
nical articles __________ _

Adaptability to various microprocessors
comes from separating
prototype- and system-related tasks;
in-circuit emulation and
new high-level language are bonuses

'Universal' development system
is aim of master-slave processors
by Robert D. Catterton and Gerald S. Casilli, Millennium Information Systems Inc .. Santa Clara. Calif.

D In the ever-changing world of the microprocessor, one
element is fixed: heavy investments in personnel training,
software, and development aids can lock designers into a
particular processor for their systems. Each recently
introduced hardware a nd software development system,
for example, is based on a particular family of devices
a nd isn't easily adaptable to other families. What is
needed to free the designer from design compromises
that reduce performance or cost effectiveness is a "uni­
versal" development system that can accommodate
many different microprocessors.

A new system, called the Universal-One, achieves
universality by a division into two functional areas .
Those tasks that are related to the development system
are assigned to a master centra l processing unit , and
those that are prototype-related are assigned to a second,

Electronics /September 16, 1976

or slave, C PU. As many as four different slaves may be
installed sim ultaneous ly a nd individually used through
operator commands. This multiple architecture enables
the hardw?.re to support new microprocessors with the
addition of a pc card containing the new slave C PU.

Since the master processor need not be changed to
accommodate new slave units, all of the operating
system software remains the same. Presently, the system
supports the 8080A a nd the 2650 central processors as
slaves, with in-circuit emulation capability. It's easy to
add other 8-bit processors to the system, and 16-bit
devices may be added with only relatively little
reconfigura tion .

Although universality is the basic objective, there are
four other major requirements that today's development
systems should satisfy. Use of a disk-based storage

91

system will achieve high throughput for maximum soft­
w11.re-development productivity. A disk-based operating
system should be specifically tailored for microprocessor
development. The user's interface with the system should
be simple and remain unchanged regardless of the
processor under development. The test and debug capa­
bilities should support developm~nt of hardware and
software and their integration into an operating proto­
type system.

Functions

The master CPU is responsible for all of those system
services that are not prototype-dependent, such as:
• File management - the storage and retrieval of data
and programs.
• Text editor-maintains text files contained on the
disk.
• System input/output-the normal 110 activities
between the standard system peripherals, such as flexible
disk, printer, and terminal.
• System utilities, including programing of read-only
memories for the final version of the prototype.
ii Debug functions-the master executes the debug soft­
ware and controls the slave through a separate debug­
ging hardware module.

The slave CPU 's functions include:
• Program assembly - each slave may be used as a
resident assembler of prototype programs.
• Prototype-program execution -the prototype program
is loaded into the slave memory and executed by the
slave.
• Prototype 110 - any special input/output required in
the prototype is performed by the slave.

IN·CI RCUIT I-"
EMULATOR t-'

----... 4 ...,..._ __ ,.3

2
SLAVE

P-ERIPHERALS

SLAVE
INPUT/OUTPUT

IN-CIRCUIT
EMULATORS

SLAVE
CENTRAL

PROCESSING
UNIT

• In-circuit emulation-a cable extends from the slave
to the CPU socket in the prototype.

The system architecture (Fi.g. I) includes a bus struc­
ture to tie the components together and to permit the
exchange of data and control signals. The basic bus
design was governed primarily by the dual-memory and
the multiple-CPU architectures. Other design considera­
tions for the bus were that the memory portion had to be
able to handle 8- and 16-bit data words, and that the
overall structure had to accommoqate future higher­
speed microprocessors.

-The system services the peripheral 110 devices and
debug logic with interrupts rather than with polling.
Wjth an interrupt-driven system, the peripherals can get
service when they need it, without waiting for their turn
in the polling sequence. It also ailows an efficient
software structure - that is relieved of the overhead
inherent to polling. In this way, maximum throughput is
achieved. - ·-

Memory structure

The random-access memory of the system is organized
as 65,536 bytes of common memory and a 16,384-byte
master memory. The logic on the master CPU module
allows appending any one of four !()-kilobyte segments
of common memory (Fig. 2) to the master mem()ry
space. - This al!ows master-slave communication for
transfer of data during 110 service requests a!Jd gives the
master access to pr9gram-trace information developed
by the debug logic discussed later.

