
Universal One

Microprocessor Development Instrument
from Millennium

·-

The universal development tool

It's a complete solution
Microprocessors are being hailed as the

greatest invention since the transistor and as
devices that will revolutionize our life styles. But
before any of the advantages of microprocessors
are realized, products must be designed, hard­
ware tested, software written and the hardware
and software integrated.

That's the problem. Until recently with the
introduction of disk-based development instru­
ments with in-circuit emulation, there has been
no single solution for developing microprocessor
hardware and software and integrating the two.
The disk-based development instruments offered
so far have had one major flaw. They work with
only one microprocessor. If you can afford to
purchase new capital equipment and train your
personnel on a separate instrument for each new
microprocessor, they provide a solution.

Millennium provides the complete solution to
the development problem. With the introduction
of the Universal One, Millennium offers the most
cost effective instrument available today. The
Universal One not only satisfies the micropro­
cessor development needs of today; it provides
for them TOMORROW.

SLAVES

HARDWARE
EMULATION

SLAVE
CPU

For the most popular microprocessors now
- and others in the future

Millennium's Universal One is a disk-based
microprocessor development instrument that meets
the needs of the hardware engineer, the pro­
grammer and the project leader. And, it provides
easy-to-use techniques for implementing the most
popular microprocessors; the 8080, 2650, and
6800. Universal One can be used with other micro­
processors in the future by simply adding a
printed circuit card for each new microprocessor.

The ability to interface with different micropro­
cessors today and additional microprocessors in
the future is the key benefit of the Universal One.
It gives the system designer the freedom to
choose the microprocessor best suited for an ap­
plication without having to consider large capital
expenditures for development instruments. Sys­
tem designers are already finding themselves
"locked-in" to a particular microprocessor simply
because of heavy investments already made in
personnel training, software, and
development aids. This could
easily lead to design
corn promises
which would

PERIPHERALS
PERIPHERALS PROM

SLAVE
110

MASTER
110

SYSTEM BUS

MASTER

l coNsoLE I

COMMON
MEMORY

MASTER
MEMORY

The Master/Slave architecture interfaces
multiple processors thro ugh a universal system bus.

have an adverse effect on technical performance
or the ability to produce the most cost effective
product. The problem becomes even more
pronounced as the semiconductor industry
steadily introduces new microprocessors into the
market.

Universal One will never be obsolete. The mul­
tiple CPU architecture allows all user application
functions to be controlled by the Slave CPU in
one section of the instru­
ment and all of the system

appli­
cation
independen
or system
related functions to be controlled by the Master
CPU in the second section. Millennium will be
providing additional Slave CPU boards as new
microprocessors become available.

You can interact with Universal One through
the front panel controls or via a standard
terminal. English-like commands control all
instrument functions.

Hardware and software debugging aids plus
two stages of emulation help you move gradually
from prototype design to full microprocessor
system implementation.

Universal One has a complete integrated
PROM capability. Front panel sockets accommo­
date the most commonly used PROMs; the l 702A
MOS erasable, the 82Sl 15 family of bipolar
PROMs, and the 2708. Others will be added in
the future. The front panel sockets permit PROM
burning plus the ability to interchange data and
programs between PROMs, disks, memory and
other available peripherals. Tapes can also be
made for automatic ROM masking.

The Master/Slave Architecture
The universal bus is the central element that

ties the components together and permits the ex­
change of data and control signals. The bus was
designed to easily accommodate the addition of
many major components without change.

The dual (Master/Slave) CPU architecture is
the key element of the design. It enables the
hardware to support new microprocessors with

the addition of a Slave CPU

MICROPROCESSOR
APPLICATION

DESIGNER

ADDITIONAL SLAVE
MICROPROCESSORS

printed circuit as­
sembly. The
Master/Slave
design also
guarantees
that Universal
One will stay
abreast of new
technology.
Most existing
or future 16-bit
and 8-bit pro­
cessors can be
easily added.

MASTER CPU
SYSTEM SERVICES

D FILE MANAGEMENT
D SYSTEM UTILITIES
0 SYSTEM J/O
0 DEBUG SOITWARE
D TEXT EDITOR

0
HARDWARFJSOITWARE

LINKAGE

0
SLAVE CPU
HARDWARE

AND SOITWARE
0 ASSEMBLER
0 IN CIRCUIT EMULATION
0 APPLICATION PROGRAM
0 USER. MEMORY & J/O

Separate Master /Slave functions . The Master serves the designer
with a standard set of system services. Slaves perform hardware­
dependent functions.

The universal development tool

With big system software capabilities
Universal Disk Operating System (UDOS) was

developed specifically for and tailored to the
multiple CPU architecture. The operating system
is executed by the Master CPU in its own totally
protected Master memory to prevent disruptions
by application programs. The Master CPU controls
multiple Slave CPUs that may have up to 65k
bytes of slave memory. The operating system is
universal and interfaces to any Slave supported
by the system.

UDOS is disk file oriented, and is designed to
fully use the capabilities of the flexible disk storage
device. Many file management functions are
performed automatically by UDOS. You need not
be concerned with the structure or internal work­
ings of the file management system. Merely direct
that certain data be stored on or taken from a file.

