJ.

The window and prompts shown in Figure 5-4 are displayed.

5 - 5

EXTRA
TIME

MESSAGE
DISCONNECT

PARITY
LINK
FLAG

Select: Esc EXIT f ~ Option - -- State [Yes No] :

Figure 5-4. ·Driver Options Window.

STEP 2
use the [Down] and [Up] arrow keys to highlight an option, or
enter the first letter of the option name. The present state of
the option appears in the State field below the window.

STEP 3
Use the [Right] and [Left] arrow keys to turn the option ON (Yes)
or OFF (No).

STEP 4
When you have configured all the options you require, press [Esc]
to assign the driver options and return to the Configuration mode
menu.

NOTE

You can also enable or disable many of these
options while in the interactive or program
mode. For more details on how to do this,
see Sections 6 and 7.

5 - 6

SECTION 6
INTERACTIVE MODE EMULATION

There are two ways to run the Initiator Emulation:

o Interactive Mode emulation
o Program Mode emulation

The Interactive Mode is keyboard-driven. In this section, you
will learn how to:

o Issue SCSI commands defined in the DDL.
o Assign" values to data buffers in the active DDL.
o Issue emulation system commands.

See Section 7 for a discussion of Program Mode.

6.l Entering Interactive Mode Emulation

Before you invoke the Interactive Mode, create the appropriate
DDL and define all command and data buffers required to run the
Initiator emulation on the target device.

Follow this procedure to enter Interactive M.ode.

STEP 1
At the main Initiator Emulation menu, select RUN. The screen in
Figure 6-1 appears:

r============SCSI BUS STATUS =========---a

BUS PREE INTERPHASE COMMAND STATUS INITIATOR ID: CONDITION:
BUS CLEAR ARBITRATJONMESSAGE OUTMESSAGE JN TARGET JD: TRANSFER:
SELECTION RESELECTION DATA OUT DATA IN BO'S PENDING:

Select RUN mode [INTERACTIVE PROGRAHJt !

r;:::========== PED-4000 SYSTEM STATUS ==========t1
ANALYZE EMULATE INITIATOR TARGET EDIT CONPIG RUN ARMED INDEXED PULL
BUSY Pl for HELP

Pigure 6-1. Run Mode Screen.

Using this screen you can enter either the Interactive or Program
mode. Default is Interactive.

STEP 2
Press [Enter). Below the Bus Status window, another window
appears:

,....----REPORT OPTIONS -----

1. NONE
2. EMULATION STATUS
3. ACTIVITY LOG
4. BOTH .

Select REPORT level:_

Figure 6-2. Report Options Window.

6 - 2

I

I

When you run the emulator, you can receive several reports on
activity. Select NONE to see normal status reports. Select
EMULATION STATUS or ACTIVITY LOG to see optional report screens.
Select BOTH, to review both the EMULATION STATUS and ACTIVITY LOG
report screens. BOTH is the default ~tatus mode.

/ The various status windows are defined below:

Bus Status is always supplied by the top window. This
window provides you with information on what the SCSI
bus is doing at any specific moment. All messages in
this window are basic SCSI bus phase signals. For more
information about these signals, refer to your SCSI
interface manual or the State Analysis Program User's
Manual.

Normal Status is supplied by the middle window if you
select the NONE option. This leaves the middle of the
screen free for any data you may wish to see during
Interactive Mode.

Emulation Status reports on how the emulation is
progressing indexed by signals. This is optional and
is directly below the bus status window, if selected.

Activity Log provides a historical log of activity on
the bus. This is optional and is above the system
status window, if selected.

STEP 3
Depending on your requirements, highlight one of the four report
options using either the [Up] and [Down] arrow keys or by
entering the number which precedes the option you want. Press
[Enter].

· If you picked either option, a new window appears in the middle.
If you picked both options, two windows appear in the middle. If
you picked none, no window appears.

Whichever option you choose, this prompt appears above the System
Status window:

command ..

STEP 4
Enter commands and qualifiers as required. To initiate the
command, press [Enter]. Responsesto commands· appear in both the
top and middle windows.

See the next section for a discussion of commands you can use.

6 - 3

.• 2 Command Linea

line can contain only one command together with any.associated
.ualifiers or arguments. Commands are initiated once you press
Enter]. Specific conventions apply to the particular command
.ypes and are discussed in the following sections.

ommands are of two types:

o OOL Commands
o Emulation Commands

'0L Co•ands are the defined COBs. Define these commands using
.he Emulation Editor as discussed in Chapter 4.

:mulation Commands are the set of pre-defined commands recognized
)Y the emulator. use these commands at any time during the
·mulation.

NOTB

While many emulation commands are shared ·by
both the interactive and program modes, th~re
are several specific to each mode. For more
information on this, see Section 6.2.2.

i.2.l DDL Command Assignments: CDB commands

~he first entry on a OOL COB command line must be a OOL COB name.
:nvoke any COB name from the currently active OOL.

'ollow the COB name by any number of expressions assigning
rarious DOL TYPE field values. Each expression must be separated
JY a space.

rhe general form of the expression must conform to this
;onvention:

<CDB nam•>· [<TYPB field>•constant ••• J

~or example, if the ccs DOL were active, the command line

READ ADDRESS • 0200

~ould set the ADDRESS field of the READ COB to 200H and execute
che command using that COB. Results of the emulation would then
)e saved in the previously-assigned data buffer (.SMALL is
lefault). ·

6 - 4

You can assign as many variables per COB name as you can fit on a
line up to a maximum of 70 characters per line. For instance, if
you had defined a WRITE COB, you could invoke a command line
looking like this:

WRITE ADDRESS = 0400 LENGTH = 0020

Where the address field is set to 400H and the transfer length is
set to 20H. However, if you were to invoke this command,

WRITE LENGTH = 0020 LENGTH = 003F

the last assignment of the transfer length value would be used,
since the emulator would overwrite the first value.

To assign values to an enumerated field, invoke the enumerated
field name as defined by the Command TYPE. If you defined a two­
bit field within the COB WRITE BUFFER as 00 = HEAD AND DATA and
02 = DATA, then you could designate DATA by using this-argument:

WRITE_BUFFER DATA

This would set the enumerated field of the COB WRITE BUFFER to
02. To set the other enumeration of this field, use-this
argument:

WRITE_BUFFER HEADER_AND_DATA.

If you have enumerated fewer than the allowable values per field
in your Command TYPE definition, you can use the command line to
set others. For instance, in the case of the two-bit field
within WRITE BUFFER, there are only two values enumerated for
four possible value entries: 00 = HEADER AND DATA and 02 = DATA.
This means you can enumerate the 01 and 03 value of this field.
To do this, override an existing enumerated value and set it to
another field value, as in this example:

WRITE_BUFFER DATA = 03

In effect this creates an enumerated value using the existing
enumerated label of DATA. This does not effect the default value
of DATA, merely creates an enumerated value for this one command
only.

6 - 5

6.2.2 Emulation Commands

Besides settinq command and data fields, you can also use many
emulation commands to exercise and analyze the target. These
commands are listed below, qrouped by categories.

Configuration: commands that assigns SCSI addresses.

INITIATOR
LUN
TARGET

Driver Control: commands that control the driver.

DISCONNECT
EXTRA
FLAG
LINK

MESSAGE
PARITY
RESET *

Diagnosis: commands that report the emulator state.

ALL
DUMP
MARK

REPORT
VIEW

Sta.te Analysis: commands that control the State Analyzer while in
emulation.

ARM *
DISARM *
INDEX *

System: commands that control the emulator.

BYE
CLEAR *
EDIT
CONFIGURE

* = used in both Interactive and Program mode.

Consult the following pages for discussions of each command.
Commands are listed alphabetically.

6 - 6

ALL

Syntax:

ALL [<DDL_name> <Element_class>l

Function:

Use this command to view size and address locations for
either the active DDL or another specified DDL. The
ALL report looks like this example:

DEMO

The active .DDL is DEMO

aaaa allocated bytes at bbbb
Table cccc Free dddd

Pigure 6-3. ALL Data Window.

where:

aaaa = number of bytes allocated for this DDL.
bbbb address location where DDL begins.
cccc = base address for table of last•referenced DDL.
dddd = address location from where code starts compiling.

Comments:

Use ALL without parameters to show resident DDLs per
box.

Use ALL with parameters to show re$ident entries per
class. Both parameters must be incl•Jded. Allowable
parameters are listed below.

Parameters:

DDL_name • name of specific DDL.

Element_class .. TYPE, FORM, DATA, or PROO.

6 - 7

ARM

Syntax:

ARM

Function:

use this command to arm the State Analyzer. When
invoked, the message ARMED is highlighted in the System
Status window at the bottom of the screen.

Comments:

Use this function if you intend to capture data using
the State Analyzer. To disarm the analyzer, use the
DISARM command.

6 - 8

BYE

Syntax:

BYE

Function:

Use this command to quit the Interactive Mode and
return to the main Initiator Emulation menu.

6 - 9

CLEAR

Syntax:

CLEAR [name] [value]

Function:

Use this command to clear the initiator's data buffers •
• OFFSET and .FILE buffers are automatically cleared to
zero.

Comments:

Invoking the command without parameters clears the
.LARGE buffer to zero.

Invoking the command with a buffer name clears the
specified buffer to zero.

When invoked with a buffer name and number, the program
uses the number to create a pseudo-random sequence in
the named buffer. For instance, a value of 2 ;ives an
incremented sequence; 3 provides a decremented
sequence. Any value greater than 8 adds the low 8 bits
to the high 8 bits. Sequences are repeated ·every 256
bytes. Default buffer is .LARGE.

Parameters:

name = .LARGE, .SMALL, or a DDL DATA name.

value = O, 1, 2, 3, and so on.

0
0

0 \
I :i '3 4-

i '3 45 b'7 <?; °' l5
A~-~

l f F F f ~~~~~~~~-~

6 - 10

CONPIGORB

Syntax:

CONFIGURE

Function:

Use this command to enter the CONFIGURE mode while in
the Interactive mode and assign a DDL tp a SCSI Bus ID.

Comments:

Invoke CONFIGURE by itself to enter the CONFIGURE mode.
Use the command to check and edit the current SCSI
system configuration.

When you are finished, press [Esc] to return to the
Interactive mode.

6. - 11

HSARM

>yntax:

DISARM

>unction:

Use this command to disarm the Logic Analyzer. When
invoked, the message ARMED is not highlighted in the
System Status window at the bottOm of the screen.

::omments:

Use this function if you do not intend to capture data
using the Logic Analyzer. To arm the analyzer, use the
ARM command.

6 - 12

DISCONNECT

Syntax:

DISCONNECT [ON/OFF]

Function:

Use this command to enable or disable disconnects on
the current target device. If the disconnect is ON,
disconnect is enabled. If disconnect is OFF,
disconnect is disabled. Default is ON.

Comments:

Invoke this command without parameters to see the
current disconnect state. If jt is disabled, the word
"OFF" appears above the command .prompt until you enter
the next command. If the word "ON" appears above the
command prompt,• it is enabled.

Invoke this command with either ON or OFF to change the
disconnect state.

SCSI devices require disconnect to be enabled; SASI
devices usually require disconnect is disabled.

This function is also controlled by the CONFIGURE mode.
See Chapter 4.

6 - 13

DUMP

Syntax:

DUMP [buffer_name]

Function:

Use this command to view the contents of the specified
.SMALL, .LARGE, or user-defined data buffer. The dump
display looks like this:

Comments:

Displayed buffer = SAMPLE BUFFER
0-1-2-3-4-5-6-7-8-9-A-B-C-D-E-F- •••

000000000000000000000000000000000 •••
000000000000000000000000000000000 •••
000000000000000000000000000000000 •••

Command or buffer:

Fiqure 6-4. Buffer Dump Window.

After invoking a DDL command, use this emulation
command to review the code dumped into the attached
data buffer. Only specify one buffer per command.

If you specify the .LARGE (64K) buffer, you can advance
through the buffer by pressing [Enter]. This takes you
forward one block at a time. To go back a block, press
(-] and [Enter]. To specify a particular buffer block,
enter a buffer number at the cursor and press [Enter),
or enter another command to exit the dump window.

Go forward in the .LARGE buffer a specified number of
blocks by using the command, +n, where n is the number
of blocks. Go backward a specified number of blocks by
using the command, -n, where n is the number of blocks.

You can display a maximum 512 bytes on the screen.

6 - 14

EDIT

Syntax:

EDIT [<DDL_name> <element_class> <name>]

Function:

Use this command to edit specified DDL formats while
still in the interactive mode.

Comments:

Invoking EDIT without parameters causes the program to
90 through all menu selections. Use the optional
parameters to specify DDL name, element type, and name.
Leave spaces between parameters. -

When you are finished, the program returns to Inter­
active Mode (even if you used the menu mode to select
the entry to edit).

Parameters:

DDL_name

element_class

name

For example:

Specify name of the particular DDL you want
to edit.

Indicate Command Type, Command, Data Form, or
Data options.

Specify existing TYPE, COB, FORM, DATA, or
PROO.

EDIT SG FORM SENSE

tells the program you want to edit the DDL file called
SG for a data form called ·SENSE.

You are taken to that block for editing.

6 - 15

EXTRA

Syntax:

EXTRA [ON/OFF)

Function:

Use this command to enable or disable an extra buffer
on the current target device. Default is OFF.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word •opp•
appears above the command prompt until you enter the
next command. If the word •oN" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

When enabled, the driver will file the circular buffer
and not overwrite it. If more data is sent, it will be
thrown away. When more data is requested, zeros will
be sent.

This function can also be controlled by using the
CONFIGURE mode. See Section 5.

6 - 16

FLAG

Syntax:

FLAG [On/Off)

Function:

Use this function to enable or disable the flag bit on
the current target device. ~fault is OFF.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

This function is also controlled by the CONFIGURE mode.
See Chapter S.

6 - 17

INDBX

Syntax:

INDBX

Function:

Use this command to force the logic analyzer to save
time and state data around some key index event.

Comments:

The command halts the capture operation after a
specified number of writes to the acquisition memory,
protecting data saved on either side of the INDBX
~ommand. When the analyzer is armed (see ARM and
DISARM commands), time and state data is written in
memory starting at address 000. At each write, the
memory address register is incremented by 1. At a
certain point the data will wrap back around on itself
and begin to overwrite unless INDEX is invoked.

INDEX controls the capture process, loadinq the index
count value,- setting the counter to increment at every
write, forcing a write to the memory when time and
state data occurs, and halting capture when the index
counter reaches its maximum count.

Once you have issued this command, the system status
window highlights the word •INDEXED•.

6 - 18

INITIATOR

Syntax:

INITIATOR [value]

Function:

Use this command and argument to assign a SCSI address
to the current target device ID.

Comments:

Invoke this command without parameters to see the
current device address assignment. The program then
prompts for a change of address.

Invoke this command with a value from 0 through 7 to
change the SCSI device address. A test is performed to
determine whether there is any conflict with the target
assignment. (If the value is greater than or equal to
zero, less than or equal to 7, and is not equal to the
target, the new value is used. Otherwise, you will be
prompted for a new value.)

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 19

LINK

Syntax:

LINK [YES/NO)

Function:

Use this function to enable or disable the link bit for
the current target device. Default is OPP.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word •opp•
appe;firs abo.ve the command prompt until you enter the
next command. If the word "ON• appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

This function is also controlled by the CONFI~URE mode.
See Chapter s.

6 - 20

LUM

Syntax:

LUN (value)

Function:

Use this command and argument to assign a LUN address
to the current target device ID.

Comments:

Invoke this command without parameters to see the
current device address assignment. The program then
prompts for a change of address.

Invoke this command with an address number from 0
through 7 to change the SCSI device address, otherwise,
it will prompt you.

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 21

MARK

Syntax:

MARK [ON/OFF] [valuel) [value2)

Function:

Use this command to mark blocks you write to the .LARGE
(64K) buffer.

Comments:

MARK instructions reside in the 6-byte header of each
512-byte block. The first two bytes name the file, the
next four name the block in this manner:

DJ __.I ..___l I_
File Block

When you use this command, each block sent to the
buffer is marked with a block number. Block numbering
is automatic. File numbering is user-defined.

Invoke this command without parameters to see the
current state. If it is disabled, the word "OFF•
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state. Use the MARK ON argument without additional
parameters invoke the automatic block numbering
function.

Follow the command with a value to assign a specific
file number.

6 - 22

Follow the command with a second value to assign a
specific block number to the block. From here, the
designated number is incremented for each new block.
If you don't want to change the file number but do want
to change the block number, enter a "-1" for the first
value, as in this case:

MARK -1 100

NOTE

The CLEAR command clears both the block and
file numbers.