Master-memory protection is accomplished J:>y a
special' bus-control signal, which is sensed on the
memory cards. Only the master CPU contains the

PERIPHERALS
INPUT/OUTPUT PORTS

PROG RAMABLE
REAO-ONl Y MEMORY

MASTER
INPUT/OUTPUT

DISK
OPERATING

SYSTEM

MASTER
CENTRAL

PROCESSING
UNIT

CONSOLE

SYSTEM BUS

65 KILOBYTES OF
COMMON MEMORY

16 KILOBYTES OF
MASTER MEMORY

1. Two CPUs. The Universa l-One system uses two central processing units-master and slave. In-circuit emulation is performed through the
slave CPU. which duplicates the type of microprocessor used in the prototype. The master CPU handles system-related functions.

92 Electronics/September 16, 1976

A new compiler
To go along with the development system, Millennium has
developed µBasic, a high-level language compiler
designed for microprocessor applications. Although it was
tailored to meet the needs of engineers, it also provides a
useful tool for the professional programer.

The new compiler offers the advantages of a high-level
language-greater programing productivity, easier pro­
gram maintenance. and portability from pne micropro­
cessor to another. In the Millennium development system,
it also provides a "universal" programing capability, since
the same µBasic statements can produce object
programs for the different microprocessors.

As shown in the figure, µBasic statements are first
brought into the "statement-analyzer" software package,
where they are converted for input to the code emitter.
Then, depending on the microprocessor and resident
assembler being used, the code emitter generates the
assembly-language statements, which are subsequently
passed through the assembler to produce object code for
the selected microprocessor. This two-step compilation
process gives the programer more flexibility when working
out the program for the prototype.

A major criticism of high-level languages in micropro­
cessor applications is that more memory is used than with
assembly languages. and execution is slower. However,
µBasic allows the programer to intermix assembly
language. In situations where a programer thinks it neces­
sary, this intermixed assembly language may use the
same labels and variables as does the µBasic
program.

A debug-optimize report produced by the compiler
helps avoid software error conditions that the two-step
compilation process might cause. The report shows the
µBasic statement followed by the assembly-language
listing that was generated to perform the original state­
ment.

Typically, a programer would first code and debug the
program without regard to memory or performance
constraints. Then , when the program is functioning
correctly, the debug-optimization report can be used to
show those areas that may require assembly coding to
optimize memory usage. Since memory comes in fixed
increments, the most important optimization is usually
done when the program size exceeds that specified incre­
ment. If the program generated by µBasic does not
exceed the memory increment available. then assembly­
language optimization may not be needed.

Performance optimization also can be in assembly
language. Usually, some small portion of the code is used
most of the time-for example, 10 to 15% of the code
might be used 80 to 90% of the time. Consequently, a
concentration on those heavily used portions will produce
the greatest increase in performance.

In its data and statement types, µBasic is generally
equivalent to PL / M. The length of the data element may

circuitry to activate this control line. Thus, the slave
processor cannot gain access to the master memory and
destroy its contents or (through damage to the file
manager or part of its data structure) the files them­
selves, out on the disk .

The slave can address the common memory as a 65-
kilobyte or as a 32,768-word, 16-bit memory. This allows

Electronics/September 16, 1976

be either 8 or 16 bits, and both 8 and 16-bit elements are
supported at the same time. ·

Examples of statement types are:
• LET -the assignment statement.
• FOR .. . NEXT -used for loop construction.
• IF-the test statement.
• GOTO, GOSUB, RETURN-control transfer statement.
• ON-for a computed GOTO or GOSUB.

The µBasic compiler features an ability to specify
memory locations for arrays. This is quite important in
connecting a peript']eral device to the system. Many peri­
pheral devices operate out of a dedicated-space memory.
To conveniently interface a program written in a higher­
level language to that device, the programer must be able
to position the array in the same location in memory that
the device is using. This is also very important in micropro­
cessor systems where there is a RAM / ROM trade-off. The
programer can control the origin of the portions of the
program to be put in ROM and RAM.

In comparing µBasic with PL/M (the most widely used
high-level language), it can be seen that the latter is a
"richer" language. A professional programer is comforta­
ble using PL / M and can take advantage of its greater
complexity. However, the logic designer or other nonpro­
fessional programer probably will have to expend some
effort to learn enough about PL / M to be able to write
programs using it. In contrast , µBasic is easy to learn and
use, while being quite effective.