UDOS was designed tor use by engineers as
well as programmers. The system provides the
capability to develop and check out application
software efficiently. You do not have to be con­
cerned about mistakes. UDOS makes it difficult
to make big errors and easy to recover from
little ones.

The operating system allows development of
microcomputer programs with a high level lan­
guage (µ. BASIC), a symbolic assembler, or with
a combination of both.

You can prepare a program with a powerful
Text Editor, correct and modify it quickly and
easily; then assemble it, load the resulting object
code into Common memory (or into your applica­
tion memory), and run it under debug control.

During execution, the program steps can be
traced, breakpoints can be set, and memory can
be inspected and altered as required. Subse­
quently; the program can be corrected or modi­
fied at the source level, using the Text Editor,
then re-assembled, loaded, and run again for
the next round of debugging.

You need not create a file or otherwise establish
the file before writing data on it. When you issue
a UDOS command with a file name as an output
devic~. and the file does not already exist, it will
be created automatically and the given file name
will be placed in the diskette directory.

You need not allocate space for a file before
using it. Diskette space is dynamically allocated
by UDOS as it is needed. When the file is
CLOSED, the space which was allocated for the
file is recorded in the directory. When the file is
DELETED, the space allocated for the file is
opened for other files.

Files can be concatenated (joined) into one file
with a single UDOS command. This feature
allows development of source programs in small,
manageable pieces. Subsequently; all of the
pieces can be combined and placed on a single
file which can be assembled. If an error shows
up in the assembly; only that "piece" of the source
program which contains the error need be
edited. All of the pieces can then be combined
again and the assembly repeated.

All of the peripheral devices attached to Uni­
versal One are interrupt driven. This allows
maximum use of Universal One's resources and
greater throughput.

•

i

All input/output operations are performed
through logical channels. You can assign any
physical device attached to Universal One to any
one of eight logical channels. You need not con­
cern yourself with the characteristics of the phys­
ical device assigned to the channel. This feature
allows preparation of programs whose input and
output sources can be determined at run time.
Channels can be assigned for a program exter­
nally through the console, or internally by the
program itself. The logical channel capability
also allows you to attach your own device to
Universal One and easily add a new I/O driver
to UDOS.

A sequence of UDOS commands can be exe­
cuted one at a time for a "COMMAND" or proce­
dure file. This feature provides the capability to
invoke any number of UDOS commands simply
by issuing the name of the command file . The
individual UDOS commands in the file can be
"filled" with parameters which are given at the
time the file is invoked. This feature allows you to
set up frequently used command sequences as a
procedure which can be invoked simply. Com­
mand files can be chained. i.e., the last UDOS
command in a command file can be the name of
another command file . This allows a series of
jobs to be initiated for unattended processing.
Text Editing

For program editing and debugging tasks, Uni­
versal One provides a file oriented line pointer
editor. For advanced editing, macro and iteration
capabilities permit combining multiple commands
into one complex command that can be executed
repeatedly. You can even use UDOS commands
to initiate system functions during a text
editing session.
Debugging

The instrument contains hardware assists to
permit a complete and comprehensive debug
package. The combination of debug hardware
and software provides powerful capabilities.
There are two memory address breakpoint regis­
ters. These may be set to give a break on memory
fetch only, memory write only, or on memory read/
write access. Another capability is dynamic trace.
This means that on an instruction by instruction
basis, you can trace the activity of the program
being executed, display the location of the instruc­
tion, the mnemonic of that instruction, the register
contents, and the state of the machine.

There are two dynamic trace options available.
You may trace every instruction or only the jump
instructions. The jump instruction trace reduces
printout time and executes through the program
faster. If, however, you have isolated a problem
area, you may then go back to a full trace mode
and examine every instruction. There are com­
mands that permit you to display and alter mem­
ory. You may inspect and change the contents of
the registers. You may interact with your program
and change variables-change register contents
and change the data elements being used in
the debug process. The table lists the Debug
module commands.

NORMAL SLAVE MEMORY PROTOTYPE MEMORY
DEBUG COMMANDS (NON-EMULATION) EMULATION MODE EMULATION MODE
DEBUG Yes Yes Yes
TRACE All capabUJty All capablUty No Mnemonics or hex

lnsiructlon printed

SET (Processor Registers) Yes Yes Yes
RESET (Slave Processor! Yes Yes Yes
BK.Pr !Set Breakpoints) Yes Yes Yes
CLBP (Clear Breakpomtsl Yes Yes Yes
PATCH Yes Yes No
DUMP Yes Yes No
EXAM Yes Yes No

With multiple-mode emulation
A primary value of Universal One to the hard­

ware designer occurs when the software is inte­
grated with the hardware. During integration, a
cable is inserted into the microprocessor socket of
the prototype (or breadboard) system. Universal
One then provides multiple modes of real-time,
in-circuit emulation.

In one mode, Universal One emulates the pro­
totype's microprocessor and its memory while
input/output functions are controlled by your
hardware. All of the debug commands (see table)
are available to aid you in this mode. Once the
prototype has been debugged in this mode, the
prototype uses its own memory and input/output
capabilities. When the prototype is fully tested in
this mode, the cable is removed and the micro­
processor reinstalled.