6 - 23

MESSAGE

Syntax:

MESSAGE [ON/OFF)

Function:

Use this function to enable or disable the message
system of the current target device. Default is ON.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word •oFF"
appears above the command prompt until you enter the
next command. If the word "ON" appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

This is important in differentiating SASI from SCSI
devices. SASI usually disables the message system;
SCSI enables it.

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 24

PARITY

Syntax:

PARITY [ON/OFF]

Function:

Use this function to enable or disable the parity bit
on the current target device. Default is ON.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word •oFF•
appears above the command prompt until you enter the
next command. If the word •oN• appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to change the
state.

This function is also controlled by the CONFIGURE mode.
See Chapter s.

6 - 25

REPORT

Syntax:

REPORT [ON/OFF)

Function:

Use this command to enable or disable the emulator
report function.

Comments:

Invoke this command without parameters to see the
current state. If it is disabled, the word •opp•
appears above the command prompt until you enter the
next command. If the word •oN• appears above the
command prompt, it is enabled.

Invoke this command with either ON or OFF to chanqe the
state.

6 - 26

RBS ET

Syntax:

RESET

Function:

Use this command to issue a hardware reset to the bus.

Comments:

Invoke this command when you want to reset the bus to
initial states and begin emulating. It also clears all
the internal driver assignments.

6 - 27

TARGET

Syntax:

TARGET [value)

Function:

Use this command and argument to assign a SCSI address
to the target device.

Comments:

Invoke this command without parameters to see the
current device address assignment. The program then
prompts for a change of address.

Invoke this command with a value from 0 through 7 to
change the SCSI device address. A test is performed to
determine whether there is any conflict with the
initiator assignment. (If the value is greater than or
equal to zero, less than or equal to 7, and is not
equal to the target, the new value is used. Otherwise,
you will be prompted for a new value.)

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

6 - 28

VIEW

Syntax:

VIEW

Function:

Use this command to view all of the parameters defined
for the last TCB used. The image of the TCB appears in
the middle window. The image looks something like
this:

Image of OUR TCB
TCB GATE 00- TCB PRIMITIVE 00 TCB STATE 0000
TCB-ID MSG 00 TCB-CDB 00000000000000
TCB-STATUS 00 TCB-COMPLETION 00 TCB INITIATOR ID 00
TCB-COUNT SPC 0000 TCB-COUNT ACT 0000 TCB=TARGET_ID- 00
TCB-DATA SEG 00 TCB-DATA OFFSET 0000 TCB LUN ID 00
TCB-OPTJON 00 TCB-BLK SZ 0000
TCB-MESSAGE 0000000000000000000000
TCrl-DMA MODE 00 TCB CURRENT MODE 00 TCB SAVED MODE 00
TCB-DMA-HIGH 00 TCB-CURRENT-HIGH 00 TCB-SAVED-HIGH 00
TCB-DMA-ADDR 0000 TCB-CURRENT-ADDR 000 TCB-SAVED-ADDR 000
TCB-DMA-COUNT 0000 TCB-CURRENT-COUNT 00 TCB-SAVED-COUNT 000
TCB-ACT-COUNT 0000 TCB-CURRENT-PHASE 00 TCB-SAVED-PHASE 00
TCB-INTERRUPT LOCATION 0000 -TCB RETURN LOCATlON 0000
TCB-LINK SEGMENT 00 TCB LINK OFFSET- 0000-
TCB:ASSIGNMENT 0000 Tca:GROUP 0000

Figure 6-S. TCB View Window.

Comments:

use this command to view the most recent TCB
settings for the device driver. Loading another
device file into the program causes the TCB image
to change. You cannot change the TCB image using
this command, nor can you change most of the TCB
parameters using the interactive emulation.

See Section 7 and Appendix A for information on
modifying the TCB image.

6 - 29

Command

ALL

ARM

BYE

CLEAR

CONFIGURE

DISARM

DISCONNECT

DUMP

EDIT

EXTRA

FLAG

INDEX

INITIATOR

LINK

Table 6-1. Interactive Command Summary

Function

Views size and address locations for
current DDL.

Arms the State Analyzer.

Quits the Interactive mode.

Clears the initiator's data buffers.

Enters the Configure mode while in
the Interactive mode and allows ID
assignment.

Disarms the State Analyzer.

Enables or disables the disconnect
on the current target device.

Views the contents of the specified
data buffer.

Edits specified DDL formats while in
the Interactive mode.

Enables or disables an extra buffer
on the current target device.

Enables or disables the flag bit on
the current target device.

Forces the Logic Analyzer to save
time and state data around a key
index event.

Assigns a SCSI address to the
current target device ID.

Enables or disables the link bit for
the current target device.

6 - 30

Table 6-l. Interactive Command summary (continued).

Command

LUN

MARK

MESSAGE

PARITY

REPORT

RESET

TARGET

VIEW

Function

Assigns a LUN address to the current
target device ID.

Marks blocks you write to the .LARGE
buffer.

Enables or disables the message
system of the current target device.

Enables or disables the parity bit
on the current target device.

Enables or disables the emulator
report function.

Issues a hardware reset to the bus.

Assigns a SCSI address to the
current target device.

Views all parameters defined for the
last TCB used.

6 - 31

SECTION 7
PROGRAM MODE EMULATION

The PED-4010 Initiator enables you to create programs for running
multiple emulation operations without having to enter commands
after the completion of each one. Once the program is activated
by the emulator, it runs through all operations stipulated and
puts the data into buffers specified by the program.

In this section you will learn how to:

o Enter Program mode.
o Write a program.
o Use operators.
o Use reserved words and system variables.
o Invoke the program mode emulator.

7.1 Bnter Program Mode

Before you can write a program you must enter the program mode
emulator. Follow this procedure to enter the program mode:

STEP 1
Select FILE and load the DDL files you want to use. If the
proper files are not loaded, the emulator will not understand
your DDL commands.

You are returned to the main Initiator menu.

STEP 2
Select EDIT. This window is displayed:

.-~~~~~Resident Device Description Library(s) ~~~~~-
DDLl DDL3
DDL2 DDL4

Select desired operation [Create Alter Rename Delete Exit):_

Piqure 7-1. DDL Selection Window.

STEP 3
Select the DDL you want to use (Alter), or create a new DDL.
(See Chapter 3 for details on creating a DDL.)

The window shown in Figure 7-2 appears •

.--~~~~-Emulation Editor

1. COMMAND TYPE
2. COMMAND
3. DATA FORMAT
4. DATA
5. PROGRAM
6. EXIT

Select desired operation:_

Figure 7-2. Emulation Editor Window.

STEP 4
Select PROGRAM. You are presented with a list of programs
already existing in this file, as shown in Figure 7-3.

r-~~~~~Resident RUN PROGRAMS
PROGRAMl
PROGRAM2

PROGRAM3

Select desired operation [Create Alter Rename Delete Exit]:_

Figure 7-3. Program Selection Window.

STEP 5
If you creating a new program, select the Create option. (If you
are editing. an existing program, select the Alter option.)

STEP 6
Select the resident program you want to edit or enter the name of
the new program you want to create. Press [Enter].

The window in Figure 7-4 appears:

7 - 2

r------------- PROGRAM EDIT -------------.

File character xxxxxx---------------------­
Cursor:<-->1 IPgUp PgDn Home End Delete:

•y line ·T word ·G,Del ch Exit: Esc

Figure 7-4. Program Edit Window.

7.2 Using the Program Edit Window

There are several function keys to help you edit the program
while you are in the Program Edit window. These are defined in
the list below:

Keys

Cursor Keys
4 + <- ->

[PgUp)
[PgDn)

[Home)

[End)

[Ctrl) y

[Ctrl] T

[Ctrl) G or
[Del)

Function

Move left or right along a line using the
[Left) and [Right) arrow keys. Move up
or down using the [Up) and [Down) arrow
keys.

Move up or down approximately 20 lines.

Move to the top of the program.

Move to the end of the program.

Delete the line under which the cursor is
positioned.

Delete the word under which the cursor is
positioned.

Delete the character under which the
cursor is positioned.

7 - 3

:eys Function

:Backspace] Delete the character to the left of the
cursor.

Exit from the program. Return to the
Emulation Editor menu.

rn the lower left corner of the Program Edit screen is the file
;haracter counter. The counter changes each time the cursor
noves to a different line of the program. Use this counter to
<eep track of the number of characters on each line, the number
Jf characters in the program.

Jsing the function keys, write in your program. Program conven­
tions and commands are simple, resembling a structured BASIC but
~ithout the line numbers. Both scalar and array variables are
supported and four data types.

:onventions and commands are explained in the next sections.

7.3 Program Conventions

Observe these conventions while writing your program:

1. Variables must be declared first before any
instructions. Therefore, the first line of
the program must include a statement of the
variables to be used in the program. See
7.3.1 for details.

2. Use only one statement per line. This means
one command word together with arguments and
qualifiers can go on a line. A maximum of 70
characters can fit on a line.

3. Indentation is not required. However, you
may find it easier to keep track of state­
ments if you indent them in this way:

A ----------------
B -----------------

C ------------------
0 ----------------

4. Line numbers are not supported •

. 7 - 4

5. Use only valid language and symbols. This
includes:

Special characters (see Section 7.3.2)
Constants (see Section 7.3.3)
Operators (see Section 7.3.4)
Commands (see Section 7.3.51

6. Precede each comment on a line by a semicolon
(;). For other special character conven­
tions, refer to Section 7.3.2.

7. Use either lower- or uppercase alphabetic
characters to compose your program. (The
program processes uppercase slightly faster
than lowercase.)

8. 'Space' is a delimiter and is required
between words, symbols, and argument
groupings. You may also use a comma as a
space delimiter in variable declarations.

Fo~ detailed information on commands, statements, and syntax, see
the sections below.

7 - 5

7.3.1 Variable Types and Naming Convention•

Conventions you must follow in naming variables are listed below:

1. All variables must begin with alphabetic
characters.

2. Variable names can contain either upper- (A­
Z) or lowercase (a-z) alphabetic characters,
numbers (0-9), and spaces designated by
underscores (). The program converts all
alphabetic characters to uppercase
internally.

3. No operators are allowed in variable names.

4. Variables used in a program must be declared
on the first line(s) of that program.

5. A variable name cannot match a COB name. If
this happens, you will get a syntax error.

Variables are divided into a number of different types. The
allowed variable types you can declare include:

Data:

Type

LONG

INT(EGER)

CHAR(ACTER)

TEXT

Size

32 bit. Signed.

16 bit. Signed.

8 bit. Signed.

16 bytes. ASCII.

7 - 6

There can be a singular occurrence of a variable (called a scalar
variable), or a multiple occurrence of the same variable (called
an array variable).

Scalar variables are the default and include the variable types
LONG, INT, CHAR, and TEXT.

Variables are identified as array in statements when they are
indexed in the following form:

TYPE variable[array size]

For example,

ndigit[lO] = ndigit[O], ndigit[l] ••• ndigit[9]

Arrays are only one-dimensional and the size is a constant
(usually a decimal). The array size should be enclosed by square
brackets; no space is allowed between the variable and its array
size value:-

All variables must be assigned types. Arithmetic is done
internally as 32 bits and variables are sign-extended to fit.

Use one line for each variable type declared. For instance, if
you were declaring the variable "size" as a long and "cursor" as
an integer, you would use this format:

long size
int cursor

As you can see, the type declaration is followed by the word or
character being declared as a variable. If you are declaring
several variables of the same variable type, you can declare them
in the same line, like this:

int cursor, repeat a array[lO]

Reserved Words

You cannot use any of these reserved words as variables:

ARM BREAK CASE CHAR CONTINUE
DEFAULT DISARM DO ELSE END IP
ENDSTRUCT ENDSWITCH FOR GOTO HALT
IP INDEX INPUT INT LONG
NEXT NIP PRINT PROCEDURE RETURN
STRUCT SUSPEND SWITCH TEXT UNTIL
WHILE

7 - 7

7.3.2 Special Character•

Certain special characters have special meaning. The emulator
recognizes these characters and treats the word or character with
which it is associated in a specific way.

These special characters and their meanings are listed below.

Characters

0

I

[Enter]

" n

[)

Meaning

When preceding a number, indicates
hexadecimal value. For instance, 070
tells the emulator to evaluate this
number as hexadecimal.

When preceding a symbol, indicates
hexadecimal output. For example, Ix
tells the emulator to print the numbe.r
•x• in hexadecimal.

Preceding a string, indicates the
remainder of the line is a comment. For
example, "Jthis is a comment line" t~lls
the emulator this is a comment string.

Indicates the end of the line.

Encloses an ASCII text string. For
example, •this is a text string• tells
the emulator that the characters inside
the quotation marks is an ASCII string.

Encloses an array index. For example,

CURSOR[lO]

tells the emulator this statement is
array and should be treated as multiple
examples of the same variable. No space
is allowed between the variable and its
index size.

7 - 8

When used as a prefix to a word, indi­
cates the word to follow is a system
variable command. For example,

.PARITY

tells the emulator that this is a system
variable command applying to the state of
the parity bit in this program. For
information on System Variable commands,
refer to Section 7.3.5.

7 - 9

7.3.3 Constants

Several characters are defined as constants. These characters
maintain their value wherever they are found.

These constants are shown below:

Constants Description

0 - 9 Standard numbers are used in decimal
form.

0 - 9 Hexadecimal format requires a 0 prefix,
A - F as in this example:

0700

The letters A through F are also valid
characters for hex format.

7 - 10

7.3.4 Operators and Expres1ion1

Operators are symbols indicating the type of operation the
emulator should perform on one or more values (variables or
constants). Operators involve logical, mathematical, and
relational operations. Expressions are a series of values
separated by operators.

Operators

The operators used as conventions in the program mode are
described below:

Symbol Function

+ - Additive:

+ = "add" as in 4 + 3 = 7. - = "subtract" as in 6 - 4 = 2.

* I % Multiplicative:

* = "multiply by" as in 3 * 6 = 18.
I = "divide by" as in 6 I 3 = 2.
% = modulo divide as in 7 % 4 = 3.

< <= == Relational:
> >= !=

< = "less than" as in 4 < s.
> = "greater than" as in 5 > 4.

=< = "less than or equal to" as in
x =< y.

=> .. "greater than or equal to" as in
y => z.

I= = "not equal to• as in 2 I= 1.
== .. •equal to• as in 2 2

& I A && 11 Logical:

& = binary ANO.
l = binary OR.

• binary exclusive OR.
&& = logical ANO.
11 = logical OR.

7 - 11

+= *= Assignment:
I= I=
&= A = B --> A B

A B --> A " A - B
A += B --> A A + B
A *= B --> A A * B
A /= B --> A A I B
A - B --> A 0 - B
A I= B -->

A A <logical OR> B
A A B -->

A

where:

A A <logical exclusive
&= B -->
A = A <logical AND> B

A = a named variable.
B = an expression.

OR> B

Expressions

There are two types of expressions allowed by this program:

o Arithmetic expressions
o Logical expressions

Arithmetic expressions take this form:

<variable> <assignment operator> <value> [<operator> <value> •••)

where,

<assignment operator> can be one of the assignment
operators (=, -=, +=, *=, /=, -~, I=, A=) or one of
three binary logical operators (&, j, A).

<operator> can be any one of the assignment operators
listed above plus one of the additive (+, -} or
multiplicative (*,/,%) operators. (Relational
operators, &&, and I I operators cannot be used.)

<value> can be either a variable or a constant.

7 - 12

Therefore, the first operator must be an assignment operator.
Subsequent operators may include arithmetic operators.
Expressions may take up an entire line (72 characters) and cannot
end with an operator.

All expressions are evaluated left-to-right. This means that an
expression like,

A = 8 + 2 * 2 I 4 + 2

will not be evaluation like this:

A = 8 + (12 * 2) I 4) + 2 = 13

but rather, like this:

A = I ((8 + 21 * 2) I 4) + 2 = 7

When writing an expression, you should plan accordingly.

Logical expressions follow the form:

<variable> [<operator> <value> •••]

where,

<operator> can be one of the relational operators (<,
>, =<, =>, !=, ==I or one of two logical operators (&&,
I I> defined above.

<value> can be either a variable or a constant.

A typical use of a logical expression is within a variable
statement such as,

if .tcb_status == 02

where if a value of TCB STATUS is equal to 2, the variable will
be logically true and the statements following the IF statement
will be executed.

7 - 13

7.3.5 Statements

Program statements can be divided logically into four groups:

o DDL statements
o System variables
o System commands
o Flow control commands

Each type is discussed in this section.

