0000010183e8, 019135f19c004, 00d135f01c016, 001135f01c017, 00080003ff35d, 000c8003ff016, 000835d3ff35e, 00083ff3ff35c, 029135elf835c, 00083ee3ff35d, 100335c018800, 021180029835d, 031135e31235d, 025135f19c015, 000835d3ff35f, 0002800800800, 000335e800800, 000a80035f800, 0003800018800, 000880035135d, 000a35f800800, 000f00080000e, 000835d3ff000, 000500000000,

002c00000000,

Cube Root

2.01.07

122.59

j = 018K = 017

TH

1. IDENTIFICATION

a. File number: 2.01.07

b. Title: Cube Root Routine (CUR)

- c. Author: Donald E. Coon d. Accepted:
- 2. PURPOSE

 $r = \sqrt{b}$

3. LINKAGE AND STORAGE

a. Routine linkage: Standard L and L + 1 orders. The link word is:

rder #	Туре	A	В	C
L + 2	[=]	[0]	[r]	[8]

b. Adaptation link word:

C

 $L + 2 [24] [W_i] [23] [B]$

c. Storage information: 24 storage locations are required and
4 OPSTO (860 - 863)

4 METHOD AND OPERATION

a. Operation: Floating point

b. Additional routines required: None

c. Range and form of data: b must be real and normalized. Its range: $9 \ge 10^{-75} \le |b| \le 9 \ge 10^{75}$

d. Accuracy: Max. $1 \ge 2^{-40}$ of the significant number, otherwise as determined by e.

e. Method: The method used is the Newton - Raphson iteration:

$$r_{i+1} = r_i + (b/r_i^2 - r_i)/3$$

5. PROGRAMMING INFORMATION

a. Performance time: The time is dependent on the number of iterations as follows:

 Number of iterations
 1
 4
 5
 6
 7

 Time in seconds
 0.780
 1.380
 1.560
 1.800
 1.980

	в	y	Donald E. Coon	Date .	5 - 30 -	59	Page <u>1</u> of _			1	
FLOWORD	ER	E		D			HE	X	ADEC		
# #	×	TYPE	A	D		#	X	J	A	B	C
1	2	E	Lo [863]	[25,1]2	[4]	1	019	1	35f	19c	004
2	1	E	Lo [863]	[1,12]	[22]	2	00d	1	35f	Olc	016
3	1	E	Lo [863]	[1,12]	[23]	3	001	1	35f	Olc	017
4		A	b[(b)]+	0 [1023]→ri	+ 1[861]	4	000	8	000	3ff	35d
5		TZ	ri+1[]-	0 [1023]	[22]	5	000	c	800	3ff	016
6		A	r _{i+1} [861]+	0 [1023] →	N [862/]	6	000	8	35d	3ff	35e
7		A	0 [1023]+	0 [1023] →	Q [860]	7	000	8	3ff	3ff	35°
8	41	E	N [862]	q [31,8] →	Q [860]	8	029	1	35e	1f8	35c
9		A	.111[1009+	0 [1023→ri	+ 1[861]	9	000	8	3ee	3ff	35d
10	10	D	Q [860]÷	3 [24] →	[~]	a	100	3	350	018	800
11	33	E		¶[29.8]→r:	+ 1F 861 7	b	021	1	800	298	35d
12	40	T (N[862] st	Jans [40, 2]-r.	[861]		031	1	350	312	354
12	27	F		7.5 (25.10)	[01]	4	025		358	100	015
14	1				" [86z]		000	-	254	200	254
14				- []		9	000	. 0	200	200	800
12		P4	rit - JX	-21~1	[~]	10	000	4	25-	800	800
10			N L 004-			10	000	2	220	000	000
1/		S	- (-) -	r _i [803]		11	000	8	800	351	800
18		D		3 24		12	000	3	800	018	800
19		A	[~]+	r _i [863]→r _i	+ 1[861]	13	000	8	800	35f	35d
20		S	r _i [863] -	[~]	[~]	14	000	a	35 f	800	800
21		TNA	e[(e]-	[-]	[14]	15	000	f	(000)	800	00e
22		A	ri+1 861]+	0 [102] →	r[(r]]	16	000	8	35d	3ff	(000)
23		TU	[-]	[-]	[[#]]	17	000	5	000	000	(000)
24		3	Constant]	[]	[]]	18	002	c	000	000	000
	-		[]	C 1	[]					1.00	