When operating with the prototype memory,
most of the debug features are still available. You
can use the address breakpoint and perform a full
trace. If this mode requires the use of PROM
memory, the assembled program can be directly
programmed into the PROM chips by Universal
One. If the object program resides on paper tape,
it can be loaded into Universal One and trans­
ferred to the PROMs.
With real-time trace

Universal One's real-time trace capability
provides a continuous record of 64 real-time
processor transactions relative to a designated
event. The events can be any combination of
address, control, data or auxiliary data conditions.
Memory Mapping

You can map prototype or systems Slave mem­
ory into the Slave microprocessor's address space
in 256 byte blocks. This allows selective execution
of programs in any combination of Universal One
or prototype memory.

The universal development tool

Universal Emulator
If you have a means for assembling and

debugging programs but need hardware emula­
tion and PROM programming capabilities, the
Universal Emulator is the solution. The Universal
Emulator Instrument contains all the hardware
emulation and PROM programming features of
Universal One.

Universal Emulator

With the Universal Emulator you can easily
debug prototype hardware and integrate the
software without having to build special test
fixtures. Interaction with the prototype product
is through the Universal Emulator's expanded
front panel.

If you decide you need the additional software
capabilities of Universal One, you can upgrade in
the field at any time by adding memory and the
floppy disk subsystem.

For fast. efficient programming
µ. BASIC is a proprietary software language

developed by Millennium especially for micro­
processor prototype development. It contains
many of the same statements found in BASIC plus
other statements that are particularly useful
during integration.

µ.BASIC is a code-emitting, high-level language
compiler designed specifically for the micropro­
cessor application engineer or designer. µ.BASIC
was designed for logic designers, engineers and
programmers. It offers all of the advantages of a
high-level language, including greater program­
ming productivity, easier program maintenance,
and application portability from one micropro­
cessor to another. The compiler produces Assem­
bly language statements that are subsequently
processed through the assembler to produce
object code for the microprocessor application.
The advantages of µ.BASIC in a development
effort are:
Speeds programming time

Coding is much easier and faster with µ.BASIC.
µ.BASIC programs require only a fraction of the
number of statements that Assembly language
programs require. µ.BASIC is also a simple
language to learn. Most engineers can learn it
themselves in a few days. Coding is not much
more involved than writing down the series of steps
needed to input, manipulate and output data.
Permits code optimization

When code must be reduced to fit memory, or
when optimum execution speeds are needed,
µ.BASIC statements can be intermixed with Assem­
bly language statements in the same program.

µBASIC
SOURCE

PROGRAM

,------ -------1
I ~~~~~ I
I I
I I
I I
I "){" CODE 8080 CODE I
I EMITTER EMITTER I
L__ ------ __ J

ASSEMBLER
SOURCE CODE

"){"

ASSEMBLER

OBJECT CODE

ASSEMBLER
SOURCE CODE

8080
ASSEMBLER

OBJECT CODE

Complete customer support
Millennium provides the before and after sales

support to assure you of a solution that will meet
all your needs.

Documentation-Millennium provides all soft­
ware and hardware manuals in addition to
complete service manuals.
Warranty and service

The Universal One and the Universal Emulator
are fully warranted for 90 days. Return any de­
fective unit to Millennium and it will be quickly
repaired or replaced without charge. Millennium
supports on-site, user maintenance with:
D Service Training
D A diagnostics and spare parts kit
D Fixed price board repairs

Other arrangements are available based upon
customer needs.
For today's and tomorrow's development needs

Universal One and Universal Emulator are the
answers to today's and tomorrow's microproces­
sor development needs. Both are specifically
designed to operate with newer microprocessors
as they become available. Neither instrument
will become obsolete.

The powerful universal disk operating system
(UDOS) makes Universal One a useful tool in the
hands of experienced and inexperienced pro­
grammers alike. µ.BASIC is a valuable time and
money saver because of the ease with which
programs can be developed and debugged.

Universal One's and Universal Emulator's hard­
ware emulation capabilities vastly ease the devel­
opment effort from design to implementation.

Join the productive generation with a Universal
One or Universal Emulator Development Instru­
ment. Both are available for delivery.

UNIVERSAL ONE COMMAND SET

SYSTEM CONTROL COMMANDS
ESC Returns control to operator
SPACE BAR Stops and continues console output
SUSPEND Suspends execution of active programs
CONT Continues execution of a suspended program
ABORT Aborts active UDOS or User programs
ASSIGN Connects Slave l/O Channel to system device
CLOSE Disconnects and closes the channel

SYSTEM OPTIONS
SEARCH Controls the Automatic File search capability
SYSTEM Designates the system Disk Drive
DEVICE Informs UDOS of the peripheral device availability
CLOCK Enables or disables Real Time Clock

SYSTEM UTILITIES
FORMAT Formats the diskette for use by system
VERIFY Determines if bod blocks exist and catalogs them
RENAME Changes the name of a Disk file or Disk identi.fication
DUP Duplicates Diskettes
LDIR Lists the directory of a specified Diskette
DELETE Removes files from a Diskette
COPY Copies data from a file or device to another file

or device
PRINT Copies specified data from a file or device to another

file or device w ith or without line numbers

OBJECT PROGRAM UTILITIES
MODULE Writes a Binary Load Module from Slave Memory to a

file or device
RHEX
WHEX
CSMS

Reads a Hexadecimal object file into Slave Memory
Writes a Hexadecimal object file from Slave Memory
Translates an SMS file and then compares the file
with Slave Memory