7 - 14

DDL Statements

DDL statements are of two types:

o COB Commands
o DDL DATA Variables

You must define these commands and variables in advance using the
Emulation Editor. This procedure is discussed in Section 4.

COB Commands

Invoke any COB names within the DDL currently defined as the
target and they will be executed as commands.

NOTE

Assign a DDL to the target address by using
the Configure mode (see Section 5) or the
.TARGET variable. Use .TARGET to redefine
the COB and DATA assignments (see Section
7.3.5).

Follow the COB name by any number of expressions assigning
various DDL TYPE field values. Each expression must be separated
by a space.

The general form of the expression must conform to this
convention:

[CDB name] [TYPE field] <assignment op> <value> [<op> <value> •••]

where,

<value> = constant or variable.
<assignment op> = any assignment operator.

<op> = any operator excluding any relational operator
or the logical operators && and I I· (The
preferred value, however, is =.

For example, if the CCS DDL were active, the command line

READ ADDRESS = 0200

would set the ADDRESS field of the READ CDB to 200H and execute
the command using that COB. Results of the emulation would then
be saved in the previously-assigned data buffer (SMALL is
default). A default data length of l block is used unless
otherwise stipulated.

7 - 15

You can assign as many variables per COB name as you can fit on a
line up to a maximum of 70 characters per line. For instance, if
you had defined a WRITE COB, you could invoke a command line
looking like this:

WRITE ADDRESS = 0400 LENGTH = 0020

Where the address field is set to 400H and the transfer length is
set to 20H. However, if you were to invoke this command,

WRITE LENGTH = 0020 LENGTH = 003F

only the last assignment of the transfer length value would be
stored in the buffer, since the emulator would overwrite the
first value.

To assign values to an enumerated field, invoke the enumerated
field name as defined by the Command TYPE. If you defined a two­
bit field within the COB WRITE BUFFER as 00 = HEAD AND DATA and
02 = DATA, then you could designate DATA by using this-argument:

WRITE_BUFFER DATA

This would set the data buffer in this enumerated Held to 2. To
set the other enumeration of this field, use this argument:

WRITE_BUFFER HEADER_AND_DATA.

You can use both enumerations of the field in the same argument,
but only the last enumerated value would actually be available in
the buffer. The other value(s) would be overwritten.

If you have enumerated fewer than the allowable values per field
in your•"command TYPE definition, you can use the command line
here to set additional values. For instance, in the case of the
two-bit field within WRITE BUFFER, there are only two values
enumerated for four possible value entries: 00 = HEADER AND DATA
and 02 = DATA. This means you can enumerate the 01 and-03 value
of this field. To do this, override an existing enumerated value
and set to another field value, as in this example:

WRITE_BUFFER DATA = 03

In effect, this creates an
enumerated label of DATA.
of DATA, merely creates an
only.

enumerated value using the existing
This does not effect the default value
enumerated value for this one command

7 - 16

DDL DATA Variable•

While COB commands are determined by CDB TYPEs and COMMANDS you
have previously defined, data commands are determined by DATA
FORMAT and DATA definitions.

A data command is accessed from the currently active DDL, deter­
mined by the current target assignment and configuration table.

You can follow the data name by any number of expressions
assigning various DDL FORM field values. The data name is
separated from the data field and constants by a period (.).

The general form of the expression must conform to this
convention:

Data_Name.[Data_Field_Name] <assignment op> <value> [<op> <value> •.

where,

<value>
<assignment op>

<op> =

constant or variable.
any assignment operator.
any operator excluding any relational operator
or the logical operators && and I I· (The
preferred value, however, is =·

For example, the command line

SENSED.SENSE_CODE = 04

would set the SENSE_CODE field Of the SENSED buffer to 04H.

You can also assign a data field a constant value. For instance,

SENSED.LENGTH = 010

sets the LENGTH field in SENSED to O!OH.

Constants can consist of decimals from O through 9, hexadecimals
0 through P, or strings enclosed in quotes (•string•). Maximum
length of a string is 32 characters.

Assign values to as many variables as you require, but remember
that data assignments follow the same rule as COB assignments:
only one statement is allowed per line. For instance, you might
assign values to three fields within a SENSE buffer in this way1

SENSED.ERROR CODE = OF
SENSED.SENSE-CODE ,. 04.
SENSED.FPV .-3

7 - 17

Here, error code is set to OFH, the sense code is set to 04H, and
FPV is set to 3.

However, if y9u were to define the same field twice, like this:

SENSED.ERROR CODE = OF
SENSED.ERROR:coDE = 02

only the last assignment of the error code value would be stored
in the buffer, since the emulator would overwrite the first
value.

To assign values to an enumerated field, simply invoke the
enumerated field name as defined by the DATA TYPE. If you
defined a four-bit field within the data buffer SENSED as 02 •
NOT READY and 03 = MEDIUM ERROR, then you could designate
NOT:READY by using this argument:

SENSED.NOT_READY = 004F

This would set the data buffer in this enumerated field to OF. To
test the other enumeration of this field, invoke MEDIUM ERROR.
You can use both enumerations of the field in the sume argument,
but only the last enumerated value would actually be available in
the buffer. The other value(s) would be overwritten.

If you have enumerated fewer than the allowable values per field
in your DATA TYPE definition, use the command line to set others.
For instance, in the case of the four-bit field within SENSED,
there are fourteen values enumerated for sixteen possible value
entries -- 09 and OF are still empty. To enumerate these
entries, reassign an existing enumerated value to the empty field
value, as in this example:

SENSED.NOT_READY = 09

In effect this creates a new enumerated value using the existing
enumerated label of NOT READY. This does not effect the default
value of NOT READY, merely creates a new enumerated value for
this one command only.

7 - 18

System Variables

System variables control some aspect of the emulator set-up.
Using these variables, you can reassign values to various para­
meters, such as target or LUN addresses, TCB variables, or block
address numbers.

As with any variable, system variables can be set to a value or
expression. They can either start a line, as in this example,

.CURSOR = CURSOR

or serve as a component within an argument on the line, as in
this example:

If .TCB_STATUS I= 0

Here is a list of the system variables:

.BLOCK

.CURSOR

.DISCONNECT

.FILE

.FLAG

.INITIATOR

.LINK

.LUN

.OFFSET

.PARITY

.TARGET

.TCB n

To learn how these variables work, refer to the following pages.

NOTE

All system variables are preceded by a period
(.),as in .FLAG or .OFFSET.

7 - 19

.BLOCK

Type:

long

Function:

Use this variable to uniquely identify data "blocks"
written from the 64K .LARGE buffer with a block number.

Comments:

This variable does housekeeping for storage of data in
the LARGE buffer. If MARK is enabled, .FILE and .BLOCK
bytes are inserted as the first 6 bytes of every 512-
byte boundary written from the 64K .LARGE buffer. The
value in .BLOCK will be incremented for each 512 byte
block so that "unique" values can be placed in every
512-byte boundary written.

B B

512-byte block

The first two bytes of the header are reserved for the
file number. The next four bytes are reserved for the
block number. For information on identifying the file
number, see .FILE.

7 - 20

.CURSOR

Type:

int

Function:

use this variable to set the cursor on the screen.

Comment:

Reload the cursor location on the screen using this
command. Default location is upper lefthand corner
(column 1, line 1). However, you can change this
location by specifying the cursor location in several
ways.

You can specify an relative position using the @ ("at•)
command, as in

@ 5,10

which tells the program to move the cursor position to
line 5 column 10. See Program Commands in this section
for more details.

You can also specify an absolute position by assigning
a variable or expression, as in

.CURSOR = CURSOR

then attach values to this variable.

Be aware of the window you're working in. The cursor
will move only in relation to a previous position and
its present window.

7 - 21

.DISCONNECT

Type:

char

Function:

Use this variable to enable or disable the disconnect
on the current target device. Default value is -1.

Comments:

Any non-zero value enables the disconnect.

[value) = O or non-0. If 0 then disconnect is off. If
you specify a non-zero value (e.g. 1, 2, 3, and so on)
the disconnect is enabled.

Invoke the disconnect to disable the message system.
SCSI requires the message system be enabled (disconnect
is disabled). SASI devices usually require that the
message system is disabled (disconnect is enabled);

This function is also controlled by the CONFIGURE mode.
See Section 5.

7 - 22

.FILE

Type:

long

Function:

Use this variable to uniquely identify data •blocks•
written from the 64K .LARGE buffer with a file number.

Comments:

This variable does housekeeping for storage of data in
the LARGE buffer. If MARK is enabled, .FILE and .BLOCK
bytes are inserted as the first 6 bytes of every 512-
byte boundary written from the 64K .LARGE buffer. The
value in .FILE will be incremented for each 512 byte
block so that •unique" values can be placed in every
512-byte boundary written.

B B

512-byte block

The first two bytes of the header are reserved for the
file number. The next four bytes are reserved for the
block number. For information on identifying the block
number, see .BLOCK.

.FLAG

Type:

char

Function:

Use this variable to enable or disable the flag bit on
the current target device. Default value is O.

Comments:

Any non-zero value enables the flag bit.

[value) = 0 or non-0. If 0 then flag is off. If you
specify a non-zero value (e.g. 1, 2, 3, and so on) the
flag is enabled.

This function is also controlled by the CONFIGURE mode.
See Section S.

7 - 24

.INITIATOR

Type:

char

Function:

use this variable to assign a SCSI device address to
the current initiator. Default value is 7.

Comments:

Enter this command followed by an address number from 0
through 7. ·

This function is also controlled by the CONFIGURE mode.
See Chapter 5.

7 - 25

.LINK

Type:

char

Function:

Use this variable to enable or disable the link bit for
the current target device. Default value is O.

Comments:

Any non-zero value enables the link bit.

[value) = 0 or non-0. If 0 then link is off. If you
specify a non-zero value (e.9. 1, 2, 3, and so on) the
link is enabled.

This function is also controlled by the CONFIGURE mode.
See Section s.

7 - 26

.LUH

Type:

char

Function:

Use this variable to assign the LUN field to the SCSI
device address of the current target device.driver.
Default value is o.

Comments:

Enter this command followed by an address number from O
through 7. You can also control this function in the
CONFIGURE mode. See Section S.

7 - 27

.OFPSE'l'

Type:

int

Function:

Use this variable to partition the .LARGE buffer •
• OFFSET defines the starting address for the next data
transfer from .LARGE.

Comments:

use this variable if you are using the 64K .LARGE
buffer. It automatically advances to the next 512 byte
boundary after every .LARGE data transfer.

7 - 28

Type:

char

Function:

Use this variable to enable or disable the parity bit
on the current target device. Default value is -1.

Comments:

Any non-zero value enables the parity function. Use
[value] • 0 to disable parity.

This function is also controlled by the CONFIGURE mode.
See Section 5.

7 - 29

.TARGET

Type:

char

Function:

Use this variable to assign a SCSI address to the
target device. Default value is O.

Comments:

Enter this variable followed by an address from 0
through 7.

This function is also controlled by the CONFIGURE mode.
See Section 5.

7 - 30

.TCB_<parameter>

Function:

Use these variables to reference one of the task
command block parameters.

Comments:

Reference a TCB parameter by designating the parameter
type, such as TCB status or TCB ID MSG. This variable
is used like any other variable-except some cannot be
written to.

Parameters:

For a complete list of TCB parameters refer to
Table A-4 of Appendix A. -

7 - 31

Program Commands

Program commands control various aspects of the emulator and the
program you are running on it.

These commands are listed below by their functional categories
and discussed in more detail on the. following pages.

Conditionals/Flow Control: commands that place conditions on the
program or control program flow. (See Flow Control Commands
section.)

BREAK
CONTINUE
DO ••• UNTIL
DO ••• WHILE

FOR ••• NEXT
IF ••• ELSE ••• ENDIF
NIF ••• ELSE ••• ENDIF

I/O Control: commands that control input/output operations.

@
@LPRINT
@PRINT

INPUT
LPRINT
PRINT

State Analysis: commands that control the State Analyzer while in
emulation.

ARM *
DISARM *
INDEX *

System: commands that control the emulator.

CLEAR *
HALT
RESET *
SUSPEND

Variable Declarations: commands that declare a variable type.

CHAR
INT
LONG
TEXT

* a used in both Interactive and Program mode.

7 - 32

ARM

Syntax:

ARM

Function:

use this command to arm the Logic Analyzer. When
invoked, the message ARMED is highlighted in the System
Status window at the bottom of the screen.

Comments:

Use this function if you intend to capture data using
the Logic Analyzer. To disarm the analyzer, use the
DISARM command.

7 - 33

@

Syntax:

@ (<value> <value>]

Function:

Use this command to declare a position on the screen.

comment:

When @ ("at") is placed alone on a line, this tells the
emulator to clear the screen and place the cursor at
the upper left-hand corner position (line 1, column 1),
as in this example: ·

long block
int cursor
@

You can also specify an exact line and column location
using this form:

@ line column

as in this example:

long block
int cursor
@ 2 2

You can also specify the cursor position as ·a variable
relative to the previous cursor position by using the
.CURSOR command (see System Variables in this section) •

. 7 - 34

CHAR

Syntax:

CHAR <variable name>

Function:

Use this command at the top of the program to declare
variable(s) to follow as 8-bit data variables.

Comment:

Refer to section 7.3.1 for a discussion of this
command. Follow this command by one or more variable
names. Each variable shoul~ be separated by a space or
comma.

7 - 35

CLEAR

Syntax:

CLEAR [buffer] [value]

Function:

Use this command to clear data buffers.

Comments:

When you invoke this command, you clear all data from
the specified buffer and prepare it for a new
emulation. Default is the .LARGE buffer. Specify the
.SMALL or DDL buffer.

You can also specify a pattern to the cleared buffer
using an optional value. Default is cleared to zeros.
However, by specifying a non-zero value, you create a
pseudo-random sequence in the named buffer. (The
pattern is repeated every 256 bytes.) For instance, a
value of 2 gives an incremented sequence; 3 ~rovides a
decremented sequence. Any value greater than 7 adds
the high 8 bits to the low 8 bits. (See the table
below for details.)

CLEAR automatically clears .OFFSET and .FILE to zero.

Value Byte Range

0 02201H
1 OOOFFH
2 01001H
3 OFFFFH
4 007FFH
5 089ABH
6 OSSAAH
7 OSSFFH

The low byte is placed into the specified buffer and
the "high" byte is added to the "low byte"; the buffer
address is then incremented.

7 - 36

DISARM

Syntax:

DISARM

Function:

Use this command to disarm the Logic Analyzer. When
invoked, the message ARMED is not highlighted in the
System Status window at the bottom of the screen.

Comments:

Use this function if you do not intend to capture data
using the Logic Analyzer. To arm the analyzer, use the
ARM command.

7 - 37

HALT

Syntax:

HALT

Function:

use this command to halt the operation of the program.

Comments:

When invoked, this command stops the program.

7 - 38

INDEX

Syntax:

INDEX

Function:

Use this command to force the logic analyzer to save
time and state data around .. some key index event.

comments:

The command halts the capture operation after a
specified number of writes to the acquisition memory,
protecting data saved on either side of the INDEX
command. When the analyzer is armed (see ARM and
DISARM commands), time and state data is written in
memory starting at address 000. At each write, the
memory address register is incremented by 1. At a
certain point the data will wrap back around on itself
and begin to overwrite ,.unless INDEX is invoked.

INDEX controls the capture process, loading the index
count value, setting the counter to increment at every
write, forcing a write to the memory when time and
state data occurs, and halting capture when the index
counter reaches its maximum count.

Once you have issued this command, the system status
window highlights the word "INDEXED".

7 - 39

INPUT

Syntax:

INPUT ["prompt message string"] [variable]

Function:

Use this command to enter the value of a variable
interactively while the program is running.

Comment:

When you invoke this command, the program stops and
prompts you.

If there are no other arguments on the command line,
the program stops and displays this message:

Press Any Key to Continue •••

You can insert your own prompt by entering a t2xt
string after the command. (The text string must be
enclosed in quotation marks, " •.) For instance,

INPUT "Text"

would cause the program to stop at a specific spot and
display the prompt, "Text". You would then press any
key to continue.

You can also insert a variable into the program. For
instance,

INPUT variable name

causes the program to stop and prompt you with this
message:

?

Enter the variable name and press [Enter].

7 - 40

You can also combine a prompt string with a variable.
For instance,

INPUT •Text• variable_name

causes the program to stop, display the prompt, and
wait until you have entered a variable name and [Enter]
before continuing.

7 - 41

INT

3yntax:

INT <variable name>

?unction:

Use this command at the top of the program to declare
the variable(s) to follow are 16-bit data variables.

:Comment:

See 7.3.1 for details on using variable commands.
Follow this command by one or more variable names.
Each variable should be separated by a space or comma.