2.01.07

7. WISCoding for Cube Root of b

1

8. ANALYSIS

2

a. Program

The cube root, r, of the normalized binary number b is found by the iteration:

 $r_{i+1} = r_i + (b/r_i^2 - r_i)/3$

The routine is so written that the iteration ends when $r_i - r_{i+1} \le e$ where e is zero for greatest accuracy but may be any positive number in floating point form.

The form of b is:

$$b = \pm p \times 2^{\pm q}$$

The initial guess, r_0 , is formed by extracting the exponent q into bit positions 31 thru 38 of a cleared location, performing a fixed point divide by three, and extracting bits 33 thru 40 of the result into the exponent position of .1111...1₂. The sign of b and the sign of q are then extracted into the signs position of the above number. Thus if q is evenly divisible by 3:

 $r_0 = \pm (1-2^{-40}) \times 2^{\pm q/3}$

and if there is a remainder of 1:

 $r_0 = \pm (1-2^{-40}) \ge 2^{\pm (q-1)/3}$

and if the remainder is 2:

 $r_o = \pm (1-2^{-40})' \times 2^{\pm (q-2)/3}$

the following cases may arise:

(1) b 0, $r_0 = 1 \times 2^{\pm q/3}$ then: $b = r^3 = p \times 2^{\pm q} = p \times r_0^3$ and $r_0/r = (p)^{-1/3}$ but since $0.5 \le p < 1$, $1 \le r_0/r \le (2)^{1/3}$

and the maximum number of iterations to find r is 7.

(2)
$$b > 0$$
, $q > 0$, $r_0 = 1 \ge 2^{(q-1)/3}$ then:
 $b = r^3 = p \ge 2^q = 2p \ge r_0^3$
and $r_0/r = (2p)^{-1/3}$
but since $1 \le 2p \le 2$,
 $(2)^{-1/3} \le r_0/r \le 1$

and the maximum number of iterations to find r is 6.

(3) b > 0, q < 0, $r_o = 1 \ge 2^{-(q-1)/3}$ then: $b = r^3 = p \ge 2^{-q} = p/2 \ge r_o^3$ and $r_o/r = (2/p)^{1/3}$ but since $2 < 2/p \le 4$, $(2)^{1/3} < r_o/r \le (4)^{1/3}$

and the maximum number of iterations to find r is 7.

(4) b > 0, q > 0, $r_0 = 1 \ge 2^{(q-2)/3}$ then: $b = r^3 = p \ge 2^q = 4p \ge r_0^3$ and $r_0/r = (4p)^{-1/3}$ but since $2 \le 4p < 4$ $(4)^{-1/3} < r_0/r \le (2)^{-1/3}$

and the maximum number of iterations to find r is 7.

(5) b > 0, q < 0, $r_0 = 1 \ge 2^{-(q-2)/3}$ then: $b = r^3 = p \ge 2^{-q} = p/4 \ge r_0^3$ and $r_0/r = (4/p)^{1/3}$ but since $4 < 4/p \le 8$ $(4)^{1/3} < r_0/r \le 2$

and the maximum number of iterations to find r is 7. A similar analysis holds for b<0 since the sign of b did not enter the analysis.

It is interesting to note the way in which the routine depends on the initial value r_0 . If $r_0/r = K_0$, $r_1/r = K_1$, $r_2/r = K_2$, etc., then since:

$$r_1 = r_0 + (b/r_0^2 - r_0)/3$$

it follows that:

-

 $K_1 = K_0 + (1/K_0^2 - K_0)/3$

and the iteration is finished when $K_j \stackrel{\checkmark}{=} K_{j+1}$. The number of iterations required for several values of K_o are given below.

Ko	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.4	1.6	1.8	2.0
N	7	7	6	5	1	6	6	7	7	7	7