WSMS Writes a block of Slave Memory in SMS format

SLAVE MEMORY AND CPU COMMANDS
GO Starts user programs
LOAD Reads Binary Load files into the Slave Memory
XEQ Combines LOAD and GO
DUMP Displays the contents of Slave Memory on a specified

device
EXAM
PATCH

STATUS

Allows you to examine or alter Slave Memory
Allows you to alter Slave Memory with a string of Hexi­
decimal characters
Displays the status of the Slave CPU and the job being
executed by ii

SLAVE Sets the Emulation mode of the Slave CPU

SLAVE DEBUG COMMANDS
BKPT Sets breakpoints
CLBP Clears breakpoints
RESET Generates a RESET pulse to the Slave CPU
SET Allows you to set Slave CPU registers
DSTAT Displays Debug Status
TRACE Allows you to trace Slave CPU execution

µ BASIC COMMAND SET

µBASIC is a simple, easily used, efficient compiler. The compiler
produces an easy-to-read assembly listing after each statement which
shows the machine instructions that are used to execute the logic of the
statement. Data types and one dimensional arrays can be either one or
two bytes. The DIM statement is used to specify the array size and
optionally the origin of the array. Statement types include assignment.
FOR, NEXT loop control. IF, GOTO, GOSUB, RETURN, INPUT. PRINT.
and computed GOTO as well as computed GOSUB.

The language does not support complex expressions. All expressions
are in the form:
A= B(operation)C
Any or all of the vanables can be subscnpted:
A(!) = B(J) (operation) C (Kl

The simpler expression forms can also be used. For example: A= 5.
Operations permitted are add (+), subtract (-), multiply (X). divide

(/), AND, OR, XOR, NOT. shift right. shift left. shift right circular. shift
left circular. Th.e usual set of relational operations(< . >, = , < =,
<=.< >)are supported in the IF statement.

TEXT EDITOR COMMAND SET

INVOKING THE EDITOR
EDIT INFILENAME Designates the primary Input File and the

OlfITILENAME primary Output File
EDIT Fll.ENAME If Filename exists then Filename will be edit­

ed to itself. If Filename is a new file it will be
the primary Output file

EDIT No primary Input on Output Files have been
defined To Input or Output data, file name
must be designated in the PUT & GET
Commands

TEXT INSEm'ION
INSERT STRING

INPUT

DELETION
KILLN
ALTERATION
SUBSTITUTE $STRING I

$STRING2$
REPLACE STRING

SEARCH
FIND $STRING$

INPUT/OUTPUT
GET N (FILENAME) *

PUT N (FILENAME) •

LISTN
COPY N INFILE

(OUTF!LE) •

Inserts the String before the current line in
the Buffer
Places the editor in the Input Mode

Delete N Lines in the Buffer

Substitutes Text String I with the Text in
String 2
Replaces the current line with the text String

Searches the Buffer. starting at the current
line, for the first line that contains the text
String.

Reads N Lines of data into the Buffer above
the current line pointer
Writes N Lines of data from the Buffer starting
at the current line pointer
Lists N Lines of data on the line printer
Copies N Lines from lnfile to Outfile
•If the Filename is not specified. the primary

Input or primary Output file is used as
appropriate.

LINE POINTER COMMANDS
BEGIN Positions the line pointer lo the first line of the

Buffer
END

DOWNN
UPN
N

UTILITIES
AGAIN
Fil.E

TYPEN
QUIT
TAB CHAR

Positions the line pointer to the last line plus
one of the Buffer
Moves the .line pointer down N lines
Moves the line pointer up N lines
Displays the line number of the current
line pointer

Performs the previous "repeatable" command
Transfers all the data and the remaining pri­
mary Input file to the primary Output file.
Terminates the edit session
Displays N lines
Terminates the edit session

TABS Cl C2 C3
Defines the single CHAR as the tab character
Sets the tab position lo the given columns Cl.

m<COMMANDS>

?
I
BRIEF

MACROS
MACROM

COMMANDLINE
MACROM

C2, C3
Causes the command inside the angle
bracket to be repeated ·m· times
Displays the Editor UO Status
Finds the error in MACRO String
Inhibits or initiates typing after certain
commands are executed by the editor

MACRO definition command, M is an integer
which identifies the MACRO number
Command executes the MACRO M

Millennium
420 Mathew St.

Santa Clara. CA 95050
(408) 243 -6652

Pnnted in U.S.A. 5M 10·76 © 1976 Millennium. Inc.

REPRINTED FROM

A McGRAW-HILL PUBLICATION

®
Reprinted from Electron lca, September 16, 1976 Copyright © 1976 by McGraw-H1ll tnc 1221 Avenue of the Americas, New York, N.Y. 10020

Technical articles __________ _

Adaptability to various microprocessors
comes from separating
prototype- and system-related tasks;
in-circuit emulation and
new high-level language are bonuses

'Universal' development system
is aim of master-slave processors
by Robert D. Catterton and Gerald S. Casilli, Millennium Information Systems Inc .. Santa Clara. Calif.

D In the ever-changing world of the microproce or, one
element is fixed: heavy investments in per onnel training,
software, and development aids can lock designers into a
particular processor for their systems. Each recently
introduced hardware and software development system,
for example, is based on a particular family of devices
and isn't easily adaptable to other families. What is
needed to free the designer from design compromises
that reduce performance or cost effectiveness is a "uni­
versal" development system that can accommodate
many different microprocessors.