7 - 42

LONG

Syntax:

LONG <variable name>

Function:

use this command to declare one or more 32-bit integers
as variables.

Comments:

Follow this command with the variable names you wish to
declare. Each variable should be separated by a space
or comma.

LONG variables are more quickly processed by the
emulator program since everything is converted to LONG
before processing. However, LONG variables take up
more space.

Refer to 7.3.1 for more details.

7 - 43

LPRINT

Syntax:

t@]LPRINT ["text string"] [[#]variable]

Function:

Use this command to instruct the program to print out a
text string to a designated line printer.

Comments:

When you invoke this command, the program looks for a
text string or a variable specified to the right of the
command and prints it out to an output printer.

Printing begins at the start of the next line unless
the @ prefix is used. This causes the string to be
printed at the current cursor position.

Enclose any text string to be printed with quotation
marks 1• ") as discussed in Section 7.3.2.

Use the optional t sign to indicate you want the
variable printed in hexadecimal. Default printing is
decimal.

See PRINT also.

7 - 44

PRINT

Syntax:

[@)PRINT [•text string") [[i)variable)

Function:

Use this command to instruct the program to print out a
text string or variable to the screen.

Comments:

When you invoke this command, the program looks for a
text string or variable to the right of the command and
prints it to the screen as part of the program results.

Printing begins at the start of the next line unless
the @ prefix is used. This causes the string to be
printed at the current cursor position.

Enclose the text string to be printed with quotation
marks t• ").

Use the optional # sign to indic.ate you want the
variable printed in hexadecimal. Default printing is
in decimal.

To print hardcopy, use the LPRINT command.

7 - 45

SUSPEND

Syntax:

SUSPEND

Function:

Use this command to suspend program operation.

Comment:

When you insert this command in a program it instructs
the emulator to stop the program temporarily and return
to the user.

If you are in Interactive mode, return to the suspended
program by typing,

RUN [Enter)

If you are in the State Analysis program, return to the
suspended program through menu selections by following
these instructions:

1. Select the RUN option.

2a. Select the PROGRAM mode or,

2b. Select the INTERACTIVE mode and type

RUN [Enter]

7 - 46

TEXT

Syntax:

TEXT <variable name>

Function:

Use this command at the top of the program to declare
the variable(s) to follow are 16-byte ASCII variables.

Comment:

See 7.3.1 for details on using variable commands.
Follow this command by one or more variable names.
Each variable should be separated by a space or comma.

7 - 47

Flow Control Commands

There are several commands used in the Program Mode enabling you
to set conditions on the movement of the emulator through the
~rogram. Several of. these commands enclose statements or series
of statements. For the most part, they follow syntactical and
grammatical conventions of BASIC.

The commands are discussed below.

7 - 48

BREAK

Syntax:

BREAK

Function:

Use this command to exit a program loop.

Comments:

Most program loops exit after a prescribed number of
operations or tries. However, if certain conditions
occur, it is often desirable to leave the loop
prematurely. BREAK facilitates this by causing the
program to immediately exit from the DO or FOR loop in
wnich the command occurs. For example,

BLOCK = 0
DO

READ ADDRESS BLOCK
IF .TCB STATUS == 02

BREAK
END IF
BLOCK += 100

WHILE BLOCK < 1000

This sample program would normally execute ten READ
commands before satisfying .the DO ••• WHILE loop.
However, if .TCB STATUS were 02 after any READ, the
program immediately exits the DO ••• WHILE loop.

7 - 49

CONTINUE

Syntax:

CONTINUE

Function:

use this command to advance a program loop.

Comments:

If you have specified a loop or routine within a
program, then you can advance within this loop by using
this command. For instance, in this case,

FOR A = 1 TO S
IF .TCB STATUS != A

CONTINUE
END IF
PRINT iA

NEXT

CONTINUE causes the program to go to the next value of
A without printing its value as long as .TCB_STATUS is
not equal to A.

7 - so

DO ••• UNTIL

Syntax:

DO

UNTIL [logical expression]

Function:

Use this command to instruct the program to perform the
operations specified in the body of the loop until a
specific condition occurs.

Comment:

This command instructs the emulator to run one or more
operations as set forth· in the statements until the
logical (non-zero) expres~ion is met. For example,

t = 0
DO

sense
t += 1

UNTIL t == 100

This argument instructs the emulator to run the SENSE
command until t reaches 100.

Nested Loops

DO ••• UNTIL loops may be nested; that is, a oo ••• UNTIL
loop may be placed within another loop. When loops are
nested, each loop Should have a unique variable name in
the logical expression. Also, the DO statement of the
inside loop must appear before the. UNTIL or end
statement for the outside loop.

7 - 51

DO ••• WHILE

Syntax:

DO

WHILE [logical expression}

Function:

Use this command to instruct the program to perform the
operations specified in the body of the loop while a
specified condition exists.

Comment:

This command instructs the emulator to run one or
several operations as set forth in the argument
statements if or while logical expression is being met.
For example,

t = 0
DO

sense
t += 1

WHILE t I= 100

This argument instructs the emulator to run the SENSE
command while t is not equal to 100.

Nested Loops

DO ••• WHILE loops may be nested; that is, a DO ••• WHILE
loop may be placed within another loop. When loops are
nested, each loop should have a unique variable name in
the logical expression. Also, the DO statement of the
inside loop must appear before the WHILE or end
statement for the outside loop.

7 - 52

FOR ••• NEXT

Syntax:

FOR <variable> x TO y [STEP z]

NEXT

Function:

Use this command statement to enable a series of
instructions to be performed in a loop a given number
of times.

Comment:

<Variable> is used as a counter. x is the initial
value of the counter. y is the final value of the
counter.

Lines following the FOR statement are executed until
the NEXT statement is encountered. Then the counter is
incremented by the amount specified by STEP and checked
to see if its value is now greater than the final
value, y. If not, the program returns the statement
after the FOR statement and the process is repeated.
If the value is greater, the program execution
continues with the statement following the NEXT
statement. For example,

FOR block = 1 to 10 step 1

This indicates that you want the emulator to proceed
through all possible conditions for the block, starting
from 1 and proceeding to 2, 3, 4 and so forth until 10
is reached. The •to" value is included in the FOR •••
NEXT execution.

If STEP is not specified, the increment is assumed to
be 1. If STEP is negative, the final value of the
counter must be less than the initial value. The value
of the counter decreases by increments each time
through the loop until the counter value is less than
the final value.

7 - 53

In specifying the step progress, you can stipulate
steps like this:

step n

step -n
step var

Nested Loops

Increment upward through the range by n
amount.
Progress backward through the range.
Use the value of the variable as the STEP
amount.

FOR ••• NEXT loops may be nested: that is, a FOR ••• NEXT
loop may be placed within another loop. When loops are
nested, each loop should have a unique variable name.
Also, the NEXT statement of the inside loop must appear
before the NEXT or end statement for the outside loop.

7 - 54

IF ••• ELSE ••• ENDIP

Syntax:

IF <logical expression>

.
[ELSE

ENDIF

Function:

Use this command to set conditions for the running of a
particular operation based on the value of specified
variables.

Comments:

Stipulate conditions after the IF command. The
condition is written in the form of a logical
expression. Follow the condition by any statements you
want the emulator to run, if the logical expression is
non-zero.

Use the optional ELSE command to specify any command or
procedure you might want the emulator to run, given the
logical expression in the IF statement evaluates to
zero.

End the IF ••• ELSE argument with ENDIF. ENDIF occupies
its own line.

For example,

IF .TCB STATUS == 0
READ OSAGE COUNTERS
PRINT "BLOCKS READ=" COUNTERS.BLOCK READ
PRINT "RECOVERABLE ERRORS=" COUNTERS.RECOVERED_ERRORS

ELSE
PRINT "CHECK CONDITION"

END IF

7 - 55

This statement instructs the emulator that if
TCB STATUS is O, the DDL command READ USAGE COUNTERS is
sent out to the target and two buffer-fields,
COUNTERS.READ ERRORS and COUNTERS.RECOVERED ERRORS, are
displayed with appropriate labels. -

If the TCB STATUS block is non-zero, then the emulator
is instructed to display the message, "Check
Condition.•

Nested IF statements

IF ••• [ELSE •••] ENDIF constructs may be nested. That
is, an IF ••• ENDIF construct can be placed within loop
construct. However, the ENDIF statement of the inside
loop must appear before the ENDIF, UNTIL, WHILE, or
NEXT statement of the outside loop. They may not
overlap.

7 - 56

NIF ••• ELSE ••• ENDIP

Syntax:

NIP <logical expression>

[ELSE

ENO IF

Function:

Use this command statement to set conditions for the
running of a particular operation based on the value of
specified variables. This statement is the explicit
opposite of the IF ••• ELSE statement.

Comments:

NIP literally means "not if" and can be stated using
the IF command. For example,

NIP a == 1

is equivalent to,

IF a != 1

NOTE

When testing a variable for equality to a
constant, the constant must appear on the
right side of the argument. Therefore,
1 == A is wrong; A == 1 is the correct form.

Stipulate conditions after the NIP command. The
condition is written in the form of a logical
expression. Follow the condition by the procedure(s)
or command{s) y.ou want the emulator to run if the
logical expression is zero.

7 - 57

End the NIF ••• ELSE argument with ENOIF. ENDIF
occupies its own line.

For example,

NIF .TCB STATUS == 2
READ USAGE COUNTERS
PRINT •BLOCKS READ=" COUNTERS.BLOCK READ
PRINT "RECOVERABLE ERRORS=" COUNTERS.RECOVERED_ERRORS

ELSE
PRINT "CHECK CONDITION"

END IF

This statement instructs the emulator that in the event
that .TCB STATUS is not equal to 2, the DDL command
READ USAGE COUNTERS is sent out to the target and two
buffer fields, COUNTERS.READ ERRORS and
COUNTERS.RECOVERED ERRORS, are displayed with
appropriate labels~

If the TCB STATUS block is equal to 2, then the
emulator is instructed to display the message, "Check
Condition."

Nested NIF statements

NIF ••• [ELSE •••) ENDIF constructs may be nested. That
is, a NIF ••• ENDIF construct can be placed within loop
construct. However, the ENDIF statement of the inside
loop must appear before the ENDIF, UNTIL, WHILE, or
NEXT statement of the outside loop. They may not
overlap.

7 - 58

·Table 7-1. Program Command Summary

System Variables

Variables Type

.BLOCK Long

• CURSOR

.DISCONNECT Char

.FILE Int

.FLAG Char

.INITIATOR Char

.LINK Char

.LUN Char

.OFFSET Int

.PARITY Char

.TARGET Char

.TCB_x Int

Function

Identifies 512-byte data "blocks"
written from the 64K .LARGE buffer
with a block number.

Sets the cursor on the screen •

Enables or disables the disconnect
on the c•1rrent target device.

Identifies data •blocks" written
from the 64K .LARGE buffer with a
file number.

Enables or disables the flag bit on
the current target device. · ~- .-

Assigns a SCSI address to the
~urrent initiator.

Enables or disables the link bit on
the current target device.

Assigns the LUN field to the SCSI
device address of the current target
device driver.

Partitions the .LARGE buffer into
address blocks.

Enables or disables the parity bit
on the current target device.

As.signs a SCSI address to the
current target device.

Sets a designated task command block
parameter and changes the TCB image
of the current target device. For a
complete list of .TCB parameters,
see Table A-4 of Appendix A.

7 - 59

Table 7-l. Program Command Summary (continued).

Program Commands

Command

ARM

@

CHAR

CLEAR

DISARM

HALT

INDEX

INT

INPUT

LPRINT

LONG

PRINT

SUSPEND

TEXT

Function

Arms the Logic Analyzer.

Declares a position on the screen or
prefixes PRINT or LPRINT.

Declares variable(s) as 8-bit signed
variables.

Clears designated data buffers.

Disarms the Logic Analyzer·.

Halts the operation of the program.

Forces the Logic Analyzer to save time
and state data around some key index
event.

Declares variable(s) as 16-bit signed
variables.

Allows entry of a variable value
interactively while the program is
running.

Instructs the program to print out a text
string to a designated line printer at
start of next line. @LPRINT causes
string to be printed at current cursor
position.

Declares variable(s) as 32-bit signed
variables.

Instructs the program to print out a text
string or variable to the screen.
@PRINT causes string to be printed at
current cursor position.

Suspends program operation.

Declares variable(s) as 16-byte ASCII
variables.

7 - 60

Table 7-1. Program Command Summary (continued).

Flow Control Commands

Command

BREAK

CONTINUE

DO •• UNTIL

DO •• WHILE

FOR •• NEXT

IF •• ELSE ••
ENDIF

NIF •• ELSE,.
END IF

Function

Exits a program loop.

Advances a program loop.

Instructs the program to perform
specified operations in the body of the
loop until a specific condition occurs.

Instructs the program to perform
specified operations in the body of the
loop while a specified condition exists.

Causes a series of instructions to be
performed in a loop a given number of
times.

Sets conditions for the running of a .
particular operation based on the value
of specified variables. · ·· ·

The explicit opposite of the IF •• ELSE
construct.

7 - 61

7.4 Initiating the Program

ro run a program, follow this procedure:

STEP 1
3eturn to the main Initiator Emulation menu.

(If you are still in the program, press (Esc] several times until
you see this menu.)

STEP 2
Select RUN from the options. Press [Enter].

The following prompt appears below the SCSI Bus Status window:

Select RUN mode [INTERACTIVE PROGRAM]:

STEP 3·
Select PROGRAM. This prompt app~ars:

Location of RUN program [MEMORY DISK):

STEP 4
Select either memory or disk depending on whether the program you
want resides in the computer memory or on diskette. If you
select memory, follow step Sa; if you select diskette, follow
step Sb.

STEP Sa
If you select memory, the following window and prompt appears:

----Resident Device Description Library(s) ----...
Library! Library2

Enter name of desired Library:

~ress [Down] to select the DDL that contains the program you want
~o run, or enter a DDL library name at the prompt. Press
!!:Enter] • ·

7 - 62

The following window and prompt appears:

Program!.

Enter name of desired RUN file:

Press [Down] to select the program you want to run, or enter a
new program name at the prompt. Press [Enter].

STEP Sb
If you select diskette, the following window and prompt appears:

Existing Program Files ~~~~~~--.
Programl.RUN Program2.RUN

Enter name of desired RUN file:

Press [Down] to select the program you want to run, or enter a
new program name at the prompt. Press [Enter].

If no program exists on the disk, then the program returns to the
initial RUN menu:

Press [Down] to select the resident DDL file you want to run, or
enter a new library name at the prompt. Press [Enter]. If the
DDL library you entered is valid, you are returned to the
previous window and prompted for a program. Select one of the
resident run programs.

STEP 6
Once you have selected a run program, the program is initiated.
When the emulator is finished running the program, it displays
this message:

Program execution complete, hit any key to resume

STEP 7
Press any key and you are returned to the main Initiator
Emulation menu.

7 - 63

7.5 Sample Programs

To help you in learning the syntax of this program, several
sample programs are presented for your review.

NOTE

To assist in describing each program line,
line numbers are pictured in these examples.
Line numbers are not required for the actual
programs.

Sample 1

Below is a program designed to test cursor positi.on and print
entry.

Program:

1 char repeat
2 int spot

3 @ iclear screen
4 @print "Start cursor test"
5 spot = .cursor isave cursor location
6 @print #.cursor
7 print
8 input "Start spot test" repeat
9 .cursor = spot irestore cursor
10 @print repeat "that's all folks"

Explanation:

1-2 on the first two lines the variables are declared.
Repeat is defined as an 8-bit variable type while spot
is identified as a 16-bit integer. Note that the
system variable .CURSOR is an integer type.

3 On the third line the @ command clears the screen.
(The comment line following this command describes the
action.)

4 The next line invokes the @print command which tells
the emulator to print the string •start cursor test" to
the screen, starting at the current cursor position.

7 - 64

5 · The variable 'spot' is then assigned the value of the
system variable .CURSOR. This causes the variable to
"save• the current cursor location. (The comment line
once again underlines this.)

6 The current cursor position is then displayed on the
screen in hexadecimal form (remember: t instructs the
emulator to output in hex).

7 'Print' instructs the emulator to do a carriage return
and line feed, moving the cursor to the first position
on the next line.

8 'Input' instructs the emulator to place a prompt •start
spot test• and this is associated with the character
variable 'repeat'.

9 The cursor is then restored by assigning the system
variable .CURSOR the value of CURSOR.

10 The value of the variable 'repeat' is printed on the
screen followed by the words "That's all folks"
starting at the present cursor position.