µBASIC
SOURCE

PROGRAM

,---------- ----------,
1

I
I
I
I
I

X CODE
EMITTER

STATEMENT ANALYZER

8080 CODE
EMITTER

I ,
I
I
I
I L __ _ ------------ ---~

ASSEMBLER
SOURCE CODE

OBJECT CODE

ASSEMBLER
SOURCE CODE

OBJECT CODE

the 8-bit master to address a 16-bit slave memory as
sequential bytes.

There are also commands that permit the operator to
display and alter common memory. He may inspect and
change the contents of the memory, and he may display
and alter the contents of the registers . He may interact
with his program and change variables - change register

93

Using the software
The Millennium development system has many software
features related to its use of a floppy disk for mass storage
and the UDOS operating system for the disks. The system
can have up to four floppy-disk drives all in use at the
same time. A file name in use on one disk can be the same
as one on another. The user can specify the file he wants
by appending the floppy-disk drive number to the file
name; i.e., TESTPROG / 1 or TESTPROG / 2.

Through use of the VERIFY command, a user can check
the floppy disks to determine if any of the tracks are bad.
The bad tracks are recorded in the disk 's directory and
thereafter are not allocated to a file.

The user need not create a file or otherwise establish it
before writing data on it . When he issues a UDOS
command with a file name as an output device, the file will
automatically be created, and the name will be placed in
the directory for the floppy disk.

The user need not allocate space for .a file before using
it , for disk space is dynamically allocated by UDOS as it is
needed. When the file is closed, the space allocated is
recorded in the directory. When the file is deleted, the
space allocated is freed up and made available for alloca­
tion to other files.

A file name may contain as many as eight alphanumeric
characters and special characters. This allows the user to
use namfi)s that are more indicative of the file content; i.e.,
PROGLIST rather than PRGLST, or, worse yet, PGLS. A
disk file may contain anywhere from 1 to 311 , 296 data
bytes. The user need not concern himself with extraneous
data or otherwise keep track of the number of "real" data
bytes in his file.

The entire contents of a disk can be duplicated in
another. This feature allows back-up of important disks
and allows the user to recover if a file is inadvertently
deleted, written over, or otherwise destroyed.

Disks can be identified with a string of up to 44 ASCII
characters. Users can thus briefly describe the contents of
the disk and the date it was created, and need not rely
totally on the label, which could become marred or
destroyed.

The user can string together a group of files into one
with a single UDOS command. This feature allows devel­
opment of the source program in small , manageable
pieces. Subsequently, all of the pieces can be combined

contents or change the data elements being used in the
debug process.

The disk operating system

A universal disk operating system called uoos was
developed for the multiple-CPU architecture. This soft­
ware is executed by the master in its own totally
protected master memory. The uoos feature is floppy­
disk-oriented, taking into account the characteristics and
peculiarities of such disks. Many file-management func­
tions usually performed by the user are performed
automatically . The user need only direct that certain
data be stored on a file or taken from a file.

The operating system allows the user to develop
microcomputer programs with a high-level language (see
"A new compiler"), a symbolic assembler , or both. The
user can prepare a program with a text editor, correct

94

and placed on a single file , which can be assembled. If an
error shows up in the assembly, only that piece of the
source program which contains the error need be edited.
All of the pieces can then be combined again and the
assembly repeated.

All 110 operations can be assigned to channels by
software. The user can assign any device attached to the
system to any one of up to eight 110 channels and need
not concern himself with the characteristics of the device.
This feature allows the user to prepare programs whose
input and output sources can be determined at run time.
Channels can be assigned for a program externally
through the console or internally by the program itself.

A sequence of UDOS commands can be executed one
at a time from a command file. The user can thus invoke
any number of commands simply by issuing the name of
the command file. The individual command can be filled
with parameters that are given at the time the command
file is invoked. Thus frequently used command sequences
can be invoked simply. Command files can also be
chained-the last UDOS command in a file can be the
name of another file, allowing a series of jobs to be run in a
batch mode, perhaps overnight , unattended.