A new system, called the Univer al-One, achieves
universality by a division into two functional areas.
Those tasks that are related to the development system
are assigned to a master central processing unit, and
those that are prototype-related are assigned to a second,

or slave, P • A many as four different slaves may be
installed simultaneously and individually used through
operator commands. This multiple architecture enables
the hardwue to support new microprocessors with the
addition of a pc card containing the new slave P .

Since the ma ter proces or need not be changed to
accommodate new slave units, all of the operating
system software remains the same. Presently, the system
supports the 8080A and the 2650 central proce sors as
slave , with in-circuit emulation capability. It' easy to
add other 8-bit processors to the system, and 16-bit
device may be added with only relatively little
reconfiguration.

Although univer ality is the basic objective, there are
four other major requirement that today's development
systems should satisfy. Use of a disk-based storage

'\

system will achieve high throughput for maximum oft­
ware-development productivity. A di k-based operating
system should be specifically tailored for microproce or
development. The u er's interface with the y tern hould
be imple and remain unchanged regardless of the
proces or under development. The te t and debug capa­
bilities hould support development of hardware and
software and their integration into an operating proto­
type system.

Functions

The ma ter CP is respon ible for all of tho e y tern
services that are not prototype-dependent, such as:
• File management - the storage and retrieval of data
and program .
• Text editor - maintain text files contained on the
disk.
• Sy tern input/output - the normal 110 activitie
between the tandard system peripherals, such as flexible
disk, printer, and terminal.
• System utilitie , including programing of read-only
memorie for the final ver ion of the prototype.
• Debug function - the master executes the debug soft­
ware and controls the slave through a eparate debug­
ging hardware module.

The slave P ' functions include:
• Program assembly - each lave may be u ed a a
resident a embler of prototype program .
• Prototype-program execution - the prototype program
is loaded into the slave memory and executed by the
lave.

• Prototype 110 - any special input/output required in
the prototype is performed by the slave.

j_

.I
IN·CI RCUIT
EMULATOR

...... ---.. 4

.----.. 3
2

SLAVE

PERIPHERALS

SLAVE
INPUT/OUTPUT

IN·CIRCUIT
EMULATORS

SLAVE
CENTRAL

PROCESSING
UNIT

• In-circuit emulation - a cable extend from the slave
to the P ocket in the prototype.

The system architecture (ig. I) includes a bu struc­
ture to tie the component together and to permit the
exchange of data and control signals. The basic bu
design was governed primarily by the dual-memory and
the multiple- P architectures. Other design considera­
tions for th~ bus were that the memory portion had to be
able to handle 8- and 16-bit data word , and that the
overall structure had to accommodate future higher­
speed microprocessors.

The system ervice the peripheral 110 devices and
debug logic with interrupts rather than with polling.
With an interrupt-driven ystem, the peripherals can get
ervice when they need it, without waiting for their turn

in the polling sequence. It al o allows an efficient
software structure that 1 relieved of the overhead
inherent to polling. In thi way, maximum throughput is
achieved .

Memory structure

The random-acce s memory of the system is organized
as 65,536 byte of common memory and a 16,384-byte
master memory. The logic on the ma ter P module
allows appending any one of four 16-kilobyte egments
of common memory (Fig. 2) to the master memory
space. Thi allow master-slave communication for
tran fer of data during 110 ervice requests and gives the
master access to program-trace information developed
by the debug logic discussed later.

Master-memory protection is accomplished by a
pecial bu -control signal, which is sensed on the

memory card . Only the master P contains the

PERIPHERALS
INPUT/OUTPUT PORTS

PROGRAMABLE
REAO·ONL Y MEMO RY

MASTER
INPUT/OUTPUT

DISK
OPERATING

SYSTEM

MASTER
CENTRAL

PROCESSING
UNIT

CONSOLE

SYSTEM BUS

65 KILOBYTES OF
COMMON MEMORY

16 KILOBYTES OF
MASTER MEMORY

1. Two CPUs. The Universal-One system uses two central processing units-master and slave. In-circuit emulation is performed through lhe
slave CPU, which duplicates the type of microprocessor used in the prototype. The master CPU handles system-related functions.

A new compiler
To go along with the development system, Millennium has
developed µBasic, a high-level language compiler
designed for microprocessor applications. Although it was
tailored to meet the needs of engineers, it also provides a
useful tool for the professional programer.

The new compiler otters the advantages of a high-level
language-greater programing productivity, easier pro­
gram maintenance, and portability from one micropro­
cessor to another. In the Millennium development system,
it also provides a "universal" programing capability, since
the same µBasic statements can produce object
programs for the different microprocessors.

As shown in the figure. µBasic statements are first
brought into the "statement-analyzer" software package,
where they are converted tor input to the code emitter.
Then, depending on the microprocessor and resident
assembler being used, the code emitter generates the
assembly-language statements, which are subsequently
passed through the assembler to produce object code for
the selected microprocessor. This two-step compilation
process gives the programer more flexibility when working
out the program for the prototype.