7 - 65

Sample 2

This is a program designed to read 0780H blocks of data and
display the current and last address of the address field in the
DDL command READ.

Program:

1 int a
2 @
3 for a = O to 0780 step 080
4 read address = a length 080
5 if .TCB GATE
6 break -
7 else
8 print "Current address =" ia
9 end if
10 next
11 print "Last address =" ia

Explanation:

1 This declares "a" as a 16-bit integer variable.

2 The screen is cleared.

3-10 FOR •• NEXT loop wherein conditions of the emulation are
set out as explained below.

3 This instructs an iteration of the loop for variable
'a' from value O to 0780. The emulator is alerted to
hex ranges by a prefix O. The command word 'step'
instructs the emulator to proceed through the loop in
080 increments.

4 Given this range and interval, 'a' is now assigned to
the address field in the DDL command READ. At the same
time, the length field is defined as 080.

5-6 The condition is placed on this simulation that if the
parameter .TCB GATE is non-zero, the program is to
break to line Il immediately.

7-8 Otherwise, indicated by 'else', if .TCB GATE is zero,
the emulator is to display the string "Current address
=" on the screen at the default position followed by
the value of 'a' at that moment, outputted in hex form.

9-10 This ends the FOR •• NEXT loop and instructs the
emulator to keep doing this loop ('next') in 080
increments until the. upper limit, 0780, is exceeded.

7 - 66

Sample 3

This sample causes the target to display information about its
name, serial number, and the capacity of the device.

Program:

1 long size
2 int cursor

3 @ 6 2

4 arm ;arm analyzer
S test_unit_ready ;wake up target

6 if .tcb status == 02 check condition
7 request sense
8 print ·-sense Requested"
9 endif
10 clear inquired
11 clear capacity
12 read capacity ;get target info
13 inquTry
14 cursor = .cursor
15 @print inquired.model
16 .cursor = cursor
17 @print • model:"
18 print " Serial Number:" inquired.serial number
19 size • capacity.last block - .
20 size +• 1 -
21 size *= capacity.block size
22 print • Capacity:• size
23 print " bytes with" capacity.block size
24 @print • bytes/block• · -

Explanation:

1-2 The vari.ables size and cursor are declared -- one as
long, the other as integer.

3 The screen is cleared and the cursor is positioned at
line 6 column 2.

4 The analyzer is armed.

5 The target is awakened with a DDL command.

6-9 If a •check condition• status is returned by the
target, the REQUEST_SENSE command is sent to the target
and the message •sense Requested• is sent to the
screen.

7 - 67

10 The buffer INQUIRED is cleared.

ll The buffer CAPACITY is cleared.

12 Once these buffers are clear~~. the:command
READ CAPACITY is invoked followed,by'INQOIRY. Data
from-these commands is deposited i~ the cleared
buffers.

l3 The string "Manufacture:" is followed by the value of
the INQUIRED.MANUFACTURE buffer field from the INQUIRY
command.

14 The screen position is saved.

15 The buffer field INQUIRED.MODEL is printed at tt:e
former cursor point.

16 The cursor is restored to the screen at the point just
previous to the last buffer field.

17 The string •Model:" is displayed on the screen at the
new cursor point.

18 The string "Serial Number:• is displayed on the screen
followed by the value from the buffer
INQUIRED.SERIAL_NUMBER.

19 The size variable is equated to the data buffer field
CAPACITY.LAST_BLOCK.

20 The size variable is incremented by 1.

21 Size is multiplied by the CAPACITY.BLOCK SIZE data
field. -

22 The resulting value of size is displayed after the
string •capacity •".

23 The "Capacity •" string is followed by the another
string, "bytes with", followed by the value of the
CAPACITY.BLOCK_SIZE data field.

24 At the last cursor position, the string "bytes/block"
is displayed.

7 - 68

The screen produced by this program should look something like
this:

Manufacture: xxxxxx

Model: yyyyyyy

Serial Number: zzzzzz

Capacity: nnnnn bytes with aaaaa bytes/block

7 - 69

l. Task Control Primitives

Table A-1 contains a list of all Task Control primitives
currently defined for the Initiator Emulation. Hex values
associated with each primitive appear after the primitive
notation, i.e. IOOH. Access these values using either
TCB_PRIMITIVE or VIEW in Interactive mode.

Primitives

T_OPEN

T_CLOSE

T_SET_UP

T_SAVE

T_RESTORE

T STATUS

Table A-1. Task Control Primitives.

Value

01

05

09

OB

OD

OF

Description

Opens a task, using the current
INITIATOR, TARGET, and LUN IDs.

Closes the task.

This converts the TCB DATA OFFSET
and TCB DATA SEGMENT Into TCB OMA
pointer-format. -

This transfers the TCB OMA pointers
into the TCB_SAVE pointers.

This transfers the TCB SAVE pointers
into the current TCB_DHA pointers.

This places an image of the SCSI
data bus into TCB MESSAGE[O], while
the TCB MESSAGE[lT contains the
BUS STATUS REG and TCB MESSAGE[2)
contains the BUS_STATUS image.

BUS STATUS REG and BUS STATUS are
registers within the SCSI hardware
interface.

A - 2

2. Extreme Primitives

Use the extreme drive primitives listed in Table A-2 to assert or
deassert a single SCSI bus control signal or transfer a single
byte across the bus. Although the following commands may be used
to implement normal SCSI transactions, they are intended for
negative testing and don't check for the validity of the desired
operation.

Primitive

P_SET_ACK

P_CLR_ACK

P_SET_ADR

P_SET_ARB

P_CLR_ARB

P_SET_ATN

P_CLR_ATN

P_SET_BSY

P_CLR_BSY

P_SET_BUS

P_CLR_BOS

P_SET_DATA

Table A-2. Extreme Primitives.

Value

13*

15*

17

19

lB

10*

lF*

21

23

25

27

20

Description

This asserts ACK on the SCSI bus.

This deasserts ACK on the SCSI bus.

This sets the SELECTION address
register in the SCSI controller to
the value in TCB MESSAGE[O]. The
bit position of any address the chip
should respond to should be set to
one.

This asserts ARB on the SCSI bus.

This deasserts ARB on the SCSI bus.

This asserts ATN on the SCSI bus.

This deasserts ATN on the SCSI bus.

This asserts BSY on the SCSI bus.

This deasserts BSY on the SCSI bus.

This asserts the DATA on the SCSI
bus.

This deasserts the DATA on the SCSI
bus.

This sets the DATA register in the
SCSI controller with the value in
TCB MESSAGE[O). If the BUS is
enabled, the data will appear on the
SCSI bus.

A - 3

Table A-2. Extreme Primitives (continued).

Primitive Value Description

P_SET_RST 3B* This asserts RST on the SCSI bus.

P_CLR_RST 30* This deasserts RST on the SCSI bus.

* Initiator-specific primitive. All others can
be used by both Initiator and Target emulators.

A - 4

3. Conventional Primitives

This is a list of all conventional primitives currently defined
for the Initiator Emulation. Values associated with each primi­
tive appear after primitive notation.

Primitive

P_MSG_R

P_MSG_W

P_STAT_R

P_DATA_R

P_OATA_W

Table A-3. Conventional Primitives.

VitlUe

00

02

04

08

OA

Description

This sets ATN and provides
TCB ACT COUNT with the number of
message-bytes received.

This sets ATN and waits for the
target to go into a message out
phase. Use the primitive with a
message in the form:

P_MSG_W [message)

where [message) is one of the SCSI
messages discussed in part 7. If no
message is appended to the primi­
tive, TCB MESSAGE[O) is sent.
(Default only supplied in Program
mode1 you must supply your own mess­
age name in Interac~ive.)

Returns with TCB STAT byte if succe­
ssful. Or TCB GATE will have excep­
tion code. -

Receives ·TCB DATA OFFSET/ SEGMENT,
TCB COUNT SPC data if successful. Or
TCB-GATE will have exception code.
TCB-COUNT ACT contains the number of
bytes transferred.

Sends TCB DATA OFFSET/ SEGMENT,
TCB COUNT-SPC data if successful.
Or TcB GATE will have exception
code. -TCB COUNT ACT contains the
number of bytes transferred.

A - 5

Primitive

P_CMD_W

P_DISC

P_SELT

P_RSEL

P_RESET

D_SELT

D_RSEL

D_DATA_R

D_DATA_W ·

Table A-3. Conventional Primitives (continued).

Value

OE

10

12

14

16

22

24

26

28

Description

Sends TCB COB if successful. Or
TCB GATE will have exception code.
This primitive requires a CMD name
to execute. Field names are
optional. Thus:

P_CMD_W [CMD_name) [field_nm•val ••)

Otherwise, if no CMD name is provi­
ded, the system will use whatever

.values are already in the TCB COB.
(Default only supplied in Program
mode; you must supply your own
field names in Interactive.)

Sets driver internally tc
disconnect.

The desired target will be selected.

Enables a ta.rget to reselect the
initiator.

This issues a reset message to the
target if possible. Optionally the
initiator can reselect the target
and LUN to force a reset.

Like P SELT only sends
IDENTIFY_ MESSAGE as well.

Like P RSEL only accepts
IDENTIFY_ MESSAGE as well.

This functions as P DATA R with the
additional capability to-deal with
disconnect reselect automatically.

· This functions as P DATA W with the
additional .capability to-deal with
disconnect reselect automatically.

A - 6

Primitive

D_CMD_W

D_TERM

D_READ

Table A-3. Conventional Primitives (continued).

Value

32

34

3A

Description

Functionally, this is a composite of
P SELT and P CMD W. This primitive
requires a CMD name to execute.
Field names are optional. Thus:

D CMD w [<CMD_nm> [Field_nm=val •• J]

If no field names are appended, the
system will use whatever values are
currently available. (Default only
supplied in Program mode; you must
supply your own field names in
Interactive.)

The TCB STAT receives the status
byte and TCB MESSAGE the completion
byte. -

Functional composite of o CMD W and
D DATA R. This primitive-requires a
COB name to execute. Field values
are optional. Thus:

D READ [<COB nm> [field nm=val •• J
- [data_bufferll

If no field names are appended, the
system will use whatever values are
currently available. (Default only
supplied in Program mode; you must
supply your own field names in
Interactive.) If COB name is
provided, all parameters are set
automatically. If not, in addition
to setting TCB COB, this command
requires you to set TCB_COUNT_SPCD,
TCB_DA~A_OFFSET, and TCB_DATA_SEG.

A - 7

Table A-3. Conventional Primitives (continued).

Primitive Value

O_WRITE 3C

D_INITIATOR 3E

Description·

Functional composite of D CMD W and
o DATA w. This primitive-requires a
COB name to execute. Field values
are optional. Thus:

D WRITE [<COB nm> [field nm=val ••)
- - [buffer))-

If no field names are appended, the
system will use whatever values are
currently available. (Default only
supplied in Program mode1 you must
supply your own field names in
Interactive.) If COB name is
provided, all parameters are set
automatically. If not, in addition
to setting TCB COB, this command
requires you to set TCB ~OUNT SPCD,
TCB_DATA_OFFSET, and TCB_DATA:sEG.

Functional composite of D CMD W and
D DATA R or D DATA W and D TERM.
This primitive requires a COB name
to execute. Field values are
optional. Thus:

D INITIATOR [<COB nm>
- [field_nm=vaI..) [buffer))

If no field names are appended, the
system will use whatever values are
currently available. (Default only
supplied in Program mode1 you must
supply your own field names in
Interactive.) If COB name is
provided, all parameters are set
automatically. If not, in addition
to setting TCB COB, this command
requires you to set TCB COUNT SPCO,
TCB_DATA_OFFSET, and TCB_DATA:sEG.

A - 8

4. Control Structures

Table A-4 lists the Task Control Block variables. The type of
each variable is given and the variable itself is defined.

Variable

TCB GATE*

TCB PRIMITIVE

TCB_STATE

TCB ID MSG

TCB_CDB (12]

TCB STATUS

TCB COMPLETION

TCB_COUNT_SPCD

·res COUNT ACT - -

TCB_DATA_OFFSET

TCB_DATA_SEGMENT

Table A-4. Control Structures.

Type

char

char

int

char

char array

char

char

long

long

int

int

Definition

Gate byte, set by driver.

Primitive code such as
P MSG R.

State of SCSI transaction.

ID message sent or received.

SCSI COB for task.

Status byte sent or received.

Completion message for task.

Item count requested, 24-bit
capability.

Item count actually
transferred.

Buffer memory address in data
segment.

Data segment to use

Current data pointers used internally by driver for nousekeeping:

TCB_DMA_HIGH char Contents of DMA_HIGH.

TCB_DMA_MODE char Contents of DMA_MODE.

TCB_DMA_ADDRESS int Contents of DMA_ADR.

'):'CB_OMA_COUNT int Contents of DMA_CNT.

TCB_ACT_COUNT int Difference at EOP.

A - 9

Table A-4. Control Structure• (continued),

Variable Type Definition

Driver task_control context:

TCB_INITIATOR_ID char SCSI initiator address.

TCB_TARGET_ID char SCSI target address.

TCB_LUN_ID char SCSI LUN address.

TCB_OPTION* int Working copy.

TCB_BLK_SZ int Block size unless .. o.

TCB_M.BSSAGE[8J char Transient message space large
array enough for extended messages.

Current and saved data pointers, used by save and restore
pointers:

TCB CURRENT_ADDR* int OMA image address.

TCB_CURRENT_HIGH* char OMA image high nibble.

TCB_CURRENT_COUNT* int OMA image count.

TCB_CURRENT_PHASE* char OMA TCB image.

TCB_CURRENT_MODE* char OMA MODE image.

TCB_SAVED_ADDR* int OMA image address.

TCB_SAVED_HIGH* char OMA image high nibble.

TCB_SAVED_COUNT* int OMA image count.

TCB_SAVED_PHASE* char OMA TCR image.

TCB_SAVED_MODE* char OMA MODE image.

A - 10

r
Table A-4. Control Structures (continued).

Variable Type Definition

TCB_ INTERRUPT LOCATION* int Where to go on interrupt.

TCB_RETURN_LOCATION* int Where to go after interrupt.

· TCB_LINK_OFFSET int Next TCB in linked command.

TCB LINK SEGMENT int Next TCB in linked segment. -
TCB_ASSIGNMENT* int Driver fills this in.

TCB_GROUP* int Used by driver.

* This command belongs to the driver. You can't write
into it. For example, writing

.TCB GROUP = 12

would produce an error message.

A - 11

5. 'l'CB Flags

Certain bits within the TCB structure provide you with valuable
information about the function of the system. To read these
bits, see Table A-5.

Flags

TCB_GATE bits:

GATE_OWNER_FLAG

TCB_OPTION bits:

EXTRA_DATA_FLAG

RD_FLAG

WR_PLAG

TIME_OUT_FLAG

MESSAGE_FLAG

DISCONNECT_FLAG

PARITY_FLAG

INITIATOR_FLAG

Table A-5. 'l'CB Plags.

Definitions

bit 7 denotes ownership
1 • driver, 0 = application

bit 8 = throw. away extra data
1 • valid, O = invalid

bit 7 + 6 = transfer mode

00 • any transfer 01 • read only
10 = write only 11 = no transfer

bit 5 = timeout
1 • valid, 0 = invalid

bit 4 = use message system
1 • valid, 0 = invalid

bit 3 a disconnect
1 • valid, 0 = invalid

bit 2 = parity
1 • valid, 0 = invalid

bit 1 • device mode
0 = target, 1 • initiator

A - 12

6. TCB Error Codea

If, after a driver primitive is executed, TCB GATE is not zero
(COMMAND COMPLETE), it will contain one of these error codes:

Code Name

SELECTION_ERROR

DISCONNECTED

PARITY_ERROR

BUS_RESET

CHIP_FAILURE

MESSAGE_BYTE

DIFFERENT PHASE

ILLEGAL_CMD

OPERATOR_ABORT

TASK_CONFLICT

TASK_INACTIVE

NO_TASK_SPACE

BUS_NOT_FREE

Table A.-6. Error Codes.

Value

1

2

3

4

5

6

7

8

9

12

13

14

15

Meaning

selection failed status.

Disconnected status.

Parity error status.

SCSI bus reset status.

Chip failure· status.

Message in byte being returned.

Unexpected phase requested.

Conflicting or unknown requests.

You aborted this operation.

Fields within T OPEN DIS conflict
with prior T_OPEN.

Specified task is inactive.

No TCB's remaining.

SCSI bus appears to be bunq.

A - 13

1. SCSI ·Message system

Table A-7 lists SCSI messages toqether with their value and the
signal dire~tion (where IN indicates target was originator; OUT
indicates initiator was originator).

Table A-7. SCSI Message System.

