NonStop™ Systems

¥

System Description Manual

Operating System Library

82507

NonStop™ Systems

System Description Manual

Abstract

This manual provides architectural descriptions of the Tandem NonStop II™
and NonStop TXP™ processor hardware and the GUARDIAN™ operating
system.

Product Version
NonStop I and NonStop TXP Processors
GUARDIAN BO00 operating system

Operating System Version
GUARDIAN B00 (NonStop Systems)

Part No. 82507 AOO

7

March 1985

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

NOTICE

Effective with the BOO/EQ8 software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term “NonStop 1+™ system” refers to the combination of NonStop 1+ processors with all software that
runs on them.

The term “NonStop™ systems” refers to the combination of NonStop O™ processors, NonStop TXP™ processors,
or a mixture of the two, with all software that runs on them.

Some software manuals pertain to the NonStop 1+ system only, others pertain to the NonStop systems only,
and still others pertain both to the NonStop 1+ system and to the NonStop-systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the:
manual pertain.

DOCUMENT HISTORY

Operating
Part System
Edition Number Version Date
1lst Edition 82077 AO00 GUARDIAN AQO April 1981
2nd Edition 82077 BOO GUARDIAN AO03 April 1982
3rd Edition 82077 C00 GUARDIAN A04 October 1982
4th Edition 82077 DOO GUARDIAN AO06 December 1983
5th Edition 82507 A00 GUARDIAN BO0OO March 1985

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

The part number of this manual changes with this fifth edition.
This change was made to accommodate two current versions of the
manual while the B00 software is in limited release.

Copyright © 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document may be reproduced
in any form, including photocopying or translatign to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or service marks of Tandem Computers
Incorporated:

AXCESS BINDER CROSSREF DDL DYNABUS
DYNAMITE EDIT ENABLE ENCOMPASS ENCORE
ENFORM ENSCRIBE ENTRY ENTRY520 ENVOY
EXCHANGE EXPAND FOX GUARDIAN INSPECT
NonStop NonStop 1+ NonStop I1I NonStop TXP PATHWAY
PCFORMAT PERUSE SNAX Tandem TAL

TGAL THL TIL TMF TRANSFER
T-TEXT XRAY XREF

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

NEW AND CHANGED INFORMATION

This manual is the fifth edition of the System Description Manual
for NonStop systems. It includes the following changes to the
fourth edition:

Sections 1 and 2 have been revised and reorganized to improve
the system introduction.

Sections 4 and 5 have been revised to reflect the multisegment
address space capability provided in the B00 version of the
operating system.,

Instruction definitions in Section 9 have been expanded to
document the microcode support for the B0O0 operating system.

Two new sections, 10 and 11, have been added. These provide
an introduction to the internals of the GUARDIAN operating
system.

Minor technical and typographical errors have been corrected.

482507 A0 3/85 iii

CONTENTS

PREFACE.Q....Q.Q..'..l.l..0..00'..“

SECTION 1., INTRODUCTION..:ssceoscoss
Hardware System Structure.........
Independent Multiple Processors.
Dual-Bus Data Paths.............
Dual-Port Device Controllers....

Dual-Ported and Mirrored Discs...

Multiple Power SOUrCeS.....e.ea..
Power-Failure ReCOVerY...ceeeees
Other Reliability Features......
Operating System Overview.........
Main Operating System Components..
User-Callable Library Procedures
System ProCesSSeS..cscesecscccces
Kernel....ieceveeeeeeeensscnosas
System Data Structures..........

SECTION 2.

3

.

e e e o

s o o o

Fundamental OperationsS....eceeeeeeeesas

Processor Module Organization.....
Instruction Processing Unit.....
MEMOr Y ecoeesesoeocasoncssasasnnss
Input/Output Channel....cceceuee
Interprocessor Bus Interface....
Other Processor ComponentS......

Operations and Service Processor..

How the Hardware Executes Programs
Code and Data Separation........
ProcedUreS.icececsccccoccscsasasas
Memory StacKk.eieeeeseseccceocsos
Register StacK...seeeoocs

e o 0 0 8 0

/I’| 82507 A00 3/85

e 0 0 00

e e o o

s o o o

‘e o e o a
.

.
e » s e

e o o o
e o o o

HARDWARE PRINCIPLES OF OPERATION

.

. e

* e

» e o o

® 0 5 0000 00 00

e 8 o o o ® s o

.
.
.
.
.
.
3
.
.
.
.
.
.

.
.
e & s o » & o e o
s e e e s o

e & o o
* o e o
. e

.

e o o o
e o o o
.
e o & o s * o

e e & s o

°

a & @ 2 e & 2 s s 8 o

s o e 8 @

e o ®
s e o o
.
.

® e 0 0
* o 0o 0
o e o o
o o v e
o s 0 0
o o o o
e e o 00
o e s o0
o 0o 0 o0
LI I)
® e s 00

xiii

R s
bl
R OVOB RN P

el
b

! S R
O N o0

!

I

NN N NN NN
o |
WO OV

NN NN
i
}_.l
(8]

Cco

SE

SE

SECTION 5. ADDRESSING AND MEMORY ACCESS..cesecesessssescsona

vi

NTENTS

CTION 3., DATA FORMATS AND NUMBER REPRESENTATIONS......0...
Data FOrmatS........l....‘.C.l..Q....".....‘..l..........'

wordsll.....l-.ll'..l.."l....'.l..'l.l.i.‘"'.l‘l.ll'.'.

1

|

Bits..'........ll.'.l.".'....O....l.."...l.ll.......‘l.

BYteSooo.oloolooo.loo..'uDoioon0-oao.o.n.oooonoltoo..oo.-

DOUDLlEeWOIrdS. e vessesessnssssesnsssnsosssssasscssssasssnsnss
QUAAruUpPlewordS.ceeeeesasesscesnsasssssssescsosossssassascesnas
Number RepresentationNS...ccieseeancesscessossesssscoassesanans
Single WOrd...eeeseseesseseossossssacssssasosassasssosssse
DOUDleWOrd.:.eeeseeeosessssssossosssssssasssssssassssasssesnas
Byt @ueeeoesssessossessosssnssossssssosscssssssssnssassanons
Quadrupleword (Decimal Arithmetic Option).....ceeeeeeen.
Floating-Point and Extended Floating-Point.....eeeeeeses
ArithmetiC.eeeeeeseesceneosseasoscaneossanssosesasonansoes

Il WWWLwWwwwwwww
1 1 |
NN OWWRO IO W

www
I
L

CTION 4. INSTRUCTION PROCESSING ENVIRONMENT.....vieceaseee &
COde SPACE...trortssesesassnsssessssssssanssssssssnassscascas &
Addressing COQe..ieeseseosoescescessessessnsassnnssasesse &
Data Segment....eeeeseescvssasocscsscssnssssssssasssssnsssas &
Data Storage and ACCEeSS..ceeesssossssasccessssssssssscnass &
Addressing Dat@..eeeesssnesseessanossscscesasssssosssnass &-
REGIStErS . iiietoseassssessssseasnossancssesscsanssnssnsaes &=
Register StaCK...eeiveeeesossassoreseossosasesssasensnsas
Environment Register......cceeesseevsesssscessssscnsnsess 4=23
Procedures and the Memory StaCK...eeeeeeeeeeeoceososnsessos 4-32
Attributes Of ProceduUresS...cuveeeeeccesscscsssossnssesess 4-36
PCAL INStrUCtiON..eseeceesessesscocsoncosscnssssoassassose &—37
EXIT INStrUCEiON..cueeeeecensossesssoncescasassenseansess 4-40
Calling External ProCeQUIreS...evecescssossoscoscassososansees 4—43
Memory Stack OperationN..ceeiesceccessoscscsesansascasnneee 2-46
Generation of and Access to Local Dat@..ieeeeceesacese.. 4-50
Parameter PasSiNg.seeesesscsecesorscososssscscsessssencses 4-52
Parameter ACCESS.cciesesverssrrsosscsnsassssssssssssssecees 4-54
Returning a Value to the Caller....veeeeecececeacseseses 4-54
Stack Marker ChaiN..uvieeeeeeeesenscosesssescncsssanseses 4=57
SUDPIroCedUIreS. ettt reneesstesescsceosnossasascsnsessnsss 4-58
System Global Addressing....cceeee. . N Y4

R Om®E e

S
|
[YORN LI R I U B |
[y

16-Bit AdAresSSiNge.eteseseeeesenossosessossssnsoscsosssssocees
Extended AdAresSSiNg...eeececosseaesosnssscoscosnsosnsssonaocses
Extended Addressing InStruCtioNS.....ceeeeceeecesseansess 9-1
Memory Access (NONStop Il ProCeSSOr).c.cececeeececcsacaess 5-15
MBDS s eeeeeeeeesoncsasosssssossnsnssssansssssssssssasasses 9—15
Map Entries and MappPiNg...eeeeeeceasecsesssssssssasonses 5=19
Segment Table and Segment Page Tables...:iveeeeeeeeesses 5-20
Extended Address Cache....cieeecercosncccanesssosannnnse 523

5
Physical, Virtual, and Logical MemOry...ceeeeeeeecocencseee DO-

5

5

/I" 82507 AO0O0 3/85

CONTENTS

Memory Access (NonStop TXP ProCeSSOr)...ceeececcsecscscanas 5-27
Short Address SpPACeS...sessssssssacssssssssssscsssasceee 527
Caches in the NonStop TXP ProCeSSOr..:ceseescosccssscssas 5-29

Memory Data StruCtuUreS...cceeececesssssssssscacanosssnssas 5-36

I/O AdAresSSiNgeeseestescessssssesascsassssscesssassssasnses 2=37

Page Fault...ceeeeeeeesseeesscscesasesssssossscossssenssass 5-38

MEMOTY ErrOrS.ceeeseeosescososossssssssscsocsssssssssassssaae D—42

System TableS...eeeeeeeosseceeeesessscssassosssssssassssssnes 5-42

SECTION 6. INTERRUPT SYSTEM.::teeveoccccsasossoscsccsnsssasnese O
INT and MASK RegiSterS..cceessesesccsesccssscosscsscsasassossass b
System Interrupt VeCtOr....ceeeeeesasesssososssscssssaosnaaa b—
Interrupt Stack Marker.....ceieeeeeeessasessssssnssscnssaene b
Interrupt SeQUENCE. ..t tseeeeesssosceasossassssssssscssscsccss b
Interrupt TYPeS.e.ceeeersseersessesencsssascsscsnssnssssnsssess O
Reenabling INterruUPtS..eeescesessescesonssosscoscessassnanse

|
OO

oo
1
= e

SECTION 7. INTERPROCESSOR BUSES AND INPUT-OUTPUT CHANNEL.... 7-1
INnterproCesSSOr BUSES...seeeeeoscccocoscssassssssscsnscsssssnsss 7—1
Bus Receive Table and Intercluster Bus Receive Table..... 7-3
SEND INStruUCtioN ... eeeeeeerensosesonssaseososasanssnsnans 7-5
Bus Transfer SequenCe.....cssessescsccsscscccsssssssssnses 1—6
OUTQ, INQ, a8nd PACKetS..teeeteteecessscasscssconaseseasss 7—10
INT and MASK RegistersS........ Ceeeesessesesssssasssessees 1—13
Input-Output Channel...... ittt iiienennnnennnns ceeesenes 1-15
I/O Control Table...iiieeeoseesesasosnsssssasassansonsas
EIO INStrUCtiON. et eteieeesceeososessesosesansosssssscnns
ITO and HIIO INStruCtionNS...ceseesvessssssssesaaossnsase
Input-Output SeQUENCEe. st cvesssssssoccsossssasssssssssscs
Dual-Port Controllers and Ownership.seceseceeeescesscans
I/0 Channel INterrUPtS..cceseeceesssscosscsssscscansscseas
High-Priority I/0...ceeeecscesesescsassossssossanososnans

e o o o & o o
~
]
N
™o

SECTION 8., COLD LOAD.:2sssssceseacesassstssssssscsnsccassssas
DiSC COld LOAA.: sttt etessonosseosnosasessososasessssonanans
Disc Cold Load (NonStop Il ProCeSSOr) cceecesceeessocnasens
Disc Cold Load (NonStop TXP ProCesSSOI) .ceceeeccescsscsssse

Bus COld LO@A.:.eeeestescesssassssssssoanscosasssscsansssnsaes
Bus Cold Load (NonStop II ProCeSSOr)..eesssessccaccensos

Bus Cold Load (NonStop TXP ProCeSSOr)..eceececcececsccsess

SECTION 9. INSTRUCTION SET.veeenocescoscasssssscscnsossasassa
16-Bit ArithmeticC..uiieieeeseeeeeeesoeasoscssossosanasossasasas
32-Bit Signed ArithmeticC..siiseieereececosecsreosaseosnsnnnas
16-Bit Signed ArithmetiC....ceerieeeseesovsococcossncsannacs
Decimal Arithmetic Store and LOAad...eceseesoccssscosscnsoans
Decimal Integer ArithmetiC...cieieeecessoessvoancossssssnanans
Decimal Arithmetic Scaling and Rounding...ceeeeeseeasosaens
Decimal Arithmetic CONverSioNnS.....ccesteeeesscenscssscases

WWOWWWWWOWO [eoleciNocieclyocNool o]
]
QWO IPBN- [s a3 e NN SR

Vo]
|
=

482507 A00 3/85 vil

CONTENTS

FlOating“pOint Arithmetic.....-...-..-...--.-.....o..- 9—12

Extended Floating-Point ArithmeticC.....ceeeecevenensanesss I-13
Floating-Point CONVErSiONS...seeeescssascscssascssnesssses I-14
Floating-Point FunctionalsS....ccceveescesccscosssesnesnaaes I-18
Register Stack Manipulation....eceeeeeersescosnssassnseenses 9-19
Boolean OperationS...csceacecccccsssccscossssssssaansanasss 3-20
Bit Deposit and Shift.ieieeeeeertesesscsosorsssacsasancsnsaes I-23
BYte TeSt.eeeeeessessssssssssssscassosssnsssossosassesassnsses I3-26
Memory to/from Register StaCK.....ceseeeessesccssensessess I—26
Load and Store via Address on Register Stack...eeeseeseees 9-34
BranChing...eeeeeeeeeesssseesssseosnaesscosscssssananssassases I3—-40
Moves, Compares, Scans, and Checksum Computations......... 9-43
Program Register CONtrol.....eeeeeessesscscssencssssasssecs 9-50

e s e 000 9—52
9-54
LY 9—55

Routine Calls AGnd RetUINS..ceeeeceeeseoooscconsosssas
Interrupt System....ceeesoeececseccccocscscnnns
Bus COMMUNICALION. et eevenocesoncasooosassns
Input-OutpuUt .. it neeeseeecnnseaoonnsossssna

0 o 0 0 o

e e & o e o
.
@
.
.
.
.

MiscellaneouS...cseeessecccososonns
Operating System FunctionNS.........

s 9 0 00 0 0 @ o 0 0o 0 0 00

* e o
L]
.
.
0
|
(8]
[0 o]

® o 8 00 0 00 ® e o o 08 0 00

SECTION 10. GUARDIAN MODULES AND DATA STRUCTURES....¢.eee.. 10
Segmented Organization of GUARDIAN Operating System....... 10-1

SECTION 11, THE PROCESS ENVIRONMENT....

Process Definition..iieerieeceessonceseesanseessosssssossess 11-1
System Process CreatioN..eieesseosesseessneosssaosssssossasses 11-3
Application Process Creation...c.eeeeeeesesescocnsnsannses 11-7
Multiple Application ProCesSSeS.....ccesessessesssesesssss 11-15
Process Life CyCle.isiiieeieeieceenrsesessscacossasssssensess 11-16
ProCesSS PairS.ieeesessssesssesossssssssasesnsesasscsenese 11-20
Requester-Server RelationshipS....ceeeescescoseencosansss 11-23

APPENDIX A. HARDWARE INSTRUCTION LISTS.::ceseeocscecesseaesss A-1l
APPENDIX B. INSTRUCTION SET DEFINITION.....:.ceeeseeeesneesss B-1

A]?PENDIX C. HIGH—LEVEL COMPARISON..aa-.oc.o.o...n.o-oooooooo C—l

viii 82507 A00 3/85

PR RREERERRRRPERP

L A S S L W www NN

IS

R OOdOOOTEe WN =

P2 O e o o o o o s s @

[I O T R |
OO0 W

P> WK

i

= W0 DOJAOAUTEWN -

Qe

e o & o ¢ o o o

s o & & o & o o

CONTENTS
Figures

FIGURES

Elements of Hardware System StructuUre....ceeececeeceess 1

Power Distribution for NonStop II ProcesSSOrS......ec... 1-
Power Distribution for NonStop TXP ProCesSOrS.....s..... 1

Tandem Computer System Failure-Tolerant Environment... 1-1
Interprocessor DependenCy.cssscesssessaasensascsasssssass 1-1
Failure-Detection MeSSAgeS...cesesevsescscesasansosess 1-13
Logical Operating System ComponentS...ceeeecessecceess 1-15
Application Process Access to System ServiceS......... 1-16
Distribution of System ProCesSeS...esseescecsscsscoaces 1-17
Memory Manager ProCeSS....sccecsesssssecsssssascsssocccee 1—18
MONitOr PrOCESS.:eseesscesssscssssssssansasseascsassasss 1-19
Operator PrOCEeSS.cesecetssessssesossssscssssccsassasesss 1—20
INput-Output ProCeSS...ccecessssssssessssceassscesssssss 1—21
Interrupt HAaNAling..eeessveseeseosssoancssscasssacenseas 123
Semaphore US@.ueeeeeeessseessssscassscasssssoasassaasses 1-25
Message Transfer Between CPUS...cetvvencessasssosnocens 1—27
Message Transfer Within a CPU...... creesesccasessnsees 1-28
System Data Segment.....cceeeeseeee cssescesecccecanesss 1—29

Fault-Tolerant Application.....ceeec.. Ceeeetaaeenn ceeeee 2
Application Takeover by BacCKUpP.:::tceeessvsososeosaseaas 2=
Input-Output Channel......iiiiiietrtereeneenecranccansas 2
Interprocessor Bus INterface..iceeccecseoscsssssscacneae 2—
Block Diagram of Processor Hardware....eeeeeeeeecoseas
Code and Data SeparatioN....ecccseecesssccoscseossasaess 2-15
Memory Stack Operation.....seeceseccsssscsscscscocenes 2-17
Register Stack Operation...vececeseesscosesceseseneess 2-18

Data FOrMatSeeeeeeessesesssscsssosscesssosssssscssssssasss 3—2
Word AdAresSiNg.c.ceeesseecosssossosssossssssssssasanses 3—3
Byte Addressing......... I
Doubleword AdAresSSiNg...ceeeeeesescseasossacsansasnanas .. 3-6
Quadrupleword AdAressSing....eceeeeeeesceossccscsasccssase 3=7

Elements of the Instruction Processing Environment.... 4-2
Code Segment Addressing RANgE€....ecevsscasosssonsssees 4-3
P Register and I RegiSteIr...eeeeeeeecsccssscsnsasossss &—4
Displacement Field for Code Segment Instructions...... 4-5
Addressing in a Code Segment...ccovecsseacsscacsnsenes &=7
Data Segment Addressing RA8NGE....ecesseeccsssssecssess 4-8
L Register and S RegiSter...cseeeceesccscscsossnssesss 4-9
Mode and Displacement Field for Memory Reference
INSErUCLiONS. et vt eieeeessossessossosasnssasssassas 4-11
Memory Reference Instruction Addressing Modes........ 4-12
Direct Addressing in the Data Segment.....eeeceeeecees 4-14

482507 A00 3/85 1X

CONTENTS
Figures

4-11. Indirect Addressing in the Data Segment....... ceseee 4-16
4-12, Indirect Byte Addressing in the Data Segment......... 4-17
4-13., INdeXiNg..eueeoseeoeosoooosssaoossesosssacossasnsssecssss 4-18
4-14, Examples of IndexXxing.....vetveeeesncsscosccencsaecsaaas 4-20
4-15, Register StaCK.....eieeeeoessessosssesssscesssssnssnss 4-21
4-16. Example of Register Stack OperatioN....ceeeceecescess 4-22
4-17, Action of the Register Pointer....cceceeececccscssssss 4-24
4-18. Naming Registers in the Register Stack......eeceeeee.. 4-25
4-19. Environment Register......cieeeescecsvacossscnssaness 4-26
4-20. Procedure Entry Point and External Entry Point Tables 4-34
4-21., Procedure Call and EXit.iisveseeseessesasssensescoasss 4-35

4-22. First Entries in Procedure Entry Point Table......... 4-37
4-23. Execution of PCAL Instruction....... ceeesscessaassass 4-38
4-24, Space Identification in Stored Copy of ENV...vvevee.. 4-39
4-25. Execution of EXIT Instruction....... ceeesccesasessaass 4-41
4-26. System Procedure Call and Exit....cecee. Cecececnanns . 4-44

4-27a. L and S Registers in Procedure CallS...ciiveenneeaacs 4-47
4-27b. L and S Registers in Procedure Calls....ceveevennees. 4-48
4-28., L-Plus Addressing Mode....e.eevesenseessesscncenseass 4-50

4-29., PUSH and POP INStrUCtioNS...eeeeeeeeeeeocees creasaees 4-52
4-30., Parameter PasSiNg....ieceseececcssscsssnas et e . 4-53
4-31. Parameter ACCESS.:ceeeesoaoens cecsesseanaanan eeeseseses 4-55
4-32., Value Returned Through Register Stack.....ceeeeeeee.. 4-56
4-33, Stack Marker Chain.....iiieieeeeesaseesacconasananns . 4-58

4_34. Sprrocedure Calls.............................-..... 4_60

4-35. Example of S-Minus Addressing....ceeeeevecesesnsssees 4-61
4-36. SG-Relative Addressing Mode....... ceeesssesseensaaees 4-62
5-1. Physical MeMOIY...ieseeseesncosacsscssasassssssnssssans D—2
5--2. 23-Bit Physical AdAresS...ceeeecevessecrsascessssossseans D=2
5--3. Virtual MemMOIY.:eeeeeesecesesassossscassscasssnssssecss D&
5-4., LOgical MeMOIY.eseeseeseeseessesaosssensassescnsseasseass D=6
5-5. 16-Bit Logical AdAresSS...ceciescescsccnscssnssosssasses 5-8
5-6. 32-Bit Extended AdAresS.....cceeececcsccssssssscsasses 5-9
5-7. Relative Extended Addressing in Segments 0 through 3. 5-11
5-8. Relative Extended Addressing in Segments 4 and Up.... 5-13
5-9. Address Conversion for Relative Segments 4 and Up.... 5-14
5-10. Uses of Maps and Absolute SegmentS....ceeseeecocaccss 5-16
5-11. Map Entry.cieeeeeescnneaas cecececeaen teseaas cseeseess 5-20
5-12. MAPPINGeeeoesetosececsosososssastsossssscaessassscesscsseses 2-21
5-13. Segment Table and Segment Page Tables......ccceeeeess 5-22
5-14. Extended Address Cache....victieeeresecaccccssecnsaees D5—-24

5-15. Extended Address Translation Algorithm........cv0000.. 5-25
Layout Of PCACHE. .. .:veeeeeoonoossssacosnssssasssesees D32
Layout Of CACHE. ... v teeeseococessensscancssssssaseaee 534
5-18. AccesS tO CACHE...:ceceeesesossssssasseasasesssssssses 95-35
5-19. I/0 Buffer AdAresSSing.....ceeeececceccssccssasnsssses 5-39
5-20a. Page Fault Interrupt SEQUENCEe...:ieeeossssccaccesssss 5-40
5-20b. Page Fault Interrupt SEQUENCE...ceececessccsccsassess D—4&1
5-21., Dedicated Memory Locations in System Dat@......ecoe.. 5-43

U1 o
I

-

~ o
.

X ﬂ'|82507 AQ0 3/85

CONTENTS
Figures

6-1. General Interrupt SeQUENCE. ..ttt eesssvsscsensennsssses 61
6-2. INT and MASK ReQiSteIS..ceeetesosseeacsssonsssscscssseces 6-3
6-3. System Interrupt VeCtOr...iveeeeesseseessssccasesseness 6-5
6-4. SIV Entry and Interrupt Stack Marker.......cseeeeeeees 6-6
6-5. Interrupt SEQUENCEe. ..ttt eessssccsssonssssscsssssssseeces 6=9
6-6. IXIT SeQUENCE.ceesesveesssnasssssssssssssscsssssssnas 6-11
7-1. Processor Module Addressing....ceceecesccccensscnsaesas 7-1
7-2. Simplified Bus Transfer SEQUENCe....veeseseosssescnses 12
7-3. Formats Associated with Bus TransfersS...cceeecescesees 7—4
7-4a. Bus Transfer Sequence (Send)......eeeeeeccccccenscsoee 71=7
7-4b., Bus Transfer Sequence (ReCEiVE).i.i.iereeeeerneoeneneess 718
7-5. Incoming Data StOrage...eeesceccscssoscsseassscasessass 7-10
7-6a. Sending and Receiving PacketS.i.eeeereescassconcennes 7-11
7-6b. Sending and Receiving PacketS...eeeeceeecescsosseeanes 7112
7-7. Bus Receive Enabling....ieeeeseeosrsosersecccscconooenees 1-14
7-8. I/0 Channel AddresSinNg...cscieecscccsssennsscccsnssas 1-16
7-9. Simplified I/O SeQUENCE..tcevessscesssoossssansssnsnees 71—17
7-10. Formats Associated with Input-Output.....cseeeseesess 7-18
7-11, Input-Output SeQUENCEe. ..ttt eseseonsorossssessssssaces 123
7-12. Dual-Port AdAressSinNg.....ceeeecsscessscesssnsscnnanes 71-25
7-13. I/0 Controller OwWnership..icciieeeeeeesesseccsacenoeeeas 1-26
- Immediate Operand.....cceeeenens Cee e ceeaseaa ceesssse 3-5

Boolean OperationNS....ceeeseessesoossssessscsnnsecansss 9-21
Boolean Instructions with Immediate OperandS......... 9-22
Deposit Field ExXample..iiivesersseesessessccsaceanannss 9-24
Arithmetic Versus Logical ShiftS..eeeeeeeececeneeeaass 9-25
LWP Instruction AdAressSing..eceeeceseoessssassscssancs
LBP Instruction AdAresSSiNg...scceseescsscassacsssosses 328

I

Memory Reference Instruction FOrmat...ceoeeececeesss
Doubleword AdAresSSiNg..secesescssessesscsscsscsssosnas
PUSH and POP INStIrUCLiONS.csceessecsessssscssscsssassss 3-33
Direct Versus Indirect Branching.....ceeeeeeceseesees 9-41
Branch Forward Indirect......... Ceeeresesesessenasses 9-44
Direction for Moves, Compares, and SCaANS.:...ceeeeess. I-45

WO W WO W WD WO WL WL
]
RPRPPROOIOU R WN

|
==
WNEPOe s ¢ o s s o
« o o

. Locations of Major Software StructureS...eseeeeeeeesss 10-2
Access to System Data StructureS.....eecesesesveecsaass 10-5
Access to System ProcedureS....cceccecsscsssscsscsasnss 10-7
Short-Address Access to Process Code and Data........ 10-8
. Extended-Address Access to Code SegmentS............ 10-10
10-6. Access to Process File Segment....ceevessecesseaeesss 10-11

el

coocoo
]

G W N
.

11-1. Elements Of @ ProCeSS.seeecesocccsscossssseassasansssss 11-2
11-2. Process Creation, Execution, and Termination......... 11-3
11-3., System Configuration and Loading (Part 1)......cc00.. 11-4
11-4. System Configuration and Loading (Part 2).......00... 11-6
11-5. Logging On to GUARDIAN Operating SysteM.....eeoeeees. 11-7
11-6. Creating the EditOor ProCesSS.....sceseesscssccsceasssss 11-8
11-7. Producing an Edit Text File..eiesenaeervesnns ceeseess 11-8

482507 A0O 3/85 xi

CONTENTS
Tables

11-8. Terminating the EQitor ProCesSS...ieeeseesosssesansess 11-9
11-9. Requesting Access to the TAL Compiler....eeeeeeeseee. 11-9
11-10. Creating the TAL Compiler ProCesS.....eceeeeesneasas 11-10
11-11. Compiling the Source Program into Object Code....... 11-11
11-12., Terminating the TAL ProCeSS..:eesesesesscssssassaeaas 11-11
11-13. Requesting Application Program ExecutiON.....eees... 11-12
11-14. Creating the Application ProCesS.....ceceseesseeee.. 11-13
11-15. Terminating the Application ProCesSS...ceeeesesseaes. 11-14

11-16. Returning Control to the Command Interpreter........ 11-14
11-17. Command Interpreter File AssignmentS....ceeeeesese.. 11-15
11-18. Process Life Cycle...civvevnnnn e cetts e s e enaaas 11-17

ceaessees 11-21
cereeaee. 11-22

11-19. Named Process Pair Versus Named Device....
11-20. Process Pair BaCKUP.:eevseecesnnssnssnnsns
11-21. Primary Process Failure.....v.eeeeeseescesocsssssess 11-23
11-22, Requester-Server Pair....... P I
11-23. Multiple Requester-Server Relationships........e.... 11-29
11-24. Pass-Through Arrangement......cesveseessesassnssssess 11-29
11-25. Communication with System ProCessSeS.....ceceenassee. 11-30
11-26. Communication with Application ProcesseS............ 11-31
11-27. Application with Multiple Requesters and Servers.... 11-32

TABLES
3-1. Floating-Point Error TerminationsS....... cre et ecannen 3-13
6-1. Interrupt CoNAiltioNS.ieseeeseeeerassasssoensosossaseans 6-2
A-1. Alphabetical List of Instructions....... Ceeese e .. A-2
A-2, Categorized List Of INStrUCtiONS.ieieeeessooenenonoenns A-9
A-3 Binary Coding, Memory Reference INnsStructionNS......... A-18
A-4. Binary Coding, Immediate INStruCtioNS...eeeesnoessees A-19
A-5. Binary Coding, Move/Shift/Call/Extended Instructlons. A-20
A-6. Binary Coding, Branch InstructionS.....ceeceeussevsss. A-21
A-T7., Binary Coding, Stack Instructions..... C e e veee. A-22
A-8. Binary Coding, Decimal Arithmetic Instructlons....... A-24
A-9, Binary Coding, Floating-Point INStruCtioNS..escesosos A-25
B-1. Definitions of Symbols.....iiiiieiineennnnens S e ... B-1
B-2. Instruction Definition......iieeieeeennneanes Pe s B-3
C-1. Processor COmpPaAriSON..eessesssseeessssassosas ceeeas eos C-1

xii /1|82507 AQ0 3/85

PREFACE

This manual provides a conceptual and functional description of
Tandem NonStop systems, which can be composed of NonStop II
and/or NonStop TXP processors, and the GUARDIAN operating
system. The manual content is presented as follows:

Section 1 provides an overview of the Tandem NonStop system,
introducing both the hardware architecture and the GUARDIAN
operating system.

Section 2 describes the principles on which the hardware and
firmware operate and shows how these principles support the
NonStop system architecture.

Section 3 describes the data formats and the number
representation used for the NonStop II and NonStop TXP
processors.

Section 4 describes program execution from the hardware
standpoint.

Section 5 describes addressing and memory access from a
hardware viewpoint for the NonStop II and NonStop TXP
processors.

Section 6 describes the hardware aspect of the Interrupt
System,

Section 7 describes the interprocessor buses and the
input-output channel.

Section 8 describes cold load (I/0 cold load and bus cold
load) for the NonStop II and NonStop TXP processors.

Section 9 defines the instruction set for NonStop II and
NonStop TXP processors in text form with illustrations.

482507 A00 3/85 X1i1l

PREFACE

e Section 10 describes the primary components and structures of
the GUARDIAN operating system.

e Section 11 describes the environment and fundamental
attributes of processes.

e Appendixes A and B consist of reference tables pertaining to
the instruction set.

e Appendix C provides a high-level comparison of three different
processors manufactured by Tandem Computers: the NonStop 1+
processor, the NonStop II processor, and the NonStop TXP
processor.

e An index is provided to assist the reader in locating specific
topics in this manual.

This manual was written for potential and present Tandem
customers seeking a functional description of the system hardware
and the operating system, for Tandem field analysts and service
engineers, and for students in various courses provided by
Tandem.

Before using this manual, you should read Introduction to Tandem
Computer Systems for a more general overview. The 1introductory
manual explains the basic concepts and purposes behind the system
architecture described in this manual. Ideally, you should also
have some working experience with Tandem systems.

Xiv 482507 AO0 3/85

SECTION 1

INTRODUCTION

HARDWARE SYSTEM STRUCTURE

The Tandem NonStop computer system is designed to provide
continuous operation, incorporating fault-tolerant features in
all levels of the system structure. Significantly, the hardware
and firmware components are designed to allow both continued
execution of processes and continued access to data bases when a
system component fails. These design goals are illustrated in
diagram 1 of Figure 1-1.

Fault tolerance for system and user processes is accomplished by
executing a secondary (or "backup") process in another processor,
programmed to require only periodic "checkpoint messages" to keep
up to date on the current state of the primary process. Upon any
failure of the processor that is executing the primary process,
the backup process can resume execution of the work from the
point of the last valid checkpoint. The backup process, instead
of the primary process, will then be accessing the data base on
disc. As indicated in the diagram (1), dual data paths between
processors assure communication of the checkpoint messages.

Fault tolerance for the user's data base is accomplished
primarily by the use of dual-ported controllers and, optionally,
by maintaining duplicate data on two separate disc volumes
("mirrored" volumes). For mirrored volumes, all data written out
to the user's files is automatically written into both disc
volumes. Thus, whenever data is read from the files, either
volume can be accessed, since they contain identical information.
As in the case of interprocessor communication, two data paths to
the disc volumes are provided.

The various hardware features that accomplish these design goals

are considered under the following subheadings--illustrated by
the remaining diagrams in Figures 1-1, 1-2, and 1-3.

482507 A0 3/85 1-1

INTRODUCTION
Hardware System Structure

It should be noted in considering the following information that,
although the mechanics for switching between multiple modules and
data paths reside in the hardware, the control of such actions is
a function of the GUARDIAN operating system.

Independent Multiple Processors

The Tandem NonStop system consists of 2 to 16 processor modules.
A processor module is sometimes referred to as a central
processing unit, or CPU for convenience, although in a Tandem
system, no one processor is more "central" than any other. Each
processor (CPU) contains the functions that normally comprise a
complete computer system: instruction processing unit (IPU),
memory, and input-output channel. In addition, each module
contains logic for a fourth main function: the interprocessor
bus interface through which the processors communicate with each
other. Furthermore, each module is associated with its own
separate power supply. (See diagram 2 in Figure 1-1.)
Therefore, each processor module is capable of operating
independently of, and simultaneously with, all other processor
modules in the system.

This fundamental design feature means that each processor is
totally self-sufficient. An IPU failure, for example, cannot
prevent another processor from functioning, since there are no
shared elements such as memory. A failing IPU cannot contaminate
any memory data outside of its own module.

Dual-Bus Data Paths

Each processor module is connected to all other processor modules
through redundant high-speed interprocessor buses, each
controlled by its own separate bus controller. See diagram 3 in
Figure 1-1. Programs running in one processor module communicate
with programs running in other processor modules by means of
these buses. Each interprocessor bus is fully autonomous,
operating independently of (but simultaneously with) the other
bus.

The use of two buses assures that two paths exist between all
processor modules in the system. If one bus fails, all
interprocessor communication is automatically routed over the
remaining bus. The use of bus controllers that are separate and
independent of the logic circuits within the processors assures
that no failure of a processor module will cut off bus
transmission.

1-2 4§ 82507 A00 3/85

INTRODUCTION
Hardware System Structure

1. GOALS OF A NONSTOP SYSTEM

PROCESSOR 0

PRIMARY
PROCESS

CHECKPOINT
MESSAGES

PROCESSOR 1

2. INDEPENDENT MULTIPLE PROCESSORS

INTERPROCESSOR BUSES

/

/ DUPLICATE
/ DISC
VOLUMES

BUS
CONTROLLERS

|PB INTERFACE IPB INTERFACE
« > 1PU 1PU £
zg s
232 MEMORY MEMORY g2
1/0 CHANNEL 1/0 CHANNEL
170 [}{e]
3. DUAL-BUS DATA PATHS
X BUS
| [L e
e

IPB INTERFACE

IPBINTERFACE

4. DUAL-PORT DEVICE CONTROLLERS

L

[
]

1/0 CHANNEL 1/0 CHANNEL

DEVICE
CONTROLLER

O

DEVICE
CONTROLLER

O

5. DUAL-PORTED/MIRRORED DiSCS

[+
[

~

1/0 CHANNEL 1/0 CHANNEL

DISC
CONTROLLER

DISC
CONTROLLER

$5001-001

Figure 1-1.

«’ 82507 A00 3/85

Elements of Hardware System Structure

INTRODUCTION
Hardware System Structure

The interprocessor bus interface in each module is capable of
accepting transmissions from either bus, under control of the
operating system.

Dual-Port Device Controllers

Data is transferred between an input-output device (such as a
disc, terminal, or line printer) and a processor module by means
of an input-output channel. Each processor module has one I/0
channel that is capable of communicating with up to 256 I1/0
devices. See diagram 4 in Figure 1-1,.

I1/0 devices are interfaced to the 1/0 channels by dual-port
controllers. Each dual-port controller is connected to the I/0
channels of two processor modules. Therefore, each I/0 device
can be controlled by either of two processor modules. However,
in operation, an I/0 device is controlled exclusively by one
processor module until a failure occurs such that the processor
module can no longer communicate with the I/0 device. 1If such a
failure occurs, the other processor module takes control of the
1/0 device.

Dual-Ported and Mirrored Discs

Because discs represent the most critical class of 1I/0 devices,
disc drives can also have dual ports. In combination with the
dual ports on the disc controller, various configurations are
possible to meet any desired degree of fault tolerance. For
example, connecting the dual ports of the controller to separate
I1/0 channels provides for fault tolerance of the I/0 channels.
Connecting dual ports of a disc drive to separate controllers
provides for fault tolerance of the disc controllers. Diagram 5
of Figure 1-1 shows an example of a fully mirrored, fully
dual-ported configuration.

Multiple Power Sources

Power is distributed in the system in such a manner that each
dual-port controller receives power from two sources. If a
supply fails, causing a processor module to become inoperative,
the alternate power supply can assume the full load.

1-4 4§ 82507 A00 3/85

INTRODUCTION
Hardware System Structure

6. MULTIPLE POWER SOURCES

BUS -
CONTROLLER M
PROCESSOR 0 SUPPLY PROCESSOR 1 SUPPLY
100A CAPACITY 100A CAPACITY
72A LOAD 72A LOAD
4 : o« :)
w w
a >
v = Za
23 €2)
50A 50A
DEVICE
CONTROLLER
A 10A] 10A
DEVICE
CONTROLLER
- 10A) 10A
DEVICE
CONTROLLER
\ 10A A
DEVICE
CONTROLLER
K 10A)

1/0-ONLY
POWER I

SUPPLY 100A CAPACITY
40A LOAD
7. POWER FAILURE RECOVERY
AC 5V UNINTERRUPTIBLE
> tPB INTERFACE
LINE g
257 Py
i
— 2
& %@ [T 12V UNINTERRUPTIBLE) MEMORY
a
48V 1/0 CHANNEL
DC 5V INTERRUPTIBLE {100A)
BATTERY L
MODULE POWER FAIL WARNING INTERRUPT
(10 A H}

$5001-002

Figure 1-2, Power Distribution for NonStop II Processors

482507 A00 3/85 1-5

INTRODUCTION
Hardware System Structure

In a NonStop II processor, the processor consumes approximately
half the power available from its supply; the remainder is
available to help power the device controllers. In some cases,
the power available from these supplies is sufficient to power
all the device controllers; in other cases, a supplementary power
supply for 1/0 only is necessary.

In a NonStop TXP processor, the processor consumes most of the
power available from its supply--the CPU power supply is not
available to help power the device controllers. The device
controllers must receive their power from an I/0O-only power

supply.

Diagram 6 in Figure 1-2 shows, in simplified form, the way in
which power is distributed in a system using NonStop II
processors in order to achieve reliable power backup. The
current values shown are mostly illustrative only; device
controllers, for example, generally take much less than the 20
amperes assumed in this figure. Exact values and the adjustments
required to achieve good power distribution are evaluated by
Tandem for each particular system when the system is configured.

As shown, the two bus controllers require a total of about 4
amperes, 2 amperes each from the supplies associated with
processor 0 and processor 1. (Bus controller power is always
taken from the supplies for these particular CPUs.) The
processor modules are assumed to require 50 amperes each; this
depends on memory size and configuration. The output current
capacity of the supplies is 100 amperes each (for the 5-volt
interruptible supply, discussed later). Note that each device
controller nominally receives one-half of its requirements (10
amperes) from each of two different power supplies. (In
actuality, adjustments are made so that the CPU supply provides
somewhat less than half the needed power, and the I/0 supply
provides slightly more than half.) Under the assumed conditions,
then, each processor's power supply is loaded to 72 amperes, and
the I/0-only supply is loaded to 40 amperes.

Now assume a failure in the processor 0 power supply. The
processor 0 module goes down, but none of the device controllers
or bus controllers is affected. The processor 1 power supply now
delivers the full 4 amperes needed by the bus controllers
(increasing its load to 74 amperes), and the 1/0-only power
supply delivers the full 20 amperes to each of the uppermost two
device controllers (increasing its load to 60 amperes).

Likewise, if the I/O-only power supply should fail, the load on
each processor's power supply increases by 20 amperes (to 92),
still within the 100-ampere capacity. Thus, any single power
supply failure can be compensated by increased loading on the
remaining supplies. However, the failure of any two supplies
cannot always be accommodated by the remaining ones.

1-6 4 82507 A00 3/85

INTRODUCTION
Hardware System Structure

6. MULTIPLE POWER SOURCES
BUS - A
CONTROLLER [
PROCESSOR 0 SUPPLY PROCESSOR 1SUPPLY
ONTBUS 100A CAPACITY 100A CAPACITY
CONTROLLER 82A LOAD 82A LOAD
2a
] &2
H & e
a 8 a. 3
80A
DEVICE 80A
CONTROLLER
10A A | 10A
r ~
DEVICE
CONTROLLER
10A A N 10A
e)
1/0-ONLY
POWER |
(SUPPLY 100A CAPACITY
40A LOAD
DEVICE
CONTROLLER
| 104 4 % 10A
:)
DEVICE
CONTROLLER
_ 10A j k 10A
~
1/0-ONLY
7. POWER FAILURE RECOVERY ~— POWER -,
. SUPPLY 100A CAPACITY
40A LOAD
AC - 5V UNINTERRUPTIBLE o INTERFACE
LINE > z IPB INTERF
2 g% PU
a
H
MEMORY
77)
agv > 1/0 CHANNEL
DC 5V INTERRUPTIBLE (100A)
BATTERY L
MODULE POWER FAIL WARNING INTERRUPT
10 A-H)
S$5001-003

Figure 1-3. Power Distribution for NonStop TXP Processors

482507 A00 3/85 1-7

INTRODUCTION
Hardware System Structure

Diagram 6 in Figure 1-3 shows, in simplified form, the way in
which power is distributed in a system using NonStop TXP
processors. The current values shown are illustrative only.

Again, the two bus controllers require a total of about 4
amperes, 2 amperes each from the supplies associated with
processor 0 and processor 1. The processor modules are assumed
to require 80 amperes each; this depends on memory size and
configuration. The output current capacity of the supplies is
100 amperes each (for the 5-volt interruptible supply, discussed
later). 1In this example, each device controller now receives
one-half of its requirements (10 amperes) from each of two
different I/0-only power supplies.

Now assume a failure in the processor 0 power supply. The
processor 0 module goes down, but neither the device controllers
nor the bus controllers are affected. The processor 1 power
supply now delivers the full 4 amperes needed by the bus
controllers (increasing its load to 84 amperes). Power
distribution to the device controllers remains unaffected.

Likewise, if an I/O-only power supply should fail, the load on
the remaining power supply increases by 40 amperes (to 80),
still within the 100-ampere capacity. Thus, any single power
supply failure can be compensated by increased loading on the
remaining supplies. However, the failure of any two supplies
cannot always be accommodated by the remaining ones.

Power-Failure Recovery

Diagram 7 in Figures 1-2 and 1-3 illustrates the power-failure
recovery features that are incorporated into the internal
circuits of each processor module. Note that memory is powered
separately from the rest of the module, with its own 5-volt and
12-volt supplies (memory for a NonStop TXP processor does not
require 12 volts); these are termed uninterruptible supplies,
since they are maintained by battery power if an AC line failure
occurs. Battery power then allows memory to retain its contents
for 1.5 hours or more, depending on memory size and the charge
state of the battery.

The interruptible 5-volt supply powers the remainder of the
module. 1In order to allow the operating system to bring the CPU
to an orderly halt, the power supply issues a special signal
(power fail warning interrupt) when AC power is lost for more
than 24 milliseconds. This signal gives a minimum of 5
milliseconds warning (depending on loading of the supply) that
the 5-volt supply is going down.

1-8 /1|82507 AQO0 3/85

INTRODUCTION
Hardware System Structure

The system automatically restarts upon restoration of power,
resuming execution of the processes that were in progress at the
time of the power failure.

Other Reliability Features

The ability of the Tandem NonStop computer system to provide an
environment where applications can continue to run regardless of
a module failure is due primarily to its unique fault-tolerant
features, described above. 1In addition to those unique features,
the NonStop system also incorporates various other reliability
features, which include the following:

e In the event of a power failure, each processor module (under
control of its operating system) saves its current operating
state in memory. When power is restored, the hardware
automatically invokes the appropriate operating system
procedures to resume all operations.

e If an uncorrectable error occurs in memory, the operating
system determines if the associated area is critical to system
operation., If it is not, the area is flagged as bad and not
used again until the memory is repaired. 1If the area is
critical, the operating system halts execution in its
processor.

e C(Critical portions of the operating system are main-memory
resident; this assures their availability in the event a
virtual memory (disc) failure occurs.

e The cooling system for the computer is designed so that if a
single failure occurs, ample cooling is still available.

e Any module in the system (i.e., processor, I1/0 controller,
power supply, fan, etc.) can be removed from the system and
replaced online without stopping operation of other system
modules.

e Routing, sequence, and checksum words are generated by the
transmitting processor module and checked by the receiving
processor for every packet of 13 data words transferred over
the interprocessor buses.

e A parity bit is associated with each 16-bit word transmitted
over the I/0 channels.

® An interval timer is provided; the operating system uses the

timer to notify the application program in the event a data
transfer does not complete.

482507 A00 3/85 1-9

INTRODUCTION
Hardware System Structure

® Six error correction bits are generated and stored with each
16-bit word in the semiconductor memory; circuitry is provided
to correct all single-bit errors and detect all double-bit
errors.

e The addressing and count information associated with I/0
transfers is kept in the controlling processor module. This
prevents a controller from contaminating more than one
processor module because of a failure of an address or word
count register.

® The memory mapping scheme provides separate system and user
address spaces. Operating system data areas can be accessed
only by operating system programs; application programs cannot
inadvertently destroy the operating system.

e Parity checking is provided for the NonStop II processor's
memory map registers.

e Parity checking is provided in the NonStop TXP processor's
caches.

e Two hardware modes of processor operation are provided:
privileged and nonprivileged. Certain critical operations
(such as accessing system tables from application programs or
initiating input-output transfers) can be performed only while
in privileged mode. Typically, only the GUARDIAN operating
system runs in privileged mode; privileged operations are
performed on behalf of application programs through calls to
operating system procedures. Application programs running in
nonprivileged mode are prevented from becoming privileged.

1-10 482507 A0 3/85

INTRODUCTION
Operating System Overview

OPERATING SYSTEM OVERVIEW

In the Tandem NonStop computer system, master copies of the
GUARDIAN operating system software are maintained in the system
subvolume of a mirrored disc volume (Figure 1-4); each CPU uses
or executes appropriate portions of this master copy, depending
on its unique configuration. The mirrored system volume is a
pair of physically independent disc devices, usually attached to
separate controllers but accessed as a single volume and manraged
by the same executing input-output program.

Critical and frequently used parts of the operating system reside
permanently in each CPU's memory. Noncritical or less frequently
used portions reside in virtual memory; they are brought into CPU
memory from disc only when needed, by way of the CPU (one of two)
that is currently controlling the system volume. The duplication
of GUARDIAN software, plus the fact that there is a dual path to

| Li i

CPUO CPU1 CPU2
GUARDIAN GUARDIAN GUARDIAN
(resident portion) (resident portion) (resident portion)
Dual-port I
controller —_

Dual-port
controller

$SYSTEM] [$SYSTEM
primary mirror

Dual-port S
controller —

$5001-004

Figure 1-4. Tandem Computer System Failure-Tolerant Environment

482507 A00 3/85 1-11

INTRODUCTION
Operating System Overview

the system volume, guarantees coninued system operation even if a
CPU, input-output channel, or disc drive fails.

Normal GUARDIAN software operation frequently requires that CPUs
in the system depend on one another (Figure 1-5). For example,
the virtual memory disc input-output done for a process in CPU 0
may actually be performed by a disc process in CPU 2.

X BUS

DIsC
PROCESS
PRIMARY

DisC
PROCESS
BACKUP

USER
PROCESS

VIRTUAL
MEMORY

(FOR USER
PROCESS)

§5001--005

Figure 1-5. Interprocessor Dependency

Thus, although each CPU essentially operates independently under
control of its own operating system, all CPUs need to be able to
communicate with each other. To provide a reliable basis for
this interprocessor communication, each CPU monitors the status
of all other CPUs in the system. If a particular CPU ceases to
operate as it should, early detection of the failure and prompt
notification of any processes that back up those in the
malfunctioning CPU allow the system to continue operating. To
detect such problems, the GUARDIAN software uses messages

1-12 482507 A0O 3/85

INTRODUCTION
Operating System Overview

transferred over the interprocessor bus (Figure 1-6). In this
message scheme, every CPU in the system must receive a message
from all other CPUs (as well as itself) at least once during a
predetermined polling period of approximately one second. For
this reason, each CPU transmits messages to indicate that it is
still operating. Such messages are called "I'm alive"” messages.

("M ALIVE)

. ‘MALI
PROCESSOR i VE) PROCESSOR

[] ’ 1

P’\"VE)

11

PROCESSOR
2

S§5001-006

Figure 1-6. Failure-Detection Messages

If a CPU does not receive any "I'm alive" messages from a
particular CPU during two consecutive polling periods, it
declares that CPU down. If a CPU does not receive its own "I'm
alive" message, it continues to operate but does not make any
attempt to take ownership of any terminals, disc drives, or other
devices. Usually, a CPU that does not respond has failed one of
the many internal consistency checks that the operating system
regularly performs. (Less likely, though also possible, is a
failure of one of the interprocessor buses.) A serious failure

0’182507 AQ00 3/85 1-13

INTRODUCTION
Operating System Overview

causes the CPU to halt, with the halt reason indicated to the
system operator. This prevents the CPU from sending "I'm alive"
messages; as a result, this CPU is soon declared down by all
other CPUs in the system.

MAIN OPERATING SYSTEM COMPONENTS

The GUARDIAN operating system contains four logically distinct
areas:

e User-callable library procedures (and associated routines)
e System processes (including associated data segments)

e Kernel

e System data structures

A conceptual view of these areas and their interrelationships
appears in Figure 1-7.

In this figure, oval symbols depict both system and user
processes. The two octagonal shapes represent portions of the
system library, which consists of user-callable library
procedures and kernel procedures., Pairs of dotted lines show
paths between the process and library elements of the diagram;
these paths illustrate the information flow within the system.
In some cases, the paths are traversed by procedure calls and
returns. In other cases, they actually carry messages to and
from processes. But in either event, they illustrate an ability
to make and satisfy requests--to pass and return information.

The natural focal points of the system, as illustrated in Figure
1-7, are the user-callable library and the kernel. Requests
generated by application processes focus on user-callable library
procedures--they form the application process's window to the
system. Communication paths between system processes, however,
focus naturally on the kernel portion of the system library.

A short discussion of these and other components appears under
the following subheadings.

1-14 4482507 AO0 3/85

INTRODUCTION
Operating System Overview

APPLICATION APPLICATION APPLICATION
PROCESS PROCESS PROCESS
A

USER
GUARDIAN
OPERATING
SYSTEM

CALLABLE LIBRARY

Process Creation
File System

KERNEL

SYSTEM
MONITOR

Message System
Resource Coordination
Interrupt Handlers
Process Control

/o
PROCESSES

SYSTEM
PROCESSES

MEMORY
MANAGEMENT
PROCESS

OPERATOR
PROCESS

S$5001-007

Figure 1-7. Logical Operating System Components

User-Callable Library Procedures

Executing application processes request operating system services
by issuing calls to the user-callable library procedures (or
simply "callable" procedures). These procedures operate in the
data environment of the calling process. They use the process's
data area as their temporary storage space, but their
privileged-mode execution also gives them access to the system
table structures, such as those stored in the system data segment
(Figure 1-8).

User-callable library procedures, such as OPEN, READ, WRITE, and
CLOSE, are located in the system code area and so can be shared
by any and all processes that need the services they provide.

482507 A00 3/85 1-15

INTRODUCTION
Operating System Overview

SYSTEM LIBRARY

Request for
System Services

PROCEDURE

CODE DATA
PROCESS
STORAGE

PROCEDURE | = |~ ——™ 71
CALL

PROCEDURE
TEMPORARY
STORAGE

SYSTEM DATA
SPACE

USER PROCESS

S$5001-008

Figure 1-8. Application Process Access to System Services

System Processes

System processes constitute a limited set of privileged processes
that come into existence at cold-load time and exist continuously

for a given configuration as long as the host CPU remains

operable. The system processes primarily consist of a memory
manager and a monitor in each CPU, and operator and I/0 processes
distributed in various CPUs of the system. Each I/0 process pair

logically "owns" one or more I/0 devices, and in order to
these devices, other processes must sent a request to the
"owning" process. If the owning process decides to honor
request, it will provide the necessary service and return
"reply" to the requesting process.

access

the
a

1-16 4§ 82507 A00 3/85

INTRODUCTION

Operating System Overview

The location of the various system processes in a three-CPU
system is shown in Figure 1-9.
are present in every CPU, but others (mainly those related to
input-output) are found only in the CPUs connected to their

Notice that some of the processes

11

SYSTEM
MONITOR

MEMORY
MANAGER

OPERATOR
PRIMARY

DIsc 1/0
PRIMARY

TERM 1/0
PRIMARY

—— ——— —— — — ————— — — — —— —— —

-
-

-

cPU @

SYSTEM
MONITOR

MEMORY
MANAGER

OPERATOR
BACKUP

DIsC 1/0
BACKUP

TERM /O
BACKUP

TAPE /O
BACKUP

o)
<
>
D
S
>
2

SYSTEM
MONITOR

-

MEMORY
MANAGER

TAPE 1/O
PRIMARY

-

CPU 1

ed
—

T
|
!
|
|
|
!
|
|
!
|
|
|
|
|
|
|
]

-

0

CPU 2

GUARDIAN
SYSTEM
PROCESSES

USER
PROCESSES

TERM

GUARDIAN
SYSTEM
PROCESSES

USER
PROCESSES

1 7TAPE L

USER
PROCESSES

$5001-009

Figure 1-9.

II'| 82507 AQO0 3/85

Distribution of System Processes

INTRODUCTION
Operating System Overview

associated peripheral devices. Actual determination of these
locations is dependent on system configuration, and is specified
at system generation time. The following paragraphs describe the
main functions of these system processes,

Memory Manager. The memory manager (Figure 1-10) services
requests generated by interrupt handlers as well as by other
system processes. Primarily, this process implements the paging
scheme for virtual memory.

The memory manager receives special requests from the Page-Fault
interrupt handler to bring needed pages into CPU memory from
disc. It is also used by the monitor process to help set up the
memory environment of a new process that is being created in the
CPU. Because the memory manager deals only with memory resources
in the CPU where it is running, a separate memory manager process
must reside in every CPU in the system.

Make page

f Read absent
available A
to the page m.
EXECUTING process from disc DISC
PROCESS 1/0 PROCESS
-—
3

Interrupt for MEMORY
absent page MANAGER
l pom
| VIRTUAL
| MEMORY
PAGE FAULT
INTERRUPT HANDLER |
L]
| |
|
$5001-010

Figure 1-10. Memory Manager Process

1-18 4982507 ADO 3/85

INTRODUCTION
Operating System Overview

Monitor. Like the memory manager, a monitor process runs in each
CPU on the system (Figure 1-11). This process handles many
housekeeping functions and initiates process creation and’
deletion done within its particular CPU. It also serves as an
information source for processes running in all CPUs in the
system. For example, if a process running in CPU 2 needs status
information about a process running in CPU 0, the monitor in CPU

0 is contacted with a request to locate and return the necessary
information.

—
SYSTEM
MONITOR
\ REQUESTING
\ USER
PROCESS
USER
PROCESS
CPU O CPU 1 CPU 2
$5001-011

Figure 1-11. Monitor Process

II’|82507 AQ0 3/85

INTRODUCTION
Operating System Overview

Operator Process. Another system process, the operator process,
runs as a process pair. Unlike the memory manager and the
monitor, there are only two copies of this process (a primary and
a backup) in the entire system. As illustrated in Figure 1-12,
the main responsibility of the primary process is to transmit
Operator process messages to the system console and to disc.

The backup process receives messages from the primary to inform
it of actions in progress. This enables the backup to assume the
duties of the primary if the primary fails.

DISC) —
1/0 PROCESS
Log
TERM
~\ 1/0 PROCESS

messages

USER/SYSTEM
PROCESSES

Where is the

Console
messages

L
N/

CONSOLE

OPERATOR
PROCESS

process named
$XXX located?

USER/SYSTEM
PROCESSES

S§5001-012

Figure 1-12. Operator Process

1-20 482507 A00 3/85

INTRODUCTION
Operating System Overview

Input-Output Processes. These processes manage input-output
hardware. Typically, an input-output process controls a single
physical device. For instance, line printers, card readers, and
unmirrored discs each have their own input-output processes. As
exceptions to this rule, however, terminal processes,
communications processes, and disc processes associated with
mirrored disc volumes can each be called upon to control multiple
physical devices. A copy of the input-output process for a
particular device resides in the memory of each CPU connected to
the device's controller. A process pair is actually involved in
all input-output: the primary process is active in controlling
the device while the backup process takes over if a CPU or
input-output channel fails. These two processes run on separate
CPUs, but use the same code. At critical points, the primary
transmits its state and current data to the backup. This enables
the backup process to continue the operations being done by the
primary process if the primary is no longer able to function.

USER
PROCESS CODE

!

FILE SYSTEM

PRIMARY
1/0 PROCESS

!

DRIVER

DEVICE

§5001-013

Figure 1-13. Input-Output Process

482507 A0O 3/85 1-21

INTRODUCTION
Operating System Overview

Requests for input-output operations usually come from the
GUARDIAN file system. The file system is a set of system
procedures, part of which are in the user callable group and part
in the kernel. These procedures run as part of the user's
process and send messages to the input-output process, which is
responsible for controlling the device. The input-output
process, in turn, calls its own procedures to deal with the
device dependencies of the peripheral involved and to handle the
physical transfer of data. Appropriate status and data values
are returned to the user's process by reply messages (Figure
1-13).

Kernel

The kernel is a set of system library procedures that provide
first-level software extensions to the basic hardware capability
of the Tandem computer system. The kernel incorporates four
types of low-level system operations:

e Interrupt handling

® Resource coordination (including counting semaphores and
mutual exclusion)

® Interprocess message transfers

® Process management

Interrupt Handling. Some of the kernel procedures are invoked
when an interrupt occurs. These interrupts can result from a
number of causes, including: hardware errors, references to code
or data pages absent from memory, completion of interprocessor
bus messages, input-output transfer completions, timer list
updates, and process execution requests.

In most instances, each action that can cause an interrupt
corresponds to a particular bit in the Interrupt Request (INTA)
register. For example, an input-output interrupt request
generated by the hardware (standard I1/0) always sets Bit 14 of
this register. When the microcode that manages interrupts
detects that one of these bits is ON, it checks to determine
whether the corresponding bit in the Interrupt Mask register is
also ON. If this matching bit is ON, the interrupt occurs;
otherwise, the interrupt is postponed until the matching bit in
the mask is set to allow it. For example, suppose that an
input-output controller needs to request an interrupt. The
following events take place (see Figure 1-14).

1-22 Aﬁ82507 A00 3/85

INTRODUCTION
Operating System Overview

1/0 CONTROLLER

1

INTERRUPT
\ -/

l B Interrupt
Request Register*®

I interrupt
o 1 Mask Register*®

CURRENT
PROCESS

SAVED
REGISTERS

INTERRUPT
STACK
AREA

INTERRUPT
TABLES

INTERRUPT
CODE

*Bit 14 is set for
Standard /0
Interrupt

$§5001-014

Figure 1-14. Interrupt Handling

1. The I/0 controller sends an interrupt request to the IPU by
way of the I/0 channel. The IPU accordingly sets bit 14 in
the Interrupt Request Register ON ("A" in Figure 1-14). When
the interrupt-managing microcode next checks this register,
it detects that Bit 14 is on.

2. Since Bit 14 of the Interrupt Mask register is also ON ("B"
in Figure 1-14), the microcode begins to process the
interrupt.

3. The microcode uses the number of the bit set in the Interrupt
Request register (bit 14) as an index to an entry in a table
in the system data segment ("C" in Figure 1-14). This entry
supplies data on how the interrupt environment should be

Aﬁ82507 A00 3/85 1-23

INTRODUCTION
Operating System Overview

established. It contains, among other elements, the
addresses of the code and data to be used by the interrupt
handler procedure.

4. The microcode saves the executing environment for the current
process in the interrupt handler's data area and sets the
code and data registers to define the interrupt handler's
environment ("D" in Figure 1-14). Execution now continues in
the interrupt handler's code.

NOTE

Although they use code and data, interrupt handlers
are NOT processes. Unlike processes, they are
invoked by hardware or microcode, and have no entries
in the system tables associated with processes. The
operating system maintains interrupt-handler code and
data in main memory at all times because they must
respond instantaneously to interrupts.

5. When it completes its required operations, the Input-Output
interrupt handler takes one of these two actions:

a. It returns control to the interrupted process at the
point where the interrupt occurred ("E" in Figure 1-14).
To do this, the interrupt handler restores the
interrupted environment by resetting the process register
values saved in the interrupt's data area.

b. It passes control to the Dispatcher, another interrupt
handler. This typically occurs in the case of
significant interrupts where a process of greater
priority than the currently executing process has become
ready to run as a result of the interrupt. In such
cases, the Dispatcher changes the execution environment
by selecting the highest-priority process that is ready
to run and setting the CPU register values to permit it
to run.

Resource Coordination. In a sophisticated operating system

where competing processes often request system resources or try
to change system tables at the same time, some kind of
coordination is an absolute requirement. The Tandem NonStop
architecture satisfies this requirement by providing two
mechanisms: a counting semaphore facility and a mutual exclusion
facility.

1-24 4482507 A00 3/85

INTRODUCTION
Operating System Overview

Counting Semaphores. The counting semaphore facility permits
competing processes to obtain temporary, exclusive access to a
particular resource (Figure 1-15). A semaphore (which represents
a resource) is composed of a resource count and a waiting list.
Processes that take a semaphore decrement the resource count;
those that free a semaphore increment the count.

A process actually "takes" or "frees" a semaphore by executing
special privileged instructions. When another process tries to
take a semaphore that is already taken, the taken semaphore
indicates that the resource controlled by the semaphore is
currently unavailable (its resource count is exhausted); the
requesting process then can be placed on the list of waiting
processes and can receive the semaphore when its turn comes.
Typically, instructions to take or free semaphores are issued by
system procedures called by system processes. Maintenance of the
semaphore waiting list, however, is managed by the Dispatcher.

SEMAPHORE

Resource NOT
o e currently
/ available

Use the RESOURCE /
resource
protected by / @ Queue up

Semaphore /

/ WAITING
System Table / PROCESS NO. 1 w
Device etc...
/ A
/ |
/ !
/ N
// WAITING G
@ Take the Semaphore / PROCESS NO. 2
/

PROCESSUSING \ T _,
THE RESOURGE -

mcmcopo

WAITING

PROCESS NO. 3

§5001-015

Figure 1-15. Semaphore Use

/1,82507 A00 3/85 1-25

INTRODUCTION
Operating System Overview

Mutual Exclusion. A semaphore, as noted in the preceding
paragraphs, is intended to protect access to a specific resource.
It does not affect other processes not needing the resource
related to the semaphore. 1In certain cases, however, a process
needs to extend its exclusive access far beyond the level
provided by semaphores. It needs, in fact, to gain absolute
control of the entire machine. A process can achieve this level
of control through "mutual exclusion.” 1In achieving this
control, though, the process must operate in a state where most
types of interrupts are temporarily disabled. This effectively
trades the majority of the operating system's primary functions
for exclusive access to the machine; for instance:

e Because the Dispatcher Interrupt is off, no other process can
run,

® Because the memory manager process cannot be dispatched, page
faults cannot be processed.

e Because the Time List interrupt is off, timer interrupts are
delayed.

e Because the Input-Output interrupts are off, no input-output
can be completed.

e Because the Bus Receive interrupts are off, no interprocessor
bus transfers can be completed.

To ensure that these functions are disabled only for short
periods of time, a process uses mutual exclusion only during very
critical operations when no interference can be tolerated. Thus,
the process typically disables the interrupts, performs the
critical functions, and then immediately reenables the
interrupts. First, the process executes the MXON privileged
instruction which performs the following:

1. It ensures that the code and data pages required while the
interrupts are disabled are present in main memory. The
instruction uses two specified ranges, one for code and one
for data. It generates dummy memory references in each range
to cause page-fault interrupts that bring in the required
pages. When a page fault occurs, the instruction is
automatically re-executed. This reexecution continues until
all required pages are present.

2, Once all required pages are present, MXON saves the old
interrupt mask and then disables all interrupts (except the
power-fail and high-priority input-output interrupts) by
setting the mask bits to 0. This allows the process to
secure and retain access to the machine.

1-26 282507 A0O0 3/85
4

INTRODUCTION
Operating System Overview

After the process executes the critical code, it then executes
the MXFF privileged instruction. This instruction restores the
old interrupt mask, once again enabling the interrupts.

Interprocess Message Transfers. Since all Tandem NonStop systems
have multiple CPUs, and thus multiple operating systems, the
GUARDIAN operating systems in all CPUs function together as a
group of cooperating processes. These processes communicate by
exchanging messages (Figures 1-16 and 1-17) through a "message
system.”" This system consists of a few privileged procedures and
a bus interrupt handler, all located in the system library.
Message system functions can be called directly by system
processes but not by user-written processes (which must invoke
the message system implicitly). For example, when a user-written
process calls the system procedure named NEWPROCESS, this
procedure in turn calls the message system to send a message
requesting process creation to the appropriate monitor process.

L

DISPATCHER BUS RECEIVE
BUS SEND CODE INTERRUPT CODE

SYSTEM
MONITOR

SYSTEM
MONITOR

USER CODE

‘/ }‘ll'

NEW PROCESS
) Process
\ Creation

~— — -‘/ Requested

Message System

$5001-016

Figure 1-16. Message Transfer Between CPUs

Aﬁ82507 A00 3/85 1-27

INTRODUCTION
Operating System Overview

Implicit use of the message system is always accomplished through
user-callable system procedures; for instance, in the above
example, the call to the monitor was handled by the file

system and remained hidden from the user. Users' processes can,
however, send messages to other processes directly by opening
these other processes as files and writing data to them; this
data, of course, is transmitted through the file system. With
either explicit or implicit calls, all message system procedures
except interrupt handlers run on the calling process's data area
and appear to be part of that process.

X BUS
il Y BUS
USER CODE
NEW PROCESS
Message System
Process
Creation SYSTEM
Requested MONITOR
o—
”~ ~.-
\ — /
85001-017

Figure 1-17. Message Transfer Within a CPU

-
1

-28 482507 A0O 3/85

INTRODUCTION
Operating System Overview

System Data Structures

Several segments of memory (64K -words each) are allocated to
contain various system data structures, mostly used by kernel
procedures and system processes. One of these segments is the
system data segment (Figure 1-18). Essentially, as shown, this
segment is divided into four major parts: globals, fixed-length
tables, variable-length tables, and system pool space (SYSPOOL).

SYSTEM DATA
SPACE

System Global Addresses 0

Fixed Tables

Variable Tables

System Pool

65535

§5001-018

Figure 1-18. System Data Segment

482507 A00 3/85 1-29

INTRODUCTION
Operating System Overview

The globals are primarily known-address pointers into the
remainder of the system data segment and to system tables in
extended memory, thus permitting both microcode and software to
reference the primary system tables. The fixed-length tables
include, among other things, the Input-Output Control (IOC)
table, the Bus Receive Table (BRT), the System Interrupt Vector
(S1v), the Subchannel Table (SCT), and the interrupt stacks. The
variable-length tables include, among other things, the
Controller Table (CTL), Link Control Blocks (LCBs), Process
Control Block (PCB) table, and various message system elements.
The system pool area is used by the operating system to allocate
storage space for various pools, as needed, after which such
space is returned (deallocated).

All of the system data segment always remains in CPU memory.
Other tables maintained by the kernel are kept in "extended
system data segments" and usually are in CPU memory--although
unused areas in some cases may not always be. Tables located in
extended data segments include the Process Control Block
Extension (PCBX), Destination Control Table (DCT), XRAY counters,
Network Routing Table (NRT), System Entry Points (SEP), and
System Status Messages.

1-30 482507 A0O 3/85

SECTION 2

HARDWARE PRINCIPLES OF OPERATION

This section describes the fundamental operations of the Tandem
NonStop system hardware. Also included are a description of the
hardware modules, and the operation of data stacks.

FUNDAMENTAL OPERATIONS

To show how the NonStop system provides the means for creating a
fault-tolerant application, the following example is given. The
example is illustrated in Figures 2-1 and 2-2.

The application consists of a primary application process running
in processor module 0 (the primary process is designated A) and
its backup process running in processor module 1 (the backup
process is designated A'). The coded instructions for A and A'
are identical. With the aid of the GUARDIAN software, each can
determine whether it is the primary or the backup process, then
perform its proper role.

The primary process, while operable, performs all of the
application's work. At critical points during each transaction
cycle (such as prior to altering the contents of a disc file),
the primary process sends a message to its backup process. These
messages contain checkpointing information (such as an updated
disc record) and keep the backup process up to date on the state
of the application. All such messages are the result of
checkpointing code that the programmer inserts in the application
programs.

The backup process's responsibility, while the primary is
operable, is to accept and process the checkpointing messages and
be ready to take over the application if the primary process
becomes inoperable.

482507 A0 3/85 2-1

HARDWARE PRINCIPLES OF OPERATION
Fundamental Operations

I'M ALIVE MESSAGES

GUARDIAN
SOFTWARE

CHECKPOINT MESSAGE)
A

TERMINAL

THE PROCESS: A THE PROCESS: A

READ (a record from the terminal) READ (the checkpoint message from A)

READ (a record from the disc)
WRITE (the updated disc record to A’) Checkpoint
WRITE (the updated record to disc)

WRITE (the result on the terminal)

(@@@@)C;

$5001-019

Figure 2-1. Fault-Tolerant Application

J{’ 82507 AQ0 3/85

HARDWARE PRINCIPLES OF OPERATION
Fundamental Operations

CPUO CPU 1

e, | G
)\

DOWN

TERMINAL
/
oy

@ READ (the cpu 0 down message)

PROCESS A" ACTION

@WRITE (to the disc using the last checkpoint message to ensure update of the record)

Then continue with the same program as A.

READ (a record from the terminal)
READ (a record from the disc)

Except that there is no backup for A" at this time, so no checkpoint message is sent.

§5001-020

Figure 2-2, Application Takeover by Backup

/I’| 82507 AQ0 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

1f processor module 0 fails (see Figure 2-2), the GUARDIAN
operating system in processor module 1 sends a "CPU 0 down"
message to backup process A'. This is the signal for the backup
process to take over the application's work. First, the backup
process uses the latest checkpointing message (e.g., an updated
disc record) to complete the transaction that the primary started
just prior to its failure, leaving the application's data in the
same state as if the primary had completed its last transaction
successfully. At that point, the backup becomes the primary and
continues with the application's work. (Note that there is no
backup process at this time; therefore, no checkpointing messages
are sent).

When processor module 0 is reloaded, the GUARDIAN operating
system sends a "CPU 0 Up" message to the current primary process
(formerly the backup process). The primary process can then
start a new backup process running in processor module 0. The
primary also begins sending checkpointing information to the
backup process. The application is now fully fault-tolerant once
again.

PROCESSOR MODULE ORGANIZATION

Instruction Processing Unit

The instruction processing unit (IPU) has four functions: 1) to
execute machine instructions, 2) to provide for the orderly
interruption of a running process, 3) to map logical to physical
memory, and 4) to transfer data from the interprocessor buses
into memory (this is invisible to the executing process and is
handled entirely by the IPU's microprocessor).

A program's instructions reside in memory. In order to execute
an instruction, it is first fetched from a location in memory
determined by the address held in an IPU register. The
instruction is loaded into another IPU register and is decoded by
the hardware to determine what sequence of microinstructions must
be used to execute the instruction. During execution of the
instruction, one or more memory transfers can occur, the IPU's
scratchpad registers can be used to hold intermediate
computations, and operands can be added to or deleted from the
IPU's Register Stack.

The IPU is "pipelined," processing multiple instructions at once.
For example, while the current instruction is being executed, the
next instruction in sequence can be fetched from memory at the
same time.

2-4 482507 A0O 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

For a NonStop II processor, the microinstruction cycle time is
100 nanoseconds; microinstructions are 32 bits (plus parity) in
length. For a NonStop TXP processor, the microinstruction cycle
time is 83 nanoseconds; microinstructions are 109 bits long (74
bits for horizontal control store and 35 bits for vertical
control store) plus parity.

An IPU's basic instruction set consists of approximately 235
instructions. These include arithmetic operations such as add,
subtract, multiply, and divide; logical operations such as AND,
OR, and exclusive OR; bit shift and deposit; block (multiple-
element) moves, compares,and scans; procedure call and exit;
interprocessor bus send; and the input-output instructions.

All instructions are 16 bits in length.

Processor modules equipped with the decimal arithmetic option
have an additional 14 instructions (6 decimal arithmetic
instructions are standard in all processors). These instructions
operate on four-word operands and perform operations such as add,
subtract, multiply, divide, negate, compare, and round. (See
Decimal Arithmetic Option headings in Section 9, "Instruction
Set".) Modules equipped with the Floating-Point option have an
additional 41 instructions for doubleword and quadrupleword
(extended) floating-point arithmetic and related operations.

(See "Floating-Point Arithmetic" and "Extended Floating-Point
Arithmetic" in Section 9.) With these options, a processor has a
total of approximately 290 instructions.

Two modes of process execution are provided: privileged and
nonprivileged. A process executing in nonprivileged mode is not
permitted to execute the instructions designated as privileged.
Privileged instructions are associated with operations that, if
performed incorrectly or inadvertently, could have an adverse
effect on other processes or the operating system. These
privileged operations include: interprocessor bus send,
input-output, changes to map registers, execution of privileged
procedures, and access to system data. Normally, only the
GUARDIAN operating system executes in privileged mode;
application (user) processes execute in nonprivileged mode.
Privileged operations are performed for nonprivileged processes
through calls to operating system procedures. An attempt by a
nonprivileged process to execute a privileged instruction causes
the process to be trapped (interrupted).

The interrupt function provides for the orderly transfer of IPU
control from an executing process to one of several routines in
the operating system called interrupt handlers. This transfer of
control is called an interrupt. Interrupts occur for several
reasons. Among them are: data received over the interprocessor
bus, completion of an I/0 transfer, memory error, memory page
absent, instruction failure (e.g., attempt by a nonprivileged
process to execute a privileged instruction), and power failure.

482507 A00 3/85 2-5

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

Memory

Physical memory is the storage space provided by the actual
solid-state memory locations available to a processor on its
memory boards. There can be up to four memory boards. Thus, for
example, if a processor module contains four memory boards having
2 megabytes per board, that processor's physical memory is 8
megabytes. The maximum addressing range for physical memory is
16 megabytes, and this defines the maximum physical memory size.
Since each processor module contains its own memory boards,
physical memory is private to the processor.

Data is stored in physical memory in the form of 16-bit words;
1024 words comprise a page. Although access to physical memory
is by word on word boundaries, specific instructions also provide
element access to bytes, doublewords, and quadruplewords. The
NonStop TXP processor can access in parallel up to four words (64
bits) on a selected memory board.

Logical memory is memory as perceived by a particular process,
being some subset of the total virtual memory space. (The
addressing range for virtual memory in a single processor is one
gigabyte; virtual memory consists of all "segments" in this range
that are currently allocated.) The logical memory for any given
process is defined as a certain number of virtual memory
segments, and is independent of the processor's physical memory.

Memory addressing can be defined in terms of logical addresses or
physical addresses.

A logical address most commonly consists of 16 bits; a 16-bit
address 1s capable of addressing a maximum of 64K words (i.e.,
one segment of memory). A short address is a 16-bit address plus
three bits to specify one of six short address spaces. Short
addresses and short address spaces are described later under
"Memory Access" in Section 5.

Because a process consists of three independently addressable
areas (one or two code spaces and one standard data segment), and
has access to the system code spaces, and because code spaces can
consist of multiple code segments, a single process potentially
can access over 4 megawords (32 user code and library segments,
33 system code and library segments, and one data segment)
without using extended addressing. Extended addressing (32-bit
addresses) permits an even greater range of logical memory
access, and is described later under "Extended Addressing" in
Section 5.

A physical address consists of 23 bits. A 23-bit address
provides an addressing range of sixteen megabytes, thus it is
capable of referencing any location in physical memory.

2-6 482507 A00 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

Many application processes and parts of the operating system can
reside in physical memory concurrently. As each process is
granted execution time in the processor, its logical memory space
becomes part of the currently accessible portion of physical
memory--that is, the process's segments become "mapped."

Mapping converts logical addresses to physical addresses; i.e.,
mapping makes physical pages scattered through memory appear to
the program to be a contiguous block of memory.

In a NonStop II processor, address translation for the short
address spaces is implemented through hardware map registers.
(Each CPU actually has sixteen hardware maps.) Each map consists
of 64 entries (registers), and each entry points to an individual
physical page of memory. Thus, a map is capable of defining one
segment of logical memory. The sixteen hardware maps are
described later under the heading "Memory Access (NonStop II
Processor)" in Section 5.

In a NonStop TXP processor, address translation for the short
address spaces is provided within a larger (2048-entry) hardware
register array called "PCACHE". This PCACHE permanently maps
some of the short address spaces (system code and data, for
example), but primarily functions as a cache of page mappings-—-
one page at a time, as needed, rather than all pages of a given
segment. PCACHE is described later under the heading "Memory
Access (NonStop TXP Processor)" in Section 5.

The data path between memory and other processor module functions
is 16 bits wide. All data is verified for accuracy when it is
read from memory. Six error correction bits are appended to each
l6-bit word when it is stored. The use of the six error
correction bits in the semiconductor memory permits the hardware
to correct all single-bit errors automatically and to detect all
double-bit errors. The detection of a memory error (whether
correctable or uncorrectable) causes an interrupt to an operating
system interrupt handler, which takes appropriate action.

Input-Output Channel

Each processor module has its own I/0 channel that is capable of
transferring data between I/0 devices and memory at full memory
speed. 1/0 operations, which are controlled by the operating
system, are initiated by setting up an entry in a table in memory
and then executing an Execute I/0 (EIO) instruction. Once
initiated, data transfer occurs concurrently with software
process execution. When the I/0 operation completes, the
currently executing process is interrupted, and control of the
IPU is transferred to an operating system interrupt handler.

482507 A00 3/85 2-7

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

1PU

MICRO

EIO e
PROCESSOR

INITIATE 1 O

MEMORY
UP TO 256 BUFFERS

(le]o) g N\

P‘ T F | v D
110 CHANNEL (J
MICRO READY TO SEND
) S -
PROCESSOR N\

—_——— — ——

& — — — L

___—Tr
“D0Ov
Bl Rekh]

N

(| 1

LR

K

. . |
Rt i na‘ae kb

M ! |

w_

{

DEVICE

$5001-021

2-8

Figure 2-3. Input-Output Channel

I{|82507 AQ00 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

Each channel is capable of addressing 256 I1/0 devices, addressing
each as a separate "subchannel." A single I/0 operation is
capable of transferring data in blocks of from 1 to 65,535

bytes.

The table to control I1/0 transfers is called the I/0 Control
(I0C) table. Each processor module has its own IOC table.

(See Figure 2-3.) The IOC table is maintained both by the
operating system and be microcode. The IOC table contains up to
256 entries, corresponding to the 256 possible devices
(subchannels) on that processor's channel; each entry contains a
buffer address (in one of the I1/0 buffer segments) and a count of
the number of bytes to be transferred. The use of the IOC table
permits an I/0 channel to run any number of devices (up to 256)
concurrently while maintaining control on a device-by-device
basis. When the number of bytes indicated in the IOC have been
transferred, the device interrupts the currently executing
process.

Data is buffered by each controller so that data is transferred
in bursts through the channel at memory speed (the number of
bytes in a "burst" depends upon the type of controller).
Controllers are designed so that they signal the channel prior to
actually emptying their buffers (during a write operation) or
filling their buffers (during a read operation). This gives the
channel ample time to respond, thereby providing a means to avoid
data overrun. All 256 devices can be transferring
simultaneously, with bursts from one device being interleaved
with bursts from others, subject to I/0 data rate configuration
limits.

Interprocessor Bus Interface

The NonStop system has two interprocessor buses (see Figure 2-4).
Each bus functions independently of the other, transferring data
from one processor module's memory to another processor module's
memory. Both buses can be in use simultaneously.

Data is transferred over each interprocessor bus at a maximum
rate of 13.33 megabytes per second. Each bus is capable of
transferring data among all processor modules concurrently on a
packet-multiplexed basis.

An interprocessor bus transfer involves two processor modules:
the sender module and the receiver module. The transfer is
initiated by the sender when a SEND instruction is executed. The
receiver module checks the incoming packet for correct
transmission (using checksum, sequence number, and destination
and receiver numbers), and directs the incoming data to a main

4482507 A0O 3/85 2-9

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

BUS CONTROL BUS CONTROL |
“yY"] PrROCESSOR X
NUMBER INQ
1
[|
IPY PU
MICRO- INTERRUPT
WHEN BUFF ER
MICRO- MICRO- < FULL
CODED CODED
SEND 10, Y*» pROCESSING Pnocessme |
LOGIC LOGIC |
A i
MEMORY MEMORY| Lo essoR
NUMBER | J
BUFFER ADDRESS
RRa Y
‘DATA 0000
:9:7:4 BRT |
BUFFERS
PROCESSOR 1 PROCESSOR 10

$§5001-022

Figure 2-4. Interprocessor Bus Interface
(NonStop II Processor)

2-10 482507 A0 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

memory buffer indicated by a firmware-known, software-maintained
table--the Bus Receive Table (BRT). This table, the BRT, is then
updated.

The SEND instruction can transmit blocks of 1 to 65,535 bytes to
a designated processor module over one of the buses. Data is
actually sent across a bus in packets of 16 words (a routing
word, a sequence word, 13 data words, and a checksum word); each
processor module contains two high-speed 1l6-word buffers (one for
each bus) for receiving the incoming information. These buffers
are designated INQ X (for the X bus) and INQ Y (for the Y bus).
Transfers into the buffers occur simultaneously with IPU
microprogram execution; when a buffer fills, the IPU microprogram
is interrupted, and a special microroutine moves the contents of
the buffer into memory.

Each processor module's main memory contains a BRT. The BRT is
known by the firmware and is maintained by the operating system.
It is used to direct the incoming bus data to a specified
location in a processor module's memory. The BRT contains 16
entries (corresponding to the 16 possible processor modules in a
system); each entry specifies an expected packet sequence number,
a buffer address where the incoming data is to be stored, and the
number of bytes expected. When the expected number of bytes has
been received, the currently executing process is interrupted,
and the process for which the message is intended is notified.

Other Processor Components

In addition to the four main processor components just described
(the IPU, memory, I/0 channel, and interprocessor bus interface)
each processor in a NonStop system contains several other
important components. These are discussed briefly in the
following paragraphs. Figure 2-5 illustrates these components,
showing their relationships to each other and to the four major
components already discussed.

Clock Generator. The clock generator is the main processor
clock. It provides the synchronization of all hardware functions
within the processor. The NonStop II processor's clock has a
full-cycle time of 100 nanoseconds (10MHz) and a half-cycle time
of 50 nanoseconds. The NonStop TXP processor clock has a
full-cycle time of 83.33 nanoseconds (12MHz) and a half-cycle
time of 41.66 nanoseconds.