A major criticism of high-level languages in micropro­
cessor applications is that more memory is used than with
assembly languages, and execution is slower. However.
µBasic allows the programer to intermix assembly
language. In situations where a programer thinks it neces­
sary, this intermixed assembly language may use the
same labels and variables as does the µBasic
program.

A debug-optimize report produced by the compiler
helps avoid software error conditions that the two-step
compilation process might cause. The report shows the
µBasic statement followed by the assembly-language
listing that was generated to perform the original state­
ment.

Typically, a programer would first code and debug the
program without regard to memory or performance
constraints. Then, when the program is functioning
correctly, the debug-optimization report can be used to
show those areas that may require assembly coding to
optimize memory usage. Since memory comes in fixed
increments, the most important optimization is usually
done when the program size exceeds that specified incre­
ment. If the program generated by µBasic does not
exceed the memory increment available, then assembly­
language optimization may not be needed.

Performance optimization also can be in assembly
language. Usually, some small portion of the code is used
most of the time-for example, 10 to 15% of the code
might be used 80 to 90% of the time. Consequently, a
concentration on those heavily used portions will produce
the greatest increase in performance.

In its data and statement types. µBasic is generally
equivalent to PL/M. The length of the data element may

circuitry to activate this control line. Thus, the lave
processor cannot gain acce s to the master memory and
destroy its contents or (through damage to the file
manager or part of its data structure) the files them­
selves, out on the disk .

The slave can addre s the common memory as a 65-
kilobyte or as a 32,768-word, I 6-bit memory. This allows

be either 8 or 16 bits. and both 8 and 16-bit elements are
supported at the same time.

Examples of statement types are:
• LET - the assignment statement.
• FOR ... NEXT- used for loop construction.
• IF- the test•statement.
• GOTO, GOSUB, RETURN - control transfer statement.
• ON-for a computed GOTO or GOSUB.

The µBasic compiler features an ability to specify
memory locations for arrays. This is quite important in
connecting a peripheral device to the system. Many peri­
pheral devices operate out of a dedicated-space memory.
To conveniently interface a program written in a higher­
level language to that device, the programer must be able
to position the array in the same location in memory that
the device is using. This is also very important in micropro­
cessor systems where there is a RAM / ROM trade-off. The
programer can control the origin of the portions of the
program to be put in ROM and RAM.

In comparing µBasic with PL / M (the most widely used
high-level language), it can be seen that the latter is a
"richer" language. A professional programer is comforta­
ble using PL/ M and can take advantage of its greater
complexity. However, the logic designer or other nonpro­
fessional programer probably will have to expend some
effort to learn enough about PL/ M to be able to write
programs using it. In contrast, µBasic is easy to learn and
use, while being quite effective.

µBASIC
SOURCE

PROGRAM

r---------- ----------,
1
I
I
I
I
I

X CODE
EMITTER

STATEMENT ANALYZER

8080 CODE
EMITTER

I
I
I
I
I
I

L __ _ ------------ ---~
ASSEMBLER

SOURCE CODE

OBJECT COOE

ASSEMBLER
SOURCE CODE

OBJECT CODE

the 8-bit master to add res a I 6-bit slave memory as
equential bytes.

There are al o command that permit the operator to
di play and alter common memory. He may inspect and
change the content of the memory, and he may di play
and alter the contents of the registers. He may interact
with hi program and change variables - change register

Using the software
The Millennium development system has many software
features related to its use of a floppy disk for mass storage
and the UDOS operating system for the disks. The system
can have up to four floppy-disk drives all in use at the
same time. A file name in use on one disk can be the same
as one on another. The user can specify the file he wants
by appending the floppy-disk drive number to the file
name; i.e .. TESTPROG / 1 or TESTPROG / 2.

Through use of the VERIFY command. a user can check
the floppy disks to determine if any of the tracks are bad.
The bad tracks are recorded in the disk's directory and
thereafter are not allocated to a file.

The user need not create a file or otherwise establish it
before writing data on it. When he issues a UDOS
command with a file name as an output device, the file will
automatically be created, and the name will be placed in
the directory for the floppy disk.

The user need not allocate space for a file before using
it, for disk space is dynamically allocated by UDOS as it is
needed. When the file is closed. the space allocated is
recorded in the directory. When the file is deleted, the
space allocated is freed up and made available for alloca­
tion to other files.

A file name may contain as many as eight alphanumeric
characters and special characters. This allows the user to
use names that are more indicative of the file content; i.e.,
PROGLIST rather than PRGLST, or, worse yet, PGLS. A
disk file may contain anywhere from 1 to 311,296 data
bytes. The user need not concern himself with extraneous

· data or otherwise keep track of the number of "real" data
bytes in his file.

The entire contents of a disk can be duplicated in
another. This feature allows back-up of important disks
and allows the user to recover if a file is inadvertently
deleted, written over, or otherwise destroyed.

Disks can be identified with a string of up to 44 ASCII
characters. Users can thus briefly describe the contents of
the disk and the date it was created, and need not rely
totally on the label, which could become marred or
destroyed.

The user can string together a group of files into one
with a single UDOS command. This feature allows devel­
opment of the source program in small, manageable
pieces. Subsequently, all of the pieces can be combined

contents or change the data elements being used in the
debug process.