Message Value Direction Meaning

COMMAND_COMPLETE 0 IN

ABORT 6 OUT

MESSAGE_REJECT 7 IN/OUT

NO_OPERATrON 8 OUT

BUS_DEVICE_RESET OCH OUT

DISCONNECT_MESSAGE 4 IN

IDENTIFY_MESSAGE 80H IN/OUT

SAVE_DATA_POINTERS 2 IN

RESTORE_POINTERS 3 IN

INIT_DETECT_ERROR 5 OUT

MSG_PARITY_ERR 9 OUT

LINKED_CMD_CMPL OAH IN

LNKD_CMD_CMPL_FLG OBH IN

A - l4

Command aborted.

Message was rejected.

This is a dummy message.

Device on the bus was
reset.

Message was disconnected.

Identification of the
TARGET/LUN.

Data pointers were saved.

Data pointers were
restored.

Errors were detected at
initialization.

A message parity error was
detected.

Linked COMMAND COMPLETED.

Linked COMMAND COIWLETE
flag.

APPENDIX B - SCSI-2 DIRECT ACCESS DDL

INTRODUCTION

This appendix is u calalog of the commands defined in the
Device Description Library provided on the program disk as
file SCSl2_DA.DDL. This DDL file is based on a preliminary
draft of the proposed SCSJ-2 standard dated October 31, 1986.
This rendition of the SCST-2 direct access DDL must be
conside1·ed only a prototype which requires editing by you to
match the specific implementation of your particular target.
To do this you will need to refer to the SCSI manual provided
by the target vendor. Presently the proposed standard is in
considerable flux and is uude1·going changes by, and at the
sole discretion of, the ANSI X3T9.2 Task Group.

Table 8-1 provides an alphabetical list of lhe commands in the
catalog. Each catalog entry includes lhe template of the CDB,
the command name, the referenced TYPE definition, the COB data
as a string of hex digits, the name of each defined field in
the CDB and the DATA buffer attached to the command (refer to
the example COPY command below).

Each bit of the CDB template is coded. "Operation code"
iduntifies the first byle of each CDB. Its assigned value is
tu the right of the template. The target LUN address is
inserted in the "Unit#" field when the command is issued to a
target. A string of a lower case letter identifies a named
field. The nume assigned each field can be found to the right
of the template. A string of an upper case letter identifies
an enumerated field. The nume of each enumeration is listed
to the right of the letter in ascending order, separated by
comas. Unriamed enumerations appear as blanks. For example,
the enumerated value l of field A of the COPY CDB has been
assigned the lube] PAD while the value 0 has been assigned no
label. Bit positions not assigned to a field are identified
in the template by O.

If there is a DATA buffer assigned to a CDB other than the
normal default buffer .SMALL, it is identified to the right of
the template.

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: COPY
000 Operation code CDR type: TYPE 004
001 Unit# 0 0 0 0 A CDB daLa: 180000001000
002 b b b b b b b b Operation code = 18h
003 ~ b b b b b b.b A: . PAD
004 b b b b b b b b bb ... bb: LENGTH
005 0 0 0 0 0 0 F+L DATA buffer: COPY 4

B-1

As mentioned above, you will need to edit this DDL lo match
the implementation of your particular target. We suggest you
save any changes under a file name different than SCSI2 DA.
Below are some additional hints (cans and can'ts) for you to
consider as you edit the DDL.

First, you CAN:

create a new FORM or TYPE field by assigning bits
presently unassigned to the new field,

change the name of a TYPR or FORM field,

change the name of a CDB or DATA buffer,

change the DATA buffer attached to a CDB.

Second, you CAN, BUT not without impact elsewhere:

change thu size or kind of a field. If a resized field
encroachs into another defined field, that other field is
deleted.

change the size of n TYPE template. If you do you must
delete and recreate all CDB's referencing the changed
template.

change the size of a FORM template. If you do you must
delete and recreate all DATA buffers referencing the
changed template.

rename or delete a TYPE or FORM template. Jf you do you
must delete and recreate all CDB's or DATA buffers
referencing the renamed or deleted template.

delete a TYPE or FORM field. If you do all subsequent
fields in the TYPE or FORM wilJ be deleted.

Lastly, you CAN'T:

change the TYPE of a CDB (You must delete the existing
CDB and recreate it with the new TYPE assigned),

change the FORM of a DATA buffer (You must delete the
existing DATA and recreate ls with the new FORM
assigned).

Long names for CDB's, DATA buffers and FORM and TYPE fields
should be avoided. They do impact program performance, ·

B-2

increase DDL size and require more typing at the keyboard.
For understandability, the names used in this DDL are
particularly verbose. You may wish to edit these names to
something equally meaningful lo you while reducing their
length.

Keep in mind that any .i!dits you make on a TYPE or FORM
template (other than field name changes) may adversely impact
the CDB's and DATA buffers referencing those templates.

B-3

Table B-1 Commands for Direct Assess Devices

:OMPARE (39) .. 8-12
:oPY (18) ... 8- 7
:OPY AND VERIFY (3A) •••••••••••••••••.•••••••••••••••• 8-12
·'LUSH_CACHE (35) 8-11
•'ORMAT UNIT (04) 8- 5
:NQUIRY (12) ... 8- 6
~OCK/UNLOCK_CACHE (36)•..... 8-12
10DE_SEI.EC'l' (15) •••••••••••••••••••••.•••••••••••••••• 8- 6
10DE_SENSE (lA) B- 7
'RIH'ETCH (34) ••• B-11
~REVENT/ALLOW MEDIUM REMOVAL (lE) ••••••••••••••••••••• B- 8
HO:AD (08) ••• : • ••••• ~ •••••••••••••••••••••••••••••••••• B-" 6
1EAD BUFFER (3C) • • • • • • • • • • • • • • • • • . • • • • • • • • • • • . • • • • • • • • B-13
1-EAD=CAPACJTY (25) B- 8
'<EAD DEFECT DATA (37) ••••.•••••••••••••••••••••••••••• B-12
iEAll ~EXTENDRD (28) •••••••••••••••••••••••••••••••••••• B- 9
:iEAD_LONG (3E) .. B-13
iRASSICN_BLOCKS (07) ••••••••••••••••..•••••••••••••••• B- 5
~ECF.IVE DIAGNOSTIC RESULTS (lC) ••••.•••••••••••••••••• B- 8
1ELEASE-(l7) •••.• : • ••••.••••••••••.••••••••••••••••••• B- 7
:iEQUEST_SENSE (02) B- 5
1ESERVE (16) .. B- 7
RRZERO_UNIT (01) •••••••••••••••••..•.••••••••••.•••••• B- 5
SEARCH_DATA_EQUAL (31) ••••••.••••••.•••••••••••••••••• B-10
SEARCH_DATA_HIGH (30) •..••••••••.•••••.••••••••••••••• B-10
SEARCH_DATA_LOW (32) •••••••••••••••.•••••••••.•••••••• B-10
SEEK (08) ... B- 6
SEEK ... EXTENDED (28) •••••••••••••••••.•.•••••••••••••••• B- 9
SEND_OJAGNOSTIC (ID) B- 8
SET .. LIMlTS (33) B- 7
START/STOP UNIT (18) B- 8
TEST UNIT READY (00) ; B- 5
VERT.FY (2F) ... B-10
WRITE (OA) • B- 6
WRITE_AND_VERIFY (2E) B- 9
WRI TE . .JIUFFER (38) .••...•••••••.••••.••••...••••••••••• B- 9
WRITE EXTENDED (2A) B-· 9
WRITH~LONG (3F) B-14

B-4

TEST UNIT READY

BYTE -- bit 7-6-5-4··3-2-·1-0
000 OpP.ration code
001 Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 0 0 0 0 0 0 0 0
005 0 0 0 0 0 0 F+L

RE ZERO UNTT

BYTE -- bit. 7-6-5--4--3-2-1-0
000 Operation code>
001 Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 0 0 0 0 0 0 0 0
005 0 0 0 0 0 0 NL

REOIJ•:sT SENSE

BYTE -··- bit 7·-6-5-4- :i ·-2-] -0
000 Operation code
COl Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 a a a a a a a a
005 0 0 0 0 0 0 F+L

FORMAT UNIT

BYTE ---- bit 7-6--5-4-3- 2-1-0
000 Operation code
001 Unit# A R c c c
002 0 0 0 0 0 0 0 0
003 d d d d d d d d
004 d d d d d d d d
005 0 0 0 0 0 0 •·+L

REASSIGN BLOCKS

BYTE
000
001
002
003
004

bit 7-6-5-4-3-2-1-0
Operation
Unit# 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

code
0 0 0
0 0 0
0 0 0
0 0 0

COB name
COB type
COB data
Operation

COil name:
COB type:
COB data:
Operation

TEST UNIT READY
TYPE-001 -
000000000000
code = OOh

REZERO UNIT
TYPE 001
010000000000
code = Olh

COB name: REQUEST_SENSE
COB type: TYPE 002
COB duta: 030000000000
Operation code = 03h
aaaaaaau: LENGTH
DATA buffer: SENSED

CDB name: FOHMAT UNIT
COB type: TYPE 007
COB data: 040000000000
Operation code = 04h
A: , FMTDATA
B: , CMPLST
r.cc: LIST FORMAT
dd •.• dd~ INTERLEAVE
DATA buffer: DEFECTS

CDB name: REASSIGN BLOCKS
COB type: TYPE 001-
CDB data: 070000000000
Operation code = 07h
DATA buffer: DEFECT_LIST

B-5

005 0 0 0 0 0 0 F+L

READ (6 byte CDB)

BYTE --· bit 7 -6-5-4-3··2·· l-0
000 Operation code
001 Unit# a a a a a
002 a a a a a a a a
003 a a a a a a a a
004 b b b b b b b b
005 0 0 0 0 0 0 F+L

WRITE (6 byte CDB)

BYTE bit 7··6-5 -4-3-2 .. 1··0
000 Operation code
001 Unit# a a a a a
002 a a a a a a a a
003 u a a fl a a a a
004 b b b b b b b h
005 0 0 0 0 0 0 F+L

SEEK (6 byte CDB)

llYn: -- bit 7-6-5-4-3-2-1 ··0
000 Operation code
001 Unit# a a u a a
002 a a a a a a a a
003 a a a a a a a a
004 0 0 0 0 0 0 0 0
005 0 0 0 0 0 0 F+L

INQUIRY

BYTE bit. 7-6-5·"1··3-2- l-0
000 Operation l'Ode
001 Uni l# 0 0 0 0 0
002 0 0 0 0 a a a a
003 0 0 0 0 0 0 0 0
004 b b b b b b b b
005 0 0 0 0 0 0 Fil.

MODE SELECT

BYn:
000
001
002
003
004

-- bit 7-6-5-4-3-2-1-0
Operation r.ode
Unit# A 0 0 0 B
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
c c c c c c c c

CDB name: READ
CDB type: TYPE 008
CDR data: 080000000000
Operation code = 08h
aa ... aa: ADDRESS
bbbbbbbb: LENGTH

CDB name: WRITE
CDB type: TYPE 008
CDB data: OAOOOOOOOOOO
Operation code - OAh
aa ... aa: ADDRESS
bbbbbbbb: LENGTH

CDB numo: SEEK
COB type: TYPE 009
CDII datu: 080000000000
Operation code = OBh
aa ... aa: ADDRESS

CllB name: INQUIRY
COB type: TYPE 003
CDB data: 120000000000
Operation code = 12h
aaaa: FORMAT
bbbbbbbb: LENGTH
DATA buffer: INQUIRED

CDB name: MODR_SELECT
CDB type: TYPE 010
CDB data: 150000000000
Operation code = 15h
A: , PF
B: , SP

B-6

005 0 0 0 0 0 0 F+L

RESERVE

BYTE
000
001
002
003
004
005

bit 7-6-5-4-3-2-1-0
Operation code
Unit# A b b b C
d d d d d d d d
e e e e e "' e e
f! e e e e e e e
0 0 0 0 0 0 F+L

REJ.EASF.

B Y'flo:
000
001
002
003
004
005

COPY

bil 7-6-5-4-3-2-1-0
Operation code
Unit# A b b b C
d d d d d d d d
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 F+L

BYTE --- bit
000

7-6-5-4-3-2·- l-O
Operation code
Unit# 0 0 0 0 A
b b b b b b b b
b b b b b b b b
b b b b b b b b
0 0 0 0 0 0 F+L

001
002
003
004
005

MODR SENSE

BYTR
000
001
002
003
004
005

-- bit 7-6-5-4-3-2-1-0
Operation code
Unit# A 0 0 0 0
B B c c c c c c
0 Q 0 0 0 0 0 0
d d d d d d d d
0 0 0 0 0 0 F+L

cccccccc: LENGTH
DATA buffer: PAGE_4

CDB name: RESERVE
CDB type: TYPE 011
CDB date: 160000000000
Operation code = 16h
A: , TRDPTY
bbb: DEVICE
C: , EXTENT
dddddddd: IDENTIFICATION
eu •.• ee: LENGTH
DATA buffer: EXTENTS

CDB name: RELEASE
CDB type: TYPE 012
CDB data: 170000000000
Operation code = 17h
A: , TRDPTY
bbb: DEVICE
C: , EXTENT
dddddddd: IDENTIFICATION

CDB name: COPY
CDB type: TYPE 004
CDB data: 180000001000
Operation code: 18h
A: , PAD
bb •• ~ bb: LENGTH
DATA buffer: COPY_4

CDB name: MODE SENSE
CDB type: TYPE=Ol3
CDB data: 1A0004000000
Operation code = lAh
A: I PF
BB: CURRENT, CHANGEABLE,

SAVED
cccccc: PAGE_CODE
dddddddd: LENGTH
DATA buffer: PAGE_4

B-7

DEFAULT

TART/STOP UNIT

BYTE
000
001
002
003
004
005

-- bit 7-6-5-4-3-2-1-0
Operation code
Unit# 0 0 0 0 A
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 B C
0 0 0 0 0 0 F+L

:ECEIVE DIAGNOSTIC RESULTS

llYTE
000
001
002
OO:i
004
005

-- bit 7-6-5-4-3-2·-l-O
Operation code
Unit# 0 0 0 0 0
0 0 0 0 0 0 0 0
a a a a a n a 11

a a a a a a a a
0 0 0 0 0 0 NL

;END DIAGNOSTIC

llYTE
000
001
002
003
004
005

-- bit 7-6-5-4-3-2-1-0
Operation code
Unit# 0 0 A B C
0 0 0 0 0 0 0 0
d d d d d d d d
d d d d d d d d
0 0 0 0 0 0 F+L

'REVENT/ALLOW MEDIUM REMOVAL

BYTE
000
001
002
003
004
005

-- bit 7-6-5-4-3-2-1-0
Operation code
Un\U 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 A
0 0 0 0 0 0 F+L

~EAD CAPACITY

BYTE -- bit
000
001
002
003
004
005

7-6-5·-4-3-·2-1·~0
OperRtion code
Unit# 0 0 0 0 A
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b

COB name: STAHT/STOP_UNIT
COB type: TYPE_Ol4
COB data: lBOOOOOOOOOO
Operation code = lBh
A: , IMMED
B: , LOEJ
C: STOP, START

CDB name: RECEIVE DIAGNOSTIC RESULTS
COB type: TYPE_oo5 -
CDB data: lCOOOOOOOOOO
Operation code = lCh
aa ••. na: LENGTH

cne name: SEND DIAGNOSTIC
COB type: TYPE-006
CDB data: 100000000000
Operation code = lDh
A: , SELFTEST
B: , DE VO FL
C: , UNITOFL
dddddddd: LENGTH

COB name: PREVENT/ALLOW_MRDIUM_REMOV
COB type: TYPE_015
CDB data: lEOOOOOOOOOO
Operation code = lEh
A: ALLOW, PREVENT

. COB name: READ_CAPACITY
COB type: TYPB_104
COB date: 25000000000000000000
Operation code = 25h
A: , RBLADR
bb ••• bb: ADDRESS
C: , PMI·.