482507 A00 3/85 2-11

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

X BUS (
OPERATIONS 70 OTHER f
AND SERVICE PROCESSOR
PROCESSOR MODULES Y 8US y

(OSP) S -
’_.__..________.___._......__.._____._i
| LOADABLE |
CLOCK CONTROL l
| GENERATOR STORE
(LCS) |
| CONTROL I
| PANEL
| '::gggg;:gg INTERPROCESSORY
TO DDTs OF ONIT BUS T
OTHER cpus | PU) INTERFACE i
INTHIS | |
PROCESSOR
CABINET | |
PROCESSOR | DIAGNOSTIC
MAINTENANCE N DATA o I o
INTERFACE I TRANSCEIVER Y CHANNEL t CONTROLLER
(PMI) I (DDT) |
T | MEMORY l
CONTROL
DAISY . UPTO | UNIT |
CHAINED , FOUR*
M | I H 110
l | I | CONTROLLER
PROCESSOR | |
MAINTENANCE
INTERFACE | MEMORY [.
(PMI) | | :
TO DDTs OF ALL

CPUs IN THE CABINET | PROCESSOR MODULE (CPU) |

servepBYTHISPMI L o _

*ONE PMI PER PROCESSOR CABINET

$5001-023

Figure 2-5. Block Diagram of Processor Hardware

2-12 482507 A00 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

Loadable Control Store. The Loadable Control Store (LCS)
contains microinstructions for use by the IPU. Each machine
instruction causes the IPU to execute a specific set of
microinstructions to implement the functions of that machine
instruction. The LCS cannot be written to by user programs, but
it can be loaded with new versions of the system microcode and
microcode options as they are purchased from or supplied by
Tandem.

Control Panel. The control panel allows operators and
maintenance personnel to interact directly with each processor.
The control panel can be used to reset a processor, cold load a
processor, ready a processor for reload, and give visual
indications of a processor's status. It also can be used to
initiate some microdiagnostics.

Memory Control Unit. The memory control unit (MCU) provides
access to memory for both the I/0 channel and the IPU. The MCU
gueues memory requests by execution priority; provides overlapped
access, mapping of logical to physical memory (NonStop II
processor only) error control, and error reporting; and provides
semiconductor memory refresh timing capability.

Diagnostic Data Transceiver. One Diagnostic Data Transceiver
(DDT) 1is associated with each processor in the system. Connected
to the Operations and Service Processor (OSP) through the
Processor Maintenance Interface (PMI), the DDT communicates at
two distinct levels, as directed by the microcode in the LCS or
by a process running in the CPU. It can accept commands from the
OSP to communicate with the operating system and run diagnostics
for operations or fault isolation. It can also report the status
of the IPU, MCU, I1/0 channel, and LCS to the OSP.

Processor Maintenance Interface. The Processor Maintenance
Interface (PMI) provides a common interface point for up to four
processors in a cabinet to communicate with the OSP. If there is
more than one processor cabinet in the system, a PMI is added for
each cabinet, and the PMIs are connected together.

The PMI has switch functions that regulate communication between
processors and between a processor and the OSP. The PMI also has
indicator lights showing DDT status. In addition, it provides
signal-level conversion; it connects to the processors through
differential signals, which it passes on to the OSP. Finally,

482507 A0 3/85 2-13

HARDWARE PRINCIPLES OF OPERATION
Operations and Service Processor

the PMI notifies the DDT of the speed at which the local or
remote OSP is operating.

OPERATIONS AND SERVICE PROCESSOR

The Operations and Service Processor (OSP) is the control center
for the NonStop system. Through the OSP, operators and
maintenance personnel can easily and flexibly invoke many
low-level system functions, including all the essential functions
of the control panel for each processor.

The OSP provides both local and remote operations and maintenance
capabilities. As previously described, it is connected to each
processor through the PMI and the DDT.

The OSP subsystem is made up of six components:

® Processor-—-The processor is the central part of the OSP. (The
OSP processor is not to be confused with a processor module,
or CPU.) Most of the OSP functions are controlled by the
processor. The processor provides intelligence and
coordination of the OSP.

e Floppy Disc Drives--A floppy disc drive is used to load the
OSP operating system and diagnostics from floppy disc
(diskette) into the OSP. Two floppy disc drives and
associated power supplies are provided for failure tolerance.

¢ Switches and Indicators--The OSP switches and indicators
provide access control and OSP status information,

e OSP Terminal--The OSP terminal provides an easy and flexible
operation and maintenance interface with the OSP and the
NonStop system. Function keys are provided to allow fast
interaction with the OSP.

e Modem--The modem included in the OSP allows communication with
remote OSPs and remote terminals. Maintenance can be
performed from all of these devices. Operations can be
performed from a remote OSP or a remote OSP terminal.

e Optional Hard-Copy Printer--Optional printers are available
for hard-copy logging of system console activity.

2-14 4482507 A0O 3/85

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

HOW- THE HARDWARE EXECUTES PROGRAMS

Code and Data Separation

Programs executing as processes in a CPU's memory are physically
separated into two areas: code segments containing machine
instructions and program constants, and data segments containing
program variables. See Figure 2-6. The code segments of a
process can be thought of as read-only storage, since no machine
instructions can write into them. Since code segments cannot be
modified, they can be shared by a number of processes.

Procedures

Programs are functionally separated into blocks of machine
instructions called procedures. A procedure, like a program, has
its own local data area (in the process's data segment). A
procedure (that is, the block of instructions that a procedure
represents) is called into execution when a procedure call
instruction (PCAL, XCAL, or DPCL) is executed. The call
instruction saves the caller's environment and transfers control
to the entry-point instruction of the procedure.

N—\

o EIGHT-
v ELEMENT
REGISTER
< STACK
<
NON- MODIFIABLE, N Y
MODIFIABLE. — ws“#gﬁgﬁgm PRIVATE — T
SHARABLE DATA ARITHMETIC
AREA IONS
CODE OPERATIO
DATA TRANSFERRED

VIA FILE SYSTEM

$5001-024

Figure 2-6. Code and Data Separation

482507 A00 3/85 2-15

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

The procedure's instructions are then executed. The last
instruction that a procedure executes is an EXIT instruction.
The EXIT instruction restores the caller's environment and
transfers control back to the caller's next instruction.

A procedure, while it executes, has its own local data area.

This area is allocated for a procedure each time the procedure is
called and is deallocated when the procedure exits (see "Memory
Stack"). The procedure can also access a shared global data
area, which is accessible to all procedures of the process. The
global data area and all the memory used for procedure local data
areas are contained in the process's data segment.

Procedures can be written so that they can receive parameter
information (arguments), perform computations using the
parameters, then return results to the caller. (The machine
instructions for passing parameters and returning results are
generated automatically by compilers.)

Procedures that are outside the currently executing code segment
(that is, in some other code segment accessible to this process)
are accessed by means of an "external call." For example,
operating system functions (such as file system operations) are
performed by calling procedures that are in one of the system
library segments. An external procedure is called when an
External Procedure Call (XCAL) instruction is executed. This is
discussed later in Section 4 under "Calling External Procedures."”

Memory Stack

The first half of a process data segment is organized in memory
as a "stack." A stack is a storage allocation method in which
the last item (or block of items) added is the first item
removed--like a stack of dishes. The local areas for procedures
are blocks of data items in the memory stack. A procedure's
local data is allocated in the memory stack only while it
executes; after a procedure returns to the point where it was
called, its data area is deallocated and can be used by another
procedure called later. Therefore, the total amount of memory
space required by a program is kept to a minimum.

Figure 2-7 illustrates the memory stack manipulations ("Data
Area") during a sequence of procedure calls ("Code Area").
Sequence number (1) shows the memory stack when procedure A
starts executing. At (2), a call to procedure C pushes C's
parameters onto the stack (3), along with the link back to A. At
(4), C begins to execute, using the stack for its local variables
(5). Then a call to B (6, 7, 8) pushes B's parameters onto the

2-16 4§ 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

CODE AREA

Q)

N

=\

C
=7

&\

i

DATA AREA

MEMORY STACK
WHEN A
STARTS
EXECUTING

MEMORY STACK

WHEN C

STARTS

EXECUTING MEMORY STACK
WHEN B
STARTS
EXECUTING
MEMORY STACK
AFTER RETURNING
FROM B

MEMORY STACK
AFTER RETURNING
FROM C

S$5001-025

Figure 2-7.

Memory Stack Operation

stack, along with the link back to C, and B uses the stack for

its local variables (9).

Then, when B completes, it executes a

return (10) back to C, deallocating its local variables, calling
parameters, and return link from the stack. Procedure C, in
turn, runs to completion and executes a return (11) back to A,
deallocating its unneeded information from the stack. Procedure

/{' 82507 AQ0 3/85

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

A continues its execution (12), with the stack back to the
condition it was in prior to the calls; no unneeded data from
these manipulations remains behind to waste memory.

Register Stack

Each instruction processing unit contains a "Register Stack,"
consisting of eight separate registers. Each register stores one
l6-bit word. The Register Stack provides a highly efficient
means of executing arithmetic operations; operands are loaded
onto the stack, arithmetic operations are performed, the operands
are deleted, and a result is left on the stack. An add of two
16-bit numbers is illustrated in Figure 2-8.

REGISTER STACK

MEMORY

Ay

S5001-026

Figure 2-8. Register Stack Operation

2-18 I{|82507 AQ0 3/85

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

The use of the Register Stack is usually transparent to

programmers using programming languages, and most application
programming does not require explicit stack operations. The
language compilers automatically generate the machine
instructions for efficiently using the Register Stack.

I1| 82507 AQ0 3/85

SECTION 3

DATA FORMATS AND NUMBER REPRESENTATIONS

DATA FORMATS

The basic unit of information in the NonStop II and NonStop TXP
processors is the 16-bit word. However, individual access to and
operations on single or multiple bits (bit fields) in a word,
8-bit bytes, 1l6-bit words, 32-bit doublewords, and 64-bit
quadruplewords are supported. See Figure 3-1.

In this manual, a number surrounded by brackets is used to denote
an individual element (that is, word, doubleword, byte, or
quadrupleword) in a block of elements:

block [element]

For example, to indicate the fourth element in a word block
(beginning with element 0), the following notation is used:

WORD [3]
When referring to a block of words (or any elements), the first
element is indicated by the element number that is the lowest
numerically; the last element has the highest element number.
The following notation is used to denote a block of elements:
block [first element:last element]

For example, to indicate the second through twentieth words in a
block, the following notation is used:

WORD [1:19]

4982507 A0O 3/85 3-1

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

BASIC ADDRESSABLE UNIT IS A WORD

o 1 2 3 4 5 7 8 9 10 11 12 13 14 15

(OTIIIIIIIIIITI]

A WORD CAN CONTAIN
TWO BY TES

o 7 8

CIIIT I T T]

T T
BYTE 0 BYTE 1

TWO WORDS FORM A DOUBLEWORD

o 15 o 15

LT T T PPN T TP PP LT T TR T I T T 7]

FOUR WORDS FORM A QUADRUPLEWORD (FOR PROCESSOR MODULES WITH DECIMAL ARITHMETIC OPTION)
o 15 0 15 [} 15 [} 15
N,
T T T T
WORD 0 WORD 1 WORD 2 WORD 3

TWO WORDS ARE NEEDED TO FORM A FLOATING-POINT DOUBLEWORD

6 7 8 9 10 11 12 13 14 15

EEEEEERIEEEEEENEE)EEEEEEEEEEE
| , .

SIGN FRACTION (22 BITS) EXPONENT
(9 BITS}

FOUR WORDS ARE NEEDED TO FORM AN EXTENDED FLOATING-POINT QUADRUPLEWORD

EXPONENT
SIGN FRACTION (54 BITS) (9BITS)

| | |
IR O I IR I RO

§5001-027

Figure 3-1. Data Formats

3-2 482507 A0O 3/85

Words

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

The 16-bit word defines the machine instruction length and
logical addressing range for the NonStop II and NonStop TXP
processors. The 16-bit word is the basic addressable unit stored

in memory.

The first word in each segment (i.e., code or data)

of logical memory is addressed as WORD[O0]; the last addressable
location is WORD[65535]. This is shown in Figure 3-2.

WORD ADDRESS (0] “#———— FIRST ELEMENT

[l

(2}

(3]

(4]

(8]

ASCENDING ADDRESSES
[6]

(7]

18]

\/\/\/\/\"\/\/v
\/\/W

[65.533]

(65,534]

(65,535] 4———— LAST ELEMENT

§5001-028

Figure 3-2. Word Addressing

The following instructions are provided for referencing words in
logical memory:

LOAD
STOR
LWP

NSTO

ADM
LDX

LWA
SWA

Lecad word into Register Stack from data segment
Store word from Register Stack into data segment
Load Word into Register Stack from Program (code seg)
Nondestructive Store word from Register Stack into
data segment

Add word from Register Stack to word in Memory (data
segment)

Load Index Register from data segment

Load Word via A

Store Word via A

482507 A0 3/85 3-3

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

LWX Load Word Extended

LWXX Load Word Extended, Indexed

SWX Store Word Extended

SWXX Store Word Extended, Indexed
ANG AND to Current Data

ORG OR to Current Data

ANX AND to Extended Memory

ORX OR to Extended Memory

LWUC Load Word from User Code Segment

Two instructions operate on blocks of words:

MOVW Move Words from one memory location to another
COMW Compare Words in one memory location with another

Bits
The individual bits in a word are numbered from zero (0) through
fifteen (15), from left to right:

111111
WORD: 01 23 456789012345

The following notation is used in this manual (and in the TAL
language) to describe bit fields:

WORD.<left bit:right bit>

For example, to indicate a field starting with bit 4 and
extending through bit 15, the following notation is used:

WORD,.<4:15>
To indicate just bit 0, the following is used:

WORD. <0>

Bytes

Two bytes can be stored in a 16-bit word. The most significant
byte in a word occupies WORD.<0:7> (left half); the least
significant byte occupies WORD.<8:15>., The 16-bit address
provides for element addressing of 65,536 bytes.

In the data segment, byte-addressable locations start at BYTE[O]
and extend through BYTE[65535]. Two bytes are stored in each

3-4 482507 A0 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

word; therefore the first 32,768 words of the data segment
(WORD[0:32767]) can store 65,536 bytes. The upper half of the
data segment, WORD[32768:65535], is not byte addressable without
the use of extended addressing.

In the code segment, byte addresses are computed by the hardware
relative to whether the current setting of the P (for Program
counter) Register is in the lower or the upper half of the code
segment. Therefore, the entire code segment (WORD[0:65535]) is
byte addressable, as explained in the description of the LBP
instruction in Section 9.

The IPU converts a byte address to a word address and bit field
in that word, as shown in Figure 3-3. 1In other words, bit 15 of

BYTE ADDRESS 0 7 8 15
(0] 11 WORD (0]
BYTE
(2] [3] WORD [1]
4] [5) WORD [2]
(6] (71 WORD (3]
(8] [9] WORD (4]
[10] (1] WORD [5]
[12] [13] WORD [6]
m
65,532] [65,533] WORD [32,766]
UPPER LIMIT OF [65,534] [65,535] WORD (32,7671
BYTE ADDRESSING ———»

BYTE ADDRESS TO WORD ADDRESS CONVERSION
0

IlllllllTllHJlL\'

\

BYTE ADDRESS [0:65,535]

5
\ \\——‘BVTE'O:WORD.<0:7>,1 =WORD. <8:15>

EITTTTTTTITTTTTITT] omosmmssionnn

S$5001-029

Figure 3-3. Byte Addressing

) 82507 A00 3/85 3-5

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

the byte address is extracted and used to specify left byte (0)
or right byte (1); the remaining 15 bits are logically shifted
right by one bit to form the word address. In addressing a byte

in the code segment, bit 0 of the word address is copied from bit
0 of the P Register.

The following instructions are provided for referencing bytes in
logical memory:

LDB Load Byte into Register Stack from data segment

STB Store Byte from Register Stack into data segment

LBP Load Byte into Register Stack from Program (code
segment)

Four instructions operate on blocks of bytes:

MOVB Move Bytes from one memory location to another
COMB Compare Bytes in one memory location with another

SBW Scan a block of Bytes While a test character is
encountered
SBU Scan a block of Bytes Until a test character is
encountered
Doublewords

Two 16-bit words can be accessed as a single 32-bit element. The
hardware provides element access to doublewords in the data
segment (the software simulates doubleword access to elements in
the code segment). Doubleword elements are addressed on word
boundaries; therefore doubleword addressing is permitted in all
of the data segment.

A DOUBLEWORD CONSISTS OF ANY TWO CONSECUTIVE MEMORY LOCATIONS

DOUBLE-
WORD

WORD (5]
DOUBLEWORD —_ — — — — -
WORD (6]]

§5001-030

Figure 3-4. Doubleword Addressing

3-6 482507 A00 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

Two instructions are provided for referencing doublewords in
logical memory:

LDD Load Doubleword into Register Stack from data segment
STD Store Doubleword from Register Stack into data segment
Quadruplewords

Four 16-bit words can be accessed as a single 64-bit element.
The hardware provides element access to quadruplewords in the
data segment (the software simulates quadrupleword access of
elements in the code segment). Quadrupleword elements are
addressed on word boundaries; therefore quadrupleword addressing
is permitted in all of the data segment.

Two instructions are provided for referencing quadruplewords in
the data segment:

QLD Quadrupleword Load into Register Stack from data segment
QST Quadrupleword Store from Register Stack into data
segment

A QUADRUPLEWORD CONSISTS OF ANY FOUR CONSECUTIVE MEMORY LOCATIONS

WORD (10]
WORD (11}
QUADRUPLEWORD e ———
WORD {12}

WORD [13]

$5001-031

Figure 3-5. Quadrupleword Addressing

482507 AOO 3/85 3-7

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

NUMBER REPRESENTATIONS

The system hardware provides arithmetic on both signed and
unsigned numbers. Signed numbers are characterized by being able
to represent both positive and negative values; unsigned numbers
represent only positive values. Signed numbers are represented
in 16 bits (a word), 32 bits (doubleword), or 64 bits
(quadrupleword). Representation of unsigned numbers is
restricted to 8- and 16-bit quantities.

Positive values are represented in true binary notation.

Negative values are represented in two's-complement notation with
the sign bit of the most significant word set to 1 (that is,
WORD[0].<0>). The two's complement of a number is obtained by
inverting each bit position in the number, then adding a 1.

For example, in 16 bits, the number 2 is represented:

00000O0O0OOODOOOOO1IO
and the number -2 is represented:
1111111111111110

The representable range of numbers is determined by the sizes of
operands (i.e., word, doubleword, and quadrupleword).

Single Word

Single-word operands can represent signed numbers in the range of
-32,768 to +32,767

and unsigned numbers in the range of
0 to +65,535

Whether a word operand is treated as a signed or an unsigned
value is determined by the instruction used when a calculation is
performed. Signed arithmetic is indicated by the execution of
integer instructions. The integer instructions are:

IADD Integer Add

ISUB Integer Subtract

IMPY Integer Multiply

IDIV Integer Divide

INEG Integer Negate (two's complement)
ICMP Integer Compare

ADDI (integer) Add Immediate

3-8 4482507 A00 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

CMPI (integer) Compare Immediate
ADM (integer) Add to Memory

Unsigned arithmetic is indicated by the execution of logical
instructions. The logical instructions are:

LADD Logical Add

LSUB Logical Subtract

LMPY Logical Multiply (returns doubleword product)

LDIV Logical Divide (returns 2-word quotient and remainder)
LNEG Logical Negate (one's complement)

LCMP Logical Compare

LADI Logical Add Immediate

Doubleword

Doubleword operands can represent signed numbers in the range of
-2,147,483,648 to +2,147,483,647

Ten instructions perform integer arithmetic on doubleword
operands., They are:

DADD Doubleword Add

DSUB Doubleword Subtract

DMPY Doubleword Multiply

DDIV Doubleword Divide

DNEG Doubleword Negate (two's complement)
DCMP Doubleword Compare

DTST Doubleword Test

MOND (load) Minus One in Doubleword form
ZERD (load) Zero in Doubleword form

ONED (load) One in Doubleword form

Byte

Byte operands represent unsigned values in the range of
0 to +255

This, of course, includes the ASCII character set. Byte operands
are treated as the right half of word operands (that is,
WORD.<8:15>) when arithmetic is performed (the left half of the
word is assumed to be 0).

82507 A00 3/85 3-9

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

There is one instruction for testing the class (i.e., ASCII
alphabetic, ASCII numeric, or ASCII special) of a byte operand.
It is:

BTST Byte Test

Quadrupleword (Decimal Arithmetic Option)

Quadrupleword operands for decimal arithmetic can represent
19-digit numbers in the range of

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

NOTE

In this list, asterisks indicate optional instructions.
Quadrupleword instructions not marked with an asterisk
are part of the basic instruction set.

Six instructions perform integer arithmetic on quadrupleword
operands:

QADD Quadrupleword Add
QSUB Quadrupleword Subtract
*QOMPY Quadrupleword Multiply
*ODIV Quadrupleword Divide
*QONEG Quadrupleword Negate
*QCMP Quadrupleword Compare

Three instructions are provided for scaling (i.e, normalizing)
and rounding quadrupleword operands:

QuUP
QDWN
*QRND

Quadrupleword Scale Up
Quadrupleword Scale Down
Quadrupleword Round

Nine instructions are provided for converting operands between
qguadrupleword and other data formats:

*CQI
*CQL
*CQD
*CQA
*CIQ
*CLQ
*CDQ
*CAQ
*CAQV

3-10

Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert
Convert

Quadrupleword to Integer

Quadrupleword to Logical

Quadrupleword to Doubleword

Quadrupleword to ASCII

Integer to Quadrupleword

Logical to Quadrupleword

Doubleword to Quadrupleword

ASCII to Quadrupleword

ASCII to Quadrupleword with Initial Value

Il‘|82507 AQ0 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

Floating-Point and Extended Floating-Point

The fraction of a floating-point number is always normalized, to
be greater than or equal to 1 and less than 2. The high-order
integer bit is therefore dropped and assumed to have the value of
1. For all calculations, the sign is moved and the bit inserted.
The integer plus 22 fraction bits of a floating-point number are
equivalent to 6.9 decimal digits; the 55 bits of an extended
floating-point number are equivalent to 16.5 decimal digits. If
the value of the number to be represented is zero, the sign is 0,
the fraction is 0, and the exponent is 0.

The fraction of a floating-point number is a binary number with
the binary point always between the assumed integer bit and the
high-order fraction bit. The exponent part of the number, bits 7
through 15 of the low-order word (see Figure 3-1), indicates the
power of 2 multiplied by 1 plus the fraction. This field can
contain values from 0 to 511. 1In order to express numbers of
both large and small absolute magnitude, the exponent is
expressed as an excess-256 value; that is, 256 is added to the
actual exponent of the number before it is stored. The exponent
range is therefore actually -256 through +255,

The sign of a floating-point number is explicitly stated in the
high-order bit (i.e., signed magnitude representation). A 0 is
positive, and a 1 is negative.

The absolute-value range of floating-point numbers is:

-256 =23 256
+/- 2 to +/- (1 - 2) * 2
-78 77
(approx. +/- 8.62 * 10) (approx. +/- 1.16 * 10)

For extended floating-point numbers, the range is the same; only
the precision is increased:

-256 -55 256
+/- 2 to +/- (1 - 2) * 2
-78 77
(approx. +/- 8.62 * 10) (approx. +/- 1.16 * 10)

(Note, however, that the value +2**-256 is not representable; it

would look like 0 in either floating point or extended floating
point.)

4482507 A00 3/85 3-11

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

Arithmetic

The result of integer arithmetic (IADD, ISUB, IMPY, DADD, DSUB,
DMPY, QADD, QSUB) must be representable within the number of bits
comprising the operand minus the sign bit (e.g., 15 bits for a
word operand, 31 bits for a doubleword operand). If the result
cannot be represented, an arithmetic overflow condition occurs,
and no part of the results on the stack can be assumed valid.
When an overflow occurs, the hardware Overflow indicator sets,
and (if enabled) an interrupt to the operating system overflow
interrupt handler occurs. An overflow condition also occurs if a
divide operation is attempted with a divisor of 0.

The results obtained from a logical add or subtract (LADD or
LSUB) are identical to that obtained from integer add or
subtract, except that logical add and subtract do not set the
Overflow indicator. The 16-bit result, the Condition Code
setting, and the Carry indicator setting are the same. Logical
divide (LDIV), however, sets the Overflow indicator if the
quotient cannot be represented in 16 bits.

In addition to the Overflow indicator, two other hardware
indicators are subject to change as the result of an arithmetic
operation. They are:

e Condition Code (CC). This generally indicates if the result
of a computation was a negative value, zero, or a positive
value. (The Condition Code can be tested by one of the
branch-on-condition-code instructions and program execution
sequence altered accordingly.)

e Carry (K). This indicates that a carry out of the high-order
bit position occurred.

For floating-point and extended floating-point arithmetic, the
Overflow indicator is set if the exponent becomes either greater
than +255 (exponent overflow) or less than -256 (exponent
underflow) when trying to represent the normalized result of some
operation. If the divisor in a divide operation is 0, the
Overflow indicator is also set. If any conversion instruction
causes a numeric overflow ("illegal conversion"), the Overflow
indicator is set, and the result (including Conditicn Code) is
undefined. If the result of some operation has a zero fraction
and nonzero exponent or sign, the value is forced tc zero.

Table 3-1 defines termination conditions for various
floating-point arithmetic errors. (For further explanation of
the Condition Code, refer to the "Environment Register" in the
next section,)

3-12 4582507 A00 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

Table 3-1. Floating-Point Error Terminations

Condition Overflow cC Result
Exponent Overflow 1 00
Calculated
Exponent Underflow 1 10 result with
(error
Divide by Zero 1 01 truncated
Illegal Conversion 1 XX Undefined

4482507 AOO 3/85 3-13

SECTION 4

INSTRUCTION PROCESSING ENVIRONMENT

A program executing as a process in a processor module consists
of instruction codes in a code space in memory that manipulate
variable data in a separate data segment in memory. The IPU's
eight-element Register Stack 1s used to perform arithmetic
operations and memory indexing. The instruction-to-instruction
environment of a program is maintained in the IPU's Environment
register. Programs themselves are separated into functional
blocks of instructions called procedures.

These fundamental elements of the instruction processing
environment are illustrated in Figure 4-1 and are discussed under
separate subheadings below.

CODE SPACE

The code space of a given process consists of a user code space
(UC) and optional library space (UL). Each space is a single
program file that can contain up to 16 code segments. A space ID
(space identifier) index is an octal number in range of 0 to %17
that is used to name the idividual segments within these two
spaces (for example, UC.0, UC.5, UL.17). The IPU microcode keeps
track of which segment is "current" for each space, and performs
segment "switching" when necessary. External procedure calls are
used to call procedures in other segments of the user space, as
well as to call procedures in the system library.

Information in a code segment consists of instruction codes and
program constants. Although it is possible to address the code
segments (using extended addressing or the LBP, LWP, or LWUC
instruction), only read access is permitted; a write access
attempt results in an address trap. Therefore, the code segments
cannot be modified during execution.

482507 AOO 3/85 4-1

INSTRUCTION PROCESSING ENVIRONMENT

Code Space
DATA SEGMENT
CODE SEGMENT IN MEMORY
IN MEMORY (MEMORY STACK) (CEnv ReGisTeR]
S 1
N s —~
clo] —» G[0] —» 1]
LM
EIGHT-ELEMENT [
REGISTER
STACK
GLOBAL
DATA
INSTRUCTION
CODES AND |
CONSTANTS
P REGISTER] — [T ocAl | e
| __ DATA
SUBLOCAL <«+——— [SREGISTER
DEFINITIONS:
ENVIRONMENT REGISTER
(HARDWARE) o] I 2[3 l 4 [5 l 517] 8 l 9]10]11]12[13[14]15]

ENV.<4> LIBRARY MAP (LIB=1) —

ENV.<5> PRIVILEGED | —
ENV.<6> DATA MAP (USER=0, SYS =1)
ENV.<7> CODE MAP (USER =0, SYS =1) -
ENV.<8> TRAP ENABLE -1
ENV.<8> CARRY =1
ENV.<10> OVERFLOW = 1
ENV.<11> NEGATIVE OR NUMERIC CONDITION

CONDITION CODE { ENV.<12> ZERO OR ALPHABETIC CONDITION

RP — ENV.<13:15> REGISTER STACK POINTER

I REGISTER: CURRENT INSTRUCTION REGISTER
P REGISTER: PROGRAM COUNTER; ADDRESS OF CURRENT INSTRUCTION + 1 (RELATIVE TO C[0))
C[0): FIRST ELEMENT IN THE CODE SEGMENT
G[0]: FIRST ELEMENT IN THE DATA SEGMENT
GLOBAL DATA: DATA AREA ACCESSIBLE FROM ANY POINT IN A PROGRAM
LOCAL DATA: DATA AREA ACCESSIBLE ONLY FROM CURRENTLY EXECUTING PROCEDURE
SUB-LOCAL DATA: DATA AREA ACCESSIBLE ONLY FROM CURRENTLY EXISTING SUBPROCEDURE
L REGISTER: LOCAL DATA POINTER: G[0] RELATIVE ADDRESS OF FIRST ELEMENT IN THE
LOCAL DATA AREA. ALSO INDICATES THE LOCATION IN THE MEMORY
STACK OF THE LINK (i.e., STACK MARKER) BACK TO THE CALLING PROCEDURE
S REGISTER: TOP OF STACK: G[0] RELATIVE ADDRESS OF THE LAST ACTIVE ELEMENT
IN THE MEMORY STACK
REGISTER STACK: EIGHT-ELEMENT REGISTER STACK WHERE ARITHMETIC OPERATIONS ARE
PERFORMED. THREE ELEMENTS CAN ALSO BE USED FOR INDEXING
RP: REGISTER STACK POINTER: INDICATES THE TOP ELEMENT IN THE REGISTER STACK

$5001-032

Figure 4-1. Elements of the Instruction Processing Environment

4--2 4182507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

A code segment consists of up to 65,536 16-bit words. Words in a
code segment are numbered consecutively from C[0] (code, element
0) through C[65,535]. This forms the basis for logical
addressing within the code segment and is illustrated in Figure
4-2,

Two registers are associated with code segments. These are
described in the following two paragraphs.

clol] —_

CODE
SEGMENT

C[65,535] —

§5001-033

Figure 4-2. Code Segment Addressing Range

P register. The P (program) register is the program counter.
It contains the 16-bit C[0]-relative address of the current
instruction plus one. The contents of the P register are
incremented by one at the beginning of instruction execution so
that, nominally, instructions are fetched (and executed) from
ascending memory locations. (See top diagram of Figure 4-3.)

When a program branch is taken, a procedure or subprocedure is
called, or an interrupt occurs, the C[0]-relative address of the
next instruction to be executed is placed in the P register.
(See bottom diagram of Figure 4-3.)

I register. The I (instruction) register contains the machine
instruction currently being executed. When the current
instruction is completed, this 16-bit register is filled with the
instruction in a code segment pointed to by the current setting
of the P register. The contents of the P register are then
incremented by one, as described above.

A582507 A00 3/85 4-3

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

CODE
SEGMENT
cla)]
C{0) RELATIVE
ADDRESS OF NEXT
INSTRUCTION TO
BE EXECUTED
l — [REGISTER]}
L _PREGISTER | ——&
INITIALLY SET BY OPERATING l
SYSTEM TO C[0] RELATIVE CURRENT INSTRUCTION
ADDRESS OF FIRST INSTRUCTION DECODED AND
IN PROGRAM EXECUTED BY HARDWARE
L —
INSTRUCTIONS ARE EXECUTED
IN ASCENDING ORDER UNLESS
A BRANCH INSTRUCTION IS .
ENCOUNTERED —
| REGISTER
P REGISTER
cl1015] —e| BUN +5] 'BrRANCH
—» cl1016] |-] ' UNCONDITIONALLY
| o n
‘54———-—-———1:-—————_-»——-———
! : :
— Cl1021] 77
bf'/—J
$5001-034

Figure 4-3. P Register and I Register

Addressing Code

Addresses for branching (and for constants) in a code segment are
calculated relative to the current setting of the P register.
This is referred to as self-relative addressing.

Instructions that reference a code segment have an eight-bit
field for specifying a relative displacement from the current P
register setting. The range of the displacement is therefore
-128:+127 words. An example, the BUN instruction, is shown in
Figure 4-4,

The location that is addressed by the displacement is referred to
as the directly addressable location. It might be the location
ultimately referenced by the instruction (that is, it might be
the branch location, or it might contain the constant) or might
itself contain a self-relative address. If the latter, then the

4-4 4482507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT

Code Space
BUN (BRANCH UNCONDITIONALLY) INSTRUCTION FORMAT:
0 1 2 3 4 5 6 7 8 9 [0 11 12| 13 14 15
l i] | } i } ye —b
T T T T T T A T L
I 0 0 1 0 0 0 1 DISPLACEMENT
$5001-035

Figure 4-4, Displacement Field for Code Segment Instructions

referenced location is a relative displacement from the directly
addressable location. This choice, whether the direct location
is the one referenced by the instruction or contains a self-
relative address, is specified by the indirect bit, <i>, in the
instruction,

The address of the location in a code segment ultimately
referenced by an instruction is called "branch®™addrs" (branch
address). This is the address placed in the P register when a
program branch is taken:

P := branch®addrs;

I :=code [P }]; ! "code" refers to a code segment
and used when fetching a program constant from memory:

A := code [branch”addrs];
(A is the top element of the Register Stack.)

The address calculated by adding the displacement to the current
P register setting is referred to as "dir"branch®addrs" (direct
branch address):

dir“branch®™addrs = P + <displacement>;

If the referenced location is within the range of the
displacement (i.e., P [-128:+127]), then direct addressing is
indicated, and the direct branch address is used as the branch
address. If the referenced location is beyond the range of the
displacement, then indirection is indicated, and the referenced
location (branch®addrs) is a relative displacement from the
direct branch address.

\

482507 A00 3/85 4-5

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

Direct addressing is specified when the <i> (indirection) bit,
I1.<0>, of the instruction is equal to 0; bits I1.<8:15> are a
two's-complement number (bit I.<8> is the sign bit) giving a
positive or negative displacement from the current P register
setting; therefore:

branch®™addrs = dir“branch”addrs;

Indirect addressing is specified when the <i> bit of the
instruction 1s equal to 1; bits 1.<8:15> are a positive or
negative displacement from the current P register setting;
therefore:

branch®addrs = dir“branch”addrs + code [dir“branch”addrs];

That is, the C[0]-relative direct branch address is first
calculated (a displacement from the current P register setting).
Then the contents of the direct location (containing a
displacement from itself) are added to the direct branch address.
The result is the C[0]-relative branch address.

Examples of both direct and indirect addressing are given in
Figure 4-5. The "I" in the LWP 9,I instruction signifies
indirect addressing.

In addition to direct and indirect addressing, an offset value in
a hardware register can be added to the address of the direct or
indirect location before the final address is calculated. This
permits a code segment location to be referenced as an offset
from a base location; this is called indexing. Indexing in a
code segment is discussed in Section 9, "Instruction Set," under
the LWP instruction.

Addressing of byte elements (with indexing) is also permitted in
the code segment, though restricted to only half of the segment
(the same half in which the current P register setting is
located). Byte addressing is discussed in Section 9 under the
LBP (load byte from program) instruction.

By whatever means the final address is calculated, that address
is the effective memory address.

4-6 482507 A00 3/85

Code Space

INSTRUCTION PROCESSING ENVIRONMENT

CODE

‘-——”/////////

C [595]

115 -128
[3 >+
DIRECT / \
0 ,,4 5 6 7 8 9 10 11 12 13 14 15
YWAV//I\;/I\HHHOIOHIH LWP -13 | ¢ [607]
/
| L 4
SIGN DISPLACEMENT
P REGISTER e
CODE
SEGMENT
I\
g 7 ED)
AP Vel
INDIRECT
L - v o on an o e e em ae en m m ow E e
a7 e elerel ool] [~~~ """ "°7° we 9,1 |c[3727]
\T/\ T / i)
SIGN DISPLACEMENT P REGISTER y
I ¢
9
[emmem——— " ~
L7 ™ -304 C [3737]
} s
I \—ﬂ/\-—_\
e 343]

§5001-036

Figure 4-5,

11' 82507 AQO0 3/85

Addressing in a Code Segment

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

DATA SEGMENT

Data Storage and Access

The data segment contains a program's temporary storage locations
(i.e., variables). Information in this segment consists of
single-element items, multiple-element items (arrays), and
address pointers. Input/output transfers (which are performed on
behalf of application programs by the GUARDIAN file system) are
accomplished using arrays in a program's data segment.

The first half of the data segment is used for dynamic allocation
of storage when procedures are invoked (see "Procedures"); this
area is referred to as the memory stack.

The data segment consists of up to 65,536 16-bit words.

Addresses in the data segment start at G[0] (global data, word 0)
and progress consecutively through G[65,535]. See Figure 4-6.
The memory stack portion of the data segment is G[0:32,767].

Data is accessed through use of the memory reference
instructions. Locations in the data segment are addressed either
through the address field in a memory reference instruction
(direct addressing) or through an address pointer in memory
(indirect addressing). Additionally, the memory reference
instructions permit an offset value (in a hardware register) to
be added to a direct or indirect address before a final address
is calculated. This permits one data element to be referenced as
an offset from another data element (indexing).

G[O -]
[0} 'y 8]
MEMORY
STACK
AREA
DATA
. G
SEGMENT (32.767]
G[65,535] j"_
$§5001-038

Figure 4-6. Data Segment Addressing Range

4-8 II’|82507 AQ0 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

Direct addressing permits only limited ranges of addressing
within the data stack area; these ranges are defined under the
next subheading ("Addressing Data"). Indirect addressing and
indexing permit access to the entire data segment, since an
entire 16-bit word is used to specify an address. Memory
reference instructions have only 5 to 8 bits (depending on the
instruction) to specify a direct address.

The memory reference instructions for the data segment are:

LDX Load Index register from data segment

NSTO Nondestructive Store, Register Stack into data segment
LOAD Load word into Register Stack from data segment

STOR Store word from Register Stack into data segment

LDB Load Byte into Register Stack from data segment
STB Store Byte from Register Stack into data segment
LDD Load Doubleword into Register Stack from data segment
STD Store Doubleword from Register Stack into data segment

ADM Add to Memory

The memory stack portion of the data segment is logically
separated into three areas: global, local, and sublocal (or
"top-of-stack" area). Each logical area has an addressing base
so that relative addressing can be performed. The logical areas
are described in the following paragraphs and illustrated in
Figure 4-7.

Gglol [] AN

DATA ACCESSIBLE
— BY ANY INSTRUCTION
IN THE CODE SEGMENT

GLOBAL
DATA

[CREGISTER] —>; i ﬂ
INITIALLY SET BY THE LocaL DATA KNOWN ONLY TO
OPERATING SYSTEM TO DATA |~ THE CURRENTLY EXECUTING
AN ADDRESS JUST ABOVE PROCEDURE

THE GLOBAL DATA

(CsReGIsTER | —» U777 777 /

(TOP-OF - STACK)

$5001-037

Figure 4-7. L Register and S Register

482507 A00 3/85 4-9

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

Global Area. Data within the global area is addressable by any
instruction in the program. The addressing base of the global
area is defined as G[O0].

The beginning of the global area coincides with the beginning of
the data segment. Thus, the G[0]-relative address of an item is
its logical address within the data segment. G[0] is logical
address 0.

Local Area. Data within the local area is known only to the
currently executing procedure. The local area is defined by the
l6-bit L register. The L (for local) register contains the
G[0]-relative address of the word at the beginning of this area.
The addressing base of the local area is defined as L[O0].

When a procedure is called, a new local area is defined. This
occurs because the address contained in the L register advances
to point above the current local area (the caller's local area is
then undefined). Conversely, when a procedure exits, the exiting
procedure's local area is deleted (and the preceding local area
redefined) because the address in the L register recedes back to
its previous setting.

Top-of-Stack Area. Data in the top-of-stack (or sublocal) area
is known only to the currently executing procedure. The
top-of-stack location is defined by the 16-bit S register, which
contains the G[0]-relative address of the last word currently
defined in the memory stack. The addressing "base" of the
top-of-stack area is defined as S[0], and the sublocal area
consists of up to 32 word locations including and preceding S[0].

During execution of a procedure, the address in the S register
advances as elements are moved from the Register Stack to the top
of the memory stack, and recedes as elements are moved from the
top of the memory stack to the Register Stack. The address also
advances when procedures and subprocedures are invoked and
recedes when they are exited, along with the L register address.

Addressing Data

Data elements in the data segment are fetched and stored by the
hardware in terms of word addresses, regardless of the type of
operand involved. (The instruction set microcode also provides
for the addressing of bytes within a word, as described in the
sections on "Direct Addressing” and "Indirect Addressing" that

4-10 4§ 82507 A0 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

follow.) For purposes of explanation, "data" refers to a data
segment and "address" refers to the G[0]-relative address of a
word referenced by an instruction. Together, "data" and
"address" are used to indicate access to a location in a data
segment referenced by an instruction. Thus, a LOAD instruction
into A (the top of the Register Stack) is:

A := data [address];

All direct addressing in the data segment is relative to one of
the three addressing bases: G[0], L[0], or S[0]. Memory
reference instructions for data contain a 9-bit address field for
specifying one of the three addressing bases and a relative
displacement from that base. Four addressing modes are provided
for addressing relative to these bases. The address indicated by
the address field in a memory reference instruction is referred
to as the direct”address. The addressing modes are: G-relative,
L-plus-relative, L-minus-relative, and S-minus-relative. These
are described in the following paragraphs. Figure 4-8 shows an
example of a memory reference instruction and defines the bit
patterns for the four addressing modes. Figure 4-9 illustrates
each of the addressing modes.

LOAD INSTRUCTION FORMAT:

0 1 2 3 4 5 6 7 8 9 10 1 12 l 13 14 15
J * - ,+,,N_.._ +_,._ —d

}
L T

1 1 0 0 0 X MODE AND DISPLACEMENT

—+
-
-
——

ADDRESSING MODES:

G-RELATIVE 0 0:255
L-PLUS-RELATIVE 1 0 0:127
SG-RELATIVE 1 1 0 0:63
L-MINUS-RELATIVE 1 1 1 0 0: 31
S-MINUS-RELATIVE 1 1 1 1 031

MODE DBPL;;EMENT a

$5001-039

Figure 4-8. Mode and Displacement Field for Memory Reference
Instructions

4482507 A0 3/85 4-11

INSTRUCTION PROCESSING ENVIRONMENT

Data Segment

DATA
SEGMENT
/ [] G [0] !BASE
MEMORY REFERENCE :
INSTRUCTION IN CODE SEGMENT:
7 8 9 10 11 12 13 14 15
r” v T . G GLOBAL
% z 0 G-REL ™ 7| (256 WORDS) DATA
% ; . 1o L-PLUS-REL
7 TYi7e SGREL 7/
/ 1)1] L-MINUS-REL |———|— :
- 1 G [255]
1 | -
% 1 SMINUS-REL [— //
/ ////
ADDRESSING MODE AND
DISPLACEMENT FROM BASE
o q Li31
| Lwinus PARAMETERS
™~ (32 woRDS) |- — — —
X - _ _ 7 r101BASE
LpLUS LOCAL
a - DATA
™ 1 (128 WORDS)
N n q 127
NN
AN
/ T ToroF - s[-31]
|, | smius STACK .
(32 WORDS) AREA .
\ s [0] ! BASE
$5001-040
Figure 4-9. Memory Reference Instruction Addressing Modes

® G-Relative Mode

This mode addresses the first 256 locations in the global area
The G-relative mode is indicated when bit I.<7>
of a memory reference instruction is equal to 0; bits I.<8:15>

(G[0:255]).

specify a positive word displacement from G[0]; that is:

direct”address

t= 1.<8:15>;

/1| 82507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

e IL-Plus-Relative Mode

This mode addresses the first 128 words of a procedure's local
data area (L[0:127]). The L-plus-relative mode is indicated
when bits I.<7:8> of a memory reference instruction are equal
to 10 (binary); bits I1.<9:15> specify a positive word
displacement from the current L[O].

The hardware calculates a G[0]-relative address by adding
1.<9:15> to the contents of the L register:

direct”address := L + I,<9:15>;

e IL.-Minus-Relative Mode

This mode addresses the 32 words just below and including the
word pointed to by the current L register setting, L[-31:0].
(This area is used for procedure parameter passing.) The
L-minus-relative addressing mode is indicated when bits
1.<7:10> of a memory reference instruction are equal to 1110
(binary); bits 1.<11:15> are a negative word displacement from
the current L[0]. The hardware calculates a G[0O]-relative
address by subtracting I.<11:15> from the contents of the L
register:

direct”address := L - I1.<11:15>;

e S-Minus—-Relative Mode

This mode addresses the 32 words just below, and including,
the current top-of-stack word (S[-31:0]). (This area is used
for a subprocedure's sublocal data and for temporary storage
of the Register Stack contents by the PUSH and POP
instructions). The S-minus-relative mode is indicated when
bits 1.<7:10> of a memory reference instruction are equal to
1111 (binary); bits I.<11:15> are a negative word displacement
from the current S[0]. The hardware calculates a
G[0]-relative address by subtracting I.<11:15> from the
contents of the S register:

direct”address := S - 1.,<11:15>;

An additional addressing mode is provided to access the system
data segment from the user environment--the SG-Relative mode (see
"Environment Register" for an explanation of user environment).
This mode addresses the first 64 locations of the system data
segment (SG[0:63]) and is usable only by procedures executing in
privileged mode (e.g., the operating system). The SG-relative
addressing mode is indicated when bits I1.<7:9> of a memory

4982507 AOO 3/85 4-13

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

reference instruction are equal to 110 (binary). Bits I.<10:15>
are a positive word displacement from SG[0]. (See "Calling
External Procedures" later in this section for an explanation of
SG-relative addressing.)

Direct Addressing. If the <i> (indirection) bit, I1.<0>, of a
memory reference instruction is equal to 0, then direct
addressing is specified. The ranges of directly addressable
locations in the data segment are:

G[0:255] 256 words G-Relative Mode

L[0:127] 128 words L-Plus-Relative Mode
L[-31:0] 32 words L-Minus-Relative Mode
s[-31:0] 32 words S-Minus-Relative Mode

With direct addressing, the address of an operand referenced by
an instruction, relative to one of the addressing bases, is
specified in the address field of the memory reference
instruction; therefore,

address := direct”address;
and only one memory reference is needed to access the referenced
memory location. Figure 4-10 gives an example of direct
addressing.

If a byte operand is referenced, it is in the left half of the
referenced location:

byte := data [address].<0:7>;

G (0] —

T T T

e N

10 11 12 13 14 15

II&&§§§§§§§ ;1212[010[1|0]1[lj P R T = AAARRRRNRRRNAR

DIRECT
G-RELATIVE DISPLACEMENT
ADDRESSING (% 13)

MODE

S$5001-041

Figure 4-10, Direct Addressing in the Data Segment

4-14 482507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

If a doubleword operand is referenced, it consists of two words
starting at the referenced location:

doubleword := data [address:address+l]; ! two words

Quadruplewords cannot be accessed as such by any of these modes.
A gquadrupleword must be accessed as some combination of smaller
units, such as two doublewords or four words.

Indirect Addressing. If the <i> (indirection) bit, 1.<0>, of a
memory reference instruction is equal to 1, then indirect
addressing is specified. The range of indirect addressing is
G[0:65,535] (i.e., any location in the data segment).

With indirect addressing, the address of the referenced location,
relative to G[0], is contained in a location that can be
addressed directly (the contents of the direct location are
referred to as an address pointer). Two memory references are
needed to access the referenced location; the first to fetch the
address,

address := data [direct”address];
the second to access the operand. Figure 4-11 gives an example.
If a byte operand is accessed, the address pointer contains a
G[0]-relative byte address. Bits <0:14> of the address pointer
are the word address of the byte operand, bit <15> of the address
pointer indicates whether the referenced byte is in the left-hand
part of the word, <0:7>, or the right-hand part, <8:15>:
byteaddress := data [direct”address];
address := byteaddress.<0:14>;
and the referenced byte is
byte := if byteaddress.<15> then
data [address].<8:15> ! right byte
else
data [address].<0:7>; ! left byte
An example is shown in Figure 4-12,
Note that, because a byte address is effectively divided by two
(to provide a word address), and the maximum byte address is

65,535, addressing of bytes is limited to the lower 32,768 words
of a data segment (the memory stack area).

482507 A00 3/85 4-15

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

0 7 8 9 10 M1 12 13 14 15
A 7@/ o GREL
9 2 1]o0 LPLUS-REL
1 LAY, ‘
0 2247 A7 //7 / 777 /
AN L7208 Lo I,
0 1 4 7 '7/ 1 1 1 4] L-MINUS-REL
% »/// A] S.MINUS-REL

—

AS A GIO] RELATIVE ADDRESS
OF ANOTHER WORD IN THE
DATA SEGMENT

20-—40mMIT -0 2~

IF BIT ZERQ {1 0 -1 OF THE
INSTRUCTION IS A 17", THE

CONTENTS OF THE DIRECTLY
ADDRESSED WORD ARE USED

I

P T TTrTTTTT

8 9 10 11 12 13 14 15

2] %% % K3 K1) K3 K3 KD NE [e e I
INDIRECT \(\ : !

G-RELATIVE DISPLACEMENT
ADDRESSING
MODE

GTes s > T L
> SV INVIIINS -

§5001-042

Figure 4-11. Indirect Addressing in the Data Segment

If a doubleword operand is accessed, the address pointer contains
a G[0]-relative word address:

address := data [direct”address];
and the referenced doubleword is

doubleword := data [address:address+1l];

4-16 4582507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

Glo]
INDIRECT, NO INDEX r N
/
I1F/%‘$¢]ololo]ololoToIo]o\1]01 > 12345 Gf2]
7
‘/Y\ T
INDEX G-REL OFFSET
REG ADDRESSING L
(NONE) MODE
M
12345 2 6172,r 1
1 RIGHT HALF Y72 slev2)
S5001-043

Figure 4-12., Indirect Byte Addressing in the Data Segment

Indexing. Indexing is used to reference memory locations
relative to a data element in memory. A typical use is when an
element in an array is accessed.

Generally, indexing is done as follows. An initial address is
first calculated as described previously (any addressing mode as
well as direct and indirect addressing is permitted). This
initial address is then used as a base address for indexing. The
indexing value, contained in an index register (referred to as
"X"), is added to the initial address to provide the address of
the referenced operand. This is shown in the upper part of
Figure 4-13.

Any one of three registers in the Register Stack (R[5:7]) can be
used as index registers. The register to be used for indexing is
specified in the <x> (index) field, I.<5:6>, that is part of all
memory reference instructions. (Note the instruction format in
the lower part of Figure 4-13.) The index field corresponds to
Register Stack elements as follows:

1.<5:6> VALUE INDEX REGISTER

no indexing
R[5]
R[6]
R[7]

WNHO
DN

/1|82507 A00 3/85 4-17

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

DIRECT, INDEXED

INDIRECT, INDEXED

777777 777
—» I DIRECT ADDRESS J — I INDIRECT ADDRESS I + [INDEX VALUE] —» l REFERENCED CELL}
pyyyi LL

INSTRUCTION FORMAT

8 9 10 11 12 13 14 15

CBYZ TTITIT I L]

INDIR—

ECTION \7——/ I /

INDEX ADDRESSING MODE
REGISTER AND
OFFSET FROM BASE

0=NO INDEXING
1=R5
2= R6
3=R7

S$5001-044

Figure 4-13. 1Indexing

An index register can contain values from -32,768 through +32,767
to provide direct word and doubleword addressing of any location

in the data area (all addressing is modulo 65,535).

The value in

an index register is always treated as an element indexing value.

That is,

if a byte instruction is being executed, the contents of

an index register are treated as a byte offset; if a doubleword
instruction is being executed, the contents are treated as a
doubleword offset.

Specifically,

e For direct, indexed addressing of word operands,

address := direct”address + X;

The contents of the index register, X, are added to the
direct address; and the referenced element (referred to
as "wordx") is:

4-18

wordx := data [address];

Aﬁ82507

AQ0 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

e For indirect, indexed addressing of word operands,
address := data [direct”address] + X:

wordx := data [address];

e For direct, indexed addressing of byte operands,
byteaddress := (2 * direct”address) + X;
The direct”address (a word address) is multiplied by two to
obtain a byte address. The indexing value (a byte offset) is
added to that. The G[0]-relative address of the referenced
byte is converted to a word address as follows:
address := byteaddress.<0:14>;
and the referenced byte (referred to as "bytex") is
bytex := if byteaddress.<15> then
data [address].<8:15> | right byte
else
data [address].<0:7>; ! left byte
e For indirect, indexed addressing of byte operands,
byteaddress := data [direct”address] + X;
The address pointer indicated by "data [direct”address]"
contains a byte address. X, which contains a byte offset, is
added to the byte address. The "address" and "bytex" are then
determined as described above.
e For direct, indexed doubleword operands,
address := direct®address + (2 * X);
That is, the indexing value (a doubleword element index) is
multiplied by two to provide a word index. This value is
added to the initial address (also a word address) to generate
a G[0]- relative word address, and the element referenced
(referred to as "dwordx") is

dwordx := data [address:address+1]; ! two words

e For indirect, indexed doubleword operands,

address := data [direct”address] + (2 * X):

482507 A00 3/85 4-19

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

WORD: — —
DIRECT, INDEXED Glsl
CBA T oo ToTe oo i To]] —

{
DIRECT
I
INDEX OFFSET
REG
G-RELATIVE REGISTER
ADDRESSING STACK
MODE e~
5 ¢ s
. — G174
2 4
R(7I 12
N
r_ G1o}
INDIRECT, INDEXED
PR e Yo fo]e]ofo] i]o]]o] ~
e \
INDIRECT N 55
T
INDEX OFFSET LN
REG /\"\/\/\‘
G-RELATIVE REGISTER
ADDRESSING STACK
MODE e~
1234
7
RI6] - 7 _ —
L—> g, Gl12411
BYTE
INDIRECT, INDEXED Joto
@Mllllolololololololylo] — 12345 Gl21
INDIRECT 12345
T/ T
INDE X OFFSET ‘. L
RE s ’ 12338
G-RELATIVE REGISTER o
ADDRESSING STACK ~—"
MODE o
12338 - 2 - 6169,
R0
7285 I EEE]
RI7I =7 — 0- LEFT HALF e
5 4
3 2
1 o |clei172)
L/_\/—.«
S5001-045

Figure 4-14.

Examples of Indexing

Iﬂ82507 A00

3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

The address pointer indicated by "data [direct”address]"
contains a word address. X, which contains a doubleword
offset, is multiplied by two (to generate a word offset) and
added to the initial address. The "dwordx" is the same as
described above.

Figure 4-14 shows examples of word and byte indexing.

Three instructions deal with loading and modifying index register
contents. They are:

LDX Load an Index register from data segment
LDXI Load an Index register with Immediate operand
ADXI Add to an Index register the Immediate operand

An additional instruction is used for branching on the contents
of an index register. It is:

BOX Branch on Index register less than A (top of Register
Stack) and increment index register

REGISTERS

Register Stack

The Register Stack is where arithmetic computations are performed
and, except for the Compare Words and Compare Bytes instructions,
where comparisons are made. The Register Stack consists of eight
16-bit registers, designated R[0] (Register Stack, element O0)
through R[7]; see Figure 4-15. Three elements of the Register
Stack, R[5:7], also double as index registers (see "Indexing").

R([0]

[~ REGISTER
STACK]

R[7]

$§5001-047

Figure 4-15. Register Stack

482507 A0O 3/85 4-21

INSTRUCTION PROCESSING ENVIRONMENT
Registers

A typical operation to add two numbers in the Register Stack is
as follows: the operands are first loaded into the Register
Stack using LOAD instructions, an IADD (integer add) instruction
is then executed performing the desired arithmetic, and the
result is then stored back into memory using a STOR instruction.
Grouped together to form a program, the preceding operation looks
like this:

LOAD G + 002 ! load data element G[2] onto Register Stack
LOAD G + 003 ! load data element G[3] onto Register Stack
IADD ! integer add

STOR G + 004 ! store result from Register Stack into G[4]

The condition of the Register Stack for each of these
instructions is shown in Figure 4-16.

Usually, elements in the Register Stack are addressed implicitly.
That is, an instruction operates on the top element (or elements)
without specifying the actual registers involved. The current
top element of the Register Stack is defined by the Register
Stack Pointer, RP. RP, which is a three-bit field in the
Environment register (described in the next subsection), contains
the register number, 0:7, of the top element. The RP setting is
incremented when operands are loaded into the Register Stack:

RP := RP + <size of element>;

and decremented when arithmetic is performed or results are
stored:

DATA REGISTER

AREA STACK
Glo]
Gi1l —____/-——-——v 5 LOAD G+002
Gl(2] 5

Gl3l 5
Glal N
i 1
5 LOAD G+003
> 6

1]
L—-——l (EMPTY] I STOR G+004

§5001-048

Figure 4-16. Example of Register Stack Operation

4--22 4482507 A0 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

RP := RP - <size of element>;

The empty state of the Register Stack is defined as RP = 7. The
full state is also RP = 7, There is no protection against
rolling RP over from 7 to 0.

The operation of the Register Pointer for the example of Figure
4-16 is shown in Figure 4-17.

The elements in the Register Stack are named as to their location
relative to the current top element. The top element is
designated "A", the second is "B", and so on through "H":

RP
RP

A = RP (top of Register Stack)
B = RP [-1]
C = RP [-2]
D = RP [-3]
E = RP [-4]
F = RP [-5]
G = [-6]
H = [-7]

Examples of register naming are shown in Figure 4-18.

Environment Register

The 16-bit ENV (Environment) register maintains the IPU state of
the currently executing process. The individual bits and bit
fields of the ENV register are continually referenced and updated
by the IPU hardware and firmware. The ENV register contents are
saved (along with the contents of the P and L registers) by the
firmware as part of the executing state of a process when a
procedure is invoked or when an interrupt occurs. The firmware
restores the ENV register to its previous state when the
procedure or interrupt finishes.

The format of the ENV register is shown in Figure 4-19. The
following paragraphs describe the meanings of the bits in this
register. (The four high-order bits are reserved for use as
flags by the microcode.)

NOTE

The stored copy of the ENV register in a stack marker
differs from the hardware format shown here, since the
IPU microcode uses ENV.<11:15> to save the space ID index;
compare with Figure 4-24.

482507 A00 3/85 4-23

INSTRUCTION PROCESSING ENVIRONMENT
Registers

(X e 2

ENV
REGISTER

_ EMPTY J
~R[7] -
RP

EMPTY STATE

AN
o | ENV
REGISTER

w44 nn
H__/
LoapG+002 [P27775 777 7] R0l - J

ENV
REGISTER

LOAD G+003 5 Toep J
6 RII - - e

7 N
7 2 22020770 o o] o] e
¥r_/
1ADD e |b1 e ::?: Uﬁ;{) -- [— J

%%%74% : .' .' .') ::énsrsn
STOR G+004 T R(0] UNDEFINED L‘_/
3

- RI11 UNDEFINED

EMPTY 1
-R(7] -—

S§5001-049

Figure 4-17. Action of the Register Pointer

4--24 4§ 82507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

16-BIT OPERANDS

TOP —#

32-BIT OPERANDS

TOP —&

64.BIT OPERANDS

TOP —»

N _[___/
D
[9
B
77777 A L J
H
G
F RP
. / N
G
F
E
D
C
B ToP
A /7] -R(6] <=
H
N~
B OPERAND 1 (B)
LA/ OPERAND 2 (A)
A P
N~
g } OPERAND 1 (DC}
//i//// >— OPERAND 2 (BA)
H
2 OPERAND 1 (HE)
5
é OPERAND 2 (DA)
AL
S$5001-050

Figure 4-18.

/I’|82507 AQ00 3/85

Naming Registers in the Register Stack

INSTRUCTION PROCESSING ENVIRONMENT
Registers

8 9 10 11 12 13 14 1§

oL D] T]
ENV.<4> LS (LIBRARY SPACE}: 1=LS J J J \r_/ ;’_/

ENV.<5> PRIV: 0= NONPRIVILEGED, 1 = PRIVILEGED

ENV.<6> DS (DATA SPACE): 0=USER, 1=SYSTEM

ENV.<7> CS (CODE SPACE): 0 = USER, 1 == SYSTEM

ENV.<8> T (TRAP ENABLE): 0 =DISABLE, 1 = ENABLE

ENV.<9> K (CARRY BIT) B S/

ENV.<10> V (OVERFLOW): 0 = NO OVERFLOW, 1 = OVERFLOW
ENV.<11:12> CC (CONDITION CODE): 10 = CCL (LESS THAN) }

01=CCE (EQUAL)
00 =CCG (GREATER THAN)

J

§5001-051

ENV.<13:15> RP (REGISTER STACK POINTER)

Figure 4-19. Environment Register

Library Space Bit. The LS bit (ENV.<4>) works with the CS bit
(7) to define the current code space. When this bit is equal to
1, one of the library code spaces (user library or system
library) is chosen for execution, rather than one of the standard
code spaces (system code or user code), as selected by the CS
bit. In the case of "system" selection by CS, the current system
library segment is chosen for execution; in the case of "user"
selection by CS, the user's current library segment is chosen for
execution. (There can be up to 32 system library segments and up
to 16 user library segments; only one of each is "current" at a
given instant.)

Privileged Mode Bit. The PRIV bit (ENV.<5>), when equal to 1,
means that the program is currently executing in privileged mode
and is permitted to perform privileged operations. Privileged
operations have the potential to adversely affect the operating
system if misused. Some examples of privileged operations are:
sending data over an interprocessor bus «(SEND), initiating

4-26 482507 A0 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

input-output operations (EIO), calling privileged procedures, and
accessing system tables. Normally, only the operating system
executes in privileged mode; privileged operations are performed
on behalf of application programs by the operating system.
Nonprivileged programs can perform privileged operations only
indirectly, by calling procedures designated callable. (Callable
procedures execute in privileged mode but can be called by
nonprivileged procedures.) When a nonprivileged procedure calls
a callable procedure, its nonprivileged state is restored on
return.

Instructions designated privileged can be executed only if the
PRIV bit in the ENV register is equal to 1. If a nonprivileged
program (i.e., PRIV = 0) attempts to execute a privileged
instruction or call a privileged procedure, the firmware
transfers control to the operating system instruction failure
trap handler.

Data Space Bit. The DS bit (ENV,.<6>) defines the current data
segment. Thils specifies which data area is to be accessed when a
data reference is made. DS, when equal to 0, specifies the user
data segment; when equal to 1, it specifies the system data
segment. DS equals 1 only in the interrupt environment; thus
this bit is useful to both software and firmware in determining
whether the current environment is an interrupt or a process.
Processes executing in privileged mode can make explicit system
data references regardless of the state of the DS bit through use
of the SG-relative addressing mode.

Code Space Bit. The CS bit (ENV,.<7>), together with the LS bit
(ENV.<4>), defines the current code space. (Microcode selects
the current segment within that space.) CS, when equal to 0,
specifies the user code space (or the user library space if LS is
equal to 1); CS equal to 1 specifies the system code segment (or
the system library space if LS is equal to 1).

Trap Enable Bit. The T bit (ENV.<8>) specifies whether control
1s to be transferred to the operating system if an arithmetic
overflow occurs or a divide with a divisor of 0 is attempted.

If T is equal to 1 and an arithmetic overflow occurs (V,
ENV.<10>, = 1), control is transferred to the operating system
arithmetic overflow interrupt handler (see the GUARDIAN Operating
System Programmer's Guide for possible recovery procedures). 1If
T 1s equal to 0, control remains with the program having the
overflow condition.

482507 A00 3/85 4-27

INSTRUCTION PROCESSING ENVIRONMENT
Registers

Generally, the T bit is under control of the operating system,
However, application programs can set T to 0 by means of the SETE
instruction if it is desired to handle arithmetic overflow
conditions locally.

Carry Bit. The K bit (ENV.<9>), when equal to 1, indicates that
a carry out of the high-order bit position occurred when
executing an arithmetic instruction on a 16-, 32-, or 64-bit
operand. The state of the K bit reflects the last arithmetic
type instruction executed. The state of the K bit is also
alt?red as the result of executing a scan instruction (SBW or
SBU).

Two instructions test the state of the carry bit. They are:

BIC Branch if carry
BNOC Branch if no carry

Overflow Bit. The V bit (ENV.<10>), if equal to 1, indicates
that an overflow condition occurred, or a divide (IDIV) with a
divisor of zero was attempted. Overflow is generally associated
with arithmetic operations on 16-, 32-, and 64-bit operands.
Overflow also occurs in an LDIV instruction if the quotient
cannot be represented in 16 bits, or in floating-point arithmetic
if the exponent is too large or too small (see "Number
Representation" in Section 3).

The state of the V bit is tested by the BNOV (Branch if No
Overflow) instruction.

Condition Code Bits. This two-bit field (ENV.<11:12>) forms the
Condition Code. The Condition Code generally reflects the
outcome of a computation, comparison, bus transfer, or
input-output operation. The Condition Code is also set by
various system procedures to reflect the outcome of calls to
those procedures, and by "load" instructions to identify the
characteristics of the word or byte loaded onto the Register
Stack.

The two bits that form the Condition Code are designated:

N

negative or numeric, ENV.<11>

z

zero or alphabetic, ENV,.<12>

The Condition Code has three states:

4-28 4482507 ADO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

CCL = less than, ENV.<11:12> = 10 (N =1, 2 = 0)
CCE = equal to, ENV.<11:12> = 01 (N =0, Z = 1)
CCG = greater than, ENV.<11:12> = 00 (N = 0, 2 = 0)

The state of the Condition Code is tested by the following branch
instructions:

BLSS Branch if CCL BLEQ Branch if CCL or CCE
BEQL Branch if CCE BLEG Branch if CCL or CCG
BGTR Branch if CCG BGEQ Branch if CCE of CCG

The Condition Code is set explicitly by the following
instructions:

CCL Set CCL
CCE Set CCE
CCG Set CCG

The following paragraphs define the manner of setting the
Condition Code in various cases.

Following a Computation. 1In this case, a hardware operation sets
the Condition Code as follows, where x is the result of the
computation:

CCL: x < 0
CCE: x = 0
CCG: x > 0

Following a computation, the Condition Code reflects the
resultant value in a data segment location, on the top of the
Register Stack, or in an index register. The location reflected
by the Condition Code depends on the last instruction executed
(see Section 9 for particulars). For example, a simple program
to add two numbers and then store the result affects the
Condition Code as follows:

Data in Global Area
G [2] 5
G [3] -5

LOAD G + 002
sets ?ondition Code to CCG (5 on the top of the Register
Stack).

LOAD G + 003

sets Condition Code to CCL (-5 on the top of the Register
Stack) .

4482507 A00 3/85 4-29

INSTRUCTION PROCESSING ENVIRONMENT
Registers

IADD
sets Condition Code to CCE (0 on the top of the Register
Stack).

STOR G + 004
does not change the Condition Code.

For a Comparison. In this case, a hardware operation sets the
Condition Code bits as follows, where x and y are the operands:

For Signed Operands For Unsigned Operands
CCL: x < y CCL: x '<' vy
CCE: x =y CCE: x = y
CCG: x > y CCG: x '>' y

The operand x is the first operand loaded onto the Register Stack
(i.e., the second operand from the top of the stack), and y is
the top operand in the Register Stack. For the DCMP instruction,
x and y each take two registers on the Register Stack; for ECMP,
each operand takes four registers. When two arrays are compared
by a COMW or COMB instruction, x is the element in the
destination array, and y is the element in the source array. For
these instructions, the Register Stack is loaded with the address
of the destination array (first item loaded), followed by the
address of the source array (second item loaded) and the number
of words or bytes to be compared (top of Register Stack). The
single quote marks surrounding an operator symbol signify an
unsigned (logical) rather than a signed (arithmetic) operation;
thus '>' and '<' are unsigned comparison operators.

For a Byte Test. In this case, a hardware operation sets the
Condition Code bits as follows, where x is the operand:

CCL: X is an ASCII numeric character
CCE: X is an ASCII alphabetic character
CCG: X is an ASCII special character

For a byte test, the Condition Code is set according to bits
<8:15> of the operand on the top of the Register Stack when a
BTST (Byte Test) or any "load byte" instruction (LDB, LBP, LBA,
LBAS, LBX, LBXX) is executed. A Condition Code of CCL indicates
that an ASCII numeric character (i.e., 0, 1, ..., 9) is on the
top of the Register Stack. CCE indicates a lowercase or
uppercase ASCII alphabetic character (i.e., a, b, ..., z or A,
B, ..., Z), and CCG indicates an ASCII special character (i.e.,
neither numeric nor alphabetic).

4-30 482507 A0O 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

For Bus Communication and Input-Output. For the Condition Code
settings resulting from interprocessor bus communication, see the
interprocessor bus description later in this section, and see the
description of the SEND instruction in Section 9, "Instruction
Set."

For input-output, see the input-output channel description in
Section 7 and the EIO, IIO, and HIIO instructions in Section 9.

Register Stack Pointer. This three-bit field (ENV.<13:15>)
defines the current top element of the Register Stack. The value
of RP is implicitly changed by instructions that operate on
values on the top of the Register Stack. RP is incremented as
instructions are executed to load operands onto the Register
Stack, and decremented when computations are performed or results
stored.

The STRP instruction is used to explicitly set the RP value.

Environment Register Initial Settings. The ENV register is
given an 1initial setting following a cold load to distinguish
processor type. These settings are:

%3447 for a NonStop II processor. This setting specifies
privileged mode, system data, system code, traps disabled, no
carry, overflow, CCG, and RP = 7,

%3507 for a NonStop TXP processor. This setting specifies
privileged mode, system data, system code, traps disabled,
carry, no overflow, CCG, and RP = 7,

The ENV register is given the following setting whenever an
interrupt handler is entered:

%3447 for a NonStop II processor
%3507 for a NonStop TXP processor

SETE Instruction. The SETE instruction is used to alter the ENV
register contents. The bits of ENV.<8:15> can be set to any
value desired; the bits of ENV.<0:7> are either cleared or left
unchanged. This prevents nonprivileged processes from becoming
privileged or gaining access to system data. A similar mechanism
is used in the EXIT instruction to restore the ENV register
contents when a procedure finishes. The programmer should take
care when clearing ENV.<0:7>, since it is possible to
inadvertently clear the Library Space (LS) bit, ENV.<4>,

4 82507 A00 3/85 4-31

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

PROCEDURES AND THE MEMORY STACK

A procedure is a functional block of instructions that, when
called into execution, performs a specific operation. A
procedure can perform an operation as simple as adding two
numbers or as complex as locating an entry in a data base. A
program typically consists of many procedures.

Several characteristics of procedures are:

A procedure can be called into execution (invoked) from any
point in a program.

Procedures are assigned a "callability" attribute. The
attribute specifies whether or not the caller must be
executing in privileged mode, and whether or not the called
procedure executes in privileged mode.

The caller need not be concerned with its environment or the
environment of the procedure it called, because:

--The caller's environment is automatically saved by the
hardware when a procedure is called and is restored by the
hardware when the called procedure finishes.

--When a procedure is called into execution, it is allocated
its own temporary storage area called a local data area.
The local data area (shown earlier in Figure 4-7) 1is known
only to the executing procedure and is logically separate
from other procedures' local data areas.

Parameters (or arguments) can be passed to a procedure for
evaluation., The parameters can be actual operands or can be
addresses of operands.

A procedure can return a value (such as the result of a
computation) to its caller.

A procedure itself can contain one or more subprocedures. A
subprocedure is similar to a procedure in that it is also a
functional block of instructions, called into execution to
perform a specific operation. There are several similarities
between procedures and subprocedures: a subprocedure, like a
procedure, is allocated a temporary (sublocal) storage area
while it executes, parameters can be passed to a subprocedure,
and a subprocedure can return a value to its caller. Some
significant differences between procedures and subprocedures
are: different instructions are used to call a subprocedure
than a procedure, a subprocedure has no "callability"
attribute (it executes in the mode of its caller), and the
amount of sublocal storage available to a subprocedure is

4-32 4982507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

significantly less than the amount of local storage available
to a procedure. (BSUB and RSUB do not change the current L or
ENV register setting.) In addition, a subprocedure can be
called only by the procedure that contains it, or by another
subprocedure contained within the procedure. A subprocedure
can access both its sublocal storage as well as the
procedure's local and global storage.

A procedure consists of a contiguous block of instruction codes
and program constants in a code segment. The procedures that
compose a program are in one or more segments within the user
code space. They may call procedures in the system code segment,
any of the system library segments, or any of the segments in the
user library space. The address of the first instruction in a
procedure is called the entry point. The entry points for all
procedures in a program are located in a table, known to the
hardware, called the Procedure Entry Point (PEP) table. The PEP
itself is located at the beginning of each code segment. See
Figure 4-20.

The External Entry Point table, also shown in Figure 4-20, exists
in each segment, but will be discussed later under "Calling
External Procedures." This table ends on a page boundary, with
entries consecutively assigned backward toward the end of code,
using the first available space that fits (either on the same
page as the end of code or on a separate page).

Procedures are invoked using procedure call instructions--PCAL to
a procedure within the same code segment, or XCAL to a procedure
in some other code segment. During execution of either of these
instructions, the caller's environment (specifically, the address
of the instruction following the call, the L register setting,
and the current ENV register setting--modified to include space
ID index) is saved in a three-word stack marker. The stack
marker is written at the current top of the memory stack. The
call instruction then references the entry in the PEP table
corresponding to the procedure being called. The address in the
PEP entry is placed in the P register so that the next
instruction executed is the one at the procedure's entry point.

The last instruction that a procedure executes is an EXIT
instruction. The EXIT instruction is used to return control to
the caller. Specifically, the caller's L register setting is
restored, and the return address (i.e., that of the instruction
following the call instruction) is set into the P register. The
caller's ENV register setting also is restored--except for the
Condition Code (CC) and Register Pointer (RP) fields, which are
left as is, since these fields in the stack marker copy of ENV
were used to save the space ID index. The EXIT instruction
microcode performs a segment switch, using the space ID, if the
caller's segment is different from the segment of the called
procedure.

4482507 A00 3/85 4-33

INSTRUCTION PROCESSING ENVIRONMENT

Procedures and the Memory Stack

ClO] —»

i —
|
.

- .

CL%ATITIT] =

CODE SEGMENT

ADDRS OF o

ADDRS OF b

ADDRS OF ¢

ADDRS OF d

N TN

ADDRS OF ¢

PROC o

PROC b

PROC ¢

PROC d

PROC ¢

UNASSIGNED
ADDRESSES

ADDRS OF xd

ADDRS OF xc

ADDRS OF xb
ADDRS OF xa

UNALLOCATED
SPACE

i

f PROCEDURE ENTRY POINT TABLE (PEP}

Y

EXTERNAL ENTRY POINT TABLE(XEP)

PAGE BOUNDARY

END OF CODE SEGMENT

$5001-052

Figure 4-20.

4-34

Procedure
Tables

Entry Point and External Entry Point

/1”82507 AQ00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

An example of a procedure call and exit is shown in Figure 4-21.
This example assumes the called procedure is in the same segment
as the caller, UC.2; note the space ID index value of 2 in the

stack marker.

v

401
P REGISTER

EXI\T 277

C(4] PEP

] Cl272] -—

] claonl

TOP-OF-STACK
AT TIME OF

CALL TO PROC b \

DATA
SEGMENT

N~ M

P REGISTER -

272

—~_ I

EN
L

D,

STACK MARKER
USED TO SAVE AND
RESTORE CALLER'S
(i.e., PROC a’s)
ENVIRONMENT

§5001-053

I{’ 82507 A00 3/85

Figure 4-21.

Procedure Call and Exit

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

Attributes of Procedures

So that a nonprivileged process cannot execute in privileged mode
and so that execution of privileged operations can be controlled,
every procedure has one of the following attributes:

o Nonprivileged. Procedures having this attribute can be called
by any procedure. They execute in the same mode (privileged
or nonprivileged) as the calling procedure. This is the
attribute typically given to procedures in an application
program.

® Callable. Procedures having this attribute can also be called
by any procedure, but they execute in privileged mode (i.e.,
PRIV = 1). The caller's mode is restored when a callable
procedure exits. This attribute is typically assigned only to
operating system procedures. It is used so that a controlled
interface exists between a nonprivileged application program
and the privileged operating system.

 Privileged. Privileged procedures execute in privileged mode
and are callable only by procedures currently executing in
privileged mode. An attempt by a nonprivileged procedure to
call a privileged procedure results in an illegal instruction
trap. This attribute should be used only by the operating
system. It is typically used when an operation, if done
improperly, might have an adverse effect on processor module
operation. A nonprivileged application program's only
interface to an operating system privileged procedure is
through a procedure with the callable attribute. (For
example, many of the GUARDIAN file system procedures described
in the System Procedure Calls Reference Manual are callable
procedures that, in turn, call privileged operating system
procedures.)

In the PEP table, procedure entry points are grouped according to
attribute. There are three groups: the first is nonprivileged
procedures, the second is callable procedures, and the last is
privileged procedures.

The first two words in the PEP table, C[0:1], describe where the
callable and privileged entry points begin in the PEP.
Specifically, C[0] is the address of the first PEP entry for a
callable procedure, and C[1] is the address of the first PEP
entry for a privileged procedure. See Figure 4-22, These words
are used to check whether a nonprivileged caller is attempting to
invoke a privileged procedure.

4-36 4182507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

PEP TABLE ADDRESS
OF FIRST CALLABLE

/ PROCEDURE
PEP TABLE ADDRESS

— -clol
-C(1) —— OF FIRST PRIVILEGED
___J-cz1 PROCEDURE
ENTRY POINTS OF
— NON-PRIVILEGED
PROCEDURES
N
ENTRY POINTS OF | pep
l— CALLABLE
PROCEDURES
R
T ENTRY POINTS OF
— PRIVILEGED
E— PROCEDURES

S$5001-054

Figure 4-22. First Entries in Procedure Entry Point Table

PCAL Instruction

The steps involved when a Procedure Call (PCAL) instruction is
executed are described below, with step numbers referring to the
accompanying illustration, Figure 4-23., Note that before the
PCAL executes, the procedure parameters (and the mask word or
words, for procedures with a variable number of parameters) must
be pushed onto the stack. Also, it is usually assumed by the
called procedure that the Register Stack is empty when a PCAL is
about to be executed (RP=7). The RP (Register Pointer) and CC
(Condition Code) fields of ENV that are saved in the stack marker
(step 1, below) are overwritten by the space ID index of the
calling procedure.

1. The caller's environment is saved in a three-word stack

marker.
data [S+1] := P; !
data [S+2] := ENV; ! stack marker.
data [S+3] := L; !

The stack marker is pushed onto the top-of-stack location,
as indicated by the address in the S register. The
stack marker contains the following information:

4582507 A00 3/85 4-37

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

PROCEDURE

CALL (PCAL)

15

PEP NUMBER (PN

J INSTRUCTION FORMAT

4-38

CODE
SEGMENT DATA
™ SEGMENT
@ & N
C IPNI PEP '—'FF‘REGISTERJ—\
PRECEDING
L~~~ e STACK
/—_‘CEF_‘.‘?E'ETE“_ MARKER
CALLER'S
CALLER LOCAL
PCAL PN ‘/__ _____ DATA
PREGISTER J1—
 SREGISTE o~ [T0P.OF STACK]
C SREGSTET > =
ENV .
. ‘)]
c(rep; | - ,,3\[L REGISTER _|-® L
“~[CSrecisten
S
PROCEDURE
THREE WORD STACK
MARKER SAVING
N CALLER'S ENVIRONMENT
N
NG N NG TALLER'S P REGISTER
(NEXT INSTRUCTION)
T ENVAEGISTER J— 1 CALLER'S ENV REGISTER
N CALLER’'S L REGISTER
__T‘/ ILAST STACK MARKER)
:
7
o
S5001-055
Figure 4-23, Execution of PCAL Instruction

ﬂ”|82507 AQ0 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

e the current P register setting (the address of the
instruction following the PCAL)

e the current ENV register setting

e the current L register setting (the beginning of the
caller's local data area)

NOTE

The stored copy of the ENV register (see Figure 4-24)
contains the complete space identification of the
caller's segment, since code spaces can have multiple
segments. This consists of the LS and CS bits, to
select one of the four code spaces, plus a space ID
index to select a specific segment within that code
space. (Also note that, since bits 11 through 15 of
ENV, which normally contain CC and RP, are used to
save the space ID index in the stack marker, the CC
and RP fields must not be modified in the stack
marker.)

2, If the calling procedure is not executing in privileged mode,
the "callability" attribute of the procedure being called is
checked.

First, the PEP number field of the PCAL instruction is
compared with the entry in C[0] (the address of the first PEP
entry for callable procedures). If the PEP number is greater
than or equal to the C[0] entry, then this is a call to a
callable or privileged procedure, so a second check is made:
the PEP number field of the PCAL instruction is compared with
the entry in C[1] (the address of the first PEP entry for
privileged procedures). If the PEP number is greater than or
equal to the entry in C[1], then this is a call to a
privileged procedure; so, an instruction failure trap occurs,

PRIVIDS|CS| T | K| V

- —
SPACEID INDEX

S$5001-056

Figure 4-24. Space Identification in Stored Copy of ENV

482507 ADO 3/85 4-39

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

Foll
exec

and the PCAL instruction fails. Otherwise, this is a call to
a callable procedure, so the PRIV bit (in ENV) is set.

If the PEP number is less than the C[0] entry, then this is a
call to a nonprivileged procedure, so no special action is
taken.

The S and L registers are set with the G[0]-relative address
of the new top-of-stack location (the third word of the stack
marker).

L := 8§ := §+3;

The new L register setting defines the base of the local area
for the procedure being called.

The new S register setting is tested for an address within
the memory stack area, G[0:32767]. 1If the value is greater
than 32,767, control is transferred to the operating system
stack overflow trap (and the PCAL instruction is aborted).

if S '>' 32767 then stack”overflow™trap;

The C[0]-relative address of the procedure being called is
obtained from the PEP table entry pointed to by the <PEP
number> field in the PCAL instruction. This address is put
in the P register so that the next instruction executed will
be the first instruction of the called procedure.

Finally, RP is given an initial value of seven (stack empty)
if it does not already have this value.

RP := 7;

owing the PCAL, the instructions comprising the procedure are
uted. The last instruction that a procedure executes is an

EXIT instruction.

EXIT Instruction

The EXIT instruction uses the three-word stack marker to restore
the caller's environment. The sequence is as follows, with

refe

rence to Figure 4-25. (For simplicity, and continuity with

I'f’ 82507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

0 7 8 15
I 1 I 0 | 1 I nI 1 I ol 1 I ol S DECREMENT I INSTRUCTION FORMAT DATA AREA
|— STACK —
L REGISTER — o | MARKER —
CODE AREA ——» [LREGISTER]
CALLER’S
LOCAL
DATA

PCAL PN

<+—— [CFREGISTER Je—— (> CSBEGETER) ——

soec (7) :// ///////;

211 AN
o ——— EN] ~
C TREGISTER | —— [7/777 77777

\\

~

EXIT DECS | ——— P REGISTER

- S REGISTER _— A

SAVING CALLER'S
ENVIRONMENT

k CALLER'S P REGISTER

@ C CALLER'S ENV REGISTER
ﬂ% Ls }’nuvi DSlCSl T] K I v V(’::c an’i//A«_/ CALLER'S L REGISTER

v T
%VA cc l IRP I] CURRENT ENV REGISTER SETTING
1

- -—

SVA '-3}"“\’(05—[CS! T]K I v | C:C I IRPI I ENV REGISTER AFTER EXIT

$5001-057

Figure 4-25. Execution of EXIT Instruction

482507 A0O 3/85 4-41

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

the preceding PCAL description, this sequence assumes the return
is from a procedure that was called with PCAL rather than XCAL.)

1. The S register setting is moved below the local area, the
stack marker, and any parameters to the exiting procedure.

S := L - S"decrement;

The "S"decrement" value (which is specified in the EXIT
instruction) is subtracted from the current L register
setting and placed in the S register. The value of
"S“decrement” is three (for the stack marker) plus the number
of words of parameter and mask information passed to the
exiting procedure.

2. The P register is set with the P register value saved in the
stack marker at L[-2].

P := data [L-2];

The next instruction to be executed will be the one following
the PCAL instruction.

3. The ENV register is restored from a combination of the
current ENV register setting and the ENV register value saved
in the Register Stack at L[-1].