The disk operating system

A universal disk operating sy tern called DOS was
developed for the multiple-er architecture. Thi oft­
ware is executed by the master in its own totally
protected master memory. The DOS feature is floppy­
di k-oriented, taking into account the characteristics and
peculiarities of such di k . Many fi!e-management func­
tions usually performed by the user are performed
automatically. The u er need only direct that certain
data be tored on a file or taken from a file.

The operating system allows the u er to develop
microcomputer programs with a high-level language (see
"A new compiler"), a symbolic assembler, or both . The
user can prepare a program with a text editor, correct

and placed on a single file, which can be assembled. If an
error shows up in the assembly, only that piece of the
source program which contains the error need be edited.
All of the pieces can then be combined again and the
assembly repeated.

All 1/ 0 operations can be assigned to channels by
software. The user can assign any device attached to the
system to any one of up to eight 1/ 0 channels and need
not concern himself with the characteristics of the device.
This feature allows the user to prepare programs whose
input and output sources can be determined at run time.
Channels can be assigned for a program externally
through the console or Internally by the program itself.

A sequence of UDOS commands can be executed one
at a time from a command file. The user can thus invoke
any number of commands simply by issuing the name of
the command file. The individual command can be filled
with parameters that are given at the time the command
file is invoked. Thus frequently used command sequences
can be invoked simply. Command files can also be
chained - the last UDOS command in a file can be the
name of another file, allowing a series of jobs to be run in a
batch mode, perhaps overnight. unattended.

The text editor is line-oriented and has a command
repertoire similar to those available on large time-sharing
systems. The user can create a file of assembly-language
statements or a data file by entering lines of text through
the system console. Subsequently. he can insert lines
anywhere in the file, delete lines, replace them. or modify
part of the text on a line.

During a text-editing session, the user can get lines of
text from any file and merge them into the file being edited
or put lines of text from the file being editerl to any other
file. This feature provides the capability of manipulating
lines of text from several files and merging them into one
file quickly and easily. With the text editor, the user can
combine several text-editing commands into one complex
command and then cause it to be executed several
times.

The user can set tabs dynamically and designate any
console key as the tab character at any time during a text
editing session. He can also issue UDOS commands and
cause other system functions to be initiated during a text­
editing session.

and modify it quickly and ea ily, a semble it, load the
resulting object code into common memory (or into the
prototype memory) , and cause it to be executed under
debug control.

During execution, the program steps can be traced,
breakpoints can be set, and memory can be in pected
and altered as required . Sub equently, the program can
be corrected or modified at the source level, using the
text editor, then rea sembled, loaded, and executed
again for the next round of debugging. (see "Using the
software").

In-circuit emulation

Each lave contains circuitry to support in-circuit
emulation. When the prototype becomes ready for test,
a ll of the development-system resource become avail­
able to it once the emulator cable is plugged into the

microprocessor socket of the prototype. The operator can
then use the system's debugging software to debug the
prototype hardware and software and then to integrate
them.

The system supports two operating modes for emula­
tion . In one, the user can substitute the memory of the
development system for that of the prototype. In the
other mode, when the prototype's memory becomes
available and its 110 functions have been thoroughly
tested , the operator can execute programs from the
prototype memory while maintaining full control
through the development system.

When operating with the prototype memory, most of
the ystem debugging features are still available. The
user can u e the address breakpoint and do a full trace.
If this mode requires the programable ROM of the final
prototype, the master can directly program the assem­
bled instruction into the PROM chips. If the object re ides
on paper tape, it can be loaded into the system and
transferred to the PROMS.

The user can switch emulation modes at any time by a
console command, with no hardware changes. The cable
may be left attached to the lave even when the emula­
tion feature is not in use.

The development system's memory is comparable to
the memory speed of most prototype sy terns, and thus it
nearly imulates real-time operation when programs are
executed from the system . When programs are executed
from the prototype memory, the slave can operate at the
the prototype's clock and memory speeds. Timing differ­
ences resulting from the use of the umbilical cord are
minimal.

Master-slave interaction

When input/output from a master-controlled peri­
pheral is required by a slave program, the slave P
executes a service-reque t instruction, which causes the
lave to pause temporarily while the master obtains the

necessary data for the slave program. When the l / O

requirements are completed, the master releases the
slave so that it may continue the proce s of program
execution.

The debug logic is on a separate module and include
breakpoint registers, addre s-computation circuitry, two
program-counter registers, and single-step and interrupt
logic. The functions controlled by this logic are indepen­
dent of the slave microprocessor and thus support the
universal aspects of the system design for application to
a variety of target processors.

Part of the master-slave interaction includes control of
breakpoint and trace operations. The master loads the
breakpoint addresses under command from the user.
When the memory address and operation from the slave
match the breakpoint value, the program running under
the slave pauses, and control is passed to the master. The
debug module stores the slaves instruction-fetch addre
to enable the software to examine the prototype program
and to interpret operating codes for the trace printout.
Synchronization signals are provided to aid the user in
triggering events necessary to debugging of prototype
hardware.

The two memory-address breakpoint registers may be

o-----
DISK

OPERATING
SYSTEM
(UOO S)

16 Kl LO BYTES 1-------1

COMMON·

o-----

16 K t-------i

MEMORY
ACCESSIBILITY ..---,.,.