The text editor is line-oriented and has a command
repertoire similar to those available on large time-sharing
systems. The user can create a file of assembly-language
statements or a data file by entering lines of text through
the system console. Subsequently, he can insert lines
anywhere in the file, delete lines, replace them, or modify
part of the text on a line.

During a text-editing session, the user can get lines of
text from any file and merge them into the file being edited
or put lines of text from the file being edited to any other
file. This feature provides the capability of manipulating
lines of text from several files and merging them into one
file quickly and easily. With the text editor, the user can
combine several text-editing commands into one complex
command and then cause it to be executed several
times.

The user can set tabs dynamically and designate any
console key as the tab character at any time during a text
editing session. He can also issue UDOS commands and
cause other system functions to be initiated during a text­
editing session.

and modify it quickly and easily, assemble it, load the
resulting object code into common memory (or into the
prototype memory), and cause it to be executed under
debug control.

During execution, the program steps can be traced,
breakpoints can be set, and memory can be inspected
and altered as required. Subsequently, the program can
be corrected or modified at the source level , using the
text editor, then reassembled, loaded, and executed
again for the next round of debugging. (see "Using the
software") .

In-circuit emulation

Each slave contains circuitry to support in-circuit
emulation. When the prototype becomes ready for test,
all of the development-system resources become avail­
able to it once the emulator cable is plugged into the

Electronics/September 16, 1976

microprocessor socket of the prototype. The operator can
then use the system's debugging software to debug the
prototype hardware and software and then to integrate
them.

The system supports two operating modes for emula­
tion. In one, the user can substitute the memory of the
development system for that of the prototype. In the
other mode, when the prototype's memory becomes
available and its 110 functions have been thoroughly
tested, the operator can execute programs from the
prototype memory while maintaining full control
through the development system.

When operating with the prototype memory, most of
the system debugging features are still available. The
user can use the address breakpoint and do a full trace.
If this mode requires the programable ROM of the final
prototype, the master can directly program the assem­
bled instruction into the PROM chips. If the object resides
on paper tape, it can be loaded into the system and
transferred to the PROMS.

The user can switch emulation modes at any time by a
console command, with no hardware changes. The cable
may be left attached to the slave even when the emula­
tion feature is not in use.

The development system's memory is comparable to
the memory speed of most prototype systems, and thus it
nearly simulates real-time operation when programs are
executed from the system. When programs are executed
from the prototype memory, the slave can operate at the
the prototype's clock and memory speeds. Timing differ­
ences resulting from the use of the umbilical cord are
minimal.

Master-slave interaction

When input/output from a master-controlled peri­
pheral is required by a slave program, the slave CPU
executes a service-request instruction, which causes the
slave to pause temporarily while the master obtains the
necessary data for the slave program. When the 110

requirements are completed, the master releases the
slave so that it may continue the process of program
execution.

The debug logic is on a separate module and includes
breakpoint registers, address-computation circuitry, two
program-counter registers, and single-step and interrupt
logic. The functions controlled by this logic are indepen­
dent of the slave microprocessor and thus support the
universal aspects of the system design for application to
a variety of target processors.

Part of the master-slave interaction includes control of
breakpoint and trace operations. The master loads the
breakpoint addresses under command from the user.
When the memory address and operation from the slave
match the breakpoint value, the program running under
the slave pauses, and control is passed to the master. The
debug module stores the slave's instruction-fetch address
to enable the software to examine the prototype program
and to interpret operating codes for the trace printout.
Synchronization signals are provided to a id the user in
triggering events necessary to debugging of prototype
hardware.

The two memory-address breakpoint registers may be

Electronics/September 16, 1976

DISK
OPERATING

SYSTEM
(UODS)

16KILOBYTES1-------t

COMMON·
MEMORY

ACCESSIBILITY ..-----./

32 KILOBYTES-----

MASTER-MEMORY
ADDRESS SPACE

0--------.