The mode (privileged or nonprivileged) and data area are
reestablished to be the lesser of the caller's and the
current settings. This ensures that a nonprivileged user
cannot exit with privileged capability. The caller's CS
(code space), LS (library space), T (traps), V (overflow),
and K (carry) are reestablished from L[-1]. Z and N
(Condition Code) are left at their current settings to
reflect the results of the call. RP is left at its current
setting so that a value in the Register Stack can be returned
to the caller.

4. The L register is restored from the L register value saved in
the stack marker at L[O0].

L := data [L];

This moves L back to point to the preceding stack marker,
thereby reestablishing the preceding local data area.

The instruction following the PCAL instruction then executes.

4-42 . 482507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Calling External Procedures

CALLING EXTERNAL PROCEDURES

Procedures in an external code segment can be called almost as
efficiently as the current segment's own procedures. The XCAL
(external procedure call) instruction and the space ID addressing
convention are two important features that make this possible.

Figure 4-26 illustrates an example of a call from a user code
segment to a procedure in the system code segment. (The general
method applies to any allowable external call between any pair of
segments in any of the four code spaces--user code, user library,
system code, and system library.) When the application program
program calls the external procedure, an XCAL instruction is
executed. This instruction places a three-word stack marker on
the top of the user stack and moves L and S in the same manner as
a PCAL instruction (i.e., defines a new local area). However,
instead of transferring control directly to a procedure within
the segment, control is vectored out of the segment (via its XEP,
External Entry Point table) into another code segment (through
that segment's PEP, Procedure Entry Point table). In this
example, the system code segment's Procedure Entry Point table
(PEP) is used to determine the procedure's starting address, and
the CS bit in the ENV register is set to "1" so that instructions
will be executed from the system code segment. The DS bit,
however, remains a "0" so that the user data segment (as opposed
to the system data segment) is still in effect. The local area
for the system procedure is therefore in the user data segment.
Specifically, the steps involved when the XCAL instruction is
executed are:

1. The caller's environment is stored in a stack marker.

data [S+1] := P;
data [S+2] := ENV;
data [S+3] := L;

The stored copy of the ENV register (see Figure 4-24)
contains the complete space identification (LS and CS bits,
plus the space ID index for the selected code space) of the
caller's segment, since code spaces can have multiple
segments. (Note that hardware bits 11 through 15 of the ENV
register, which normally contain the Condition Code and
Register Pointer, are not saved.)

2. The C[0]-relative address of the procedure being called is
obtained by a three-step process. First, the XCAL
instruction specifies a location in the caller's External
Entry Point table (XEP; refer back to Figure 4-20). Then,
the XEP entry is used to locate the desired code segment

4§ 82507 A00 3/85 4-43

INSTRUCTION PROCESSING ENVIRONMENT
Calling External Procedures

USER
CODE
PROCEDURE
ENTRY POINT
VNN TABLE
NN (PEP)
XEP ENTRY
lesfis] moex | eepno. |
° 2 87 15 PROC 2
L]
L]
.
CALL READ(.....)
r—-—_——-—.— XCAL 2
cla07s] +— | 2075)
P REGISTER
L]
L]
.
. 3 EXTERNAL
[To T 4
r 3 ENTRY POINT
0 TABLE (XEP)
SYSTEM
CODE
23 clo}
NON-
PRIV §
GROUP
PUTS CPU CALLABLE, Cl22] | SYSTEM
IN PRIV MODE PRIV _ PROCEDURE
(CS POINTS GROUP - ENTRY POINT
TO SYSTEM CODE, D 42037 cla1] | TABLE
DS POINTS TO (SEP)
USER DATA,
LS POINTS TO
SYSTEM CODE UNCALL-
EXTENSION) ABLE, f—————
PRIV b
GROUP
[~] cle2037)
P RE
GISTER PROC READ
PROCEDURES EXECUTING
IN PRIVILEGED MODE FROM
THE USER ENVIRONMENT
CAN ACCESS SYSTEM DATA
AS WELL AS USER DATA
EXIT

USER
DATA

z's
LOCAL
DATA

-PARAMETERS—
I~ TOREAD -

2075 P

ENV

READ’'S
LOCAL
DATA

SYSTEM
DATA

AFTER EXIT, CS, DS, AND LS
POINT TO USER CODE, USER DATA,
AND USER LIBRARY, RESPECTIVELY

Glo]

} STACK MARKER

(IN THE CALLER'S ENV,
CS POINTS TO USER CODE,
DS POINTS TO USER DATA,
AND LS POINTS TO USER
LIBRARY)

sGlo]

S$5001-058

4-44

Figure 4-26.

System Procedure Call and Exit

11,82507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Calling External Procedures

(bits 0 and 1 specify CS and LS respectively, and bits 2
through 6 specify the segment index) and a Procedure Entry
Point number (bits 7 through 15 of the entry)--which in this
case is in the system code segment's Procedure Entry Point
table. Finally, the address in that PEP entry is put in the
P register so that the next instruction executed will be the
first instruction of the system procedure.

3. If the calling procedure is not executing in privileged mode,
the callability attribute of the system procedure being
called is checked.

sas := 3; ! system code segment--in this case
temp := <PEP number>;
if not PRIV then

if temp >= mem(3,0) then ! call to callable
begin
if temp >= mem(3,1) then ! call to privileged

instruction®failure”trap;
PRIV := 1; ! set privileged mode
end;

P := mem(sas,temp); ! get entry point address into P

4, The S and L registers are set with the G[0]-relative address
of the new top-of-stack location.

L =8 =S + 3;

The new L register setting defines the base of the local area
for the system procedure being called.

5. The new S register setting is tested for an address within
the memory stack area, G[0:32767]. 1If the value is greater
than 32,767, control is transferred to the operating system
stack overflow trap (and the XCAL instruction is aborted).

if S > 32767 then stack®™overflow™trap;

6. The CS bit of the ENV register is set to 1 and the LS bit is
set to 0, so that further code area references will be in the
System Code segment (in this example). CS and LS settings
are derived from bits 0 and 1 of the XEP table entry,
respectively.

7. Finally, the Register Stack Pointer, RP, is given an initial
value of seven (stack empty).

4482507 A00 3/85 4-45

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

When the system procedure finishes, the EXIT instruction is
executed. The CS and LS bits, plus the space ID index bits from
the stored copy of the ENV register, are used to reestablish the
caller's segment of the user code space as the currently selected
code space, so that the next instruction is executed from that
segment.

NOTE

The foregoing example of an external procedure call is
the most straightforward case, in that the call is to
the system code segment (SC.0), which is always fully
mapped. If the call had been to a multisegment code
space (system library, or user code or library), the
possibility exists that the target segment might not
have been currently mapped. 1In that case, the XCAL
instruction automatically executes the MAPS instruction
during step 2 above, before proceeding with the
remaining steps. (The EXIT instruction similarly
invokes MAPS when necessary, prior to any of the four
steps shown earlier in Figure 4-25.)

MEMORY STACK OPERATION

Figures 4-27a and b depict an example of a memory stack operation
from an initial state (i.e., start of process execution) through
a call to, and subsequent return from, a procedure. The purpose
of the diagram is to show the action of the L and S registers as
a procedure generates its local variables and prepares to call a
procedure by passing parameters, how L and S are set when a
procedure is called, and how L and S are set when the return is
made to the caller.

1. Initial State

After the operating system has loaded a program into memory
but before the first instruction of the process executes, the
following initial conditions are present: the process's
global variables are initialized and present, and the L and S
registers are set to the address of the word just past the
global area. There are no local variables defined at this
time.

4-46 4482507 A0 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

2. PROC A GENERATES ITS
1. INITIALLY (PROGRAM STARTS) LOCAL VARIABLES
Glo!
A
W o A ~ o
Vd N\
L REGISTER
[123 }— G'123! L REGISTER ,
Gl123!
123 — k
’
S REGISTER K
123 /
______ / A's
~r 1 LOCAL
Al - DATA
/
!
\
\
N S REGISTER R]
~ 167 P e G|158]
3. PROC A PUTS PARAMETERS
ON THE STACK IN PREPARATION
TO CALLING B 4. PROC A CALLSPROC B
\"\\ M AL AN
\W M A AV
L REGISTER 6 123
123 —
A's
LOCAL
DATA
Fr------ -
, Lar T, J- -
/ P1
|
\ S REGISTER P2 G160/
\
| L REGISTER | WARKER
v)| 163 — G163
\ S REGISTER /
o
S$5001-059

Figure 4-27a.

/1| 82507 A00 3/85

L and S Registers in Procedure Calls

INSTRUCTION PROCESSING ENVIRONMENT

Memory Stack Operation

5. PROC B GENERATES ITS
LOCAL VARIABLES

6. PROC B EXITS BACKTO A

~ he
)/ AN v AV
nw M\
L REGISTER
V /[23] G 123}
/ ’
/
A's //// / As
LOCAL / / LOCAL
/ DATA i DATA
% '
!
\ S REGISTER
\ 158 — G 158’
P1 !
v,
P2 \
/
A
STACK] ,' \
L REGISTER L. MARKER N
f s AV s o _
e > Gl1ea | R 4 -
’ I
.
[l 1,7 !
4 - —L ------- 4 \
, B's \
’ LOCAL \
! DATA \
1 \
\ \
\ \
. S REGISTER \
~ 217 — G217 \C j“"

$5001-060

Figure 4-27b. L and S Registers in Procedure Calls

Procedure A generates its local variables

The first few instructions of a procedure generate the
procedure's local variables. As the local variables are
generated, the S register setting increases, defining a new
upper limit to the procedure's local area. Note that the L
register setting does not change.

Procedure A passes parameters to procedure B
In preparation for calling the procedure B, the parameter

words (two in this example) are placed on the top-of-stack
location as indicated by the S register setting. The S

ﬂ’j 82507 AO00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

register setting is increased by two to account for the
parameters.

A calls B

After the parameters are loaded onto the memory stack, a
procedure call instruction is executed; this could be a PCAL
(Procedure Call), XCAL (External Procedure Call), or DPCL
(Dynamic Procedure Call). Figure 4-27 assumes PCAL.
Execution of the call instruction places a three-word stack
marker at the current S register setting plus one (just above
the parameters). L and S registers are given a new setting;
they both point to the third word of the stack marker. The
new L register setting defines the start of B's local area.
At this point, no local variables have been generated for
procedure B. (Note that A's local area, which is normally
addressed relative to the L register, is no longer
addressable by the L-plus addressing mode.)

Procedure B generates its local variables

In the same manner as procedure A did, procedure B generates
its local variables. This increases the S register setting
accordingly, so that the S register defines the new upper
limit to B's local area.

Procedure B exits back to procedure A

When procedure B completes, an EXIT instruction is executed
to return to A. Execution of the EXIT instruction moves the
L register setting back to the beginning of A's local area
and moves the S register setting back to the top-of-stack
location that was in effect before the parameters were'loaded
on the stack (this is accomplished by the "S"decrement" value
in the EXIT instruction). Specifically, for the return to
procedure A, the EXIT instruction is:

EXIT 5

This deletes the three-word stack marker, plus the two
parameter words, from the top of the stack.

4482507 AOO 3/85 4-49

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

Generation of and Access to Local Data

Unlike the global data area, which exists at all times, the local
data area for a procedure exists only while the procedure is
actually executing., The local variables are generated and
initialized by instructions at the start of a procedure's code.
Thus, a procedure can be called any number of times (and in fact
can call itself), and each call generates a fresh copy of the
procedure's local data area. An example of the instructions used
to generate the following local variables are considered next
(referring to Figure 4-28):

INT i, ! L[1]
j =5, ! L[2]
.k [0:31]; ! L[3] (pointer to k, which starts at L[4])

These are three local variables declared in a TAL source program:
"i" is a one-word uninitialized variable, "j" is a one-word
variable initialized with the value 5, and "k" is an indirectly
addressed array variable consisting of 32 words. The
instructions to generate these variables are:

DATA
SEGMENT
ACCESS TO A PROCEDURE'S
LOCAL DATA USING THE

L-PLUS ADDRESSING MODE r STACK -
L REGISTER MARKER

C T =il G[123]
0 5 7 10 13 15 LE‘} /A'/I"y///
0 x 1]oflo]o olo[olo v L{3] 127 127
[Tg% I\Irl/lyl;_l/l 772777

DIRECT L-PLUS OISPLACEMENT
ADDRESSING
MODE

17 Eannnnnnonn
T AN

INDIRECT L-PLUS DISPLACEMENT
ADDRESSING
MODE

$5001-062

Figure 4-28. L-Plus Addressing Mode

4-50 4482507 A0O 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

ADDS +001 ! Add to S

LDI +005 ! Load Immediate
LADR L+004 ! Load Address
PUSH 711 ! PUSH to Memory
ADDS +040 ! Add to S

The ADDS instruction increments the S register setting by one.
This allocates one word for the variable "i",

The LDI instruction puts the initialization value for "j" (5) on
the top of the Register Stack.

The LADR instruction calculates the G[0]-relative address of the
first word of the indirect array "k" and puts the address on the
top of the Register Stack.

The PUSH instruction performs two functions: (1) it puts the
initialization value given in "j" and the address of the array
"k" into L[2] and L[3] of the process's stack, respectively, and
(2) it increments the S register setting by two to allocate the
two words needed for "j" and the address pointer to "k".

The ADDS instruction increments the S register setting by 32
(octal 40). This allocates 32 words for the indirect array "k".

Following the generation of the local variables, the local area
for this example consists of:

L[1] = i

L[2] = j (initialized with a value of 5)
L[3] = an address pointer to the array "k"
L[4:35] = the array "k"

Once allocated, data in the local area is addressed relative to
the current L register setting using the L-plus addressing mode.
As illustrated, this mode can access local data directly or can
use the direct address as an address pointer (indexing is also
permitted).

The top-of-stack area is addressable implicitly through use of
the PUSH and POP instructions. These are illustrated in Figure
4-29, The PUSH instruction is used to store the Register Stack
contents, usually prior to calling a procedure, on the top of the
memory stack. When a PUSH instruction is executed, the S
register setting is incremented by the number of words pushed.
The POP instruction is used to restore the Register Stack
contents from the top of the memory stack, then decrement the S
register setting accordingly.

4 82507 A00 3/85 4-51

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

ADDING ELEMENTS TO THE
TOP.OF-STACK (S INCREASES) e
REGISTER STACK O Ose_ gy —————— G [158])
[1] (!
2
PUSH 777; ‘32‘ S5)
A S N SR o . I
5 1
6 ; S REGISTER
7 A
8 / T66] ——— siol 8 1 Gles!
/\/\/\/‘\’—\
DELETING ELEMENTS FROM THE 5 G158}
TOP.OF-STACK (S DECREASES) 3
REGISTER STACK 3
{ 163] —— slo) - 4 G162
i V.5 :
s e 7{//’,’/6 ’/jfé UNDEFINED
POP 33 rAA NS Cpeyprr
— e m— e // AFTER "POP
NNNYEN CIoE - - - *—[4&5&7*2
L]
L]
L]
S5001-061

Figure 4-29. PUSH and POP Instructions

Parameter Passing

Parameters are passed to a procedure in the top-of-stack area.
Naturally, there must be coordination between the caller and the
called when passing parameters. The caller must know the order
in which a procedure expects parameters, and whether a parameter
is to be an actual operand (called a value parameter) or an
address pointer (called a reference parameter).

Before the caller invokes a procedure, the parameters are
prepared in the Register Stack. The actual operands (for value
parameters) and the addresses of operands (for reference
parameters) are loaded into the Register Stack in the order
required by the procedure being called. The address of a
reference parameter is obtained by the execution of a LADR (load
address) instruction. The parameters that have been prepared in
the Register Stack are loaded on the top of the memory stack by
executing a PUSH instruction (which increments the S register
accordingly).

An example will now be considered to show the instructions used
to prepare the top of the memory stack area for parameter
passing. This example uses the variables declared in the
preceding example, and is illustrated in Figure 4-30. The
procedure being called is of the form:

4-52 4382507 A0 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

DATA
SEGMENT

L[] G[124]

L[2] 5 G[125]

S REGISTER
BEFORE PUSH

REGISTER / 5 6 [159]

—
STACK / 124 a[160]
AD L+ 0 5 pusH 711 AN S REGISTER
LOAD L+002 \ AN AFTER PUSH

LADRL+001 L .1 124

RPAFTER LADR 777777777 S w0]

.
RP AETERPUSH 7 U/ ./ / ./ /]

S$5001-063

Figure 4-30. Parameter Passing

PROC b (pl,p2);
INT pl,.p2;

Parameter "pl" is a value parameter; therefore, the procedure
expects an actual value to be passed. Parameter "p2" is a
reference parameter, and, therefore, the procedure expects the
G[0]-relative address of a variable to be passed.

The call being made from procedure A is:
CALL b (j,1i);

The instructions to pass these two parameters are:
LOAD L +002

LADR L +001
PUSH 711

The LOAD instruction puts the contents of the variable "j" (the
value 5) on the top of the Register Stack. (This is the
parameter passed as "pl", a value parameter, to procedure B.)

482507 A00 3/85 4-53

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

The LADR instruction calculates the G[0]-relative address of the
variable "i" and puts the address on the top of the Register
Stack. (This is the parameter passed as "p2", a reference
parameter, to procedure B.)

The PUSH instruction places the two parameters from the Register

Stack on the top of the memory stack and increments the S
register setting by two.

Parameter Access

Parameters are accessed by using the L-minus addressing mode.
This mode provides access to the 32 locations just below and
including the current L register setting (L[-31:0]). Subtracting
the three words used for the stack marker, this leaves 29 words
addressable as parameters. If value parameters are passed, the
parameter location is addressed directly (<i>, indirect, bit of a
memory reference instruction = 0); if reference parameters are
passed, the parameter location is used as an indirect address
(<i> bit = 1). 1Indexing in either mode is permitted.

Figure 4-31 shows an example of both value and reference
parameter access.

Returning a Value to the Caller

A procedure can return a value to its caller using the top of the
Register Stack. This, like parameter passing, requires
coordination between the caller and the called. That is, the
calling procedure must know the element size of the return value
(i.e., number of words comprising the value).

The following paragraphs describe an example of a procedure,
named "f", that returns a value, and the instructions used to do
so. The example is illustrated in Figure 4-32,

The procedure is of the form:

INT PROC f (x);
INT x;

BEGIN

RETURN x * x;
END;

4-54 482507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

ACCESS TO A PROCEDURE'S
PARAMETERS USING THE

L-MINUS ADDRESSING MODE ///////// a[r24]
[§) O 7 10 13 15 5
: T
B - L[felelel o]
as
T T LOCAL
DIRECT L-MINUS DISPLACEMENT DATA
(FOR VALUE ADDRESSING
PARAMETER) MODE
A A D

% Eanunnnnnnn i

r STACK 1
L REGISTER

L MARKER
T - 163 — G[163)
INDIRECT L-MINUS DISPLACEMENT
(FOR REFERENCE ADDRESSING
PARAMETER) MODE

S REGISTER

C — 1—]

S5001-064

Figure 4-31. Parameter Access

This procedure returns the square of a number, "x". The
instructions to return the square of "x" are:

LOAD L -003 ! parameter x is obtained from L-003
LOAD L -003 ! load another copy of x

IMPY ! squared result now exists in R[O0]
EXIT ¢ ! delete stack marker and parameter x

The first LOAD instruction loads the parameter "x" onto the top
of the Register Stack. Following the LOAD, the RP setting is 0.
(The RP setting is 7 when a procedure begins executing.) The
second LOAD again loads the parameter "x". Following this 1load,
the RP setting is 1.

The IMPY instruction multiplies the values in the Register Stack,
leaving the result of the multiplication in R[0]. Following this
operation, the RP setting is 0.

The EXIT instruction causes a return to the caller, deleting the
parameter and stack marker (1 + 3 = 4) from the data stack. The
squared value is left on the top of the register stack.

Suppose a call is now made to procedure "f", as follows:

z := i+ 3 - £(5);

482507 A00 3/85 4-55

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

INSTRUCTIONS IN THE CALLING PROCEDURE
TO EXECUTE THE FOLLOWING STATEMENT:

S+ - (5 DATA AREA
e ' KNOWN TO
REGISTER THE CALLING
STACK PROCEDURE

LOAD L + 001 (4] i - i L

LOAD L + 002 1 i < i L2l

2 LI3]

! 4] +j
ADD ‘ | S REGISTER
AFTER EXIT 4

P'd S REGISTER

LDI 5 0 it (P+ — AFTER PUSH

PUSH 711 ‘

1
PCAL f / N | J

5
FROM f

|
|
0 25 |
STAR 1
1 25 |
|
' DATA AREA
o Y : KNOWN TO
«— PROCEDURE f
POP 100 1 25

5 L{-3]

cror RO
STOR L +003

-
INSTRUCTIONS IN THE PROC f STACK -1

L. MARKER
LOAD L -003 o 5 Liol
LOAD L -003 1 5

IMPY 0 25 = -

EXIT 4

§5001-065

Figure 4-32, Value Returned Through Register Stack

That is, subtract the square of 5 from the sum of the contents of
the variables "i" and "j" then store the result in the variable
"z". Variables "i", "j", and "z" are local variables at L[1],
L[2], and L[3], respectively.

The instructions to perform this operation are:

4-56 4482507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

LOAD L +001 ! load i
LOAD L +002 ! load j
IADD P i+ 5
LDI +005 ! load parameter to f
PUSH 711 ! push sum and parameter onto memory stack
PCAL ! procedure call to f
STAR 1 ! move returned value from R[0] to R[1]
POP 100 ! bring saved sum back to R[0]
ISUB ! subtract returned value from i+j sum
|

STOR L +003 store result into z

The first three instructions calculate the sum of i + j and leave
the result in R[0]. The LDI +005 instruction loads the parameter
to "f" onto the top of the Register Stack at R[1].

The PUSH instruction pushes R[0:1] onto the memory stack.
Following the PUSH, the two top-of-memory-stack locations
contain:

s[-1]
s[o]

sum of i + j
5, the parameter to f

This clears the Register Stack for use by the procedure which now
is invoked by the PCAL instruction. On the return from £, R[O0]
of the Register Stack contains the square of 5.

The STAR instruction moves the return value in the R[0] Register
Stack location to R[1] in preparation for the subtraction from
the sum of "i" + "j",

The POP 100 instruction brings the sum of "i" + "j" (calculated
previously) into R[0] and sets RP to 1 (to point to the returned
value). ,

The ISUB instruction subtracts the return value of "f" from the

sum of "i" + "j"., The STOR instruction stores the result in the
variable "z", and RP becomes 7.

Stack Marker Chain

In examples shown previously, only one procedure call occurred,
and, therefore, only one stack marker was generated. However, in
practice, there can be several stack markers (and local areas)
present in a memory stack at once. This occurs when a called
procedure calls another procedure and that procedure calls still
another procedure, etc. The nature of this "chain" of stack
markers and the action of the L and S registers is such that the
returns are always made in the reverse order of the calls, and
the local data areas are redefined as the returns are made.

/1,82507 A00 3/85 4-57

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

Figure 4-33 shows the condition of a memory stack after the
following calls have taken place:

In procedure "a", CALL b;
In procedure "b", CALL c;
In procedure "c¢", CALL d;
The procedure "d" is currently executing.

Specifically, the L register, which is given a new (higher)
setting when a procedure is called, and the local data areas,
which are allocated and generated relative to the current L
register setting, result in a stack of procedure environments
that are physically placed in the chronological order in which
the calls were made. (Remember, when a procedure is called, the
stack marker is placed at the current S register setting plus
one. In this manner, a procedure's local data is always retained
when it calls another procedure.) The stack markers, which
contain the environment of the preceding procedure (and point to
the preceding stack marker) restore the preceding environments in
the reverse order of the calls.

Subprocedures

Subprocedures are invoked using the BSUB (branch to subprocedure)
instruction. Because the BSUB is a branching-type instruction,
the subprocedure entry point is calculated as a self-relative
address. Execution of the BSUB instruction differs from other
branching instructions in that it places a return address on the
top of the memory stack. See Figure 4-34. Note that before the
BSUB executes, the subprocedure parameters must be pushed onto
the stack.

'Specifically, the steps involved when a BSUB instruction is
executed are as follows:

1. The return address (i.e., that of the instruction following
the BSUB) is placed on the top of the memory stack.

S =8 + 1;

datals] := P;

N
.

The self-relative branch address of the subprocedure is put
into the P register.

P := branch”address;

4-58 82507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

CODE DATA
SEGMENT SEGMENT
78 aat
///§§
g
7
///
gy GLOBAL
e DATA
PROC _| ~-07pcal b 7
) r VLA 8 U ooty e e e -
: / .W \
| /// \
|
\
1
\
i /f¢ \ - .
L_»»// \\ r = Gl s
N [v
\ 7
» | - s
N i i i)Roc/,/
/ \\ ! s ,oas /
I . ocat /,
4 N I S DATA -
PROC 4 rofFcAl ¢ 564 = = — =~ S " | - ////
U . \ W
\ yy;
: \ \~f———--:~~ 7P 201
: AN L EN /]
! / N N AR Gl
| \
| / \ | / 4 /
| g
L. N /, PROC
- 3 IR
N ! //LOCAL/
\ t / " DATA
AN \ 44/ /
PROC | A ______l_-_// P 564 /]
¢ r--V/PcaL d olrags] < - L ZLEN T
P A A Cl1485] & - = - = — - - — — = = -7 S
' / 7 / . r e Z2ANATS Gl2371
; . W7
\ \ ! /’///ORO/C
! - : ;/ s %
L-> N | /lOCAL/
| REGISTER N | DATA
N | / e
| — RN
PROC | L P 1485
d P REGISTER I
[: L REGISTER L ENV
[152 — L 237 Gla52!
PROC
ds
LOCAL
DATA
S REGISTER L |
ol o
S$5001-066

Figure 4-33. Stack Marker Chain

4482507 A0O 3/85 4-59

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

DATA
AREA
CODE
BSUB AREA PARAMETERS Ll
[vo'susproceburE | :g /ESFEGETE-R]
NS o2 BEFORE BSUB
(2) BSUB + 10 (1) RETURN P S_R_EEET_E_!!J
P REGISTER AFTER BSUB
BEFORE BSUB
Y
P REGISTER
AFTER BSUB SuB.
PROCEDURE
RSUB 6 M
M =
MEMORY STACK WHILE 4 P2
SUBPROCEDURE EXECUTES P3
o —— —
S REGISTER
RETURN P A/E_-_ =]\\
SUBLOCAL DATA \
ADDRESSED S-MINUS _| \
RELATIVE (INCLUDING
PARAMETERS) - SUBLOCAL |
VARIABLES
currentTOP L} — /
ELEMENT OF —— }=—{srecisTer P
MEMORY STACK
RSUB M
*——EEGISTER
\
w PARAMETERS
DELETED /
s
BSUB + 10 S REGISTER
L — -
<[erecisten J* e f—{ SREEEr K
\
STACK MUST
BE CUT BACK \
POINTING S |
AT RETURN P
BEFORE RSUB /
RSUB 5 o -~
— %4—-—[:9 REGISTER |

§5001-067

Figure 4-34.

Subprocedure Calls

/)’1 82507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

The last instruction that a subprocedure executes is an RSUB
(return from subprocedure) instruction. The RSUB instruction
returns control to the instruction following the BSUB instruction

by putting the return address, at the current top of memory stack
location, into the P register:

data [S];

P
S S - S"decrement;

.
.
[
-

The "S"decrement” value (which is specified in the RSUB) is used
to move the S register setting below the sublocal data area.

"S"decrement" is at least one, to account for the one-word return
address.

Glol [

GUI0N I A

L REGISTER - r -

-
$014 2047 — " Liol L

8 9 10 11 12 13 14 15

WM‘I‘I‘]‘IOI1T1TO1TJ I
? 5 SMl‘NUS DlSPLA‘CEMENT 1 L.///—‘_'\f\/:/v\
e ADDRESSING C o4 .)\/2

Ress SV UL,

S 0051

Ce7770 el] ——

R)
;r___/ N o -/ — st sl ol] -
-
INDIRECT S-MINUS DISPLACEMENT S REGISTER
G . 7
ADDRESSIN . s101 95777 6ision
DEFINES TOP OF STACK
LOCATION
$5001-068

Figure 4-35. Example of S-Minus Addressing

482507 A00 3/85 4-61

INSTRUCTION PROCESSING ENVIRONMENT
System Global Addressing

The sublocal data area consists of a subprocedure's variables and
parameters. It is addressable using the S-minus addressing mode,
shown in Figure 4-35. This provides direct access to the 32
locations including and below the current S register setting
(i.e., s[-31:01]).

SYSTEM GLOBAL ADDRESSING

If a system procedure must access the system data segment from
the user environment, it is given the attribute "callable" (so
that it can be called by the nonprivileged application program)
and executes in privileged mode. Executing in privileged mode
permits the procedure to make use of the SG-relative (system
global relative) addressing mode. This addressing mode,
illustrated in Figure 4-36, provides access to the system data

SYSTEM
DATA

sGlo] [

Mxl11o]ooo|1ool—————» sGla] P /7
! .

DIRECT SG-RELATIVE DISPLACEMENT
ADDRESSING
MODE

v,
7l | | | —— 7
X Tt 1 0 0 0 1 1 0 1 $G[13]) 42176 ﬂ
T T I
INDIRECT SG-RELATIVE DISPLACEMENT
ADDRESSING L~ N
MODE e N

s6 1421761 (2777777777 <+

0722

S5001-069

Figure 4-36. SG-Relative Addressing Mode

4-62 482507 A00 3/85

INSTRUCTION PROCESSING ENVIRONMENT
System Global Addressing

segment (and, therefore any system tables) even when DS indicates
user data.

The SG-relative mode for a memory reference instruction allows
direct addressing of the first 64 locations of the operating
system's data segment (SG[0:63]). This mode is indicated when
bits I.<7:9> of the memory reference instruction are equal to
110. Bits I.<10:15> are a positive word displacement from SG[0]:

direct”address = 1,<10:15>

The short address space used for the SG-relative addressing mode
is determined by the function:

short address space:
if I1.<7:9> = 6 and PRIV then 1 ! system data
else DS; ! current data

Indirect addressing and indexing are both permitted with the
SG-relative addressing mode. Executing in privileged mode while
in the user environment also means that data can be moved,
compared, and scanned (with the MOVW, MOVB, COMW, COMB, SBW, and
SBU instructions) between the user data segment and the system
data segment.

482507 A0 3/85 4-63

SECTION 5

ADDRESSING AND MEMORY ACCESS

This section discusses the form of physical and logical addresses
and the relationship between these address types. Mapping--that
is, how memory is actually accessed using these addresses--is
also described. This level of information is useful to most
systems programmers and some applications programmers.

NOTE
Throughout this discussion, the suffix "k" represents the
number 1024, and the prefix "mega", when applied to a number

of bytes or words, represents lk squared, or 1,048,576.
Likewise, the prefix "giga" means 1k cubed, or 1,073,741,824.

PHYSICAL, VIRTUAL, AND LOGICAL MEMORY

Physical memory is the semiconductor memory storage that is
provided by each processor's own memory boards (one to four).

A processor module's physical memory address space can consist of
up to 8,388,608 words (8 megawords) of 16 bits each. (The
maximum physical memory presently available is 4 megawords.)
Physical memory is divided into contiguous blocks called
"physical pages." (A page is a block of 1024 consecutive words,
or 2048 consecutive bytes.) The maximum physical memory address
space is, therefore, 8192 pages.

Pages in physical memory are numbered consecutively from page 0
to page 8191. Words in physical memory are numbered 0 through
8,388,607 and are addressed with a 23-bit physical address. The
range of physical memory is shown in Figure 5-1; the format of a
23-bit physical address is illustrated in Figure 5-2. Note that,

4482507 A0O 3/85 5-1

ADDRESSING AND MEMORY ACCESS
Physical, Logical, and Virtual Memory

PHYSICAL WORD PHYSICAL WORD
ADDRESS ADDRESS
(DECIMAL) (OCTAL)

o- = 3 o
PHYSICAL
PAGE
0
wa-C T T T : %2000
PHYSICAL
PAGE
1
2008- " T T T | waoo0
PHYSICAL
PAGE
2

3072~ [_] %s000
PHYSICAL
PAGE
3
a096- [- " T T T] %0000
PHYSICAL
PAGE
4
s120-1 T T T] %2000
PHYSICAL
PAGE
5

—
8306580 — b"{--"f‘; %37774000
PHYSICAL
PAGE
8180

ssarses — [] warrreone
PHYSICAL
PAGE
st
30007 - 1 warrmm
S$5001-070

Figure 5-1. Physical Memory

3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
PHYSICAL PAGE WORD
(0:8191) (0:1023)

$5001-071

Figure 5-2, 23-Bit Physical Address

482507 AQ0

3/85

ADDRESSING AND MEMORY ACCESS
Physical, Logical, and Virtual Memory

as shown in Figure 5-2, bits 0 through 12 of a physical address
specify the number of the physical page, and bits 13 through 22
specify the word within the page.

Note that the physical address does not specify a byte. Memory
references are controlled by the Memory Control Unit (MCU), which
cannot perform byte addressing; it can address only full words on
word boundaries. Addressing of a particular byte within memory
is done by the IPU microcode.

In the NonStop II processor, physical memory is accessed by
logical pages mapped either in maps 0-14 or in the extended
address cache. The maps translate logical page numbers to
physical page numbers. There is no caching of data or
instructions.

In the NonStop TXP processor, physical memory is accessed by
logical pages mapped in a page table entry cache (PCACHE).
PCACHE translates logical page numbers to physical page numbers.
If the desired information is already present in the data cache
(CACHE), it is not necessary to go through the process of
translating the logical address to a physical address and
accessing physical memory.

Virtual memory utilizes disc space to extend the storage space
that is accessible in physical memory. In a multiprogramming
environment, the total memory space needed for all processes and
the operating system usually exceeds the physical memory
available. However, at any moment, only a subset of the total is
required for continued operation. Images of memory pages are
maintained in disc storage and are brought into physical memory
as required by process execution. These disc images can be
either code or data. Data images not currently required for
execution of a given program can be "swapped out" (returned to
disc) so that their physical memory can be used by another
process. Because code images cannot be modified, it is not
necessary to return current copies of them to disc before giving
their physical memory space away.

The virtual memory for a given processor is the sum total of all
code and data images that can possibly be brought into its main
memory. To provide addressability to this entire range of
virtual memory, a processor's virtual memory is divided into 8192
blocks called segments (or, more specifically, "absolute
segments"). See Figure 5-3. Each segment can be up to 64 pages
in length, or 64k words.

Individual segments may be unallocated (not presently in use) or
allocated. A segment that is allocated can have fewer than 64
pages in use. In such a case, the entire segment address space
is reserved (that is, no address within that segment can be used

482507 A0 3/85 5-3

ADDRESSING AND MEMORY ACCESS
Physical, Logical, and Virtual Memory

VIRTUAL MEMORY PHYSICAL STORAGE
SEGMENT
NO.
PAGE 0 PHYSICAL MEMORY
PAGE 1
0 . — F
PAGE 63
~_— I
PAGE 0
PAGE 1
N . N
PAGE 35
%
PAGE 0
N+1 .
PAGE 61
U/ /T
PAGE 0
PAGE 1
N+2 . DISC STORAGE
PAGE 63
N+3
@
PAGE 0 '[
PAGE 1 ;‘. j
8191 .
PAGE 50
70
S5001-072

Figure 5-3. Virtual Memory

5-4 4482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Physical, Logical, and Virtual Memory

by any other process), but the process that owns the segment can
use only as many memory pages as it requested. Also, only
individual pages of a segment are brought into main memory,
rather than the entire segment--and only as needed. This also is
illustrated in Figure 5-3.

A privileged process can see and access all of virtual memory
using 32-bit absolute addresses. Absolute addresses are
described later under "Extended Addressing".

Logical memory is memory as a process views it. 1In general, a
process 1s allowed to see only a subset of virtual memory,
consisting of code and data areas that it owns or shares. It
usually does not matter to a process whether the words being
addressed are present in physical memory or are absent (stored on
disc). The process simply uses logical addresses that are valid
within its own set of addressable segments. The operating system
takes care of bringing in absent pages as needed.

For nonprivileged processes, logical memory is separated into six
"short address" spaces (addressable with either 16-bit logical
addresses or 32-bit relative addresses) and one "extended
address" space (addressable only with 32-bit relative addresses).
The extended address space is considered later under "Extended
Addressing." The six short address spaces (SASs) accessible to a
process consist of the following (refer to Figure 5-4):

Space Description

0 User Data (one segment per process)

1 System Data (one segment per CPU)

2 User Code (1 to 16 segments per process)
3 System Code (one segment per CPU)

4 User Library (0 to 16 segments per process)
5 System Library (1 to 32 segments per CPU)

The odd-numbered short address spaces (1, 3, 5) belong
exclusively to the GUARDIAN operating system. SAS 1 is always
the system data segment; this segment contains various system
values and tables, and is accessible by all processes. (Such
access is usually performed by the system on behalf of the
process, since the DS or PRIV bit in the Environment Register
must be set in order for the access to be allowed.) SAS 3 and
SAS 5, system code and system library, contain the system
procedures and interrupt handlers (but not the program code for
system processes) of the GUARDIAN operating system. Many of
these procedures are callable by any process; others require
privileged mode. As indicated in Figure 5-4, there can be up to
33 segments for these procedures and interrupt handlers: one
system code segment, and up to 32 system library segments.

482507 A0O 3/85 5-5

ADDRESSING AND MEMORY ACCESS
Physical, Logical, and Virtual Memory

| UPTO 16 | | UPTO 16 | | UPTO 32
USER USER SYSTEM
CODE LIBRARY LIBRARY
SEGMENT SEGMENT SEGMENT
(64 KW) (64 KW) (64 KW)
OTHER OTHER
SEGMENTS [I SEGMENTS S%TS':'FIIEETA |
OF THE | | | | | OFTHE LIBRARY | I
USER CODE | | | [USER LIBRARY SEGMENTS [|
SPACE SPACE)
USER USER SYSTEM
CODE LIBRARY LIBRARY
SEGMENT SEGMENT SEGMENT
(64 KW) (64 KW) (64 KW)
| L | | |
|
| I | | I I
: : | | | |
CURRENTLY | | CURRENTLY ' |
SELECTED SELECTED
USER SEIGMENTS SYSTEM SFGMENTS
a AN é AN
G(0) c(0) C(0) SG(0) C(0) c()
USER CURRENT CURRENT SYSTEM SYSTEM CURRENT
USER USER SYSTEM
DATA CODE LIBRARY DATA CODE LIBRARY
SEGMENT SEGMENT SEGMENT
o KW SEGMENT SEGMENT 5 KW (64 KW) SEGMENT
() (64 KW) (64 KW) () (64 KW)
(SAS 0) (SAS 2) (SAS 4) (SAS 1) (SAS 3) (SAS 5)
o~/
0 0 11
L |
ENVIRONMENT
REGISTER
$5001-073

Figure 5-4. Logical Memory

5-6 482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Physical, Logical, and Virtual Memory

Generalized terms such as "the system library" or "the system
code space" refer to the entire set of up to 33 segments in
SASs 3 and 5.

NOTE

Segment selection for the multiple-segment code spaces is
performed by the microcode of the XCAL, DPCL, EXIT, and

IXIT instructions, using a space ID index value (as described
earlier in Section 4, under "Procedures and the Memory
Stack"). The currently-selected segment for each space is
identified in a table in system data space (CSSEG, Current
Short-address Segments). The NonStop TXP processor also
retains this information in a set of hardware registers called
the Short Segment Table (SST).

The even-numbered short address spaces (0, 2, 4) contain the code
and data of the currently executing process. Since many
processes typically exist in a processor (such as user
application processes, 1/0 processes, compiler processes, and
GUARDIAN processes), the actual code and data indicated by these
spaces switches each time a different process comes into
execution. Every such process performs its addressing relative
to its own G[0] and C[0] bases. As indicated in Figure 5-4, the
user code space can consist of up to 16 code segments (that is, 2
megabytes), and the user library space provides an additional 16
segments for library procedures.

Any single memory-reference instruction can access only one code
segment and one data segment. Their selection, from among the
six short address spaces in logical memory, is made by the
existing state of three bits in the Environment Register; in the
case of multisegment code spaces, further resolution is made by
the space ID index (discussed earlier) to select one segment
within the short address space. As shown in Figure 5-4, the
selection of a data segment is made by the state of the DS bit
(bit 6). If DS is equal to 1, the system data segment is
accessed by the instruction; if DS is equal to 0, the user data
segment is accessed. The selection of a code space is made by
the combined settings of the LS and CS bits, as follows:

LS CS
0 0 User Code (sas 2)
0 1 System Code (sas 3)
1 0 User Library (SAS 4)
1 1 System Library (sas 5)

82507 A00 3/85 5-7

ADDRESSING AND MEMORY ACCESS
16-Bit Addressing

16-BIT ADDRESSING

The memory area addressable by 16-bit addresses is limited, being
applicable only in the six short address spaces. Since this mode
of access is fast and efficient, the six address spaces most
important to the execution of a process are made accessible with
this type of addressing. 16-bit addresses are actually a kind of
shorthand, and additional information is needed to identify the
address space. The addressing modes described earlier under
"Program Environment" (G-relative, L-plus-relative,
L-minus-relative, S-minus-relative, and SG-relative) all use
16-bit addresses.

The IPU hardware uses the currently executing instruction and the
LS, DS, and CS bits of the ENV register to select one of the six
short address spaces. These address spaces are: user data,
system data, user code, system code, user library, and system
library. Since the SAS numbers for these address spaces are only
in the range of 0:5, only three bits are needed to identify the
space number.

The range of addressing within any of these six spaces is that of
the 16-bit logical address, 0 through 65,535. Access to these
six spaces is described later under the headings "Memory Access
(NonStop II Processor)" and "Memory Access (NonStop TXP
Processor)".

The formats for 16-bit addresses are shown in Figure 5-5.

01 2 3 456 7 8 9 10 11 12 13 14 15

WORD
PAGE WORD ADDRESS
(0:63) (0:1023)
0123 456 7 8 9 10 11 12 13 14 15
BYTE
PAGE WORD B ADDRESS
(0:31) (0:1023) (0:1)

$§5001-074

Figure 5-5. 16-Bit Logical Address

5-8 482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Extended Addressing

As shown, a 16-bit address can take one of two forms, depending
on whether the instruction being executed is a word-addressing
instruction or a byte-addressing instruction. For word access,
the first six bits (0 through 5) specify the logical page number
(0 to 63). Bits 6 through 15 then specify which of the 1024
words on that page is desired. For byte access, bit 15 is used
to specify a particular byte within the word: 0 for the left
byte or 1 for the right byte. The other fields appear one bit to
the left of their positions in the word address, making the page
field one bit smaller. Thus only the first 32 pages of a data
segment—--that is, the first 32768 words of the segment--can be
accessed by byte. (For code addressing, however, either half of
the segment can be accessed, since the address is taken to be in
the same 32-page half of the segment as the current setting of
the P Register.)

EXTENDED ADDRESSING

Extended addresses provide a uniform method of addressing all
items in virtual memory. An extended address is 32 bits long;
its format is shown in Figure 5-6.

Bit 0 (the absolute bit) indicates whether the address is an
absolute extended address (bit 0 = 1), or a relative extended
address (bit 0 = 0). Bit 1 is reserved and must always be zero.
Bits 2 through 14 (the segment field) define which of the 8192
possible segments is being addressed.

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Alo SEGMENT PAGE]

I
1 PAGE WORD BYTE
1

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A (ABSOLUTE) 0:1

SEGMENT 0:8191
PAGE 0:63
WORD 0:1023
B (BYTE) 0:1

$5001-075

Figure 5-6. 32-Bit Extended Address

4482507 A00 3/85 5-9

ADDRESSING AND MEMORY ACCESS
Extended Addressing

Bits 15 through 20 (page field) define which of the 64 pages in
the segment is selected. Bits 21 through 30 (word field) specify
which of the 1024 words in the page is addressed. Bit 31 (byte
field) defines which byte of the word (0 for left or 1 for right)
is to be accessed. Extended addresses are always byte addresses.

Absolute extended addresses can be used only by privileged
processes. If a process executing in nonprivileged mode attempts
to use an absolute extended address, an instruction failure
occurs. In an absolute extended address, the segment field
represents the number, 0 to 8191, of an absolute segment.

Relative extended addresses can be used in any progranm,
privileged or nonprivileged. A relocation mechanism is provided
for these addresses, so that all processes can use the same range
of addresses, relative to a base address of 0. To use a relative
extended address, the processor must translate it into an
absolute extended address. 1In a relative extended address, the
segment field represents the number of a relative segment. Each
accessible relative segment is mapped onto one absolute segment.

A process's currently accessible short address spaces--namely,
current data, system data, current code, user code--can be
accessed with 32-bit relative addresses as relative segments 0
through 3, respectively. The selection of "current data" and
"current code" for relative segments 0 and 2 are determined by
the current bit settings of the ENV register, as illustrated
earlier in Figure 5-4. System data is always accessible as
relative segment 1. Relative segment 3 provides access to the
currently mapped user code segment; this is useful for accessing
code segment arrays, analogous to the "UC" mode addressing with
16-bit addressing (see footnote of Table A-5 in Appendix A).

Figure 5-7 illustrates relative extended addressing in segments 0
through 3. Note that with relative extended addresses, all (or
as much as exists) of a data segment can be byte-addressed--not
just the first 32k words as with 16-bit addresses.

The more significant application of 32-bit relative addresses,
however (besides addressing the short address spaces), is to
provide access to the extended address space. This space, for
each process, consists of the relative segments numbered 4 and up
(to a maximum segment number of 1027).

The extended address space is used (by both NonStop II and
NonStop TXP processors) to contain an extended data segment.

A process may allocate one or more extended data segments to
contain large blocks of process data (up to 128 megabytes each).
Although the process may have several extended data segments,
only one at a time may be in use. Only the current one is
effectively included in the process's logical memory.

5-10 482507 A0O 3/85

ADDRESSING AND MEMORY ACCESS
Extended Addressing

o 1 2 14 15 20 21 30 31
01]0 (RELATIVE) SEGMENT (0:3) PAGE WORD B

ENVIRONMENT LOCATE PAGE, WORD, AND BYTE

REGISTER WITHIN THE RELATIVE SEGMENT

0 4 5 6 7 15
(LS |PRV| DS} CS ((RELATIVE
SEGMENTS
— e —

0 CURRENT DATA
SEGMENT

\j
PROVIDES ADDITIONAL SYSTEM DATA
INFORMATION > 1 SEGMENT
FOR SELECTING ONE OF
RELATIVE SEGMENTS 0-3

CURRENT CODE
2 SEGMENT

CURRENTLY
MAPPED
3 USER CODE
SEGMENT

$5001-076

Figure 5-7. Relative Extended Addressing in Segments 0 through 3

NOTE

In this manual, the word segment generally means a
nonextended segment (that 1s, a simple 1K to 64K word
segment) except where the word "extended" is
specifically used.

The base address of an extended data segment is always relative
segment 4, page 0, word 0, byte 0. The relative addresses within
an extended data segment are consecutive, no matter how large it
is; for example, segment 5, page 1, word 0, byte 0 refers to the
first byte of the 66th page of the extended segment. A relative
extended address with a segment number of 4 or greater always
refers to a location within an extended data segment.

An extended data segment is always allocated as a contiguous

block of absolute segments, so that a simple relocation mechanism
can be used. See the discussion of base and limit that follows.

4482507 A00 3/85 5-11

ADDRESSING AND MEMORY ACCESS
Extended Addressing

To request allocation of an extended data segment, a process
calls the operating system procedure ALLOCATESEGMENT. Once the
segment has been allocated successfully, it must be put in use by
a call to the USESEGMENT procedure before it can be accessed. A
process can have several extended data segments, but only one can
be accessed at any given time; a new call to USESEGMENT must be
made each time a different extended data segment is to be used.

A call to DEALLOCATESEGMENT (or stopping the process) frees a
segment when it is no longer needed.

Figure 5-8 illustrates three extended data segments belonging to
a process.

In extended data segments, two special values--the segment base
and limit--are used to determine the absolute virtual memory
location represented by a relative extended address. The base
defines the beginning of the relative segment; it is the absolute
extended address of the first byte in the relative segment, minus
%2,000,000 (%2,000,000 is the address of the beginning of segment
4), The limit defines the maximum relative address that can be
used within the segment. For efficiency, the limit is stored as

- (segment size in bytes + %2000000)

so that the following algorithm can be used in resolving a
relative extended address: First, the limit is added to the
address. If the result is large enough to cause a carry, the
address is out of bounds, and an instruction failure trap occurs.
Otherwise, the relative extended address and the base are added
together to produce an absolute extended address. See Figure
5-9.

The base and limit for an extended data segment are determined
when a process requests allocation of that extended segment. The
limit is determined from the segment size specified by the user
process; the base is determined by the operating system.

Extended Addressing Instructions

The NonStop II and NonStop TXP processors provide a class of
instructions to access data using extended addresses. An example
is the MVBX instruction, which allows bytes to be moved between
any two locations in virtual memory.

The following is a list of extended addressing instructions.
These 23 instructions are nonprivileged, and most (all except
MNDX, XSMX, and CDX) are supported by TAL language constructs.
For detailed descriptions of these instructions, refer to
Section 9, "Instruction Set."

5-12 482507 AOO 3/85

ADDRESSING AND MEMORY ACCESS
Extended Addressing

RELATIVE EXTENDED ADDRESS
0o 1 2 14 15 20 21 30 31

o] o (RELATIVE) SEGMENT (4:1027) PAGE WORD B

g

LOCATE PAGE, WORD, AND BYTE
WITHIN THE SEGMENT AFTER
ADDRESS CONVERSION

N

RELATIVE |
| segment
| o _Jl
k——-—
| recatve |
| seGment |
| ! |
P----ﬂ
| Relamive |
| SEGMENT |
{- RELATIVE |
SEGMENT
| 3
r—_—— S D S
| RELATIVE | RELATIVE | RELATVE | \
| SEGMENT | SEGMENT I SEGMENT I
4 4
| | - |
r RELATIVE _= RELATIVE EXTENDED DATA
| SEGMENT I SEGMENT) SEGMENTS FOR
}_ _‘ 5 A PROCESS
| RELATIVE
SEGMENT
| I
_____.l CURRENT
EXTENDED DATA
SEGMENT
(IN RELATIVE

SEGMENTS 4 AND 5)

$5001-077

Figure 5-8. Relative Extended Addressing in Segments 4 and Up

4982507 A00 3/85 5-13

ADDRESSING AND MEMORY ACCESS
Extended Addressing

RELATIVE EXTENDED ADDRESS

o 1 2 14 15 20 21 30 31
0|0 (RELATIVE) SEGMENT (4:1027) PAGE WORD B
0 31
(LIMIT ——————— BOUNDS CHECKING
0 31 AND
((BASE _— RELOCATION

(FOR CURRENT EXTENDED
DATA SEGMENT)

ABSOLUTE EXTENDED ADDRESS
0 1 2 14 15 20 21 30 31

ABSOLUTE SEGMENT (0:8191) PAGE WORD B

$5001-078

Figure 5-9. Address Conversion for Relative Segments 4 and Up

ANX AND to Extended Memory

ORX OR to Extended Memory

MNDX Move Words While Not Duplicate
XSMX Checksum Extended Block

CDX Count Duplicate Words Extended
LBX Load Byte Extended

SBX Store Byte Extended

LWX Load Word Extended

SWX Store Word Extended

LDDX Load Doubleword Extended

SDDX Store Doubleword Extended

LOX Load Quadrupleword Extended
SQOX Store Quadrupleword Extended
DFX Deposit Field Extended

MVBX Move Bytes Extended

MBXR Move Bytes Extended, Reverse
MBXX Move Bytes Extended, and Checksum

5-14 482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

CMBX Compare Bytes Extended

SCS Set Code Segment

LWXX Load Word Extended, Indexed

SWXX Store Word Extended, Indexed
LBXX Load Byte Extended, Indexed

SBXX Store Byte Extended, Indexed

MEMORY ACCESS (NonStop II PROCESSOR)

This subsection describes the actual mechanisms used to access
memory in the NonStop II processor. This information is
primarily needed by systems analysts, though it may also be of
interest to others. A parallel subsection dedicated to the
NonStop TXP processor follows this description.

Maps

A processor module converts 16-bit logical addresses and 32-bit
absolute extended addresses to 23-bit physical addresses by means
of mapping, a method which uses a set of special map registers in
the processor. Each processor in a NonStop II processor has
sixteen maps, each map consisting of 64 map registers.

Maps 0 through 5 provide address translation for the six short
address spaces that are accessible to the current process
(illustrated earlier in Figure 5-4). Each of these six maps is
capable of mapping a logical segment (up to 64 pages); each map
register contains the starting address in physical memory of one
page of the segment. The remaining ten maps define other
segments (not accessible to most processes) or have other
specialized purposes.

Figure 5-10 shows the uses of all sixteen maps and compares them
to the uses of the first sixteen absolute segments. As shown,
some maps correspond to the absolute segments of the same
numbers. The uses of the maps are as follows:

0 User Data. This map defines the data segment of the
currently executing process; that is, it maps the physical
location of each page of the segment that is assigned to be
the current process's data space. If the DS bit of the ENV
Register is set to 0, all data references are directed into
the segment defined by this map unless they are made by
instructions which use either extended addresses or the
SG-relative addressing mode.

4 82507 A00 3/85 5-15

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

ABSOLUTE
MAPS SEGMENTS
0 USER DATA XRAY o
SEGMENT SEGMENT
1 SYSTEM DATA 3 . SYSTEM DATA]
SEGMENT SEGMENT
2 USER CODE SYSTEM PROCESS 9
SEGMENT CODE*
SYSTEM CODE SYSTEM CODE
- 3
3 SEGMENT SEGMENT
4 USER LIBRARY SYSTEM PROCESS 4
SEGMENT CODE*
5 SYSTEM LIBRARY SYSTEM PROCESS 5
SEGMENT CODE*
10 BUFFERS IO BUFFERS
AND SPT AND SPT
STORAGE - STORAGE

SCRATCH REGISTERS, i
14 | MEMORY MGMT. TABLES, | «€————— | MEMORY MANAGEMENT | ,,

EXTENDED BASE & LIMIT TABLES
16 EXTENDED ADDRESS RESERVED 15
CACHE
[]
[]
*AS BUILT BY SYSGEN S5001-079

Figure 5-10. Uses of Maps and Absolute Segments

1 System Data. This map defines the segment that contains
system tables and stacks for the interrupt handlers. The
space defined by this map is common to all processes, but
it may be accessed only if the DS bit in the ENV register
is set to 1, or if explicit reference is made to the system
data segment (for example, with SG-relative addressing) and
the PRIV bit is set. This space is always absolute segment
1.

5-16 482507 A00 3/85

6-13

14

482507 A0O 3/85 5

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

User Code. This map defines the current code segment of
the currently executing process; that is, it maps the
absolute segment invoked by the most recent call
instruction (XCAL or DPCL) or return instruction (EXIT or
IXIT) to or from these segments. All code references
specify this segment if the CS and LS bits in the ENV
register are 0. 1In addition, "UC" mode addresses always
reference this segment regardless of the ENV register bit
settings.

System Code. This map defines the code segment for
operating system code (interrupt handlers and frequently
used system procedures). The space defined by this map is
common to all processes, and is always absolute segment 3.
All code segment references (except "UC" mode addresses)
specify this segment if the LS bit in the ENV register is 0
and the CS bit is 1.

User Library. This map defines the current user library
segment for the currently executing process, if one exists
for that process. It maps the absolute segment invoked by
the most recent call instruction (XCAL or DPCL) or return
instruction (EXIT or IXIT) to or from these segments. User
library segments are mapped "on demand"; until there is a
library call, none of these segments is current. All code
references (except "UC" mode addresses) specify this
segment if the LS bit in the ENV register is 1 and the CS
bit is 0.

System Library. This map defines one of up to 32
additional segments for operating system code. These
segments--absolute segments %34 (#28) and up--may be viewed
as an extension to the system code segment and are common
to all processes. Map 5 maps the absolute segment invoked
by the most recent call instruction (XCAL or DPCL) or
return instruction (EXIT or IXIT) to or from these
segments. All code references (except "UC" mode addresses)
specify this segment if the LS bit in the ENV register is 1
and the CS bit is 1.

1/0 Buffers and Segment Page Tables. Buffers for I/0
transfers and the Segment Page Tables are normally kept in
the segments defined by these maps. They are always
associated with absolute segments 6 through 13,
respectively. The Segment Page Tables and the use of I/0
buffers are discussed later in this section.

Special-Purpose Area. This map is not used to map any
entire segment, but is reserved by the system for special
purposes. It is divided into several areas:

17

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

Area Map Entries
Microcode Scratch Registers 0:27
Map Entries for Segment Table (SEG) 28:43
Map Entries for Physical Page Segment Table
(PHYSEG) 44:51
Map Entries for Physical Page/Logical Page
Table (PHYPAGE) 52:59
Base for Current Extended Data Segment 60:61
Limit for Current Extended Data Segment 62:63

The scratch registers are for use by the processor
microcode. The SEG, PHYSEG, and PHYPAGE tables are used
for mapping and other memory management functions; their
map entries reside permanently in Map 14, and the tables
themselves reside in absolute segment 14. The current base
and limit, which are used in resolution of relative
extended addresses in segments 4 and up, are also stored
here for efficiency.

15 Extended Address Cache. This map is not used to map any
segment, but is used for the extended address cache
(discussed later in this section).

The segments mapped by Maps 0 through 5 (short address spaces)
are accessible by 16-bit addressing and by relative extended
addressing as relative segments 0 through 3. The absolute
segments mapped by maps 0, 2, and 4 change as different processes
come into execution, since new sets of code and data are mapped
by the "user" maps. When a process is activated, Map 0 is loaded
with the entries that define the process's data space, and Map 2
is loaded with the entries for the current segment of the
process's code space. Map 4 is loaded with the entries for one
segment of the process's library code space, if any, on demand
(by XCAL, DPCL, EXIT, or IXIT instructions).

On the other hand, Maps 1, 3, and 5 do not change when different
processes are dispatched. Maps 1 and 3 always map the same
absolute segments; Map 5 changes to another absolute segment only
when a call to a system procedure references a procedure that is
in a system library segment other than the one currently mapped.

At any given time, each segment mapped by maps 0 through 14
corresponds to some specific absolute segment. This
correspondence is maintained in a software table called CSSEG
(Current Short-address Segments), which has entries for all 16
maps.

For relative extended addressing of the segments represented by
Maps 0 through 5, four segments are accessible as relative
segments 0 through 3 (refer back to Figure 5-7). For efficiency,
memory access for these segments normally uses the maps, rather

5-18 482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

than the extended address translation algorithm. The map used
for a given relative segment number is determined by the settings
of the LS, PRIV, DS, and CS bits in the ENV register. The
currently accessible segments, with their relative segment
numbers, are defined as follows:

0 Current Data Segment. If DS=0, map 0 (user data) is used to
access this segment; if DS=1, map 1 (system data) is used.
This specifies the same segment that a LOAD G+0 instruction
would access.

1 System Data Segment. If DS=1, or if explicit reference is
made to system data (e.g., with SG-relative addressing) and
PRIV=1, map 1 (system data) is used to access this segment.
Otherwise, map 0 (user data) is used. This specifies the
same segment that a LOAD SG+0 instruction would access.

2 Current Code Segment. If LS=0 and CS=0, map 2 (user code) is
used to access this segment. If LS=0 and CS=1, map 3 (system
code) is used. If LS=1 and CS=0, map 4 (user library) is
used. If LS=1 and CS=1, map 5 (system library) is used.

This specifies the same segment that instructions are fetched
from and that an LWP instruction would access.

3 Currently Mapped User Code Segment. Map 2 is always used to

access this segment. This specifies the same segment that an
LWUC instruction would access.

Map Entries and Mapping

As already mentioned, each map contains 64 map registers. Each
map register in maps 0 through 13 (and in parts of map 14 and map
15) contains a map entry. Map entries are used to convert
logical addresses to physical addresses.

In the case of 16-bit addressing or relative extended addressing
in segments 0 through 3, the map is first selected; it is always
one of Maps 0 through 5. Then the logical page number from the
16-bit address or the 32-bit relative extended address is used as
an index into the map to obtain the map entry.

Figure 5-11 shows the format of a map entry. Since maps are
loaded from Segment Page Tables, this format also applies to
entries in Segment Page Tables and in the map entry cache, both
of which are described later.

If bit 15 is not set, bits 0 through 12 of the map entry indicate

the physical page number (0 through 8191) of the memory page to
be accessed whenever a memory reference is made through this

482507 A00 3/85 5-19

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

0123 4567 89 1 11 12 13 14 15

PHYSICAL PAGE R D A

(0:8191)

S$5001-080

Figure 5-11. Map Entry

entry. (If bit 15 is set, the page is considered absent from
physical memory; all other bits are undefined to the hardware,
although the memory manager process may use these bits.) Bit 13,
the R (reference) bit, is set on any access to the page. Bit 14,
the D (dirty) bit, is set whenever a write access is made to the
page. These two bits are checked by the memory manager software
in the operating system in order to select the best pages for
overlay when absent pages need to be brought into physical memory
from disc, and to keep track of whether a page that is being
replaced must first be copied to disc (i.e., is a dirty page).
Bit 15, the A (absent) bit, if set to 1, indicates that the page
referred to is not present in physical memory. An attempt to
access memory via an entry with this bit set to 1 will result in
a Page Fault interrupt if the attempted access was made by an
instruction, or a transfer error if the I/0 channel attempted the
access.

Once the map entry is selected, bit 15 of the entry is checked to
determine if the page is absent. If so, a page fault interrupt
occurs, and the page fault interrupt handler takes over to swap
in the page from disc. Once the physical page is present, the
physical page field of the map entry (now updated) is used to
select it, and the word field of the 16-bit or 32-bit address is
used to select one of the 1024 words within the page. See Figure
5-12.

Segment Table and Segment Page Tables

Pages accessed by 16-bit addresses, or by relative addresses with
segment numbers of 0 through 3, are usually already mapped at the
time they are referenced by a procedure. A map entry (in Maps 0
through 5) provides the physical location of the page. However,

5-20 4182507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

ENTRY
NO. MAP 16-BIT ADDRESS OR 32:-BIT ADDRESS

| L1 [—I
(C 1

-
1 1
4
.
L)
63

WORD FIELD

MAP ENTRY l
0 12 13 15

r PHYSICAL PAGE (0:8191) % l WORD (0:1023)]

| l

0 12 13 22
I PHYSICAL PAGE WORD I

23-BIT PHYSICAL ADDRESS (0:8388607)
S$5001-081

Figure 5-12., Mapping

pages referenced by calls to procedures in segments other than
those currently mapped, or by absolute extended addresses, or by
relative extended addresses with segment numbers of 4 or greater,
are not necessarily already mapped at the time the address
reference is made.

Before any page can be accessed, its map entry must exist in a
map. The processor maintains sets of tables in memory so that
the appropriate map entry for any page in a process's logical
memory can be located and brought into a map when needed. These
tables are permanently mapped so that the processor can always
access them through a normal mapped reference.

The Segment Table contains a two-word entry for each absolute
segment of the CPU's virtual memory. Each allocated segment
entry (some segment numbers may not be allocated) points to the
Segment Page Table for that segment, and indicates whether the
segment is mapped. See Figure 5-13.

There is one Segment Page Table (SPT) for each allocated absolute
segment (Figure 5-13). Each Segment Page Table contains a map

4§ 82507 A0O 3/85 5-21

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

SEGMENT TABLE
ENTRY SEGMENT TABLE ENTRY
NO.
0 0 45 8 9 15
1
2 MAPPED]PAGE TABLE MAP] PAGE TABLE SIZE
: l PAGE TABLE ADDRESS
N 16 31
.
L]
8191
I SEGMENT PAGE
ENTRY__ TABLE (SPT)
[PAGE TABLE MAP L NO. OPERATING
HEADER SYSTEM
PAGE TABLE ADDRESS | INFORMATION
0
1
2
L]
. MAP ENTRIES
N
{ .
0 12 13 14 15 .
P
[PHYSICAL PAGE l R l D [A l Asc’:gETf'zLE
MAP ENTRY
S5001-083

Figure 5-13. Segment Table and Segment Page Tables

entry for each allocated page in the corresponding segment.
(Informally, an SPT is frequently called a "page table.")

The Segment Table has a two-word entry for each absolute segment.
Thus it occupies 16k words (16 pages) of physical memory. It is
permanently mapped in entries 28 through 43 of Map 14. Bits 0
through 4 of a Segment Table entry contain the map number of the
map for that segment if the segment is currently mapped (in this
case, all other bits of the entry can be ignored), or all ones
(%37) if the segment is not mapped. Bits 5 through 8 specify
which map (by convention, in the range 6 through 13) maps the
Segment Page Table for that segment.

Bits 9 through 15 specify the number of pages (0 to 64) in the
segment; this equals the size of the Segment Page Table in words,
not including the header. The remainder of the entry (the second
word) gives the 16-bit address of the Segment Page Table for the
segment. This address, together with the map number in bits 5
through 8, specifies the location of the Segment Page Table in
memory.

5-22 4482507 A0 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

Segment Page Tables for segments that are currently allocated but
not in use (i.e., not mapped) are located in an area of memory
called MAPPOOL. The operating system allocates the MAPPOOL areas
out of absolute segments 6 through 13, which are permanently
mapped by Maps 6 through 13. In MAPPOOL, each Segment Page Table
is preceded by a header that gives operating system information,
and it contains only as many entries as there are pages in the
segment.,

The Segment Page Table for each allocated absolute segment
contains one entry for each page in the segment. Each of these
entries, identical to map entries (Figure 5-11), defines the
physical memory where a page of the segment resides, or indicates
that the page is absent from physical memory. If a segment is
not allocated (i.e., the page table size entry in the Segment
Table is equal to 0), then no Segment Page Table exists for that
segment.

When a new process is dispatched by the operating system, the
entries in the Segment Page Table for that segment are copied
into a map using the MAPS instruction. (When this is done, if
fewer than 64 pages of the segment are allocated, the remainder
of the entries in the map are marked absent by setting these
entries equal to 1.)

For data segments, if the segment being addressed is currently
mapped, the only valid copy of the map entries is the one in the
map; the copy kept in the Segment Page Table in memory is
updated only when the segment is unmapped. For code segments,
map copy and the memory copy are generally identical.

Extended Address Cache

For a memory access using an extended address, the address
translation algorithm requires that the Segment Table entry for
the required absolute segment be examined to determine whether
the segment is mapped. If the segment is not mapped, then it
becomes necessary to use the extended address cache, which
occupies all of Map 15.

The extended address cache (see Figure 5-14) is used in memory
accesses that specify absolute extended addresses (or relative
extended addresses with relative segment numbers of 4 or greater)
to temporarily map one single page being referenced. 1Its content
is a collection of page mappings for recently accessed pages,
which thus have a high probability of being accessed repeatedly
in succeeding references. This greatly improves the speed of
access to frequently used pages.

4482507 A00 3/85 5-23

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

E:gw 0 1 2 3 456 7 8 9 10 11 12 13 14 15
0 PHYSICAL PAGE R(D| A
1 PHYSICAL PAGE R(D|A
MAP ENTRY
* P CACHE
L]
31 PHYSICAL PAGE R|ID|A| |
0 olo SEGMENT PG
1 o|o SEGMENT PG
. \ CACHE
TAGS
[]
31 oo SEGMENT PG
0 1 2 3 45 6 7 8 9 10 11 12 13 14 15
S$5001-082

Figure 5-14., Extended Address Cache

As shown in the figure, the cache is divided into two halves:
the map entry cache and the cache tags. The map entry cache
consists of 32 map entries; these are identical in format to the
map entries in the other maps and in the Segment Page Tables in
memory. The 32 cache tags each contain a 13-bit segment number
and a single bit that represents the most significant bit of a
page number. A cache tag identifies the corresponding entry in
the map entry cache.

Using the extended address cache, a byte represented by an
absolute extended address is accessed as follows (see Figure
5-15):

1. The corresponding cache tag is obtained by using the least
significant 5 bits of the page number from the address as an
index into the entries in the upper half of Map 15.

2, The cache tag is compared to the high-order word of the
absolute extended address (ignoring bits 0 and 1 of the
extended address). If they are equal, the correct map entry
is present at the corresponding position in the map entry
cache. The map entry is obtained by using the least
significant 5 bits of the page number from the address as an

5-24 482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

ABSOLUTE EXTENDED ADDRESS CACHE TAGS
— [.
l .
) .
L >N
.
.
31
HIGH.-ORDER WORD OF ADDRESS CACHE TAG
»% SEGMENT I I EE[l I -
a¥ ¥
J EQUAL?
NO YES
SEGMENT TABLE
3
0 @010
" STEP (10)
.
")
.
.
8191
@
mappep YES GO TO
(= 0:13)? STEP (10) L
Y
SEGMENT TABLE ENTRY NO CAGHE TAG
-’
marpED | pT. MaP | prsu [I r]]
PAGE TABLE ADDRESS
) *
_ FREE (= %177777)?
YES NO
{6)
MAP ENTRY CACHE WRITE OUT OLD CACHE
° ENTRY TO ITS SPT
(98) SET CACHE . ‘
ENTRY m
>N ADDRESS OUT OF
. BOUNDS?
. NO YES
3
INSTRUCTION
FAILURE
ABSOLUTE EXTENDED ADDRESS
1 E—
SEGMENT PAGE I WORD 8] (9b) SET CACHE
TABLE (SPT) TAG
)
® : MAP ENTRY
N < PHYSICAL PAGE Iq
—> =, | 1
L]
.
8191 (10) PAGE ABSENT?
IF YES, PAGE 2 (13
FAULT INTERRUPT v
an FIND WORD EXTRACT BYTE
INPAGE (DONE BY IPU)
SELECT MEMORY PAGE
S5001-084

Figure 5-15. Extended Address Translation Algorithm

482507 A00 3/85 5-25

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop II Processor)

10.

11.

index into the lower half of Map 15. The page in memory can
then be accessed using the map entry (go to step 10).

If the desired map entry is not in the cache, the absolute
segment number from the address is used as an index into the
Segment Table to find the appropriate entry for this segment.

Bits 0 through 4 of the entry are checked to determine
whether the segment is currently mapped. If bits 0 through 4
are not all ones (%37), the segment is currently mapped, and
the map number is given in this field. The page number from
the address is used as an index into the specified map to
find the entry for the desired page. The page in memory can
then be accessed using the map entry (go to step 10).

If bits 0 through 4 of the Segment Table entry are all ones,
the segment is not currently mapped. The cache tag is then
checked to see if the corresponding cache entry is free (not
in use); a free cache entry is indicated if the tag is equal
to -1 (%177777). 1I1f the entry is free, go to step 7.

If the entry is not free, the existing cache entry is written
out to its corresponding Segment Page Table entry in memory.
This is done by using the information in the existing cache
tag and cache entry to go through the appropriate Segment
Table entry.

Bits 9 through 15 of the Segment Table entry for the new
address (the page table size field) are compared with the
page number in the address. If the page number is greater
than or equal to the number of pages given in the Segment
Table, the address is out of bounds, and an instruction
failure trap occurs.

The page table map and page table address in the Segment
Table entry are used to find the beginning of that segment's
Segment Page Table in memory. Then the page number from the
absolute extended address is used as an index into the
Segment Page Table to find the entry for the desired page.

The appropriate map entry in the cache is loaded with the
Segment Page Table entry, and the corresponding cache tag is
set to match the high-order word of the absolute extended
address (ignoring bits 0 and 1).

If the map entry shows that the page is absent, a page fault
interrupt occurs. The page fault interrupt handler then
takes over to swap in the desired page from disc, as
discussed under "Page Fault" later in this section.

Once the page is in main memory, the physical page number
found in the map entry is used to select the physical page.

I/’g82507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

12. The word field of the address is used to locate the desired
word in memory.

13. The byte field of the address can then be used by the IPU to
extract the specified byte.

MEMORY ACCESS (NonStop TXP PROCESSOR)

This subsection describes the actual mechanisms used to access
memory in the NonStop TXP processor. This information is needed
primarily by systems analysts, though it may also be of interest
to others. The information parallels that of the preceding
subsection (describing memory access for the NonStop II
processor).

Short Address Spaces

A process accesses logical memory either by 1l6-bit logical
addresses or by 32-bit relative extended addresses.

The 16-bit addresses access one of six address spaces, called
"short address spaces" (SASs). These six address spaces
constitute a process's normal view of memory. The SASs are
known as: wuser data, system data, user code, system code, user
library, and system library.

Some of these six short address spaces can consist of more than
one logical segment, and each such segment corresponds to a
specific absolute segment. At any given time, only one segment
of a short address space is the currently "mapped" segment. 1In a
NonStop TXP processor, the absolute segment number of the
currently mapped segment for each SAS is kept in the first six
locations of a set of hardware registers called the SST (Short
Segment Table); a copy of the SST is kept in a software table,
CSSEG (the Current Short-address Segment table). However, unlike
the NonStop II, the NonStop TXP processor normally does not fully
map all 64 pages of a current segment, but rather "caches"
individual page mappings when needed. (The exceptions are SAS 1
and SAS 3, system data and system code, which are always fully
mapped in PCACHE--described later.)

The current segments of the six short address spaces are defined
as follows:

4482507 A0O 3/85 5-27

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

User Data Segment. This is the data segment for the
process that is currently in execution. If DS is a 0, all
data references will be into this segment unless they are
by instructions which use either extended addressing or the
SG addressing mode.

System Data Segment. This segment, which is always
absolute segment 1, contains system tables and interrupt
stacks. This segment is common to all processes, but it
may only be accessed if DS or PRIV is set.

User Code Segment. This is the current segment of the user
code space for the currently executing process; that 1is,
it is the absolute segment invoked by the most recent call
instruction (XCAL or DPCL) or return instruction (EXIT or
(IXIT) to or from these segments. All code segment
references specify this space if the CS and LS bits in the
ENV register are 0. 1In addition, "UC" mode addresses
always reference this segment regardless of the ENV
register bit settings.

System Code Segment. This segment, which is.always
absolute segment 3, contains the most frequently used
operating system procedures and interrupt handlers. This
segment is common to all processes. All code references
(except "UC" mode addresses) specify this segment if the LS
bit in the ENV register is 0 and the CS bit is 1.

User Library Segment. This is the current segment of the
user library space for the currently executing process.
That is, it is the absolute segment (if any) invoked by the
most recent call instruction (XCAL or DPCL) or return
instruction (EXIT or IXIT) to or from these segments. User
library segments are mapped "on demand"; until there is a
library call, none of these segments is current. All code
references (except "UC" mode addresses) specify this space
if the LS bit in the ENV register is 1 and the CS bit is 0.

System Library Segment. This is the current segment of the
system library, which provides additional code space for
system procedures. These segments--absolute segments %34
(#28) and up--be viewed as an extension to the system code
segment (SAS 3) and are common to all processes. SAS 5 is
the absolute segment invoked by the most recent call
instruction (XCAL or DPCL) or return instruction (EXIT or
IXIT) to or from these segments. All code references
(except "UC" mode addresses) specify this space if the LS
bit in the ENV register is 1 and the CS bit is 1.

Other segments defined by the SST are the following:

5-28

11’ 82507 AO0O0 3/85

6-13

14

15

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

Buffers and Tables. Buffers for I1/0 transfers and Segment
Page Tables are normally kept in these spaces, which are
absolute segment numbers 6-13, respectively.

Memory Management. This space is absolute segment 14, It
is divided into several areas:

Reserved for microcode (scratch) %0:%067777
Segment Table (SEG) %70000:%127777
Physical page Segment table (PHYSEG) %$130000:%147777
Physical page Page table (PHYPAGE) %$150000:%167777
Reserved for microcode (scratch) %170000:%177777

The portions of this space marked "Reserved for microcode"
are not available to the GUARDIAN operating system because
the resources that would be used to access them in a
NonStop II processor have been allocated to its micro
machine.

In a NonStop II processor, slots 0:%33 of map 14 are
scratch registers and slots %74:%77 hold the extended

base and extended limit for the current extended data
segment. Therefore, in the NonStop TXP processor, the
corresponding page table cache entries (for pages 0:%33 and
%74:%77 of absolute segment 14) may be used as scratch
registers. The page table cache (PCACHE) is described
later in this section.

Unused by the GUARDIAN operating system. The NonStop TXP
processor microcode may use the SST register for short
address space 15 as a scratch register. (The NonStop II
processor uses map 15 for the extended address cache.)

Caches in the NonStop TXP Procesor

The NonStop TXP processor gains much of its performance through
the use of cache memory. Cache memory is a mechanism used to
improve effective memory transfer rates and increase processor

speed.

The term "cache" refers to the fact that a copy of

frequently used information is cached close to where it will be
used--on the processor logic boards. The cache mechanism is
essentially hidden and is transparent to the user.

Processors that do not use cache memory need to go to physical
memory for every word accessed. Cache memory allows the system
to store frequently used information in a set of hardware
registers to take advantage of fast register access time as
compared to slower memory access time.

I{| 82507

A00 3/85 5-29

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

When a process requests information that it needs to continue its
work, the processor microcode first checks whether that
information is present in cache. The NonStop TXP processor uses
two caches to speed access to memory.

e PCACHE is a page table cache that stores frequently used page
table entries. Its use is analogous to that of the map
registers in the NonStop II processor.

e CACHE is a cache that stores frequently used blocks of code or
data in another set of hardware registers. Transfers between
memory and CACHE occur by single 1l6-byte fetch operations.

Both caches are accessed by absolute extended addresses. Because
both caches are much smaller than the processor's virtual address
space of one gigabyte, it is possible for multiple logical
addresses to map into a given cache entry. However, in the cache
technique chosen for the NonStop TXP processor, a tag word
associated with each cache entry isolates the entry to a unique
logical address. This type of cache is commonly referred to as
"direct-mapped" or "single-set associative" cache.

To ensure that information in main memory remains consistent with
the version in cache, the processor updates the information in
main memory for each write to cache. This technique is commonly
known as "write-through.”

The following paragraphs describe the operation of both caches.

Page Table Cache (PCACHE). Unlike the NonStop II processor, the
NonStop TXP processor does not have sixteen sets of map
registers. Instead, the NonStop TXP processor uses a
2048-location hardware register array called "PCACHE" to store
frequently used page table entries.

In a directly-mapped cache, each possible entry maps into exactly
one cache location. In the case of PCACHE, "each possible entry"
is each combination of absolute segment and page within a
segment. Because there are many more potential entries than
cache locations, it is necessary to associate a tag with each
cache location to identify which entry is in that cache location
at a given moment. The tags for PCACHE are kept in another
2048-location hardware array called PCACHETAG.

PCACHE is divided into two halves. The first half is a
"dedicated" cache which continuously maps the page table entries
for absolute segments 0-15. This ensures that the page table
entries of the physical memory pages assigned to system data,
system code, I1/0 buffers, and memory management will always be
available--they will never be swapped out.

5-30 4482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

The second half of PCACHE is managed as a direct-mapped or
single-set associative cache. 1Its 1024 locations store
individual page table entries related to absolute segments other
than segments 0-15. The technique of storing individual page
table entries eliminates the overhead of loading the page table
entries for an entire segment into registers when access is
required to only a single page.

The hardware maintains the segregation of the dedicated and
single-set associative sections of PCACHE--they appear to the
microcode and the software to be a single cache.

PCACHE is accessed directly by 32-bit extended addresses. This
means that each absolute extended address uniquely maps into a
single cache location. The layouts for both PCACHE and PCACHETAG
are shown in Figure 5-16.

The microcode executes the following four operations each time
that it services a request for memory access through PCACHE:

1. reads a PCACHE entry
2, determines whether or not the entry is valid
3. generates a physical memory address

4, reports on the status of the memory page designated in the
physical memory address generated.

The function that maps an address into PCACHE is:
(segment .<0:8><>0) ~ segment.<9:12> “~ page.<0:5>

which can also be thought of as the concatenation of a bit
indicating whether the segment number is in the range of 0:15
with bits 11:20 of the extended address. It is the checking of
segment .<0:8> that causes the partitioning of PCACHE. If all
nine bits are 0, the segment number must be <=15, and the mapping
is forced into the first half of PCACHE; if any of those nine
bits is nonzero, the address mapping is forced into the second
(single-set) half of PCACHE. The remaining information needed to
uniquely identify the entry (segment.<0:8>, that is, extended
address bits 2:10) is kept in the entry's associated tag.

The notation used to reference a Segment Page Table entry is:
PCACHE[segment, pagel= segment page table entry for an
absolute segment (0-8191) and
logical page (0-63)

PCACHETAG[segment, pagel= tag for that segment and page's
entry

482507 A00 3/85 5-31

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

13 14 15
PCACHE ENTRY 0000 PHY PG NO, e.g., %05530 X D I
0001 PHY PG NO, e.g., %03724 X D I
P DEDICATED CACHE P ;
1 ABS SEGMENT 0-15 i
1023 PHY PG NO, e.g., %03720 X D |
ENTRY 1024 PHY PG NO, e.g., %00773 X D |
1025 PHY PG NO, e.g., %00546 X D |
P SINGLE-SET CACHE |
ﬂ ABS SEGMENT > 15 =
2047 PHY PG NO, e.g., %04720 X D 1
PCACHETAG ENTRY 0000 TAG FOR PCACHE ENTRY 0000 D I
0001 TAG FOR PCACHE ENTRY 0001 D |
|- -
; - ; ~
1023 TAG FOR PCACHE ENTRY 1023 D I
1024 TAG FOR PCACHE ENTRY 1024 D 1
5 ; ” 5
2047 TAG FOR PCACHE ENTRY 2047 D |
0 415 ‘ 13
PAGE SEGMENT
<0:4> <0:8>
$5001-085

Figure 5-16. Layout of PCACHE

where PCACHE contains a physical page number and PCACHETAG
contains the corresponding tag, in the formats shown in Figure
5-16. (The PCACHE Segment field equals zero in entries for
absolute segments 0 through 15.) The PCACHETAG "Page" field

is a copy of the upper five bits of the physical page number
given in PCACHE; this is used by the microcode for preprocessing
before the full physical page number is available in PCACHE.

5-32 482507 A0 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

Bits 13:15 of PCACHE contain the following status information:

PCACHE.<13> is the reference bit. 1In the context of PCACHE, this
bit can be interpreted as a "don't care" bit because it is
assumed to be set to 1 for any valid entry.

PCACHE.<14> and its copy in PCACHETAG.<14> act as the dirty

bit., If this bit is set to 1, a data page has been modified.
This means the memory manager must swap this page to disc before
it can give away that page's physical memory space.

PCACHE.<15> and its copy in PCACHETAG.<15> serve as the invalid
bit. This bit is 1 if the page is absent or the entry is
invalid. If the invalid bit is 1, the system then checks the
absent bit in the memory-resident copy of the Page Table. 1If it
is also set to 1, then the page is considered to be absent.

Data Cache. The NonStop TXP processor maintains a 64K-byte cache
that holds a combination of instructions and data. This
"code-and-data" cache, called CACHE, is a direct-mapped or
single-set associative cache. It provides parallel, high-speed
access to pieces of data stored in physical memory. (For this
discussion, the term "data" applies to either an instruction or
an operand.) The layout of CACHE "data store" and its associated
"tag store" is shown in Figure 5-17.

Like PCACHE, CACHE is accessed by 32-bit absolute extended
address. This means that before CACHE can be checked for the
presence of a desired word, the address of that word must be in
absolute extended address format. Address conversion for the
three kinds of addresses (absolute extended, relative extended,
and "short address") is handled in the manner shown below:

® An absolute extended address requires no conversion.

® A relative extended address must be converted to an absolute
address. That is, the system adds a base address offset to
the relative address and performs a bounds check on the
resultant absolute address.

e A "short address" must be converted to an absolute address.
A short address is a 16-bit address (logical page within the
segment and word offset within a page) combined with selected
bits of the ENV register.

All references to memory are routed through CACHE. CACHE

executes the following four operations every time it services a
memory reference request:

482507 ADO 3/85 5-33

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

DATA STORE TAG STORE
BLOCKO CODE/DATA TAG WORD FOR BLOCK 0
16 BYTES TAG WORD FOR BLOCK 1
BLOCK 1 TAG WORD FOR BLOCK 2
TAG WORD FOR BLOCK 3
BLOCK 2 TAG WORD FOR BLOCK 4
TAG WORD FOR BLOCK 5
BLOCK 3
// //
BLOCK 4 1 1
TAG WORD FOR BLOCK 4093
| TAG WORD FOR BLOCK 4094
~ /5
ﬂ] TAG WORD FOR BLOCK 4095
BLOCK 4095

§5001-086

Figure 5-17. Layout of CACHE

1, retrieves code or data from CACHE
2. generates a CACHE fault if the code/data is invalid

3. generates a physical memory address in anticipation of the
next operation

4, reports on the status of the memory page designated in the
physical memory address generated.