B-8

006 0 0 0 0 0 0 0 0 DATA buffer: CAPACITY
007 0 0 0 0 0 0 0 0
008 0 0 0 0 0 0 0 c
009 0 0 0 0 0 0 F+l,

READ (10 bytt! CDB)

BYTE bit 7-6-5 -4-3-2-1-0 CDB name: READ_EXTENDED
000 Operation code CDB type: TYPE 105
001 Unit# A B 0 0 c CDB data: 28000000000000000000
002 d d d d d d d d Operation code = 28h
003 d d d d d d d d A: . DPO
004 d d d d d d d d B: . FUA
005 d d d d d d d d C: . REI.ADR
006 0 0 0 0 0 0 0 0 dd dd: ADDRESS
007 e e e e e e e e ee ... ee: LENGTH
008 e e e e e e e e
009 0 0 0 0 0 0 F+L

WRITE (l 0 byte CDB)

BYTE -- bit 7-6-5··4-:i- 2-1-·0 CDB namt!: WRITE EXTENDED
000 Operation code CDB type: TYPE 105
001 Unit# A B 0 0 c CDB data: 2A000000000000000000
002 d d d d d d d d Operation code = 2Ah
003 d d d d d d d d A: . DPO
004 d d d d d d d d B: . FUA
005 d d d d d d d d C: . RE LA DR
OOti 0 0 0 0 0 0 0 0 dd dd: ADDRESS
007 e e e e e e e e ce ... ee: LENGTH
008 e e e e e e e e
009 0 0 0 0 0 0 F+L

SEEK (10 byte CDB)

BY'l'E -· bit 7-6-5-4-3-2-1-·0 CDB name: SEEK_ EXTENDED
000 Operation code CDB type: TYPE 106
001 Unit# 0 0 0 0 0 CDB data: 28000000000000000000
002 a a a a a a a a Operation code = 2Bh
003 a a a a a a a a aa ... aa: ADDRESS
004 a a 1:1 a a a a a
005 a a a a a a a II

006 0 0 0 0 0 0 0 0
007 0 0 0 0 0 0 0 0
008 0 0 0 0 0 0 0 0
009 0 0 0 0 0 0 F+L

WRITE AND VERIFY

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name~ WRITE_AND_VERIFY

B-9

000
001
002
003
004
005
006
007
008
009

VERIFY

BYTK
000
001
002
003
004
005
006
007
008
009

Operation code
Unit# A B C D E
f f f f f f f f
f f f f f f f f
f f f f f f f f
f f f f f f f f
0 0 0 0 0 0 0 0
g g g g g g g g
g g g g g g g g
0 0 0 0 0 0 F+L

bit 7-6-5-4-3-2-1-0
Operation code
Unit# A B 0 C D
e e e e e e e e
e e e e· e e e e
e e e e e e e e
e e e e e e e e
0 0 0 0 0 0 0 0
f f f f f f f f
f f f f f f f f
0 0 0 0 0 0 F+L

SRARCH DATA

BYTE
000
001
002
003
004
005
006
007
008
009

BYTE
000
001
002
003
004
005
006
007
008
009

-- bit 7-6-5-4-3-2-1-0
Operation
Unit# A 0
d d d d d
d d d d d
d d d d d
d d d d d
0 0 0 0 0

code
0 B C
d d d
d d d
d d d
d d d
0 0 0

eeeeeee·ie>
e e e e e e e e
0 0 0 0 0 0 FtL

-- bit 7-6-5-4-3-2-1-0
Operation
Unit# A 0
d d d d d
d d d d d
d d d d d
d d d d d
0 0 0 0 0

code
0 B C
d d d
d d d
d d d
d d d
0 0 0

e e e e e e e e
e c e e e e e e
0 0 0 0 0 0 F+L

CDB type: TYPE_l07
CDB data: 2EOOOOOOOOOOOOOOOOOO
Operation code = 2Eh
A: , DPO
8: , FUA
C: , WRTSME
D: , BYTCHK
E: , RE LA DR
ff ff: ADDRESS
gg •.. gg: LENGTH

CDB name: VERIFY
CDB type: TYPE 108
cos data: 2rooiooooooooooooooo
Operation code = 2Fh
A: , DPO
B: , FUA
C: , BYTCHK
D :. , RELADR
ee ee: ADDRESS
ff ... ff: LENGTH

CDB name: SEARCH DATA HIGH
CDB type: TYPE 109 -
CDB data: 3oooiooooooooooooooo
Operation code = 30h
A: , INVERT
B: , SPNDAT
C: , RELADR
dd ... dd: ADDRESS
ee ... ce: LENGTH
DATA buffer: SEARCH DATA

CDB name: SEARCH DATA EQUAL
CDB type: TYPE li9 -
CDB data: 31000000000000000000
Operation code - 3lh
A: , INVERT
8: , SPNDAT
C: , RELADR
dd •.. dd: ADDRESS
ee ... ee: LENGTH
DATA buffer: SEARCH_DATA

B-10

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: SEARCH DATA LOW
000 code 109

-
Operation CDB type: TYPE

001 Unit# A 0 0 8 r. CDB data: 32000000000000000000
002 d d d d d d d d Operation code = 32h
003 d d d d d d d d A: . INVERT
004 d d d d d d d d B: . SPNDAT
005 d d d d d d d d C: ; RE LA DR
006 0 0 0 0 0 0 0 0 dd ... dd: ADDRESS
007 e e e e e e e e ee ... ee: LENGTH
008 e e e e e e c (! DATA buffer: SEARCH DATA
009 0 0 0 0 0 0 F+L

SET LlMITS

BYTE -- bit 7-6-5-4-3··2- l-O CDR nHmE~: SET LIMITS
000 Operation code CDB type: TYPE 110
001 Unit# 0 0 0 A R CDB data: 33000000000000000000
002 c c c c c c c c Operation code = 33h
003 c c c c c c c c A: . RD I NH
004 c c c c c c c c B: . WRINH
005 c c c c c c c c cc ... cc: ADDRESS
006 0 0 0 0 0 0 0 0 dd ... dd: BLOCKS
007 d cl d d d d d d
008 d d d d d d d d
009 0 0 0 0 0 0 F+L

PRE-•'ETCH

BYTE -- bit 7-6-5-4·-3-2· 1··0 CDB name: PRE FETCH
000 Operation code CDB type: TYPE 111
001 Unit# 0 0 0 A B CDB data: 34000000000000000000
002 c c c c c c c c Operation code = 34h
003 c c c c c c c c A: . lMMED
004 c c c c c c c c B: . RELADR
005 c c c c c c c c cc cc: ADDRESS
006 0 0 0 0 0 0 0 0 dd ... dd: LENGTH
007 d d d d d d d d
008 d d d d d d d d
009 0 0 0 0 0 0 F+L

FLUSH CACHE

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: FLUSH_ CACHE
000 Operation code CDB type: TYPE 112
001 Unitt 0 0 0 0 A COB data: 35000000000000000000
002 b b b b b b b b Operation code = 35h
003 b b b b b b b b A: . RE LA DR
004 b b b b b b b b bb bb: ADDRESS
005 b b b b b b b b cc ... cc: LENGTH

B-11

006
007
008
009

0 0 0 0 0 0 0 0
c c c c c c c c
c c c c c c c c
0 0 0 0 0 0 F-tL

LOCK/UNLOCK CACHE

BYTR
000
001
002
003
004
005
006
007
008
009

-- bit 7-6-5-4-3-2-1-0
Operation code
Unit# 0 0 0 A B
c c c c c c c c
c c c c c c c c
c c c c c c c c
c c c c c c c c
0 0 0 0 0 0 0 0
d d d d d d d d
d d d d d d d d
0 0 0 0 0 0 F+L

RRAO DEFECT DATA

BYTE --· bit 7-6-5-4-3-2-1-0
000
001
002
003
004
005
OOl~
007
008
009

COMPARE

llYTE
000
001
002
003
004
005
006.
007
008
009

Operation code
Unit# 0 0 0 0 0
0 0 0 A B c c c
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
d d d d d d d d
d d d d d d d d
0 0 0 0 0 0 F+L

bit 7-6-5-4-3-2-1-0
Oper1ttion code
UniU 0 0 0 0 A
0 0 0 0 0 0 0 0
b b b b b b b b
b b b b b b b b
b b b b b b b b
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 V+L

COPY AND VERIFY

COB name LOCK/UNLOCK_CACHE
CDB type TYPE_lll
COB data 36000000000000000000
Operation ~ode = 36h
A: , IMMED
B: , RELADR
cc cc: ADDRESS
dd ••• dd: LENGTH

CDB nitme: RBAD_DBFECT_DATA
CDB type: TYPE_ 113
CDB data: 37000000000000000000
Operation code = 37h
A: . p
B: . G
ccc: FORMAT
dd ... dd: LENGTH

CDB name: COMPARE
CDB type: TYPE 101.
CDB data: 39000000000000000000
Operation code = 39h
A; , PAD
bb ••• bb: LENGTH

BYTH -- bit 7-6·-5-4-3-2-1-0 CDB name: COPY_AND_VBRIFY

B-12

000 Operation code COB type: TYPE 102
OOJ Unit# 0 0 0 A B CUR data: 3AOOOOOOOOOOOOOOOOOO
002 0 0 0 0 0 0 0 0 Operation code = 3Ah
003 c c c l' c c c c A: I BYTCHK
004 c c c c c c c c B: • PAD
005 c c c c c c c c cc .•... cc: LENGTH
006 0 0 0 0 0 0 0 0
007 0 0 0 0 0 0 0 0
008 0 0 0 0 0 0 0 0
009 0 0 0 0 0 0 F+L

WRITE BUFFER

BYTE --· bit 7-6-·5-4-3-2- l .. 0 COB name: WRITE BUFFER
000 Operation code COB type: TYPE 103
001 Unit# 0 0 0 ti a CDB data: 38000000000000000000
002 b b b b b b b b Op.iraUon code = 3Bh
003 c c c c c c c c aa: MODE
004 c c c c c c c c bbbbbbbb: BUFFER ID
005 c c c c c c c c cc cc: BUFFER_ OFFSET
006 d d d d d d d d dd ... dd: LENGTH
007 d d d d d d d d
008 d d d d d d d d
009 0 0 0 0 0 0 F+L

READ BUFFER

BYTE ·-- bit 7-6-5.-4-3-2-1-0 CDB name: READ_BUFFER
000 Operation code CDB type: TYPE 103
OOJ Unit# 0 0 0 a a CDB data: 3COOOOOOOOOOOOOOOOOO
002 b b b b b b b b Operation cu de = 3Ch
003 c c c c c c c c aa: MODE
004 c c c c ·~ c c c bbbbbbbb: BUFFER ID
005 c c c c c c c c cc cc: BUFJi'ER_OFFSET
006 d d d d d d d d dd ... dd: LENGTH
007 d d d d d d d d
008 d d d d d d d d
009 0 0 0 0 0 0 NL

READ LONG

BYTE --- bit 7-6-5:-4-:l-2-1- 0 CDD name: READ_LONG
000 Operation code CDB type: TYPE 114
001 Unitt 0 0 0 A B CDB data: 3EOOOOOOOOOOOOOOOOOO
002 c c c c c c c c Operation code = 3Eh
003 c c c c c c c c A: I CORRCT
004 c c c c c c c c B: • RELADR
005 c c c c c c c c cc cc: ADDRESS
006 0 0 0 0 0 0 0 0 dd ... dd: LENGTH
007 d d d d d d d d

B-13

008
009

iRITE LONG

BY'rB -- bit
000
001
002
003
004
005
006
007
008
009

d d d d d d d d
0 0 0 0 0 0 F+L

7-6-5-4--3-2-1-0
Operation code
Unitt 0 0 0 0 A
b b b b b b b b
b b b b b b b b
b b b b b b b b
b b b b b b b b
0 0 0 0 0 0 0 0
C C ·C C C C C C
c c c c c c c c
0 0 0 0 0 0 F+L

CDB name: WRITE_LONG
CDB type: TYPE_ll2
CDB data: 3FOOOOOOOOOOOOOOOOOO
Operation code = 3Fh
A: , RELADH
bb bb: ADDRESS
cc .•• cc: LENGTH

B-14

APPENDIX c - scst-2 SEQUENTIAL ACCESS DDL

INTRODUCTION

This appendix is a catulug of the commands drfined in the
Device Description Library provided on the program disk as
file SCSI2 SA.DDL. This DDL file is based on a preliminary
draft of t~e proposed SCSI-2 standard dated October 31, 1986.
This rendition of the SCSI-2 sequential access DDL must be
considered only a prototype which requires editing by you to
match the spncific implementation of your particular target.
To do this you will need tu refer to the SCSI manual provided
by the target vnndor. Presently the proposed standard is in
considerable flux and is undergoing changes by, and at the
sole discrrtion of, the ANSI X3T9.2 Task Group.

1'e1ble C-·I provides an alphabetical list of the commands in the
catalog. Each catalog entry includes the template of the CDB,
the command name, the referenced TYPE definition, the CDB data
as a string of hex digits, the name of each defined field in
the COB and the DATA buffer attached to the command (refer to
the example COPY command below).

Each hit of the COB t"mplatt! is i·ocied. "Operation code"
ideut ifi.«<s the first hyt.e of "ach COIL lts assignt•d value is
to the right of the tPmplate. The target LUN address is
lnsPrled in the "Unit#" field when the command is issued to a
tar·get. A st1·ing of a lower case letter identifies a named
field. Th• name assigned each field can be found to the right
of the template. A string of an upper case letter identifies
an enumerated field. The name of each enumeration is listed
to the right of the letter in ascending order, separated by
comas. Unnamed enumerations appear as blanks. For example,
the enumerated value I of field A of the COPY CDB has been
assigned the label PAD while the value 0 has been assigned no
label. Bit positions not assigned to a field are identified
in the template by O.

If there is a DATA buffer assigned to a CDB other than the
normal default buffer .SMALL, it is identified to the right of
the template.

BYTE -- bit 7-6--5-4-·3·-2·- l -0 CDB name: COPY
000 Operation code CDB type: TYPR 004
001 Unit# 0 0 0 0 A CDB data: 180000001000
002 b b b b b b b b Operation code = 18h
003 b b b b b b b b A: • PAD
004 b b b b b b b b bb ... bb: LR NG TH
005 0 0 0 0 0 0 F+L DATA buffer: COPY 4 -

C-1

As mentioned above, you will need to edit this DDL to aatch
the implementation of your particular target. We suggest you
save any changes under a file name different than SCSI2 SA.
Below are some additional hints (cans and cao'ts) for y;~ to
consider as you edit the DDL.

First, you CAN:

create a new FORM or TYPE field by assigning bits
presently unassigned to the new field,

c-hange the naae of a TYl'R or FORM field,

change the name of a COB or DATA buffer,

cbnngf! the DATA buffer attached to a CDB.

Second, you CAN, BUT not without impact elsewhere:

change the size or kind of a field. If a resized field
encroachs into another defined field, that other field is
deleted.

change the size of a TYPE template. If you do you must
delete and recreate all CDB's referencing the changed
template.

change the aize of a FORM tcmvlate. If you do you must
delete and recreate all DATA buffers referencing the ·
changed template.

r·ename or delete a TYPE or FORM template. If you do you
must delete and recreate all CDB's or DATA buffers·
referencing the renamed or. deleted template.

d~lete a TYPE or FORM field. If you do all subsequent
ftelds in the TYPE or FORM will be deleted,

Lastly, you CAN'T:

change the TYPE of a COB (You must delete tbe existing
CDB and recreate it with the new TYPE assigned),

change the FORM of a DATA buffer (You must delete the
existing DATA and recreate is with the new FORM
assigned).

Long names fo,r cne•s, DATA buffers and FORM and TYPE ffelds
should .be avoided. They do impact pr.ogre• perfo1·aance,

C-2

increase DDL size au<l require more typing at ll1e keyboard.
~or uudPrstandnbilily, the names used ln this DDL are
particularly verbosP. You may wish to edit these names to
somrlhind equally meaningful to you while reducing their
length.

Keep in mind that any edits you mukn on a TYPE or FORM
templalP (other than field name chnnges) may adversely impact
the COB's and DATA buffers referencing those templates.