32 KILOBYTES_ ___ __,

MASTER·MEMORY
AO DR ESS SPACE

32 K 1-------1

48 K t-------i

64 KILOBYTES- - - -­
COMMON·MEMORY
AO DRESS SPAC E

2. Memory addressing. The master CPU can address 32 kilobytes

of memory. Of this total, 16 kilobytes are used by the disk-operating
system. UDOS. while the other half can consist of any of four 16-
kilobyte blocks in the common-memory addressing space.

set to break on any of a variety of memory-acce s
conditions. Another capability i a dynamic trace of the
user program. On an in truction-by-instruction basis, the
user can trace the activity of the program being
ex.ecuted, with a display of the location of the instruc­
tion, its mnemonic, the register contents, and the state of
the machine (such as the condition of the carry flip­
flop) .

Dynamic trace may be performed on every instruc­
tion, on instructions between two memory limits, or on
only the jump instruction . The jump-in truction trace
reduce print-out time and runs through the program
faster. If the user isolates a problem area, he may go
back to the full-trace mode and examine every one of the
in tructions.

I / 0 and interrupts

The function associated with the ma ter and slave
Pus dictate the need for separate master/slave

input/output and interrupt structures. The master has a
256-port 110 address space and a 32-level interrupt
structure. Sixteen interrupts are devoted to debug func­
tion and service requests . The other 16 are related to
the system 110 .

The master card contains the 110 ports to support such
tandard peripheral device a the dual-drive floppy disk,

a line printer, and a cathode-ray tube or teletypewriter
con ole. With the addition of a tandard general-purpose
110 card, the system-related functions are easily
expanded to support other peripherals, such as high-

' I

CONSOLE ENO·USER
SYSTEM

FRONT PANEL
REMOTE
INPUT

OEVICE

r, ;P;O; A-;:- 1
1 MOS

I PROM I
PROGRAM

MASTER
CENTRAL

PROCESSING
UNIT

OEBUG
LOGIC

SLAVE
CENTRAL

PROCESSING
UNIT

L----.J

SYSTEM BUS

II -;P-;O;A-;:- ,I
BIPOLAR

I PROM I
PROGRAM

L----.J
MASTER MEMORY COMMON

MEMORY

3. Smaller system. For applications in which users have already invested in soflware development aids. the Universal-One can be pared
down to provide only emulation and PROM programing. Memory is much smaller, while the blocks shown in dashed lines are optional.

speed paper-tape or card readers.
The slave has a 256-port 110 address space and an

eight- level priority-interrupt structure. It cannot directly
address the ystem 110. However, through the u e of
service requests to the master, it has full access to the
system peripherals.

The user also has the option of using a general­
purpose 110 card as interface between the slave and it
specia l devices, such as the prototype's keyboard or
printer. In such a case, the lave wi ll perform its own 110

functions on those devices. The general-purpo e card
provides a full EIA-RS-232-compatible port and four 8-
bit input/output port .

Expandable PROM programing

Capability for programing erasable metal-oxide- emi­
conductor and bipolar-fusible PROMS for the final version
of the prototype is integra l to the development system.
Two card slots in the motherboard and three front-panel
sockets are provided with the standard system. Person­
ality cards are available for programing the I 702A MO
PROM and the 82SI 15 4- and 8-bit bipolar family. New
programing cards a re ea ily sub tituted for other
families of PROMS.

As well as eliminating the need for a separate PROM
programer, this feature i more co t-effective, since dual
110 circuitry is unneces ary and operation is controlled
by the ma ter P rather than by a separate proces or .
The programing cards are interrupt-driven, freeing the
master for other tasks during the programing of each
byte.

Even though a PROM verifies correctly, it may lose

charge or "grow back" a fusible link if not programed
properly. Therefore, the cards have many protection and
error-checking features such as over-voltage protection,
current limiting to prevent overstressing, and power­
fa ilure protection again t partial programing of the
device .

The universal emulator

Many com pa nie a lready have some method of
accompli hing the pure oftware-development function
of assem bling and editing programs, but they lack means
of performing emulation or PROM programing for u e in
the prototype ystem. Other companies have a complete
microprocessor development sys tem, but they a re
involved in multi-project si tuations with one particular
project fully occupying their development sy tern . In
either si tua tion , companies may find a second version of
the Millennium development system useful. With an
expanded front panel a nd a pari ng-down of the system
memory to 12 kilobytes, it becomes a universal em ulator
a nd PROM programer (Fig. 3) .

All of the software debug functions for both emulation
mode previously discussed will be retained. The basic
functions , such as patch, dump, examine, brea kpoint,
and others will be resident in the PROM. Only the trace
program, which will change for each target slave, will be
loaded into master memory from the console device.
User program may be entered into common memory
either from the console device or remotely from a ho t
computer via an EIA-RS-232 seria l interface. Also,
PROMS may be used to hold user programs that will be
executed in the prototype. D

PRODUCT LINE

UNIVERSAL ONE
DEVELOPMENT SYSTEM

WITH MULTIPLE µ PROCESSOR SLAVES

7 MEMORY

UNIVERSAL EMULATOR

DUAL
FLEXIBLE DISC

USE AS ST AND ALONE OR ON-LINE
TO UNIVERSAL DEVELOPMENT SYSTEM.

IVllLLENNIUM INFORMATION SYSTEMS, INC.
420 MATHEW STREET • SANTA CLARA, CA 95050 • 408 • 243-6652