16 K 1--------l

32 K ,__ ___ ____.

48 K 1--------l

64 KILOBYTES.__ ___ ___,

COMMON-MEMORY
ADDRESS SPACE

2. Memory addressing. The master CPU can address 32 kilobytes

of memory. Of this total. 16 kilobytes are used by the disk-operating

system, UDOS, while the other half can consist of any of four 16-

kilobyte blocks in the common-memory addressing space.

set to break on any of a variety of memory-access
conditions. Another capability is a dynamic trace of the
user program. On an instruction-by-instruction basis, the
user can trace the activity of the program being
executed, with a display of the location of the instruc­
tion , its mnemonic, the register contents, and the state of
the machine (such as the condition of the carry flip­
flop) .

Dynamic trace may be performed on every instruc­
tion, on instructions between two memory limits, or on
only the jump instructions. The jump-instruction trace
reduces print-out time and runs through the program
faster. If the user isolates a problem area, he may go
back to the full-trace mode and examine every one of the
instructions.

I I 0 and interrupts

The functions associated with the master and slave
CPUs dictate the need for separate master/ slave
input/output and interrupt structures. The master has a
256-port 110 address space and a 32-level interrupt
structure. Sixteen interrupts a re devoted to debug func­
tions and service requests . The other 16 are related to
the system 110 .

The master card contains the 110 ports to support such
standard peripheral devices as the dual-drive floppy disk,
a line printer, and a cathode-ray tube or teletypewriter
console. With the addition of a standard general-purpose
110 card, the system- related functions a re easily
expanded to support other peripherals, such as high-

95

CONSOLE END·USER
SYSTEM

FRONT PANEL
REMOTE
INPUT

DEVICE

MASTER
CENTRAL

PROCESSING
UNIT

DEBUG
LOGIC

SLAVE
CENTRAL

·PROCESS! NG
UNIT

SYSTEM BUS

MASTER MEMORY COMMON
MEMORY

3. Smaller system. For applications in which users have already invested in software development aids. the Universal-One can be pared

down to provide only emulation and PROM programing. Memory is much smaller, while the blocks shown in dashed lines are optional.

speed paper-tape or card readers .
The slave has a 256-port 110 address space and an

eight-level priority-interrupt structure. It cannot directly
address the system 110. However, through the use of
service requests to the master, it has full access to the
system peripherals.

The user also has the option of using a general­
purpose 110 card as interface between the slave and its
special devices, such as the prototype's keyboard or
printer. In such a case, the slave will perform its own 110

functions on those devices. The general-purpose card
provides a full EIA-RS-232-compatible port and four 8-
bit input/output ports.

Expandable PROM programing

Capability for programing erasable metal-oxide-semi­
conductor and bipolar-fusible PROMS for the final version
of the prototype is integral to the development system.
Two card slots in the motherboard and three front-panel
sockets are provided with the standard system. Person­
ality cards are available for programing the 1702A MOS

PROM and the 82S 115 4- and 8-bit bipolar family. New
programing cards are easily substituted for other
families of PROMS.

As well as eliminating the need for a separate PROM

programer, this feature is more cost-effective, since dual
110 circuitry is unnecessary and operation is controlled
by the master CPU rather than by a separate processor.
The programing cards are interrupt-driven, freeing the
master for other tasks during the programing of each
byte.

Even though a PROM verifies correctly, it may lose

96

charge or "grow back" a fusible link if not programed
properly. Therefore, the ca rds have many protection and
error-checking features such as over-voltage protection,
current limiting to prevent overstressing, and power­
failure protection aga inst partial programing of the
devices.

The universal emulator

Many companies a lready have some method of
accomplishing the pure software-development function
of assembling and editing programs, but they lack means
of performing emulation or PROM programing for use in
the prototype system. Other companies have a complete
microprocessor development system, but they are
involved in multi-project situations with one particular
project fully occupying their development system . In
either situation, companies may find a second version of
the Millennium development system useful. With an
expanded front panel and a paring-down of the system
memory to 12 kilobytes, it becomes a universal emulator
and PROM programer (Fig. 3) .

All of the software debug functions for both emulation
modes previously discussed will be reta ined. The basic
functions, such as patch, dump, examine, breakpoint,
and others will be resident in the PROM . Only the trace
program, which will change for each target slave, will be
loaded into master memory from the console device.
User programs may be entered into common memory
either from the console device or remotely from a host
computer via an EIA-RS-232 serial interface. Also,
PROMS may be used to hold user programs that will be
executed in the prototype. D

Electronics/September 16, 1976