C-3

Table B-1 Commands for Sequential Assess Devices

COMPARE (39) ; •••••••• C-10
COPY (18) ... C- 8
COPY_AND_VERIFY (3A) •••••••••••••••.•••••••••••••••••• C-10
F. RASE (19) • • • . • • • • • • • • • • . • • • • . • • • • • • • • • . • • • • • • . • • • • • • • C- 8
INQUIRY (12) ; .••••••••.•••••••••••• ; ••••• C- 7
LOAD/UNLOAD (111) •.••••.••••••••••••••.•••••••••••••••• C- 8
f,OCATE (28) , C- 9
MODH SRLECT (15) C- 7
MODF.-SENSE (IA) •..•••••••••••••••••••••••••••••••••••• C- 8
PREViNT/ALLOW_MEDIUM_REMOVAL (IE) ••••••••••••••••••••• C- 9
READ (08) ..•..•. · C- 5
HEAD BLOCK LIMITS (05) C- 5
READ BUFFRR (3C) C-11
READ-LOG (lF) ; ...••••.••••••..• C- 9
READ-POSITION (34) •••.•••••.••.•••• , • , , •• , • , . , •••••••• C-10
HKAD llF.VF.RSE (0~') C- 6
RECEIVE_DIAGNOSTIC_RESULTS (lC) ••••••.•••••••••••••••• C- 9
llF.COVER R UF'FERED DA'fA (14) •••••••••••••••••••••••••••• C- 7
RELEASE (17) .. C- 8
REQUEST SENSE (03) •••••••••••••••••••••••••••••••••••• C- 5
RESERVE- (16) .••.......•...... ; ..•....•.•..••.•..••..•. C- 7
REWIND (01) ••• C- 5
SPACE (11) •• C- 6
SKND DIAGNOSTIC (ID) ••••••••••••••• , •••••••••••••••••• C- 9
TEST-lJNIT READY (00) •••••••••.•••••••••••••••••••••••• C- 5
TRACK SET.ECT (OB) • . • • • • • • • • • • c- 6
VERIFY (2F) •.••••.••••.•••••••••••••.•••••••••••••••••• C- 7
WRITE (OA) .. C- 6
WRITE FI LEMARKS (10) C·- 6
WRITE_BUl''~"EH (38) C-11

C··4

TEST UNIT READY

BYTE .. blt 7-6-5-4-3-2-1-0
000 Operation code
001 Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 0 0 0 0 0.0 0 0
005 0 0 0 0 0 0 F+L

REWIND

BYTR lilt 7 ·6-5-4-:i···2-l-·O
000 Operation code
001 Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 0 0 0 0 0 0 0 0
005 0 0 0 0 0 0 F+L

REQUEST SENSE

BYTF. ··- bit 7-6-5··4-3-2 -1-0
000 Operation code
001 Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 a a a a a a a a·
005 0 0 0 0 0 0 F+L

READ BLOCK LIMITS

BYTR
000
001
002
003
004
005

READ

BYTE
000
001
002
OO~f
004
005

-- bit 7-6-5-4-3-2-1-0

..... bit

Operatio11
Unit# 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

code
0 0 0
0 0 0
0 0 0
0 0 0
0 F+L

7-6--5-4-3-2- l·· 0
Operation code
Unit# 0 0 0 A B
c c c c c c (: c
c c c c c c c c
c c c c c c c c
0 0 0 0 0 0 Fil.

CDR nam~: TEST_UNIT_READY
CPB type: TYPE_OOl
CDB dtita: 000000000000
Operation code = OOh

CDB name: REWIND
COB type: TYPE 001
CDB dalu: 010000000000
Operation code = Olh

CDB name: REQUEST SENSE
COB type: TYPE 002
CDB data: 030000000000
Operation code = 03h
aaaaaaaa: LENGTH
DATA buffer: SENSED

CDR name: READ_BLOCK_tIMITS
COB type: TYPE_OOl
CDB data: 050000000000
Operation code = 05h

CDB name: RRAD
CDB type: TYPB_008
CDB data: 080000000000
Operation code = 08h
A: , SILI
B: , FIXED
cc ••• cc: LE~GTH

C-5

WRI1'E

llYTF. -- bit 7-6-5-4·-3-2- l ··O
000 Operation code
001 Unit# 0 0 0 0 A
002 b b b b b b b b
003 b b b h b b b h
004 b b b b b b b b
005 0 0 0 0 0 0 F+ J,

TRACK SELECT

BYTE -- bit 7-6-5-4-3-2· l ··O
000 Operalion COdt'

001 Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
oo:i 0 0 0 0 0 0 0 0
004 a a a a a a a a
005 0 0 0 0 0 0 •·+ 1

REAP REVEl!SE

BYTE .. - bit 7-6-5-4···3-2·· l-O
000 Operation code
001 Unit# 0 0 0 A B
002 c c c c c c c c
003 c c c c c c: (; c:
004 c c c c c c c c
005 0 0 0 0 0 0 hL

WRITE FILEMARKS

BYTE .. - bit 7-fl-5-4-3 2 1-0
000 Operation code
001 Unit# 0 0 0 0 A
002 b b b b b b h b
003 b b b b b b b b
004 b b b b b b b b
005 0 0 0 0 0 0 F+L

SPACE

BYTF. ··- bit 7- 6··5-4<!- 2-1-0
000 Operation code
001 Unit# 0 0 0 A A
002 b b b b b b h b
003 b h b b b b b b
004 b b b b b b b b
005 0 0 0 0 0 0 ~·-. L

CDB name WRITE
CDB type TYPE 009
CDB data 090000000000
Operation code = 09h
A: , FIXED
bb ..• bb: LENGTH

CDB name: TRACK SELECT
CDB type: TYPE 010
CUB data: 080000000000
Operation code = OBh
a1.11rnaaaa: TRACK

COB namf•: READ REVERSE -COB type: TYPE 008
COB data: OFOOOOOOOOOO
Operation coJe = OFh
A:

'
s 11.1

B: . FIXED
cc ... cc: LENGTH

CDR name: WRITE FILEMARKS
COB type: TYPE 011
CDB data: 100000000000
Operation code = lOh
A: , IMMED
b~ •.• bb: FILEMARKS

CDB name: SPACE
CDB type: TYPE_012
CDB data: 110000000000
Operation code = llh
AA: BLOCKS, FILEMARKS

SEQUENTIAL, END-OF-DATA
bb .•• bb: COUNT

C-6

INQ!JTHY

BYTE bit 7-6-5-4-3-2-1-0
000 Operation code
001 Unit# 0 0 0 0 0
002 0 0 0 0 a a a a
003 0 0 0 0 0 0 0 0
004 b b b b b b b b
005 0 0 0 0 0 0 F-t·L

VERIFY

BYTE hit 7--6-5 -4-3-2 l·-0
000 Operation code
001 Unit# 0 0 A B c
002 d d d d d d d d
00'.i d d d d d d d d
004 d d d d d d d d
005 0 0 0 0 0 0 ~·+t

RECOvER BUFFERED DATA

llYTR - - bit 7··6·5·4-3-2--1-0
000 Operation code
001 Unit# 0 0 0 0 A
002 b b b b b b L b
003 b b b b b b L b
004 b b b b b b b b
005 0 0 () 0 0 0 F+L

MODE SELF.CT

BYTE -- bit 7-6-5- ·1-3-2·-1··0
000 Operation code
001 Unit# A 0 0 0 B
002 0 0 0 0 0 0 0 0
OO~i 0 0 0 0 0 0 0 0
004 c c ··c c c c c c
005 0 0 0 0 0 0 F+L

RESERVE UNIT

BYTR
000
001
002
003
004

··- bit 7--6--5- 4 -3 -2 1-0
Operation code
Unit# A b b. b 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

CDB name INQUIRY
COB type TYPE 003
COB data 120000000000
Operation code = 12h
aaaa: FOHMAT
bbbbbbbb: LENGTH
DA'fA buffer: INQUIRED

CDll n amf~: VERIFY
CDB type: TYPE 013
CDB data: 130000000000
Operation code .. 13h
A: TMMED
B: BYTCMP
C: .-IXED
dd ... dd: LENGTH

CDB name: RECOVRH BUFFERED DATA
cDB type: TYPE 00~ -
CDB data: 140000000000
Operation code = 14h
A: , FIXED
bb ... bb: LENGTH

CDB name: MODE_SELECT
CDB type: TYPE 014
CDB data: 150000000000
Operation code = 15h
A; , PF
B: , SP
cc .•. cc: LENGTH
DATA buffer: PAGE 0

CDB name: RESERVE UNIT
COB type: TYPE OlS
COB data: 160000000000
Operation code = 16h
A: , THIHDPTY
bbb: THIRDPTY_ID

C-7

005 0 0 0 0 0 0 F+L

RELEASE UNIT

RYTE - . bit 7--6-5-4- 3-2-1-0
000 Operation code
001 UniU A b b b 0
002 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 0 0 0 0 0 0 0 0
005 0 0 0 0 0 0 F+L

COPY

RYTR .. bit 7-6-5-4-3-·2- l-O
000 Operation code
001 Unit# 0 0 0 0 A
002 b b b b b b h b
OO:J b b b b b h b h
004 b b b b b b b b
005 0 0 0 0 0 0 F+L

ERASE

BYTE hit 7- 6 -5·-'1-3--2·· l- 0
000 Operation code
001 Unit# 0 0 0 A ii
00:! 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 0 0 0 0 0 0 0 0
005 0 0 0 0 0 0 F+ I.

MODE SENSE

RYTl\ - - bit 7·-6-5-4-3-2·- l-O
000 Operatilln code
001 Unit# 0 0 0 0 0
002 A A b b b b b b
00'.l 0 0 0 0 0 0 0 0
004 c c c c c c c c
005 0 0 0 0 0 0 F+L

LOAD/UNLOAD

BYTE - - bit 7-6-5-4--3-2-·l-0
000 Operation code
001 Unit# 0 0 0 0 A
002 0 0 0 0 0 0 0 0

COB name RELEASE UNIT
CDB type TYPE OlS
CDR data 170000000000
Operation code = 17h
A: , THIRDPTY
bbb: THIRDPTV_ID

CDJI name: COPY
COB type: TYPE 004
Cllll dtita: 180000001000
Operation code = 18h
A: , PAD
hb ... bb: LENGTH
DATA buffer: COPY_4

CDB name: RltASE
CDB type: TYPE 016
Clll\ data: 190000000000
Operation code = 19h
A: , IMMED
B: , LONG

CDR name: MODE_SENSE
CDR type: TYPE 017
Cllll <lala: lAOOOOOOOOOO
Operation code = lAh
AA: CllRRENT, CHANGEABLE

DEFAUT.T, SAVED
bbbbbb: PAGE_CODE
cccccccc: LENGTH
DATA buffer: PAGE_O

CDB name: LOAD/UNLOAD
CDB type: TYPE 018
CDB data: lBOOOOOOOOOO
Operation code = lBh

C··8

003
004
005

0 0 0 0 0 0 0 0
0 0 0 0 0 0 B c
0 0 0 0 0 0 F+L

RKtEIVR DIAGNOSTIC RESULTS

BYTK - -· bit 7-6-5-4-3-2-1-0
000 Operation code
001 Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
003 II a a II a a a It

004 a a a a a a a a
005 0 0 0 0 0 0 ··-t·L

SEND DIAGNOSTIC

RYTR -- bit 7-6-5-4--3-2-1-0
000 Operation cude
001 Unit#OOABC
002 0 0 0 0 0 0 0 0
00~ d d d d d d d d
004 d d d d d d d d
005 0 0 0 0 0 0 F+L

P~EVRNT/ALLOW MEDIUM RRMOVAT.

BYTE -- bit 7-6·-5--4-3-2·· l-O
000 Operation code
001 Unit# 0 0 0 0 0
002 0 0 0 0 0 0 0 0
003 0 0 0 0 0 0 0 0
004 0 0 0 0 0 0 0 A
005 0 0 0 0 0 0 F+I,

READ LOG

BYTE
000
001
002
003
004
005

LOCATE

-- bit 7-6-5-4-3-2-1-0
Operatio11 code
UniU 0 0 0 0 A
0 0 0 0 0 0 0 0
b b b b b b b b
b b b b b b b b
0 0 0 0 0 0 FtL

A: , IMMED
B: , RETE.N

. c: UNLOAD I LOAD

CDB name: RECEIVB_DIAGNOSTtC_RESULTS
CDB type: TYPE 005
CDB data: lCOOOOOOOOOO
Operation code = lCh
aa ..• aa: LENGTH

CDB name: SEND DIAGNOSTIC
COB type: TYPE-006
CDB datu: lDOOOOOOOOOO
Operation code = lDh
A: , SEJ.FTEST
B: · , DRVOFL
C: , UNtTOFL
dd ... dd: LENGTH

CDB n11me: PREVENT/ALLOW_MEDIUM_REMOV
CDB type: TYPE_Ol9
COB data: lEOOOOOOOOOO
Operation code = !Eh
A: ALLOW, PREVENT

CDB name: READ LOG
CDB type: TYPE:o20
CDB dnta: lFOOOOOOOOOO
Operation code = lFh
A: , NLH
bb •.. bb: LENGTH

BYTR bit 7-6-5·-4-3-2·· l·-O CDB name LOCATR
000 Operation code CDB type :TYPE_l04
001 Unltt 0 0 A B C CDB dat11 2BOOOOOOOOOOOOOOOOOO

C-9

002 0 0 0 0 0 0 0 0 Operation code = 2Bh
003 d d d d d d d d A: • BT
004 d d d d d d d d B: . CP
005 d d d d d d d d C: . IMM ED
006 d d d d d d d d dd ... dd: ADDRESS
007 0 0 0 0 0 0 0 0 eeeeeeee: LENGTH
008 e e e e e e e e
009 0 0 0 0 0 0 F-1- L

READ POSITION

BYTE --- bit 7-6-5--4-3-2 -1-0 CDB name: READ_POSITION
000 Operation code CDB type: TYPE 105
001 Unit# 0 0 0 0 0 CIJB data: 34000000000000000000
002 0 0 0 0 0 0 0 0 Operation code ~ 34h
003 0 0 0 0 0 0 0 0 DATA buffer: POSITION
004 0 0 0 0 0 0 0 0
005 0 0 0 0 0 0 0 0
006 0 0 0 0 0 0 0 0
007 0 0 0 0 0 0 0 0
OOB 0 0 0 0 0 0 0 0
009 0 0 0 0 0 0 F+L

COMPARE

BYTP. bit 7-6-5-4·-3- 2-1-0 CDB name: COMPARE
000 Operation code COB typ1!: TYPE 101
001 Unit# 0 0 0 0 A CDB rlata: 39000000000000000000
002 0 0 () 0 0 0 0 0 Operation code· = 39h
003 b b b h b b b b A: . PAD
004 b b b b b h b b bb ... bb: LENGTH
005 b b b b b b b b
006 0 0 0 0 0 0 0 0
007 0 0 0 0 0 0 0 0
008 0 0 0 0 0 0 0 0
009 0 0 0 0 0 0 F+L

COPY AND VERIFY

DYTH hit. 7- 6-5-4-3·2 ·l··O CDB name: COPY AND VERIFY -000 Operation code CDB type: TYPE_ 102
001 Unit# 0 0 0 A B CDB data: 3AOOOOOOOOOOOOOOOOOO .
002 0 0 0 0 0 0 0 0 Operation code = 3Ah
003 c c c c c c c c A: . BYTCHK
004 c c c c c c c c B: • PAD
005 c c c c c c c c cc ... cc: LENGTH
006 0 0 0 0 0 0 0 0
007 0 0 0 0 0 0 0 0
OOH 0 0 0 0 0 0 0 0
009 0 0 0 0 0 0 ··t J,

C-10

WRITE BUFFER

BYTE -- bit 7-6-5-4-3-2-1-0 CDB name: WRITE BUFFER
000 Operation code COB type: TYPE 103
001 Unit# 0 0 0 a a CDB data: 3BOOOOOOOOOOOOOOOOOO
002 b b b b b b b b Operation code = 3Bh
003 c c c c c c c c aa: MODE
004 c c c c c c c c bbbbbbbb: BUFFER ID
005 c c c c c c c c cc cc: BUFFER_OFFSET
006 d d d d d d d d dd ... dd: LENGTH
007 d d d d d d d d
008 d d d d d d d d
009 0 0 0 0 0 0 F+I.

READ BUFFER

BYTH .. - bit 7-6-5-4-3-2-1:...0 COii na1oe: READ BUHER --
000 Operation code COB type: TYPE 103
001 Uni 1.# 0 0 0 a a CDB data: 3COOOOOOOOOOOOOOOOOO
002 b b b b b b h b Operation code = 3Ch
003 c c c c c c c c aa: MODE
004 c c c (' c c c c bbbbbbbb: BUFFER ID
OOf> c c c c (' c c (' cc cc: BUFFER_ OFFSET
OOG d d d d d d d d dd ... dd: LENGTH
007 d d d d d d d d
008 d d d d d d d ct
009 0 0 0 0 0 0 F+ L

C-.11

	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	7-22
	7-23
	7-24
	7-25
	7-26
	7-27
	7-28
	7-29
	7-30
	7-31
	7-32
	7-33
	7-34
	7-35
	7-36
	7-37
	7-38
	7-39
	7-40
	7-41
	7-42
	7-43
	7-44
	7-45
	7-46
	7-47
	7-48
	7-49
	7-50
	7-51
	7-52
	7-53
	7-54
	7-55
	7-56
	7-57
	7-58
	7-59
	7-60
	7-61
	7-62
	7-63
	7-64
	7-65
	7-66
	7-67
	7-68
	7-69
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	A-09
	A-10
	A-11
	A-12
	A-13
	A-14
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11