CACHE is arranged in 16-byte blocks whose starting addresses fall
on 1l6-byte boundaries. This minimizes the number of tags
required (one for each l6-byte block) and also speeds up the
filling of cache. Figure 5-18 shows a simplified view of how
CACHE is accessed.

5-34 4582507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Memory Access (NonStop TXP Processor)

ABSOLUTE EXTENDED ADDRESS

\)
X Jkr y

HASH
GENERATOR

TAG DATA
STORE STORE

XOR

l

CACHE HIT

8§5001--087

Figure 5-18. Access to CACHE

As indicated, the hardware applies a hashing function to the
extended address to evenly distribute highly accessed areas of
CACHE; e.g., System Data segment page 0. Once the data has been
brought into cache by the initial "fault", the hashing algorithm
assures a high probability that the requested code or data will
already be in cache the next time that it is needed.

The hardware performs an XOR (exclusive OR) operation on the tag
and selected bits of the 32-bit extended address. The result of
the XOR (i.e., cache hit or miss) indicates whether or not that
block's contents correspond to the address used. If a cache miss
occurs, the current code or data is discarded and the intended
code or data is "faulted in" from memory.

482507 A0O 3/85 5-35

ADDRESSING AND MEMORY ACCESS
Memory Data Structures

MEMORY DATA STRUCTURES

Several data structures known by the hardware and maintained by
the operating system play an active role in performing memory
management tasks. Briefly, these system data structures include:

© SEG (Segment Table) resides in segment 14, words
%$70000:%127777.

o Segment Page Tables are scattered through segments 6-13.

® CSSEG (Current Short-address Segment table) resides in memory
mapped by segment 1, words %1340:%1357. This table maintains
the correlation between address spaces 0:15 and their
associated absolute segments.

o SST (Short Segment Table) resides in hardware registers—-for
NonStop TXP processors only. It contains a copy of the
CSSEG table contents.

e PHYSEG (Physical page Segment table) resides in segment 14,
words %130000:%147777.

o PHYPAGE (Physical page Page table) resides in segment 14,
words %150000:%167777.

The Segment Table and Segment Page Tables define whether or not a
segment is mapped, and if mapped the physical memory it occupies.

The NonStop II processor uses only CSSEG to maintain the
correlation between address spaces 0:15 and specific absolute
segments. Each entry either contains a value in the range
0:%$17777 for segments 0:8191 or a -1 (i.e., no segment is
currently in this short address space). The NonStop TXP
processor normally uses the register-speed path through the SST
in preference to the slower path through the memory-resident
CSSEG table.

The memory manager process handles requests for individual pages
by searching the PHYPAGE and PHYSEG tables to see whether or not
the page is available. The PHYPAGE table contains a one-word
entry for each page of physical memory. It is accessed by
physical page number index; i.e., entries 0:%17777 correspond to
physical pages 0:8191. Each PHYPAGE table entry contains the
following information:

© PHYPAGE[p].<10:15> contains a given segment's logical page
number 0:%77.

5-36 4482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
I1/0 Addressing

e PHYPAGE[p].<0:9> is set to zero when the physical page is
allocated. This bit-field is subsequently available to the
memory manager for recording additional "usage" information.

Correspondingly, the PHYSEG table contains a one-word entry for
each physical page of main memory. It too is accessed by
physical page number index; i.e., entries 0:%17777 for physical
pages 0:8191. Each PHYSEG table entry contains one of the
following items:

e %0 <= PHYSEG[p] <= %17777 indicates that page 'p' is in
segment PHYSEG[p] and the page may be swapped out. When the
memory manager must select a page that is already allocated to
another process, it uses the PHYSEG table to locate the
associated segment number and then flags the page as "absent"”
in that segment's Page Table.

e PHYSEG[p] = %40000 indicates that page 'p' is free. This
means the page is not currently allocated to any process and
is available for overlay.

e PHYSEG[p] = %40001 indicates that page 'p' has had an UCME
(uncorrectable memory error) and is no longer available.

e PHYSEG[p] = %40002 indicates that page 'p' has had a hard CME
(a single-bit error that can be corrected but causes system
interrupts on every reference) and is no longer available.

® PHYSEG < 0 indicates that page 'p' is locked into memory and

cannot be swapped out. -PHYSEG[p] is the number of locks
queued on the page.

1/0 ADDRESSING

The memory mapped by address spaces 6 through 13 (i.e., absolute
segments 6 through 13) represents one megabyte of logical address
space. This space is accessible only by using absolute extended
addresses; however, it is a special case because it is always
fully mapped. As a result, memory accesses to these segments are
fairly fast, because they need not go through the Segment Page
Tables. These segments may be accessed using only 20 bits of
information--a 4-bit absolute segment number, a 6-bit page

number to locate the entry within the segment, and a 10-bit word
offset. Absolute segments 6 through 13 are used by the operating
system for two purposes: for MAPPOOL storage, which (as has
already been discussed) contains the Segment Page Tables, and for
I1/0 buffers. Because these segments are reserved for operating
system use, only privileged processes (such as I/0 processes) can

482507 A00 3/85 5-37

ADDRESSING AND MEMORY ACCESS
Page Fault

access them. (Being accessible only by absolute extended
addresses provides this protection.)

The I1/0 channel addresses its buffers by means of the I/0 Control
(I1oC) table, which is located in page 1 of the system data
segment. Fields within the IOC entry for the subchannel
associated with a device keep track of the channel's current
position in the buffer during a transfer.

Before beginning a transfer, the I/0 process initializes the I0OC
entry. The segment base, page base, and page offset fields are
initialized with the segment number, page number, and word offset
for the beginning of the buffer. The segment number, of course,
is always in the range 6 through 13. The byte count field is
initialized with the total number of bytes to be transferred
(which can be odd or even), and the segment offset field is
initially zero. I/0 buffers do not need to begin on page
boundaries, and they may span page boundaries and segemnt
boundaries; however, they always begin on a word boundary.

As the transfer proceeds, the third word of the IOC entry--
containing the page offset field in the low-order bits and the
segment offset in the high-order bits-—-is incremented and the
byte count is decremented. The segment base and page base fields
in the IOC entry remain unchanged, but the segment and page
numbers of the word to be accessed at any given time are obtained
by adding the segment offset to the page base, using any overflow
to increment the segment number. The transfer continues until
the byte count is zero or an I/0 error occurs. See Figure 5-19.

The NonStop TXP processor caches active IOC entries. This cache,

as well as the operation of the I/0 channel, is described more
fully in Section 7.

PAGE FAULT

A page fault occurs when a reference is made to a page that does
not currently reside in main memory. The absent page can be a
code page, a data page that has been previously written into and
then swapped out to disc ("dirty" page), a new data page
containing initialization data that must be read in from disc, or
a data page with no initialized or previously written data
("clean" page).

When a page fault is detected, an interrupt to the operating
system page fault interrupt handler occurs. The following
discussion assumes familiarity with the hardware mechanism for
handling interrupts, as described under "Interrupt System" in
Section 6.

5-38 4 82507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Page Fault

110 BUFFER SPACE
10C ENTRY ADDRESS SPACE 6-13 (IN ABSOLUTE

SEGMENTS 6-13)
0 1 5 6 9 10 15

ADDRESS PAGE

SPACE BASE BASE 227’
BYTE
COUNT
ADDRESS SPACE PAGE
OFFSET OFFSET

- %
(STARTING ADDRESS T Sgﬁp;E%F
SPACE & PAGE)
e’
(CURRENT ADDRESS
SPACE & PAGE) — | curment
Er N I tore
SPACE BASE BASE T ——

+

| SPAACDED%E%SSET |
“/

CURR. ADDRESS | CURRENT
SPACE PAGE .

t—-’ PAGE OFFSET ——’

S§5001-088

Figure 5-19. 1I/0 Buffer Addressing

The page fault interrupt sequence is illustrated in Figures 5-20a
and 5-20b, which show an example page fault for a user data page.
The sequence is as follows:

1.

An address reference is made to a page that is absent from
physical memory; that is, a page whose entry has its A
(absent) bit set to 1.

An interrupt through the System Interrupt Vector (SIV) table
entry at SG[%1220]--the entry for the page fault interrupt--
occurs. The hardware passes the absolute extended address of
the absent page to the interrupt handler. (For a NonStop TXP
processor, the low-order word of the address contains the
word offset within the page; for the NonStop II processor it
is cleared to zero.) The high-order word of the address is
passed as the interrupt parameter in the Vi location of the

82507 A00 3/85 5-39

ADDRESSING AND MEMORY ACCESS

Page Fault
USER
USER DATA
CODE
LOGICAL
PAGE
0
P REGISTER e
LOAD L + 5
-
LOGICAL
PAGE
1 L REGISTER
— CEE—
Gl2048] [. l
N\ 5
LOGICAL |
PAGE | *
2 [T
S~)
ABSOLUTE EXTENDED ADDRESS OF FAULTED PAGE
L USER
HIGH-ORDER WORD: PAGE FAULT INTERRUPT PARAMETER \ DATA
LOW-ORDER WORD: PASSED IN R7 MAP
0 1 2 14 15 A
1 % SEGMENT Pi ‘:
PAGE 7 2 ABSENT -
16 20 21 REGISTER 31 SN
STACK
RO
R
R2
R3 — [T %1220
R4 (M (2)
RS —— C SIV ENTRY FOR
R6 1 - PAGE FAULT
R7 l«—————~ I
SYSTEM |
CODE |
@) |
| -+ l SPACEID .
L(S’ | M INTERRUPT STACK
MARKER SAVING
1___*— -
I _E'NV 2721 INTERRUPTED
—e [T ENVIRONMENT
PAGE RO
FAULT R
INTERRUPT R2
HANDLER R3
RA
R5
RE
RY
LXIT PAGE
FAULT
INTERRUPT
HANDLER
STACK
S$5001-089

Figure 5-20a. Page Fault Interrupt Sequence

5-40 482507 A00 3/85

ADDRESSING AND MEMORY ACCESS
Page Fault

RESTORED USING
P REGISTER INFORMATION
LOAD L+005 | ——| 2721] «—— sAvED IN THE
\ INTERRUPT STACK
MARKER
\

\, THE INSTRUCTION THAT HAD THE
PAGE FAULT IS RE-EXECUTED

\/\)

$§5001-090

Figure 5-20b. Page Fault Interrupt Sequence

SIV entry. The low-order word of the address is passed in R7
of the Register Stack after the current environment has been
saved.

The current P Register setting is decremented by one (so that
the faulted instruction will be repeated upon return from the
interrupt handler), and then the current environment--Space
ID, interrupt mask (M), the S, P, ENV, and L Registers, and
the Register Stack--is saved in the interrupt stack marker.
The interrupt environment is established in the manner
described later in Section 6.

The page fault interrupt handler saves the interrupted
environment and the absolute extended address of the absent
page, and passes control to the Dispatcher.

The Dispatcher in turn invokes the memory manager process.

If necessary to make room in physical memory for the new
page, the memory manager chooses another page already in main
memory and removes (or "replaces") it. The memory manager
reads the absent page from disc, overlaying the replaced
page, and then sets the page table entry for the retrieved
page to the address of its physical page. The process is
then allowed to execute again.

482507 A00 3/85 5-41

ADDRESSING AND MEMORY ACCESS
Memory Errors

The memory manager can replace only "clean" pages. These are
either code pages or pages for which the "dirty" bit is not
set. The memory manager periodically cleans dirty pages by
writing them to disc and clearing the dirty bit.

5. Because the P Register setting of the faulted environment was

decremented by one before it was saved, the instruction
previously causing the page fault is now reexecuted.

MEMORY ERRORS

Correctable and uncorrectable memory errors are reported to the
processor either as interrupts or as I/0 termination conditions.
An uncorrectable error generally indicates that the physical page
should no longer be used. A correctable error, on the other
hand, may occur because of either a transient failure or a hard
error, A hard error can be detected by rewriting a page that
gets a correctable error and then seeing if the error occurs
again. A privileged instruction, CMRW, is used by the operating
system for this purpose; this instruction holds off memory
accesses by the I/0 channel while a word of memory is being
rewritten.

SYSTEM TABLES

The locations of some major tables discussed at length later in
this manual are illustrated in Figure 5-21. These tables are
located in pages 0 and 1 of the system data segment, which are
always located in physical pages 0 and 1, respectively. Note
that all of page 1 is used for the I/0 Control Table (IOC).

The following paragraphs briefly describe the tables shown in
Figure 5-21.

System Interrupt Vector. SG[%1200:%1337] is the System Interrupt
Vector (SIV). This table contains 24 four-word entries; each
entry defines the executing environment for one of the operating
system interrupt handlers (see "Interrupt System," Section 6).

Bus Receive Table. SG[%1400:%1477] is the Bus Receive Table
(BRT). This table contains 16 four-word entries, each of which
is assigned to manage the interprocessor bus transfers for one

5-42 4482507 A0O 3/85

ADDRESSING AND MEMORY ACCESS
System Tables

96 WORDS
(4 WORDS*
24 ENTRIES)

64 WORDS
(4 WORDS *
16 ENTRIES)

1024 WORDS
(4 WORDS*
256 ENTRIES)

—

/

%k

SYSTEM
DATA
SG[0]
4 ﬁi
SG [%1177]
SG [%1200)
SYSTEM
INTERRUPT |
” VECTOR i
(SIv)
SG [%1337]
SG [%1400]
BUS
| RECEIVE |
[TABLE T
(BRT)
SG [%1477]
SG [%2000]
INPUT/
OUTPUT
L CONTROL #
TABLE
(10C)
SG [%3777]
\/'M
$5001-091

Figure 5-21.

/1| 82507 A00 3/85

Dedicated Memory Locations in System Data

5-43

ADDRESSING AND MEMORY ACCESS
System Tables

processor module. Each entry describes the number of words
expected and the system buffer location where the data is to be
stored (see "Interprocessor Buses" in Section 7).

Bus Receive Table Long. SG[%1600:%1677] is the Bus Receive Table
Long (BRTLONG). This table contains 16 four-word entries, each
of which points to the BRT entries for another cluster in the FOX
network (see "Interprocessor Buses" in Section 7).

I1/0 Control Table. SG[%2000:%3777] is the I/O Control Table
(I0C). This table contains 256 entries corresponding to the 256
subchannels that can be connected to an I/0 channel. Each entry
describes the number of bytes to be transferred and the system
buffer location to be used for the data transfer (see
"Input/Output Channel" in Section 7).

5-44 4582507 A00 3/85

SECTION 6

INTERRUPT SYSTEM

The interrupt system transfers control to a specific location in
the operating system (called an interrupt handler) upon the
occurrence of any of the conditions listed in Table 6-1. All
interrupt handlers for these events are located in the system
code segment (SAS 3, or absolute segment 3).

When an interrupt occurs, the interrupted environment is saved in
an interrupt stack marker. An operating system interrupt handler
executes to process the particular interrupt. Then an IXIT
(interrupt exit) instruction is executed to restore the
interrupted environment (see Figure 6-1).

PROGRAM
EXECUTES

INTERRUPT
HANDLER

PROCESSES

INTERRUPT

PROGRAM
EXECUTES

Figure 6-1. General Interrupt SeqQuence

§5001-092

482507 A00 3/85 6-1

INTERRUPT SYSTEM
INT and MASK Registers

Table 6-1. Interrupt Conditions

Interrupt No. Event

0 Special channel error

1 Uncorrectable memory error

2 Memory access breakpoint

3 Instruction failure

4 Page fault

5 Undefined

6 Undefined

7 OSP (Operations & Service Processor) I1I/0
8 Power fail

9 Correctable memory error

10 High-priority 1/0

11 Interprocessor bus receive completion
12 Undefined

13 Time list
14 Standard 1/0

15 Dispatcher

16 Power on
17 Stack overflow

18 Arithmetic overflow or divide by zero
19 Instruction breakpoint

20 XRAY Sampler (NonStop TXP processor only)
21-23 Undefined

INT AND MASK REGISTERS

Three registers are associated with interrupts: twec 16-bit
interrupt registers (INTA and INTB) and a 16-bit MASK register.
The bit assignments of these registers are illustrated in Figure
6-2. Only four bits of INTB are relevant to interrupts; however,
these four are the highest-priority interrupt bits, being
examined first at the conclusion of each instruction. The
interrupts represented by the bits of INTA are maskable--that is,
the corresponding bits of the MASK register are used by the
operating system to allow or disallow particular interrupt types
at various critical or noncritical times. Bit 6 of INTA
(arithmetic overflow or divide by zero) is separately masked by
the trap enable bit of the Environment Register (ENV.<8>), but is
used in a similar way to enable or disable that interrupt. For
all maskable interrupts, the interrupt condition is ignored if
the corresponding MASK bit is equal to 0, and will continue to be
deferred until the MASK bit is set to 1. The checking operation
is performed by a logical AND of the two registers.

6-2 4 82507 A0 3/85

INTERRUPT SYSTEM
INT and MASK Registers

*
HALT
OSP HALT

MANUAL RESET

POWER ON

T T3

SPECIAL CHANNEL ERROR
UNCORRECTABLE MEM. ERROR
MEMORY ACCESS BREAKPOINT

XRAY SAMPLER

DATA PAGE ABSENT

CODE PAGE ABSENT
ARITHMETIC OVERFLOW

OSP 110

POWER FAIL

CORRECTABLE MEMORY ERROR
HIGH-PRIORITY 1O

X-BUS RECEIVE COMPLETION
Y-BUS RECEIVE COMPLETION
TIME LIST

STANDARD /O

DISPATCHER

TRAP ENABLE

INTA

HENEEEEEEREEERE

MICROCODE
INTERRUPT SERVICE
ROUTINES

HALT

OSP HALT

STACK OVERFLOW

INSTRUCTION BREAKPOINT

10— »| MANUAL RESET
1
12
— INSTRUCTION
13 FAILURE
14
15
MASK SYSTEM
REGISTER INTERRUPT INTERRUPT
(“AND") VECTOR HANDLERS
0 0 0 SPECIAL CHANNEL ERROR
m—
1 1 1 | UNCORRECTABLE MEM. ERROR
bt
2 2 2 MEMORY ACCESS BREAKPOINT
-
3 —— 3 — b 3 +| INSTRUCTION FAILURE
—q
4 4 4 PAGE FAULT
p—
5 5 / 5| UNDEFINED OSP IO
8 —» - 8 — 6 | UNDEFINED / POWER FAIL
7 7 - 7 CORRECTABLE MEM. ERROR
—
8 8 8 HIGH PRIORITY IO
-
° 9 9 BUS RECEIVE COMPLETION
10 10 10 TIME LIST
—e
1 1 / 11 STANDARD 1/0
-_—
12 12 12 | UNDEFINED DISPATCHER
13 13 13 POWER ON
—
14 14 14 STACK OVERFLOW
-
15 15 > 15 ARITHMETIC OVERFLOW
18 INSTRUCTION BREAKPOINT
7 XRAY SAMPLER
(NonStop TXP
18 PROCESSOR ONLY)
19
———» 20
21| UNDEFINED
22 | UNDEFINED
% NON INTERRUPT BITS
23 | UNDEFINED USED AS MICROCODE FLAGS

S$5001-093

/I"82507 AQ0 3/85

Figure 6-2.

INT and MASK Registers

INTERRUPT SYSTEM
System Interrupt Vector

Most interrupt types can occur only at the end of an instruction,
when the hardware routinely checks for the presence of 1 bits in
the interrupt registers. However, three interrupt types (power
on, uncorrectable memory error, and page fault) are preemptive;
that is, they will interrupt during an executing instruction.
Also, certain long-running instructions (e.g., the move
instructions) may be interrupted during execution.

If two or more interrupt conditions exist simultaneously in INTA,
and each has its corresponding MASK register bit set, the
interrupt type with the highest priority (lowest bit number)
takes precedence; the others are deferred until the interrupt
handler finishes executing and executes an IXIT instruction.

Interrupts for stack overflow, instruction failure, and
instruction breakpoint have entries neither in the interrupt
registers nor in the MASK register; these cause an interrupt
whenever they occur, ignoring priority. The hardware-only
interrupts (halt, OSP halt, and manual reset) are serviced
entirely within microcode.

As shown in Figure 6-2, detected interrupt conditions are passed

to software interrupt handlers through the System Interrupt
Vector.

SYSTEM INTERRUPT VECTOR

Each interrupt event that is to be serviced by software has a
corresponding entry in the System Interrupt Vector (SIV). The
SIV, which is initialized by the operating system, defines the
executing environment for each of the 18 operating system
interrupt handlers. The SIV, shown in Figure 6-3, begins at
system data location %1200 and contains 24 four-word entries (six
are undefined).

Each four-word entry in the System Interrupt Vector contains the
following information:

Li = L register setting for interrupt handler

Mi = MASK register setting for interrupt handler

Pi = P Register setting of first instruction in interrupt
handler

Vi = Interrupt-related parameter put here by firmware

The following paragraphs further describe the functions of each
of these entries, as illustrated in Figure 6-4.

e Li: This is the address in system data space for an
interrupt handler's local storage (stack).

6-4 482507 AOO 3/85

INTERRUPT
. System Interrupt

SYSTEM
Vector

INTERRUPT SYSTEM
NUMBER INTERRUPT
VECTOR
0 SG[%1200]
j»— SPECIAL CHANNEL ERROR
1 SG[%1204]
} UNCORRECTABLE MEMORY ERROR
2 SG[%1210] <
J»‘ MEMORY ACCESS BREAKPOINT
3 sG[%1214] 4
J» INSTRUCTION FAILURE
4 8G[%1220] {
) PAGE FAULT
5 SG[%1224]
}— UNDEFINED
6 SG[%1230) {
\}— UNDEFINED
7 SG[%1234] {
\}, 08P 10
8 SG[%1240) <
}— POWER FAIL
9 SG[%1244)
}, CORRECTABLE MEMORY ERROR
10 SG[%1250] 4
J - HIGH-PRIORITY INPUT/OUTPUT
11 8G[%1254]
j INTERPROCESSOR BUS RECEIVE COMPLETION
12 SG{%1260] {
) UNDEFINED
13 SG(%1264]
j» TIME LIST
14 SG[%1270] {
jv - STANDARD INPUT/OUTPUT
15 SG(%1274] (
]— DISPATCHER
18 SG[%1300] 7
} POWER ON
17 SG[%1304] (
} MEMORY STACK OVERFLOW
18 SG[%1310) 4
} ARITHMETIC OVERFLOW OR DIVIDE BY ZERO
19 SG[%1314] 4
) INSTRUCTION BREAKPOINT
20 SG[%1320]
j XRAY SAMPLER (NonStop TXP PROCESSOR ONLY)
21 SG(%1324]
} UNDEFINED
22 SG[%1330] {
J» UNDEFINED
23 SG[%1334] {
J»— UNDEFINED
S5001-094
Figure 6-3. System Interrupt Vector

I{| 82507 AQO0 3/85

INTERRUPT SYSTEM

System Interrupt Vector

6-6

SYSTEM
INTERRUPT
VECTOR
(SYSTEM
DATA)
T~ —1 SIV TABLE ENTRY SYSTEM
{DEFINES THE INTERRUPT CODE
HANDLER'S ENVIRONMENT)
. —_—— — [
Li Li ADDRESS OF INTERRUPT STACK
Mi 4 ' MARKER FOR INTERRUPT HANDLER
o
v m; MASK FOR MASKING OFF
OTHER INTERRUPTS
~ ~ p STARTING ADDRESS OF
| 4 INTERRUPT HANDLER
e ~ vi PARAMETER RELATED TO
\ INTERRUPT
INTERRUPT STACK MARKER - ciril
{SAVES THE INTERRUPTED
ENVIRONMENT)
| SPACEID | INTERRUPTED SPACEID
m
[s 7 INTERRUPTED MASK
P
— -—
ENV INTERRUPTED §
sGILi) [L p P INTERRUPT
" 1~ INTERRUPTED P (OR P—1) HANDLER
L. 4 CODE
—] . INTERRUPTED E
B ’ ~N INTERRUPTED L
. -
— i RO
R1
INTERRUPT
HANDLER R2
STACK
li.e., LOCAL R3 L
STORAGE)
R4
RS
R6 o~
L~
R7
S$5001-095
Figure 6-4. SIV Entry and Interrupt Stack Marker

»¢’| 82507 A00 3/85

INTERRUPT SYSTEM
Interrupt Stack Marker

e Mi: This is a mask value for masking off unwanted interrupts
while an interrupt handler executes. The MASKi value in the
SIV entry is ANDed with the current MASK register setting to
derive a new setting. This permits nesting of interrupts of
different types.

e Pi: This is the system code address of the interrupt handler's
entry point.

e Vi: This is a location where an interrupt-related parameter
may be returned by processor firmware.

INTERRUPT STACK MARKER

When an interrupt occurs, the interrupted environment is saved in
an interrupt stack marker. The interrupt stack marker is placed
at Li[-5:0] in the interrupt handler's stack; see Figure 6-4.

The interrupt stack marker contains the following register values
as they existed at the time of the interrupt:

Li[-5] = space ID, space identification of interrupted code
Li[-4] = M, the MASK register setting

Li[-3] = S, the S register setting

Li[-2] = P, the P Register setting

Li[-1] = ENV, the ENV register setting

Li[0] =L, the L register setting

The format of the space ID is the same as is stored by a
procedure call, described earlier in Section 4 (see Figure 4-24);
that is, LS is in bit 4, CS is in bit 7, and the space ID index
is in bits 11:15. Unlike the case of a procedure call, however,
an interrupt saves the contents of the hardware ENV register
intact and complete in Li[-1]; this is because the current CC and
RP values must be restored on return from the interrupt.

In addition to the stack marker, each time an interrupt occurs
the current contents of the Register Stack (RO through R7) are
saved in the first eight locations of local storage (i.e.,
sysstack[Li+1] through sysstack[Li+8]).

II’|82507 A00 3/85 6-7

INTERRUPT SYSTEM
Interrupt Stack Marker

INTERRUPT SEQUENCE

An interrupt (i is the interrupt number) is defined as:

if INTA.<i> land MASK.<i> then ! an interrupt occurred
begin
Vi := interrupt parameter; if any

undefined

if NonStop II processor
PRIV, DS, CS, V, RP = 7
if NonStop TXP processor
PRIV, DS, CS, K, RP = 7

ENV = %3447;

1
sysstack[Li-5] := space ID; !
sysstack[Li-4] := MASK; !
sysstack[Li-3] := S; ! interrupt stack marker
sysstack[Li-2] := P; !
sysstack[Li-1] := ENV; !
sysstack[Li] := L; !
sysstack[Li+1l] := RO; !
thru ! saved Register Stack
sysstack[Li+8] := R7; !
R7 := 2nd interrupt parameter;! if any; otherwise
1
1
!
|
!

ENV := %3507;

L t= Li;

S := L + 8;

P = Pi;

MASK := MASK LAND Mi;
end;

An example is discussed in the following paragraphs, with
reference to Figures 6-5 and 6-6. (The first 10 steps are shown
in Figure 6-5.)

1.

4a.

6-8

An interrupt condition occurs (in this example, a device is
requesting standard I/0 servicing).

INTA.<14> := 1;

The current instruction completes executing and, since
MASK.<14> is equal to 1, an interrupt occurs.

if INTA land MASK then ! interrupt.
begin

There is no interrupt parameter for a standard I/0
interrupt.

The interrupted environment (including the current space
ID, MASK and S register settings) is saved in the area
pointed to by Li in the SIV entry for the standard I1/0
interrupt. The space ID is built by the interrupt
microcode.

II’| 82507 A00 3/85

INTERRUPT SYSTEM
Interrupt Sequence

(1) STANDARD (/0 INTERRUPT
OCCURS
INTA REGISTER
0 1 2 3 4 5 6 7 8 9 10 11 12 13 15
[elofolefefo e o oo o o o] Jo]o]
MASK REGISTER l
—t LD ELER L]
- —» (B)LAND Lﬁ
MASK + REGISTER
Lol feefofofrfofofo]efe]
%177440
INTERRUPTED INTERRUPTED
CODE
(USER OR SYSTEM) (USER OR SYSTEM)
’-VM /\/‘\N
STACK L REGISTER
(2) INSTRUCTION MARKER - E:%_—:;QF_—_H
COMPLETES
P REGISTER
—— e — LOCAL
- C iaeies N DATA
S REGISTER
— CT8R3ep T
L
-
S
-~
N
SYSTEM
DATA
e
SYSTEM
CODE
S e Wy
= P —
P REGISTER (7) —'ﬁ%a—'“o— SG[%1270]
[_»wa 3 P %1747 5Iv ENTAY FOR
= (9) g r STANDARD 110
Lo
Wi
Pi
Vi
STANDARD //0
INTERRUPT
HANDLER LN
W
XY (10}
LS
SPACEID
e 177777 (4} INTERRUPT STACK
AN s %3670] MARKER PUSHED
ENV REGISTER \. 12765
—————— - P_%12765 | L REGISTER
i of ENV%17 |
N~ of - %3131}
ENV REGISTER e (6]
Nonstop 1 PROGCES SR ——
RZ
ENV REGISTER R3
NonStop TXP PROCESSOR :;
(6)PRIV MODE RE
SYSTEM DATA R7 S REGISTER
SYSTEM CODE STANDARD 10 |V ey
INTERRUPT
HANDLER
STACK
N
S55001-096

Figure 6-5. Interrupt Sequence

/1|82507 AQ0 3/85 6-9

INTERRUPT SYSTEM
Interrupt Sequence

4b.

10.

11.

6-10

sysstack[Li-5] := space ID !
sysstack[Li-4] := MASK; !
sysstack[Li-3] := S; !
sysstack[Li-2] := P; ! interrupt stack marker
sysstack[Li-1] := ENV; !
sysstack[Li] := L; !
sysstack[Li+1] := RO !
thru ! saved Register Stack
sysstack[Li+8] := R7 !

Register stack R7 receives the second interrupt parameter,
if any; otherwise, R7's contents are undefined.

The PRIV (privileged mode), DS (data space), and CS (code
space) bits in the ENV register are set. This defines the
interrupt handler executing environment.

ENV := %3447; ! i1f NonStop II processor
or ENV := %3507; ! if NonStop TXP processor

The L and S registers are set with the address of the
interrupt handler's local data area. This is the value Li
in the SIV entry for the standard I/0 interrupt.

Li
L

+ we

L
S 8;

The P Register is set with the address of the first
instruction in the standard I/0 interrupt handler. This is
the value Pi in the SIV entry for standard 1/0.

P := Pi;

The Mi value in the SIV entry is ANDed with the current
MASK register setting to derive a new MASK register
setting.

MASK := MASK land Mi;

The first instruction of the standard I/0 interrupt handler
executes.

The interrupt handler runs to completion, unless the
interrupt handler's mask allows interrupts or purposely
unmasks any or all interrupts and corresponding interrupts
do occur. Finally, an IXIT instruction is executed to
return to the interrupted process.

The IXIT instruction (see Figure 6-6) restores the

interrupted environment saved in the interrupt stack marker
(at L[-5:0]); that is, the MASK, S, P, ENV, and L registers

4 82507 A00 3/85

INTERRUPT SYSTEM
Interrupt Sequence

DISPATCHER
INTERRUPT

{
INT REGISTER *

Lefofofefofo]o]ofofo]ofofe]ofo[r]

MASK REGISTER

v
mo e CO LD LD T

~—» (12b)
MASK REGISTER
RIRIRIEY ENRIR RN RNKY BN YK DY KY
INTERRUPTED INTERRUPTED
CODE DATA
\,\/\v
STACK _< L REGISTER (11e)
MARKER -— -~
P REGISTER (11¢)
{12a) -+ % 12765 ——
S REGISTER (11b)
B T -— %3670
-
J/
-
SYSTEM
CODE
W
B] SYSTEM
DATA
e
STANDARD /0
INTERRUPT
HANDLER
an SPACEID
XIT P REGISTER . M %177777 INTERRUPT
- 4 —0C | s %367 STACK
—_— P 12766 MARKER
NS TN RNV %17 L REGISTER
ENV REGISTER (11d) L %3476 <_I %3131 I
ENV REGISTER
S REGISTER
-~ s
§5001-097

Figure 6-6. IXIT Sequence

4482507 AOO 3/85 6-11

INTERRUPT SYSTEM
Interrupt Types

are returned to their preinterrupt values, and the current
space ID is restored.

MASK := sysstack [L-4]; ! (a)
S := sysstack [L-3]; ! (b)
P := sysstack [L-2]; ! (c)
ENV := sysstack [L-1]; t(d)
L := sysstack [L]; 1 (e)

Also the Register Stack (values saved in L+1 through L+8)
is returned to its pre-interrupt condition. 1If the segment
being returned to is not currently mapped, the IXIT
instruction automatically executes a MAPS (Map Segment)
instruction, using the space ID information in L-5, prior
to restoring the registers.

l12a. If no interrupt is pending when the IXIT instruction
completes, process execution resumes at the point of
interruption.

12b. 1If another interrupt is pending, the interrupt sequence is

repeated from step 1, using the appropriate SIV entry to
set up the interrupt handler's environment.

INTERRUPT TYPES

The following paragraphs describe each of the interrupt types.

Special Channel Error (0). This interrupt occurs when the I/0
channel detects types of errors that require software servicing.
The error number is placed in the parameter word. Certain errors
have a second error word giving the subchannel address and
command, which is found in R7 on entry to the interrupt handler.

Uncorrectable Memory Error (1). This interrupt occurs when a
memory word 1s accessed by the IPU and contains an error which
cannot be corrected. The parameter contains the logical address
of the page at fault and the six syndrome bits generated by the
error correction circuitry. These syndrome bits provide
information for Tandem service personnel.

For a NonStop II processor, the format of the parameter word is:

6-12 4482507 A00 3/85

INTERRUPT SYSTEM
Interrupt Types

V1.<0:5> = logical page
V1.<6:11> = syndrome
V1.<12:15> = map number (SAS)

The contents of the data word that was in error are found in R7
on entry to the interrupt handler.

For a NonStop TXP processor, the parameter contains the MSTATUS
word:

V1.<0:15> = MSTATUS word

The number of the physical page that contains the word in error
is found in R7 in entry to the interrupt handler.

Memory Access Breakpoing (2). This interrupt occurs when the
memory breakpoint has been armed by the SMBP instruction and the
breakpoint memory address has been accessed in the desired
manner. There is no parameter.

If a data page fault interrupt is pending, the processor clears
the memory access breakpoint and processes the page fault. Any
pending code page fault is cleared if the breakpoint is taken.

No interrupt occurs if the breakpoint was armed by the Operations
and Service Processor (OSP); in this case, the processor performs
a system freeze and enters the idle loop.

Instruction Failure (3). This interrupt occurs when an
unimplemented instruction is executed, or when execution of a
privileged instruction is attempted by a program which is not in
privileged mode, or when an abnormal condition is detected during
the execution of certain instructions. The parameter for this
trap is the current instruction.

Page Fault (4). This interrupt occurs when an attempt is made to
access an absent memory page (i.e., its page table entry "absent"
bit is set to 1). The parameter word is the high-order word of
the absolute extended address of the absent page. R7 contains
the low-order word of this address.

OSP I1/0 Completion (7). The I/0 completion interrupt for the
Operations and Service Processor occurs when either a read or a
write operation to the OSP completes. The parameter word
indicates the status, as follows:

4482507 A0O 3/85 6-13

INTERRUPT SYSTEM
Interrupt Types

0 normal read completion

1 normal write completion
%$177777 character overrun detected on a read
%$177776 write interrupt with negative byte count
%$177775 read interrupt with zero or negative byte count

Power Fail (8). This interrupt occurs when a processor module
power failure is detected. A minimum of five milliseconds is
available for processing after this interrupt occurs before power
is lost. There is no parameter.

Correctable Memory Error (9). This interrupt occurs when a memory
error occurred and can be corrected. The parameter word is of
the same form as that for an uncorrectable memory error.

The NonStop II processor is able to rewrite the page in place
because its page table entry remains in a map register for the
duration of the CMRW.

In a NonStop TXP processor, the CMRW instruction cannot tolerate
a page table cache miss. Thus, the processor temporarily maps
the errant page somewhere in segments 0-15 while it is being
rewritten.

High-Priority I/0 Completion (10). This interrupt occurs when a
device that 1s connected to the high-priority interrupt poll line
requires servicing. There is no parameter.

Interprocessor Bus Receive Completion (11). This interrupt
occurs when a transmission is received on either the X-bus or the
Y-bus. The parameter word is of the following form:

V11.<0> = bus flag
0 received on X-bus
1 received on Y-bus
V11l.<1:7> = status

0 normal completion

1 unexpected packet

2 checksum error

3 misrouted packet or sending cluster/CPU
unknown

6-14 482507 A00 3/85

INTERRUPT SYSTEM
Interrupt Types

4 unsequenced packet
5 sequence error
6 1illegal extended buffer address

V11.<8:15> = cluster/processor number of sending processor

In addition, R7 contains the checksum+l computed by the microcode
when a checksum error is detected.

Time List (13). Every 10 milliseconds the microcode detects an
interval clock micro-interrupt, updates the quadword clock at
SG[103], and decrements the wait time of the element at the head
of the Time List. If it has gone to zero, control passes to the
time list interrupt handler; otherwise, no action is taken.
There is no parameter.

Standard I/0 Completion (14). This interrupt occurs when a
device that 1s connected to the standard interrupt poll line
requires servicing. There is no parameter.

Dispatcher (15). This interrupt occurs when a DISP or SNDQ
instruction 1s executed, when a process-time timeout occurs, or
when a PSEM or VSEM instruction is executed that requires
operating system aid. Bit 15 of the parameter word is set on a
DISP, bit 14 is set on a SNDQ, bits 13 and 15 are set on a PSEM
when the semaphore cannot be obtained, and bit 12 is set when a
VSEM instruction must release a blocked process. No part of the
parameter word is ever cleared by the processor. If a Dispatcher
interrupt is pending but the contents of the parameter word are
zero, the interrupt is cleared.

Power On (16). This interrupt occurs when power is applied
following a power failure when memory is in a valid state and the
maps (NonStop II processor) or "dedicated half" of PCACHE
(NonStop TXP processor) have been successfully loaded with no
uncorrectable memory errors. The contents of Loadable Control
Store are invalid. There is no parameter for this interrupt.

Stack Overflow (17). This interrupt occurs when S exceeds 32,767
(1.e., the limit of the memory stack) following the execution of
any instruction that can change the S register setting--SETS,
PCAL, XCAL, ADDS, BSUB, or PUSH. There is no parameter.

) 82507 ADO 3/85 6-15

INTERRUPT SYSTEM
Reenabling Interrupts

Arithmetic Overflow (18). This interrupt occurs when the T (trap
enable) and V (arithmetic overflow) bits in the ENV register are
simultaneously set to 1. There is no parameter.

Instruction Breakpoint (19). This interrupt occurs when a BPT
instruction is executed, or when an EXIT or DXIT instruction is
executed with ENV.<1> set to 1 in the stack marker. The
parameter is the instruction which caused the interrupt.

XRAY Sampler (20). This interrupt, which only exists in the
NonStop TXP processor, occurs when the sampler interval timer
reaches zero., The sampler interval timer is a pseudo-random
timer maintained by the DDT (the DDTX instruction enables and
disables the timer). This interrupt is enabled only if XRAY
sampling has been requested. There is no parameter word for this
interrupt.

REENABLING INTERRUPTS

When an interrupt occurs, further interrupts of the same type are
disabled while the current environment is being saved and the
interrupt handler environment established. Interrupts of that
type are automatically reenabled at the time of entry into the
interrupt handler; however, interrupts masked by the setting of
the Mi location in the SIV entry will still be prevented from
occurring until the interrupt handler has completed. Mi must
therefore be set to mask all unwanted interrupts. Note that this
requires that Mi bits 11 and 12 both be zero when executing the
interprocessor bus receive interrupt handler, to prevent an
interrupt due to inbound traffic on the other bus.

6-16 482507 A0O 3/85

SECTION 7

INTERPROCESSOR BUSES AND INPUT-OUTPUT CHANNEL

INTERPROCESSOR BUSES

A NonStop computer system has two interprocessor buses,
designated the X-bus and the Y-bus. Each processor module in the
system is connected to both buses and is capable of communicating
with any processor module (including itself) over either bus.

See Figure 7-1.

With any given interprocessor bus transfer, one processor module
is the source (and initiator), and the other is the destination
(and receiver). Before a processor module can receive data over

X BUS (0)
 d —® Ao
Y BUS (1)
T T @
PROCESSOR PROCESSOR PROCESSOR PROCESSOR
MODULE MODULE MODULE L MODULE
0 1 2 15

S$5001-098

Figure 7-1. Processor Module Addressing

82507 A00 3/85 7-1

INTERPROCESSOR BUSES AND I/0 CHANNEL
Interprocessor Buses

an interprocessor bus, the operating system first configures an
entry in a table known as the Bus Receive Table (BRT). Each BRT
entry contains, among other things, the address where the
incoming data is to be stored and the number of bytes expected.

The FOX network is a fiber optic extension to the X- and Y-buses
of the interprocessor bus. A FOX network establishes a
high-speed communication link for a ring of systems composed of
NonStop II and/or NonStop TXP processors. A ring can contain up
to fourteen systems; each system, also known as a cluster, can
contain up to sixteen processors.

The FOX network uses pass-through routing. Systems need not be
connected directly to one another to exchange data; messages can
be passed through intermediate systems, allowing the fiber optic
links in the FOX network to connect the systems in a ring
configuration rather than a star (each system directly connected
to each other system).

To transfer data over a bus (see Figure 7-2), a SEND instruction
is executed in the source processor module. The SEND instruction
specifies the bus to be used for the transfer, the destination
processor module, the number of bytes to be sent, the source
location in memory of the data to be sent, the sender's processor
number, a timeout value, and a sequence number.

While the source processor module is executing the SEND
instruction and sending data over the bus, the firmware in the

SEND
INSTRUCTION
EXECUTED TO

TRANSMIT DATA

TO THE DESTINA

TION PROCESSOR

SOFTWARE
/ PROGRAM EXECUTES
CONCURRENTLY WITH
RECEIPT OF
BUS DATA

OATA IS STORED IN
THE SYSTEM DATA
AREA POINTED TO |
BY THE BUS
RECEIVE TABLE.
SOFTWARE PROGRAM
IS INTERRUPTED WHEN
TRANSFER COMPLETES.

_]

SOFTWARE HARDWARE

INTERRUPT
HANDLER

SOFTWARE ROUTINE
PROCESSES DATA

SOFTWARE

|
|
|
|
|
|
|

SOURCE DEST{NATION
PROCESSOR PROCESSOR
MODULE MODULE

$5001-099

Figure 7-2. Simplified Bus Transfer Sequence

7-2 4482507 A00 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
Bus Receive Table

destination processor module is storing the data away according
to the appropriate BRT entry (this occurs concurrently with
program execution). When the destination processor module
receives the expected number of bytes (the bus transfer is
complete), an interprocessor bus receive interrupt is posted.

Bus Receive Table and Intercluster Bus Receive Table

The Bus Receive Table (BRT) contains 16 four-word entries, which
correspond to the 16 processor modules possible in a system. The
table begins at location SG[%1400].

Each entry in the BRT (see format in Figure 7-3) contains the
address in virtual memory where the incoming data is to be
stored, a count of the number of bytes expected, and the expected
sequence number. (Refer to Section 5 for a description of
virtual memory addressing using absolute extended addresses.)

If a processor is to receive data over a designated bus, the
corresponding bit in the interrupt MASK register must be equal
to 1. These mask bits, when on, enable both the receipt of data
and the interrupt itself. The bits are:

MASK.<11>
MASK,.<12>

X-Bus Receive Enable
Y-Bus Receive Enable

I1f a processor is part of a FOX network, its system has a unique
cluster number in the range of 1-14. This cluster number,
available to the microcode, is stored in location %154 of the
system data segment, with the format shown in Figure 7-3.

Each system also considers itself to have a cluster number of 0
which it uses for all transfers that are local to its own

interprocessor buses. The BRT table that starts at location
%1400 of system data is treated as the BRT for cluster 0.

Cluster 15 is reserved for special functions (e.g., messages that
require special handling by the bus controller). There cannot be
an actual cluster number 15.
Another table, BRTLONG, points to the BRT entries for clusters
1 through 14 in the FOX network. BRTLONG contains sixteen 4-word
entries, one entry per cluster.
The BRTLONG entry for a given cluster is located at:

SG [%1600 + 4 * cluster no.]

The format is shown in Figure 7-3.

/1|82507 A00 3/85 7-3

INTERPROCESSOR BUSES AND I/0 CHANNEL

Bus Receive Table

BUS RECEIVE
TABLE
(SYSTEM DATA)

sc[%14001/

~
~

R
> ®m 0 o m T o

BRT ENTRY

ABSOLUTE EXTENDED BUFFER ADDRESS

(ADDRESS CONTINUED)

UNSIGNED BYTE COUNT

SEQUENCE NUMBER EXPECTED

SEND PARAMETERS
IN REGISTER STACK

12

D

SEQUENCE NUMBER

SENDER CPU l RECEIVER CPU

TIMEOUT VALUE

ABSOLUTE EXTENDED BUFFER ADDRESS

(ADDRESS CONTINUED)

BYTE COUNT

FOX CPU
IDENTIFICATION

7 8 11 12 15

saiw1sal 777

CPU NO.

CLUSTER

BRTLONG ENTRY

0 15

MAXIMUM CPU NO. IN THIS CLUSTER PLUS ONE

SYSTEM DATA ADDRESS OF BRT FOR THIS CLUSTER

RESERVED

RESERVED

$§5001-100

Figure 7-3.

Formats Associated with Bus Transfers

Il’j82507 A00 3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
SEND Instruction

SEND Instruction

The SEND instruction expects seven parameter words in the
Register Stack. These are shown in Figure 7-3, and are described
as follows.

e G.<15> specifies the bus (0 = X-bus, 1 = Y-bus) to be used.
e F.<0:15> is the sequence number to be sent.

e E.<0:7> specifies the sender processor module, and E.<8:15>
specifies the receiver processor module.

e D.<0:15> is a value that is subtracted from 32,768 to derive
the number of 0.8-microsecond units (NonStop II processor) or
0.833-microsecond units (NonStop TXP processor) allotted to
completing a single packet (l16-word) transfer. The timeout
period is restarted for each packet transferred. (This
param?ter is normally zero when the operating system issues a
SEND,

® (C.<0:15> and B.<0:15> form the absolute extended (byte)
address of the buffer containing the data to be transferred.

e A,<0:15> is an unsigned count of the number of data bytes to
be transferred.

Following execution of the SEND instruction, the Condition Code
is set to either of two values:

Packet Timeout
Successful

CCL
CCE

Specifically, the SEND instruction executes as follows:

1. The IPU firmware checks whether the OUTQ is empty, since it
must be empty when the send begins. If the OUTQ is not
empty, the firmware checks for interrupts and services any
that are pending. Then it checks for a timer overflow. If
the timer did not overflow, it updates the timer and begins
step 1 again. If a timer overflow occurred, indicating that
the OUTQ did not become empty within the timeout period, a
packet timeout occurs and the SEND is aborted. Timeout is
defined as:

0.8(32768 - D) microseconds (NonStop II processor)
0.833(32768 - D) microseconds (NonStop TXP processor)

2. If data remains to be sent (i.e., count <> 0), it is placed

in the OUTQ (bytes 4 through 29, or OUTQ[2:14]). 1If there
are fewer than 26 bytes to be transferred, OUTQ[2:14] is

4482507 A00 3/85 7-5

INTERPROCESSOR BUSES AND I/0 CHANNEL
Bus Transfer Sequence

padded with zeros. The sequence number is placed in 0OUTQ[1]
and the routing word in OUTQ[0]; an odd parity checksum is
calculated and placed in OUTQ[15]. The packet is then sent,
and the transfer address and count parameters are updated.

3. If no data remains to be sent, the SEND is flagged internally
as "done" and the condition code is set to CCE to indicate a
successful completion.

4, If a packet timeout occurs, the operation is also flagged
internally as "done". However, the condition code is set to
CCL to indicate a packet timeout.

5. The sequence repeats back to step 2 if the SEND is not
"done " .

Bus Transfer Sequence

As previously stated, there must be coordination between the
source processor module and the destination module in regard to
the number of bytes to be transferred. The operating system
accomplishes this by preceding each transfer with a separate
transfer (i.e., SEND) of a predetermined number of bytes of
control information. In general, this control information tells
the operating system in the destination module to expect a
specified number of bytes over a specified bus. In the following
example, illustrated in Figures 7-4a and b, assume that the
initial transfer has taken place. The operating system in the
destination module has configured the appropriate BRT entry for
receiving 400 bytes.

1., A SEND instruction is executed in the source processor module
(processor module 1). The SEND parameters specify:

e X-Bus to Processor Module 3 (stack register G).

e A sequence number (ignored in this example) (F).

e Sender CPU 1 and receiving CPU 3 (E).

® A packet timeout value of 0 (meaning that a timeout occurs
if a single packet transfer takes longer than 26
milliseconds) (D).

e A source buffer location address of 1466, which represents
only the word and byte field values (11 bits of B) of the
full 32-bit virtual memory address. (This is an absolute

extended address. For simplicity, the other 21 bits of
the address, representing the segment and page fields, are

7-6 /1|82507 AQ00 3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
Bus Transfer Sequence

TO PROCESSOR
X BUS MODULE 3

7

Y BUS

SYSTEM \
CODE
10
)
SEND T 3 ABSOLUTE

ADDRESS

SOURCE 1'_)°A ;AE
DATA -

SENT
BUFFER (400 BYTES)

PROCESSOR
MODULE 1

§5001-101

Figure 7-4a. Bus Transfer Sequence (Send)

I1|82507 AQ00 3/85 7-7

INTERPROCESSOR BUSES AND I/0O CHANNEL

Bus Transfer Sequence

FROM PROCESSOR

MODULE 1
X BUS

Y BUS

(2) X BUS RECEIVE _ﬂ

MASK REGISTER %Z%%n%z

SYSTEM
DATA
L
' L
INTERRUPT PARAMETER Mi
- [P,
ofofofo]ofofofofofofofefofolofs]1— bz
I o|loloJolo|o]ojo|oJolo|o]o]ofn I
I |
I T |
8US STATUS CPU 1 T s 4
------- 1530
| - 300
| 0
SYSTEM |
CODE | '
|
" () '

- - c L :
| I I
|

X BUS I l
COMPLETION | | |
INTERRUPT |(5)

HANDLER I | |

CODE

[! |
[I I
i | |
|
SPACEID
| ™
S
k* P
-+ [ENV
L
STACK FOR
X BUS
COMPLETION
INTERRUPT

8G[%1254]
SIV ENTRY FOR
X BUS COMPLETION

S$G{%1404](2)
BRT ENTRY FOR
X BUS, CPU 1

400 BYTES
OF DATA
FROM CPU 1
VIA X BUS

DESTINATION
DATA BUFFER

INTERRUPT STACK
MARKER SAVING
INTERRUPTED
ENVIRONMENT

PROCESSOR
MODULE 3

§5001-102

Figure 7-4b. Bus Transfer Sequence (Receive)

7-8

Aﬂ82507 AQ0 3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
Bus Transfer Sequence

ignored throughout this example. Refer to the
"Addressing" and "Memory Access" discussions for a
description of virtual memory addressing using absolute
extended addresses. Also note that since extended
addresses are byte addresses, transfers on odd byte
boundaries are permitted.)

e A count of 400 bytes to be transmitted (A).

The SEND instruction transmits the 400 bytes to processor
module 3 via the X-bus, then completes. The parameters are
deleted from the Register Stack and the condition code is set
to CCE (indicating a successful operation).

Meanwhile, processor module 3, which has been previously
readied for this transfer, has MASK.<1ll> set to 1 to enable
receipt of data over the X-bus and has its BRT entry for
processor module 1 configured as follows:

e The transfer address where the incoming data is to be
stored, starting at byte address 1530.

e The count of the number of bytes expected, 400.
e The initial sequence number.

The data, as received, is stored away as indicated by the BRT
entry. As the data is stored, the transfer address is
incremented accordingly and the count is decremented
accordingly.

When the count in the BRT entry reaches zero, 400 bytes have
been received. At this point an interrupt occurs through the
SIV (System Interrupt Vector) for interprocessor bus
completion. The parameter associated with this type of
interrupt contains the processor module number of the source
processor module, the bus flag (0 in this example), and the
status (also 0 in this example).

The interrupt handler code for bus completion now executes.
Because INT.<11> in the interrupt register is now set,
further data transmissions to this processor module over the
X-bus are rejected. Additionally, the Mi word in the SIV
entry for bus completion masks off further interrupts in the
MASK.<11:12> positions.

When the IXIT instruction executes, the previous MASK
register setting is restored. Since the interrupt handler
has already reset INT.<11>, processor module 3 is again
enabled for receiving data over the X-bus.

4 82507 A00 3/85 7-9

INTERPROCESSOR BUSES AND I/0 CHANNEL
OUTQ, INQ and Packets

Figure 7-5 shows the relationships of the transfer address,
count, and sequence number in the BRT entry, and also the
incoming data storage in the transfer location.

BRT ENTRY TN NN

ADDRESS: [... 1530
COUNT:
SEQUENCE:

— INTERRUPT

N

DATA BUFFER

— —

- pu

VN I YNy I

START MIDDLE FINISH

$5001-103

Figure 7-5. Incoming Data Storage

OUTQ, INQ, and Packets

The interprocessor buses are significantly faster than memory.
Therefore each processor has a buffered interface to both buses;
NonStop II processors have two 16-word output buffers (called
OUTQ X and OUTQ Y), NonStop TXP processors have one l6-word
output buffer (called OUTQ); both processor types have two
l16-word input buffers (called INQ X and INQ Y). See Figures 7-6a
and b.

Data is transmitted over a bus in the form of 16-word packets.
The SEND instruction fills the output buffer with 26 data bytes
(13 words), plus a one-word sequence number, one word for sender
and receiver numbers, and a one-word odd-parity checksum. The
instruction then signals the bus interface hardware that it has a

~
1

-10 ﬂij82507 A0O0 3/85

INTERPROCESSOR BUSES AND I/0O CHANNEL
OUTQ, INQ and Packets

! :
A
X BUS N
A T {
|
]
————" *
1
!
S —
outa Y
/*/_/\/\
e L a
ADDRESS
COUNT , - 2 —)
evies
] 1<
374 ™ 26 @
BviES
-------- e @
348 26 -1 "
BYES
e T 1< o
322 26 _ _/
BYTES |
L~ R W
N~
............ - n ‘
........ m |— [ToBYiEs 10 BYTES
10 1 L} e
18 ZEROS
AFTER / [- L~
COMPLETION 4 | ----.... 1830
OF SEND [
PROCESSOR
MODULE 1
S5001-104

Figure 7-6a. Sending and Receiving Packets

482507 A00 3/85 7-11

INTERPROCESSOR BUSES AND I/O CHANNEL
oUTQ, INQ and Packets

X BUS
Y BUS
T
|
|
|
ROUTING WORD |
SEQUENCE £ may
k—b r -
13 WORDS | |
-— — — — CHECKED BY L — —
NG X HARDWARE
10 12 13 14 15
INEIN NN
RN NI NN
NN BUS RECEIVE
TABLE ENTRY
" C | «———— [----15%0 | AODRESS
1ST PACKET 49 COUNT
| 88YTES | T
— — — -— [1558
2) - - 3]
¢ _), 2ND PACKET 374
| 26 BYTES
L(S) '_— -_ ": P U R — 1632
- 3IRD PACKET 348
| 26 BYTES
— — — 1 e
. w ™ ATH PACKET | 322
| 26 BYTES | [
| L~ ! !
N — | |
| | |
L wetHeacker | oo
-+ — [TobyiEs | «—— [tow |
10
........ 1930
——0—4 — INTERRUPT
THROUGH
L~~~ SIV 11
PROCESSOR
MODULE 3
S$5001-105

Figure 7-6b. Sending and Receiving Packets

7-12 482507 A0O 3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
INT and MASK Registers

packet ready for transmission. After the l6-word packet is
transmitted, execution of the SEND instruction resumes at the
point where it left off. If the last packet of the block
contains less than 26 data bytes, the remaining data bytes are
filled in with zeros. The SEND instruction terminates when the
last packet is transmitted.

When either of the INQ X or INQ Y buffers in the destination
processor module is filled and the corresponding MASK register
bit is equal to 1, a microinterrupt occurs. The action taken by
the processor module during the microinterrupt (which is
transparent to the executing process and to the operating system)
is:

e The count in the BRT entry is checked. If the count indicates
that data is expected, 26 bytes (or less if the count is less)
are read into memory at the location specified. The transfer
address and count are then updated accordingly.

e The checksum of the packet is checked. 1If the checksum is
valid and the count still exceeds zero, the INQ is marked
empty (permitting further transmissions to take place) and the
normal instruction execution sequence continues.

e If the count is now zero or if any transmission error is
detected (checksum error, incorrect target, sequence error,
etc.), the INT register bit associated with the bus used for
the transmission is set to 1, and an interrupt occurs. In the
case of a transmission error, the count word is not updated.
When a normal receive completes, the count word will contain
zero.

INT and MASK Registers

These registers have a direct bearing on the ability of a
processor module to accept data over an interprocessor bus. As
shown in Figure 7-7, data packets from the buses are accepted
into INQ X or INQ Y whenever the data is sent to this module
(provided that the INQ is empty). Once the data is accepted, the
corresponding bit in the interrupt register (bit 11 and/or 12 of
INTA) is then set. If the corresponding bit of the MASK register
is also set (i.e., MASK and INTA bits ANDed together), a Bus
Receive interrupt occurs that causes the IPU to transfer data to
memory.

If a source processor module attempts a SEND to a processor
module that is not enabled for receiving data (MASK bit inhibits
destination processor from emptying its INQ), the source module
receives a packet timeout indication.

4482507 A00 3/85 7-13

INTERPROCESSOR BUSES AND I/0 CHANNEL
INT and MASK Registers

X BUS

Y BUS

INQY

Y

— e

- INQ X

INTA REGISTER ‘L

& 0 00 0 A | W o - o

'y

AND AND

'

MASK REGISTER 1 12
N N 0 X O gt
.

TO MEMORY

S$5001-106

Figure 7-7. Bus Receive Enabling

7-14 4§ 82507 A00 3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
Input-Output Channel

INPUT-OUTPUT CHANNEL

Each processor module has a single block-multiplexed input-output
channel through which all input-output takes place.
Device-dependent I/0 controllers are attached to the channel, and
each controller may have one or more subchannels. A processor
may address up to 256 subchannels. See Figure 7-8. Each
controller is connected to two different processors, and the
subchannel numbers that it responds to need not be the same on
both processors. (Dual-port operation is considered later in
this section.)

The first subchannel number for a given controller must be a
multiple of 8, and the remaining subchannels follow in
consecutive order.

The operating system performs input-output operations (see Figure
7-9) by first configuring an entry in a system table called the
I1/0 Control Table (IOC). The IOC contains 256 entries, one for
each subchannel that can possibly communicate over the I1/0
channel. Each entry contains the address of the data buffer and
a count of the number of bytes to be transferred. Once the entry
corresponding to the device is configured, an EIO (Execute I/0)
instruction is executed to initiate the I1/0 transfer. When the
transfer completes, an interrupt to an operating system interrupt
handler takes place. In the interrupt handler, an IIO
(Interrogate I/0) instruction or an HIIO (High-priority
Interrogate I/0) instruction is executed to check the outcome of
the operation.

I1/0 Control Table

The data to be transferred between memory and a specific unit is
determined by an entry in the I/0 Control Table (IOC). As
illustrated earlier (Figure 5-21), this table occupies all of the
second page of the system data segment. It contains a four-word
entry for every possible subchannel which may be connected to a
processor module. See Figure 7-10.

The first word of the the IOC entry specifies the base address of
the I/0 buffer in virtual memory. Bits 6 through 9 specify the
absolute segment number (6:13), and bits 10 through 15 specify
the starting logical page number within the segment. It is
permissible for I1/0 buffers to cross address space boundaries.

The second word of the IOC entry specifies the number of bytes

remaining to be transferred. This value is decremented after
each word transfer.

482507 A00 3/85 7-15

INTERPROCESSOR BUSES AND I/0O CHANNEL
1/0 Control Table

PROCESSOR
MODULE

DUAL-PORT
CONTROLLER

BT

-
I

2

)

UP TO 8 UNITS PER CONTROLLER

-

j L
| K/é g
%3 %I %32 %33 %3

-

%200

q

%203

%35

%38

L
%204 %205 %206

%37

%207

SUBCHANNIELS

SUBCHANNELS

SUBCHANNELS

S$5001-107

7-16

Figure 7-8.

I1/0 Channel Addressing

I{’82507 A00 3/85

INTERPROCESSOR BUSES AND I/0O CHANNEL
I1/0 Control Table

The third word of the IOC entry specifies the current word in the
buffer that needs to be transferred. Since the segment offset
value given in bits 0 through 5 is relative to the page base
value given in the first word of the entry, these two values are
added together to derive the actual logical page in memory
currently being accessed for word transfers. This value is
incremented after each word transfer.

HARDWARE

SOFTWARE |

110 TRANSFER
INITIATED
USING AN Ei0
INSTRUCTION

110 TRANSFER,
DIRECTED BY {0C TABLE,
OCCURS CONCURRENTLY

WITH SOFTWARE
PROCESS EXECUTION

SOFTWARE
PROCESS
EXECUTION
CONTINUES

SOFTWARE PROCESS
IS INTERRUPTED
WHEN 1/0 COMPLETES

INTERRUPT
HANDLER
CHECKS OUTCOME OF
1O TRANSFER

1458

S$5001-108

Figure 7-9. Simplified I/0 Sequence

4 82507 A00 3/85 7-17

INTERPROCESSOR BUSES AND I/0O CHANNEL
I1/0 Control Table

SUBCHANNEL

252

253

254

255

AA AN AL A A A A

1/0 CONTROL.
TABLE
(SYSTEM DATA)

o 1 5§ 6 9 10 15
sa%20000 _ —~""Fp l STATUS IAnnness SPACE BASE [PAGE BASE
- - BYTE COUNT
ADDRESS SPACE OFFSET | PAGE OFFSET
(RESERVED)

P = PROTECT BIT (1=OUTPUT ONLY)
STATUS = TRANSFER STATUS
ADDRESS SPACE BASE - STARTING ADDRESS SPACE NUMBER
PAGE BASE = STARTING PAGE OF BUFFER
BYTE COUNT = NUMBER OF BYTES REMAINING TO BE TRANSFERRED
ADDRESS SPACE OFFSET = PAGE NUMBER RELATIVE TO PAGE BASE FOR
CURRENT WCRD TRANSFER
PAGE OFFSET = WORD IN PAGE FOR CURRENT WORD TRANSFER

EIO PARAMETERS IN
REGISTER STACK

B PARAMETER INFORMATION
CMD MOD l CMD] CXT l SUBCHANNEL

>

o 3 4 58 78 15

CMD = COMMAND (A . <4&5>)
0 = SENSE
1 = WRITE
2 = READ
3 = CONTROL
CXT = COMMAND EXTENSION
CMD MOD = COMMAND MODIFIER (A . <0:3>) IS
DEVICE DEPENDENT EXCEPT:
0 = COLD LOAD IF CMD = 2
%17 = TAKE OWNERSHIP & CLEAR DEVICE IF CMD < > 2
%17 = PORT DISABLE IF CMD = 2

DEVICE 3TATUS RETURNED
IN REGISTER STACK

FROM EIO
0 1 2 3 4 b
9
SG(%3777] sfo]:]s] pl SUBCHANNEL STATUS
A CHANNEL STATUS

O = OWNERSHIP (1 = OWNED BY OTHER PORT)
| = INTERRUPT PENDING (1 = DEVICE IS
SIGNALING INTERRUPT)
B = BUSY CONTROLLER (=1)
P = PARITY ERROR (=1)
EIO CONDITION CODES:
CCL = CHANNEL ERROR
CCE = OPERATION SUCCESSFUL
€CQ = CHANNEL ERROR

STATUS RETURNED IN REGISTER
STACK FROM 110 & HIIO

c INTERRUPT CAUSE
sfo]) l A l p] | SUBCHANNEL
A CHANNEL STATUS
o 1 2 3 4 8 15

0 & | ARE DESCRIBED ABOVE
A = DATA TRANSFER ABORTED (=1)
P = PARITY ERROR (=1)

1O & HIIO CONDITION CODES:

CCL = CHANNEL ERROR DURING 110

CCE = OPERATION SUCCESSFUL

- NEL ERROR
CCG = CHANNEL El S§5001-109

Figure 7-10.

Formats Associated with Input-Output

/1| 82507 AOQO

3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
EIO Instruction

To prevent erroneous data transfers, the operating system either
sets the second word in the IOC entry to zero when transfers are
not expected, or, if the last transfer was outbound, sets the
protect bit. If a device attempts to transfer data when the byte
count is zero, the I/0 channel aborts the operation, causing an
interrupt to occur. In such a case, the status returned by the
device as a result of an IIO or HIIO reflects the error.

The NonStop TXP processor caches active IOC entries, and updates
only the cache copy during the transfer. As a result, the
operating system must copy each entry that will be used into the
I0C cache before the EIO instruction is issued. Similarly, the
operating system must copy each entry that it wishes to inspect,
during or after the transfer, back to the corresponding IOC entry
in memory. Two instructions in the NonStop TXP processor
(supported as no-ops in the NonStop II processor) perform these
functions:

¢ LIOC copies the specified subchannel's IOC entry from the
memory-resident IOC Table to the IOC cache which is resident
in scratchpad registers.

® SIOC copies the specified IOC entry from scratchpad back to
the memory copy of the IOC Table.

A third instruction, XIOC, exchanges the specified subchannel's
IOC entry with the IOC entry that is currently in the
scratchpad--basically a combination of SIOC with LIOC. This
instruction is fully supported on both processor types.

EIO Instruction

To perform an I/0 operation, the IOC entry for the unit must
first be correctly initialized. (In a NonStop TXP processor, the
entry must be cached in scratchpad registers via the LIOC
instruction.) An EIO instruction can then be executed,
specifying the controller, unit, command, and other parameter
information. These parameters are placed in B and A of the
Register Stack. (See format in Figure 7-10.)

The parameters to the EIO instruction are described as follows:

e The parameter information word in B is a device-dependent
parameter that is sent to the specified device.

e Command bits A.<0:5> specify the operation that the device is

to perform. The CMD bits, A.<4:5>, specify the general type
of command:

482507 ADO 3/85 7-19

INTERPROCESSOR BUSES AND I/0O CHANNEL
EIO Instruction

0 = sense

1l = write

2 = read

3 = control

The CMD MOD bits, A.<0:3>, modify the command, allowing up to
64 device-dependent commands.

Three configurations of these fields are reserved:

CMD CMD MOD Description

2 0 perform cold load
3 %16 disable port (kill)
3 %17 take ownership and clear device

e The CXT bits, A.<6:7>, are available as command extension
bits, specific to each device that requires them.

e The subchannel field, A.<8:15>, specifies one of 256
subchannels.

The EIO instruction replaces the two parameter words by two words
containing the device status and the channel status, and sets the
Condition Code according to the outcome of the instruction. The
Condition Code settings are as follows:

CCL: channel error (while executing EIO)
CCE: operation successful
CCG: channel, controller, or device error

The device status is of the form:

B.<0> = ownership

B.<1> = interrupt pending
B.<2> = Dbusy

B.<3> = parity error
B.<4:15> = subchannel status

The status bits returned in B have the following meanings:

e O (ownership), B.<0>, is equal to 1 if the device is owned by
the other port. No data is transferred.

e I (interrupt pending), B.<1>, is equal to 1 if the device is
interrupting. No data is transferred.

e B (busy), B.<2>, indicates that the device is already
executing an I/0 transfer (this includes seeking on a disc or
rewinding on a magnetic tape). No data is transferred because
of this EIO,.

7-20 4§ 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/0O CHANNEL
EIO Instruction

e P (parity), B.<3>, indicates (if equal to 1) that a parity
error occurred.

The channel status word returned in A can have the following
values:

%$000000 no error detected in the channel

%$000100 device status <0:3> non-zero

%000200 channel detected a parity error on RIC

%$000400 channel detected a parity error on RIST or RDST
%$1XXXXX channel status = IOBUS Control field

II0 and HIIO Instructions

Following the successful initiation of an I/0 operation by an EIO
instruction, an interrupt occurs when the operation completes.

At this point, an IIO (Interrogate I/0) or HIIO (High-Priority
Interrogate I/0) instruction must be executed to determine the
cause of the interrupt. When the IIO or HIIO is executed, the
highest-priority device with an interrupt pending returns its
subchannel number and a three-word status pertaining to the
interrupt.

The three status words returned to the Register Stack by the
execution of an IIO or HIIO instruction are of the form:

C.<0:15> = interrupt cause
B.<0> = ownership

B.<1> = interrupt pending
B.<2> = aborted

B.<3> = parity error
B.<8:15> = subchannel number
A.<0:15> = channel status

The status bits have the following meanings:

e The interrupt cause field, C.<0:15>, is related to the
particular subchannel that is interrupting.

e O (ownership), B.<0>, is equal to 1 if the controller is owned
by the alternate port (see the description of "Dual-Port
Controllers and Ownership" that follows).

e I (interrupt pending), B.<1l>, is equal to 1 if the device has
an interrupt pending. Normally this bit should not be set at
this time; if it is set, some problem is indicated.

e A (aborted), B.<2>, is equal to 1 if the data transfer was
aborted.

482507 A00 3/85 7-21

INTERPROCESSOR BUSES AND I/0 CHANNEL
II0 and HIIO Instructions

e P (parity error), B.<3>, is equal to 1 if a parity error was
detected during the data transfer sequence.

e The subchannel field, B.<8:15>, is the controller and unit
number associated with the interrupt.

e The channel status field, A.<0:15>, defines a possible channel
error and may have the following values:

%$000000 no error detected by the channel

%$000100 device status bits <0:3> nonzero

%000200 channel detected a parity error on RIC (Read
Interrupt Command)

%$000400 channel detected a parity error on RIST (Read
Interrupt Status) or RDST (Read Status)

177777 instruction timed out waiting for the I/0 channel
to become available

$l----- channel status = IOBUS Control Field

Following execution of an IIO or an HIIO instruction, the
Condition Code is set as follows:

CCL: channel error (while executing the instruction)

CCE: operation successful
CCG: channel, controller, or device error

Input-Output Sequence

A typical data transfer sequence over the input-output channel is
depicted in Figure 7-11. The sequence is as follows:

1. Instructions in the I/0 driver procedure are executed to :
configure the IOC entry for the subchannel through which the
transfer is to take place. In this case, the IOC entry is at
SG[%2030] for subchannel 6.

For a NonStop TXP processor, the initialized IOC entry must
be moved into the IOC cache by an LIOC instruction.,

2, The EIO parameters are loaded onto the Register Stack.

3. An EIO instruction is executed. The parameter information is
sent to subchannel 6.

4, To indicate its outcome, the EIO instruction returns two
status words to the top of the Register Stack and sets the
Condition Code. These are checked by subsequent
instructions.

7-22 4182507 A00 3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
Input-Output Sequence

SYSTEM
CooE REGISTER
Ff\/\/\/ STACK
1
o 2 PARAM)_‘3’ -
EI0 A M 6 - N
I\,\/\'\J |
/\/\p\/\/ (a)
8 STATUS
A STATUS - —
,~— » C | INTCAUSE
| B 3 -
[A STATUS
I
|
—J A
1o - Y
7) CONTROLLER
STANDARD
110 SYSTEM
INTERRUPT DATA
HANDLER
CODE
7T
| sa[w1270] {////// SUBCHANNEL
| [%1270] p—p- _ 6
TXIT 8) Pi - h
| Vi SIV ENTRY FOR
| LN STANDARD 1/O
NN ‘ 00 COMPLETION
|
I (6}
INTERRUPT
| WHEN
| COUNT =0
22000
| SG[%2030] BASE —— == = = — = >]
COUNT
| ADDRESS 10C ENTRY
! FOR SUBCHANNEL 6 BUFFER
| AREA
~ — — —» [spaceiD
S INTERRUPT /
S STACK MARKER
> SAVING INTERRUPTED
ENV ENVIRONMENT
L
STACK
FOR
STANDARD
1/0
INTERRUPT
HANDLER
S$5001-110
Figure 7-11. Input-Output Sequence
4482507 A0 3/85 7-23

INTERPROCESSOR BUSES AND I/0O CHANNEL
Input-Output Sequence

Meanwhile, the data transfer takes place. Data is
transferred from subchannel 6 to the location in memory
indicated by the IOC entry for that subchannel. As the data
is transferred into memory, the transfer address and count
word in the IOC are updated accordingly.

For a NonStop TXP processor, the cached copy of the IOC entry
is updated rather than the memory copy.

When the count word in the IOC reaches zero, indicating that
the transfer is completed, the channel signals the
controller. The controller stops transferring and signals
the IPU with an interrupt. The INTA.<14> bit in the
interrupt register is set to 1 to signal interrupt pending.
If the corresponding bit in the MASK register is set, an
interrupt through the SIV entry for standard I/0 (at
$G[%1270]) occurs. The Mi entry in the SIV causes any
further standard I/0 interrupts to be deferred while the I/0
completion interrupt handler is active.

The interrupt handler executes an IIO instruction. Executing
I10 signals the highest-priority interrupting controller to
stop interrupting and returns three words of status
information to the top of the Register Stack. (Controller
priorities are set into the hardware at installation time,
and may be adjusted by Tandem field service representatives
as necessary for load balancing.) The status words contain
the subchannel number of the interrupting device as well as
interrupt cause and channel status information.,

For a NonStop TXP processor, the IOC entry must be retrieved
from its scratchpad register copy and written back to the
memory copy of the entry before its contents can be
inspected. The SIOC instruction performs this function.

When the interrupt handler for standard I/0 completes, an
IXIT instruction is executed. IXIT restores the previous
MASK register value (which allows any pending standard I/0
interrupt to occur) and attempts to return control to the
interrupted code. Typically the operating system intervenes
at this point and the 1/0 process and, later, the user
process are notified of the completion of the original I/0
request.

/ﬂ 82507 AQO 3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
Dual-Port Controllers and Ownership

Dual-Port Controllers and Ownership

Each controller in the NonStop II and NonStop TXP computer system
is connected to the I/0 channels of two processor modules. This
provides redundant communication paths to I/O devices. As shown
in Figure 7-12, this means that a single subchannel has entries
in the I0Cs of two processor modules. Note that the ports need
not have the same subchannel address on both channels.

10C toc

CcPU O DUAL-PORT CPU 2
CONTROLLER
1/0 CHANNEL JUMPER WIRED JUMPER WIRED 1/O CHANNEL
WITH SUBCHANNEL WITH SUBCHANNEL
ADDRESSES ON ADDRESSES ON

CPU 0'S 110 CHANNEL CPU 2’S I/0 CHANNEL

T

FROM CPU 0: %20 %21 %22 %23 %24 %25 %26 %27

—ixo'ﬂ
- DO w

SUBCHANNEL NO.

FROM CPU 2: %40 %41 %42 %43 %44 %45 %46 %47

$5001-111

Figure 7-12. Dual-Port Addressing

482507 AOO 3/85 7-25

INTERPROCESSOR BUSES AND I/0 CHANNEL
Dual-Port Controllers and Ownership

Although each controller has two ports and is fully capable of
communicating through either I/0 channel, only one channel is
used during normal operation; the other channel, as far as a
particular controller is concerned, is not used. The I/0 channel
through which communication to a particular controller occurs is
said to "own" the controller. All I/0 transfers (both control
and data) occur through the channel owning the controller. This
is illustrated in Figure 7-13.

CPU 0 CPU 2

OWNERSHIP IS TAKEN

BY CPU 0 WHEN AN

EIO WITH “TAKE OWNERSHIP”

IS ISSUED TO THIS CONTROLLER.

SUBCHANNELS

OWNERSHIP OWNERSHIP
ERROR BIT ERROR BIT
ALL DATA AND P E<- —————— ”E"}" N AN EIO TO THE
CONTROL | i "UNOWNED" SIDE
INFORMATION L) J IS REJECTED WITH
TRANSFERS < __L O\O N A "DEVICE IS
OCCUR VIA THE OO OWNED BY OTHER
"OWNED" SIDE. PORT PORT PORT"” STATUS
TYPICALLY, IF NECESSARY, CPU 2 CAN
OWNERSHIP IS NOT TAKE OWNERSHIP AWAY FROM
CHANGED UNLESS CPU 0 BY ISSUING AN EIO
A FAILURE OCCURS. WITH “TAKE OWNERSHIP” TO

THIS CONTROLLER.

$5001-112

Figure 7-13.

I1/0 Controller Ownership

ﬂ"’ 82507 A00 3/85

INTERPROCESSOR BUSES AND I/0 CHANNEL
1/0 Channel Interrupts

Each of the two ports in a controller contains a flag bit known
as the ownership error bit. The settings of these bits determine
the channel from which the controller will accept commands. An
operating system configuration parameter specifies which channel
is to be the primary channel of communication for a particular
controller.

The operating system transfers data only through the owned side.
(An attempt to communicate through the unowned side results in
the EIO instruction being rejected with an ownership error.) If,
during the course of a data transfer, the primary path to the
controller (i.e., the primary processor module, channel, or port)
becomes inoperable, the operating system generally executes a
"take ownership" operation (of an EIO instruction) over the
alternate (backup) channel. (One exception: 1in case of a port
failure on a multiple-controller device, the operation is retried
using another controller, with no change of ownership.) The
ownership bits in the controller switch over to point to the
alternate I/0 channel. All subsequent data transfers now occur
through this channel.

Each port also has two "disable" bits that are separate from its
ownership bits. A disable bit, if set to 1, prevents a
controller from transmitting information through that port onto
an I/0 channel. The disable bit is set by an EIO instruction
"set disable" command. Normally, this is used by the operating
system when a controller performs some unexpected action that
could affect the entire channel. The disable bit is associated
with a port, so if the malfunction is in one port, normal
communication with the controller still occurs via the other
port.

I1/0 Channel Interrupts

A controller signals an interrupt to the IPU when its associated
transfer has completed. A controller also interrupts if it is
necessary to terminate a transfer prematurely.

When simultaneous interrupts occur on an I/0 channel, a priority
scheme determines which interrupt is handled first. A subchannel
continues to interrupt until it is cleared. Normally, this
clearing is done with an IIO or HIIO instruction.

4482507 A0D 3/85 7-27

INTERPROCESSOR BUSES AND I/0 CHANNEL
High-Priority I/0

High-Priority 1/0

Two levels of interrupt are available on an I/0 channel:

standard I/0 and high-priority I1/0. Standard 1/0 is performed
via controllers that interrupt through the SIV entry for standard
1/0. Likewise, high-priority 1/0 is performed via controllers
that interrupt through the SIV entry for high-priority 1/0.
Whether a controller interrupts with standard or high priority is
determined by a jumper connection on the controller.

High-priority I/0 is used by applications requiring an ultra-fast
response time (as in some data communication environments). The
operating system never masks off the high-priority interrupt
position, thereby ensuring that no matter what is executing in a
processor module, a high-priority I/0 interrupt will be
recognized instantly.

7-28 /1,82507 A00 3/85

SECTION 8

COLD LOAD

A processor may be initially loaded in one of two ways: from an
I1/0 device (disc) or from another processor using one of the
interprocessor buses. The cold-load command may, in turn, be
issued from either the control panel switches or the OSP
(Operations and Service Processor).

DISC COLD LOAD

To execute a disc cold load from the control panel, the operator
sets the Switch Register bits in the following manner: bit 0

to 0; bits 1-6 to the system subvolume of the operating system
image to be loaded (SYSnn); bit 7 to 0 unless a LOBUG "boot halt"
is requested; and bits 8-15 to the 8-bit subchannel number of the
device to be used. After the switches are set, the operator
turns the RESET/LOAD key first to the RESET position, then to the
LOAD position.

For a disc cold load from the OSP, the operator uses the OSP
terminal processor status screen in the following manner: enter
the number of the processor to be loaded, then press the F1l
function key to select it; then press the F10 function key to
reset it. After this, the operator selects the device subchannel
number (and SYSnn subvolume, if loading from disc), and presses
the F11 function key. The OSP then sends the appropriate
cold-load command to the processor. (The equivalent operations
can also be peformed using the CPU, SWITCH, RESET, and LOAD
commands in the OSP's LOBUG conversational interface.)

The following discussion separately describes a disc cold load
for both the NonStop II processor and the NonStop TXP processor.

482507 A0 3/85 8-1

COLD LOAD
Disc Cold Load

Disc Cold Load (NonStop II Processor)

In a disc cold-load sequence, the NonStop II processor first
executes some microdiagnostics and then performs the following
steps:

1. Sets the system data and system code maps (Maps 1 and 3) to
map onto physical pages 0 through 63.

2., Sets the ENV, L, and S registers as follows:

ENV := %3447; ! PRIV, DS, and CS bits set:
! V bit set, K bit cleared to identify
! NonStop II CPU

L

s =

3. Clears the control panel display.

4, Saves the subchannel number from the control panel switches
or the OSP in R7 of the Register Stack. The value 1 for an
OSP cold load, or the value 0 for a cold load from the
switches, is saved in R6.

5. Sets the MASK register to %176000.

6. Sets location %677 in system data to %10777, the value of a
BUN -001 (branch to self) machine instruction.

7. Sets the P register to %677.

8. Initializes the IOC entry for the subchannel specified in the
switches to the following values:

entry.<0:15> := %100;
entry.<16:31> := %1600;
entry.<32:47> := 0;
entry.<48:63> := 0;

9. Takes ownership of the I1/0 device.
10. Clears pending device interrupts.

11. Issues a cold-load read command to the device to read in the
bootstrap program.

12. Begins instruction execution.
The bootstrap program read in in step 11 must perform anything

else necessary to load the memory and the Loadable Control Store.
This program begins running as soon as location %677 in system

8-2 482507 A00 3/85

COLD LOAD
Disc Cold Load

data is overwritten. 1Its starting conditions are:

S
P
E
L
R
R

R

= %1100
= %677
NV = %3 4 4-- 1 (N and Z bit settings are determined by EIO)
= %1000
7 = value from switches or OSP
6 =0 if cold load from switches
1 if cold load from OSP
0/R1 = EIO status

Maps 1 and 3 refer to physical pages 0:63
MASK = %176000

Disc Cold Load (NonStop TXP Processor)

The NonStop TXP processor performs the following steps during a
disc cold-load sequence:

1.

Loads the basic instruction set from DDT prom,
Executes microdiagnostics.

Sets the invalid bit in the tag word associated with each
entry in the data cache and the page table cache.

Maps physical pages 0:63 into segment 1. Sets both system
code and system data space to segment 1.

Sets the ENV, L, and S registers as follows:
ENV := %3507; ! PRIV, DS and CS bits set to 1;

! K bit set, V bit cleared to identify

! NonStop TXP processor

L :=
S := %1100;

Clears the control panel display.

Saves the subchannel number from the control panel switches
or the OSP in R7 of the Register Stack. Saves a value of 1
in R6 for an OSP cold load, or a value of 0 in R6 for a cold
load from the switches.

Sets the MASK register to %166000.

Null-fills SG[%670:%707] to prevent uncorrectable memory
errors due to uninitialized data cache words.

82507 AOO 3/85 8-3

COLD LOAD
Disc Cold Load

10.

1l.
12.

13.
14.

15.

16.

17.

Sets SG[%677] equal to %10777, the octal representation of a
BUN -001 (branch to self) machine instruction.

Sets the P register to %677.
Initializes the scratchpad register copy of the IOC entry for
the subchannel specified in the switches to the following
values:

10C[device] := [%100, %1600, 0, 0 1;
Takes ownership of the I/0 device.

Clears pending device interrupts.

Issues a cold-load read command to the device to read in the
bootstrap program.

Checks the Condition Code; halts with SD=%100004 if ENV.Z is
not set.

Begins instruction execution.

The bootstrap program read in (in step 16) must perform anything
else necessary to load the memory and the Loadable Control Store.
This program begins running as soon as location %677 is overlaid.

Its starting conditions are:

S %1100
P %677
ENV = 83 5 0-- 1 (N and Z settings are determined by EIO)
L = %1000
R7 = value from switches or OSP
R6 = 0 if cold load from switches
= 1 if cold load from OSP
RO/R1 = EIO status
PCACHE[1, 0:63] refers to physical pages 0:63
SST[0:15] refer to segments 0, 1, 2, 1, 4, 5, ..., 15
! Both System Code and System Data space set to segment 1 !
MASK = %166000

NOTE

A given physical page must be accessed only through
a single absolute segment/logical page combination;
otherwise, the NonStop TXP processor's code/data
cache contents may become inconsistent.

I/'| 82507 AQ0 3/85

COLD LOAD
Bus Cold Load

BUS COLD LOAD

For a bus cold load from the control panel, the operator sets
Switch Register bit 0 to one and all other bits to zero. Then
the operator turns the RESET/LOAD key first to the RESET
position, then to the LOAD position.

For a bus cold load from the OSP, the operator loads the
processor number to be loaded through a field in the processor
status screen, and then selects the processor by pressing
function key F1. On the same screen, the operator enters a value
of %100000 into the Switch Register field, and resets and loads
the processor by pressing F10 and Fll. Finally, the operator
invokes the operating system's RELOAD program to start the bus
cold load. All down CPUs that have been appropriately prepared
can be reloaded concurrently.

The following discussion separately describes the bus cold load
operation for both NonStop II and NonStop TXP processors.

Bus Cold Load (NonStop II Processor)

In a bus cold-load sequence, the NonStop II processor first
executes some microdiagnostics and then performs the following
steps:

1. Sets the system data and system code maps (Maps 1 and 3) to
map onto physical pages 0 through 63.

2, Sets the ENV, L, and S registers as follows:

ENV := $%3447; ! PRIV, DS, and CS bits set:

! V bit set, K bit cleared to identify
! NonStop II CPU

L

S s=

3. Clears the control panel display.

4, Saves the value from the control panel switches or the OSP in
R7 of the Register Stack. The value 1 for an OSP cold load,
or the value 0 for a cold load from the switches, is saved in
R6.

5. Sets the MASK register to %$176000.

6. Sets the P register to 0.

/1|82507 AQO0 3/85 8-5

COLD LOAD
Bus Cold Load

7. Reads the bootstrap program and microcode, over one of the
buses, into memory starting at SG[O0].

8. Begins instruction execution.

The bootstrap program read in in step 7 must perform anything
else necessary to load the memory and the Loadable Control Store.
This program begins running as soon as 10,530 words have been
transferred over the bus to memory. Its starting conditions are:

S = %1100
P =0
ENV = %3447
L = %1000
R7 = value from switches or OSP
R6 = 0 if cold load from switches
1l if cold load from OSP
Maps 1 and 3 refer to physical pages 0:63
MASK = %176000

The initial data transfer size allows a transfer of 4096 words of
control store, which would occupy 10,240 words of memory, and a
bootstrap program of 290 words.

Note that the cold-load bus transfer does not use extended memory

addressing., The microcode reads the data from the INQ directly
into memory without using the Bus Receive Table (BRT).

Bus Cold Load (NonStop TXP Processor)

The NonStop TXP processor performs the following steps during a
bus cold-load sequence:

1. Loads the basic instruction set from DDT prom.
2. Executes microdiagnostics.

3. Sets the invalid bit in the tag word associated with each
entry in the data/instruction cache and the page table cache.

4, Maps physical pages 0:63 into segment 1. Sets both system
code and system data space to segment 1.

5. Sets the ENV, L, and S registers as follows:
ENV := %3507; ! PRIV, DS and CS bits set to 1;

! K bit set, V bit cleared to identify
! NonStop TXP processor

8-6 /)’182507 AQ0 3/85

11.

COLD LOAD
Bus Cold Load

L :
S :

Clears the control panel display.

Saves the value from the control panel switches or the OSP in
R7 of the Register Stack. Saves a value of 1 in R6 for an
OSP cold load, or a value of 0 in R6 for a cold load from the
switches.

Sets the MASK register to %166000.

Sets the P register to 0.

Reads the bootstrap program and microcode, over one of the
buses, into memory starting at SG[O0].

Begins instruction execution.

The "bootstrap" program read in during the cold-load sequence
must perform anything else necessary to load the memory and the
control store. 1Its starting conditions are:

S = %1100

P = %0

ENV = %3507

L = %1000

R7 = value from switches or OSP

R6 = 0 if cold load from switches
=1 if cold load from OSP

RO/R1 = EIO status

PCACHE[1, 0:63] refers to physical pages 0:63

SST[0:15] refer to segments O, 1, 2, 1, 4, 5, ..., 15

! Both system code and system data space set to segment 1 !
MASK = %166000

Note that the cold-load bus transfer does not use extended memory
addressing. The microcode reads the data from the INQ directly
into memory without using the Bus Receive Table (BRT).

482507 A0O 3/85 8-7

SECTION 9

INSTRUCTION SET

The instruction sets of the NonStop II and NonStop TXP
processors, including the decimal arithmetic and floating-point
options, consist of approximately 285 machine instructions. This
section provides text descriptions of all these instructions,
with the exception of those reserved for operating system use.
Diagrams are also included showing the action of some of the more
commonly used instructions. To locate the text description for
any instruction, refer to the alphabetical listing under
"Instructions" in the general index at the back of this manual.

These descriptions assume familiarity with the information
presented in Sections 1 through 8. For explanations of terms and
concepts mentioned here, refer to the Index to find the
appropriate reference.

In addition, Appendixes A and B provide a number of useful
reference tables pertaining to the instruction set.

Instructions in this section are categorized by general function
and discussed under the following headings:

16-Bit Arithmetic

32-Bit Signed Arithmetic

16-Bit Signed Arithmetic (Register Stack Element)

Decimal Arithmetic Store and Load (Standard Instructions)

Decimal Integer Arithmetic (Standard and Optional Instructions)

Decimal Arithmetic Scaling and Rounding (Standard and Optional
Instructions)

Decimal Arithmetic Conversions (Optional Instructions)

Floating-Point Arithmetic (Optional Instructions)

Extended Floating-Point Arithmetic (Optional Instructions)

Floating-Point Conversions (Optional Instructions)

Floating-Point Functionals (Optional Instructions)

Register Stack Manipulation

482507 A0O 3/85 9-1

INSTRUCTION SET
16-Bit Arithmetic

Boolean Operations

Bit Deposit and Shift

Byte Test

Memory to or from Register Stack

Load and Store Via Address on Register Stack
Branching

Moves, Compares, Scans, and Checksum Computations
Program Register Control

Routine Calls and Returns

Interrupt System

Bus Communication

Input-Output

Miscellaneous

Operating System Functions

NOTE

The instruction descriptions in this section state the
conditions under which Overflow is set in the ENV register.
If Overflow is set, not part of the results on the stack
can be assumed valid. For details on the setting of the
Condition Code and Carry bits, refer to Section 4,

"Program Environment". Unless otherwise stated,

"stack" refers to the Register Stack.

16-BIT ARITHMETIC (Top of Register Stack)

IADD (000210). 1Integer (signed) Add A to B. A is added to B in
integer form. A and B are then deleted from the stack and the
sum is pushed onto the stack. Overflow is set if the result is
greater than 32767 or less than -32768. Condition Code is set.

LADD (000200). Logical (unsigned) Add A to B. A and B are added
as 16-bit positive integers. A and B are then deleted from the
stack and the result pushed on. Carry is set if the addition
overflows bit 0. Condition Code is set.

ISUB (000211). Integer (signed) Subtract A from B. A is
subtracted from B in integer form. A and B are deleted and the
difference is pushed onto the stack. Overflow is set if the
result is greater than 32767 or less than -32768. Condition Code
is set.

9-2 482507 A0 3/85

INSTRUCTION SET
16-Bit Arithmetic

LSUB (000201). Logical (unsigned) Subtract A from B. A is
subtracted from B logically. A and B are then deleted from the
stack and the result pushed on. Carry is set if A is less than
or equal to B. Condition Code is set.

IMPY (000212). Integer (signed) Multiply A times B. B is
multiplied by A in integer form. A and B are deleted from the
stack and the result pushed on. Overflow is set if the result is
greater than 32767 or less than -32768. Condition Code is set.

LMPY (000202). Logical (unsigned) Multiply A times B. A and B
are multiplied as 16-bit positive integers. A and B are then
replaced by the doubleword result, with the least significant
half in A. Overflow is implicitly cleared. Condition Code is
set.

IDIV (000213). Integer (signed) Divide B by A. B is divided by
A in integer form. A and B are deleted from the stack and the
result pushed on. Overflow is set if the divisor is zero, or if
the result is greater than 32767 or less than -32768. Condition
Code is set.

LDIV (000203). Logical (unsigned) Divide CB by A, leaving the
remainder in B. The 32-bit positive integer in C and B is
divided by the 16-bit positive integer in A, The divisor and
dividend are deleted from the stack, the remainder is pushed onto
the stack (B), and the quotient is pushed onto the stack (A).
Overflow is set if the original C is greater than or equal to the
original A. Condition Code is set.

INEG (000214). 1Integer (signed) Negate A. A is converted to its
two's complement form. Overflow is set if the original operand
was -32768. Condition Code is set.

LNEG (000204). Logical (unsigned) Negate A. A is converted to
its two's complement. Carry is set if the original value of A is
zero. Condition Code is set.

4982507 A0O 3/85 9-3

INSTRUCTION SET
32-Bit Signed Arithmetic

ICMP (000215). Integer (signed) Compare B with A. B is compared
to A in integer form and the Condition Code set accordingly. A
and B are then deleted from the stack.

LCMP (000205). Logical (unsigned) Compare B with A. B is
logically compared to A and the Condition Code set accordingly. A
and B are then deleted from the stack.

CMPI (001---). Compare A with Immediate Operand. The Condition
Code is set as a result of the 16-bit integer comparison of A and
the immediate operand. A is then deleted from the stack.
Examples of the use of immediate operands are shown in Figure
9-1.

ADDI (104---). Add Immediate Operand to A. The immediate
operand is added to A in integer form. Overflow is set if the
result is greater than 32767 or less than -32768. Condition Code
is set.

LADI (003---). Logical (unsigned) Add Immediate Operand to A.
The immediate operand is pushed onto the stack, with the sign bit
propagating into the high order bits. Then A and B are added in
16-bit unsigned integer form. A and B are then both deleted from
the stack and the result pushed on. Carry is set if the addition
overflows bit 0. Condition Code is set.

32-BIT SIGNED ARITHMETIC

DADD (000220). Double Add DC to BA. The two doubleword integers
contained in DC and BA are added in doubleword integer form.

Both operands are then deleted, and the doubleword result is
pushed onto the stack. Overflow is set if the result is greater
than (2**31)-1 or less than -(2**31), Carry can be set, and
Condition Code is set on the result.

DSUB (000221). Double Subtract BA from DC. The doubleword
integer contained in BA is subtracted in doubleword integer form
from the doubleword integer in DC. Both operands are then
deleted, and the result is pushed onto the stack. Overflow is

9-4 482507 A0O 3/85

INSTRUCTION SET
32-Bit Signed Arithmetic

INSTRUCTION FORMAT

%%/ %
mGN‘//\> | g

IMMEDIATE OPERAND
TWO'S COMPLEMENT INTEGER

EXAMPLES RANGE IS -256 : +255
CMPi -2 (COMPARE IMMEDIATE -2)
ofo o ofo o rfafr a1 1 1f1 1 0
N\
SIGN BIT
IS EXTENDED
THROUGH {0:7>
IS TREATED AS
/ N\ / N\
OPERAND 2. ST T T T T T T O T O T O N B 38 A B2

LDLI-2 (LOAD LEFT IMMEDIATE -2)

oto o of1 o 1|1 11 11 o

<
\<;\ SIGN BIT IS

EXTENDED
VALUE LOADED INTO A \\\> THROUGH A.{8:15)
/ N N\
A1 1]t 1 1o o1 ol 1t o111] t287)
$5001-113

Figure 9-1. Immediate Operand

set if the result is greater than (2**31)-1 or less than
-(2**31). Carry can be set, and Condition Code is set on the
result.

DMPY (000222). Double Multiply DC by BA. The doubleword integer
contained in DC is multiplied in doubleword integer form by the
doubleword integer in BA. Both operands are then deleted, and
the result is pushed onto the stack. Overflow is set if the
result is greater than (2**31)-1 or less than -(2**31). Carry
can be set, and Condition Code is set on the result.

II'|82507 A0Q 3/85

INSTRUCTION SET
32-Bit Signed Arithmetic

DDIV (000223). Double Divide DC by BA. The doubleword integer
contained in DC is divided in doubleword integer form by the
doubleword integer in BA. Both operands are then deleted, and
the result is pushed onto the stack. Overflow is set if the
result is greater than (2**31)-1 or less than -(2**31), or if the
divisor (BA) is zero. Carry can be set, and Condition Code is
set on the result.

DNEG (000224). Double Negate BA. The doubleword integer
contained in BA is replaced with its two's complement. Overflow
is set if the original operand was -(2**31), Carry can be set,
and Condition Code is set on the result.

DCMP (000225). Double Compare DC with BA. The Condition Code in
the ENV register is set as a result of the doubleword integer
comparison of DC and BA. Both operands are then deleted from the
stack.

DTST (000031). Double Test BA. The Condition Code is set
according to the contents of the doubleword contained in BA.

CDI (000307). Convert Double to Integer. The doubleword integer
in BA is converted to a singleword integer by copying the
contents of A into B and deleting A. Overflow is set if the
doubleword quantity is greater than 32767 or less than -32768.

CID (000327). Convert Integer to Double. The singleword integer
in A is extended to a doubleword quantity on the top of the
Register Stack. A is copied into H, and then A is filled with
zeros if A was positive, or ones if A was negative; the Register
Pointer is incremented to give the result in BA.

MOND (000001). Minus One Double. A doubleword minus one is
pushed onto the top of the Register Stack (BA). Condition Code
is set.

ZERD (000002). Zero Double. A doubleword zero is pushed onto
the top of the Register Stack (BA). Condition Code is set.

9-6 482507 A0D 3/85

INSTRUCTION SET
16-Bit Signed Arithmetic

ONED (000003). One Double. A doubleword of one is pushed onto
the top of the Register Stack (BA). Condition Code is set.

16-BIT SIGNED ARITHMETIC (REGISTER STACK ELEMENT)

NOTE

For binary coding details of the first four instructions
that follow (ADRA, SBRA, ADAR, SBAR), refer to Table A-7
in Appendix A. For ADXI, refer to Table A-4.

ADRA (00014-). Add Register to A. The contents of the register
pointed to by the Register field of the instruction are added in
integer form to register A. Overflow is set if the result is
greater than 32767 or less than -32768. Carry can be set, and
Condition Code is set on the result.

SBRA (00015-). Subtract Register from A. The contents of the
register pointed to by the Register field of the instruction are
subtracted in integer form from register A. Overflow is set if
the result is greater than 32767 or less than -32768. Carry can
be set, and Condition Code is set on the result.

ADAR (00016-). Add A to a Register. A is added in signed
integer form to the register pointed to by the Register field of
the instruction. A is deleted from the stack. Overflow is set
if the result is greater than 32767 or less than -32768. Carry
can be set, and Condition Code is set on the result.

SBAR (00017-). Subtract A from a Register. A is subtracted in
signed integer form from the register pointed to by the Register
field of the instruction. A is deleted from the stack. Overflow
is set if the result is greater than 32767 or less than -32768.
Carry can be set, and Condition Code is set on the result.

ADXI (104---). Add Immediate Operand to an Index Register. The
immediate operand is added in signed integer form to the contents
of the index register specified by "x" field of the instruction.
Overflow is set if the result is greater than 32767 or less than
-32768. Carry can be set; Condition Code is set on the result.

/I’|82507 AQ0 3/85 9-7

INSTRUCTION SET
Decimal Arithmetic

DECIMAL ARITHMETIC STORE AND LOAD (STANDARD INSTRUCTIONS)

NOTE

For binary coding details of the following two instructions,
refer to Table A-8 in Appendix A.

QST (00023-). Quadruple Store. The quadrupleword operand
contained in EDCB is stored in the effective memory location
indicated by A plus 4 times the index value. No indexing occurs
for coding 000230. For code 000231, 000232, or 000233, indexing
for the effective address uses register R[5], R[6], or R[7],
respectively. The quadrupleword operand and A are then deleted
from the stack.

QLD (00023-). Quadruple Load. The quadrupleword operand
contained in the effective memory location indicated by A plus 4
times the index value is fetched. A is deleted, and the fetched
quadrupleword is pushed onto the stack. No indexing occurs for
coding 000234, For code 000235, 000236, or 000237, indexing for
the effective address uses register R[5], R[6], or R[7],
respectively. Condition Code is set on the loaded quadrupleword.

DECIMAL INTEGER ARITHMETIC (STANDARD AND OPTIONAL INSTRUCTIONS)

QADD (000240). Quadruple Add. The two quadrupleword integers
contained in HGFE and DCBA are added in quadrupleword integer
form. Both operands are deleted, and the quadrupleword result is
pushed onto the stack. Overflow is set if the result is greater
than (2**63)-1 or less than -(2**63). Carry can be set, and
Condition Code is set on the result. (This is a standard
instruction.)

QSUB (000241). Quadruple Subtract. The gquadrupleword integer
contained in DCBA is subtracted in quadruple-length integer form
from the quadrupleword integer in HGFE. Both operands are
deleted, and the quadrupleword result is pushed ontc the stack.
Overflow is set if the result is greater than (2**63)-1 or less
than -(2**63)., Carry can be set, and Condition Code is set on
the result. (This is a standard instruction.)

9-8 I{’82507 AQ00 3/85

INSTRUCTION SET
Decimal Arithmetic

OMPY (000242). Quadruple Multiply. The quadrupleword integer
contained in HGFE is multiplied in quadrupleword integer form by
the quadrupleword integer in DCBA. Both operands are deleted,
and the quadrupleword result is pushed onto the stack. Overflow
is set if the result is greater than (2**63)-1 or less than
-(2*%63). Carry can be set, and Condition Code is set on the
result. (This is an optional instruction.)

QDIV (000243). OQuadruple Divide. The quadrupleword integer
contained in HGFE is divided in quadrupleword integer form by the
quadrupleword integer in DCBA. Both operands are deleted, and
the quadrupleword result is pushed onto the stack. Overflow is
set if the divisor (DCBA) is zero. Condition Code is set. (This
is an optional instruction.)

ONEG (000244). OQuadruple Negate. The quadrupleword integer
contained is DCBA is replaced with its two's complement.
Overflow is set if the original operand was -(2**63). Condition
Code is set on the result. (This is an optional instruction.)

QCMP (000245). Quadruple Compare. The Condition Code in the
Environment Register is set according to the quadruple integer
comparison of HGFE (operand 1) and DCBA (operand 2). (See Table
A-3 for Condition Code settings; the "a" states apply for
compares.) Both operands are then deleted from the stack. (This
is an optional instruction.)

DECIMAL ARITHMETIC SCALING AND ROUNDING (STANDARD AND OPTIONAL
INSTRUCTIONS)

NOTE

For binary coding details of the following three
instructions, refer to Table A-8 in Appendix A.

QUP (00025-). Quadruple Scale Up. The operand value in DCBA is
multiplied by a specified power of ten (1, 2, 3, or 4), and the
new value replaces the former contents of DCBA. Overflow is set
if the result is greater than (2**63)-1 or less than -(2%*%63).
Condition Code is set on the result. (This is a standard
instruction.)

482507 ADO 3/85 9-9

INSTRUCTION SET
Decimal Arithmetic

QDWN (00025-). Quadruple Scale Down. The operand value in DCBA
is divided by a specified power of ten (1, 2, 3, or 4), and the
new value replaces the former contents of DCBA. Condition Code
is set, and the Overflow bit is cleared. (This is a standard
instruction.)

QRND (000263). Quadruple Round. Five is added to the operand in
DCBA if the operand is positive (-5 is added if negative), and
the result is divided by 10. The new value replaces the former
contents of DCBA. Condition Code is set, and the Overflow bit is
cleared. (This is an optional instruction.)

DECIMAL ARITHMETIC CONVERSIONS (OPTIONAL INSTRUCTIONS)

CQI (000264). Convert Quad to Integer. The four-word value in
DCBA is converted to an integer by extracting the least
significant word. DCBA is deleted, and the integer result is
pushed onto the stack. Overflow is set if the operand was
greater than 32767 or less than -32768.

CQL (000246). Convert Quad to Logical. The four-word value in
DCBA is converted to a logical value by extracting the least
significant word. DCBA is deleted, and the integer result is
pushed onto the stack. Overflow is set if the operand was
greater than 65535,

COD (000247). Convert Quad to Double. The four-word value in
DCBA is converted to a doubleword by extracting the least
significant two words. DCBA is deleted, and the doubleword
result is pushed onto the stack. Overflow is set if the operand
was greater than (2**31)-1 or less than -(2%%*31),

CQA (000260). Convert Quad to ASCII. The absolute value of the
binary-coded quadrupleword integer in FEDC is converted to a
string of ASCII-coded digits (decimal base), and the resulting
string is stored in the memory space defined by a starting byte
address in B and a byte count in A, If the conversion results in
a truncation of leading digits, overflow is set. Condition Code
is set on the original value.

9-10 482507 A0 3/85

INSTRUCTION SET
Decimal Arithmetic

CIQ (000266). Convert Integer to Quad. The singleword integer
in A is extended to a quadrupleword quantity, filling the most
significant three words with zeros if A was positive, or ones if
A was negative. A is deleted, and the quadrupleword result is
pushed onto the stack.

CLQ (000267). Convert Logical to Quad. The singleword logical
guantity in A is extended to a quadrupleword quantity, filling

the most significant three words with zeros. A is deleted, and
the quadrupleword result is pushed onto the stack.

CDQ (000265). Convert Double to Quad. The doubleword integer in
BA is extended to a quadrupleword quantity, filling the most
significant two words with zeros if B is positive, or ones if B
is negative. BA is deleted, and the quadrupleword result is
pushed onto the stack.

CAQ (000262). Convert ASCII to Quad. A string of 7-bit
ASCII-coded digits in memory, defined by a starting byte address
in B and a byte count in A, is converted to a binary-coded
quadrupleword integer. The quadrupleword result is pushed onto
the stack. If a nondigit ASCII code is encountered, only the
preceding digits are converted, and CCG indicates that only part
of the string was converted; CCE indicates that the entire string
was converted. Overflow is set if the result is greater than
(2**63)-1 or less than -(2**63). 1If overflow is set, the value
in DCBA is undefined.

CAQV (000261). Convert ASCII to Quad with Initial Value. A
string of ASCII-coded digits in memory, defined by a starting
byte address in F and a byte count in E, is converted to a
binary-coded quadrupleword integer in DCBA. DCBA contains an
initial value (greater than or equal to zero) which is multiplied
by 10, providing a high-order value to which the converted value
is added to produce the result in DCBA. If a nondigit ASCII code
is encountered, only the preceding digits are converted, and CCG
indicates that only part of the string was converted; CCE
indicates that the entire string was converted. Overflow is set
if the result is greater than (2**63)-1 or less than -(2*%*63).

If overflow is set, the value in DCBA is undefined.

4982507 A00 3/85 9-11

INSTRUCTION SET
Floating-Point Arithmetic

FLOATING-POINT ARITHMETIC (OPTIONAL INSTRUCTIONS)

NOTE

For the range of floating-point numbers, refer to "Number
Representations" in Section 3.

FADD (000270). Floating-Point Add. The floating-point
quantities in DC and BA are added in floating-point form. Both
operands are deleted, and the two-word result is pushed onto the
stack. Overflow is set if the result falls outside the range of
floating-point numbers. Condition Code is set on the result.

FSUB (000271). Floating-Point Subtract. The floating-point
quantity in BA is negated, and then DC and BA are added in
floating-point form. Both operands are deleted, and the result
is pushed onto the stack. Overflow is set if the result falls
outside the range of floating- point numbers. Condition Code is
set on the result.

FMPY (000272). Floating-Point Multiply. The floating-point
quantities in DC and BA are multiplied in floating-point form.
Both operands are deleted, and the result is pushed onto the
stack. Overflow is set if the result falls outside the range of
floating-point numbers. Condition Code is set on the result.

FDIV (000273). Floating-Point Divide. The floating-point
guantity in DC is divided in floating-point form by ‘the
floating-point quantity in BA. Both operands are deleted and the
result is pushed onto the stack. Overflow is set if the result
falls outside the range of floating-point numbers. Condition
Code is set on the result.

FNEG (000274). Floating-Point Negate. The floating-point
quantity in BA (if not zero) is negated. The sign of BA is
reversed from positive to negative or negative to positive, and
the Condition Code reflects the final state of the sign (see
Table A-3).

9-12 482507 A00 3/85

INSTRUCTION SET
Floating-Point Arithmetic

FCMP (000275). Floating-Point Compare. The Condition Code is
set according to the comparison of DC (operand 1) with BA
(operand 2). (See Table A-3 for Condition Code settings; the "a"
states apply for comparisons.) Both operands are then deleted
from the stack.

EXTENDED FLOATING-POINT ARITHMETIC (OPTIONAL INSTRUCTIONS)

NOTE

For the range of extended floating-point numbers, refer to
"Number Representations" in Section 3.

EADD (000300). Extended Add. The extended floating-point
quantities in HGFE and DCBA are added in extended floating-point
form. Both operands are deleted and the result is pushed onto
the stack. Overflow is set if the result falls outside the range
of extended floating-point numbers. Condition Code is set on the
result.

ESUB (000301). Extended Subtract. The extended floating-point
quantity in HGFE is negated, and then HGFE and DCBA are added in
extended floating-point form. Both operands are deleted and the
result is pushed onto the stack. Overflow is set if the result
falls outside the range of extended floating-point numbers.
Condition Code is set on the result.

EMPY (000302). Extended Multiply. The extended floating-point
quantities in HGFE and DCBA are multiplied in extended
floating-point form. Both operands are deleted and the result is
pushed onto the stack. Overflow is set if the result falls
outside the range of extended floating-point numbers. Condition
Code is set on the result,.

EDIV (000303). Extended Divide. The extended floating-point
quantity in HGFE is divided in extended floating-point form by
the extended floating-point quantity in DCBA. Both operands are
deleted and the result is pushed onto the stack. Overflow is set
if the result falls outside the range of extended floating-point
numbers. Condition Code is set on the result.

4§ 82507 A0O 3/85 9-13

INSTRUCTION SET
Floating-Point Arithmetic

ENEG (000304). Extended Negate. The extended floating-point
quantity in DCBA (if not zero) is negated. The sign of DCBA is
reversed from positive to negative or negative to positive.
Overflow is cleared, and the Condition Code reflects the final
state of the sign.

ECMP (000305). Extended Compare. The Condition Code is set
according to the comparison of HGFE (operand 1) with DCBA
(operand 2). Both operands are then deleted from the stack.

FLOATING-POINT CONVERSIONS (OPTIONAL INSTRUCTIONS)

CEF (000276). Convert Extended to Floating. The four-word
floating-point gquantity in DCBA is converted to a two-word
floating-point quantity. DCBA is deleted, and the two-word
result is pushed onto the stack.

CEFR (000277). Convert Extended to Floating, Rounded. The
four-word floating-point quantity in DCBA is converted to a
two-word floating-point quantity. The new quantity is rounded
according to the contents of truncated bit 7 of C. DCBA is
deleted, and the two-word result is pushed onto the stack.

CFI (000311). Convert Floating to Integer. The floating-point
quantity in BA is converted to a singleword signed integer. A is
deleted, and the singleword result is pushed onto the stack.
Overflow is set if the value of the operand was greater than
32767 or less than -32768. Condition Code is set on the result.

CFIR (000310). Convert Floating to Integer, Rounded. The
floating-point guantity in BA is converted to a singleword signed
integer, with rounding according to the contents of the most
significant fractional bit. A is deleted, and the singleword
result is pushed onto the stack. Overflow is set if the value of
the operand was greater than 32767 or less than -32768.

Condition Code is set on the result.

CFD (000312). Convert Floating to Double. The floating-point
quantity in BA is converted to a doubleword signed integer in BA.

9-14 482507 A0 3/85

INSTRUCTION SET
Floating-Point Arithmetic

Overflow is set if the value of the operand was greater than
(2**31)-1 or less than -(2**31), Condition Code is set on the
result.

CFDR (000313)., Convert Floating to Double, Rounded. The
floating-point qQuantity in BA is converted to a doubleword signed
integer in BA, with rounding according to the contents of the
most significant fractional bit. Overflow is set if the value of
the operand was greater than (2**31)-1 or less than -(2%**31),
Condition Code is set on the result.

CED (000314). Convert Extended to Double. The extended
floating-point quantity in DCBA is converted to a doubleword
signed integer. BA is deleted, and the doubleword result is
pushed onto the stack. Overflow is set if the wvalue of the
operand was greater than (2**31)-1 or less than -(2**31).
Condition Code is set on the result.

CEDR (000315). Convert Extended to Double, Rounded. The
extended floating-point quantity in DCBA is converted to a
doubleword signed integer, with rounding according to the
contents of the most significant fractional bit. BA is deleted,
and the doubleword result is pushed onto the stack. Overflow is
set if the value of the operand was greater than (2**31)-1 or
less than -(2**31)., Condition Code is set on the result.

CEI (000337). Convert Extended to Integer. The extended
floating-point quantity in DCBA is converted to a singleword
signed integer. CBA is deleted, and the singleword result is
pushed onto the stack. Overflow is set if the value of the
operand was greater than 32767 or less than -32768. Condition
Code is set on the result.

CEIR (000316). Convert Extended to Integer, Rounded. The
extended floating-point quantity in DCBA is converted to a
singleword signed quantity, with rounding according to the
contents of the most significant fractional bit. CBA is deleted,
and the singleword result is pushed onto the stack. Overflow is
set if the value of the operand was greater than 32767 or less
than -32768. Condition Code is set on the result.

4482507 A00 3/85 9-15

INSTRUCTION SET
Floating-Point Arithmetic

CFQ (000320). Convert Floating to Quadruple. The floating-point
guantity in BA is converted to a quadrupleword integer in DCBA,
Overflow is set if the value of the operand was greater than
(2**63)-1 or less than -(2**63). Condition Code is set on the
result.

CFQR (000321). Convert Floating to Quadruple, Rounded. The
floating-point quantity in BA is converted to a quadrupleword
integer in DCBA, with rounding according to the contents of the
most significant fractional bit. Overflow is set if the value of
the operand was greater than (2**63)-1 or less than -(2**63),
Condition Code is set on the result.

CEQ (000322). Convert Extended to Quadruple. The extended
floating-point quantity in DCBA is converted to a Quadrupleword
integer in DCBA, Overflow is set if the value of the operand was
greater than (2**63)-1 or less than -(2**63). Condition Code is
set on the result.

CEQR (000323). Convert Extended to Quadruple, Rounded. The
extended floating-point quantity in DCBA is converted to a
quadrupleword integer in DCBA, with rounding according to the
contents of the most significant fractional bit. Overflow is set
if the value of the operand was greater than (2**63)-1 or less
than -(2**63). Condition Code is set on the result.

CFE (000325). Convert Floating to Extended. The floating-point
guantity in BA is converted to an extended floating-point
quantity. BA is deleted, and the four-word result is pushed onto
the stack.

CIF (000331). Convert Integer to Floating. The signed integer
in A is converted to a floating-point quantity. A is deleted,
and the two-word result is pushed onto the stack.

CDF (000306). Convert Double to Floating. The doubleword signed
integer in BA is converted to a floating-point quantity in BA,
with truncation if the result exceeds 23 significant bits.

9-16 482507 A00 3/85

INSTRUCTION SET
Floating-Point Arithmetic

CDFR (000326). Convert Double to Floating, Rounded. The
doubleword signed integer in BA is converted to a floating-point
quantity in BA, with rounding if the result exceeds 23
significant bits.

CQF (000324). Convert Quadruple to Floating. The quadrupleword
signed integer in DCBA is converted to a floating-point quantity,
with truncation if the result exceeds 23 significant bits. DCBA
is deleted, and the two-word result is pushed onto the stack.

CQFR (000330). Convert Quadruple to Floating, Rounded. The
quadrupleword signed integer in DCBA is converted to a
floating-point quantity, with rounding if the result exceeds 23
significant bits. DCBA is deleted, and the two-word result is
pushed onto the stack.

CIE (000332). Convert Integer to Extended. The signed integer
in A is converted to an extended floating-point quantity. A is
deleted, and the four-word result is pushed onto the stack.

CDE (000334). Convert Double to Extended. The doubleword signed
integer in BA is converted to an extended floating-point
quantity. BA is deleted, and the four-word result is pushed onto
the stack.

CQE (000336). Convert Quadruple to Extended. The guadrupleword
signed integer in DCBA is converted to an extended floating-point
quantity in DCBA, with truncation if the result exceeds 55
significant bits.

CQER (000335). Convert Quadruple to Extended, Rounded. The
quadrupleword signed integer in DCBA is converted to an extended
floating-point quantity in DCBA, with rounding if the result
exceeds 55 significant bits.

482507 A0O 3/85 9-17

INSTRUCTION SET
Floating-Point Arithmetic

FLOATING-POINT FUNCTIONALS (OPTIONAL INSTRUCTIONS)

IDX1 (000344). Calculate Index, 1 Dimension. For a
one-dimensional array, IDX1l compares the subscript value in B
against lower and upper bounds in a two-word table in the current
code segment starting at the address specified in A. 1If the
value is in bounds, the element offset value is computed and is
stored in register R[7]. 1If the subscript is out of bounds,
overflow is set, R[7] receives the erroneous subscript, and CCL
indicates too low or CCG indicates too high. BA is then deleted.

IDX2 (000345). Calculate Index, 2 Dimensions. For a
two-dimensional array, IDX2 compares the subscript values in B
and C against lower and upper bounds in a four-word table in the
current code segment starting at the address in A, If the values
are in bounds, the element offset value is computed and stored in
register R[7]. 1If a subscript is out of bounds, overflow is set,
R[7] receives the erroneous subscript, and CCL indicates too low
or CCG indicates too high. CBA is then deleted.

IDX3 (000346). Calculate Index, 3 Dimensions. For a three-
dimensional array, IDX3 compares the subscript values in B, C,
and D against lower and upper bounds in a six-word table in the
current code segment starting at the address in A. If the values
are in bounds, the element offset value is computed and stored in
register R[7]. 1If any subscript is out of bounds, overflow is
set, R[7] receives the erroneous subscript, and CCL indicates too
low or CCG indicates too high. DCBA is then deleted.

IDXP (000347). Calculate Index, Code Space. For an
n—-dimensional array, IDXP compares the subscript values in n
stack registers (B, C, D, etc.) against lower and upper bounds in
a table in the current code segment (2n words) specified by a
starting address in A. (The first word of the table in memory is
the number of dimensions.) If the values are in bounds, the
element offset value is computed and stored in register R[7]. 1If
any subscript is out of bounds, overflow is set, R[7] receives
the erroneous subscript, and CCL indicates too low or CCG
indicates too high. All stack data used is deleted.

IDXD (000317). Calculate Index, Data Space. For an
n—-dimensional array, IDXD compares the subscript values in n
stack registers (B, C, D, etc.) against lower and upper bounds in

9-18 4482507 ADO 3/85

INSTRUCTION SET
Register Stack Manipulation

a table in the current data segment (2n words) specified by a
starting address in A. (The first word of the table in memory is
the number of dimensions.) 1If the values are in bounds, the
element offset value is computed and stored in register R[7]. 1If
any subscript is out of bounds, overflow is set, R[7] receives
the erroneous subscript, and CCL indicates too low or CCG
indicates too high. All stack data used is deleted.

REGISTER STACK MANIPULATION

EXCH (000004). Exchange A and B. A and B of the Register Stack
are interchanged. Condition Code is set on the result in A.

DXCH (000005). Double Exchange BA with DC. The doubleword
contained in DC is interchanged with the doubleword contained in
BA. Condition Code is set on the result in BA.

DDUP (000006). Double Duplicate BA in DC. The doubleword in the
top two registers of the stack is duplicated by pushing a copy of
it onto the Register Stack. Condition Code is set.

NOTE

For binary coding details of the following three
instructions (STAR, NSAR, LDRA), refer to Table A-7
in Appendix A.

STAR (00011-). Store A in a Register. The A Register contents
are stored in the register pointed to by the Register field of
the instruction. A is then deleted from the stack.

NSAR (00012-). Non-destructive Store A into a Register. The A
Register is stored in the register pointed to by the Register
field of the instruction.

LDRA (00013-). Load A from a Register. The contents of the
register pointed to by the Register field of the instruction are
pushed onto the stack. Condition Code is set.

482507 A00 3/85 9-19

INSTRUCTION SET
Boolean Operations

NOTE

For binary coding details of the following three
instructions (LDI, LDXI, LDLI), refer to Table A-4
in Appendix A.

LDI (100---)., Load Immediate Operand into A. The immediate
operand is pushed onto the stack, with the sign bit propagating
into the high-order bits. Condition Code is set.

LDXI (10----). Load Index Register with Immediate Operand. The
index register specified by the "x" field of the instruction is
loaded with the immediate operand, and the sign bit propagates
into the high- order bits. Condition Code is set.

LDLI (005---). Load Left Immediate Operand into bits 0:7 of A.
The immediate operand, shifted left eight places, is loaded into
A, with the sign bits propagating into the low-order bits of A,
Condition Code is set.

BOOLEAN OPERATIONS

Figure 9-2 illustrates the fundamental principles of boolean
operations as performed by four of the instructions. Figure 9-3
shows equivalent operations as performed on immediate operands.

LAND (000010). Logical AND A with B. A and B are logically
ANDed. The two words are deleted from the stack and the result
pushed on. Condition Code is set.

LOR (000011). Logical OR A with B. A and B are merged by a
logical inclusive OR. A and B are deleted and the result pushed
cnto the stack. Condition Code is set.

XOR (000012). Logical Exclusive OR A with B. The two words in A
and B of the Register Stack are combined by a logical exclusive
OR. The two words are then deleted and the result is pushed onto
the stack. Condition Code is set.

9-20) 82507 A0O 3/85

INSTRUCTION SET
Boolean Operations

LOGICAL AND
LAND Vo700 1 1] o‘ 1 1] OPERAND 1
0+0=0
0 :1 -0 V7740 0o 11 1 0] OPERAND 2
1+0=0
1+1=1 V. 710 0o 1]0 1 0] RESULT
LOGmAtg:. V77770 1 _1]0 1 1] OPERAND 1
0+0=0
0 :1 -1 V. /o 0o 1]1 1 0] OPERAND?2
1+0=1
141=1 % To 1 11 1 1] mesuLt
EXCLUS;(VC"ER‘?R 177270 1 1[0 1 1] OPERAND 1
0+0=0
0+1=1 v/ 0 0 1] 1 1 0] OPERAND2
1+0=1
1+1=0 VA0 1 0o]1 0o 1] RESULT
ONE'S COMPLEMENT
NOT: /7770 1 1] 0 1 1] OPERAND
0=1
1=0 V7741 o0 ol1 0 o] RESuULT
S5001-114

Figure 9-2. Boolean Operations

NOT (000013). One's Complement A. The word contained in
Register A of the stack is converted to its one's complement.
Condition Code is set.

NOTE

For binary coding details of the following four
instructions (ORRI, ORLI, ANRI, ANLI), refer to
Table A-4 in Appendix A.

ORRI (004---). OR Right Immediate Operand with A, The 8-bit
immediate operand is merged with the A Register by a logical
inclusive OR. The sign bit is not propagated, but is actually
part of the instruction; see Figure 9-3. Condition Code is set.

482507 ADO 3/85 9-21

INSTRUCTION SET
Boolean Operations

ORRI (OR RIGHT IMMEDIATE,

YoXo 7 070% ,0//04’/9;1\1 o[+ o 1]o

-
e
J

THE IMMEDIATE IS
TREATED AS:

/ N
[0Jo o oJo o oJo 1 o[]1 o 1]0 1 1] OPERAND 1

ORLI (OR LEFT IMMEDIATE)

boX o o 07" ng[§1j\1 0[] 1 0o 1Jo 1 1

THE IMMEDIATE IS
TREATED AS:

/
{1Jo 1 o1 o 1[1 0o 0o[o o o[0 0 0] OPERAND 1

ANRI (AND RIGHT IMMEDIATE)

VoY 0 07 0 704111 0o[1 0o 1]0 1 1

SIGN BIT IS
THE IMMEDIATE IS THl'Ea)gUEg:Egﬂ
TREATED AS: g : .

N
1] OPERAND 1

-

y
11 1 11 1 111 o]1 0 1]0

ANLI (AND LEFT IMMEDIATE)

v 0 077371111 o1 0 1]0 1 1]
N 7/

SIGN BIT IS
THE IMMEDIATE OPERAND IS P EXTENDED
TREATED AS: [" THROUGH .8:15)

Y
[1Toe 1 o1 o 1]1 1 1]1 1 1]1 1 1) OPERAND 1

S$5001-115

Figure 9-3. Boolean Instructions with Immediate Operands

ORLI (004---). OR Left Immediate Operand with A. The 8-bit
immediate operand is shifted left eight places and merged with A
by a logical inclusive OR. The sign bit is not propagated, but
is actually part of the instruction; see Figure 9-3, Condition
Code is set.

9-22 482507 A0 3/85

INSTRUCTION SET
Bit Deposit and Shift

ANRI (006---). AND Right Immediate Operand to A. The 8-bit
immediate operand is extended to 16 bits by propagating the sign
into the high-order bits, and the resulting integer is logically
ANDed to A; see Figure 9-3. Condition Code is set.

ANLI (007---). AND Left Immediate Operand with A. The 8-bit
immediate operand is shifted left eight places, the sign bit is
propagated into the low-order bits, and the resulting integer is
logically ANDed to A; see Figure 9-3. Condition Code is set.

BIT DEPOSIT AND SHIFT

DPF (000014). Deposit Field in A. This instruction combines the
words contained in registers A and C of the stack as a function
of a mask word contained in register B of the stack. A logical
OR operation is performed on the logical AND of B and C and the
logical AND of not B and A, so that all bits in C corresponding
to ones in B are deposited into corresponding bits in A. The
original three words are deleted from the stack and the result
pushed onto the stack. Condition Code is set. An example of
this operation is shown in Figure 9-4.

LLS (0300--). Logical (unsigned) Left Shift. If the Shift Count
field is zero, the word contained in B is shifted left by the
count (modulo %400) contained in A. A is then deleted from the
stack. However, if Shift Count is not zero, A is shifted left by
that number. Condition Code is set. Figure 9-5 presents a
comparison of logical (unsigned) shifts and arithmetic (signed)
shifts.

DLLS (1300--). Double Logical (unsigned) Left Shift. 1If the
Shift Count field is zero, the doubleword contained in CB is
shifted left by the count (modulo %400) contained in A. A is
then deleted from the stack. However, if Shift Count is not
zero, BA is shifted left by that number. Condition Code is set.

LRS (0301--). Logical (unsigned) Right Shift. 1If the Shift
Count field is zero, the word contained in B is shifted right by
the count (modulo %400) contained in A. A is then deleted from
the stack. However, if Shift Count is not zero, A is shifted
right by that number. Condition Code is set.

482507 A0O 3/85 9-23

INSTRUCTION SET
Bit Deposit and Shift

INTi: % 023003
i. (6:10): 5;
VALUE IN REGISTER STACK DO ABOVE:

0 1 4 7 10 13
c X0 070%0 o olo 1 o1 7064077070 VALUE TO BE DEPOSITED: 5
]

|
|
t

B8 Voo 707040, 1 11 1 1]1 070%07/0/,6] MASK CONTAINING *“1" BITS
| ! IN POSITIONS SUBJECT TO

| . DEPOSIT: (5:10)

| [

(t

A Bodo a7 00, 1 1o

o

0]l o 970¥0/1/,1] OPERAND ACCEPTING DEPOSIT:
% 023003

| |
| |
| |
| t
! 1

RESULTINA [o]Jo 1 oJo o oJo 1 ol1 o o0[o0o 1 1] %o020243

$5001-116

Figure 9-4. DPF Instruction Example

DLRS (1301--). Double Logical (unsigned) Right Shift. 1If the
Shift Count field is zero, the doubleword contained in CB is
shifted right by the count (modulo %400) contained in A. A is
then deleted from the stack. However, if Shift Count is not
zero, BA is shifted right by that number. Condition Code is set.

ALS (0302--). Arithmetic (signed) Left Shift. If the Shift
Count field is zero, the word contained in B is shifted left
preserving the sign bit by the count (modulo %400) contained in
A. A is then deleted from the stack. However, if Shift Count is
not zero, A is shifted left, preserving the sign bit, by that
number. Condition Code is set.

DALS (1302--). Double Arithmetic (signed) Left Shift. If the
Shift Count field is zero, the doubleword contained in CB is
shifted left, preserving the sign bit, by the count (modulo %400)
contained in A. A is then deleted from the stack. However, if
Shift Count is not zero, BA is shifted left, preserving the sign
bit, by that number. Condition Code is set.

9--24 4482507 AOO 3/85

INSTRUCTION SET
Bit Deposit and Shift

LEFT SHIFTS
ALS 3 (ARITHMETIC LEFT SHIFT THREE POSITIONS)

OPERAND INA: 0] 1 0 1] 1

ey

010 0 O0l1 1 1]0 0 1] % 056071

N /
— {
1
' N N\
RESULTINA: Jo[1 1 of[0D 0 o[1 1 1]0 0 1[0 0 0] % 060710

Y

STATE OF SIGN BIT
IS PRESERVED

LLS 3 (LOGICAL LEFT SHIFT THREE POSITIONS)
OPERANDINA: [0 1 0 1]1 t 0]/0 0 O0{1 1 170 0 1] % 056071

RESULTINA: [1]1 1 o]0 0 o0J1 1 1[0 0 1]0 0 0] % 160710

RIGHT SHIFTS
ARS 7 (ARITHMETIC RIGHT SHIFT SEVEN POSITIONS)

OPERANDINA: J1/71 1 1]J0o 0 1]1 1 0j0 0 0|0 0 1] % 171601

™ i
! v

RESULTINA: [1]1 1 1}1 1 1{1 1 111 0 0]1 1 1} % 177747

SIGN BIT IS PROPAGATED
SEVEN POSITIONS

LRS 7 (LOGICAL RIGHT SHIFT SEVEN POSITIONS)

OPERAND INA: [1[1 1 1]0 0 1t]1 1 0[0 0 0[]0 0 1] %171601

[

e O
e

RESULTINA: 0] 0 0 0]0 0 o0[1 1 1/1 0 O0[1 1 1] % 000747

§5001-117

Figure 9-5., Arithmetic Versus Logical Shifts

ARS (0303--). Arithmetic (signed) Right Shift. 1If the Shift
Count field is zero, the word contained in B is shifted right,
propagating the sign bit, by the count (modulo %400) contained in
A. A is then deleted from the stack. However, if Shift Count is
not zero, A is shifted right, propagating the sign bit, by that
number. Condition Code is set.

982507 AOO 3/85 9-25

INSTRUCTION SET
Byte Test

DARS (1303--). Double Arithmetic (signed) Right Shift. 1If the
Shift Count field is zero, the doubleword contained in CB is
shifted right, propagating the sign bit, by the count (modulo
%400) contained in A. A is then deleted from the stack.

However, if Shift Count is not zero, BA is shifted right,
propagating the sign bit, by that number. Condition Code is set.

BYTE TEST

BTST (000007). Byte Test A. The Condition Code is set on the
value of the test byte in bits 8:15 of A; CCL indicates ASCII
numeric, CCE indicates ASCII alphabetic, and CCG indicates
special ASCII character. A is deleted after the test.

MEMORY TO OR FROM REGISTER STACK

NOTE

For binary coding details of the first twelve
instructions below (LWP through ADM), refer to
Table A-3 in Appendix A,

LWP (-2----). Load Word from Program (Current Code Segment)

into A. The contents of the address which is computed as a
function of displacement (a signed 8-bit value), and optionally
indexing and indirection, are pushed onto the Register Stack.
Condition Code is set on the loaded word. Figure 9-6 illustrates
the addressing operations for the LWP instruction.

LBP (-2-4--)., Load Byte from Program (Current Code Segment)

into A. The contents of the P-relative byte address which is
computed as a function of displacement (a signed 8-bit value),
and optionally indexing and indirection, are pushed onto the
Register Stack. The high-order byte is set to zero. If the P
Register currently indicates an address in the upper half of the
code segment (bit 0 of P = 1), %$100000 is added to the computed
address, so that the address will always be relative to whichever
half of the segment P currently indicates. The Condition Code is
set on the value of the loaded byte in bits 8:15 of A; CCL
indicates ASCII numeric, CCE indicates ASCII alphabetic, and CCL
indicates special ASCII character. Figure 9-7 illustrates the
addressing operations for the LBP instruction, assuming addresses
in the first half of the code segment.

9-26 4982507 A00 3/85

INSTRUCTION SET
Memory to or from Register Stack

CODE
SEGMENT

F‘-//M

C[3433]

————— V777777 ciai3q]

/'//"_——4
]

INDIRECT. INDEXED

LI__%QOHIOEOQOIOIOIOHIOIOIO] _______________________ LWP8.IX | C[3728]
<)ZZ2ubminiali 4, e . - - - — o
1 Prad'™ .
INDEX DISPLACEMENT p //

-t J“_) -304 C(3737)
ST 1 I B

L 3]
l ~304
-l- -
ro-soo - 1
L__343_ __,
REGISTER L
STACK 3439
- +
i
L = RE 3

8§5001-118

Figure 9-6. LWP Instruction Addressing

4482507 A00 3/85 9-27

INSTRUCTION SET
Memory to or from Register Stack

CODE
AREA
b'\———‘1
DIRECT INDEXED clso]
REGISTER
STACK
177 +2=88,r=1
V222 cem
17 1 = right half
RI7] 17 —— =177
L2 X 80 =160
F== ="
L—_-f—-
—» 4
INDEX r
REG DISPLACEMENT
07Z.S7ERK17ZZK I [ATofolol v]_ """ _____ LBP-20X7 | Cl108]
P+1 |] CODE
LBP INDIRECT b REGISTER AREA
A %777770]0]e]o 11 Jolo] -~ """ __ """ [ez |cume
AN : /
DISPLACEMENT P REGISTER
E T e il T 213 crrel
24776 = 1552 [
2613 L//,-——-’
PRI e
[|
L 11 65 _
Il———» C[2082]
4165 + 2 = 2082,r = 1 W 777
1 = right half
NOTE: THESE EXAMPLES ASSUME ADDRESSES IN THE LOWER . ~—
HALF OF THE CODE SEGMENT, i.e., P.<0> =0.IF P,.<0> =1,
%100000 1S ADDED TO THE COMPUTED ADDRESS BEFORE THE
BYTE IS FETCHED FROM MEMORY.
$5001-119

Figure 9-7. LBP Instruction Addressing

9-28 82507 A00 3/85

INSTRUCTION SET
Memory to or from Register Stack

LDX (-3----). Load Index Register from Data Space. The index
register specified by the "x" field of the instruction is loaded
with the contents of the effective memory address. Condition
Code is set. Figure 9-8 shows the instruction word format for
memory data reference instructions, such as LDX.

NSTO (-34---). Nondestructive Store from A. The contents of the
A Register are stored into effective address memory location.
The Register Stack is not modified.

LOAD (-40---). Load A from Data Space. The contents of the
effective address memory location are pushed onto the stack.
Condition Code is set.

STOR (-44---). Store A into Data Space. The contents of the A
Register are stored into the effective memory location. A is
then deleted from the stack.

0
1
1 1

1171 | 1|0 |DISPLACEMENT (0:31)| L-MINUS-RELATIVE
11 1|11 |DISPLACEMENT (0.31)] S-MINUS-RELATIVE

0 5 6 7 15
_/ |V|\ S/ \\

! I x : MODE AND DISPLACEMENT \
: \ MODE
] DISPLACEMENT (0:255) G-RELATIVE
1 0 | DISPLACEMENT (0:127) L-PLUS-RELATIVE
| 0 | DISPLACEMENT (0:63) SG-RELATIVE
|
|
|

olo] =NO
o151 INDEXING
170 \ REGISTER
- STACK
™~ R[5] [INDEX VALUE
\ R[6] | INDEX VALUE
= DIRECT R(7] [INDEX VALUE
[1] = INDIRECT

S5001-120

Figure 9-8. Memory Reference Instruction Format

482507 A00 3/85 9-29

INSTRUCTION SET
Memory to or from Register Stack

LDB (-5----). Load A with Byte from Data Space. The contents of
the effective memory location are loaded into bits 8:15 of A.
(Refer to Figure 4-12 in Section 4 for calculation of the
effective address in byte addressing.) The Condition Code is set
on the value of the loaded byte in bits 8:15 of A; CCL indicates
ASCII numeric, CCE indicates ASCII alphabetic, and CCG indicates
special ASCII character.

STB (-54---). Store Byte from A to Data Space. The contents of
the byte in bits 8:15 of A are stored in the effective memory
location. (Refer to Figure 4-12 in Section 4 for calculation of
the effective address in byte addressing.)

LDD (-6----). Load Double from Data Space into BA. The
doubleword integer contained in the effective memory location is
pushed into the stack. Condition Code is set. Figure 9-9
illustrates the addressing methods for doubleword instructions.

STD (-64---). Store Double from BA into Data Space. The
contents of BA are stored in the effective memory location. BA
is deleted.

LADR (-7----). Load G-Relative Address of Variable into A. The
G-relative address of the variable is pushed onto the stack.

ADM (-74---). Add A to Variable in Data Space. The A Register
is added in integer form to the contents of the effective memory
location and the Condition Code is set on the sum. Overflow is
set if the result is greater than 32767 or less than -32768.
Carry can also be set. A is then deleted from the stack.

NOTE
For binary coding details of the following six

instructions (PUSH through SBXX), refer to Table A-5
in Appendix A.

9-30 4482507 A00 3/85

INSTRUCTION SET
Memory to or from Register Stack

DIRECT. NO INDEXING

B0 lolo]o]o]o]ofo]] 1][1] : 7 -
Y : Aéé

INDEX

REG DISPLACEMENT
(NONE)
M
G-RELATIVE
ADDRESSING
MODE
G[0]
= -
INDIRECT. INDEXED
9
S [of1]vJoJoeJoJoJo]1]JoJo] 1] > 247 G{9]
N\ I /
G-RELATIVE DISPLACEMENT
ADDRESSING REGISTER
MODE STACK
INDEX
REG 247
* -
_ - 27 -3 %

281

© 7 Acew

|

S$5001-121

Figure 9-9. Doubleword Addressing

PUSH (024nrc). Push Registers to Data Space. This instruction
transfers the contents of a specified number of elements in the
Register Stack to the top of the data stack in memory. The "n"
field of the instruction is the value to which RP will be set
following the instruction; the "r" field specifies the last
register stack element to be pushed; the "c" field is the number

482507 A0O 3/85 9-31

INSTRUCTION SET
Memory to or from Register Stack

of registers minus one that will be pushed to memory. Following
the PUSH instruction, the S register points to the last element
pushed onto the memory stack. If the resultant value of S is
greater than %77777, a stack overflow trap occurs. Figure 9-10
illustrates the bit fields and the action of the PUSH
instruction,

POP (1l24nrc). Pop Data Space to Registers. This instruction
loads the Register Stack with the top elements of the data stack
(as indicated by the current S register setting). The "n" field
of the instruction indicates the value RP will have following the
instruction; the "r" field specifies the last Register Stack
element to be loaded from memory; the "c" field specifies the
number of registers minus one that will be loaded. 1If the
resultant value of S is greater than %77777, a stack overflow
trap occurs. Figure 9-10 illustrates the bit fields and the
action of the POP instruction.

LWXX (0254--, 0264--). Load Word Extended, Indexed. The word
contained in a computed extended memory location is loaded onto
the stack, replacing the prior contents of A. The extended
memory address is obtained as follows. The displacement value (0
through 63) in bits 10 through 15 of the instruction word is
added to a base value which is either G[0] (coded 0254--) or the
current L register value (coded 0264--); the data word so
indicated is assumed to be the first word of a two-word extended
memory pointer. The index value in A is sign-extended, then
arithmetically shifted left one bit position (multiplication by
2, since this instruction requires word addressing rather than
byte addressing) and is then added to the extended memory pointer
to address the word that is to be loaded. Condition Code is set.

SWXX (0255--, 0265--). Store Word Extended, Indexed. The word
contained in B is stored into a computed extended memory
location. The extended memory address is obtained as follows.,
The displacement value (0 through 63) in bits 10 through 15 of
the instruction word is added to a base value which is either
G[0] (coded 0255--) or the current L register value (coded
0265--); the data word so indicated is assumed to be the first
word of a two-word extended memory pointer. The index value in A
is sign-extended, then arithmetically shifted left one bit
position (multiplication by 2, since this instruction requires
word addressing rather than byte addressing) and is then added to
the extended memory pointer to address the location that is to
receive the word being stored.

9-32 4482507 A00 3/85

INSTRUCTION SET

Memory to or from Register Stack

n r c
1 -~ | N 1
PUSH 20 0] + [[[1]o]1]1]0] 1]
AN | AN l '
NEW RP LAST REG COUNT-1
R{7] R[5] (6 REGS) DATA
SEGMENT
REGISTER N "]
STACK
R[0] 1
2
3 1
4 2
5 3
6 4
5
R(7] <— RP AFTER PUSH “w»| SREGISTER |—» 3
AFTER PUSH
|]
n r c
1 A 1
/ 7 N/
POP DX T TH] 1 Jol1J1Jo]1]1]of1]
T VAN ' /.]
NEW RP LAST REG COUNT-1 DATA
R[5] R[5] (6 REGS) SEGMENT
v’—_—‘
REGISTER
STACK
R[0] ! _»[SREGISTER_]—>
2 / AFTER POP r']
3 2
- /
4 - : 3
5 \ 4
6 -+— RP AFTER POP M e e o 5
~L SREGISTER | —» 6
R[7] BEFORE POP
$5001-122

Figure 9-10.

I1| 82507 A00 3/85

PUSH and POP Instructions

9-33

INSTRUCTION SET
Load and Store by Address on Register Stack

LBXX (0256--, 0266--). Load Byte Extended, Indexed. The byte
contained in a computed extended memory location is loaded onto
the stack, replacing the prior contents of A. The extended
memory address is obtained as follows. The displacement value (0
through 63) in bits 10 through 15 of the instruction word is
added to a base value which is either G[0] (coded 0256--) or the
current L register value (coded 0266--); the data word so
indicated is assumed to be the first word of a two-word extended
memory pointer. The index value in A is then added to the
extended memory pointer to address the byte that is to be loaded.
The Condition Code is set on the value of the loaded byte in bits
8:15 of A; CCL indicates ASCII numeric, CCE indicates ASCII
alphabetic, and CCL indicates special ASCII character.

SBXX (0257--, 0267--). Store Byte Extended, Indexed. The byte
contained B.<8:15> is stored into a computed extended memory
location., The extended memory address is obtained as follows.
The displacement value (0 through 63) in bits 10 through 15 of
the instruction word is added to a base value which is either
G[0] (coded 0257--) or the current L register value (coded
0267--); the data word so indicated is assumed to be the first
word of a two-word extended memory pointer. The index value in A
is then added to the extended memory pointer to address the
location that is to receive the byte being stored.

LOAD AND STORE BY ADDRESS ON REGISTER STACK

ANS (000034). AND to SG Memory. The word in B is logically
ANDed to a word in the system data segment that is specified by a
l6-bit address in A. The result remains in the system data
location, and A and B are deleted from the stack. 1If privileged
mode is in effect when this instruction is executed, A refers to
an address in the system data segment. Otherwise data segment
selection (system or user) is determined by the DS bit (bit 6) of
the ENV register. Condition Code is set.

ORS (000035). OR to SG Memory. The word in B is logically ORed
to a word in the system data segment that is specified by a
16-bit address in A. The result remains in the system data
location, and A and B are deleted from the stack. If privileged
mode is in effect when this instruction is executed, A refers to
an address in the system data segment. Otherwise data segment
selection (system or user) is determined by the DS bit (bit 6) of
the ENV register. Condition Code is set.

9-34 482507 AOO 3/85

INSTRUCTION SET
Load and Store by Address on Register Stack

ANG (000044). AND to Memory. The word in B is logically ANDed
to a word in the current data segment that is specified by a
l6-bit address in A. The result remains in the data segment
location, and A and B are deleted from the stack. Condition Code
is set.

ORG (000045). OR to Memory. The word in B is logically ORed to
a word in the current data segment that is specified by a 1l6-bit
address in A. The result remains in the data segment location,
and A and B are deleted from the stack. Condition Code is set.

ANX (000046). AND to Extended Memory. The word in C is
logically ANDed to a word in extended memory that is specified by
a 32-bit address in BA., The result remains in the memory
location, and A, B, and C are deleted from the stack. Condition
Code is set.

ORX (000047). OR to Extended Memory. The word in C is logically
ORed to a word in extended memory that is specified by a 32-bit
address in BA. The result remains in the memory location, and A,
B, and C are deleted from the stack. Condition Code is set.

LWUC (000342). Load Word from User Code Space. A word in the
user code segment, specified by a 16-bit address in A, is loaded
onto the stack, replacing the prior contents of A. Condition
Code is set.

LWAS (000350). Load Word via A from System. The word contained
in the effective memory location pointed to by the address in A
is loaded onto the stack, replacing the prior contents of A. 1If
privileged mode is in effect when this instruction is executed, A
refers to an address in the system data segment. Otherwise data
segment selection (system or user) is determined by the DS bit
(bit 6) of the ENV register. Condition Code is set.

LWA (000360). Load Word via A. The word contained in the
effective memory location pointed to by the address in A is
loaded onto the stack, replacing the prior contents of A, LWA
accesses the current data segment only. Condition Code is set.

4482507 A0O 3/85 9-35

INSTRUCTION SET
Load and Store by Address on Register Stack

SWAS (000351). Store Word via A into System. The word contained
in B is stored into the effective memory location pointed to by
the address in A. Both words are then deleted from the stack.

If privileged mode is in effect when this instruction is
executed, A refers to an address in the system data segment.
Otherwise data segment selection (user or system) is determined
by the DS bit (bit 6) of the ENV register.

SWA (000361). Store Word via A. The word contained in B is
stored into the effective memory location pointed to by the
address in A, Both words are then deleted from the stack. SWA
accesses the current data segment only.

LDAS (000352). Load Double via A from System. The doubleword
contained in the effective memory locations starting at the
location pointed to by the address in A is loaded into BA (after
the address in A is deleted). 1If privileged mode is in effect
when this instruction is executed, A refers to an address in the
system data segment. Otherwise data segment selection (user or
system) is determined by the DS bit (bit 6) of the ENV register.
Condition Code is set.

LDA (000362). Load Double via A. The doubleword contained in
the effective memory locations starting at the location pointed
to by the address in A is loaded into BA (after the address in A
is deleted). LDA accesses the current data segment only.
Condition Code is set.

SDAS (000353). Store Double via A into System. The doubleword
in CB is stored into the effective memory locations starting at
the location pointed to by the address in A. CBA is then
deleted. 1If privileged mode is in effect when this instruction
is executed, A refers to an address in the system data segment.
Otherwise data segment selection (user or system) is determined
by the DS bit (bit 6) of the ENV register.

SDA (000363). Store Double via A. The doubleword in CB is
stored into the effective memory locations starting at the
location pointed to by the address in A. CBA is then deleted.
SDA accesses the current data segment only.

9-36 482507 A0 3/85

INSTRUCTION SET
Load and Store by Address on Register Stack

LBAS (000354). Load Byte via A from System. The byte contained
in the effective memory location pointed to by the byte address
in A is loaded onto the stack, replacing the prior contents of A.
If privileged mode is in effect when this instruction is
executed, A refers to an address in the system data segment.
Otherwise data segment selection (user or system) is determined
by the DS bit (bit 6) of the ENV register. The Condition Code is
set on the value of the loaded byte in bits 8:15 of A; CCL
indicates ASCII numeric, CCE indicates ASCII alphabetic, and CCL
indicates special ASCII character.

LBA (000364). Load Byte via A. The byte contained in the
effective memory location pointed to by the byte address in A is
loaded onto the stack, replacing the prior contents of A, LBA
accesses the current data segment only. The Condition Code is
set on the value of the loaded byte in bits 8:15 of A; CCL
indicates ASCII numeric, CCE indicates ASCII alphabetic, and CCL
indicates special ASCII character.

SBAS (000355). Store Byte via A into System. The byte in B is
stored into the effective memory location pointed to by the byte
address in A. Both B and A are then deleted. 1If privileged mode
is in effect when this instruction is executed, A refers to an
address in the system data segment. Otherwise data segment
selection (user or system) is determined by the DS bit (bit 6) of
the ENV register.

SBA (000365). Store Byte via A. The byte in B is stored into
the effective memory location pointed to by the byte address in
A. Both B and A are then deleted. SBA accesses the current data
segment only.

DFS (000357). Deposit Field into System Data. Using the mask
bits in register B, this instruction deposits the bits in
register C into the location specified by the 16-bit address in
A. A, B, and C are then deleted. (See Figure 9-4 and DPF
description under "Bit Deposit and Shift" for further details on
this operation.) If privileged mode is in effect, the destination
is in the system data segment; otherwise, the destination is in
the current data segment. A, B, and C are then deleted.
Condition Code is set.

44 82507 A00 3/85 9-37

INSTRUCTION SET
Load and Store by Address on Register Stack

DFG (000367). Deposit Field in Memory. Using the mask bits in
register B, this instruction deposits the bits in register C into
the location specified by the 16-bit address in A. A, B, and C
are then deleted. (See Figure 9-4 and DPF description under "Bit
Deposit and Shift" for further details on this operation.) DFG
accesses the current data segment. Condition Code is set.

LBX (000406). Load Byte Extended. The byte in the extended
memory location specified by the 32-bit address in registers B
and A is loaded onto the Register Stack (bits 8 through 15 of Aa),
after the address in BA is deleted. The left byte is zero. The
Condition Code is set on the value of the loaded byte in bits
8:15 of A; CCL indicates ASCII numeric, CCE indicates ASCII
alphabetic, and CCL indicates special ASCII character,

SBX (000407). Store Byte Extended. The byte in bits 8 through
15 of C is stored into the extended memory location specified by
the 32-bit address in registers B and A. C, B, and A are then
deleted.

LWX (000410). Load Word Extended. The word in the extended
memory location specified by the 32-bit address in registers B
and A is loaded into register A (after the address in BA is
deleted). Condition Code is set.

SWX (000411). Store Word Extended. The word in register C is
stored into the extended memory location specified by the 32-bit
address in registers B and A. C, B, and A are then deleted.

LDDX (000412). Load Doubleword Extended. The doubleword
starting at the extended memory location specified by the 32-bit
address in registers B and A is loaded onto the register stack,
replacing the prior contents of B and A. Condition Code is set.

SDDX (000413). Store Doubleword Extended. The doubleword in
registers D and C is stored into extended memory starting at the
location specified by the 32-bit address in registers B and A.
All four words are then deleted from the Register Stack.

9-38 482507 A00 3/85

INSTRUCTION SET
Load and Store by Address on Register Stack

LOX (000414). Load Quadrupleword Extended. The quadrupleword
starting at the extended memory location specified by the 32-bit
address in registers B and A is loaded into registers DCBA of the
Register Stack (after the address in BA is deleted). Condition
Code is set.

SOX (000415). Store Quadrupleword Extended. The quadrupleword
in registers FEDC is stored into extended memory (8 bytes)
starting at the location specified by the 32-bit address in
registers B and A. All six words are then deleted from the
Register Stack.

DFX (000416). Deposit Field Extended. Using the mask bits in
register C, this instruction deposits the bits in register D into
the extended memory location specified by the 32-bit address in
registers B and A. All four words are then deleted from the
Register Stack. (See Figure 9-4 and DPF description under "Bit
Deposit and Shift" for further details on this operation.)
Condition Code is set.

SCS (000444). Set Code Segment. Registers B and A are assumed
to contain a 17-bit byte address. This instruction sets a
logical segment number into the segment number field (bits 0
through 14 of B) to formulate a complete 32-bit address. Only
two values may be set for this field: 2 (indicating current code
segment) if either the CS or LS bit of the Environment Register
contains a one; 3 (indicating user code segment) if both of these
bits are zero.

LQAS (000445). Load Quadrupleword via A from SG. The
quadrupleword contained in the four memory locations starting at
the location pointed to by the address in A is loaded into DCBA
(after the address in A is deleted). The address in A refers to
an address in the system data segment. Condition Code is set.
This is a privileged instruction.

SQAS (000446). Store Quadrupleword via A to SG. The
quadrupleword in registers EDCB is stored into the four memory
locations starting at the location pointed to by the address in
A. The address in A refers to an address in the system data
segment. All five words are then deleted from the Register
Stack. This is a privileged instruction,

4482507 A00 3/85 9-39

INSTRUCTION SET
Branching

BRANCHING

NOTE

For binary coding details of the following branch
instructions, refer to Table A-6 in Appendix A.

BIC (-100--). Branch if CARRY. If the carry bit (K) in the
Environment Register is set (K = 1), a direct or indirect branch
is taken (depending on the "i" field of the instruction). If the
condition is not met, the next instruction is executed. Figure
9-11 compares direct and indirect branching.

BUN (-104--). Branch Unconditionally. A direct or indirect
unconditional branch is taken (depending on the "i" field of the
instruction).

BOX (-1-4--). Branch on X Less Than A and Increment X. If the
index register as specified by the "x" field of the instruction
is less than A, that index register is incremented and a direct
or indirect branch is taken (depending on the "i" field of the

instruction). If X is greater than or equal to A, A is deleted
from the stack and the next instruction is executed.

BGTR (-11---). Branch if CC is Greater. If the Condition Code
in the ENV register is CCG (N = 0, Z = 0), a direct or indirect
branch is taken (depending on the "i" field of the instruction).
If the condition is not met, the next instruction is executed.

BEQL (-12---). Branch if CC is Equal. If the Condition Code in
the ENV register is CCE (N = 0, Z = 1), a direct or indirect
branch is taken (depending on the "i" field of the instruction).
If the condition is not met, the next instruction is executed.

BGEQ (-13---). Branch if CC is Greater or Equal. If the
Condition Code in the ENV register is CCG or CCE (N = 0) a direct
or indirect branch is taken (depending on the "i" field of the
instruction). If the condition is not met, the next instruction
is executed.

9-40 482507 A0O 3/85

INSTRUCTION SET

Branching
CODE
SEGMENT
DIRECT r/\——’\
W/W;{ 0JoJoJoJ1[1 o]]:::::::__:__—___—::__:—__: BRANCH +13 | cl105]
] » P REGISTER v
DISPLACEMENT /// i T
+13 l
—
[7777777 civol
P REGISTER __/\/\J
CODE
INDIRECT SEGMENT
W
O o Lol olo a3~ - - T [sRsiJcisol
P REGISTER
DISPLACEMENT 321 /
i - N
l <2 T77> 0 207 C[336]
T
336 y 207 e —
+ -
I N
P REGISTER
$5001-123
Figure 9-11. Direct vs. Indirect Branching
9-41

Il’| 82507 A00 3/85

INSTRUCTION SET
Branching

BLSS (-14---). Branch if CC is Less. If the Condition Code in
the ENV register is CCL (N = 1), a direct or indirect branch is
taken (depending on the "i" field of the instruction). 1If the
condition is not met, the next instruction is executed.

BAZ (-144--). Branch on A Zero. If the A Register equals zero,
a direct or indirect branch is taken (depending on the "i" field
of the instruction). If the A Register does not equal zero, the
next instruction is executed. 1In either case, A is deleted from
the stack.

BNEQ (-15---). Branch if CC is not equal. If the Condition Code
in the ENV register is not CCE (Z = 0), a direct or indirect
branch is taken (depending on the "i" field of the instruction).
If the condition is not met, the next instruction is executed.

BANZ (-154--). Branch on A Not Zero. If the A Register is
non-zero, a direct or indirect branch is taken (depending on the
"i" field of the instruction). If the A Register equals zero,
the next instruction is executed. 1In either case, A is deleted
from the stack.

BLEQ (-16---). Branch if CC is Less or Equal. If the Condition
Code in the ENV register is CCL or CCE (N = 1 or Z = 1), a direct
or indirect branch is taken (depending on the "i" field of the
instruction). If the condition is not met, the next instruction
is executed.

BNOV (-164--). Branch if no OVERFLOW. 1If the Overflow bit (V)
in the ENV register is not set (V = 0), a direct or indirect
branch is taken (depending on the "i" field of the instruction).
If the condition is not met, the next instruction is executed.

BNOC (-17---). Branch if no CARRY. If the Carry bit (K) in the
ENV register is not set (K = 0), a direct or indirect branch is
taken (depending on the "i" field of the instruction). If the
condition is not met, the next instruction is executed.

9-42 4482507 A0 3/85

INSTRUCTION SET
Moves, Compares, Scans, and Checksum Computations

BFI (000030). Branch Forward Indirect. The instruction expects
an offset from the current P register setting to be contained in
A. An indirect branch is then made through the location
specified by P + A. Figure 9-12 illustrates the action of the
BFI instruction,

MOVES, COMPARES, SCANS, AND CHECKSUM COMPUTATIONS

MNGG (000226). Move Words While Not Duplicate. Register D is
assumed to contain a destination address in the current data
segment, and register C is assumed to contain a source address in
the current data segment. The MNGG instruction moves words from
the source to the destination while the count value in register B
is not zero and the source word is not equal to the word in A.
The word in A is always the previous word moved. The instruction
stops on the first duplicate word or on zero count. After
execution, the word in A is deleted, so that A then contains the
count, B contains the source address, and C contains the
destination address. Interrupts can occur after each word moved.

CDG (000366). Count Duplicate Words. Beginning at the address
(in the current data segment) specified in register C, and for a
maximum count of words specified in register B, this instruction
counts the number of duplicate words in the buffer. Register A
is incremented on each duplicate found, and may contain an
initial value. After execution, A contains the original A value
plus the number of duplicate words, B contains a count of the
words left in the buffer (zero if empty), and C contains the
address of the first word that did not match its predecessor (or
the word after the last word in the buffer). The comparison
actually starts with the words specified by C and C-1. This
instruction is intended to be used in conjunction with MNGG.
Interrupts can occur after each compare.

NOTE

For binary coding details of the following six move
instructions (MOVW, MOVB, COMW, COMB, SBW, SBU), refer
to Table A-5 in Appendix A. Also, for these six
instructions, it is possible to specify either
ascending or descending directions. Figure 9-13
provides a comparison of ascending and descending
moves, compares, and scans, as described in the
following paragraphs. Bit 9 of the instruction word
specifies ascending (0) or descending (1).

4482507 A0O 3/85 9-43

INSTRUCTION SET
Moves, Compares,

Scans, and Checksum Computations

REGISTER
STACK
A 0
REGISTER
STACK
A 3

s st |
P REGISTER BFI Cl161]
o +—
310
o, w | B
* 1070
L 1134
[it |
L__12__,
e SR DY
w—x——
209 ~
+ e
s | ———> 7 ciari
P REGISTER
—
r—v
P REGISTER BFi _|ciet
| 162 |——-————> 209
310
BRANCH
3 863 LiST
>+ > 1070
l 1134
=" — "1
L__18 _ _J
u/’““’”ﬂu
M-‘-
1070
1235 |————-——>1///7////[/ C{1235]
P REGISTER
$5001-124

Figure 9-12. Branch Forward Indirect

9-44

ﬂ" 82507 AQO 3/85

INSTRUCTION SET
Moves, Compares, Scans, and Checksum Computations

9
X w VA A A
MOVESTEP:'—____*J

0 = LEFT-TO-RIGHT (ASCENDING ADDRESSES)

1 = RIGHT-TO-LEFT (DESCENDING ADDRESSES) “/V’j
DEST
MOVESTEP = 0 (ASCENDING)
REGISTER L —— COUNT
STACK ELEMENTS

c [DESTINATION ———

B SOURCE

A COUNT \

l SOURCE
L___/"*\.‘—

T —
DEST ﬁ
MOVESTEP = 1 (DESCENDING)
REGISTER
STACK COUNT
C DESTINATION | ———— ELEMENTS
B SOURCE _ — e
A COUNT
SOURCE —
>
M—“
§5001-125

Figure 9-13. Direction for Moves, Compares, and Scans

4482507 A0O 3/85 9-45

INSTRUCTION SET
Moves, Compares, Scans, and Checksum Computations

MOVW (026---). Move Words. This instruction transfers a
specified number of words from one area of memory to another.
The instruction expects A to contain a word count, B to contain
the source word address, and C to contain the destination word
address. The source and destination maps to be used are
specified by the "s" and "d" fields of the instruction and by the
DS, CS, LS, and PRIV bits of the ENV register. The "m" field of
the instruction (see format diagram at the top of Figure 9-13)
determines whether the source and destination addresses will be
incremented ("m" = 0) or decremented ("m" = 1) after each move.
The "n" field of the instruction is the value to which RP is set
upon instruction end. The move is made one word at a time from
the source to the destination. After each word transfer the
addresses are decremented or incremented and A is decremented.
If A is equal to zero the instruction ends; otherwise the next
word is moved. Interrupts can occur after each word moved.

MOVB (126---). Move Bytes. This instruction transfers a
specified number of bytes from one area of memory to another.

The instruction expects A to contain a byte count, B to contain
the source byte address, and C to contain the destination byte
address. The source and destination maps to be used are
specified by the "s" and "d" fields of the instruction and by the
DS, CS, LS, and PRIV bits of the ENV register. The "m" field of
the instruction determines whether the source and destination
addresses will be incremented ("m" = 0) or decremented ("m" = 1)
after each move. The "n" field of the instruction is the value to
which RP is set upon instruction end. The move is made one byte
at a time from the source to the destination. After each byte
transfer the addresses are decremented or incremented and A is
decremented. If A is equal to zero, the instruction ends;
otherwise the next byte is moved. If the source is a code
segment and the P register currently indicates an address in the
upper half of the code segment (bit 0 of P = 1), %100000 is added
to the computed address, so that the source and destination
addresses will always be relative to whichever half of the
segment P currently indicates. Interrupts can occur after each
destination word (two bytes) moved.

COMW (0262--). Compare Words. This instruction compares one
area of memory with another, a word at a time, until a
miscomparison occurs or until a specified number of comparisons
have been made. The words being compared are treated as unsigned
guantities. COMW expects A to contain a word count, B to contain
a source word address and C to contain a destination word
address. The source and destination maps to be used are specified
by the "s" and "d" fields of the instruction and by the DS, CS,
LS, and PRIV bits of the ENV register. The "m" field determines

9-46 482507 A0O 3/85

INSTRUCTION SET
Moves, Compares, Scans, and Checksum Computations

whether the source and destination addresses will be incremented
("m" = 0) or decremented ("m" = 1) after each comparison. The
"n" field is the value to which RP will be set upon instruction
termination. The instruction fetches the contents of source and
destination addresses, compares them, increments or decrements
the address by one according to the "m" field, and decrements the
word count in A until either A = 0 or a miscomparison is reached.
If termination is due to a miscomparison, CC indicates the
results of the compare or CCE due to A going to zero. Interrupts
can occur after each comparison.

COMB (1262--). Compare Bytes. This instruction compares one
area of memory with another, a byte at a time, until the bytes
are not equal or until a specified number of comparisons have
been made. It expects A to contain a byte count, B to contain a
source byte address and C to contain a destination byte address.
The source and destination maps to be used are specified by the
"s" and "d" fields of the instruction and by the DS, CS, LS, and
PRIV bits of the ENV register. If the source address is in a
code segment, the byte address is taken to be in the same 64K
half of the code space as the current P register value. The "m"
field determines whether the source and destination addresses
will be incremented ("m" = 0) or decremented ("m" = 1) after each
comparison. The "n" field is the value to which RP will be set
upon instruction termination. The instruction fetches the
contents of source and destination addresses, compares them,
increments or decrements the address by one according to the "m"
field, and decrements the byte count in A until either A = 0 or a
miscomparison is reached. If termination is due to a
miscomparison, CCG indicates that the byte at C is greater than
the byte at B, or CCL indicates that the byte at C is less than
the byte at B; A indicates the number of bytes left to compare.
If termination is due to the count running out, CCE indicates
that all bytes compared exactly, and C and B will point to the
next locations not compared. Interrupts can occur after each
comparison.

SBW (1264--). Scan Bytes While. The SBW instruction expects A
to contain a comparison byte in bits 8:15 and B to contain the
byte address of the string to be scanned. The map to be used is
determined by the "s" field of the instruction and by the DS, CS,
LS, and PRIV bits of the ENV register. The "m" field of the
instruction determines whether the source address will be
incremented ("m" = 0) or decremented ("m" = 1) after each
comparison. The scan is terminated when either a null byte is
found in the string or a byte in the string does not match the
test byte in A. When null byte termination occurs, the Carry (K)
bit in the ENV Register is set. 1In either termination case, B

4 82507 A00 3/85 9-47

INSTRUCTION SET
Moves, Compares, Scans, and Checksum Computations

points to the byte address that caused termination. RP is set to
the "n" field of the instruction at instruction termination.
Interrupts can occur after each comparison,

SBU (1266--). Scan Bytes Until. The S$BU instruction expects
A.<8:15> to contain a test byte and B to contain the byte address
of the string to be scanned. The map to be used is determined by
the "s" field of the instruction and by the DS, CS, LS, and PRIV
bits of the ENV register. The "m" field of the instruction
determines whether the scan address will be incremented ("m" = 0)
or decremented ("m" = 1) after each comparison. The scan is
terminated when either a null byte is found in the string or the
test byte matches a byte in the string. The Carry (K) bit is set
in the ENV register when null byte termination occurs. In either
case, B points to the byte address that caused the scan to cease.
RP is set to the "n" field of the instruction at termination.
Interrupts can occur after each comparison.

MNDX (000227). Move Words While Not Duplicate, Extended. FE is
assumed to contain a 32-bit destination address in extended
memory, and DC is assumed to contain a 32-bit source address.
The MNDX instruction moves words from the source to the
destination while the count value in register B is not zero and
the source word is not equal to the word in A, The word in A is
always the previous word moved. The instruction stops on the
first duplicate word or on zero count. After execution, the word
in A is deleted, so that A then contains the count, CB contains
the source address, and ED contains the destination address.
Interrupts can occur after each word has been transferred.

CDX (000356). Count Duplicate Words, Extended. Beginning at the
32-bit address (in extended memory) specified in DC, and for a
maximum count of words specified in B, this instruction counts
the number of duplicate words in the buffer. A is incremented on
each duplicate found, and may contain an initial value. After
execution, A contains the original A value plus the number of
duplicate words, B contains a count of the words left in the
buffer (zero if empty), and DC contains the extended address of
the first word that did not match its predecessor (or the word
after the last word in the buffer). The comparison actually
starts with the words specified by DC and DC-2. Interrupts can
occur after each comparison. This instruction is intended to be
used in conjunction with MNDX.

9-48 4482507 AO0 3/85

INSTRUCTION SET
Moves, Compares, Scans, and Checksum Computations

MVBX (000417). Move Bytes Extended. This instruction transfers
a specified number of bytes from one area of extended memory to
another. The instruction expects A to contain a byte count, CB
to contain a 32-bit source byte address, and ED to contain a
32-bit destination byte address. The move is made one byte at a
time from the source to the destination. After each byte
transfer the addresses are incremented and A is decremented. If
A is equal to zero the instruction ends; otherwise the next byte
is moved. All five words are deleted from the stack when the
instruction ends. Interrupts can occur after each byte has been
transferred.

MBXR (000420). Move Bytes Extended, Reverse. This instruction
transfers a specified number of bytes from one area of extended
memory to another, using reverse (decrementing) addresses. The
instruction expects A to contain a byte count, CB to contain a
32-bit source byte address, and ED to contain a 32-bit
destination byte address. The move is made one byte at a time
from the source to the destination. After each byte transfer the
addresses are decremented and A is decremented. If A is equal to
zero the instruction ends; otherwise the next byte is moved. All
five words are deleted from the stack when the instruction ends.
Interrupts can occur after each byte transferred.

MBXX (000421). Move Bytes Extended, and Checksum. This
instruction transfers a specified number of bytes from one area
of extended memory to another, and computes a checksum value
(byte exclusive "or") after each byte is moved. The instruction
expects A to contain a byte count, CB to contain a 32-bit source
byte address, ED to contain a 32-bit destination byte address,
and F to contain the initial checksum value. The move is made
one byte at a time from the source to the destination. After
each byte transfer the addresses are incremented, A is
decremented, and new checksum is entered in F. If A is equal to
zero, the instruction ends; otherwise the next byte is moved.
Five words are deleted from the Register Stack when the
instruction ends, leaving the final checksum value in A,
Interrupts can occur after each byte has been transferred.

CMBX (000422). Compare Bytes Extended. This instruction
compares one area of extended memory with another, a byte at a
time, until the bytes are not equal or until a specified number
of comparisons have been made. Before beginning the compare,
CMBX checks to make sure that both strings in the compare are
mapped in extended memory. This instruction expects A to contain
a byte count, CB to contain a 32-bit source byte address and ED

82507 A00 3/85 9-49

INSTRUCTION SET
Program Register Control

to contain a 32-bit destination byte address. The instruction
fetches the contents of the source and destination addresses,
compares them, increments the addresses by one, and decrements
the byte count in A until either A = 0 or a noncomparison is
reached. If termination is due to a noncomparison, CCG indicates
that the byte at ED is greater than the byte at CB, or CCL
indicates that the byte at ED is less than the byte at CB; A
indicates the count of bytes left to compare. If termination is
due to the count running out, CCE indicates that all bytes
compared exactly; ED and CB point to the bytes after the last
ones compared, and A is 0. Interrupts can occur after each
comparison.,

XSMG (000343). Compute Checksum in Current Data. $Starting at
the address defined in register B, for a count of words defined
in register A, the XSMG instruction exclusive-ORs each word into
register C, When the count goes to zero, the two top words on
the stack are deleted, leaving the final checksum in register A.
The address in B refers to the current data segment only.
Interrupts can occur after each word checksummed.

XSMX (000333). Compute Checksum Extended. Starting at the
extended memory location defined by the 32-bit address in CB, for
a count of words defined in register A, the XSMX instruction
exclusive-ORs each word into register D. When the count goes to
zero, the three top words on the stack are deleted, leaving the
final checksum in register A. Interrupts can occur after each
word checksummed.

PROGRAM REGISTER CONTROL

SETL (000020). Set L with A. The contents of the L register,
which points to the current stack marker, are replaced with the
contents of register A. A is then deleted from the Register
Stack.

SETS (000021). Set S with A. The contents of the § register,
which points to the top word of the stack in memory, are replaced
with the contents of register A. A is then deleted from the
stack. A stack overflow trap occurs if the result is greater
than 32767.

9-50 82507 A00 3/85

INSTRUCTION SET
Program Register Control

SETE (000022). Set ENV with A. The least significant eight bits
of the Environment Register (ENV) are replaced with the lower
eight bits of the A Register. The most significant eight bits of
the Environment Register are logically ANDed with the upper eight
bits of the A Register. Thus this instruction may only clear the
PRIV, DS, CS, and LS bits of the Environment Register, and may
not set them. The programmer should take care with this
instruction on NonStop Il systems, since it is possible to
inadvertently clear the Library Space (LS) bit, ENV.<4>,

SETP (000023). Set P with A. The contents of the Program
Counter (P) are replaced with the contents of the A Register. A
is deleted from the stack, and control is transferred to the new
location indicated by P.

RDE (000024). Read ENV into A. The contents of the Environment
Register (ENV) are pushed onto the Register Stack.

RDP (000025). Read P into A. The contents of the Program
Counter (P) are pushed onto the Register Stack.

STRP (00010-). Set RP. The register pointer is set to the value
in the Register field of the instruction. For binary coding
details, see Table A-7 in Appendix A.

ADDS (002---). Add Immediate Operand to S. The signed immediate
operand is added to the S register in integer form. If the
resultant S is greater than 32767, then a stack overflow trap
occurs.

CCL (000015). Set Condition Code to Less. A Condition Code of
CCL (N =1 and Zz = 0) is set into the ENV register.

CCE (000016). Set Condition Code to Equal. A Condition Code of
CCE (N = 0 and Z = 1) is set into the ENV register.

4482507 A00 3/85 9-51

INSTRUCTION SET
Routine Calls and Returns

CCG (000017). Set Condition Code to Greater. A Condition Code
of CCG (N = 0 and Z = 0) is set into the ENV register,

ROUTINE CALLS AND RETURNS

PCAL (027---). Procedure Call. Control is transferred to an
instruction specified by an entry in the Procedure Entry Point
(PEP) Table; the specific PEP entry is indicated by the PEP
Number field of the instruction. First, a three-word stack
marker, consisting of the current P, ENV, and L, is stored on the
top of the current stack. (ENV includes the space ID index in
bits 11:15; CC and RP are not preserved.) If the caller is not
privileged, the PEP number is checked against PEP[(0] and PEP[1]
to see if the call is legal. If the call is not legal, an
instruction failure trap occurs. (If the caller is privileged no
checks are made.) L and S are set to S + 3 to point to the base
of a new local data area. The final value of S is then checked
for a value greater than 32767; if it is, a stack overflow trap
occurs. Finally, P is set from the PEP entry and control is
transferred to the procedure.

XCAL (127---). External Procedure Call. The XCAL instruction is
used to invoke procedures that are outside the current code
segment. Like PCAL, XCAL creates a three-word stack marker.

Then control is transferred to an instruction in the external
segment by a three-step sequence: 1) a number in the XEP field
of the instruction refers to an entry in the XEP table of the
current code segment; 2) the XEP entry specifies a segment and a
PEP entry in that segment; 3) the PEP entry of the other code
segment specifies a procedure entry point within that segment.
See detailed description in Section 4 under the heading, "Calling
External Procedures".

SCMP (000454). Set Code Map. This instruction is used to
establish a procedure label in register A for use by the DPCL
instruction (described next). If the label to be passed is for a
procedure in the current code segment (signified by A.<0:6> = 0),
the PEP index is expected to be in A.<7:15>, and SCMP will insert
the space ID of the current code segment in A.<0:6>, thus forming
a complete procedure label. If the label to be passed is for a
procedure in some other code segment (as indicated by
A.<0:6>=%133), the XEP index is expected to be in A.<7:15>, and
SCMP will load that XEP entry (which is already in procedure
label format) into A.<0:15>. 1In typical usage, succeeding
instructions would pass this value to a procedure which would
then issue the DPCL instruction.

9-52 482507 A00 3/85

INSTRUCTION SET
Routine Calls and Returns

DPCL (000032). Dynamic Procedure Call. Control is transferred
to a procedure which is dynamically specifiable in the Register
Stack (Register A). The specified procedure may be in any of the
four short address code spaces (UC, SC, UL, SL). The format of
the word in Register A for specifying the target procedure is the
same as that for a XEP table entry (see Figure 4-26). DPCL first
stores a three-word stack marker, consisting of the current P,
ENV, and L, on the top of the stack. (ENV includes the caller's
space ID index in bits 11:15.) Then a check is made to see if
the target segment is currently mapped; if not, a MAPS (Map
Segment) instruction is executed at this point. Then, if the
caller is not privileged, the PEP number is checked to see if the
call is legal. 1If the call is not legal, an instruction failure
trap occurs. If the caller is privileged, this check is not
made. L and S are set to S + 3 to point to the base of a new
local data area. The final value of S is then checked for a
value greater than 32767; if it is, a stack overflow trap occurs.
Next, if the call is to a callable system procedure, the PRIV bit
in the ENV Register is set. CS and LS of ENV are set according
to the corresponding bits of A (0 and 1 respectively). Finally,
P is set from the PEP entry, transferring control to the target
procedure.

EXIT (125---). Exit from Procedure. This instruction is used to
return from a procedure called by a PCAL, XCAL, or DPCL
instruction. EXIT assumes L-2:L to contain a standard
three-word stack marker consisting of P, ENV, and L. (ENV
includes the caller's space ID index in bits 11:15.) The first
action of EXIT is to check if the procedure being returned to is
currently mapped; if not, a MAPS (Map Segment) instruction is
executed at this point to map the return segment. Then S is
moved below the current stack marker and any parameters by
setting it with the "S decrement" value subtracted from the
current L register setting. P is set to the return P value
contained in L[-2] of the current stack marker. The caller's ENV
register value is set as follows: the mode (privileged or
nonprivileged) and data area are reinstated to the lesser of the
caller's and the current settings (e.g., a privileged calling
process can be made nonprivileged on the return, but not vice
versa); the calling process's CS (code space), LS (library
space), T (traps), V (overflow), and K (carry) are reinstated
from L[-1); Z and N (Condition Code) and RP are set to those of
the current procedure. L is moved back to the preceding stack
marker, thereby reinstating the preceding local data area, by
setting L with the contents of the L[0] of the current stack
marker.

482507 A00 3/85 9-53

INSTRUCTION SET
Interrupt System

DXIT (000072). DEBUG Exit. This instruction is used to
reestablish the environment present at the time DEBUG was called.
P, ENV, and L are restored from the stack marker generated by the
DEBUG call, and S is reset to its value at the time of the call
to DEBUG. Lastly, the instruction checks CSSEG to see if the
segment specified by space ID in L-5 is currently mapped. If the
segment is not currently mapped, a MAPS (Map Segment) instruction
is executed at this point. This is a privileged instruction.

BSUB (-174--). Branch to Subprocedure. S is incremented by one
and the return address (P) is saved in that location. Then a
direct or indirect unconditional branch is taken (depending on
the "i" field of the instruction). For binary coding details,
see Table A-6 in Appendix A.

RSUB (025---). Return from Subroutine. This instruction is used
to return from a subroutine called by a BSUB instruction. The
instruction assumes that the return address is on the top of the
memory stack (indicated by S) and returns control to that
address. S is set to S - S"decrement. "S"decrement" may be any
number from 0 to 255; however, in order to delete the return
address from the stack, it must be at least 1. For binary coding
details, see Table A-5 in Appendix A.

INTERRUPT SYSTEM

RIR (000063). Reset Interrupt Register. This instruction is
used by the operating system interrupt handlers to reset the
appropriate INTA Register bit after an interrupt has occurred.
Some interrupt bits must be reset (along with the clearing of a
MASK bit) in order to allow further interrupts through that SIV
(System Interrupt Vector Table) entry. The instruction expects A
to contain the number of the bit in the INTA Register that is to
be reset. This is a privileged instruction.

XMSK (000064). Exchange MASK with A. The contents of the MASK
Register are interchanged with the contents of the A Register.
This is a privileged instruction.

IXIT (000071). Interrupt Exit. This instruction is used by the
operating system interrupt procedures to return control to the

9-54 482507 A00 3/85

INSTRUCTION SET
Bus Communication

interrupted process. At the time the interrupt occurred, a stack
marker was generated at the L pointed to by the System Interrupt
Vector Table (SIV) for the specific interrupt. This was a
special six-word marker that consisted of the space ID, MASK, S,
P, ENV, and L at the time of the interrupt. This instruction
reestablishes this environment and resumes execution of the
interrupted process. In order to reestablish the interrupted
environment, IXIT first loads the five registers with the values
in L-4:L of the stack marker, and then checks CSSEG to see if the
segment specified by the space ID in L-5 is currently mapped. If
the segment is not currently mapped, a MAPS (Map Segment)
instruction is executed at this point. Then the Register Stack
is loaded with the values in L+1 through L+8. Lastly, the
process timer is allowed to resume counting if the return is to a
user environment (DS = 0). At the time this instruction is
executed, the needed values in L-5 through L+8 must be present.
This is a privileged instruction.

DISP (000073). Dispatch. This instruction sets bit 15 of INTA,
and also sets Vi.<15> in the System Interrupt Vector (SIV) table
entry for the Dispatcher interrupt. If bit 15 of MASK is set, a
Dispatcher interrupt occurs immediately following this
instruction (provided there are no interrupts of higher priority
pending). Control is then transferred to the operating system
Dispatcher whose location is pointed to by the SIV table entry.
This is a privileged instruction.

BUS COMMUNICATION

TOTQ (000056). Test Out Queues. In a NonStop II processor this
instruction sets CCE if neither of the two Out Queues is full, or
CCG if at least one Out Queue is full. In a NonStop TXP
processor this instruction sets CCG if the single OUTQ is full,
and CCE if empty.

SEND (000065). Send Data over Interprocessor Bus. The SEND
instruction expects register A to contain a byte count and
registers CB to contain the absolute extended address of the
source buffer. Register D is the OUTQ Full Timer.

In a NonStop II processor, the timeout value is computed as:
(32768 - <timeout>) times 0.8--this value specifies the time in
microseconds for the specified bus to become ready (e.g.,
<timeout> of 0 = 32768 * 0.8 microseconds).

482507 A0O 3/85 9-55

INSTRUCTION SET
Input-Output

In a NonStop TXP processor, the timeout value is computed as:
(32768 - <timeout>) times 0.833--this value specifies the time in
microseconds for the specified bus to become ready (e.q.,
<timeout> of 0 = 32768 * 0.833 microseconds).

Register E bits 0:7 specify the sender CPU and 8:15 specify the
destination CPU. Register F specifies a seguence number, and
register G bit 15 specifies which bus is to be used (0 = X, 1 =
Y).

Data in the buffer is transmitted in l6é-word packets consisting
of 26 data bytes (13 words) plus three words for sequence number,
sender and receiver CPU numbers, and checksum. Packets are
transmitted until the byte count is zero. If the byte count is
not a multiple of 26, then the last packet is padded with zeros
to round the number of data bytes up to 26. Condition Code CCE
indicates successful completion, and the Register Stack is marked
empty.

If a timeout condition occurs, a Condition Code of CCL is

returned, and the instruction terminates. The Out Queue 1is
cleared. SEND is a privileged instruction.

INPUT-OUTPUT

RSW (000026). Read the Switch Register into A. The contents of
the Switch Register are pushed onto the Register Stack.
Condition Code is set.

SSW (000027). Store A into Switch Register. The contents of the
A Register are set in the Register Display and into
sysstack[%$122]. A is then deleted.

EIO (000060). Execute Input-Qutput. The EIO instruction expects
bits 8:15 of A to contain the subchannel number, bits 0:7 of A to
contain a command to its controller, and 0:15 of B to contain a
parameter which is to be passed to that controller via the
channel. (In a NonStop TXP processor, before issuing the EIO,
you must execute an LIOC to load the IOC entry for a given
subchannel into its IOC cache entry.) The EIO instruction first
checks to see if the channel is available. If not it loops,
waiting for channel availability but testing for other
interrupts. When the channel becomes available, the command and
address are sent to the controller by the channel via the LAC
(Load Address and Command) T-bus command and the parameter is

9-56 4 82507 A0O 3/85

INSTRUCTION SET
Input-Output

sent to the controller which is now selected via the LPRM (Load
Parameter) T-bus command. Device status is then read from the
controller via the RDST (Read Device Status) T-bus command. RP
is decremented by one, and if there were no channel errors,
device status is placed in A, the controller is then deselected
via the DSEL (Deselect) T-bus command, the Condition Code is set
to CCE and the instruction terminates. If there was a channel
error, the ABTI (Abort Instruction) T-bus command is issued to
the controller, deselecting it and terminating its activity. The
contents of IOD, although probably invalid due to the channel
error, are placed in A for evaluation. The Condition Code is set
to CCL and the instruction terminates. This is a privileged
instruction.

II0 (000061). Interrogate I/0. This instruction is used by the
operating system interrupt handler to get the interrupt cause and
interrupt status from a controller and to reset that interrupt.
It first checks to see if the channel is available. 1If not it
loops, waiting for channel availability but testing for other
interrupts. When the channel is available, first rank 0 and then
rank 1 of the I/0 system are polled via the LPOL (Low Poll) T-bus
command. The interrupting controller on the highest rank with
the highest priority is then selected via the SEL (Select) T-bus
command. The channel then loads the controller's interrupt cause
into the C register, the interrupt status into the B register,
and the channel status into the A register. Then the interrupt
in the controller is cleared. If there were no channel errors
indicated in A, and if interrupt status bits 0:3 are equal to
zero, then CCE is set, and the instruction terminates. If there
was a channel error then CCL is set, and the instruction
terminates. CCG is set in the event of a device error or parity
error. This is a privileged instruction.

HIIO (000062). High-Priority Interrogate I/0. This instruction
is used by the operating system's high-priority interrupt handler
to get the interrupt cause and status from a high-priority
controller and to reset the corresponding interrupt. Execution
is identical to the IIO instruction, except that HPOL (high
priority polls) TBUS commands are issued and only controllers
with the high-priority interrupt jumper installed can respond.
This is a privileged instruction.

RCHN (000447). Reset I/0 Channel. This instruction is used by
the operating system to control the I/O channel in the event of a
catastrophic error. If register A contains a value greater than
or equal to zero, RCHN resets the I/0 channel; if A contains a

482507 A0O 3/85 9-57

INSTRUCTION SET
Miscellaneous

negative value, RCHN performs a lockup on the channel. Condition
Code CCE indicates that the reset or lockup was performed, or CCL
indicates that the channel was not available. This is a
privileged instruction.

LIOC (000457). Load IOC entry. During an I/0 operation, the
NonStop TXP processor uses a cached copy of the IOC entry
associated with a given subchannel. This technique allows the
system to defer updating the memory-resident IOC entry until
after the I/0 has completed. The LIOC instruction copies the
four-word IOC entry from memory to its associated scratchpad
registers. The subchannel number is specified in the contents of
the A register. This is a privileged instruction. (In a NonStop
II processor, this instruction executes as a NOP.)

SIOC (000460). Store IOC entry. In a NonStop TXP processor,
this instruction copies the four-word IOC information from
scratchpad registers to its associated memory-resident IOC entry.
The subchannel number is specified in the A register contents.
This is a privileged instruction. (In a NonStop II processor,
SIOC executes as a NOP.)

MISCELLANEQUS

NOP (000000). No Operation.

RCLK (000050). Read Clock. This instruction reads the
quadrupleword microsecond counter (located in the system data
segment), adds the instantaneous value of the 14-bit hardware
microsecond counter to it, and pushes the result onto the
Register Stack. Note that since the software counter is updated
only every 10 milliseconds (each time the hardware counter rolls
over), adding the hardware count to it provides an accurate clock
indication at the instant that RCLK is executed.

RCPU (000051). Read CPU Number. This instruction reads this
processor's CPU number from bits 0:7 of INTB and pushes this
value onto the register stack.

9-58 4482507 A00 3/85

BPT (000451).
although necessarily nonprivileged, can be used only by system
software (DEBUG); proper operation requires access to the

Environment Register, which requires privileged capability.

INSTRUCTION SET
Operating System Functions

Instruction Breakpoint Trap. This instruction,

The

instruction assumes that DEBUG has inserted the BPT instruction
at some user-specified point in the code, and has saved the
instruction that formerly occupied that location in the

Breakpoint Table in the system data segment.

When the code

containing the BPT instruction is executed, BPT is normally
executed twice--once when encountered following the preceding
instruction, and once again to resume program execution at the

following instruction.

A bit (1) in the Environment Register is

used as a flag to differentiate the two functions.

When BPT is first executed, bit 1 of the Environment Register is
zero, which causes an interrupt to be generated (through SIV 19)

to DEBUG.

DEBUG sets ENV bit 1 to one and, after user debugging

has been completed, returns to the interrupted code at the BPT
instruction.

then searches the Breakpoint Table,
loads that instruction into the Instruction (I)

instruction,
Register, and sets the microcode entry point for that instruction

into the ROMA Register.

This time, BPT first sets ENV bit 1 back to zero,

locates the saved

Thus the breakpointed instruction is

executed, and execution proceeds normally to the succeeding
instruction.

OPERATING SYSTEM FUNCTIONS

The following groups of instructions, most of them privileged,
are used solely to implement certain operating system and

diagnostic functions in firmware.

These instructions are not

intended for use in any user applications, and are listed here
only for completeness.

Resource Management

XCTR
MXON
MXFF
SNDQ
SFRZ
DOFS
DLEN
HALT
PSEM
VSEM
RPV

WWCS

(000033)
(000040)
(000041)
(000052)
(000053)
(000057)
(000070)
(000074)
(000076)
(000077)
(000216)
(000400)

/I'| 82507 A00 3/85

XRAY Counter Bump
Mutual Exclusion On
Mutual Exclusion Off
Signal a Send Is Queued
System Freeze

Disc Record Offset

Disc Record Length
Processor Halt

"P" a Semaphore

"V" a Semaphore

Read PROM Version Numbers (NonStop II)
Write LCS

9-59

INSTRUCTION SET
Operating System Functions

VWCS
RWCS
FRST
RSMT
WSMT
RIBA
RPT

SPT

BCLD
TPEF
SRST
DDTX
RUS

BIKE

(000401)
(000402)
(000405)
(000436)
(000437)
(000440)
(000442)
(000443)
(000452)
(000453)
(000455)
(000456)
(000461)
(000464)

Verify LCS

Read LCS

Firmware Reset

Read from Operations and Service Processor (OSP)
Write to Operations and Service Processor (OSP)
Read INTB and INTA Registers

Read Process Time

Set Process Timer

Bus Cold Load

Test Parity Error Freeze Circuits (NonStop II CPU)
Soft Reset (NonStop TXP; NOP on NonStop II)

DDT Request (NonStop TXP; NOP on NonStop II)
Read micro state (NonStop TXP)

Bicycle While Idle

Memory Management

MAPS
UMPS
RMAP
SMAP
CRAX
RSPT
WSPT
RXBL
SXBL
LCKX
ULKX
CMRW
SVMP
BNDW
SCpPV
ASPT

List

(000042)
(000043)
(000066)
(000067)
(000423)
(000424)
(000425)
(000426)
(000427)
(000430)
(000431)
(000432)
(000441)
(000450)
(000463)
(000470)

Management

Map in a Segment

Unmap a Segment (NonStop II processor only)
Read Map (NonStop II processor only)

Set Map

Convert Relative to Absolute Extended Address
Read Segment Page Table Entry

Write Segment Page Table Entry

Read Extended Base and Limit

Set Extended Base and Limit

Lock Down Extended Memory

Unlock Extended Memory

Correctable Memory Error Read/Write

Save Map Entries

Bounds Test Words

Set Current Process Variables

Address of Segment Page Table Header

DLTE
INSR
MRL
FTL
DTL

(000054)
(000055)
(000075)
(000206)
(000207)

Delete Element from List

Insert Element into List

Merge onto Ready List

Find Position in Time List
Determine Time Left for Element

Trace and Memory Breakpoint

TRCE
SMBP

9-60

(000217)
(000404)

Add Entry to Trace Table
Set Memory Breakpoint

/1| 82507 A00 3/85

SECTION 10

GUARDIAN MODULES AND DATA STRUCTURES

This section begins a description of the GUARDIAN operating
system. The general approach is to first present an overview of
the locations of the various modules and data structures of the
operating system, in the context of virtual memory segments, and
then to follow this later with descriptions of the functioning of
these components.

SEGMENTED ORGANIZATION OF GUARDIAN OPERATING SYSTEM

Figure 10~-1 presents an overview of the locations of the major
structures of the operating system.

As shown, virtual memory (or "absolute extended memory") consists
of 8192 absolute segments numbered from 0 through 8191. These
exist primarily as code files and data swap files on the system
disc (see lower right corner of the diagram), though various
pages of these segments will be present in physical memory at
various times. Each segment is 64K words of storage.

The first 128 absolute segments are reserved by the operating
system. The first sixteen of these are permanently mapped by

the NonStop TXP processor. (The NonStop II processor permanently
maps only absolute segments 1, 3, and 6 through 13.) The
allocations for all the processes that exist in a given processor
at a given time begin at segment 128. Usually, the first several
processes will be GUARDIAN operating system processes.

The following paragraphs describe the present allocations of
absolute segments.

Segment 0 is used by the XRAY peformance monitor software, and
contains the XRAY counters.

482507 A0O 3/85 10-1

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

ABSOLUTE SEGMENTS Z ;:
<+ 193
User Data l
stack) | 28 | | start of 194
- Allocations
for First
129 Process 195
System
Library | 28 User| | 130 196
(Upto 32 Code
Segments) 29 (Upto 16
Segments) 131 197
XRAY
Segment 0 30 § 132 198
System 1 d
Data 3 133 199
System P User
ystem Process Lib
2 32 ibrary 134
Code (Up to 16 Ih_l/-\/
Segments)
System
Code 8 33 § 135 p
System Process 4 8183
Code 34 136
System Process 5 35 8184
Code Process | | 137
g Segment 8185
8 36 (1-nSegs)| | 138
8186
7 37 139
~N
- 8187
8 38 140
Extended 8188
Segment 9 39 Data
Page Tables Segment 141
and 1nS
1/0 Buffers (1-n Segs) 8189
10 40 142
~ —_——
“Next 8190
" 41 143 Process Last
Absolute
12 8181 Segment
42 144
13 a3 145 —
~
Memory
Management | 14
Tables
Microcode 15 Code Files and
Save Area Data Swap Files
(NonStop TXP
Processor) 16
. %
|1 T~
I |
SYSTEM DISC
S5001-126

Figure 10-1. Locations of Major Software Structures

10-2 482507 A00 3/85

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

Segment 1 is the system data segment, which contains most of the
major system tables; accordingly, the contents of this segment
are referenced frequently. Segments 2, 4, and 5 are allocated by
SYSGEN to system process code segments that are frequently
referenced and (on a NonStop TXP processor) will benefit from
being permanently mapped.

Segment 3, the system code segment, contains all interrupt
handlers and the most frequently used system procedures; less
frequently used procedures are relegated to the system library,
which is the set of segments beginning at segment 28 (%34).

Segments 6 through 13 are used to store all of the page tables
for every segment currently allocated in the processor, and also
are used as storage space for I/0 buffers. Segment 14 is used to
store memory management tables other than the page tables.
Segment 15 is used by the NonStop TXP processor to save loadable
portions of CPU microcode in the event of power failure.

Segments 16 through 127 (mostly not listed in Figure 10-1) are
used for the following purposes:

16 (%20) Process Control Block Extension, Subchannel
Table Extension (PCBX, SCTX)

17 (%21) Destination Control Table (DCT)

18 (%22) Page-Process Indentification Table (PAGEPIN)

19 (%23) Network Routing Table (NRT)

20 (%24) System library Entry Point Table (SEP)

21 (%25) Extended System Pool

22 (%26) DST Transition Table

23 (%27) Reserved

through
27 (%33)
28 (%34) System library (SL) segments (see Figure 10-1)
through (First 32 presently allocatable)
92 (%133)
93 (%134) Reserved
through
120 (%170)
121 (%171) Debug stack segments
through
124 (%174)

125 (%175) Messenger process's System Status Message Buffer
126 (%176) Reserved
127 (%177) Microcode save area (NonStop II processor)

Beginning at segment 128 (%200) are the segment allocations for
the first process. The example in Figure 10-1 shows 15 segments
allocated to the first process--with the second process beginning
at segment 143. The allocations shown in this example are not
necessarily typical, but they do illustrate the allocations that
can be made for a process.

482507 AOO 3/85 10-3

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

The first allocation for a given process is the user data segment
(the process stack segment). This is followed by one or more
segments of user code--not necessarily in numerical sequence.
These segments comprise the main program code of the process.
Optionally, there can also be up to 16 segments of user
library--that is, a collection of procedures that are privately
callable only within this process. (The user code and user
library may not need to be allocated for some processes if these
can be shared with another process in this CPU.)

As the process executes, there may be additional allocations for
extended data segments. Any such segment (it is viewed as one
logical segment by the user) may be made up of any practical
number of contiguous absolute segments. (The block of segments
need not be contiguous with the other segment allocations of the
process--though shown this way for simplicity.) For each
process, one extended data segment is always present,
automatically assigned by the operating system: the process file
segment. Other extended data segments are optional, being
present only when specifically requested by the process. The
process file segment is used by the file system to track the
status of communication with every file that is opened by the
process.

It should be noted that there is not necessarily a one-to-one
correspondence between segments and disc files. A single code
file for a process's user code may be up to 16 absolute segments
in length, and the file for an extended data segment may be even
longer. Conversely, the user code segment allocation for many
similar processes (for instance, command interpreters) may all
correspond to the same shared code file on the system disc.

Having viewed the overall storage arrangement for the GUARDIAN
operating system, we can now observe the methods used to access
these system structures. As noted previously, nonprivileged
processes cannot directly use absolute addresses. Consequently,
absolute segment numbers are meaningless in the user process
context. Instead, these processes use relative addressing, which
allows access to only a limited set of segments. This both
simplifies the addressing requirements and protects each process
from all others.

Figure 10-2 illustrates one example of process access to a
frequently used absolute segment, system data. System data, as
observed in the preceding figure, is absolute segment 1. This
segment is accessed by the system (on behalf of any process)
either as Short Address Space 1 (using 16-bit addresses) or as
relative segment 1 (using 32-bit addresses). (This happens to be
the only example of direct numerical correspondence of address
spaces.) Other examples are illustrated in the succeeding
figures.

10-4 482507 A00 3/85

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

ABSOLUTE
SEGMENTS
0
System
1 Data
L~
2
SHORT ADDRESS
SPACES RELATIVE
(MAPS) SEGMENTS 3
T ﬂ
cT° fT—
| | I
| l 0 | l | 0 | 4
|4 P I
5
1 System Data 1 System Data
|
e e i
Lol2 : :2 |_J
| +_ - -
B v PR g 7
: i . r' I | :
o |
: 10 N L.l 8
——r= —_—l
Z/_]-__F | :z_/.[._._|/ |
I ! I |
I 14 I | I la | ' 9
] | I 74 I I I I
e g g P g
| I I I | l | | 10
| 15 l | 15 | |
| l._..._|_7' : /L__|_7|
e _ -7 &< - 1

§5001-127

Figure 10-2.

11”82507 AQ0C 3/85

Access to System Data Structures

10-5

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

Figure 10-3 illustrates user access to the system procedures in
the system code and system library segments. The single system
code segment, absolute segment 3, is accessed by the system (on
behalf of any process) as Short Address Space 3. The space ID

for this segment is SC.O0.

The 32 system library segments, absolute segments 28 through 59,
are accessed by the system (on behalf of any process) as Short
Address Space 5. The specific segment selected depends on the
current space ID value, which can range (octally) from SL.O for
segment 28 up to SL.%37 for segment 59.

The system code segment and all system library segments
correspond to separate portions of the OSIMAGE file on the system
disc. This is depicted on the right side of Figure 10-3.

System code and system library segments may also be accessed with
relative extended addresses, but only as part of the "current
code" arrangement that will be described later in connection with
Figure 10-5.

Figure 10-4 illustrates short-address access for a process to its
own code, data, and library segments. (Relative extended-address
access will be considered in the subsequent figure.)

User data (that is, the process stack segment) is accessed by the
system (on behalf of the process) as Short Address Space 0. This
corresponds to some allocated absolute segment, illustrated as
segment 422 in the figure. Physically, this segment consists of
a data swap file on the system disc.

Current user code is one of the user code segments, illustrated
as segments 423 through 426 in the figure. The selected segment
is individually identified by a space ID value in the range of
UC.0 through UC.%17; UC.2 is assumed in the figure. This segment
is accessed by the system (on behalf of the process) as Short
Address Space 2. Physically, it consists of a portion of the
main program code file (object file) for the process.

The User Library is illustrated as segments 427 through 430 in
the figure. One of these is "current" if the process is
presently executing a user library procedure. The selected
segment is individually identified by a space ID value in the
range of UL.0 through UL.%17. UL.1l is assumed in the figure.
This segment is accessed by the system (on behalf of the process)
as Short Address Space 4. Physically, it consists of a portion
of the user library file (object file) which is bound to the main
program code file for the process. A "demand mapping" scheme is
used for such segments--that is, a user library segment is mapped
only by a procedure call to (or exit from) that segment.

10-6 74982507 A00 3/85

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

ABSOLUTE SEGMENTS

SC.0
SHORT ADDRESS
SPACES
(MAPS) ,
T—_7
T
I 0 : !
L A—— 7 OSIMAGE
T FILE
| I
/0
| A
= \
| d 1 -
' 1 2 | | ~ ~
| ~—
SPACEID
3 INDEX
System T
Code
|
[1 | SYSTEM
| : 4 1 DISC
|
5
System |
Library l
$5001-128

Figure 10-3, Access to System Procedures

482507 A0O 3/85 10-7

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

ABSOLUTE SEGMENTS

Start of Segment
Allocations for _\
This Process

uco gs:ggoc’e Data Swap File\
Stack)
SPACEID !
INDEx UC.1 | ——
Tl ue2 Multisegment
SHORT ADDRESS Object File
SPACES
(MAPS) | uc.3
o ¥
User uL.o Multisegrent
Data T Object File
UL.1
)
| 1
| |
e -
2
User l
Code |1 SPACEID
[| INDEX SYSTEM DISC
| [
! User
Library
4 Space
User
Library |
1 |
| 1 : |
[R I
k:L"&;

$5001-129

Figure 10-4. Short-Address Access to Process Code and Data

10-8 482507 A00 3/85

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

Figure 10-5 illustrates the case of relative extended address
access to the code segments that are accessible to a given
process. In this case, "current code" and "user code" can be
accessed as relative segments 2 and 3 respectively. The specific
absolute segments selected for these functions at any given time
are dependent on the current space ID value.

For current code (relative segment 2), there are two levels of
selection ("switching"). One level selects the space (SC, SL,
UL, UC); this is done in the Environment register (ENV). The
second level is the space ID index value (0 - %17 for UL and UC,
0 - %37 for SL, and 0 always for SC). For illustrative
convenience, the absolute segment numbers shown in Figure 10-5
correspond to the numbers used in the preceding two figures. The
correspondence to disc files is not shown; this was illustrated
in those preceding figures.

For user code (relative segment 3), the space is predetermined:
UC. The space ID index value selects one of the segments
allocated to the current process.

For performance reasons, no indexing occurs for system code. The
space ID is always SC.0, and the corresponding absolute segment
(3) is permanently mapped.

Figure 10-6 illustrates the case of access to the Process File
Segment. This is an extended data segment belonging to the
process; like any other extended data segment it can be addressed
only by relative extended addresses—--beginning at relative
segment 4. The process file segment, however, is different from
other extended data segments in that it cannot be accessed by
nonprivileged users; access is permitted only for privileged or
callable procedures. For access to be possible, the process file
segment must be the "current" extended data segment.

The foregoing five illustrations have outlined the general layout
and access for most of the GUARDIAN operating system components
originally presented in Figure 10-1. The accessing of some
structures, such as I/0 buffers, Segment Page Tables, and other
memory management tables has not been shown, since these are
addressable only by absolute extended addresses referring to the
absolute segments.

4982507 ADO 3/85 : 10-9

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

ABSOLUTE
SEGMENTS
/
SPACEID 3
NAME INDEX"
@ O
RELATIVE e
SEGMENTS o Other b—""

o— aps. |
o Segs. _/I‘/ﬂ'/‘b

o—
o—
o=
g—
o
= P 71
o
oc
o
o=
o=
Current —
Code =
(SC,SL,UC,UL) e
o
Currently Mapped S)
User Code =
I
we I_T/\ll
—

425

TTTTTTTTTTTTTT& TTTTTTTTTTTTT?&

_/"—J/

S5001-130

Figure 10-5. Extended-Address Access to Code Segments

10-10 482507 A00 3/85

GUARDIAN MODULES AND DATA STRUCTURES
Segmented Organization

ABSOLUTE
SEGMENTS
RELATIVE
SEGMENTS
Current 0
Data
System 1
Data
Other
Current Extended
Code Data
Segment
User
Code
Current
Extended
Data
Segment
I
|
Lo b
Iy | |
|0
9 I |
| P
I I
| | I
S$5001-131

Figure 10-6. Access to Process File Segment

4982507 A00 3/85 10-11

SECTION 11

THE PROCESS ENVIRONMENT

At any instant of time, the processor is operating in one of two
fundamental environments: either the process environment or the
interrupt environment. This section describes the process
environment.

PROCESS DEFINITION

In the Tandem NonStop system, a process is created either by
entering the RUN command or by programmatically calling the
NEWPROCESS procedure. As illustrated in Figure 11-1, each
process consists of the following:

e An unmodifiable code area that contains instructions
® A separate, private data area called a stack

e A system table entry called the Process Control Block (PCB)
that . defines the state of the process in the system. (The
Process Control Block Extension, PCBX, which contains less
frequently used information pertaining to the process, is
considered to be a logical part of the PCB.)

Each time a user requests program execution, a process is
created. Thus, if a user runs two separate programs, the
GUARDIAN operating system creates two corresponding processes.
And if he runs the same program twice, or two users run the same
program concurrently, again two processes are created. Neither
process "owns" the program code; code is sharable among
processes within the same processor. The data, however, is
private to the process.

482507 A00 3/85 11-1

THE PROCESS ENVIRONMENT
Process Definition

-
|
|

—— — — 4 ecs

HARDWARE J/
REGISTERS B

S$5001-132

Figure 11-1. Elements of a Process

Up to 256 processes can be executing concurrently in each CPU.
Although these processes share some resources, such as main
memory, only one process can be executing at any instant.

A process executes until either: 1) it must wait for a resource
or for a message or an I/0 operation; or 2) a higher priority
process becomes ready to execute. The GUARDIAN operating system
then saves the process state (the space ID of the currently
executing code segment, and the contents of registers P, ENV,

L, S, and RO:R7) in the process's PCB, and then chooses a new
process to execute, if one is ready. That process's state is
taken from its PCB and used to continue its execution from the
point where it was last executing.

Application processes (that is, all processes that are not system
processes) have only a temporary existence--they are subject to a
"life cycle" that has as its phases: creation, execution, and
termination (see Figure 11-2),.

System processes, on the other hand, have all the same physical
characteristics of application processes, but are a permanent
part of the system. They are automatically executed when a CPU
is loaded.

11-2 482507 A00 3/85

THE PROCESS ENVIRONMENT
System Process Creation

CREATION EXECUTION TERMINATION
———
PROCESS I \
alk
A
1 I 1
| I
[
cPu [
Allocation Memory Deallocation I I
Tables I I
I
I
11
I
(|
RESOURCES I
PCB Table Entry - Resident Memory l I
Virtual Disc Space | l
(.
Il
(|
_____________________________ o
——————————— -’l
S5001-133

Figure 11-2. Process Creation, Execution, and Termination

SYSTEM PROCESS CREATION

Because of their permanent nature, system processes must be
created in a slightly different way than application processes.
The following discussion and Figures 11-3 and 11-4 show how this
is done.

The system processes for a new GUARDIAN operating system
configuration are created by running the SYSGEN program (Figure
11-3). ©SYSGEN executes as a user process and is run in the same
way as any other process. SYSGEN reads information about the new
configuration and builds a complete image of the new system,
storing it in a file named OSIMAGE.

After it has built the image of the system, SYSGEN writes a

system image tape (SIT), containing the OSIMAGE and other files.
This tape can be used in two different ways:

) 82507 A0O 3/85 11-3

THE PROCESS ENVIRONMENT
System Process Creation

System

Ve Tables
/ (PCB, etc.)

S~ < . SYSTEM
* IMAGE
System hd TAPE

2
S

S§5001-134

Microcode and
Tape Resident
Bootstrap Loader

11-4

Figure 11-3, System Configuration and Loading--Part 1

On a new system, the tape can be "loaded" onto the system
disc. The tape contains a bootstrap program which simply
reads the rest of the tape and writes it to disc. This
destroys any previous information on the disc, so this is
usually done only once, when the system is delivered.

On a running system, the SIT files can be "restored" to disc,

using the RESTORE utility program. (Except for tape and disc
bootstraps, the SIT has the same format as a backup tape.)

/{| 82507 AQ0 3/85

THE PROCESS ENVIRONMENT
System Process Creation

The OSIMAGE and many other files reside in some SYSnn subvolume
(where nn is a 2-digit octal number). Once these files are on
disc, the operator can cold-load the system by setting the nn
value and a disc unit address in the processor switches. This
may be done using the physical switches, but it is more
convenient to use the OSP (Operations and Service Processor) if
available.

When the operator turns the key switch to LOAD (or performs the
equivalent operation at the OSP), the CPU finds the image, copies
it to memory, and then begins execution in the interrupt
environment. Once the kernel has been initialized, the
Dispatcher begins executing the system processes which were
placed in the image by SYSGEN.

The monitor process opens the OSIMAGE file, since this file also
contains code and data which is nonresident and must be fetched
by the memory manager when needed. The monitor starts a command
interpreter process, which can be used by the operator to
continue loading the system.

In the normal case, the operator sets the time, reloads the
remaining CPUs and starts additional command interpreters and
application programs.

Only one CPU is loaded from disc (cold-loaded). The remaining
CPUs are loaded using the RELOAD program, which reads OSIMAGE and
transfers the image across the interprocessor buses. This "bus
load" can load all down CPUs in parallel.

In Figure 11-4, the initial command interpreter reads input from
a command (OBEY) file that creates all other command interpreter
processes that run on the system. A production shop, however,
might never start a command interpreter in another terminal, but
instead might use the initial command interpreter to simply run
application processes. (For reliable operation, however, it i$§
recommended to have at least two command interpreters running;
otheryise a simple terminal failure could necessitate a cold
load.

482507 A00 3/85 11-5

THE PROCESS ENVIRONMENT
System Process Creation

Microcode and
Disc Resident
Bootstrap Loader

N\
N\

\

All remaining COMINTS

“STARTUP”
SYSTEM PROCESS
p— —)
MONITOR Creation

are started by the _
“STARTUP”COMINT -) >
L]
\ .
\ .
\
. —) —-]

:OBEY Startci

:Qutput

:Qutput

(Starts all Command
Interpreters--COMINT
Processes)

Prompt

Prompt

§5001-135

Figure 11-4.

11-6

System Configuration and Loading--Part 2

11’182507 AQO0 3/85

THE PROCESS ENVIRONMENT
Application Process Creation

APPLICATION PROCESS CREATION

Once a command interpreter is started on a terminal, users may
log onto the system to create and run their application
processes. The following example shows how a user might
construct an application process. This example is divided into
twelve steps, a through 1l; it illustrates source code entry,
compilation, and object file execution.

a. When the command interpreter is ready to accept input from a
user, it displays a colon (:) as a prompt. When the user
first sits down at his terminal, he must respond to this
prompt with a LOGON command to gain access to the system
(Figure 11-5). The command interpreter then displays:

e Current version number and date of the GUARDIAN operating
system

e Its primary CPU and (if any) backup CPU
® Present date and time

e Prompt for the next command.

USER < >
(TERMINAL)

Figure 11-5. Logging On to GUARDIAN Operating System

$5001-136

b. Now the user enters an EDIT command to obtain the services
of the text editor process. Since this process does not yet
exist, the command interpreter sends a process-creation
request to the monitor process. (From this point on, the
command interpreter typically waits until the editor process
terminates before resuming execution.) The monitor uses the
code in the EDIT program file to create the editor process
(Figure 11-6). Because the command interpreter is waiting,
the user's terminal now appears to belong exclusively to the
editor process.

482507 A00 3/85 11-7

THE PROCESS ENVIRONMENT
Application Process Creation

USER - @ MONITOR
‘ll]lillllnli’

Figure 11-6. Creating the Editor Process

EDIT PROGRAM

$5001-137

c. When the editor begins execution, it displays its name and
current version number on the user's terminal, followed by an
asterisk (*) as a prompt for an editor command. The user
then enters commands to create a new, empty disc file and to
place source statements in this file (Figure 11-7). Assume a
program is being entered ("edited") in the TAL language.

KsER - ‘ MomTD

o

Figure 11-7. Producing an EDIT Text File

S$5001-138

d. Next, the user enters an EXIT command to terminate the
editor. In response, the editor process sends a termination
request to the monitor process. The Monitor terminates the
editor and returns that process's resources to the system.

11-8 482507 A0 3/85

THE PROCESS ENVIRONMENT
Application Process Creation

The source file created by the editor, however, remains on
disc as a permanent file (Figure 11-8)--its disc space is not

returned by the operating system when the Edit process
terminates.

~ :

S$5001-139

Figure 11-8. Terminating the Editor Process

e. Now the command interpreter resumes control, issuing a
prompt for another command. The user responds by entering
the TAL command to request the services of the TAL compiler
to translate his source file into object code. Again the
command interpreter sends a message to the monitor, this time
requesting creation of the TAL process (Figure 11-9).

)

=

Figure 11-9. Requesting Access to the TAL Compiler

S5001-140

482507 A0O 3/85 11-9

THE PROCESS ENVIRONMENT
Application Process Creation

f. Typically, the command interpreter waits during the
initialization and execution of the newly created process.
The monitor uses the code in the TAL program file to create
the TAL process. Like the Edit process, TAL also appears to
have sole access to the command interpreter's terminal, which
is th? default listing device for the compilation (Figure
11-10).

- TAL PROGRAM
FILE

$5001-141

Figure 11-10. Creating the TAL Compiler Process

g. When the user entered the (RUN) TAL command in Step e, the
command interpreter transmitted startup information to the
TAL compiler. This information directed the compiler to read
source images from the EDIT file produced in Step c, and
place the compiled code into a specific program file.
(Normally, the user supplies the names of both the source and
program files as TAL command parameters. Furthermore, the
user may specify a particular file to receive the compilation
listing--or may, as in this case, omit this specification and
receive the listing on his terminal.) Now the compilation
takes place, with the resulting object code written to a
program file on disc (Figure 11-11).

11-10 4482507 A0 3/85

THE PROCESS ENVIRONMENT
Application Process Creation

USER

COMINT

A

=

§5001-142

Figure 11-11. Compiling the Source Program into Object Code

The termination of the TAL process causes a request to be
sent to the monitor, which responds by returning the system
resources held by TAL. If the compilation was successful,
the program file for the user's application process now
exists on disc (Figqure 11-12).

USER

S$5001-143

Figure 11-12,

/1j 82507 A00 3/85

Terminating the TAL Process

11-11

THE PROCESS ENVIRONMENT
Application Process Creation

i. When the TAL process terminates, the command interpreter
prompts the user for a new command. (If the compilation was
not successful, of course, the user must reedit and recompile
his program.) At this point, the user enters a RUN command
to execute the application program residing in his program
file (Figure 11-13).

‘ MONI B
S$5001-144
Figure 11-13. Requesting Application Program Execution
Je

11-12

To run this program, the system creates a new application
process in exactly the same way it created the EDIT and TAL
processes--in other words, the command interpreter sends a

request to the monitor to create a process to run the program
(Figure 11-14).

1{182507 AQ0 3/85

THE PROCESS ENVIRONMENT
Application Process Creation

AER_

USER
PROCESS

Figure 11-14. Creating the Application Process

$5001-145

Because the user did not specify otherwise in the RUN
command, the command interpreter will wait until the
application process terminates. (A special RUN command
option, however, permits the command interpreter to continue
prompting the user while the requested process is running;
this option is discussed later.) Because the command
interpreter is waiting, the user's terminal is available for
use by the application process. As far as the monitor is
concerned, the only difference between EDIT, TAL, and the
application process is that each of these processes is
associated with a different program file. Essentially, they
are ALL user processes that the monitor treats in the same
way.

k. When the user's application terminates, a request is sent to
the monitor, which returns all system resources held by that
process (Figure 11-15),

4482507 A0O 3/85 11-13

THE PROCESS ENVIRONMENT
Application Process Creation

1O

P - -'\
USER \

PROCESS
N /

- Iz

S5001-146

Figure 11-15. Terminating the Application Process

1. When the application process terminates, the command
interpreter prompts the user for another command (Figure
11-16).

USER

(F

55001-147

Figure 11-16. Returning Control to the Command Interpreter

Now, the situation is exactly the same as it was before the
user created the Edit process--except for the presence of the
newly-created source and object files in the system. At this

point, the user may request any other system operation he
wishes (including logging off).

11-14 482507 A00 3/85

THE PROCESS ENVIRONMENT
Multiple Application Processes

MULTIPLE APPLICATION PROCESSES

In the previous example, before it prompted for another command,
the command interpreter always waited for the termination of the
process which it created. It is also possible, however, to
create multiple processes without causing the command interpreter
to wait for the new process's completion. To do this, a user
enters the nowait parameter in the RUN command (Figure 11-17).
The command interpreter then creates the requested process and
prompts the user for another command. In actuality, the prompt is
not issued until certain messages have been passed from the
command interpreter to the newly created process. One of these
messages is the Newprocess message; another is the Startup
message, which contains the names of the input and output files
that the new process may open and use. If the user does not
specify such file names in the IN and OUT parameters of the RUN
command, the command interpreter passes its default file names to
the process. (Usually, these default values specify the command
interpreter's home terminal.) The ability to tell a new process
which files to use for input and output provides great
flexibility and makes multiple process creation by the same
command interpreter truly useful. Now all processes need not
share the same terminal--instead, they can each be assigned a
different one.

RUN S$system.system. COMINT/IN $term |, OUT = $term |, NOWAIT, .../
RUN S$system.system. COMINT/IN $term 2, OUT = $term 2, NOWAIT, .../

PROCESS
CREATION
REQUESTS

SYSTEM
MONITOR

TERMINAL

S5001-148

7 ‘

\

PROCESS CR EA\TIONS

N
\
\
\
_

1

Figure 11-17. Command Interpreter File Assignments

4582507 A00 3/85 11-15

THE PROCESS ENVIRONMENT
Multiple Application Processes

A practical example of one process creating numerous others is
the startup of a series of command interpreters. (See Figure
11-17 again.) These are created when the original command
interpreter reads and executes a series of commands in an OBEY
file. Each RUN command in this file starts another command
interpreter and assigns it a unique terminal to use for
input-output. Of course, to create concurrent processes, each
RUN command must include the nowait parameter. The command
interpreters created in this way are treated by the GUARDIAN
operating system as ordinary user processes. In fact, the
operating system cannot distinguish them from such processes.
Any operation done to create these command interpreters could as
well be done in the creation of a user application process. Not
only can users create application processes with the nowait
option and run these processes concurrently--they can also
specify which input-output files they should open and use. These
files need not be limited to terminals, but may include disc
files, other I/0 devices, or even other processes (depending on
restrictions imposed by the applications).

PROCESS LIFE CYCLE

As mentioned earlier (see Figure 11-2) a process's "life cycle"
begins when the process is created from a program file and ends
when the process terminates.

The following example, illustrated in Figure 11-18, describes the
life cycle of a simple (not necessarily typical) process. Assume
that this process is created in a waited manner--that is, once
the command interpreter creates the user process, it waits until
the user process terminates.

The individual life-cycle events are described in Steps a through
h below, which are keyed to Figure 11-18. The sequence of
life-cycle events begins at the top of this figure and proceeds
to the bottom. Each column in this figure represents one of the
five fundamental system processes involved in the user process
life cycle, and summarizes the operations performed when that
process executes. (Blank areas in a column indicate periods when
the process is not running.) The broken-line boxes in the disc
process column indicate that it may be executing in another CPU.
And finally, each arrow in the figure represents a message used
to communicate with, or pass requests between, cooperating
processes.

11-16 4482507 A00 3/85

THE PROCESS ENVIRONMENT
Process Life Cycle

COMINT MONITOR USER PROC MEM. MGR. DISC PROC
BUIN
oM
. n -
| Vi |
(Satisfty P —————————————— — rtua
@ < externals) L Disc _ 4
Make DCT
entry
t &end -
assages N
~ OPEN " IHandis Codd —{ Feed Codc-;
@ 3 - Page Fault ago_
Handle Data - Read Data ,
\ Page Fault Page .|
. L |
——r VA2 L "
@ < L—=——1-asslaNs [y
e — PARAMS r "

Wait for stop
@ or abend

l/\/'_ ——————— 1" Dise -}
I/\/‘ | Rcseceu |

message
L - G d
Stop the
process
(p- Delete DCT
on
Return |
the maps ‘
Deallocate
@ < user data map
| 39 | —— 1
Deallocate
- user code map -
eturn the I Deallocate |
remaining - —— — — — — — —— . —— Virtual |
. resourcas L Disc_ _ 4
Read stop, (wait)
@ get and
check next
command
$5001-149
Figure 11-18. Process Life Cycle
4} 82507 A0O 3/85 11-17

THE PROCESS ENVIRONMENT
Process Life Cycle

When the command interpreter reads a valid RUN command to
execute the user process, it calls the NEWPROCESS procedure
to create the process. NEWPROCESS sends a message to the
appropriate monitor (in the CPU where the process is to run)
requesting the start of the new process.

The command interpreter, now within the NEWPROCESS procedure,
awaits a reply to its Newprocess message to determine if the
request was successful.

The monitor that receives the message initializes and starts
a prototype process. This process opens the code and library
files, and if fixup (linking the code and library external
references to the system procedures) is necessary, this is
also done at this time. Fixup consists of searching the
System Entry Point Table to satisfy all such external
references and changing the calls in the program file
appropriately. Once the code from a program file has been
run, it may be run repeatedly without satisfying the external
references again. But if there is any possibility that the
GUARDIAN operating system has been changed and the location
of its externals affected, all external references in the
program file must be resolved again when the program is next
run.

Once the prototype process has performed fixup and other
operations, its state is changed to begin executing the main
procedure of the program. The monitor opens the code files
as read-only swap files, and creates and opens the data
segment swap file as a read/write file. If the process is
named, it is allocated an entry in the Destination Control
Table.

When complete, with or without errors, the monitor replies to
the originator of the new-process message (command
interpreter, in this case) with an error code, or zeros for
no error.

The command interpreter determines that the user process is
accepting messages, and sends an Open message to it. This
message informs the user process that another process has
opened it as a file. The incoming message is qQueued on the
user process's PCB and the command interpreter suspends,
awaiting a response.

Now the Dispatcher selects the user process as the next
process to execute. The Dispatcher sets the CPU registers to
the values in the process's PCB and transfers control to the
process by exiting the interrupt environment.

11-18 482507 A00 3/85

THE PROCESS ENVIRONMENT
Process Life Cycle

A program usually begins execution with none of its code or
data pages in main memory. Each time it references an absent
page, the program is suspended until the memory manager can
fetch the page from disc. Initially, a program causes a
flurry of page faults, but quickly obtains enough pages to
execute, with only occasional faults caused by accessing
seldom used procedures or data structures.

The user process reads the open message queued on its PCB and
sends a reply to the command interpreter.

In response, the command interpreter awakens and sends a
start-up message to the user process. This message contains
the parameters and other information supplied in the RUN
command. In this case, the user process replies to this
message with a special return value which indicates that the
user process's logic is prepared to receive any additional
messages that the command interpreter might have to send.

When requested by the user process, the command interpreter
sends any information specified in ASSIGN or PARAM commands
that were entered by the user. When all such messages have
been exchanged and acknowledged, the command interpreter
sends a close message to the user process. If the user
process was not run with the nowait option, the command
interpreter waits until it receives a message from the
operating system that the user process has terminated before
prompting for another command.

The user process continues execution. This execution,
however, might be interrupted by suspensions for input-output
activity, or by execution of higher-priority processes.
(Remember that the CPU is shared by all processes and
interrupt handlers, and executes only one instruction at a
time. Each time a new process executes, the state of the
previous process is saved and the CPU is then reset to
reflect the code and data environment of the process selected
for execution.)

When the user process has completed its operations, it calls
the STOP procedure to terminate itself. This call may be one
that the user has coded explicitly, or one that the compiler
provided at the logical end of the program. The STOP
procedure sends a message to the monitor requesting user
process termination.

In response to the message from the STOP procedure, the
monitor now stops the process by breaking its communication

482507 A00 3/85 11-19

THE PROCESS ENVIRONMENT
Process Life Cycle

links and returning the resources it was using. The monitor
also closes all files that were opened for this process, and
removes the process's entry in the DCT.

The monitor then requests the memory manager to deallocate
all physical pages held by the process. The memory manager
responds by deallocating the pages held by this process,
making them available for other processes or the system to
use.

Then, the monitor sends a message to the disc process to
close any swap files belonging to the user process, deletes
any messages queued on the terminating process's PCB, and
returns the PCB. When all the user process's resources have
been returned to the system, the monitor sends a Stop message
to the process's ancestor, which in this case is the command
interpreter. The monitor then awaits another incoming
request.

h. The command interpreter is now able to resume execution and
read the termination message sent to it by the monitor
process, It checks this message and determines that the last
user process that it created has terminated. Since this
process was created in a waited manner, its termination
permits the command interpreter to prompt for the next
command.

PROCESS PAIRS

Fault-tolerant operation of the NonStop system depends upon the
concept of process pairs, where primary and backup processes form
redundant sets that promote fault-tolerance. These process pairs
may be employed by both the operating system and its users;
however, they are implemented in different ways, depending upon
which entity creates them.

Process pairs usually are named; the naming convention makes
them easier to work with., The process name as well as the
CPU's and PINs of the primary and backup processes are recorded
in the Destination Control Table (DCT) (Figure 11-19). Thus,
when a user wants to communicate with a named process pair, the
operating system locates the process by looking up its name in
the DCT and determining the associated PID (<cpu>,<pin>)
identifier.

11-20 82507 A00 3/85

THE PROCESS ENVIRONMENT
Process Pairs

ocT SALPHA
PRIMARY
/_ —] SALPHA -

-—
PRIMARY -

LOCATE / BACKUP | =

SALPHA ANCESTOR ——
PRIMARY / $ALPHA
BACKUP
USER
PROCESS
> el $DISC
LOCATE al $DISC _»_ PRIMARY
—
$DISC — -
PRIMARY PRIMARY |}
BACKUP m
[~ ~— - 4
DEVICE B’ SDISC -
INFORMATION BACKUP

Figure 11-19, Named Process Pair Versus Named Device

§5001-150

To provide fault-tolerance at the system level, each input-output
device is controlled by a process pair. When an application
program opens (or otherwise wishes to access) an I/0 device, the
file system first finds the device's entry in the Destination
Control Table. This table (DCT) contains the CPU and process
numbers for the device's primary and backup processes. The file
system then transmits the user's request in a message to the
device's primary process.

Under normal circumstances, user processes communicate with both
named and input-output process pairs through the file system. As
far as the user is concerned, the process name or device
identifier represents a single active process. In actuality,
however, the name/identifier references both the primary and
backup, with the backup member remaining dormant (except for
processing Checkpoint messages) until the primary fails. The
file system remains responsible for directing messages to the
appropriate member of the pair.

For instance, suppose a user opens and writes data to a process
that he identifies as $ALPHA (Figure 11-20). To keep its backup
informed of current requests, SALPHA's primary process sends
checkpoints to the backup. Now suppose, at some later time, the
CPU on which the primary is running fails. The file system once

482507 AOO 3/85 11-21

THE PROCESS ENVIRONMENT
Process Pairs

DCT

— SALPHA
—
| PRIMARY SALPHA
| 0,31
| BACKUP
| 4,27
| :
| /_\ c o
\ o A PRIMARY
D T CPUO
€ A
WRITE 031
to SALPHA dA
Data Stack
USER FILE Checkpoint
PROCESS SYSTEM Message Messages
System by

Transter

BACKUP
CPU 4

moOoOn
» = PO

$5001-151

Figure 11-20. Process Pair Backup

again tries to reference $ALPHA's failed primary. The file
system always routes data to the primary member of the process
pair (Figure 11-21, Event A). When such a transfer fails, any
outstanding messages to the process are cancelled and a "path
error"” to the device or process results. In this case, the
backup process becomes the primary (Event B) and the operation
may be retried to the new primary (Event C).

Input/output processes operate in a parallel way. When a message
request for the device occurs, the operating system sends the
message to the first process (primary) in the DCT entry for the
device. If the message cannot be delivered, the error indication
causes the operating system to switch the primary and backup
entries in the DCT. When the device is a disc, and the syncdepth
is greater than zero, the system resends the request to the new
primary process. The operating system handles this error
recovery automatically, and the user remains unconcerned with
what process actually handled the request. If the device is not
a disc, such a failure results in an error without retry.

11-22 #4 82507 A0O 3/85

THE PROCESS ENVIRONMENT
Requester/Server Relationships

DCT

- SALPHA

PRIMARY
0,31) SALPHA

BACKUP
4,27

~N
\

-~ = ———

Primary
failed

] cruo
/
v

TRANSFER + New PRIMARY

T0 0,31

FAILS | create another
BACKUP (in

CPU 0 or elsewhere)

WRITE
to SALPHA

USER FILE
PROCESS SYSTEM

may attempt to

BACKUP
becomes
PRIMARY
CcPU 4

TRANSFER
RETRIEDTO
4.27

mgoon
»-p0

S$5001-152

Figure 11-21, Primary Process Failure

REQUESTER/SERVER RELATIONSHIPS

In the case of process pairs, described above, each process is
the functional equivalent of the other. Beyond this, however,
two processes can be designed to be responsible for entirely
different functions. For instance, a user might easily divide an
application into two processes so that:

® One process handles the front-end terminal interface.

¢ The other process manages all data base and other disc
accesses,

Then, if fault-tolerant performance is important, the user might
create each of these processes as a process pair.

The relationship between two such communicating processes (or

pairs of processes) is defined by their functions, and is called
a requester-server relationship. The requester initiates a

482507 A00 3/85 11-23

THE PROCESS ENVIRONMENT
Requester/Server Relationships

request to access a resource that is logically "owned" by the
server; the server performs the requested action and replies to
the requester.

In the above example, the requester process (terminal front-end
handler, $REQ) opens the server process (data-base accessor,
SSER) as a file. Incoming commands from the terminal cause the
requester process to call a system library procedure named
WRITEREAD (Figure 11-22). This procedure not only sends a
request message to the server, but also expects a response from
the server. The server, in turn, opens a file named SRECEIVE and
calls the system library procedure READUPDATE. This procedure
not only reads from $RECEIVE the message sent by the requester
but also permits the server to send a response to the requester.
After the server has read the request message, it performs the
required operations. (These typically include data base
accesses.) The server then sends its response, and completes the
transaction by calling the system library procedure REPLY. This
combination of WRITEREAD, READUPDATE, and REPLY procedures allows
a two-way data transfer within the framework of a single message
and illustrates the way in which requesters and servers are
interlocked. That is, once a request has been made, the
requester typically cannot make further requests until the server
replies.

REQUESTER SERVER
$REQ $SER
OPEN $SER OPEN $RECEIVE
‘ SENDS MESSAGE S
WRITEREAD READUPDATE
N — \‘Yw
Disc :
Access | (...UPDATE
: Allows Reply)
REPLY -~
RETURNS REPLY
S5001-153

Figure 11-22. Requester-Server Pair

11-24 482507 A0 3/85

THE PROCESS ENVIRONMENT
Requester/Server Relationships

In this way, the requester always remains the controlling process
in the relationship. The server, on the other hand, is mainly a
passive process, awaiting messages from the requester and acting
only when those requests arrive. Under typical circumstances,
when a server finishes processing all incoming requests, it
suspends and awaits further messages.

A typical example of request handling appears below in Steps a
through c:

a. The requester opens the server process as a file and then
sends messages to it. The requester identifies the server
by:

1. The server's process ID, if the server is an unnamed
process.

2. The server's process name, if the server is actually a
named process Or process pair.

b. After the server completes any required initialization, it
opens and reads the $RECEIVE file. (This file must be opened
and read in order to pick up any incoming messages.)
Multithreaded servers open SRECEIVE with a receive depth
parameter greater than zero in the OPEN call; this permits
the server to send replies to the requester. S$RECEIVE acts
as a funnel through which all incoming requests arrive. The
server reads the requester's message from $RECEIVE, and if a
backup server exists, may also checkpoint the request to it.

By reading S$RECEIVE, the server simply reads unsolicited
messages already transmitted to that file by other processes.
Thus, while the requester must know the identity of the
server to send a message, the server need only pick up
messages from SRECEIVE. The message and file systems keep
track of the identity of the requester. For this reason, the
server only needs to reply to such incoming messages and the
file system automatically directs the replies back to the
appropriate requester.

c. The server reads the requester's message from S$RECEIVE,
interprets the action required, and performs the requested
function. Typically, the function involves returning
information to the requester by replying to that process's
message.

Some additional techniques are available to assist users in
developing more sophisticated requester-server applications.
These techniques are supported by the following file-open
options:

) 82507 A00 3/85 11-25

THE PROCESS ENVIRONMENT
Requester/Server Relationships

® nowait depth (Bits 12 through 15 of the <flags> parameter
in the OPEN procedure call.)

e sync depth (Used by requester process)
® receive depth (Used by server process)

To clarify how these options may be used, the following
discussion illustrates their application in the requester and
server environments.

Requester Environment. The concept of nowait input-output
transfers applies to files used by both requesters and servers.
Simply stated, nowait input-output allows a process to begin a
transfer and then continue execution in parallel with it.

Under normal circumstances (wait input-output), the user process
suspends until the input-output completes. 1In such cases, the
process is assured that the transfer has been completed before
the process resumes execution. When a nowait input-output
transfer is requested, on the other hand, the process remains in
execution and must check for the completion of the input-output
by calling the system library procedure AWAITIO.

The nowait input-output facility is requested in the call to the
OPEN procedure. The caller specifies a nowait depth when the
requester process opens a server process as a file. If the
requester specifies a non-zero value for nowait depth, this value
limits the number of outstanding requests that may be queued
against the server process at any one time. For instance, with a
nowait depth of three, no more than three data transfers to the
server could be outstanding at any instant--that is, one of the
three requests must be completed before another can be
successfully queued. This queueing can be used to permit the
requester and server to operate asynchronously. The requester
can fill the server's input qQueue as needs arise, and the server
can respond to requests in the queue as time permits.

Another facility available to both requester and server processes
is controlled by the sync depth parameter in the requester's call
to open a server process pair as a file. This facility enables
the requester and server to coordinate their communications and
is completely independent of the nowait depth value. A nonzero
sync depth value has two effects:

1., It causes the file system to automatically retry requests

which were unsuccessfully sent to the server. (The retry is
directed to the backup process of the server process pair.)

11-26 4482507 A00 3/85

THE PROCESS ENVIRONMENT
Requester/Server Relationships

2. It causes the sync depth value to be sent to the server in
the OPEN message that notifies the server process that it has
been opened by the requester. Once the server receives the
sync depth value, it expects that all incoming messages will
contain a sync ID value. This information should enable the
server to associate status returns with sync ID values, and
to use logic to detect and ignore duplicate requests. The
number of messages sent to the server between checkpoints in
the requester should not exceed the sync depth value.

NOTE

With the exception of the automatic retry done by the
file system, all the logic described above must be
provided by either the application programmer or the
high-level language (such as FORTRAN or COBOL) in which
he is working.

Server Environment. In order to receive messages from the
requester, the server process must open the SRECEIVE file.
Nowait depth has a very limited application in this
environment--its maximum value is only one. The value of
nowait depth has the following effect when no incoming requests
are pending on SRECEIVE:

e A nowait depth of zero causes the server process to wait for
an incoming request on SRECEIVE,

e A nowait depth of one allows the server to post one nowait
READ operation against $RECEIVE to monitor this file for
incoming requests while the server is otherwise occupied. As
before, the completion of any nowait request must be
determined by calling the system library procedure AWAITIO.

Note, however, that since $RECEIVE is a single file, a single
READ operation posted against this file is all that is needed to
monitor it for input.

Another facility available to the server is defined by the
receive depth parameter specified in the OPEN call for the
SRECEIVE file. Receive depth specifies the number of requests
that may be read before any reply is returned to a requester.
Receive depth must be greater than or equal to 1, to enable the
server process to return a reply to the requester. 1In other
words, receive depth specifies the number of READUPDATES that can
be issued before performing a reply. For instance:

482507 A00 3/85 11-27

THE PROCESS ENVIRONMENT
Requester/Server Relationships

Number of READUPDATEs Allowed Before

receive depth Performing REPLY Operation

0 0 (No READUPDATE allowed--file can
only use READ.)

1 1

2 2

The receive depth facility is completely independent of the
nowait depth discussed earlier, and allows the server to examine
its input queue, make decisions about the order in which to
service requests, and respond to the requests in arbitrary order.

The options discussed above may be used singly or in combination
in the requester-server process environment. While their use was
not required in the above example, they may be very helpful tools
in implementing applications where more sophisticated queueing
and error recovery is necessary.

Multiple Requester-Server Relationships. The previous examples
have covered single requester-server applications. But in more
complex relationships, SRECEIVE can function as a universal
two-way communication path among multiple requesters and servers.
In fact, many servers, each with its own SRECEIVE file, can
receive input from more than one requester and any requester can
communicate with more than one server (Figure 11-23).

The requester-server concept indicates a relationship between
processes, not the exclusive duty of a process. In fact, some
processes perform both functions in the course of their
execution. This idea is the basis of "pass-through"
arrangements, where a requester transmits a request to a server
and this server, in turn, also functions as a requester,
transmitting the request to another server (Figure 11-24). 1In
these arrangements, each process is frequently a member of a
process pair, with a primary and backup process involved at each
point in the communication stream.

11-28 4482507 AD0 3/85

THE PROCESS ENVIRONMENT
Requester/Server Relationships

S$5001-154

Figure 11-23. Multiple Requester-Server Relationships

8§5001-155

SERVER/
REQUESTER

Figure 11-24. Pass-Through Arrangement

482507 A0 3/85 11-29

THE PROCESS ENVIRONMENT
Requester/Server Relationships

Although system processes do not communicate with each other by
using process files and SRECEIVE, many of the functional
relationships that the operating system depends upon are
essentially requester-server pairs. Communication between these
processes takes place at the message system level--but is still
functionally equivalent to the way that application requester/
servers communicate through the file system.

As an example of system process intercommunication, consider the
case where an ordinary user process calls file system procedures
to read and write information to a terminal, sending requests to
the terminal process that controls the device (Figure 11-25). 1In
this case, the user process is the requester and the terminal
process is the server. In a similar way, when the user process
calls file system procedures to read or write data to a disc
file, it sends messages to the disc process controlling the
device. Again, the user process is the requester but the disc
process is now the server. 1In this way, input-output processes
(and other system processes such as the monitor and operator
processes) depend on requester-server relationships.

SERVER

TERMINAL [TERMINAL
PROCESS

' REQUESTER
USER \
PROCESS /

REQUESTER

DISC
PROCESS

SERVER

=

S§5001-156

Figure 11-25. Communication with System Processes

11-30 4482507 A00 3/85

THE PROCESS ENVIRONMENT
Requester/Server Relationships

To illustrate requester-server relations within an application,
consider a transaction processing system. In this system,
requester components might handle terminal input-output, validate
input fields for data consistency, convert this data to internal
format, and control transaction flow. Server components, on the
other hand, might perform such functions as:

a. Reading messages from a requester

b. Reacting to this request by reading, writing to, updating, or
deleting information from the data base

c. Building a reply containing data from the data base or
control information describing an error that occurred

d. Transmitting a reply message to the requester

As another application example, suppose that a transaction
processing system performs three main functions: checking
credit, adding a new order, and updating an existing order.

(Each of these functions is handled by a corresponding server
process.) The requester process reads information from the
user's terminal, constructs a message, and sends the message to
an appropriate server process based on the request. The three
servegs are responsible for all activity on the data base (Figure
11-26).

ORDER

ENTRY
INFORMATION ORDER ENTRY
TERMINAL (REQUESTER)

CORPORATE
DATA
BASE

CREDIT CHECK
(SERVER}
ADD
NEW ORDER
(SERVER)

UPDATE ORDER
(SERVER)

$5001-157

Figure 11-26. Communication with Application Processes

4482507 A0O 3/85 11-31

THE PROCESS ENVIRONMENT
Requester/Server Relationships.

A more complex example appears in Figure 11-27. In this
example, multiple requester processes share access to multiple
server processes. In the case of the credit-check function,
multiple copies of the same server were created in different
CPUs to increase performance and throughput.

A main advantage of requester-server relationships is
modularity--the ability to implement a system in discrete modules
or components that can work in parallel. Thus multiple
requesters and multiple servers can work together to accomplish a
single application. Modularity also permits smaller, more
manageable components that are easy to define, write, debug,
integrate into the system, and maintain. It makes a system more
flexible by letting designers easily add new user functions that
employ services already provided by existing application
processes. And finally, it permits system expansion by allowing
a flexible distribution of terminals, requesters, and servers
among a system's CPU's--and perhaps even among systems in a
network. All of these factors make it easier to optimize
application throughput and performance.

CREDIT CHECK
(SERVER)

CREDIT CHECK
(SERVER)

ADD
NEW ORDER
(SERVER)

UPDATE ORDER
(SERVER)

TERMINAL
TERMINAL

ORDER ENTRY
(REQUESTER)

TERMINAL
TERMINAL

ORDER ENTRY
(REQUESTER)

CORPORATE
DATA BASE

S§5001-158

Figure 11-27. Application with Multiple Requesters and Servers

11-32 482507 A0O 3/85

APPENDIX A

HARDWARE INSTRUCTION LISTS

This appendix provides a number of reference tables pertaining to
the instruction sets of the NonStop II and NonStop TXP
processors.

The first two tables list all instructions in the instruction set
with their mnemonics and opcodes, first in alphabetical order and
then grouped by type of instruction. The remaining tables
provide binary coding details for most of the instructions,
grouped according to the coding patterns of the fields of the
instruction words. (For example, all memory reference
instructions are listed together.) These tables break down each
instruction, bit by bit, into its component parts, indicate the
operands, results, and ENV Register bit settings, and show
relationships between similar instructions.

The following tables are included in this appendix:

Alphabetical List of Instructions

A-1.

A-2, Categorized List of Instructions

A-3. Binary Coding, Memory Reference Instructions

A-4, Binary Coding, Immediate Instructions

A-5. Binary Coding, Move/Shift/Call/Extended Instructions
A-6. Binary Coding, Branch Instructions

A-7. Binary Coding, Stack Instructions

A-8. Binary Coding, Decimal Arithmetic Instructions

A-9. Binary Coding, Floating-Point Instructions

A key at the end of each table explains the symbols used.

For some instructions, the six-digit opcode notation used in
Tables A-1 and A-2 cannot give complete information about the
opcode. For instance, the distinctions between QUP and QDWN,
ORRI and ORLI, and LWP and LBP cannot be clearly shown. For
complete information, refer to the entries for these instructions
in Tables A-3 through A-9.

Aa82507 AO00 3/85 A-1

APPENDIX A
Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions

Mnemonic Description Octal
Code
ADAR Add A to Register.....eveeensesescaceeaass 00016-
ADDI Add Immediate..veveceeeeecossscesscaasaes 104—=—-—
ADDS Add tO S..i.ciiiieererestasosssesenensssses 002---
ADM Add tO MEMOIY.eeeooerenssoonssaccccosssone —71&—==—
ADRA Add Register tO A....cieveesssceansesasses 00014-
ADXI Add to Index Immediat@....esoveeeoeeecsese 104——-
ALS Arithmetic Left Shift....vcieeeeeeceeaees 0302--
ANG AND tO MeMOTrY:eeeeeossnsasnsseasccaesssas 000044
ANLI AND Left Immediate...ceeeeesesecsennceseas 007=—=
ANRI AND Right Immediate..c.eieeesescecssesseass 006——-
ANS AND tO SG MeMOIY.veesonsssnnscssesseessss 000034
ANX AND to Extended MemOIrYy...eeeesasesseseasas 000046
ARS Arithmetic Right Shift......c.ec000eveee. 0303--
ASPT Address of Segment Page Table Header..... 000470 *
BANZ Branch on A....ieeieveeecnssscocossenesass —154--
BAZ Branch on A ZerO...eieeeesssscsscsonsaaes —144--
BCLD Bus Cold LOAA.:eeeeeesasosssssseansssnsases 000452 *
BEQL Branch if Equal....iivieeeveerecconnccnnee =—12---
BFI Branch Forward IndireCt..escececeossecesses 000030
BGEQ Branch if Greater or Equal....ceeeeesoeee —13---
BGTR Branch if Greater....eeceeeevececsseseeas —1l-—-
BIC Branch if Carry.e.eececeeeeseacescoscnsess =—10-—=
BIKE Bicycle While Idle..ieeeesececsacseeseasss 000464 *
BLEQ Branch if Less or EQUal..eeeeeeeeosensess —16——-
BLSS Branch if LeSS.eieeeserseceossencsaceansnnes —14——-
BNDW Bounds Test WOrdsS....ecececoccccccssssssss 000450 *
BNEQ Branch if Not EQual....veeveeeseceocsnseen =15=-—=
BNOC Branch if NO CaArry....ceeesescencnssanaen —17——-
BNOV Branch if No Overflow....veeeeeecvoseeeaen =—164--
BOX Branch on Xiveeeeeeveoooooesocososocsssasaas —1-4—-
BPT Instruction Breakpoint Trap..ceececeesees 000451
BSUB Branch to Subprocedure.....sveeeeveesaees =174--
BTST Byte TesSt..iveeeeenssceassessnnsaseasnassss 000007
BUN BranCh...eeeeeeeceescossesoscssnsssennnseass —104--
CAQ Convert ASCII tO QUAd....ccsseeeesaseesss 000262 S
CAQV Convert ASCII to Quad with Initial value. 000261 S
CCE Condition Code Equal tO...eteveeesesaesss 000016
CCG Condition Code Greater than....eeeeeeeees 000017
CCL Condition Code Less than...esceeeeeeesass 000015
CDE Convert Doubleword to Extended Float..... 000334 #
CDF Convert Doubleword to Float....eeeeeeee.. 000306 #
CDFR Convert Doubleword to Float (Round)...... 000326 #
A-2

/ﬂ82507 AQ0 3/85

APPENDIX A
Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions (Continued)
Mnemonic Description Octal
Code
CDG Count Duplicate WordsS....eeeceeseeseseses 000366
CDI Convert Doubleword to Integer....ceeeases . 000307
CDQ Convert Doubleword to Quad....eceeeeeeee. 000265 §
CDX Count Duplicate Words Extended. ceenes . 000356
CED Extended Float to Doubleword....... .. 000314 #
CEDR Extended Float to Doubleword (Round) . 000315 #
CEF Extended Float to Float...... cesessses 000276 #
CEFR Extended Float to Float (Round) 000277 #
CEI Extended Float to Integer....ceeeececassss 000337 #
CEIR Extended Float to Integer (Round)........ 000316 #
CEQ Extended Float to Quadrupleword.......... 000322 #
CEQR Extended Float to Quadrupleword (Round).. 000323 #
CFD Floating to Doubleword.....eeeeeeeeeeeens 000312 #
CFDR Floating to Doubleword (Round)........... 000313 #
CFE Floating to Extended Float..e.eeeeeeeess . 000325 ¢
CFI Floating to INtEger.v.eeeecececasssensans 000311 ¢
CFIR Floating to Integer (ROUNA) . .eveeennnnenn 000310 #
CFQ Floating to Quadrupleword........ ceseaas 000320 #
CFQR Floating to Quadrupleword (Round) 000321 #
CIiD Convert Integer to Doubleword.......eve.. 000327
CIE Convert Integer to Extended Float........ 000332 #
CIF Convert Integer to Floating...eeeeeeoeees 000331 #
CIQ Convert Integer to Quad.......oc.. ceceaaas 000266 S
CLQ Convert Logical to Quad...eeeeeesnscenneens 000267 S
CMBX Compare Bytes Extended........... ccssense 000422
CMPI Compare Immediate...eceevsesceescssnseess 001---—
CMRW Correctable Memory Error Read/Write.... 000432 *
COMB Compare Bytes...... cesssecenana ceecss e 1262--
COMW Compare WOordS..eeeeeeeevacens ceceessssans 0262--
CQA Convert Quad to ASCII...iveevececacansees 000260 S
CQD Convert Quad to Doubleword......eceveeees 000247 s
CQE Convert Quad to Extended..... cesteessenens 000336 #
CQER Convert Quad to Extended (Round) 000335 #
CQF Convert Quad to Floatinge.eeeeeeoessonsss 000324 #
CQFR Convert Quad to Floating (Round) 000330 #
CQI Convert Quad to Integer.....cceveeesvacsss 000264 S
CQL Convert Quad to Logical..... Cetesecsanene 000246 $
CRAX Convert Relative to Absolute Extended.... 000423 *
DADD Double Add......... ceseeseeans . 000220
DALS Double Arithmetic Left Shlft 1302--
DARS Double Arithmetic Right Shlft ctesesanss 1303--
DCMP Double Compare....... Ceetccetsseneasaanns 000225
4482507 A00 3/85 A-3

APPENDIX A

Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions (Continued)
Mnemonic Description Octal
Code
DDIV Double Divide....cicevevenessessssessesss 000223
DDTX DDT Request (NonStop TXP processor only). 000456 *
DDUP Double Duplicat@.secesesescasessescssaass 000006
DFG Deposit Field in Memory.....cceeveesesess 000367
DFS Deposit Field in SysteM....eceseesenaesss 000357
DFX Deposit Field in Extended Memory......... 000416
DISP DispatCh.c.ecieeineeeeeesesensoassncesanass 000073 *
DLEN Disc Record Length..i.eveeeeoceseasesasss 000070 @
DLLS Double Logical Left Shift.....cceceeveae.. 1300--
DLRS Double Logical Right Shift.......cve00.0. 1301--
DLTE Delete Element from List....oeseeeeveesse. 000054 *
DMPY Double MUltiply..sieeeerseenaconassensaaesass 000222
DNEG Double Negate....eseveeeeenconsacnssassass 000224
DOFS Disc Record Offset.....civevvveeeneeassss 000057 @
DPCL Dynamic Procedure Call......oceveessesess 000032
DPF Deposit Fieldi.iesevseesenaesaesnesanssss 000014
DSUB Double Subtract......ivveeeeeeesasnesasaas 000221
DTL Determine Time Left for Element.......... 000207 *
DTST Double Test....... ceessesssessssasssasass 000031
DXCH Double Exchange.....eeeeeeeecescsasaaaess 000005
DXIT DEBUG Exit...... eseecteresasseseensasssass 000072 *
EADD Extended Floating-Point Add.....c¢ecc..... 000300 #
ECMP Extended Floating-Point Compare.......... 000305 #
EDIV Extended Floating-Point Divide........... 000303 #
EIO Execute I/0..iiceeenceescscsnssesesssasasas 000060 *
EMPY Extended Floating-Point Multiply......... 000302 #
ENEG Extended Floating-Point Negaté........... 000304 #
ESUB Extended Floating-Point Subtract......... 000301 #
EXCH EXChange. . ieiiiieeenenssscesanaennsseaases 000004
EXIT Exit ProceduUre....eeeeesescencessosasasses 125-—-
FADD Floating-Point Add......cevveveeeeeesesss 000270 #
FCMP Floating-Point COMPAre....eeseesesesessss 000275 #
FDIV Floating-Point Divide.....eieveseseeaeass 000273 #
FMPY Floating-Point Multiply.....cceeeeeeee... 000272 #
FNEG Floating-Point Negate....eeeueseassseeaas 000274 #
FRST Firmware ReSet..ceececeesescansoncacaseass 000405 *
FSUB Floating-Point Subtract......sveeeeeeeesee 000271 #
FTL Find Position in Time List....¢ec000e.... 000206 *
HALT Processor Halt...iicoeeeeonesnsnesaaaesas 000074 *
HIIO High-Priority Interrogate I/O..¢¢esee.... 000062 *
IADD Integer Add....coeeseeesenesssasssaasssass 000210
ICMP Integer COMPAIre...eseseescessssscssenssss 000215

/1”82507 AQ0Q0 3/85

APPENDIX A
Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions (Continued)
Mnemonic Description Octal
Code
IDIV Integer Divide..ieeeceocesanssssessaassss 000213
IDX1 Calculate Index, 1 DimensioN...ceeceeeess 000344 #
IDX2 Calculate Index, 2 Dimension.......c..... 000345 #
IDX3 Calculate Index, 3 DimensioN............. 000346 #
IDXD Calculate Index, Bounds in Data Space.... 000317 #
IDXP Calculate Index, Bounds in Code Space.... 000347 #
110 Interrogate I/0..iieeeeescncencsessssssaass 000061 *
IMPY Integer Multiply...ieeeeeeoecesessaeseeacs 000212
INEG Integer Negate...ieseeesssesnsasssenesaas 000214
INSR Insert Element into LiSt.ceseeeesecesse.. 000055 *
ISUB Integer Subtract....cceeeeecessesseseeasss 000211
IXIT Interrupt EXit.ueeeeeeesooeeanceesaseennass 000071 *
LADD Logical Add....ceveverenoescnnseeneassaas 000200
LADI Logical Add Immediate€....seeeeeeesecseeas 003---
LADR Load AdAresSS..iceeessecccsccsnsnsscsscnases —1————
LAND Logical AND.:uvveeeeeeeoseososcessasaeesss 000010
LBA Load Byte Via A...eerersssesscessacenssss 000364
LBAS Load Byte via A from System......eces0.... 000354
LBP Load Byte from Program...sccecececoosssaas —2-4--
LBX Load Byte Extended.....ceeeveeeessceesss. 000406
0266--
LBXX Load Byte Extended, Indexed....ceceeese.. 0256--,
LCKX Lock Down Extended MemOry...seeeeeeesece.s 000430 *
LCMP Logical Compare...veeeceseccsoscesanseassss 000205
LDA Load Double Via Aieeieceescossccsnaasasss 000362
LDAS Load Double via A from System......¢e.e... 000352
LDB LOAd BYt€.:eeesseeosssosonsensssnsssssoass —D———=
LDD Load DOUblEe.iiieveresessseosasoansonosnas —bH————
LDDX Load Double Extended....ceeecevecsecesasss 000412
LDI Load Immediate..cesececessocssceosaossass 100-—-
LDIV Logical Divide..eeeeseossoseosnseneceesseess 000203
LDLI Load Left Immediate...sceeeeessscecessaees 005-—-
LDRA Load Register tO A.iveiceeessssccssasosassss 00013-
LDX LOAA Xuveeeooooooooossssanseasossssasssssns -3-——-
LDXI Load X Immediate..ceeesceesoscosscosscsssoes 10==—=
LIOC LoAd IOC..seecesoecosscoassssosssnssssasass 000457 *
LLS Logical Left Shift....eeveereereonceasees 0300--
LMPY Logical Multiply.ceeeseeeaessessceseesess 000202
LNEG Logical Negate....eeeeeoseosseseesseaaseess 000204
LOAD Load. . iceeeeeeeoeeescecnosnassncsssssssans —&————
LOR LOgical OR:ueeeveeosessenncssasaceasseasaas 000011
LQAS Load Quadrupleword via A from SG......... 000445 *
4482507 AOO 3/85 A-5

APPENDIX A

Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions (Continued)
Mnemonic Description Octal
Code
LOX Load Quadrupleword Extended....ceeeeeees 000414
LRS Logical Right Shift......... ceceersenne . 0301--
LSUB Logical Subtract...eeseeeceaes cesesasseas 000201
LWA Load Word via A..eseeseenesannes cesseesss 000360
LWAS Load Word via A from SystemM....veeeeeeces 000350
LWP Load Word from Program.....eceeeeesssssns -2----
LWUC Load Word from User Code SP3Ce.iieescsccas 000342
LWX Load Word Extended...... teecasesasens eee. 000410
LWXX Load Word Extended, Indexed....ceceeeeeces 0254--,
0264--
MAPS Map In a Segment........ cssassesassannane 000042 *
MBXR Move Bytes Extended, Reverse€......e.eec... 000420
MBXX Move Bytes Extended, and Checksum........ 000421
MNDX Move Words while Not Duplicate, Extended. 000227
MNGG Move Words while Not Duplicate..s.ceeec... 000226
MOND Minus One Double...ceeerenraosas ceeeen 000001
MOVB Move Bytes......... ceesesaereneeaase cer e 126---
MOVW MOve WOrdS..eeeseeeesnecsscassanasas ceees 026---
MRL Merge onto Ready List...... teessssssessss 000075 *
MVBX Move Bytes Extended....ciceveees ceeeseess 000417
MXFF Mutual Exclusion Off........... ceesssssss 000041 *
MXON Mutual Exclusion ON...ceeeeveess cesesceasss 000040 *
NOP No OperatioN.ieeeeeccees teeseessssssaesesas 000000
NOT NOt:eieeeesoooossosooassannaons cesesaesens 000013
NSAR Nondestructive Store A in a Register..... 00012-
NSTO Nondestructive Store...... ceesescessenans -34---
ONED One Double....cevencsans cseccccvsaasee 000003
ORG OR tO MEBMOIY.ceeoseenesosssssssssccnsanss 000045
ORLI OR Left Immediate....cieeeeeesaccsananans 0044--
ORRI OR Right Immediate...c.eeeeeeeseoscnancas 004---
ORS OR tO SG MEMOIryY.seeeeeseocnsoas cessessass 000035
ORX OR to Extended MemOry....eeeeeae ceesssees 000047
PCAL Procedure Call...vieeeesnsanans cesenssase 027---
POP Pop from Stack....veee.. hesessenescccan oo 124---
PSEM "P" a Semaphore......... tetisecsassesanece 000076 *
PUSH Push to Stack....cc0even ceessccetssssne . 024---
QADD Quad Add....vees. ceeesacesanes cessesesass 000240
QCMP Quad COMPAre.ceecescecsasns ceecssnssssessss 000245 S
QDIV Quad Divide..iieveeeencaaanas Ceeeesesanas 000243 $
QDWN Quad Scale DOWN..eeeeeee cecsena ceensesess 00025-
QLD Quad LOad..eceeeesseessosasansassasanssas 00023-
OMPY Quad Multiply.eeeeeeaass ceteeea seeesssess 000242 S

ﬂ"| 82507 AQ0 3/85

Table A-1. Alphabetical List of Instructions (Continued)

APPENDIX A
Hardware Instruction Lists

Mnemonic Description Octal
Code
ONEG Quad Negat€....eeeeeeoeeoes Ceceenae eeeese 000244 S
QRND Quad Round....eeeeesos ceesesssesensessses 000263 S
QST Quad Store....... seessessessssesesssessss 00023~
QSuUB Quad Subtract....eeeeeeeesescsnsssescssss 000241
QuUP Quad Scale Up...... cseseecssessssecssassss 00025-
RCHN Reset I/0 Channel.....ceeeseesecsessessss 000447 *
RCLK Read CloCK.:iveeeoseseosssecsssesassesssss 000050
RCPU Read Processor Number.....seeseseees0es.. 000051
RDE Read E RegisSter.i.iiecesaccscocecscsasanas 000024
RDP Read P RegiSter...ceeeseescsssasssessssss 000025
RIBA Read INTA and INTB Registers............. 000440 *
RIR Reset Interrupt....... ceesesssaneas ceesss 000063 *
RMAP Read Map (NonStop II processor only)..... 000066 *
RPT Read Process TiMer.....soeeeees teeseresase . 000442 *
RPV Read PROM Version Numbers......esces¢0... 000216 *
RSMT Read from Operations & Service Processor. 000436 *
RSPT Read Segment Page Table Entry...eceeeeees 000424 *
RSUB Return from Subprocedure......ccveeeeasss 025---
RSW Read Switches....vvune teseseenanaas sesees 000026
RUS Read Micro Stat€...ccesescass ceseesecanns 000461 *
RWCS Read LCS...ceveenn ceessssessesassssssssss 000402 *
RXBL Read Extended Base and Limit....eeeeeees. 000426 *
SBA Store Byte via A.i.ieeeeoans cecascanns .++s 000365
SBAR Subtract A from a Register...eeeeeeeses.. 00017~
SBAS Store Byte via A into SysteM...ceeeceses .. 000355
SBRA Subtract Register from A.....ceceeeeeeess 00015~
SBU Scan Bytes Until...... ceeesseesssanens cees 1266--
SBW Scan Bytes While....... . oo eee 1264--
SBX Store Byte Extended.......cc.. teeseene .. 000407
SBXX Store Byte Extended, Indexed....¢.eeess.. 0257--
0267--
SCMP Set Code MaP.eeeseseannsanse tcesasssessssss 000454
SCpV Set Current Process Variables....¢eeeeee.. 000463 *
SCS Set Code Segment.....coe0.s cesecven esesea 000444
SDA Store Double via A...ieercessscacsseassss 000363
SDAS Store Double via A into System........... 000353
SDDX Store Double Extended....cceeeeveeeeessess 000413
SEND Send....... teeesssessessssssesassesssssss 000065 *
SETE Set ENV Register...eeeececance ceeessacnns 000022
SETL Set L RegiSter..ciceeeeeceesessscseesesesss 000020
SETP Set P RegisSter.iiiieeessesccessossassasass 000023
SETS Set S Register...csieeecscsssess cessessesss 000021
482507 A0 3/85 A-7

APPENDIX A

Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions (Continued)

Mnemonic Description Octal
Code
SFRZ System Freeze....ceeceeeessscssssssseeess 000053 *
SI10C Store IOC....eeeeertoeeacosssaonsssssasnssasnes 000460 *
SMAP Set MAP:itieeraeosoeescassccssncsasnsnaas 000067 *
SMBP Set Memory Breakpoint.....eceeeeseesesses 000404 *
SNDQ Signal a Send Is Queued...vceeeeeseceaeass 000052 *
SPT Set Process TiMer.....ovsescssassasasaaess 000443 *
SQAS Store Quadrupleword via A to SG.....e.... 000446 *
SQX Store Quadrupleword Extended............. 000415
SRST Soft Reset (NonStop TXP processor only).. 000455
SSW Set Switches......iiiiiiirncneenarnneeaas. 000027
STAR Store A in Register.....ieesvesescesaecass 00011~
STB Store Byte..ieseeeeearacessossassssssenese —D&——-
STD Store Double....veiieeieersesncnsesssenses —64---
STOR StOre. i ierineensessscinasensscsssnsssnnes —44-——-
STRP Set RPiiiesenesonenacnnane ceesesssansssass 00010-
SVMP Save Map ENtriesS...cieeeeseocessesaceesass 000441 *
SwWA Store Word via A.uieeeeeeesasessanssanesass 000361
SWAS Store Word via A into System............. 000351
SWX Store Word Extended.....ceeoeesvessceesss 000411
SWXX Store Word Extended, Indexed......eeee... 0255--,
0265--
SXBL Set Extended Base and Limit...eeeeeeesee. 000427 *
TOTQ Test OUTQ..scesosesscecssssassasasessasss 000056 @
TPEF Test Parity Error Freeze Circuits
NonStop II processor Only...seeeseesasss 000453 *
TRCE Add Entry to Trace Table.....cctseessaaa. 000217 *
ULKX Unlock Extended MemOry....ccecesaeesesses 000431 *
UMPS Unmap a Segment (NonStop II processor)... 000043 *
VSEM "V" a Semaphore....cecscecccscsassanasaaass 000077 *
VWCS Verify LCS.iiieieeescesssosnsaessaaessases 000401 *
WSMT Write to Operations and Service Processor 000437 *
WSPT Write Segment Page Table Entry........... 000425 *
WWCS Write tO LCS..iiieeeseeeconosannasncasaess 000400 *
XCAL External Call....iuiveeeeeesonssoanessenss 127---
XCTR XRAY Counter BUMP..ssececsssssscassaossss 000033 *
XI10C Exchange IOCS...ceeeescesoscassossossesss 000462 *
XMSK Exchange MasKk...eeteeeeeeeesonesssecsonsaaass 000064 *
XOR EXCluSive OR.iiveeecoscesoscsssosssnsseasss 000012
XSMG Compute Checksum in Current Data......... 000343
XSMX Checksum Extended BloCk...:seeeeeesneeaess 000333
ZERD Zero Double...iiieeeneesnnssssessnsanssess 000002
A-8

/I’|82507 AQQ 3/85

APPENDIX A
Hardware Instruction Lists

Table A-1. Alphabetical List of Instructions (Continued)

The one-character symbols immediately to the right of
the instruction opcodes have the following meanings:

indicates a privileged instruction.
indicates an instruction designated for
operating system use only.
indicates a decimal arithmetic optional instruction.
indicates a floating-point arithmetic optional
instruction.

3% N @ *

Table A-2. Categorized List of Instructions

16-Bit Arithmetic (Top of Register Stack)
IADD Integer Add....isveeeseesoscacesseassasss 000210
LADD Logical Add.....iveeereeeeecnsesssaeasaas 000200
ISUB Integer SubtracCt...seceeeeesncesesessasss 000211
LSUB Logical SubtracCt...ieeeeeeseseccesssoeesaes 000201
IMPY Integer Multiply.seeeeescessessossensess 000212
LMPY Logical Multiply..seieeeessessnaseseseass 000202
IDIV Integer Divide...ceveoveeesesesssaseasas 000213
LDIV Logical Divide....sevevsvsesssssseesasss 000203
INEG Integer Negate....eseesseocessenssneesss 000214
LNEG Logical Negate....esceeeesssesaeanesaess 000204
ICMP Integer COMPAre...ceeeessesccscacsssnsess 000215
LCMP Logical Compare....ecseeesssessessessecss 000205
CMPI Integer Compare Immediate.....eeeeeeess. 001---
ADDI Integer Add Immediat@...eeeecesessesaces 104-—-
LADI Logical Add Immediat€...cceeeescsassaecss 003-—-

32-Bit Signed Arithmetic
CDI Convert Double to Integer.....ecceeees.. 000307
CID Convert Integer to Double.....eeeeeeses.. 000327
DADD Double Add.....iieieeevevecssnnseasessss 000220
DSUB Double Subtract....c.ceeeeeseessessesss. 000221
DMPY Double MUultiply.eeeeseresssscosnaeanssaas. 000222
DDIV Double Divide...cevsosvesesoscsnsseassss 000223
DNEG Double Negate...ieeevssesasennsnsesasass 000224

482507 A0O 3/85 A-9

APPENDIX A
Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

32-Bit Signed Arithmetic (continued)

DCMP Double Compare....... Ssecsssasssansena .. 000225
DTST Double Test.....oee0. Ctecectestacans 000031
MOND (Load) Minus One Double....... cessessses 000001
ZERD (Load) Zero Double...ieeeeeneees ceseeses 000002
ONED (Load) One DOUble...ceveeereencnanss . 000003
16-Bit Signed Arithmetic (Register Stack Element)
ADRA Add Register tO A.i.veveveeens cesesasas . 00014-
SBRA Subtract Register from A.......c00 eesss 00015-
ADAR Add A tO RegiSteriiccieeeceecosssscncansas 00016-
SBAR Subtract A from Register.......... ceeane 00017-
ADXI Add to Index Immediate.....eeeeececoncas 104---
Decimal Arithmetic Load and Store
QLD Quadruple Loa@d...ceeeeeecssssssscessssas 00023-
QST Quadruple StOre...ciieiecscrassncsossans 00023-
Decimal Integer Arithmetic
QADD Quadruple Add.... et eveeraesssanns ceeee 000240
QSUB Quadruple Subtract........ ceeean cessena . 000241
QMPY Quadruple Multiply...eeeeeeaesns ceeeeess 000242
QDIV Quadruple Divide....veeeeeeeeesccncanens 000243 S
QONEG Quadruple Negate....ceeeeeeoocsososascnccss 000244 S
QCMP Quadruple COMPAre...sesscescesscsscsesss 000245 §
Decimal Arithmetic Scaling and Rounding
QuUP Quadruple Scale UPeeeeceeecans ceseesseess 00025-
QDWN Quadruple Scale DOWN....o.. cessesessaecss 00025-
QRND Quadruple Round....ceee. cecessencssacnae 000263 S
Decimal Arithmetic Conversions
CcQI Convert Quad to Integer....... ceeeans e.. 000264 s
CQL Convert Quad to Logical...seeeoaseencas . 000246 S
CQD Convert Quad to Double.....ceeeeenneans . 000247 S
CQA Convert Quad to ASCII...ceeeooceea ceees 000260 S
CIQ Convert Integer to QuUad.....ccessneccccs 000266 S
CLQ Convert Logical to Quad...ceeeess ceseeses 000267 S
CDQ Convert Double to Quad....ceeeersncecens 000265 S
CAQ Convert ASCII to QUad..ceeesecesssenessse 000262 §
CAQV Convert ASCII to Quad with Initial Vvalue 000261 $
Floating-Point Arithmetic
FADD Floating-Point Add.....eevvecsesconcans . 000270 #
FSUB Floating-Point Subtract...ececeeceeceas . 000271 #

A{' 82507 A0O0 3/85

APPENDIX A
Hardware Instruction Lists

Table A-2. Cateqorized List of Instructions (Continued)
FMPY Floating-Point Multiply..ceeeeececanas 000272 #
FDIV Floating-Point Divide....... ceceseae . 000273 #
FNEG Floating-Point Negate....eseseevseseess. 000274 #
FCMP Floating-Point COmMPAre€...ceeeccecass ceee. 000275 #

Extended Floating-Point Arithmetic
EADD Extended Floating-Point Add........ ceses. 000300 #
ESUB Extended Floating-Point Subtract...... .. 000301 #
EMPY Extended Floating-Point Multiply...... .. 000302 #
EDIV Extended Floating-Point Divide.......... 000303 #
ENEG Extended Floating-Point Negate..... cee.. 000304 #
ECMP Extended Floating-Point Compare......... 000305 #

Floating-Point Conversions .
CEF Convert Extended to FloatinNg...eceeeeees 000276 #
CEFR Convert Extended to Floating, Rounded... 000277 #
CFI Convert Floating to Integer....ceeeeeesas 000311 #
CFIR Convert Floating to Integer, Rounded.... 000310 #
CFD Convert Floating to Double..... ceesseses 000312 #
CFDR Convert Floating to Double, Rounded..... 000313 #
CED Convert Extended to Double.....ceeeeeens 000314 #
CEDR Convert Extended to Double, Rounded..... 000315 #
CEI Convert Extended to Integer............. 000337 #
CEIR Convert Extended to Integer, Rounded.... 000316 #
CFQ Convert Floating to Quad....cecseseeseasa. 000320 #
CFQR Convert Floating to Quad, Rounded....... 000321 #
CEQ Convert Extended to Quad.....eeeeeeee... 000322 #
CEQR Convert Extended to Quad, Rounded....... 000323 #
CFE Convert Floating to Extended.......... .. 000325 #
CIF Convert Integer to Floating...eseseecoae 000331 #
CDF Convert Double to Floating....eeeeeeeees 000306 #
CDFR Convert Double to Floating, Rounded..... 000326 #
CQF Convert Quad to FloatiNg..eseeseesensans 000324 #
CQFR Convert Quad to Floating, Rounded....... 000330 #
CIE Convert Integer to Extended...... cheeean 000332 #
CDE Convert Double to Extended.....c.eces.0.. 000334 #
CQE Convert Quad to Extended.....eeeeeecens . 000336 #
CQER Convert Quad to Extended, Rounded....... 000335 #

Floating-Point Functionals
IDX1 Calculate Index, 1 DimensioN....ceeeesee 000344 #
IDX2 Calculate Index, 2 DimensionS....... eee. 000345 #
IDX3 Calculate Index, 3 DimeNSiONS....eeeeoes 000346 #
IDXP Calculate Index, Bounds in Code Space... 000347 #
IDXD Calculate Index, Bounds in Data Space... 000317 #

4482507 A00 3/85 A-11

APPENDIX A
Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

Register Stack Manipulation
EXCH Exchange A with Biv.veerecosesesesensass 000004
DXCH Double Exchange......sceeessasseaseseasss 000005
DDUP Double DUplicat@.seeeesecesscassaseseeass. 000006
STAR Store A in a Register....eevseeseseesses 00011-
NSAR Nondestructive Store A in a Register.... 00012-
LDRA Load A from a Register....eseeseseesssss 00013-
LDI Load Immediate..eeeeeesvessosessnsecsssss 100-—-
LDXI Load Index Immediate...ceececescosssaeas 10-——-
LDLI Load Left Immediat€...eeevevsesesesesesss 005---

Boolean Operations
LAND Logical AND....veeeresoscossoseosesasaess 000010
LOR LOGiCAl OR.uvverveseersncsosannencensasass 000011
XOR EXClusive ORi:ieiveececenscssossesosaeses 000012
NOT NOT ..ot eeeeseanenosnans ceessessssesseesss 000013
ORRI OR Right Immediate....ssevevesecssseceess 004---
ORLI OR Left Immediat@...ceeeeeeeecocensenssas 0044--
ANRI AND Right Immediat@....eeeeeeessnsessess 006---
ANLI AND Left Immediate€....ceseeeeescsceesess 007---

Bit Shift and Deposit
DPF Deposit Field...ceeeveseessssasaossssesss 000014
LLS Logical Left Shift...sievevecesssesesese 0300--
DLLS Double Logical Left Shift....eeeseeeees. 1300--
LRS Logical Right Shift....ecveevesesesesess 0301--
DLRS Double Logical Right Shift....ceeee0eeae .1301--
ALS Arithmetic Left Shift.....eceeevveseaeses 0302--
DALS Double Arithmetic Left Shift....eeeeees. 1302--
ARS Arithmetic Right Shift......cceveeeeeeeee 0303--
DARS Double Arithmetic Right Shift........... 1303--

Byte Test
BTST Byte Test..'....‘.C"..l.‘...‘.'.l.....l’ 000007

Memory Stack to/from Register Stack
LWP Load Word from ProgramM....ceceeeesesasse —2-—==—
LBP Load Byte from Program.....eceeeesesaeeo —2-4--
PUSH Push Registers tO MemMOry...cesesesseeees 024---
POP Pop Memory to Registers....eeeeseesecaaes 124---
LWXX Load Word Extended, Indexed.......ceeee¢. 0254--,

SWXX Store Word Extended, Indexed.....¢eee..., 0255--,

A-12 /7"82507 AQ0 3/85

APPENDIX A
Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

Memory Stack to/from Register Stack (continued)
LBXX Load Byte Extended, Indexed......cee0... 0256--,

0266--
SBXX Store Byte Extended, Indexed......eoee.. 0257--,

0267--
LDX Load IndeX...ceeeteeevecececcsccanaannse —3————
NSTO Nondestructive StOr€....ceeeeecesescccece =—34——-
LOAD Load Word....... secesesnsasesscsacseanene —d————
STOR Store Word..veeeeeeescosessssssasssssees —44——-
LDB LOAd BYte.:eeeeeeerenoeosooseoesoanassnees —H=——-

STB Store Byt@.iiiieeeeessossssscsscassasnene —H4——-
LDD Load DOUDLE. . veeveesssssonssoessenossese —b———=—
STD Store DOUDle.veeeeteeatecsoerssessoncoass —H&———
LADR Load Address of Variable..ieeeeeeeeoeoes —T———=
ADM Add tO MEMOIrY.ssvceeoecosescconcssscassons ~—14——-

Load and Store via Address on Register Stack
ANS AND tO SG MEMOIrY.:veeeavaresassaessseaeasss 000034
ORS OR tO SG MEMOIrY.eeseseesseessssssseessss 000035
ANG AND to Current Dat@....eseesceceseacesss 000044
ORG OR to Current Dat@..eceessscesceesssaaass 000045
ANX AND to Extended MemOIrY....eeceeeseesessss 000046
ORX OR to Extended MemOIry....cecesveesessss. 000047
LWUC Load Word from User Code Segment........ 000342
LWAS Load Word via A from System......es0.... 000350
LWA Load Word via A...ieeeceseescsscsasassss 000360
SWAS Store Word via A into System............ 000351
SWA Store Word via A.iieesceseseasoaneaseaseassas 000361
LDAS Load Double via A from System........... 000352
LDA Load Double via A...eieeeesessesacssaass 000362
SDAS Store Double via A into System.......... 000353
SDA Store Double via A....cseesevnaescesasss 000363
LBAS Load Byte via A from System............. 000354
LBA Load Byte via A.veeeeseseessesssanessaoss 000364
SBAS Store Byte via A into System............ 000355
SBA Store Byte Vvia A.c.iveeesssccesssssseseaes 000365
DFS Deposit Field into System Data....e..... 000357
DFG Deposit Field in Current Data........... 000367
LBX Load Byte Extended.....eeeeeesseeeceassas 000406
SBX Store Byte Extended....veeeeeececseasess 000407
LWX Load Word Extended.....eeveeeesveeaseasas 000410
SWX Store Word Extended......ceeceseesseesse 000411
LDDX Load Doubleword Extended.....secveeeess.0. 000412
SDDX Store Doubleword Extended.....ceeevesees 000413
LOX Load Quadrupleword Extended.....cee.0... 000414

4482507 A00 3/85 A-13

APPENDIX A
Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

Load and Store via Address on Register Stack (continued)
SQX Store Quadrupleword Extended............ 000415
DFX Deposit Field Extended....seeeeveeceess. 000416
SCs Set Code Segment....ieeeeecnsesasesssssss 000444
LQAS Load Quadrupleword via A from SG........ 000445 *
SQAS Store Quadrupleword via A to SG....e.... 000446 *

Branching
BIC Branch if Carry...eeeceeeescocescoeneeases —10-—-
BUN Branch Unconditionally....vceeeenesaeess =—104--
BOX Branch on IndeX...ecevveeencocccoccssases —1—84—-—
BGTR Branch if CC Greater....ceneeeececnceeass —1l==-
BEQL Branch if CC Equal....vvvvoseeeneenseses =—12-—-
BGEQ Branch if CC Greater or Equal...eeeeeees =—-13---
BLSS Branch if CC LeSS.iceeeernnooccessseosss —1ld——-
BAZ Branch if A Zero....veceeeccecoccasssaas —144-—-
BNEQ Branch if CC Not Equal...vveeeeveeasaees —15-—-
BANZ Branch if A NOt ZerO....eeoecacesosssaas =—154—-
BLEQ Branch if CC Less or Equal....ccveeeeees ~—16---
BNOV Branch if no Overflow...ecoeeeeeessssees —164--
BNOC Branch if no Carry.ceeeeecececeseancasss —17---
BFI Branch Forward IndireCt...sceessssesssss 000030

Moves, Compares, Scans, and Checksum Computations
MNGG Move Words While Not Duplicate.......... 000226
CDG Count Duplicate Words....eseeeeeeessesss 000366
MOVW MoOve WOrdS..:eessesesecsscssessssessesans 026---—
MOVB MOVE BYteS.iieeeeeeesonsossccssnnnsannss 126-—-
COMW Compare WOordS..:eeeeeseacssccoascsnnssoss 0262--
COMB Compare ByteS..eeeessveooescossanssaanses 1262—-
SBW Scan Bytes While..iveeeeoeseneseosssannaas 1264—-
SBU Scan Bytes Until.i..iiiieeeereencencaress 1266--
MNDX Move Words While Not Duplicate, Extended 000227
XSMX Checksum Extended Block.....eeeeeseesss. 000333
XSMG Compute Checksum in Current Data........ 000343
CDX Count Duplicate Words Extended.......... 000356
MVBX Move Bytes Extended.....ceeeeeveeceessee. 000417
MBXR Move Bytes Extended Reverse€......ceee... 000420
MBXX Move Bytes Extended, and Checksum....... 000421
CMBX Compare Bytes Extended.....eeceeeeeeses. 000422

Program Register Control
SETL Set L Register...icieeeacesecacnsansnaasss 000020
SETS Set S RegiSter..ieceeassecescsesssssssass 000021
SETE Set ENV Register..ciceseeescacescnsaessas 000022

A-14 4482507 A00 3/85

Table A-2.

Hardware

Categorized List of Instructions

A Lawin N

(Continued)

Instruction Lists

Program Register Control (continued)

SETP Set P Register..... cesreesasessssasaasss 000023
RDE Read E REQISLer .ttt eeserenconssneassasss 000024
RDP Read P RegisSter...ivisveseensssnseaaasss 000025
STRP Set Register Pointer......eseesoesseeess.. 00010-
ADDS Add tO S RegiSter....ceeseeeesessasesess 002---
CCL Set CC LeSS.viieesssessnsosnsenssssasassss 000015
CCE Set CC EQUAl..i.iciiiireoecsnaeacnssnssasnss 000016
CCG Set CC Greater.iieecesscsnssceassssessasas 0100017
Routine Calls/Returns
PCAL Procedure Call.... .ot eennnnnssnnsenaas 027---
XCAL External Procedure Call.......... . 127---
SCMP Set Code MAP..:ervervessseossssanennseacs 000454
DPCL Dynamic Procedure Call....iiivereennennn . 000032
EXIT Exit from Procedure........o..s e 125---
DXIT DEBUG Exit....... s s e s s e et ans s . . 000072 *
BSUB Branch to Subprocedure....... et . -174--
RSUB Return from Subprocedure..... et . 025---
Interrupt System
RIR Reset INT Register......... ceeseresaness 000063 *
XMSK Exchange MASK Register....esessesseesas. 000064 *
IXIT Exit from Interrupt Handler............. 000071 *
DISP DispatCh.iiiieeeeierieneeeenaennaasassass 000073 *
RIBA Read INTA and INTB Registers....eceese.. 000440 *
Bus Communication
TOTQ Test OUt QUEUES. . vt eesovcosassans . 000056 4
SEND Send Packet..... e rereee e e e 000065 *
Input/Output
RSW Read Switch Register...... ceeaan e 000026
SSW Set SwitCh Register....ceeeececescaans 000027
EIO Execute I/0..iieeeestnceceseossnsansaesss 000060 *
110 Interrogate I/0..ceeunnn ceet e ce... 000061 =
HIIO High-Priority Interrogate I/O........ 000062 *
RCHN Reset I/O Channel.......iievveeeeneaseess 000447 *
LIOC LoAd IOC. .. eeeussososoeesnsanaaaaseaseseas 000457 *
SIOC Store IOC....... G et et ecse st cescaessseen 000460 *
XI10C Exchange IOCS. .ttt etnnneesnsassonsssnnsn 000462 *
Miscellaneous
NOP No Operation........ et e 000000
RCLK Read Clock.....ceee.. et ee s e essae e . 000050
482507 A00 3/85 A-13

APPENDIX A

Hardware Instruction Lists

Table A-2.

Categorized List of Instructions (Continued)

RCPU
BPT
RUS
BIKE

XCTR
MXON
MXFF
SNDQ
SFRZ
DOFS
DLEN
HALT
PSEM
VSEM
RPV

WWCS
VWCS
RWCS
FRST
RSMT
WSMT
RPT

SPT

BCLD
TPEF

SRST
DDTX

MAPS
UMPS
RMAP
SMAP
CRAX
RSPT
WSPT
RXBL
SXBL
LCKX
ULRX
CMRW

Miscellaneous (continued)

Read Processor Number......coeeeeeeeeees
Instruction Breakpoint TrapP...ceecececess
Read MiCro State@....eeeeesvensesesaannns
Bicycle While Idle...vieeveerecncaoceaans

Resource Management

XRAY Counter BUMD....csssesosssssssoccss
Mutual EXCluUuSion ON..eeeeeeeeeoceeasonnns
Mutual Exclusion Off.....ciieeeecencnnas
Signal a Send Is Queued..... ceescesseene
System Freeze....... ceseeeseavsasssanens
Disc Record Offset..icueeeiceccennnnnans
Disc Record Length..ieieeieeeeccennconns
Processor Halt....vieeeeeoteeeocacnnanns
"P" @ Semaphore...icccriiaccecsrstccnaans
"V" a Semaphore......ciiiiiiininceccanas
Read PROM Version Numbers (NonStop II)..
Write LCS.iuiieeeeesesoceeseesnsasanannns
Verify LCS..viieieennnn et eessenseaaen
Read LCS... ..ttt ieineeesnssceonansassnasns
Firmware ReSet...ieieeereevsosososcooans
Read from Operations & Service Processor
Write to Operations & Service Processor.
Read Process TiMer....ceeeceoscosncosacase
Set Process TiMer..eseeeeoceosossnsacans
Bus Cold Load..ieeereseeasoncaoosasensss
Test Parity Error Freeze Circuits

(NonStop II processor ONnly)...eeeceeeses
Soft Reset (NonStop TXP processor only).
DDT Request (NonStop TXP processor only)

Memory Management

Map In a Segment....ecoeeeesessoscsccnsss
Unmap a Segment (NonStop Il processor)..
Read Map (NonStop II processor only)....
T A -} o
Convert Relative to Absolute Extended...
Read Segment Page Table Entry.ceeceeceess
Write Segment Page Table Entry.....c....
Read Extended Base and Limit....cvveeeas
Set Extended Base and Limit...eeeeeenses
Lock Down Extended MemOIy...ceeeevecaosas
Unlock Extended MeMOIrY.:.eeeeeeeeeasoans
Correctable Memory Error Read/Write.....

000051
000451
000461 *
000464 *

000033
000040
000041
000052
000053
000057
000070
000074
000076
000077
000216
000400
000401
000402
000405
000436
000437
000442
000443
000452

¥ % X X X X X X X H X X XDOD@ X X F X *

*

000453
000455
000456

*

000042
000043
000066
000067
000423
000424
000425
000426
000427
000430
000431
000432

* % A X K A K F X X X F

II'| 82507 AQ0 3/85

APPENDIX A
Hardware Instruction Lists

Table A-2. Categorized List of Instructions (Continued)

Memory Management (continued)
SVMP Save Map EntrieS..eeeseeecsencossccesanss 000441
BNDW Bounds Test WOrdS...eeeeesesesesceaseass 000450
SCpV Set Current Process Variables.....e...... 000463
ASPT Address of Segment Page Table Header.... 000470

List Management

DLTE Delete Element from LiSt.....eeeessessss 000054
INSR Insert Element into LiSt.....eece0ee0000. 000055
MRL Merge onto Ready LisSt...ceveeesesseasasss 000075
FTL Find Position in Time LiSt...cceeeece.os. 000206
DTL Determine Time Left for Element......... 000207

Trace and Breakpoints
TRCE Add Entry to Trace Table.....tveeeeeeees. 000217
SMBP Set Memory Breakpoint......cceeeeeeese.. 000404

* X X *

x * ¥ X X

The one-character symbols immediately to the right of
the instruction opcodes have the following meanings:

indicates a privileged instruction.
indicates an instruction designated for
operating system use only.
indicates a decimal arithmetic optional instruction.
indicates a floating-point arithmetic optional
instruction.

* @ *

Il’l 82507 A00 3/85

o>
1

17

APPENDIX A
Hardware Instruction Lists

Table A-3. Binary Coding, Memory Reference Instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vkee
I 2 0 X X 0 +/- - P >~ LWP a
1 2 0 X X | 1 +/- = P > LBP b
1 3 1 X X < | G,L,5G,S —_— NSTO
1 4 0 X X -+ G,L,S8G,S —— LOAD a
I 4 1 X X e G,L,8G,8 | —mm———» STOR
I 5 0 X X ~~— | G,L,SG6,8 | ——» LDB b
I 5 l1 X X - G,L,SG,S —p STB
I 7 1 X X B S G'LISG'S ———— ADM vk a
P+ 0o e . 0:177
P- 1 e e e . 0:177
G+ o 0:377
L+ 1 0 . e e e e e e 0:177
SG 1 1 0 . e e e e e 0:77
L- 1 1 1 o . . e e e 0:37
S- 1 1 1 1 . . e e e 0:37

+/- (0/1) implies two's-complement notation; the sign is extended
through bit 0 at execution.

I (0/1) indicates direct or indirect address.
v = Overflow
k = Carry
cc = Condition Codes:
L (result < 0) or (oprl < opr2) Note: oprl is first
a E (result = 0) or (oprl = opr2) item pushed on
G (result > 0) or (oprl > opr2) stack; opr2 is
second.
L (ASCII numeric)
b E (ASCII alpha)
G (ASCII special)
L (channel error or timeout)
c E (no error)
G (unusual condition)
A-18 482507 A00 3/85

APPENDIX A
Hardware Instruction Lists

Table A-4. Binary Coding, Immediate Instructions
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vkee
1 0 0 +/- <«—— | OPERAND —————» | LDI a
1 0 0 X X +/- -+— OPERAND —_——p LDXI a
0 0 1 +/- <«—— | OPERAND — » | cMPI a
0 0 2 +/- <«— | OPERAND | ———» | ADDS a
0 0 3 +/- +— OPERAND _ LADI k a
0 0 4 0 - OPERAND —_— ORRI a
0 0 4 l - OPERAND S ——— ORLI a
1 0 4 +/- <«—— | OPERAND — > | ADDI vk a
1 0 1 X X +/- — OPERAND —_— ADXI vk a
0 0 5 +/- -— OPERAND —_— LDLI a
0 0 6 +/- <«— | OPERAND | ——» | ANRI a
0 0 7 +/- -— OPERAND —_— ANLI a
+/- (0/1) implies two's-complement notation; the sign is extended
through bit 0 at execution.
I (0/1) indicates direct or indirect address.
vkcc: see Table A-3 footnote.

/I’| 82507 AO0O0 3/85

APPENDIX A
Hardware Instruction Lists

Table A-5. Binary Coding, Move/Shift/Call/Extended Instructions
0 1 2 3 4 5 7 8 9 10 11 12 13 14 15 vkce
0 2 4 N LAST COUNT-1 PUSH
1 2 4 N LAST COUNT-1 POP
0 2 5 0 < SDEC —_— RSUB
1 2 5 0 - SDEC —_— EXIT
0 2 5/6 4 DISPLACEMENT LWXX a
0 2 5/6 5 DISPLACEMENT SWXX
0 2 5/6 6 DISPLACEMENT LBXX b
0 2 5/6 7 DISPLACEMENT SBXX
0 2 6 0 0 RL S § D RP MOVW
0 2 6 0 1 RL S 8§ D RP COMW a
1 2 6 0 O RL S § D RP MOVB
1 2 6 0 1RL S S D RP COMB a
1 2 6 1 0 RL S S D RP SBW k
1 2 6 1 1RL S 8§ D RP SBU k
0 2 7 -— PEP —_— PCAL
1 2 7 - PEP —————— | XCAL
0 3 0 0 -«+— SHIFT COUNT — LLS a
1 3 0 0 «— SHIFT COUNT — DLLS a
0 3 0 1 -— SHIFT COUNT —» LRS a
1 3 0 1 -<— SHIFT COUNT —» DLRS a
0 3 0 2 ~<— SHIFT COUNT —= ALS a
1 3 0 2 -«— SHIFT COUNT —» DALS a
0 3 0 3 -«— SHIFT COUNT —» ARS a
1 3 0 3 ~— SHIFT COUNT — | DARS a

RL (right-left indicator)
0 left-to-right (increasing addresses)
1 right-to-left (decreasing addresses)

SS (source map):
00 Current Data
01 System Data (Current Data if nonprivileged user)
10 Current Code
11 User Code
D = (destination map), data only
0 Current Data
1 System Data (Current Data if Nonprivileged User)

PEP = Procedure Entry Point Table
SDEC = stack S decrement

vkcc: see Table A-3 footnote.

AV’|82507 AQ00 3/85

APPENDIX A
Hardware Instruction Lists

Table A-6. Binary Coding, Branch Instructions
0 1 2 3 4 5 7 8 10 11 12 13 14 15 vkce
I 1 0 0 +/~ P _— BIC
I 1 0 4 +/- P ————» | BUN
I 1 0 X 4 +/- P —_——» | BOX
I 1 1 0 +/- P —_— BGTR
I 1 2 0 +/- P —_— BEQL
I 1 3 0 +/- P — BGEQ
I 1 4 0 +/- P ———— | BLSS
I 1 4 4 +/- P —— | BAZ
I 1 5 0 +/- P —_— BNEQ
I 1 5 4 +/- P ———» | BANZ
I 1 6 0 +/- P —_— BLEQ
I 1 6 4 +/- P —_— BNOV
I 1 7 0 +/- P _— BNOC
I 1 7 4 +/- P _ BSUB
+/- (0/1) implies two's-complement notation; the sign is extended
through bit 0 at execution.
I (0/1) indicates direct or indirect address.
Note: since the Program Counter register holds the address of the
next instruction, a branch-self instruction (Branch *)
would be coded: BUN P-1.
vkce: see Table A-3 footnote.

/I’| 82507 A00 3/85

APPENDIX A

Hardware Instruction Lists

Table A-7. Binary Coding, Stack Instructions
0 1 3 5 7 8 9 10 11 12 13 14 15
0 0 -<— STACK OPERAND CODE —
7:15> vkcce <7:15> vkecc
0 0 O NOP 0 5 1 *RCPU
0 0 1 MOND a 0 5 2 *SNDQ
0 0 2 ZERD a 0 5 3 *SFRZ
0O 0 3 ONED a 0 5 4 *DLTE
0 0 4 EXCH a 0 5 5 *INSR
0 0 5 DXCH a 0 5 6 @TOTQ !
0 0 6 DDUP a 0 5 7 @DOFS c
0o 0 7 BTST b 0 6 0 *EIO c
0 1 o0 LAND a 0 6 1 *IIO c
0 1 1 LOR a 0 6 2 *HIIO
0 1 2 XOR a 0 6 3 *RIR
0o 1 3 NOT a 0 6 4 *XMSK
0 1 4 DPF a 0 6 5 *SEND !
0 1 5 CCL a 0 6 6 *RMAP
0 1 6 CCE a 0 6 7 *SMAP
0o 1 7 CCG a 0 7 0 @DLEN
0 2 0 SETL 0 7 1 *IXIT
0 2 1 SETS 0 7 2 *DXIT
0o 2 2 SETE 1y 0 7 3 *DISP
0 2 3 SETP 0 7 4 *HALT
0 2 4 RDE 0 7 5 *MRL
0 2 5 RDP 0 7 6 *PSEM
0 2 6 RSW a 0 7 7 *VSEM
0 2 7 SSW l 0 reg STRP
0 3 0 BFI 1 1 reg STAR
0 3 1 DTST a 1 2 reg NSAR
0 3 2 DPCL 1 3 reg LDRA a
0 3 3 *XCTR 1l 4 reg ADRA vk a
0 3 4 ANS a 1 5 reg SBRA vk
0 3 5 ORS a 1 6 reg ADAR vk
0 4 0 *MXON 1l 7 reg SBAR vk a
0 4 1 *MXFF 2 0 O LADD k a
0 4 2 *MAPS 2 0 1 LSUB k a
0 4 3 *UMPS 2 0 2 LMPY v=0a
0 4 4 ANG a 2 0 3 LDIV v a
0 4 5 ORG a 2 0 4 LNEG k a
0 4 6 ANX a 2 0 S5 LCMP a
0 4 7 ORX a 2 0 6 *FTL
0 5 0 RCLK 2 0 7 *DTL

A-22

/)"1 82507 AQ0 3/85

APPENDIX A

Hardware Instruction Lists

Table A-7. Binary Coding, Stack Instructions (Continued)
0 1 2 3 5 7 8 9 10 11 12 13 14 15
0 0 0 -<+— STACK OPERAND CODE —»

<7:15> vkece <7:15> vkece
2 1 0 IADD vk a 4 0 5 *FRST

2 1 1 ISUB vk a 4 0 6 LBX b
2 1 2 IMPY v a 4 0 7 SBX

2 1 3 IDIV v a 4 1 O LWX a
2 1 4 INEG vk a 4 1 1 SWX

2 1 5 ICMP a 4 1 2 LDDX a
2 1 6 *RPV 4 1 3 SDDX

2 1 7 *TRCE 4 1 4 LQOX a
2 2 0 DADD vk a 4 1 5 SQX

2 2 1 DSUB vk a 4 1 6 DFX a
2 2 2 DMPY vk a 4 1 7 MVBX

2 2 3 DDIV vk a 4 2 0 MBXR

2 2 4 DNEG vk a 4 2 1 MBXX

2 2 5 DCMP a 4 2 2 CMBX !
2 2 6 MNGG ! 4 2 3 *CRAX

2 2 7 MNDX ! 4 2 4 *RSPT !

3 3 3 XSMX 4 2 5 *WSPT

3 4 2 LWUC a 4 2 6 *RXBL

3 4 3 XSMG 4 2 7 *SXBL

3 5 0 LWAS a 4 3 0 *LCKX !
3 5 1 SWAS 4 3 1 *ULKX !
3 5 2 LDAS a 4 3 2 *CMRW !
3 5 3 SDAS 4 3 4 *RMEM a
3 5 4 LBAS b 4 3 5 *WMEM

3 5 5 SBAS 4 3 6 *RSMT

3 5 6 CDX 4 3 7 *WSMT

3 5 7 DFS a 4 4 0 *RIBA

3 6 0 LWA a 4 4 1 *SVMP

3 6 1 SWA 4 4 4 sCs

3 6 2 LDA a 4 4 5 *LQAS a
3 6 3 SDA 4 4 6 *SQAS

3 6 4 LBA b 4 4 7 *RCHN !
3 6 5 SBA 4 5 0 *BNDW !
3 6 6 CDG 4 5 1 BPT

3 6 7 DFG a 4 5 2 *BCLD

4 0 0 *WWCs ! 4 5 3 *TPEF
4 0 1 *VWCS ! 4 5 4 SCMP

4 0 2 *RWCS 4 7 0 *ASPT !
4 0 4 *SMBP

4 82507 A0Q0 3/85

APPENDIX A
Hardware Instruction Lists

Table A-7. Binary Coding, Stack Instructions (Continued)

* indicates a privileged instruction.
@ indicates an instruction designated for operating
system use only.

vkcc: see Table A-3 footnote.

! = special vkcc meanings; see instruction definitions
in Table B-1.

Table A-8. Binary Coding, Decimal Arithmetic Instructions

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 0 0 <— STACK OPERAND CODE —

!

| |

<7:15> vkce <7:15> vkece
2 3 0 +QSsT 2 5 0 +Qup v a
2 3 1 +QST x5 2 5 1 +QDWN v=0

2 3 2 +QST x6 2 5 2 +QUP(2) v a
2 3 3 +QST x7 2 5 3 +QDWN(2) v=0a
2 3 4 +QLD a 2 5 4 +QUP(3) v a
2 3 5 +QLD x5 a 2 5 5 +QDWN(3) v=0a
2 3 6 +QLD x6 a 2 5 6 +QUP(4) v a
2 3 7 +QLD x7 a 2 5 7 +QDWN(4) v=0a
2 4 0 +QADD vk a 2 6 0 coa v a
2 4 1 +QSuB vk a 2 6 1 cAaQv v ol
2 4 2 QMPY v a 2 6 2 cCAQ v !
2 4 3 oDIV v a 2 6 3 QRND v=0a
2 4 4 OQNEG vk a 2 6 4 (CorI v

2 4 5 QCMP a 2 6 5 CDQ

2 4 6 CQL v 2 6 6 CI9Q

2 4 7 cCQD v 2 6 7 CLQ

+

indicates an instruction that is standard in all
processors (not part of decimal option).

! CCE if entire string is ASCII digits, CCG if not.

vkcc: see Table A-3 footnote.

A-24 482507 A00 3/85

APPENDIX A

Hardware Instruction Lists

Table A-9. Binary Coding, Floating-Point Instructions
0 1 2 3 7 8 9 10 11 12 13 14 15
0 0 - STACK OPERAND CODE —
<7:15> vkecce <7:15> vkece
2 7 0 FaADD v a 3 1 6 CEIR a
2 7 1 PFSUB v a 3 1 7 1IDXD a
2 7 2 FMPY v a 3 2 0 CFQ a
2 7 3 FDIV v a 3 2 1 CFOR a
2 7 4 FNEG a 3 2 2 CEQ a
2 7 5 FCMP a 3 2 3 CEQR a
2 7 6 CEF a 3 2 4 cCQF a
2 7 7 CEFR a 3 2 5 CFE a
3 0 0 EADD v a 3 2 6 CDFR a
3 0 1 ESuB v a 3 2 7 4CID a
3 0 2 EMPY v a 3 3 0 CQFR a
3 0 3 EDIV v a 3 3 1 CIF a
3 0 4 ENEG a 3 3 2 CIE a
3 0 5 ECMP a 3 3 4 CDE a
3 0 6 CDF a 3 3 5 CQER a
3 0 7 +CDI a 3 3 6 CQE a
3 1 0 CFIR a 3 3 7 CEI a
3 1 1 cCFr1 a 3 4 4 1DX1l a
3 1 2 CFD a 3 4 5 1IDX2 a
3 1 3 CFDR a 3 4 6 1DXx3 a
3 1 4 CED a 3 4 7 1IDXP a
3 1 5 CEDR a

+

indicates an instruction that is standard in all
processors (not part of floating-point option).

vkece:

see Table A-3 footnote.

//’|82507 AQO0 3/85

APPENDIX B

INSTRUCTION SET DEFINITION

This appendix consists of two tables. Table B-1 is a key to the
symbols used in the instruction definitions. Table (B-2) gives
brief definitions of all the instructions in the NonStop II and
NonStop TXP processors' instruction set, in numeric opcode order.
A TAL-like notation is used for the definitions. This table is a
specification of the instruction microcode, and is provided for
those interested in microcode details such as the use of the
Register Stack.

Table B-1. Definitions of Symbols

x&y= bitwise "and" of x and y

xly= bitwise "or" of x and y

X Xor y= bitwise "exclusive or" of x and y

x mod y= x modulo y

~ X= bitwise "complement" of x

x<<n= X arithmetically shifted left n bits

X>>n= x arithmetically shifted right n bits

x'<<'n= x logically shifted left n bits

x'>>'"n= x logically shifted right n bits

X rotate n= x'<<'n + x,.<0:n-1>

X:y= if x<y then -1 else if x=y then 0 else 1

x'<'y= comparison of x and y as 16-bit unsigned numbers

x':'y= if x'<'y then -1 else if x=y then 0 else 1

X max y= if x>y then x else y

Xs=3y= exchange x and y

X"y= concatenate x and y

A= R[RP]

address= if indirect then mem{[memmap, dir.adr.] else dir.adr.
(*** NonStop II processor **x)

address= if indirect then mem[dseg, dir.adr.] else dir.adr.

(*** NonStop TXP processor **¥)

482507 A0 3/85 B-1

APPENDIX B
Instruction Set Definition

Table B-1. Definitions of Symbols (Continued)

B= R{RP-1]

BA.<0:31>= B.<0:15>"A.<0:15>

bing[bus,la]= INQ[bus, la.<0:14>].byteflag

BKPT= ENV.<1>

bogl[bus,la]= OUTQ[bus, la.<0:14>].byteflag
(*** NonStop Il processor **%*)

bog([la]= ouTQ[la.<0:14>].byteflag
(*** NonStop TXP processor **%)
BPADDR= sysstack[%115:%116 |
BPADDRX= sysstack[%137]
BPBASE= sysstack[%123]
BPLIM= sysstack{ %125]
BPSIZE= sysstack[%124]
branch= P:=branch address
branch address= if indirect then code{dbal + dba else dba
BRT= sysstack[%1400:%1777]

bxmem[xaddr]= the byte at xaddr
byteaddress= if indirect then mem[memmap,dir.adr.]+X
else 2*dir,adr.+X
(*** NonStop Il processor **%*)
byteaddress= if indirect then mem([dseg,dir.adr.]+X
else 2*dir.adr.+X
(*** NonStop TXP processor **%)
bytedest[la]= mem[destmap,la.<0:14>].byteflag
(*** NonStop Il processor **%*)
bytedest[la]= mem[destseg,la.<0:14>].byteflag
(*** NonStop TXP processor **x)
byteflag= <8%*la.<15>:8*la.<15>+7>
bytesource[la]= mem[srcmap, la.<0:14>+
(I.<10:11>=2)*P,<0>*%100000].byteflag
(*** NonStop II processor ***)
bytesource[la]= mem[srcseg, la.<0:14>+
(I.<10:11>=2)*P,<0>*%100000].byteflag
(*** NonStop TXP processor **x)

bytex= mem[memmap, byteaddress.<0:14>].byteflag
(*** NonStop Il processor **x)

bytex= mem[dseg, byteaddress.<0:14>].byteflag
(*** NonStop TXP processor **¥%)

C= R[RP-2]

CACHE= data/instruction cache
(*** NonStop TXP processor **¥)

CACHETAG= tags for CACHE entries

(*** NonStop TXP processor ***)
CB.<0:31>= C.<0:15>"B.<0:15>

cc(x)= Z:=(x=0); N:=(x<0)
ccbh(x)= Z:=("A"<=x<="2") or ("a"<=x<="z"); N:=("Q"<=x<="9")
CCE= N:=0; Z:=1
CCG= N:=0; Z:=0
CCL= N:=1; Z:=0
ccl(x)= cc(x); K:=adder carry
cen{x)= ccl(x); V:=adder overflow
ccz(x)= Z:=(x=0); N:=0;
chkp(x)= if memory location "x" is absent then Page Fault
CLOCK= sysstack([%103:%106]
cmap= LS*2+CS+2
(*** NonStop II processor **%)
CMSEG= (discontinued term; see CSSEG)

code(la]= mem[cmap, la

(*** NonStop Il processor ***)
code[la]= mem[cseg, la]

(*** NonStop TXP processor **%)

B-2 4982507 A0O 3/85

APPENDIX B
Instruction Set Definition

Table B-1. Definitions of Symbols (Continued)

CPCB=
CS=
cseg=
CSPACEID
CSSEG=

D=

dba=
DC.<0:31>=
DCBA.<0:63>=
dest[la]=
dest[la]=
destmap=
destseg=

dir.adr.=

DS=
dseg=

dwordx=

dwordx=

ED.<0:31>=
ENV,.<0:15>=

EPT=

F=
FE.<0:31>=
G=

H=
HCS=

HGFE.<0:63>=
hit(xa)=

computeshiftcount= if I1.<10:15>=0 then {shiftcount:=A.<8:15>;

RP:=RP-1} else shiftcount:=I1.<10:15>
sysstack[%3]
ENV.<7>
LS*2+CS+2
(*** NonStop TXP processor **x)
current space ID register
sysstack[%1340:%1357]
a software copy of the SST register contents

R(RP-3]

P+1.<9:15>~128*1,<8>
D.<0:15>"C.<0:15>
D.<0:15>"C,<0:15>"B.<0:15>"A,<0:15>
mem[destmap, la]

(*** NonStop Il processor **x)
mem{ destseg, la]

(*** NonStop TXP processor *xx)
if I.<12>&PRIV then 1 else DS
(*** NonStop II processor ***)
if I.<12>&PRIV then 1 else DS
(*** NonStop TXP processor ***)

if 1.<7>=0 then I.<8:15> 'global variable'

else (0:255)

if 1.<8>=0 then L+I.,<9:15> 'local variable'

else (0:127)

if I.<9>=0 then 1.<10:15> 'system global'

else (0:63)

if I.<10»=0 then L-I.<11:15> 'procedure parameter'’

else (0:31)

S-I1.<11:15>; 'subroutine parameter'

(0:31)

ENV.<6>

if I.<7:9>=6 and PRIV then 1 else DS
(*** NonStop TXP processor **x)

mem[memmap, address+2*X:address+2*X+1]
(*** NonStop Il processor *%k)

mem{ dseg, address+2*X:address+2*X+1]
(*** NonStop 11 processor ***)

R[(RP-41}

entry control store, first vertical control store
word for each instruction

(*** NonStop TXP processor **%)

E.<0:15>"D.<0:15>

environment register

entry point table for instruction decoding

extended address= segment "~ page ~ word "~ byte

R[RP-5]
F.<0:15>"E.<0:15>

R{RP-6]

R{RP-7]

horizontal control store

(*** NonStop TXP processor ***)
H.<0:15>"G.<0:15>"F.<0:15>"E.<0:15>

if block of memory starting at "xa" is in CACHE
(and valid) then true else false

(*** NonStop TXP processor ***)

4?82507 AQO0 3/85

APPENDIX B
Instruction Set Definition

Table B-1. Definitions of Symbols (Continued)

1.<0:15>= instruction register
imm= 1.<8:15>=-256*I,<7>
indirects= I.<0>

INQ[0:1,0:15].<0:15>= interprocessor bus in queues
INTA.<0:15>= interrupt register A
INTB.<0:15>= interrupt register B

10C= sysstack[%2000:%3777]
10CSPAD= IOC scratchpad registers (IOC cache)
(*** NonStop TXP processor **%)
K= ENV.<9>
L.<0:15>= local data pointer=location of current stack marker
LIGHTS.<0:15>= switch register output
LS= ENV.<4>

MAP[0:15,0:63].<0:15>= memory map
(*** NonStop Il processor **¥)
MASK.<0:15>= interrupt mask register
mem[m,a]= MEMORY[MAP[m,a.<0:5>].<0:12>, a.<6:15>]
(*** NonStop II processor **¥)
mem[sas,la]= xmem[axaddr(SST[sas }, la, 0) 1
(*** NonStop TXP processor ***)
memmap= if I.<7:9>=6 and PRIV then 1 else DS
(*** NonStop II processor **x)
MEMORY([0:8191,0:1023]1.<0:15>= physical memory
movestep= if 1.<9> then -1 else 1
MYEXTCPU= sysstack[%154]
.<8:11>= cluster number
.<12:15>= processor number

N= ENV.<11>

ouTQ[0:1,0:15].<0:15>= interprocessor bus out queues
(*** NonStop II processor ***)

ouTQ[0:15].<0:15>= interprocessor bus out queue
(*** NonStop II processor ***)

P.<0:15>= program counter=1l+location of current instruction
PCACHE= page table cache

(*** NonStop TXP processor ***)
PCACHETAG= tags for PCACHE entries

(*** NonStop TXP processor ***)
PHYPAGE= mem[%16, %150000:%167777]
PHYSEG= mem[%16, %130000:%147777]
PRIV= ENV.<5>
PRIV TRAP= cause an instruction failure interrupt

ptchit(xa)= 1if page table entry for "xa" is in PCACHE
(and valid) then true else false
(*** NonStop TXP processor **%)
ptfill(xa)= {x := mem[SEG[xa.<2:14>*2].<5:8>,
SEG[xa.<2:14>*2+1]+xa.<15:20>];
if ~x.<15> then ! entry is valid, set "Referenced"
mem[SEG[xa.<2:14>*2].<5:8>,
SEG[xa.<2:14>*2+1 J]+xa.<15:20>]:=
X 1= x | %4;
PCACHE[xa.<2:14>, xa.<15:20>] := x;
PCACHETAG[xa.<2:14>, xa.<15:20>] :=
(x & %174003) | (xa.<2:10> << 2) }}
(*** NonStop TXP processor **%*)
PTIME= sysstack[%126:%127]

B-4 482507 A0O 3/85

APPENDIX B
Instruction Set Definition

Table B-1. Definitions of Symbols (Continued)

ptmiss{xa)= ~ ptchit(xa)
(*** NonStop TXP processor ***)
RLIST= sysstack[%100:%101 1
roma= program counter for instruction microprocessor
(*** NonStop II processor *xx)
RP= ENV.<13:15>
S.<0:15>= stack pointer=location of last word of stack
sas= short address space (range 0-15)
SD= scratch register. When the processor is in the idle
loop, it will indicate the reason:
%$000000 interrupt occurred before LCS loaded
%$000001 LCS opcode used before LCS loaded
%000003 tape dump attempted
%000014 bus cold load sequence error
%000040 manual reset
%000053 SFRZ instruction
%000074 HALT instruction
%000100 DDT halt interrupt
%000115 OSP memory access breakpoint
%$000200 halt interrupt
%000377 bus cold load checksum error
%$001000 i/o channel timeout on a cold load
%$001154 memory dump completed
%$002000 power-on interrupt with invalid memory
%$100000 an UCME occurred when masked off
%$100001 a DABS occurred when masked off
%$100002 an IABS occurred when masked off
%$100003 a microcode or hardware failure occurred
%$100004 an error (CCG or CCL) occurred during
the coldload EIO
%$100010 an instruction failure occurred before
LCS was loaded
%$100011 a stack overflow occurred before
LCS was loaded
%$100012 Hardware failure <type>
%100013 Hardware failure <type>
%$100014 Hardware failure <type>
%$100015 Hardware failure: IPU parity checker
%$100016 Hardware failure: MCB parity checker
%$100017 Hardware failure: CCD parity checker
%$100020 Hardware failure: suspect IPU board
%$177771 Model 3206 tape controller firmware
not loaded
%$177772 illegal cold load switch setting
%$177773 i/0 channel timeout on a tape dump
%177774 error during memory dump to tape
%$177775 interrupt during memory dump to
interprocessor bus
%$177776 uncorrectable memory error during map
recovery following a power-on
%$177777 spurious interrupt
SEG= mem[14, $70000:%127777]
segment base= MAP([14, 60:61]
(*** NonStop 1l processor **x)
segment limit= MAP[14, 62:63]
(*** NonStop II processor **x)
SEGTABSIZE= sysstack[%65
SIV= sysstack[%1200:%1337]
sourcel la]= mem[srcmap, la }
(x** NonStop Il processor **x)

482507 A00 3/85 B-5

APPENDIX B
Instruction Set Definition

T=
TLIST=
TRACE=
TRBASE=

TRLIM=

ucC=

V=
VCS=

WCS=
word=
word=
wordx=

wordx=

X=

XB=
xbase=
XL=

SWITCHES.<0:15>= switch register input
sysstack[la]= mem[1, la]

UCOPTIONFLAG= sysstack[%130]
UC~BASE=
UC~SIZE=
UL~BASE=
UL~SIZE=

xaddr.<0:31>= a 32-bit extended address

Table B-1. Definitions of Symbols (Continued)
source[la]= mem[srcseg, la]
(*** NonStop TXP processor **¥)
srcmap= if I.<10> then {if I.<11> then 2 else cmap}
else if I.<11>&PRIV then 1 else DS
(*** NonStop Il processor ***)
srcseg= case I[.<10:11> of
begin
DS; ! current data
if PRIV then 1 else DS; ! system data if PRIV
cseqg; ! current code
2; ! user code
end;
(*** NonStop TXP processor **x)
SST= hardware Short Segment Table registers
(*** NonStop TXP processor **x)
stack{ la 1= mem(DS, la

ENV.<8>

sysstack[%107:%110)
sysstack[%121]
sysstack[%117]

sysstack[%120]
ENV.<0>

user code segment base register
user code space size register

user library segment base register
user library space size register

ENV.<10>
vertical control store
(*** NonStop TXP processor **%)

writable control store

mem[memmap, address]

(*** NonStop II processor **x)
mem{ dseg, address

(*** NonStop TXP processor ***)
mem[memmap, address+X |

(*** NonStop II processor **%)
mem{ dseg, address+X]

(*** NonStop TXP processor **x)

if 1.<5:6>=0 then 0 else R[I.<5:6>+4]
extended address base address register

stack[L*I,<5>+1.,<10:15> L*I.<5>+1,<10:15>+1]
extended address limit register

Av82507 AQ00 3/85

Instruction Set

Table B-1. Definitions of Symbols (Continued)

APPENDIX B
Definition

xmap= cross code space map
!parameter=new space ID
CSPACEID:=parameter;
m:=CSPACEID.<4>*2+CSPACEID.<7>+2;
case m-2 of

10tusercode!
{if CSPACEID.<11:15> >=UC~SIZE then
{instruction failure};
}seg:=UCABASE+CSPACEID.<11:15>
!
!1isystem code!
{if CSPACEID.<11:15> <>0 then
{instruction failure};
seg:=3;

!2luser library!
{if CSPACEID.<11:15> >=UL"SIZE then
{instruction failure};
seg:=UL"BASE+CSPACEID.<11:15>

!3!éystem library!
%$34+CSPACEID.<11:15>

};
if CSSEGI{ml<>seqg then
call MAPS(seg,m).
xmem{ xaddr]= the word located at xaddr

Z= ENV.<12>

4?82507 AQ0 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions

o o (=) [N eNoNoXo] CoOoOOO0COO OO O0OOCOOOOOCOOO

[eNololoNoNe) OO OOOOOOOO0ODOOOOO

[=ReloNoNo]

Note:

*
@
$
¥
%
&

op(x)

[=NeoloNoNe) [eloNoNoNeNe) OO0 O0OOOCDOOCODOOOC

o
o O o [eloloNoXe) COO0OO0OOO COO0OO0OODOOOLOOLOOOOOO

The one-character symbols immediately to the
right of the instruction opcodes have the following
meanings:

indicates a privileged instruction.
indicates an instruction designated for
operating system use only.
indicates a decimal arithmetic optional instruction.
indicates a floating-point arithmetic optional
instruction,
indicates an instruction for NonStop II processors only.
indicates an instruction for NonStop TXP processors only.

indicates that an operation similar to that
performed by the instruction 'op' should be
done using the value(s) 'x'.

0 0 INOP [no operation |
0 1 [MONDIminus one double |RP:=RP+2; cc(B:=A:=-1)
0 2 |ZERD|zero double |RP:=RP+2; cc(B:=A:=0)
0 3 |ONED|one double |[RP:=RP+2; B:=0; cc(A:=1)
0 4 |EXCH|exchange |A:=:B; cc(A)
0 5 |DXCH|double exchange |BA:=:CD; cc(BA)
0 6 |IDDUP|double duplicate |RP:=RP+2; cc(BA:=DC)
0 7 |BTST|byte test |ccb(A.<8:15>); RP:=RP-1
1 0 |LAND|logical AND |cc(B:=B&A); RP:=RP-1
1 1 |LOR |logical OR lcc(B:=B|A); RP:=RP-1
1 2 |XOR |exclusive OR fcc(B:=B xor A); RP:=RP-1
1 3 |NOT |logical NOT lcc(Az= ~ A)
1 4 |DPF |deposit field fcc(C:=(C&B | A&~B));
| | |RP:=RP-2
1 5 |CCL |cond. code less |Z:=0; N:=1
1 6 |CCE |cond. code equal |Z:=1; N:=0
1 7 |CCG |cond. code greater|Z:=N:=0
2 0 |SETLlset L register |L:=A; RP:=RP-1
2 1 |SETS|set S register [S:=A; RP:=RP-1
2 2 |SETE|set ENV register |ENV.<0:7>:=ENV.<0:7>&A.<0:7>;
| | |ENV.<8:15>:=A,<8:15>
2 3 |SETP|set P register |P:=A; RP:;=RP-1
2 4 |RDE |read ENV register |[RP:=RP+1; A:=ENV
2 5 |RDP |read P register |RP:=RP+1; A:=P
2 6 |RSW |read switches |RP:=RP+1; cc(A:=SWITCHES)
2 7 |SSW |set switches |sysstack([%122]:=LIGHTS:=A;
| |RP:=RP-1
3 0 |BFI |branch forward |P:=P+A+code[P+A];
| lindirect |RP:=RP-1
|IDTST{double test |cc(BA)
3 2 |DPCL|dynamic procedure |t:=(ENV&%177740)|CSPACEID;
[call |stack[S+1:5+3]:=(P,t,L);
| [t.<7>:1=A,<0>; 1Cs
|A.<0:6>=spaceid [t.<4>:=A.<1>; tLS
|A.<7:15>=pep index|t.<11:15>:=A.<2:6>;!space
| ! index

|
I
|
|
I
I

Im: A,<0>+2*%A,<1>+2;

|

I lcall xmap(t);
|

| ft: A.<7:15>;

4“82507 A00

3/85

Table B-2.

APPENDIX B
Instruction Set Definition

Instruction Definitions (Continued)

3%

XCTR

RAY counter bump

if A,<10:13>=1

=) el

if A.<4:6>=3)
cntr blk addr
if A.<4:6> <> 3)
cntr offset

W~ ~g~0mx
]

4:6> addr mode
10:13> action

AA N

if ~PRIV then

{if t>=mem{m,0] then
{if t>=mem(m,1] then
priv trap;
PRIV:1;

:=(if A.<4:6>=0 then
sysstack[B]
else
if A.<4:6>=1 then stack[B]
else
if A.<4:6>=2 then
sysstack[B]
else
if A.<4:6>=3 then
xmem(CB])) <> 0 then
{if A.<4:6> = 0 then
! system data space
a:=%40001~(t+D)~0
else
! absolute segment zero
a:=%40000~(t+D)"0;
if A.<10:13>=0 then
! increment
{xmem[a:a+3]:=xmem[a:a+3]+1}
else if A.<10:13>=1 then
! add parameter
{xmem[a:a+3]:=xmem[a:a+3]
+E;
if E<0 and xmem{[a:a+1]<0
then xmem[a:a+3]:=0}
else
{clock:=sysstack[%$103:%106]
+microsecond counter;
if A.<10:13>=2 then
! set state
{if xmem[a:a+1]=0 then
{xmem([a:a+1]:=1;
as=a+2;
xmem(aza+7]:=xmem[aza+7]
-clock}}
else if A.<10:13>=3 then
! reset state
{if xmem[a:a+1]=1 then
{xmem{a:a+1]:=0;
as=a+2;
xmem[aza+7]:=xmem[a:a+7]
+clock}}

Aﬂ82507 AQ0 3/85

B-9

APPENDIX B

Instruction Set Definition

Table B-2.

Instruction Definitions (Continued)

[N el

oo Ne) o [=]

o

oY o) o

[N o Nl

& W w

NS ND to SG memory

A
ORS

oONo [6)]

* | MXON

utual exclusion
n

A=<0:7> code size

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[A
|

:OR to SG memory
|

|

fm

o

|

|

|

MXFF|mutual exclusion
|off

MAPS|Imap in a segment

1*

2%
%
[A=map number

{B=segment number

!

l
I
|
|
:
l
I
!
|
I
|
|

| else if A.<10:13>=4 then

| ! increment state

| {if xmem([a:a+1]<16384 then
| {t:=xmem[a:a+1]:=

| xmem[aza+1l]+1;

| 1=a+2;

| if xmem{a-2:a-1]1<t then
[xmem{a-2:a~1] := t;

| ar=a+2;

| xmem(a:a+7]:=xmem(ata+7]
| -clock}}

| else if A.<10:13>=5 then

| ! decrement state

| {if xmem[a:a+1]>0 then

{ {xmem[a:a+1]

| :+= xmem[aza+1]-1;

| a:=a+d;

| xmem[a:a+7]:=xmem[a:a+7]
| +clock}}

| b}

|RP:=RP-3;

{if A.<4:6>=3 then RP:=RP-1;
[if A.<10:13>=1 then RP:=RP-1;
| ** NOTE: All counters must be
present.

NOTE: Counters may not
cross page boundaries.
lcc(dest(A):=dest(A) & B);
|RP:=RP-2
|cc(dest(A):=dest (A) |
|RP:=RP-2

| *** undefined ***

| *** uyndefined **x*
[chkp(stack[(L-20) max 0]);
[chkp(stack[S+A.<8:15>]1);
[if A.<0:7>

!
{ %%
|

B);

<8:15>stack sizelthen chkp(code(P+A.<0:7>]);

istack[L+11:=MASK;
|[MASK:=MASK & %177640;
|RP:=RP-1
IMASK:=stack[L+1]

! Only unmap data segments

1
if CMSEG{A]<>B and CMSEG[A]

<>-1 then
{if A<=1 or A>=6 then
UMPS (A)
else
}SEG[CMSEG[A]*Z].<O:4>:=—l
=B*2;

:=0;

f B<>-1 then

{if SEG[j].<0:4> <=15 then

instruction failure;

if A<=1 or A>=6 then

for i:=32 to $Smin(64,32+
SEG[]].<9:15>) do

{if MAP[15,i].<0:14>=b

then

Aﬁ82507 AQQ

3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)
| [| {t:=MAP[15,i-32];
| | I mem[SEG[j].<5:8>,
| | | SEG[j+1]+i-32+
} : l MAP[15,1].<15>%*32]
i=t;
| | | MAP[15,1]:=-1;
| | | }
| I I }s
[| | while i<SEG[j].<9:15> do
| [I {MAP[A,i]: mem[SEG[]]
| | | .<5:8>,8EG{j+1]+i];
| | | ig=i+1
| | I };
: l I SEG[j].<0:4>:=A;
| | lwhile i<=63 do
| | | {MAP[A,i]: i=i+1};
[| ICMSEG[A]:=B
| [|RP:=RP-2.
| | | INote!the page table must be
| | !in memory
00 0 O 2*|MAPS| "map" a segment |SST[A]:=CSSEG[A]:=
&l |into SST |RP:=RP-2
| |B=segment number |
| |A=SST entry # |
00 0 O 3*|UMPS |unmap a segment |j:= SEG[CMSEG[A]*2].<9:15>;
% | |A=map number Im:= SEG[CMSEG[A]*2].<5:8>
| | |p:= SEG[CMSEG[A]*2+1];
| | |[for i := 0 to j-1 do
| | | {mem[m,p+il:=t:=MaP[A,i];
I | | SEGICMSEG[A]*2].<0:4>:=%37;
I | |CMSEG[A] := -1;
I I |RP:=RP-1
| | I'Note'the page table must be
I] tin memory
00 0 O 4 {ANG |AND to memory Icc(stack[AI =stack[A] & B);
! ! |RP:=RP-2
00 0 5 |ORG |OR to memory lcc(stack[A]l:=stack[A] | B);
| | |RP:=RP-2
00 0 O 6 |ANX |AND to extended |cc(xmem{BA]:=xmem{BA] & C);
! [memory |RP:=RP-3
00 0 O 7 |ORX |OR to extended |cc(xmem{BA]:=xmem{BA] | C);
| |memory |RP:=RP-3
00 0 O 0 |RCLK|read clock |RP:=RP+4;
| | |DCBA:=sysstack[%103:%106]+
| | microsecond counter
00 0 O 1 |RCPU|read processor # |RP:=RP+1; A:=processor #
00 0 O 2*|SNDQ|signal that a SEND|set dispatcher interrupt;
| |is queued | sysstack([%1277].<14>:=1
00 0 O 3*|SFRZ|system freeze |assert system freeze; halt

I{' 82507 A00 3/85

APPENDIX B

Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

flist

list

B
A

>

I
|
|
I
[
I
|
I
I
I
|
I
[
}
|
1
I
!
|
I
I
I
I
|
I
I
!
| I
[
|
!
I
|
I
I
|
|
|
I
[
!
|
|
|
I
|
i
|
|
|
|
I
|

00 0 0 S5 4*|DLTE|/delete an element
|from a doubly
|linked, circular

A=element address

into a doubly
linked,

=list header

|

[

|

|

|

|

|

|

|

|

|

|

|

INSR:insert an element

|

|

[

|

: list element
|
|
|
|
|
[

OTQ| test out queues
[

Q|T
%
00 0 0 5 6@ITOTQltest OUTQ
& |
@D

|A=record number
lon return, A holds| '>='stack{L+4]
|loffset into
|buffer of record
00 0 0 6 O0O*|BIO |execute i/o

interrogate i/o

high-priority
interrogate i/o

00 0 0 6 3*|RIR [reset interrupt
|register
MSK | exchange mask

if sysstack[A] <> 0 then
{if sysstack[sysstack[A]+1]

<> A or
sysstack[sysstack[A+1]]
<> A

|

[

[

|

|

| then Instruction Failure;
| f:=sysstack[A];

| b:=sysstack[A+1];
| sysstack[{b]:=f;

| sysstack[f+1]:=b;
| sysstack[A]:=0;

| sysstack[A+1]:=0;
| .

|RP:=RP-1

[ttt Note !!!

|all memory locations accessed
Imust be present

|if A=0 or

| sysstack[sysstack{B]+1]

| <> B or

| sysstack[sysstack[B+1]]

| <> B

[then Instruction Failure;

| f:=sysstack[B];
|sysstack(B]:=a;
|sysstack[Al:=f;

| sysstack[A+1]:=B;
|sysstack[f+1]:=A;

|RP:=RP-2

[1!! Note !!!

|all memory locations accessed
|must be present

IN:=0; Z:=1;

|if either OUTQ full then Z:=0
IN:=0; Z:=1;

|if ~OUTQ empty then Z:=0

OFSidisc record offset|if A'>="'512 or

| (A:=xmem[stack[L+2:3]-a%*2])

Ithen,{P:=stack[L+5]; RP:=7};
| ioselect (A, subchannel);

| iocontrol(A.command,B);
|B:="device status';
lcc(A:="channel status')
|RP:=RP+3;

{C:='interrupt cause';
|B:="interrupt status';
|[cc(A:="channel status');:
|RP:=RP+3;
|C:="high-priority interrupt
| cause';
|B:="high-priority interrupt
| status';
lcc(A:='channel status');
|'clear interrupt' A.<12:15>
|RP:=RP-1

IMASK:=:A

AﬁSZSO7 AQ0

3/85

Table B-2.

APPENDIX B
Instruction Set Definition

Instruction Definitions (Continued)

00 0 O

6

5

5

* SEND‘send
%
|G=<15> bus
| F=sequence #
|E=<0:7> sender
cpu #
<8:15> receiver
cpu #
D=0UTQ full timer
CB=buffer address

|
|
|
|
|
i
:
|
|
! A=byte count
|
|
{
|
|
:
|

!
I
I
I
!
|
I
|
|
|
I
!
|
[
|
I
!
|
|
I
|
I
|
|
|
|
|
|

|
SEND|send
|

|G=<15> bus
| F=sequence #
|E=<0:7> sender
cpu #
<8:15> receiver
cpu #
D=0UTQ full timer
CB=buffer address

|
l
I
|
|
|
[
I
|
|
|
[
|
|
|
|
* |
&l
|
|
|
|
|
|
|
} A=byte count
|
|
|
|
|
|
|
|
|
|

do
{do until OUTQEMPTY or
if OUTQEMPTY then
{if A<>0 then
{bus:=G.<15>
receiver:=E.<8:15>;
oUTQlbus,0]:=E;
ouTQ(bus,1]:=F;
for i:=4 to 29 do
{if A <> 0 then
{bog[bus,i]:=bxmem[CB
A:=A-1; CB:=CB+1}
else boql[bus,il:=0};
ouUTQ[bus,15]:=(-1) =xor
oUTQ{ bus,0]

if E.<8:11> then
OUTQ[bus,15]:=
ouTQ[bus,15] xor
(E&%170000) xor
(MYEXTCPU.<8:11>"'<<'8
D:=0;
if (F:=F+1)=0 then
{done:=true; N:=0; Z:=
} else
{done:=true; N:=0; Z:=1

} else
{done:=true; N:=1; Z:=0;
OUTQEMPTY:=true

} until done;

RP:=RP-7

{11! Note !!!
xmem[CB:CB+A*2-1] must be
in memory

do

fdo until OUTQEMPTY or

if OUTQEMPTY then
{if A<>0 then
{bus:=G.<15>
receiver:=E.<8:15>;
oUTQ(0]:=E;
ouTQ[1]:=F;
for i:=4 to 29 do
{if A <> 0 then
{bogl[i]:=bxmem[CB];
A:=A-1; CB:=CB+1}
else boq{il:=0};
ouUTQ[15]:=(-1) xor
oUTQL0] xor ouTQ[1]
xor OUTQ[14];
if E.<8:11> then
ouTQl15]:=0UTQ[15]
(E&%170000) xor
(MYEXTCPU.<8:11>'<<"'8
D:=0;

Xor

|
|
|
I
I
I
I
|
|
I
I
I
|
|
I
I
|
I
I
[
I
I
[
I
!
|
|
I
I
I
|
I
!
{
|
|
|
|
I
|
|
I
I
I
|
|
I
I
I
|
|
:
I
|
I
I

.8(32768-D) microsec;

1;

... OUTQ[bus,14];

);

1};

.833(32768-D) microsec:;

);:

Il’j82507 AQO0 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

00 0 0O 6 6* RMAP
%

00 0 0 6 7*ISMAP
%

00 0 0 6 7*|SMAP
&

00 0O O 7 OGIDLEN
00 0 0 7 1*[IXIT
00 0 0 7 2*|DXIT

|B=entry
|A.<0:5>=logical
| page
|A.,<12:15>=8ST
index

A=record number
interrupt exit

|
|
|
|
|
|
|
I
|
I
|
|
|
[
|
|
i
|
[
|
|
[
|
|
|DEBUG exit
|

|

|

|

|

| if (F:=F+1)=0 then
| {done:=true; N:=0; Z:=1};
| '} else
: %done:=true; N:=0; Z:=
| 1 else
| {done:=true; N:=1; Z:=0;
: OUTQEMPTY:=true

|

|

.
’

} until done;

RP:=RP-7

[1!1! Note !!!

| xmem[CB:CB+A*2-1] must be
|in memory
|A:=MAP{A,<12:15>,A.<0:5>]
|
IMAP[A.<12:15>,A.<0:5>]):=B;
|RP:=RP-2
|s:=SST[A.<12:15>];
[p:=A.<0:5>;

| PCACHE(s,pl:=B;

| PCACHETAG[s,pl:=

| (PCACHE[s,pl&174003)

| 1{s.<3:11><<2);

|xa:=0D; xa.<0>:=1;
|xa.<l:l4>:=s;
|xa.<15:20>:=p;

[for i:=0 to 127 do

I{if hit(xa) then

| invalidate entry;

| xas=xa+%20};

|RP:=RP-2

[11! Note !!!

|{WSPT must be used once the
|page tables are set up

disc record length|if (A:=DOFS(A+1)-DOFS(A)) < 0

fthen {P:=stack[L+5]; RP:=7}
|CSPACEID:=sysstack[L-5]&
| %4437;
| (MASK,S,P,ENV,L):=

| sysstack[L-4:L];
|call xmap(CSPACEID);
|[R[(0:7]:=sysstack{L+1:L+81];
|if not DS then

| {PTIME:=PTIME-TIMER-(10000%
[INTA.<13>)}.
| INote!sysstack[L-5:L+8] must
| 'be present

|S:=L-6;

| (P,ENV,L): sysstack[L-2:L];
|CSPACEID:=sysstack[L-5]&
| %4437;
|call xmap(CSPACEID);

[if ENV.<0> then

| instruction breakpoint.

Aﬁ82507 AQ0

3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

00 0 0 7 3*|DISPldispatch
| |

00 0O O 7 4*|HALT|processo

00 0 0 7 5*%|MRL |merge on
|list
|A=PCB ad

|
PSEM|"P" a se
|
|CB=wait
|A=semaph

00 0 0 7 6%

|

|

[

|

|

[

|
VSEM|"V" a se

|

| A=semaph

|

|

|

|

|

r halt
to ready

dress

maphore

time
ore addr

maphore

ore addr

00 0 1 0 regl|STRP|set RP
00 0 1 1 reg|STARIstore A in reg
00 0 1 2 reglINSAR|non-destructive
| Istore A in reg
00 0 1 3
00 0 1 4
00 0 1 5
I [from A
00 0
|
00 0 1 7 regl|SBAR|subtract A from
| |register
00 0O 2 0 0 |LADD|logical add
00 0 2 0 1 |LSuB|logical subtract
00 0 2 0 2 |LMPY|logical multiply
00 0 2 0 3 |LDIV!Ilogical divide
| |
| |
00 0 2 4 |LNEG|logical negate
00 0 2 0 5 |LCMP|logical compare

|set dispatcher interrupt;

|sysstack{%1277]1.<15>:=1

[halt

|t := sysstack[%101];

|while sysstack[t+2].<8:15> <

| sysstack[A+2]}.<8:15>

|do t:=sysstack[t+1];

|if sysstack[CPCB+2].<8:15> <

| sysstack[A+2].<8:15>

| then DISP;

linsert A after t; RP:=RP-1

:SYSStaCk[A+2]:=sysstack[A+2]
_.l;

|if < then

| {set dispatcher interrupt;

| sysstack(%1277]:=

! sysstack[%1277] | 5}

lelse {C:=1;

| sysstack({A+3]:=CPCB};

|RP:=RP-2

| ttt Note !!!

| sysstack must be resident

:sysstack[A+2]:=sysstack[A+2]

+1;

|if <= then

t {set dispatcher interrupt;

| sysstack[%1277].<12>:=1}

lelse sysstack(A+3]:=0;

|[RP:=RP-1

[11! Note !!!

| sysstack must be resident

|[RP:=reg

IR{regl:=A; RP:=RP-1

ER[reg]:=A

reg|LDRA|load register to A|IRP:=RP+1; cc(A:=R[reg])
reg|ADRA|add register to A |ccn(A:=A+R[reql)
reg|SBRA|subtract register |ccn(A:=A-R[regl)

|

1 6 reg|ADAR|add A to register |ccn(Rlregl:=R[regl+A);
|

|RP:=RP-1
lccn(R{regl):=R{regl-a);
|RP:=RP-1

lccl(B:=B+A); RP:=RP-1
|ccl(B:=B-A); RP:=RP-1
lcc(BA:=B'*'A); V:=0
fvi=(C'>="2);
|(C,B):=(CB 'mod' A,CB'/'A);
|cc(B); RP:=RP-1
|lccl(A:=-A)

lcc(B':'A); RP:=RP-2

Aﬁ82507 AQ0 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)
00 0 2 0 6*|FTL [find position in |RP:=RP+1; BA:=CB;
| {time list |C:=sysstack{%1071];
| | |[while C<>%107 do
| |BA=time value | {BA:=BA- sysstack[C+2:C+3];
| | | if < then done;
| | | C:=sysstack[C]l}
| f | tt! Note !!!
| | | sysstack must be resident
00 0 2 0 7*|DTL |delete from time |a:=A; t:=sysstack[%107];
| [list IRP: RP+l
| |A=element address |BA sysstack[t+2 t+31;
| | Iwhlle a <>t do
| | | {t:=sysstack(t];
| [| BA: —BA+sysstack[t+2 t+31}
| | | 1! Note !!!
| | | sysstack must be resident
00 0 2 1 0 |I1ADD|integer add lccn(B:=B+A); RP:=RP-1
00 0 2 1 1 |1sUB|linteger subtract |ccn(B:=B—A); RP:=RP-1
00 0 2 1 2 |IMPY|integer multiply [Vi=~(-32768<=B*A<=32767);
| | fcc(B:=B*A); RP:=RP-1
00 0 2 1 3 |iDIVlinteger divide |Ve=~(-32768<=B/A<=32767);
t | lcc(B:=B/A); RP:=RP-1
00 0 2 1 4 |INEG|integer negate lcen(A:=-A)
00 0 2 1 5 |ICMP|integer compare fcc(B:A); RP:=RP-2
00 0 2 1 6*|RPV |read PROM version |RP:=RP+5; N:=0; Z:=1;
%1 | numbers |CBA:=cs prom numbers
| | |D:=ept prom numbers
| | |E:=i/0 channel prom number
| | {if i/0 channel not available
| [[then {N:=1; Z:=0}
00 0 2 1 7*|TRCE|ladd an entry to |if TRBASE'<'TRLIM then
| |[the trace table | {sysstack[TRACE:TRACE+4]:=
| |EDCBA=entry | EDCBA;
| | | TRACE:=TRACE+5;
| | | if TRACE'>'TRLIM
| | | then TRACE:=TRBASE};
l I |RP:=RP-5
00 0 2 2 0 |pADD|double add |ccn(DC:=DC+BA); RP:=RP-2
00 0 2 2 1 {psuBldouble subtract fcen(DC:=DC-BA); RP:=RP-2
00 0 2 2 2 |DMPY|double multiply fcen(DC:=DC*BA); RP:=RP-2
00 0 2 2 3 |DDIVidouble divide |cen(DC:=DC/BA); V:= BA=0;
| |RP:=RP-2
00 0 2 2 4 |DNEG|double negate |cen(BA:=-BA)
00 0 2 2 5 |DCMP|double compare |cc(DC:BA); RP:=RP-4
00 0 2 2 6 |MNGG|lmove words while |
|not duplicate |while cc(B)<>"=" and
| stack[Cl<>A do
|D=destination {A:=stack[D]:=stack[C];
|C=source D:=D+1;
| B=count C:=C+1;
|A=value<>to value B:=B-1};
| of source RP:=RP-1
00 0 2 2
Inot duplicate

|FE=destination
|DC=source

| B=count
|A=value<>to value

|
|
|
|
|
|
|
7 :MNDxlmove words while
|
|
|
|
|
| | of source

xmem[DCl<>A do
{A:=xmem[FE]:=xmem[DC];
FE:=FE+2;
DC:=DC+2;
B:=B-1};

|

|

|

|

|

|

iwhile cc(B)<>"=" and
|

|

|

|
|RP:=RP-1

Aﬁ82507 AQO

3/85

Table B-2.

APPENDIX B
Instruction Set Definition

Instruction Definitions (Continued)

00 0 2
00 O
00 O
00 O

00 0 2
00 0 2
00 0 2
00 0 2
00 0 2
00 0 2
00 0 2
00 0 2

0xx QST |quad store
quad load
uad add

QADD|q
QSUB|quad subtract
QMPY | q

uad multiply

338|QDIViquad divide

4$|QNEG|quad negate

5$|QCMP|quad compare

6S1CQL |convert quad to
logical

double
nn0|QUP |quad scale up
nnl|QDWN{quad scale down

convert quad to

|
| [
| |
| I
| |
| |
| |
| |
i |
| |
| |
| |
| |
| |
| |
| |
| [
I [
[[
| |
| |
| |
"
7$:CQD |convert quad to
!
| |
| |
| |
[|
| |
| [
| [
| |
! |
| |
| |
: IASCII
[|
[|
| [
| |
| |
| |
| |

ladr:=(if 1=%230 then 0

i else R[I.<14:15>+4])*4+A;
|stackl{adr:adr+3]:=EDCB;
|RP:=RP-5

|ladr:=(if I=%234 then 0

| else R{I.<14:15>+4])*4+A;
|RP:=RP+3;
|cc(DCBA:=stackl[adr:adr+3])
|ccn(HGFE:=HGFE + DCBA):
|RP:=RP-4

|ccn(HGFE:=HGFE - DCBA);
|[RP:=RP-4

[ve=if

| -2**%63<=HGFE*DCBA<=2**§£3~1
| then 0 else 1;

|HGFE:=HGFE * DCBA;
|cc(HGFE) ;

|RP:=RP-4

|[ve=if DCBA=0 then 1 else 0;
| HGFE: =HGFE / DCBA;

| cc (HGFE) ;

|RP:=RP-4

| DCBA:=-DCBA;

| ccn(DCBA)

|cc(HGFE:DCBA)

[Vi=if 0 <= DCBA <=2**16-1

| then 0 else 1;

ID:=A;

|RP:=RP-3

[Ve=if -2%**31 <=DCBA<= 2**31-1
| then 0 else 1;

|DC:=BA;

|RP:=RP-2

| DCBA: =DBCA*

| 10*%*(1.<13:14>+1);
|[Vs=if -2**£3<=DCBA<=2**£3-1
[then 0 else 1;

|cc(DCBA)

| DCBA: =DBCA/

| 10*%*(I.<13:14>+1);
[Vv:=0; cc(DCBA);

|cc(FEDC);

|B:=B+A;

|while A<>0 do

| {B:=B-1;

| bytedest(B):=

| $60+abs(FEDC) mod 10;
| FEDC:=FEDC/10;

| A:=A-1}

|vi=if FEDC=0 then 0 else 1;
|RP:=RP-6

Aﬂ82507 AQO0 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

|quad with initial

|value

convert
quad

|convert
|integer
|
|convert
| quad

quad

|
|
|
|convert
|
|
|
|

|convert
| quad

ASCII to

quad round

quad to

double to

(V=0
[N:=1
|while E<>0 and V=0 and N=1 do
[{ccb(t. =bytedest(F));
| if N=1 then
[{DCBA =DCBA*10 + t&%17;
| :=1f DCBA<=2%*§3-1
[then 0 else 1;
| F:=F+1;
| E:=E-1}}
|cc(E) tcce if entire string
| tis ASCII digits.
| lccg if not.
| INote: initial value (DCBA)
|t should be positive.
|RP:=RP+4;
|DCBA:=0;
[Ve=0;
[Ne=1;
|while E<>0 and V=0 and N=1 do
{ceb(t:=bytedest(F));
if N=1 then
{DCBA:=DCBA*10 + t&%17;
Ve=1if DCBA<=2%*£3-1
then 0 else 1;
F:=F+1;
E:=E-1}}
cc(E) !cce if entire string
'is ASCII digits.
lccg if not.
CBA:=(if DCBA<(Q then DCBA-5
else DCBA+5) / 10;

C(DCBA)
¢=if -2*%*15 <=DCBA<= 2**15-1

then 0 else 1;
:=A: RP:=RP-3;
t,u):=BA;
:=1if B<0

then %177777 else 0;
RP:=RP+2;
DCBA:=(s,s,t,u)
olt:=A;
s:=if A<O

then %177777 else 0;

RP:=RP+3;
|DCBA:=(s,s,s,t)

logical tolt:=A;RP:=RP+3;

|DCBA:=(0,0,0,t)

Aﬁ82507 AQ0 3/85

Table B-2,

APPENDIX B
Instruction Set Definition

Instruction Definitions (Continued)

7 0#|FADD|floating add
DC:=DC+BA

7 1#|FSuUB|floating subtract

|
|
|
|
|
|
I
I
I
!
|
|
|
|
|
|
|
I
I
|
I
I
|
|
|
|
|
l
I
|
I
|
I
I
|
|
|
I
I
|
|
!
|
|
}DC:=DC—BA

I
|
|
|
|
|
|
|
I
|
|
|
I
I
|
|
|
|
|
|
[
|
I
|
I
l
|
|
|
|
I
|
|
|
I
|
I
|
|
I
|
I
[
|
I
I

=exponent (C);

=exponent (A);

BA<>0 and DC<>0

nd abs(tl-t2)<24 then

{signl:=D.<0>;

sign2:=B.<0>;

D.<0>:=B.<0>:

exponent(C):=

exponent (A):=

s:=tl-t2;

if s>=0 then
BA:=BA'>>"'s;

0
0

1;
.
r
.
’

else
{DC:=DC'>>"'-5;
DC:=:BA;
tl:=t2}

|

|

|

|

|

|

|

|

|

!

|

|

|

|

|

| if signl=sign2 then
[{DC:=DC"'+"'BA;
| if carry then
| {DC:=DC'>>"'1;
| tl:=tl+1;
| D.<0>:=1}}
| else

| {DC:=DC'-"BA;
| if not carry then
f {DC:=-DC;

| signl:=~signl}

| if DC=0 then

| tl:=signl:=0

| else

| while D.<0>=0 do
| {DC:=DC'<<'1;

| tls=tl-1}1}

| DC:=DC"'+'%400;

| if carry then

| tle=tl+1;

| if t1.<6>=1 then

| call overflow;

| D.<0>:=signl;

: exponent(C):=t1}

|

|

if DC=0 or tl-t2<=-24
DC:=BA;
|cc(DC); RP:=RP-2
|if BA<>0 then
| B.<0>:=~B.<0>;
lgoto FADD

then

Aﬂ82507 AQ0Q0 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

00 0 2 7 2#|FMPY|floating multiply |if DC=0 or BA=0 then
| DC:=DC*BA | DC:=0
|else
| {tl:=exponent(C);
| t2:=exponent (A);
| exp:=tl+t2-255;
| sign:=D.<0> xor B.<0>;
| D.<0>:=B.<0>:=1;
| exponent (C):=0;
| exponent (A):=0;
| DCBA:=DC'*'BA;
| norm(DC) ;
| DC:=DC'+'%400;
| if carry then
| exp:=exp+l;
[if exp.<6>=1 then
| call overflow;
| D.<0>:=sign;
I exponent (C) :=exp}
{ce(DC); RP:=RP-2
FDIV|floating divide |if BA=0 then
DC:=DC/BA | call overflow;
|if DC<>0 then
| {tl:=exponent(C);
| t2:=exponent(A);
[exp:=tl-t2+256;
| sign:=D.<0> xor B.<0>;
| D.<0>:=B,<0>:=1;
[exponent(C):=0;
| exponent (A):=0;
| DC:=DC'/'BA;
| norm(DC) ;
| DC:=DC"'+'%400;
| if carry then
| exp:=exp+l;
| if exp.<6>=1 then
| call overflow;
[D.<0>:=sign;
| exponent (C) :=exp}
lcc(DC); RP:=RP-2

00 O 2 7 A4#|FNEG|Ifloating negate |[if BA<>0 then
BA:=-BA | B.<0>:=~B.<0>;
lcc(BA)
00 0 2 7 5#|FCMP|floating compare |if D.<0> <> B.<0> then
DC:BA I cc(D:B)
lelse

| {sign:=D.<0>;

| D.<0>:=B.<0>:=0;

| tl:=exponent(C);

| t2:=exponent(A);

[if tl<>t2 then

| if sign=0 then

| cc(tl:t2)

[else cc(t2:tl)

| else

| if sign=0 then

| cc(DC:BA)

| else cc(BA:DC)}

|RP:=RP-4

CEF |convert extended |exponent(C):=exponent(A);
|to floating |RP:=RP-2

|
[
|
|
[
I
!
f
I
I
I
I
|
|
|
|
|
|
:
I
I
|
I
I
|
|
[
!
I
|
|
I
|
!
|
|
I
[
[
|
[
l
I
I
I
|
|
|
I
|
|
I

B-20 4482507 A00

3/85

Table B-2.

APPENDIX B
Instruction Set Definition

Instruction Definitions (Continued)

2

3

3

7

0

0

7#|CEFR|convert extended
|[to floating with
| rounding

O#|EADD|extended add
HGFE : =HGFE+DCBA

1#|ESUB|extended subtract

[
|
[
I
I
I
|
|
I
I
I
I
|
I
I
I
I
I
I
I
I
I
|
[
I
I
|
I
[
I
[
I
|
[
|
I
I
I
l
I
I
I
|
I
I
|
I
|
I
I
I HGFE: =HGFE-DCBA

|
I
:
|
I
|
|
I
[
[
I
:
|
[
I
I
|
|
I
|
:
I
I
|
|
|
I
|
|
I
|
|
I
|
|
|
|
|
!
!
|
|
!
|
I
[

|sign:=D.<0>; D.<0>:=1;
|exp:=exponent (A);
IDC:=DC'+'%400;
|if carry then
| f{exp:=exp+l;
| if exp.<6> then V:=1}
|ID.<0>:=sign;
| exponent (C) :=exp;
|RP:=RP-2
[tl:=exponent(E);
| t2:=exponent (A);
|if DCBA<>0 and HGFE<>0
and abs(tl-t2)<56 then
{signl:=H.<0>;
sign2:=D.<0>;
H.<0>:=D.<0>:=1;
exponent(E):=0;
exponent{(A):=0;
s:=tl-t2;
if s>=0 then
DCBA:=DCBA'>>"s;
else
{HGFE:=HGFE'>>"'-s;
HGFE:=:DCBA;
tl:=t2}
if signl=sign2 then
{HGFE:=HGFE' +'DCBA;
if carry then
{HGFE:=HGFE'>>"1;
tl:=tl+1;
H.<0>:=1}}

{HGFE:=HGFE'-'DCBA;
if not carry then
{HGFE:=-HGFE;
signl:=~signl}
if HGFE=0 then
tl:=signl:=0
else
while H.<0>=0 do
{HGFE:=HGFE'<<'1;
tls=t1-1}}
HGFE:=HGFE'+"'%400;
if carry then
tl:=tl+1;
if tl1.<6>=1 then
call overflow;
H.<0>:=signl;
exponent(E):=t1}

if HGFE=0 or tl-t2<=-56
then HGFE:=DCBA;
|cc{HGFE); RP:=RP-4
| if DCBA<>0 then
| D.<0>:=~D.<0>;
|goto EADD

|
|
[
[
|
|
|
|
|
|
|
|
|
|
|
|
|
[
: else
|
|
|
|
|
|
|
|
|
|
|
|
|
|
E
|
|
f

Aw82507 AQ0 3/85

APPENDIX B

Instruction Set Definition

Table B-2.

Instruction Definitions (Continued)

3 0 2#|EMPY|extended multiply |if HGFE=0 or DCBA=0 then

| HGFE : =HGFE*DCBA
I

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 0 3#|EDIV/iextended divide
| HGFE : =HGFE/DCBA
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|

3 0 4#|ENEG|extended negate

| DCBA:=-DCBA
|

3 0 S5#|ECMP|extended compare

| HGFE : DCBA

|
:
|
|
I
I
|
|
|
|
I
|
I
I
I
|
|
|
|
|
[
|
|
I
|
|
|
|
|
|
|
|
|
|
|
I
[
!
|
|
|
[
| |
I

[

|

|

|

[

|

|

:

|

|

|
|
|
I
I
|
|
|
|
|
|
|

| HGFE: =0
lelse

| {tl:=exponent(E);

| t2:=exponent(A);

l exp:=t1+t2-255;

I sign:=H.<0> xor D.<0>;
| H.<0>:=D.<0>:=1;

| exponent (E):=0;

| exponent (A):=0;

[HGFE:=HGFE'*'DCBA;

[norm(HGFE) ;

| HGFE:=HGFE'+'%400;

| if carry then

| exp:=exp+l;

| if exp.<6>=1 then

J call overflow;

| H.<0>:=sign;

f exponent (E) :=exp}
lcc(HGFE); RP:=RP-4

|if DCBA=0 then

| call overflow;

[if HGFE<>0 then

[{tl:=exponent(E);

| t2:=exponent(A);

| exp:=tl-t2+256;

| sign:=H.<0> xor D.<0>;
| H.<0>:=D.<0>:=1;

| exponent(E):=0;

| exponent (A):=0;

| HGFE:=HGFE'/'DCBA;

| norm(HGFE) ;

| HGFE:=HGFE'+"'%400;

I if carry then

| exp:=exp+l;

| if exp.<6>=1 then

[call overflow;

| H.<Q>:=sign;

| exponent (E) : =exp}

| cc(HGFE); RP:=RP-4

|if DCBA<>0Q then

{ D.<0>:=~D.<0>;
lcc{DCBA)

|if H,<0> <> D,<0> then
[cc(H:D)

lelse

| {sign:=H.<0>;

[H,<0>:=D.<0>:=0;

| tl:=exponent(E);

| t2:=exponent (A);

| if tl<>t2 then

| if sign=0 then

| cc(tlst2)

| else cc(t2:tl)

| else

| if sign=0 then

[cc (HGFE:DCBA)
I else cc(DCBA:HGFE)}

I1| 82507 A0O

3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

00 0 3 0 6#ICDF |convert double |sign:=B.<0>; exp:=31+256;

|to floating |if sign=1 then BA:=-BA;

| |if BA<>0 then

| | {norm(BA);
| | exponent (A) :=exp;
| | B.<0>:=sign}

00 0 3 0 7 ICDI |convert double to |if B+A.<0> <> 0 then V:=1
|integer | else V:=0;
| [B:=A; RP:=RP-1

00 0 3 1 O#ICFIR|lconvert floating It —15+256 exponent(A);

|to integer with [sign:=B.<0>;

| rounding |1f -2**15 <= BA <= 2%*15-1

| | then {B.<0>:=1;

I | BA:=BA'>>'t;

| | BA:=BA'+'%100000;

| | if sign=1 then B:=-

| | else if B.<0>=1 then

| | Vi=1}

| | else Vi=1;

| lcc(B); RP:=RP-1

00 0 3 1 1#ICFI |convert floating It:=15+256-exponent(A):

|to integer Isign:=B.<0>;

| |if -2*%%15 <= BA <= 2%*]15-1

| | then {B.<0>:=1;

| | BA:=BA'>>"t;

| | if sign=1 then B:=-B}

| | else V:i=1;

| |cc(B); RP:=RP-1

|convert floating |t:=31+256-exponent(A);

| to double |sign:=B.<0>;

| [if -2**31 <= BA <= 2**31-1

| | then {B.<0>:=1;

| [exponent (A) :=

| I BA:=BA'>>"t;

: I if sign=1 then

| |

BA:=-BA}
else V:i=1;
| lcc(BA)
00 0 3 1 3#|CFDRiconvert floating [t:=31+256-exponent(A);
[to double with [sign:=B.<0>;
| rounding [if -2*%*31 <= BA <= 2**31-1

| then {B.<0>:=1;

| exponent(A):=0;

| BAs:=BAs'>>"t;

| BAs:=BAs'+'%100000;
| if sign=1 then
|

|

|

|

BA:=-BA
else if B.<0>=1 then
Ve=1}
else V:=1;
00 0 3 1 4#ICED |convert extended |t:=31+256-exponent(A);
to double |sign:=D.<0>;

|if -2**31 <= DCBA <= 2**31-1
| then {D.<0>:=1;

| DC:=DC'>>"¢t;

| if sign=1 then

1 DC:=-DC}

| else Vi=1;

|

|
|
|
|
[
|
|
|
[
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|
|
|
00 0 3 1 2#ICFD
|
|
|
|
|
|
|
|
!
|
!
|
|
f
|
|
|
|
f
|
|
|
|
:
[
I
[cc{DC); RP:=RP-2

}
|
|
|
|
|
|
|
I
: | cc(BA)
|
|
|
|
}
|
i
|

482507 AOO 3/85 B-23

APPENDIX B
Instruction Set Definition

Table B-2.

Instruction Definitions

(Continued)

00 0 3 1

| rounding

00 0 3 1

rounding

00 0 3 1 7#
[indices for

|
| (bounds table

[in data space)

0#|CFQ

|
[
:
|
|
|
|
|
|
|
|
l
|
|
:to quad
|
|
|
|
|
|
|
|

5# |CEDR|convert extended
|to double with

|

|

|

|

|

|

|

|

|

6#|CEIR|convert extended
:to integer with
|

|

I

|

|

|

|

[

IDXDlcalculate index
loffset and test

convert floating

|
|
[
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
| |bounds violation
|
|
|
|
[
|
|
|
:
|
|
|
|
[
|
|
|
|
[
f
|
[
i
|
|
|
|
[

[t:=31+256-exponent(A);
|sign:=D.<0>;

[if -2%*31 <= DCBA <=
| then {D.<0>:=1;

| DCB:=(DCB'>>"'t)

| '+'%100000;
| if sign=1 then

! DC:=-DC
|

|

l

2*%*%31-1

else if D.<0>=1 then
Vi=1l}

else V:=1;
|cc(DC); RP:=RP-2
[t:=15+256-exponent(A);
|sign:=D.<0>;
[if -2%*15 <= DCBA <= 2**15-1
| then {D.<0>:=1;
| DC:=(DC'>>"t)
['+'%100000;
| if sign=1 then D:=-D
i else if D.<0>=1 then
| Vi=1}
| else V:=1;
{cc(D); RP:=RP-3
It -stack[A]
|[beci=t.<0>; t.<0>:=
|indv:=0; psize:=1;
| se=A;
Iwhlle t>0 do
| {lower:=stack{s:=s+1];
| upper:=stack[s:=s+1];
| if B<lower and bc=0 then
| {Vve=1l; t =0;
| cc(-1); R[7]:=
| if B>upper and bc=0 then
| {ve=1; t =0;
| cc(l); R[7]:=B}
| size:=upper-lower+l;
| B:=B-lower;
| indv:=indv+psize*B;
| psize:=psize*size;
| RP:=RP-1; =t-1}
[if V=0 then
| {R{7]:=indv;
| cc(R{7D}
|RP:=RP-1
|[t:=63+256-exponent (A);
[sign:=B.<0>; RP:=RP+2;
{if -2**63 <= DC <= 2**g3-1
| then {D.<0>:=1;
| exponent (C):=0;
| B:=A:=0;
| DCBA:=DCBA'>>"t;
| if sign=1 then
| DCBA:=-DCBA}
| else Vi=1;
| cc(DCBA)

Aﬁ82507 AQ0

3/85

Table B-2.

APPENDIX B
Instruction Set Definition

Instruction Definitions (Continued)

00 0
00 O
00 0
00 O
00 O
00 O

3 2

3 2
3 2
3 2
3 2
3 2
3 2

1#|CFQR|convert floating
lto quad with
| rounding

2#[CEQ |convert extended
to quad
3#|CEQR| convert extended

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

[

|

|to quad with
lrounding
|
[
|
|
|
[
|
|
|
|
|
|
|
|
|
|

4#|CQF |convert gquad
to floating
5#|CFE |convert floating

|to extended

[

|

6#|CDFR|convert double
|to floating with
| rounding

7 ICID |convert integer

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
[
|
|
|
|
|
|
|
|
[
|
|
|
|
|
I
|
|
|
|
[
i
|
| |to double

[t:=63+256-exponent(A);
|sign:=B.<0>; RP:=RP+2;
[if -2**63 <= DC <= 2**g3-1
| then {D.<0>:=1;

| exponent (C) :=0;

| B:=A:=s:=0;

| DCBAs:=(DCBAs'>>"'t)

| '+'%100000;

| if sign=1 then

| DCBA:

| else V:=1;

lcc(DCBA)
[t:=63+256-exponent(A);
|sign:=D.<0>;

|if -2**63 <= DCBA <= 2**g3-1
| then {D.<0>:=1;
| exponent (A) :=0;
| DCBA:=DCBA'>>'t;
| if sign=1 then
! DCBA:=-DCBA}
| else V:=1;
|cc(DCBA)
|t:=63+256-exponent (A);
:sign'=D.<0>;
|
|
|
i
|
f

=-DCBA}

if -2*%*63 <= DCBA <= 2**£3-1
then {D.<0>:=1;
exponent (4):=
s:=0;
DCBAs:=(DCBAs'>>"t)
'+'%100000;
if sign=1 then
DCBA:=-DCBA}
else V:=1;
| cc(DCBA)
|sign:=D.<0>; exp:=63+256;
{if sign=1 then
| DCBA:=-DCBA;
|if DCBA<>0 then
| {norm(DCBA) ;
| exponent (C) :=exp;
| D.<0>:=sign}
| RP:=RP-2
|G:—exponent(A);
Iexponent(A) :=0;
. —0 .
|RP:=RP+2
|sign:=B.<0>; exp:=31+256;
|if sign=1 then
I BA:=-BA;
|if BA<>0 then
| {norm(BA);
| BA:=BA'+'%400;
| if carry then
| exp:=exp+1l;
| exponent (A) : =exp;
: B.<0>:=sign}
IR

A := A>>15; V:=0;
P+

Aﬁ82507 AQO0 3/85

APPENDIX B

Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

[

|

|

|

:

|

|
00 0 3 3 1#ICIF |
|

|

[

|

|

I

00 0 3 3 2#ICIE |
|
|
|
|
|
|
|
|

00 0 3 3 3 |xsMx|
|

00 0 3 3 4¢#

!
|
|
!
I
|
:
|
|
I
I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
I
}
|
|
|
|
|
|
|
I
|
I
|
!
|
I
|
|
00 0 3 3 6#:CQE
I
|
|
|
|

|
|
|
|
|
|
I
|
|
|
!
!
|
|
|
|
|
|
|
[
I
|
|

00 0 3 3 O0#!CQFR|convert quad
|to floating with
| rounding

convert integer
to floating

convert integer
to extended

checksum extended

00 0 3 3 5#lCQER|convert quad
to extended with

convert quad
to extended

|sign:=D.<0>; exp:=63+256;
|if sign=1 then

| DCBA:=-DCBA;

|if DCBA<>0 then

| {norm(DCBA) ;

| DC:=DC'+'%400;

| if carry then

| exp:=exp+l;

| exponent (C) :=exp;

| D.<0>:=sign}
|RP:=RP-2

|sign:=A.<0>; exp:=15+256;
|if sign=1 then A:=-A;

|if A<>0 then

| {norm(a);

| H:=exp;

| A.<0>:=sign}

lelse H:=0;

|RP:=RP+1

Isign:=A.<0>; exp:=15+256;
|if sign=1 then A:=-A;
[H:=G:=0;

[if A<>0 then

| {norm(A);

| F:=exp;

| A.<0>:=sign}

lelse F:=0;

|RP:=RP+3

|while A<>0 do

| {D:=D xor xmem{CB];

[D=initial checksum| A:=A-1;
|CB=block address
|A=count

CDE |convert double
|to extended

| CB:=CB+2};

|RP:=RP-3

|sign:=B.<0>; exp:=31+256;
|if sign=1 then BA:=-BA;
|[H:=0;

|if BA<>0 then

| {norm(BA);

| G:=exp;

| B.<0>:=sign}

lelse G:=0;

|RP:=RP+2

[sign:=D.<0>; exp:=63+256;
|if sign=1 then

| DCBA:=-DCBA;

|if DCBA<>0 then

| {norm(DCBA) ;

| DCBA:=DCBA'+'%400;

| if carry then

I exp:=exp+l;

| exponent (A) : =exp;

| D.<0>:=sign}
[sign:=D.<0>; exp:=63+256;
|if sign=1 then

| DCBA:=-DCBA;

|if DCBA<>0 then

| {norm(DCBA) ;

| exponent (A):=exp;

! D.<0>:=sign}

4?82507 AQO

3/85

Instruction Set

APPENDIX B
Definition

Table B-2. Instruction Definitions (Continued)
00 0 3 3 7#ICEI |convert extended |t:=15+256-exponent(A);
|to integer |sign:=D.<0>;
|if _2%*15 <= DCBA <= 2%*15-1
| | then {D.<0>:=1;
| | D:=D'>>"t;
| | if sign=1 then D:=-D}
| | else Vi=1;
I lcc(D); RP: =RP-3
00 0 3 4 O | | *** undefined ***
00 0 3 4 1 | | *** undefined ***
00 0 3 4 2 |LWUC|load word from |cc(A:=mem(2,A])
|luser code space |
00 0 3 4 3 |XSMGlchecksum block lwhile A<>0 do
| | {C:=C xor stack(B];
|[c=initial checksum| A:=A-1;
|B=block address | B°=B+1};
| A=count |RP:=RP-2
00 0 3 4 4#lIDXllcalculate index | lower:=codel[A];
loffset and test Iupper =code[A+1];
| index bounds |if B<lower then
|for 1 dimension | {ve=1l; cc(-1);
| | R[{7]:=B}
| (bounds table fif B>upper then
|in code space) | {vi=1; cc(l);
| | R{7]:=B}
| iif V=0 then
| | {R[{7]:=B-lower;
| | cc(R[{71)}
| |RP+=RP-2
00 0 3 4 5#(iDX2lcalculate index | lower:=codelAl;

loffset and test
| index bounds
|for 2 dimensions
[

| (bounds table
|in code space)

I
|
I
|
|
|
I
:
|
|
[
!
|
|
:
|
|
[
I
|
|
|
|
|
I
|
I
!
|
|
|
|
I
|
|
I
|
|
|
|
|
|
I
I
I
I

I
I
I
|
[
|
|
|
I
|
}
I
I

| upper:=code[A+1];

|if B<lower then
{ve=1; cc(-1);
R[7]:=B}

if B>upper then
{vi= cc(l);
R[7]:=B}

s:=upper-lower+l;

B:=B-lower;

lower:=code(A+2];

upper:=code{A+3];

if C<lower then
{vi=1l; cc(-1);
R{7]:=C}

if C>upper then
{vi=1; cc(1);
R[{7]:=C}

if v=0 then
{R[7]1:=(C~1lower) *s+B;
cc(R[7}

|
|
|
|
|
:
[
|
|
|
:
|
|
|
[
|
|RP:=RP-3

’ 182507 A00 3/85

APPENDIX B
Instruction Set Definition

Table B-2.

Instruction Definitions (Continued)

00 0 3 4 IDX3|calculate index
loffset and test
| index bounds
|for 3 dimensions
{
| (bounds table

lin code space)

6#

IDXP|calculate index
|offset and test
l[indices for
lbounds violation
| (bounds table
|in code space)

00 0 3 4 7#

|
|
|
|
|
|
{
|
[
[
|
|
!
1
|
!
{
|
!
I
|
|
|
|
l
I
I !
I |
1 |
| I
| |
l !
I |
i l
! |
I |
| |
I |
| |
l |
I

jwords extended
|DC=buffer address
|B=buffer size
|A=duplicate count
|deposit field in

|SG memory
00 0 3 6 0 |LWA |load word via A
00 0 3 6 1 |SWA [store word via A

indv:=0; psize:=1;

for i=1 to 3 by 1 do
{lower:=code[A];
upper:=code[A: —A+1];
if B<lower then

{ve=1;

cc(-1); R[7]:=B}
if B>upper then

{vi=1;

cc(1); R[7]:=B}

B:=B-lower;
indv:=indv+psize*B;

| i

| £

|

|

|

|

[

|

|

[

| size:=upper-lower+l;
|

[

| psize:=psize*size;
|

|

|

|

|
IR

B:=A+1;
RP:=RP-1}
if v=0 then
{R[7]:=indv;
cc(R[71)}
=RP-1
[t -code[A] ‘
[bci=t.<0>; t.<0>:=0;
|indv:=0; psize:=1;
|st=A;

Iwhile t>0 do
| {lower:=code(s:=s+1];

| upper:=codels:=s+1];

| if B<lower and bc=0 then
| {ve=1; t:=0;
| cc(-1); R[7]:=B}

| if B>upper and bc=0 then
| {vi=1; t:=0;

| cc(l); R[7]:=B}

| size:=upper-lower+l;

| B:=B-lower;

| indv:=indv+psize*B;

: psize:=psize*size;

|

|

RP:=RP-1; t:=t-1}
if v=0 then
{R[7]:=1indv;
cc(R[71)}
| |RP:=RP-1
00 0 3 5 0 |LWAS|load SG word via Alcc(A:=dest(A))
00 0O 3 5 1 |SWASIstor SG word via Aldest(A):=B; RP:=RP-2
00 0 3 5 2 {LDAS{load SG double |[RP:=RP+1;
| |via A [cc{BA:=dest(B:B+1))
00 0 3 5 3 |sDAS|store SG double |dest (A:A+1) :=CB;
: | lvia A |RP:=RP-3;
00 0 3 5 4 |LBAS|load SG byte via Alccb(A:=bytedest(A))
00 0O 3 5 5 |[SBAS|store SG byte Ibytedest (A) :=B;
[|via A |RP:=RP-2
00 0 3 5 6 ICDX lcount duplicate |while B<>0 and

xmem(DCl=xmem{DC-2] do

I

| {A:=A+1;

| B:=B-1;

| DC:=DC+2}

|cc(dest(A) :=(dest(A) & ~B)
| | (C & B));
|RP:=RP-3

|lcc(A:=stack([A])
|stack[A]:=B RP:=RP-2

A$82507 A00O

3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

D=HCS/VCS/EPT
address

C.<0:1>=control
store type:

hile A > 0 do
case C.,<0:1> of
{{HCS[D]:=xmem{CB:CB+5]

i
{
yi=

{12;6:8;0};
W
{

};
{vCS[D]:=xmem[CB:CB+21};

00=HCS
01=vVCS {EPT[D]~ECS[D]:=
10=EPT/ECS xmem[CB:CB+31];

ll=reserved
C.<2:15>"B=abs.
extended buffer
address
A=ucode count

if D.<0:6><>0 then y:=64};
{};

I

if (A:=a-1)=0

then goto done;

D:=D+y; CB:=CB+X;

};

done: N:=0; Z:=1;

done2: RP:=RP-4

Note

VCS/HCS addresses should not

exceed 2**13-1

00 0 3 6 2 |LDA |load double via A |RP:=RP+1;
| | |cc(BA:=stack(B:B+1])
00 0 3 6 3 |SDA istore double via Alstack[A:A+1]:=CB;
| | |RP:=RP-3;
00 0O 3 6 4 |LBA |load byte via A |ccb(A:=bytedest (A))
00 0 3 6 5 ISBA |store byte via A |bytedest(A):=B;
| | | RP:=RP-2
00 0 3 6 6 |CDG |count duplicate |while B<>0 and
| |words | stack[C]=stack(C-1] do
| |C=buffer address | {A:=A+1;
| |B=buffer size | B:=B-1;
| |A=duplicate count | C:=C+1}
00 0 3 6 7 |DFG |deposit field in |cc(stack(A]:=(stack[A] & ~B)
I |memory | | (C & B));
| |RP:=RP-3
00 0o 3 7 0| |
. ! | *** yndefined ***
. |
oc o 3 7 71 |
00 0 4 0 O* WWCSlwrite LCS |lwhile A>0 do
% D=LCS address | {LCS[D]:=mem{C,B] "mem[C,B+1]
| C=buffer map | ~mem[C,B+2].<0:3>;
[B=buffer address | if (A:=a-1)=0
| | then goto done;
| A=ucode word count| D:=D+1;B:=B+2;
| | LCS{D]:=mem[C,B].<8:15>
| | ~mem{C,B+1]
| | ~mem(C,B+2}.<0:11>;
| |}D:=D+l; B:=B+3; A:=A-1;
| |'};
| |done: N:=0; Z:=1; RP:=RP-4
| | 11! Note !!!
| |all memory referenced must be
[|present
00 0 4 0 O*|WWCS|write HCS/VCS/EPT |if UCOPTIONFLAG=-1 then
&| | {N:=0; Z:=0; goto done2};
: f 1; x:=case C.<0:1> of
|
| |
| |
| |
| |
| |
[|
| I
| |
| |
! [
| |
| |
| |
[|
| |
| |
| !
| I

482507 A00 3/85 B-29

APPENDIX B
Instruction Set Definition

Table B-2,.

Instruction Definitions (Continued)

0 4 0 1*|VWCS|verify LCS

0 4 0 1

|D=LCS address
|C=buffer map
|B=buffer address

| A=ucode word count

:
|
i
|
|
!
|
|
:
|
|
|
|
|
|
* | VWCS|verify HCS/VCS/EPT
& |
|
| D=HCS/VCS/EPT
| address
|C.<0:1>=control
| store type:
| 00=HCS
| 01=vCSs
| 10=EPT/ECS
| 1ll=reserved
|C.<2:15>~B=abs.
| extended buffer
| address
|A=ucode count
|
|
|
|
|
!
[
|
|
|
[

RWCS|read LCS

|D=LCS address
|C=buffer map
|B=buffer address

| A=ucode word count

[
|
|
|
|
|
|

[N:=0;Z2:=1;

[1le VA and A>0 do

|{if LCS(Dl<>mem(C,B]

| Amem[c B+1]

[Amem[C,B+2].<043>
| {N:=1;Z:=0};

| if N or (A:=A-1)=0

| then goto done;

: D:=D+1;B:=B+2;
|

[

|

|

|

~E Z
(=0 j .

then

if Lcs{pl<>mem[C,B].<8:15>
~“mem[C,B+1]
~mem{C,B+2].<0:11>

then {N:=1;Z:=0}

else {D:=D+1;B:=B+3;A:=A-1};

RP:=RP-4
Note !!!
lall memory referenced must be
|present
|bus packets may not be
[received correctly while a
{VWCS is executing
|if UCOPTIONFLAG=-1 then
[{N:=0; Z:=0; goto done};
[N:=0; Z:=1; y:=1; x:=
case C.<0:1> of {12;6;8;0};
while 2 and A > 0 do
{case C.<0:1> of
{{if HCS[D]<>
xmem[CB:CB+5] then
{N:=1; =0; goto donetl};
{if vcs{Dl<>
xmem[CB:CB+2]
{N:=1; Z:=0; goto donel}};
{if EPT[DI~ECS[D]<>
xmem[CB:CB+3] then
{N:=1; Z:=0; goto done};
if D<0:6><>0 then y:=64};
{};

then

|

|

|

|

|

|

|

|

|

|

|

|

|

| 13

| if N or (A:=A-1)=0
| then goto done;

| D:=D+y; CB:=CB+x;
[};

ldone. RP:=RP-4
‘***Note***

| VCS/HCS addresses should not
| exceed 2**13-1

jwhile A>0 do

| {mem{C,B] mem(C,B+1]

| ~mem[C,B+2].<0:3>:=LCS[D];
| if (A:=A-1)=0 then

| then goto done;

| D:=D+1;B:=B+2;

| mem{C,B].<8:15>"mem[C,B+1]"
| mem[C,B+2].<0:11>:=LCS[D];
| D:=D+1;B:=B+3;A:=A-1};

|done: RP:=RP-4

| 11! Note !!!

|all memory referenced must be
|present

Aﬂ82507 A00

3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

order addr |the address is a physical
A=low-order addr |memory address
lany and all combinations of
laccess flags may be set
| |[BA=0D will disable the trap
SMBP | set memory brkpt |breakpointmode:=C.<0:2>;
IC.<0>=read flag |{breakpointaddress:=BA;
|C.<1>=execute flag|BPADDR:=CA;
|C.<2>=write flag |BPADDRX:=B;
IC.<3:8>=mab type |RP:=RP-3
|BA=extended addr | !!! Note !!!
| (absolute) lany and all combinations of
| laccess flags may be set
| {C=0 will disable the trap
| lall memory referenced must
|
|
|

00 0 4 0 2*|RWCS|read WCS or EPT |if UCOPTIONALFLAG=-1 then
&l [|{N:=0; Z:=0; goto done};
[IN:=0; Z:=1; y:=1; x:=
| | case C.<0:1> of
| D=HCS/VCS/EPT | {12;6;8;0};
| address |while A > 0 do
|C.<0:1>=control | {case C.<0:1> of
| store type: | {{xmem[CB:CB+5]:=HCS[D]};
| 00=HCS | {xmem[CB:CB+2]:=vCS[D]};
| 01=vCS | {xmem[CB:CB+3]:=
| 10=EPT/ECS | EPT(D]"~ECS[DI];
| ll=reserved [if D.<0:6><>0 then x:=641};
|C.<2:15>~B=abs. [{};
| extended buffer | };
| address [if (A:=A-1)=0
|A=ucode count | then goto done;
: 1}D:=D+y; CB:=CB+x;
| |done: RP:=RP-4
| I***Note***
| | VCS/HCS addresses should not
| | exceed 2**13-1
00 0 4 0 3 | | *** yndefined **=*
00 0O 4 0 4*|SMBP|set memory brkpt |breakpointmode:=B.<0:2>;
% |B.<0>=read flag |breakpointaddress:=
| .<1>=execute flagl B.<9:15>"A;
| .<2>=write flag |BPADDR:=BA; RP:=RP-2;
: .<9:15>=high- | 11t Note t!!
|
|

|be present

00 0 4 0 S5*|FRST|firmware reset I[reset and stop instruction
|execution
00 0 4 0 6 |LBX |load byte extended|ccb(B:=bxmem[BA]);RP:=RP-1
00 0 4 0 7 |ISBX |store byte extnd. |bxmem([BA]:=C; RP:=RP-3
00 0 4 1 0 |LWX |load word extendedlcc(B:=xmem[BA]);RP:=RP-1
00 0 4 1 1 |SWX |store word extnd. |xmem(BA]:=C; RP:=RP-3
00 0 4 1 2 |LDDX|load double extnd.|cc(BA:=xmem[BA:BA+3])
00 0 4 1 3 |SDDX|store dbl. extnd. |xmem{BA:BA+3]:=DC;RP:=RP-4
00 0 4 1 4 |LQOX |load quad extended|RP:=RP+2;
| | |cc(DCBA:=xmem[DC:DC+71])
00 0 4 1 5 |SQX Istore quad | xmem(BA:BA+7]:=FEDC;
| |extended |RP:=RP-6
00 0 4 1 6 |DFX |deposit field |cc(xmem(BA]:=(xmem[BA] &
| |extended | ~C | (D & C)));
| | |RP:=RP-4;

Aﬁ82507 AQ0 3/85

w
1

31

APPENDIX B

Instruction Set Definition

Table B-2.

Instruction Definitions (Continued)

00 0 4 1 7

00 0 4 2 0

600 0 4 2 1

00 0 4 2 3

00 0 4 2 4

*

*
%

I
l
!
[
!
|
!
|
I
!
[
|
!
I
I
|
!
|
!
|
f
|
I
|
|
I
I
}
|
|
|
I
|
|
I
|
|
I
|
I
|
|
I
|
I
I
|
I
|
I
|
!
I
|
|
I
|

MVBX |move bytes
|extended
| ED=destination
| address
|CB=source address
|A=byte count
MBXR|Imove bytes
|extended reverse
|ED=destination
| address
|CB=source address
|A=byte count
MBXX|move bytes extnd.
jand checksum
|[F=initial xsum
|ED=destination
| address
|CB=source address
|A=byte count
CMBX | compare bytes
|extended
|ED=destination
| address
|CB=source address
:A=byte count
CRAX|convert rel. to
abs. ext. address

|
|
i
!
;
|
|
|
|
I
|
[
RSPT|read segment page
| table entry
lBA=ext. address
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|

while A<>0 do
{bxmem(ED]:=bxmem[CB];
ED:=ED+1;
CB:=CB+1;
A:=A-1;1};
RP:=RP-5;
while A<>0 do
{bxmem[ED]:=bxmem[CB];
ED:=ED-1;
CB:=CB-1;
A:=A-1;1;
P:=RP-5;
hile A<>0 do
{bxmem{ED]:=t:=bxmem(CB];
F:=F xor t;

£

[

|

[

|

:

|

|

|

|

|

|

|

|

I

|

|

|

| -

f 0; Z:=1;

[le Z and A<>0 do

| {cc(bxmem(ED]:bxmem([CB]);
| if Z then
| {A:=A-1;ED:=ED+1;

| CB:=CB+1;1}};

|RP:=RP-5

[if B.<0:14>=0 then

| {B.<0:14>:=CSSEG(DS]1}
lelse if B.<0:14>=1 then

| {B.<0:14>:=CSSEG[1]}
lelgse if B.<0:14>=2 then

| {B.<0:14>:=CSSEG[cmapl}
lelse if B.<0:14>=3 then

| {B.<0:14>:=CSSEG[2]}

|lelse if B.<0>=0 then

| {if (BA+XL)->alu carry then
| { instruction failure };
| BA:=BA+XB };

|B.<0>:=1;

| xa:=CRAX(BA);

|p:=xa.<15:20>;

|s:i=xa.<2:14>;

|K:=0;

| i >= SEGTABSIZE then

| := 1; K := 1

|
|
|
|
[
|
|
I
|
I
|
[
|
[

if p>=SEG[s*2].<9:15> then
{B 1= 1; K := 1}
else
{if SEG[s*2]1.<0>=0 then
B:=MAP{SEG[s*2].<0:4>,p]
else
B:=mem{SEG[s*2].<5:8>
,SEG[s*2+1]+p] }

Aﬁ82507 A00

3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

00 O 4 2 4*|RSPT|read segment page |xa:=CRAX(BA);
&l | table entry p:=xa.<15: 20>
[|BA=ext. address s:1=xa.<l:l4>;
K:=0;
if s >= SEGTABSIZE or
{ptmiss(xa) and

B-=1- Ki=1;}

1f ptmiss(xa) then
B:=mem[SEG[s*2].<5:8>,
SEG[s*2+1]+p]

else B:=PCACHE(s,pl};

| |RP:=RP-1

00 0O 4 2 5*IWSPT|write segment pagelxa:=CRAX(BA);

| table entry Ip:=xa.<15:20>;

[C=new spt entry |s:=xa.<2:14>;

|BA=extended adrs. |if s>=SEGTABLESIZE then
| {instruction failure};
| tUpdate cached entries
|if MAP[15,p mod 32+32]=

|

|

|
[|
| |
| | p>=SEG[s*2].<9:15>} then
f |
{ |
| |
| I
I |
| |

o°

|

| {if C.<15> then

| MAP[15,p mod 32+32]:=-
| else

: MAP[15,p mod 32]:=C

|if p>=SEG[s*2].<9:15> then
| {instruction failure};

| 'update mapped entries
lif SEG[s*2].<0>=0 then

{tunconditionally update
| 'the page table
|mem[SEG[s*2].<5:8>,

|

|RP:=RP-3.
00 0 4 2 5*|WSPT|write segment pagelxa:=CRAX(BA);
C=entry |s:i=xa.<l:14>;
BA=ext. address |if s >= SEGTABSIZE then
(invalid on exit) | Instruction Failure;

| PCACHE[s,pl:=C;

lif ~C,<13> then

| PCACHE.<15>:=1;

| PCACHETAG(s,p]:=

| (PCACHE(s,pl&%174003) |

| (xa.<2:10><<2);

lif p>=SEG[s*2].<9:15> then
| Instruction Failure;
Imem[SEG[s*2].<5:8>,

| SEG(s*2+1]+pl:=C;
|if C=1 then
|{xa.<16:31>:=

| xa.<16:31>&%174000;
| for i=0 to 127 do

| {if hit(xa) then

| invalidate entry;:
! xa:1xa+%20}};

[
|
|
|
|
|
{
|
|
]
I
|
|
|
|
|
}
|
|
|
|
I
|
|
|
|
|
I
!
|
&
|
|
|
|
I
|
|
|
|
|
|
[
|
|
|
|
|
|
|
| RP:=RP-3

|
|
[
|
|
|
|
[
|
|
|
[
|
|
[
|
l
|
I
, table entry |p:=xa.<15:20>;
|
|
l
I
f
l
|
:
|
|
I
|
|
|
|
|
|
!

s*p.<10> then

| MAP[SEG[s*2].<0:4>,p]:=C;

SEG[s*2+1]+pl:=

Aﬁ82507 AQ0 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

| | 11! Note !!!

! i

! |if R is not set in C,

| linvalidate the entry;

| |WSPT must not be used until
| |SEG and the page tables are
| |set up and SEGTABSIZE is

| |present
00 0 4 2 6*|RXBLlread extended base|RP:=RP+4;
land limit [DCBA:=MAP({14,60:63]

00 0 4 2 7*|SXBL|set extended base |if (DC.<31> then
|and limit | { instruction failure };

| DC=base |XB := DC;
|BA=1limit |XL := BA;
{ |RP:=RP-4
00 0 4 3 O0*|ILCKX|lock down extended|m:=RSPT(BA);
|memory |p:=m.<0:12>;
[D.<0>=1lock only if{if m.<15>=0 and (D.<0>=0
| already locked | or PHYSEG{pl<0) then
[C=lock count | {if PHYSEG[pl] < 0
|BA=ext. address | then
| {PHYSEG[p] :=PHYSEG([p]-C;
[K := 0}
| else
| {PHYSEG([pl:=-C;
| K := 1}
!

Z:=1; N:=0}
lelse {Z:=0; N:=1};
|RP:=RP-4
unlock extended |ms:=RSPT(xa:=CRAX(BA));
|memory |p:=m.<0:12>;
|D=map entry mask |if m.<15>=0 and
|C=unlock count | (x:=PHYSEG[pl+C)<=0 then
|BA=ext. address | {if x<>0 then PHYSEG[p]:=x
| else
| {PHYSEG[pl:=xa.<2:14>;
| WSPT(BA, m&D)1};
| cecz(x)}
lelse {Z:=0; N:=1};
|RP:=RP-4
|
|
|
|
|

{
[
|
|
|
|
|
|
ULKX |

CME read/write
B.<0:3>=map
A=word address

N:=0;Z:=1;
if I/0 locked out then
{mem[B.<0:3>,A]
:=mem[B.<0:3>,A];
free I/0 channel;
if CME interrupt then Z:=0
lelse {N:=1; Z:=0};
| RP:=RP-2
CME read/write [N:=0; Z:=1; x:=INTA;
BA=ext. address | xmem[BA]:=xmem[BA];
|if CME interrupt then Z:=0;
| INTA:=x;
|RP:=RP-2
|tt! Note !!!
|Should read xmem[BA] from
|physical memory, not CACHE.
3 | *** yndefined ***
4 | *** yndefined ***
5 | I | *** yndefined **x
6
7

*|RSMT | read from OSP |enable read from OSP
*|WSMT|write to OSP lwrite first character to OSP

cocococo
coococo
coooco
FNNIVNFNIFS
wwwww

B-34 482507

AQ0 3/85

Table B-2.

APPENDIX B
Instruction Set Definition

Instruction Definitions (Continued)

0* |RIBA|lread INTB and INTA|RP:=RP+2;

| |registers
1*|SVMP|save map entries
%

read process time

set process timer

4 |SCS |set code segment

| current code
*

[$;]

*

[2)]

SQAS|store SG quad via
(A
RCHN|reset I/0 channel

~
e Xk

RCHN|reset I/0 channel

|
I
!
|
I
|
|
I
|
|
I
|

|

0* | BNDW|bounds test words
|

|

|

|C=word address in
| stack

|B=buffer size in
| words

|A=number of words
| of parameters

I
I
I
|
|
* |
‘|
I
|
I
I
I
|
I
|
|
|
|
!
|
|
I
I
I
f
|
I |
Is
:
|
I
I
|
|
I
l
* |
&l
I
|
|
|
}
[
I
I
:
I
I
I
I

[
f

save "map" entries

|BA=byte address in|then B.<0:14>:=2

LQAS|load SG quad via A|RP:=RP+3;

and stack markerlelse cc(C:=1);

|[B:=INTB; A:=INTA
[m:=word:=0;
|while word<%2000 do
| {memory(2,word]:=
MAP[m.<12:15>,m.<03:5>]
m:=m+%2000;
if alu carry then m:=m+l;
word:=word+1}
m:=0;
do
{memory(2,m]:=
PCACHE{m.<6:9>,m.<10:15>];
me=m+1}
luntil m=%2000
|RP:=RP+2;
[BA:={if not DS then
PTIME+(TIMER)+(10000%*
INTA.<13>)

else
PTIME}.

|

|

|

[

|PTIME: =

| {if not DS then BA-TIMER-
| (INTA.<13>*10000)
| else
| BA
| 1;
|RP:=RP-2.

|if ENV.CS=1 or ENV.LS=1

lelse B.<0:14>:=3;

|cc(DCBA:=sysstack[A:A+3])
|sysstack(A:A+3]:=EDCB;
[RP:=RP-5

|if i/0 channel available then
| {if A>=0

| then channel ioreset
| else channel lockup
| at %0777;

| N:=0; Z:=1}

lelse {N'-l’ Z:=0};
|RP:=RP-1

[if A>0

| then channel ioreset
| else channel lockup
| with RPSA=%40;
IN:=0; Z:=1;
|RP:=RP-1
{if A '>' L then
|

le

Ii

[

i

|

|

|

f B=0 or (C'<='L-A and

C+B-1'<="L-A and C'<='C+B-1)

or (C'>'L+350 and

C'<="'C+B-1 and

(C+B-1).<0:5> <

SEG[CSSEG[0]1%2].<9:15>)
|then cc(C:=0)

|RP:=RP~2

Aﬁ82507 AQ0 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

00 O 4 5 1%IBPT |instruction |if BKPT = 0
|breakpoint trap |then interrupt via SIV #19
|BKPT := 0;
| i:=BPBASE;
|do

| {if sysstack[i]=CMSEG[cmap]
| and sysstack(i+1]=P-1
| then {I:=sysstack[i+2];

j roma:=EPT{I]};

| i:=i+BPSIZE}

luntil 1 '>' BPLIM;

| Instruction failure
instruction |if BKPT = 0

breakpoint trap |then interrupt via SIV #19
|BKPT := 0;

| i :=BPBASE;

|do

| {if sysstack[i]=SST[cseq]
| and sysstack[i+1]=P-1
| then {NI:=sysstack[i+2];
| NEXT INST};

| i:=i+BPSIZE}

[until i '>' BPLIM;

| Instruction failure
CLD|bus cold load |simulate a bus cold load
|from the panel

w

00 0 4 5 3*|TPEF|ltest parity error |'Test parity circuits';
% freeze circuits |if error then
{SD:=halt loop error code;
halt

}
if A.<0:6>=0 then
{A.<0>:=CS;
A.<1>:=LS;
A.<2:6>:=CSPACEID
}
else
if A.<0:6>=%133 then
texternal call
{i:=SEG[CSSEG[cseg]*2]
.<9:15>*%2000-1;

|
|
|
|
|
|
|
|
[
|
|
|
|
|
|
[
|
|
|
|
|
|
|
|
|
[
[
[
|
|
|
|
|
[
1
I A:=code[i-A.<7:15>]
|

|

|

I

I

|

I

|

|

{

|

:

|

|

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
00 0 4 5 4 ISCMP set code map
|
|
|
|
|
|
|
I
[
[
|
|
|
|
|
|
|
|
|
|
!
[
f
|
|

J
|
|
|
|
|
|
i
|
|
:
[
|
|
:
| if successful then
|
|
|
|
|
f
f
|
:
[
|
%

b,
00 0 4 5 5*%|[SRSTIsoftware reset if cpu~type=TXP then
& {reload LCS from prom;
cce
else
ccg
b,
00 0 4 5 6*|DDTX|DDT request if cpu~type=TXP then
& {if UREQ or ~TCBE then
A.<8:15>=DDT ccl
function request else
{issue function request(A)
to DDT;
cce
bi
b
RP:=RP-1

B~36 4482507 A00 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)
00 0 4 5 7&|LIOC|load 10C entry | T0CSPAD[A]':="10C[A] for 4;
| | A=subchannel # |RP:=RP-1
00 0 4 6 O0&|SIOC|store IOC entry |TO0C[A]":="10CSPAD[A] for 4&;
| |A=subchannel # |RP:=RP-1
00 0 4 6 2*|XIOCiexchange 10C entry}if i/o not locked out then
cc(-1)
| |A=subchannel # lelse
| |EDCB=10C entry | {temp ':=' 10C[A] for 4;
| | | 10C[A] ':=' EDCB for 4;
| | | if TNSII then
| | | {temp ':=' IOSPAD[A] for4;
I : : I0SPAD[A] ':=' EDCB for4;
| | | free i/o channel;
| | | EDCB ':=' temp for 4;
| | | cc(0);
| | | };
| | |RP:=RP-1,
00 0 4 6 3*|SCPV|set current |UC~BASE:=C;
[| process variables|UL"BASE:=B;
| |A.<0:7>=ULseq size|{UC"SIZE:=A,<8:15>;
I |A.<8:15>=UC size |UL"SIZE:=A.<0:7>;
[|B=UL seg base |RP:=RP-3,
I |C=UC seg base |
00 0 4 6 4*|BIKE|bicycle while idle|tests:='number of tests';
| | |while tests>=0 do
| | | {'perform cpu self test';
| | | 1if error then
| ! | {SD:=error code;
} I : halt
I : { tests:=tests-1;
00 0 ¢ 6 5 | | | *** yndefined ***
00 0 4 6 6| | | *** yndefined ***
00 0 4 6 7| | | *** yndefined **x
00 0 4 7 O*|ASPT|Address of Segment|xa:=CRAX(B,A);
I |Page Table header |s:=xa.<2:14>;
| |BA= extended addr.|K:=0;
| | to convert |if $>=SEGTABSIZE or
| |{C= byte offset | SEG{t*2].<9:15> = 0 then
| | | {K:=1}
| | |else
| | | {xa.<0:14>:=SEG[t*2].<5:8>;
| I | xa.<15:31>:=SEG[t*2+11*2;
| | | xa.<0>:=1;
: I ! }CB:=xa—$UDBL(C);
i | [RP:=RP-1.
00 0 4 7 1 |ESE |extensible stack |if (stack[L-3]+A)=0 then
| | expansion [RP:=7
f | lelse
| | | {cc(RP-1);
: : { call DPCL(sysstack[%1711]);
fi.
00 0 4 7 21 | |
. { : ; **% yndefined ***
oo o 7 7 71 | |

I1| 82507 A00 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

oo o

o e 2O o oo Yo

—

[eNeole) oo

PRPRPROOOOO o

-

W N
i

0--
4—-—

(o) A >
1

o

'
WP OX &X O
] »
1 i

o a
o
i
I

4 4--

7 4--
0xx0~--
0xx4--

|CMPI | compare immediate [cc(A:imm); RP:=RP-1;
|ADDS|add to § [S:=S+imm

|LADI | logical add lccl(Az=A"+"imm)

| | immediate |

|ORRI|OR right immediatelcc(A:=A{1.<8:15>)
|ORLI|OR left immediate lcc(A:=A|(I.<8:15>'<<'8))

|LDLI|load left |RP:=RP+1;

| | immediate lcc(A:=imm rotate 8)

|ANRI|AND right |cc(A:=A&imm)

[| immediate

|ANLI|AND left immediate|cc(A:=A&(imm rotate 8))

{LDI |load immediate |RP:=RP+1; cc(A:=imm)

|LDXI|load x immediate Icc(X:=imm)

|ADDI|add immediate |cen(A:=A+imm)

|ADXI|add x immediate |cen(X:=X+imm)

[BIC |branch if carry |if K then branch

|BGTR|branch if greater |if ~(N|2) then branch

|BEQL | branch if equal |if Z then branch

|BGEQ|branch if greater |[if ~ N then branch

| lor equal |

|BLSS|branch if less {if N then branch

|BNEQ|branch if not |if ~ 2 then branch

| |equal |

{BLEQ|branch if less or |if N|Z then branch

| |equal |

|BNOC|branch no carry |[if ~ K then branch

|BUN |branch |branch

| |unconditional |

|BOX |branch on X |if X<A then {X:=X+1l; branch}
[

| else RP:=RP-1
|BAZ |branch on A zero |if A=0 then branch; RP:=RP-1

|BANZ |branch on A [if A<>0 then branch;
[|nonzero |RP:=RP-1
[BNOV|branch if no |[if ~ V then branch

| loverflow i
|BSUB|branch to [stack(S:=S+1]:=P; branch
| | subroutine

|LWP |load word from |RP:=RP+1;

|program |cc(A:=code[branchadr+X])
LBP |load byte from |RP:=RP+1;

fprogram ladr:=(if indirect then

| | codeldbal else 0)
| | +dba'<<'1+X;
| |A:=codeladr.<0:14>
| | +(dba&%100000)].
| | <8*adr.<15>:8*adr.<15>+7>;
f [ccbh(A)
PUSH|push to stack |stack[S+1:S+c+1]
| [:=R[(r-c)mod 8:r];
| [RP:=n; S:=S+c+1
|
l
!
|
l

POP |pop from stack {R[(r-c)mod 8:r]
| :=stack([S-c:S];
[RP:=n; S:=5-c-1
RSUBireturn from |P:=stack[8];
subroutine [S:=S-1.<8:15>

Aﬁ82507 AQ0O0 3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

12 5 - - - |EXIT|procedure exit |1f CSPACEID<>(stack[L-1]s&
[[%4437) then
[| call xmap(stack[L-1]&%4437);
[[S:=L-1.<B8:15>;
[|[P:=stack[L-2];
| [t:=ENV;
| |[ENV:={stack[L-1]&ENV&%173000}
| | | {stack[L-1] & %4740}
| | | {ENV & %37};
| |L:=stack[{L];
| |[if t.<0> then
| | instruction breakpoint.

02 5 4 - - |LWXX|load word extended|cc(A:=xmem[A<<l+xbasel])

02 6 4 - - | indexed |

02 5 5 - - |SWXX|store word extnded|xmem[A<<l+xbase]:=B;

02 6 5 - - | indexed |RP:=RP-2

02 5 6 - - |LBXXl|load byte extended|ccb(A:=bxmem[A+xbase])

02 6 6 - - | indexed [

02 5 7 - - |SBXXlstore byte extnded|bxmem[A+xbase]:=B;

02 6 7 - - | indexed |RP:=RP-2

12 54-- - - | | *** yndefined **x

0 2 6 OOmssd n |MOVW|move words |while A>0 do

{dest(C) :=source(B);
A:=A-1; B:=B+movestep;
C:=C+movestep};

RP:=n
0 2 6 u2mssd n |COMW|compare words N:=0; Z:=1;
while Z and A>0 do
{cc(dest(C)':'source(B));

if Z then
{A:=A~1; B:=B+movestep;
C:=C+movestepl};
RP:=n
while A>0 do
bytedest(C):=bytesource(B);
A:=A-1; B:=B+movestep;
C:=C+movestep};
P:=n
=0; Z:=1;
hile Z and A>0 do
{cc(bytedest(C):
bytesource(B));
if Z then
{A:=A-1; B:=B+movestep;
C:=C+movestepl}};
RP:=n
w

1 2 6 00mssd n |MOVB|move bytes

-~

1 2 6 02mssd n |COMB|compare bytes

1 2 6 40mssd n [SBW |scan bytes while hile bytesource(B)<>0 and
bytesource(B)=A do
B:=B+movestep
K:=bytesource(B)=0; RP:=n
1 2 6 42mssd n |SBU |scan bytes until while bytesource(B)<>0 and

bytesource(B)<>A do
B:=B+movestep

|
[
|
|
|
:
|
}
|
|
|
I
|
|
I
|
|
|
|
i
i
|
|
|
|
I
|
|
I
|
I
|
|
|
[
I
I
I
|
|
|
[
[
[
|
[
|
|
|
| K:=bytesource(B)=0; RP:=n

I
|
I
I
|
|
[
|
|
[
|
|
|
|
I
|
|
|
I
[
|
|
|
I
|
|
|
!
I

482507 A00 3/85 B-39

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

stack[S+1:8+3]:=(P
,(ENV & %177740) |CSPACEID
,L):
t:=I1.<7:15>;
if ~PRIV then
{if t>=code[0] then
{if t>=codel[1l] then
priv trap;
PRIV:=1;

02 7 - - - |PCAL|procedure call

S:=6+3;

codelt];
.=(ENV&%177740)ICSPACEID;
tack([S+1:8+3]:=(P,t,L);
+=SEG[CSSEG[cseg]*2].<9:15>
*%2000-1;

Iy ~e

s
p:=

XCAL|external procedure

call

|
|
|
[t
k
[
[
|
|
L
|p
IR
It
|'s
| i
|

|c:=code[i-1.<7:15>];
|s.<7>:=c.<0>; !
|s.<4>:=c.<1>; ! LS
|s.<11:15>:=c.<2:6>; !

|]
|if s<>CSPACEID then

| call xmap(s);

[me=2%t , <1>+t.<0>+2;
|ti=c.<7:15>;

|if ~ PRIV then

| {if t>=mem[m,0] then
| {if t>—mem[m 1] then
| priv trap;
| PRIV:=1;
|
i
|L

lCS--c <0>-
|p:= code[t]
|RP:=
LLS |logical left shift|computeshiftcount;
[Jce(A:=A"<<'shiftcount)
LRS |logical right | computeshiftcount;
|shift lcc(A:=A'>>"shiftcount)
ALS larithmetic left | computeshiftcount;
|shift |cc(As=A<<shiftcount)
ARS |arithmetic right |computeshiftcount;
|shift |cc{A:=A>>shiftcount)
[| *** yndefined ***
DLLS|double logical | computeshiftcount;
[left shift lcc(BA:=BA'<<'shiftcount)
DLRS|double logical | computeshiftcount;
|[right shift |cc{BA:=BA'>>"shiftcount)
DALS|double arithmetic |computeshiftcount;
D

|
I
I
|
|
|
[
[
|
|
|
|
|
|
I
|
!
!
|
:
|
|
|
|
|
|
|
|
I
|
:
I
|
|

[l -~ o o (=] o
w w W w

oo o

o w

I]

1 !

|left shift |cc(BA:=BA<<shiftcount)
ARS |double arithmetic |computeshiftcount;

|right shift |cc(BA:=BA>>shiftcount)

[| *** yndefined **%
LDX |[load X lcc(X:=word)

- —

w w (983 w
=] o [=] (=]
w
|
i

B-40 482507 A00

3/85

APPENDIX B
Instruction Set Definition

Table B-2. Instruction Definitions (Continued)

I 3 4xx - |NSTO|nondestructive |wordx:=A
| |store

I 4 Oxx - | LOAD| load |[RP:=RP+1; cc(A:=wordx)
I 4 4xx - | STOR|store |wordx:=A; RP:=RP-1
I 5 0xx - |LDB |load byte |[RP:=RP+1; ccb(A:=bytex)
I 5 4xx - |STB |store byte |bytex:=A.<8:15>; RP:=RP-1
I 6 Oxx - |LDD |load double |RP:=RP+2; cc(BA:=dwordx)
I 6 4xx - |STD |store double |dwordx:=BA; RP:=RP-2
I 7 Oxx - | LADR| load address |RP:=RP+1; A:=address+X
I 7 4xx - |ADM |add to memory |cen(wordx:=wordx+A); RP:=RP-1

Aﬂ82507 AQ0 3/85

APPENDIX C

HIGH-LEVEL PROCESSOR COMPARISON

This appendix provides a high-level comparison of three

processors manufactured by Tandem:

NonStop TXP.

NonStop 1+, Nonstop II,

and

Table C-1. Processor Comparison
CONFIGURATION
NonStop 1+ NonStop II NonStop TXP

Two—~-board CPU

Memory board
384K bytes

32 1/0 slots

Three-board CPU

Memory board
512K bytes
or 2M bytes

24 1/0 slots;
controllers and
peripherals same

as NonStop 1+ except
10MB and 50MB disc
are not supported;
6100 Communications
Subsystem supported;
3207 Tape Controller
supported

Four-board CPU

Memory board
2M bytes

24 1/0 slots;
controllers and
peripherals same
as NonStop I1I

//’| 82507 Aa00 3/85

APPENDIX C

High-Level Processor Comparison

Table C-1.

Processor Comparison (Continued)

CONFIGURATION (Continued)

NonStop 1+

NonStop II

NonStop TXP

Service via

Service via

Service via

Diag-Link OSP, PMI, and DDT OSP, PMI, and DDT
interface interface interface
FOX network links a FOX network links a
maximum of fourteen maximum of fourteen
systems systems
PHYSICAL MEMORY
NonStop 1+ NonStop II NonStop TXP

2MB physical

2MB physical
address
capability

500-nanosecond
cycle time

8MB physical
16MB physical address
capability

400-nanosecond
cycle time

8MB physical

16MB physical
address capability

ll16-nanosecond
access time
through cache

LOGICAL MEMORY

NonStop 1+

NonStop II

NonStop TXP

System Code:
one map,
second 64K map
accessed by
"LIBRARYX"

Four maps

System Code:

one segment
permanently mapped;
up to 32 library
segments--one
mapped on call

Sixteeen maps
including
Extended
Address Cache
(32 entries)

System Code:

one segment
permanently mapped;
up to 32 library
segments--one
mapped on call

Page Table cache
(1024 entries for
segments 0-15)
(1024 entries for
segments other

than 0-15)

/1182507 AQ0 3/85

Table C-1.

APPENDIX C
High-Level Processor Comparison

Processor Comparison (Continued)

LOGICAL MEMORY (Continued)

NonStop 1+

NonStop II

NonStop TXP

No data cache

16-bit address

Logical address
limited to
512K bytes
(6 segments)

User data
128K bytes

User code
128K bytes

No user library

System data
SHORTPOOL

System data
IOPOOL

CB space for
additional
system data

No data cache

16-bit and 32-bit
address capability

Virtual address
capability one
gigabyte (8192
segments)

User data 128K
bytes; multiple
extended data
segments, each
up to 128M bytes

User code
2 megabytes

User library
2 megabytes

Process file
segment; up to
128K bytes for
each process

Each system process
manages its own
data space; up to
IMB 1I/0 buffer
space

Segmented memory;
CB space mechanism
no longer required

Data cache
(64K bytes)

16-bit and 32-bit
address capability
(cache accessed
directly by 32-bit
extended address)

Virtual address
capability one
gigabyte (8192
segments)

User data 128K
bytes; multiple
extended data
segments, each
up to 128M bytes

User code
2 megabytes

User library
2 megabytes

Process file
segment; up to
128K bytes for
each process

Each system process
manages its own
data space; up to
IMB I/0 buffer
space

Segmented memory;
CB space mechanism
no longer required

/I'| 82507 A00 3/85

APPENDIX C
High-Level Processor Comparison

Table C-1. Processor Comparison (Continued)

I/0 TRANSFER

NonStop 1+ NonStop II NonStop TXP
4KB maximum I/0 64KB maximum I/0 64KB maximum I/O
4KB maximum 4KB maximum disc I/0 4KB maximum

disc I/0 disc 1/0
4MB channel 5MB channel SMB channel
transfer rate transfer rate transfer rate

INSTRUCTION MICROCODE

NonStop 1+ NonStop I1I NonStop TXP
2K words ROM ROM 4K words ROM bootstrap
RAM control store approx. 1200 words
8K words RAM control store
ROM entry point 8K words vertical
table 1K words 4K words horizontal

RAM entry control
store 1.5K words

ERROR DETECTION

NonStop 1+ NonStop II NonStop TXP
Memory contents Memory address and Memory address and
parity checked; contents parity contents parity
double-bit checked; double-bit checked; double-bit
detection, detection, single- detection, single-
single-bit bit correction bit correction

correction

Map parity Map parity Register parity
(software) (hardware) (hardware)

Data paths Data paths Data paths
protection: protection: protection:
software hardware parity hardware parity

checksum

Cc-4 4482507 A0O 3/85

INDEX

16-bit addressing 5-8

Absent page 5-38
Absolute bit 5-9
Absolute extended address 5-9
Absolute segment 5-3, 5-10
Absolute segment, allocation of 10-1
Address
byte 3-5
doubleword 3-6
logical 2-6
physical 2-6
quadrupleword 3-7
short 2-6
word 3-3
Address range 2-6, 5-
Address spaces 2-6, 5
Address translation 2
Addressing code 4-4
Addressing data 4-10
ALLOCATESEGMENT procedure 5-12
Application process creation 11-7
Arithmetic overflow 3-12
Attributes of procedures 4-36

Backup process 11-20, 2-1

Base address, extended data segment 5-11
Block diagram, CPU 2-12

BSUB instruction 4-58

Bus cold load 8-5

Bus Receive Table (BRT) 2-11, 5-42, 7-3
Bus Receive Table Long (BRTLONG) 5-44, 7-3
Bus transfer sequence 7-6

Buses, interprocessor 7-1

Byte addressing 3-4

482507 A00 3/85 Index-1

INDEX

CACHE 5-33
Cache tag 5-24
Callability attribute, of procedure 4-32
Callable library procedures 1-15
Carry (K) bit 4-28
Carry indicator 3-12
CC field, of ENV Register 4-28
CCE code 4-29
CCG code 4-29
CCL code 4-29
Channel status, following EIO 7-21
Checkpoint message 2-1
Clean page 5-38
Clock generator 2-11
Cluster, FOX 7-2
CMD bits, for EIO 7-19
CMD MOD bits, for EIO 7-20
CMSEG (discontinued term; see CSSEG)
Code segment 4-3
Code space 4-1
Code space (CS) bit 4-27
Cold load 8-1
Cold load, bus 8-5
Cold load, disc 8-1
Condition code (CC) 3-12, 4-28
Condition Code, following EIO 7-20
Configuration and loading of system 11-4
Control panel 2-13
Cooling system 1-9
Creating a process 11-7
Creation of system process 11-3
CS bit 4-27
CSSEG table 5-7, 5-18, 5-27, 5-36
Current code segment 5-10, 5-19
Current code space 4-27
Current data segment 4-27, 5-10, 5-19
Current short address spaces

buffers and tables 5-29

memory management 5-29

system code segment 5-28

system data segment 5-28

system library segment 5-28

user code segment 5-28

user library segment 5-28
Current Short-address Segments table 5-7,
Currently mapped user code segment 5-19
Currently selected code space 4-46
Currently selected segment 4-1, 5-7
Cycle time, clock 2-11
Cycle time, microinstruction 2-5

Index-2

5-18,

5-27, 5-36

11’82507 AQ0 3/85

INDEX

Data cache (CACHE) 5-33
Data formats 3-1
bit 3-4
byte 3-4
doubleword 3-6
quadrupleword 3-7
word 3-3
Data segment 4-8
Data Space (DS) bit 4-27
Design goals 1-1
Destination Control Table (DCT) 11-20
Device status, following EIO 7-20
Diagnostic Data Transceiver (DDT) 2-13
Direct addressing
code 4-4
data 4-14
Dirty (D) bit 5-20
Dirty page 5-38
Disable port bits 7-27
Disc cold load 8-1
Displacement
data reference 4-11
P-relative 4-4
Doubleword addressing 3-6
DS bit 4-27
Dual-port controller 7-25

Effective memory address 4-6
EIO instruction 7-19
ENV format in stack marker 4-39
Environment Register (ENV) 4-23
Error correction bits 1-10, 2-7
EXIT instruction 4-40
Extended address 5-9
Extended address cache 5-23
Extended address format 5-9
Extended address space 5-10
Extended address translation,
NonStop II processor 5-24
Extended data segment 5-10
Extended data segment, allocation of 10-4
Extended floating point number 3-11
External Entry Point (XEP) table 4-33, 4-43
External procedure call 4-43

Fault tolerance
for data base 1-1
for processes 1-1
Fiber optic link 7-2
Fixup 11-18
Floating point number 3
Formats, data 3-1

11

4482507 A0O 3/85 Index-3

INDEX

FOX network 7-2

G-relative addressing mode 4-12
Global area, of memory stack 4-10

High-priority 1/0 7-28

I Register 4-3

I'm alive message 1-13

I/0 addressing 5-37

I/0 buffer 7-15

I/0 channel addressing 7-15
I/0 channel interrupts 7-27
I/0 Control (IOC) table 2-9, 5-38, 5-44, 7-15
I/0 controller ownership 7-26
I1/0 subchannel 7-15

ITO instruction 7-21

Indexed addressing

code 4-6

data 4-17
Indirect addressing

code 4-6

data 4-15

Input-output channel 2-7, 7-15

Input-output process 1-21

Input-output sequence 7-22

Input-output, high-priority 7-28

INQ buffer 2-11, 7-10

Instruction categories
16-bit arithmetic (top of Reg. stack) 9-2
16-bit signed arithmetic (stack element) 9-7
32-bit signed arithmetic 9-4
bit deposit and shift 9-23
boolean operations S-20
branching 9-40
bus communication 9-55
byte test 9-26
decimal arithmetic conversions 9-10
decimal arithmetic scaling and rounding 9-9
decimal arithmetic store and load 9-8
decimal integer arithmetic 9-8
extended floating point arithmetic 9-13
floating point arithmetic 9-12
floating point conversions 9-14
floating point functionals 9-18
input-output 9-56
interrupt system 9-54
load and store via address on reg. stack 9-34
memory to or from register stack 9-26
miscellaneous 9-58
moves, compares, scans, checksum 9-43
operating system functions 9-59

Index-4

//'j 82507 AQ0O0 3/85

program register control
register stack manipulation
routine calls and returns

9-50
9-52

Instruction processing unit (IPU)
Instructions

ADAR
ADDI
ADDS
ADM
ADRA
ADXI
ALS
ANG
ANLI
ANRI
ANS
ANX
ARS
ASPT
BANZ
BAZ
BCLD
BEQL
BF1I
BGEQ
BGTR
BIC
BIKE
BLEQ
BLSS
BNDW
BNEQ
BNOC
BNOV
BOX
BPT
BSUB
BUN
CAQ
CAQV
CCE
CCG
CCL
CDE
CDF
CDFR
CDG
CDI
CDQ
CDX
CED
CEDR

(00016-)
(104---)
(002---)
(-74---)
(00014-)
(104---)
(0302--)
(000044)
(007---)
(006---)
(000034)
(000046)
(0303--)
(000470)
(-154--)
(-144--)
(000452)
(-12---)
(000030)
(-13---)
(-11---)
(-100--)
(000464)
(-16---)
(-14---)
(000450)
(-15---)
(-17---)
(-164--)
(-1-4--)
(000451)
(-174--)
(-104--)
(000262)
(000261)
(000016)
(000017)
(000015)
(000334)
(000306)
(000326)
(000366)
(000307)
(000265)
(000356)
(000314)
(000315)

/I‘| 82507 A00 3/85

9-19

2-4

INDEX

Index-5

INDEX

CEF (000276) 9-14
CEFR (000277) 9-14
CEI (000337) 9-15
CEIR (000316) 9-15
CEQ (000322) 9-16
CEQR (000323) 9-16
CFD (000312) 9-14
CFDR (000313) 9-15
CFE (000325) 9-16
CFI (000311) 9-14
CFIR (000310) 9-14
CFQ (000320) 9-16
CFQR (000321) 9-16
CID (000327) 9-6

CIE (000332) 9-17
CIF (000331) 9-16
CIQ (000266) 9-11
CLQ (000267) 9-11
CMBX (000422) 9-49
CMPI (001---) 9-4

CMRW (000432) 9-60
COMB (1262--) 9-47
COMW (0262--) 9-46
CQA (000260) 9-10
CQD (000247) 9-10
CQE (000336) 9-17
CQER (000335) 9-17
CQF (000324) 9-17
CQFR (000330) 9-17
CQI (000264) 9-10
CQL (000246) 9-10
CRAX (000423) 9-60
DADD (000220) 9-4

DALS (1302--) 9-24
DARS (1303--) 9-26
DCMP (000225) 9-6
DDIV (000223) 9-6
DDTX (000456) 9-6
DDUP (000006) 9-1
DFG (000367) 9-38
DFS (000357) 9-37
DFX (000416) 9-39
DISP (000073) 9-55
DLEN (000070) 9-59
DLLS (1300--) 9-23
DLRS (1301--) 9-24
DLTE (000054) 9-60
DMPY (000222) 9-5
DNEG (000224) 9-6
DOFS (000057) 9-5
DPCL (000032) 9-5
DPF (000014) 9-2

Index-6 4482507 A00 3/85

DSUB
DTL

DTST
DXCH
DXIT
EADD
ECMP
EDIV
EIO

EMPY
ENEG
ESUB
EXCH
EXIT
FADD
FCMP
FDIV
FMPY
FNEG
FRST
FSUB
FTL

HALT
HIIO
IADD
ICMP
IDIV
IDX1
IDX?2
IDX3
IDXD
IDXP
I1I0

IMPY
INEG
INSR
ISUB
IXIT
LADD
LADI
LADR
LAND
LBA

LBAS
LBP

LBX

LBXX
LCKX
LCMP
LDA

LDAS
LDB

(000221)
(000207)
(000031)
(000005)
(000072)
(000300)
(000305)
(000303)
(000060)
(000302)
(000304)
(000301)
(000004)
(125---)
(000270)
(000275)
(000273)
(000272)
(000274)
(000405)
(000271)
(000206)
(000074)
(000062)
(000210)
(000215)
(000213)
(000344)
(000345)
(000346)
(000317)
(000347)
(000061)
(000212)
(000214)
(000055)
(000211)
(000071)
(000200)
(003---)
(-7----)
(000010)
(000364)
(000354)
(-2-4--)
(000406)
(0256~-,
(000430)
(000205)
(000362)
(000352)
(-5----)

I/'| 82507 A00 3/85

[VoRVe RVe RV Vo RVs RVoRVe Ve Ve Ve Ve Vo Ve Ve BVo Ve JVs s RN RV o Vo)

0266--)

WO W WOWW

NWEHRNOANOATWWOARRFRREPERPEP WP

(98]
NO O

w
~

w N
[eeNep}

[R |

o ~ 00 0 O

[$)]

= O
o

wwWww
oo

9-34

INDEX

Index-7

INDEX

LDD
LDDX
LDI
LDIV
LDLI
LDRA
LDX
LDX1I
LIOC
LLS
LMPY
LNEG
LOAD
LOR
LQAS
LQX
LRS
LSUB
LWA
LWAS
LWP
LWUC
LWX
LWXX
MAPS
MBXR
MBXX
MNDX
MNGG
MOND
MOVB
MOVW
MRL
MVBX
MXFF
MXON
NOP
NOT
NSAR
NSTO
ONED
ORG
ORLI
ORRI
ORS
ORX
PCAL
POP
PSEM
PUSH
QADD
QCMP

Index-8

(-6----)
(000412)
(100---)
(000203)
(005---)
(00013-)
(-3----)
(10----)
(000457)
(0300--)
(000202)
(000204)
(-40---)
(000011)
(000445)
(000414)
(0301--)
(000201)
(000360)
(000350)
(-2----)
(000342)
(000410)
(0254--,
(000042)
(000420)
(000421)
(000227)
(000226)
(000001)
(126---)
(026---)
(000075)
(000417)
(000041)
(000040)
(000000)
(000013)
(00012-)
(-34---)
(000003)
(000045)
(004---)
(004---)
(000035)
(000047)
(027---)
(124nrc)
(000076)
(024nrc)
(000240)
(000245)

9-30
9-38
9-20
9-3

9-20
9-19
9-29
9-20
9-58
9-23
9-3

9-3

9-29
9-20
9-39
9-39
9-23
9-3

9-35
9-35
9-26
9-35
9-38

0264--)

9-60
9-49
9-49
9-48
9-43
9-6

9-46
9-46
9-60
9-49
9-59
9-59
9-58
9-21
9-19
9-29
9-7

9-35
9-22
9-21
9-34
9-35
9-52
9-32
9-59
9-31
9-8

9-9

9-32

/{’82507 A0O0 3/85

QDIV
QDWN
QLD
QMPY
QNEG
QRND
QST
QSUB
QUP
RCHN
RCLK
RCPU
RDE
RDP
RIBA
RIR
RMAP
RPT
RPV
RSMT
RSPT
RSUB
RSW
RUS
RWCS
RXBL
SBA
SBAR
SBAS
SBRA
SBU
SBW
SBX
SBXX
SCMP
SCPV
scs
SDA
SDAS
SDDX
SEND
SETE
SETL
SETP
SETS
SFRZ
SI0C
SMAP
SMBP
SNDQ
SPT
SQAS

(000243)
(00025-)
(00023-)
(000242)
(000244)
(000263)
(00023-)
(000241)
(00025-)
(000447)
(000050)
(000051)
(000024)
(000025)
(000440)
(000063)
(000066)
(000442)
(000216)
(000436)
(000424)
(025---)
(000026)
(000461)
(000402)
(000426)
(000365)
(00017-)
(000355)
(00015-)
(1266--)
(1264--)
(000407)
(0257--,
(000454)
(000463)
(000444)
(000363)
(000353)
(000413)
(000065)
(000022)
(000020)
(000023)
(000021)
(000053)
(000460)
(000067)
(000404)
(000052)
(000443)
(000446)

0'1 82507 A00 3/85

11
o

LO\O\O\D\D\O\P\D\D\O\OKD
OOV, OWOEF WO
o

9-37

0267--)

9-60
9-39
9-36
9-36
9-38
9-55
9-51
9-50
9-51
9-50
9-59
9-58
9-60
9-60
9-59
9-60
9-39

9-34

INDEX

Index-9

INDEX

SQX (000415) 9-39

SRST (000455) 9-60

SSW (000027) 9-56

STAR (00011-) 9-19

STB (-54---) 9-30

STD (-64---) 9-30

STOR (-44---) 9-29

STRP (00010-) 9-51

SVMP (000441) 9-60

SWA (000361) 9-36

SWX (000411) 9-38

SWXX (0255--, 0265--) 9-32

SXBL (000427) 9-60

TOTQ (000056) 9-55

TPEF (000453) 9-60

TRCE (000217) 9-60

ULKX (000431) 9-60

UMPS (000043) 9-60

VSEM (000077) 9-59

VWCS (000401) 9-60

WSMT (000437) 9-60

WSPT (000425) 9-60

WWCS (000400) 9-59

XCAL (127---) 9-52

XCTR (000033) 9-59

XMSK (000064) 9-54

XOR (000012) 9-20

XSMG (000343) 9-50

XSMX (000333) 9-50

ZERD (000002) 9-6
Interprocessor buses 2-9, 7-1
Interrupt handler procedure 1-24
Interrupt registers (INTA, INTB)
Interrupt sequence 6-8
Interrupt stack marker 6-7
Interrupt system 6-1
Interrupt types

arithmetic overflow 6-16

correctable memory error 6-14

dispatcher 6-15

high-priority I/0 completion

instruction breakpoint 6-16

instruction failure 6-13

interprocessor bus receive completion
memory access breakpoint

OSP I/0 completion

page fault 6-1
power fail 6-1
power on 6-15

special channel error
stack overflow 6-15
standard I/0 completion

Index~-10

3
4

6-13
6-13

6-12

6-15

6-2

6-14

6-14

82507 A00 3/85

time list 6-15
uncorrectable memory error 6-12
XRAY sampler 6-16
Interrupt, preemptive 6-4
IOC cache 7-18
IOC table 2-9, 5-38, 5-44, 7-15
IPU (instruction processing unit) 2-4
IXIT instruction 6-10

K bit 4-28
Kernel 1-22

L Register 4-10

L-minus-relative addressing mode 4-13
L-plus-relative addressing mode 4-13
Library procedures, callable 1-15
Loadable Control Store (LCS) 2-13
Local area, of procedure data 4-50
Local data, of procedure 2-16, 4-10
Logical address 2-6

Logical address format, 16-bit 5-8
Logical memory 2-6, 5-5

LS bit 4-26

Map entry cache 5-24
Map entry format 5-19
Map registers 5-15
Mapping 2-7, 5-15
MAPPOOL 5-23, 5-37
Maps
extended address cache 5-18
I1/0 buffers and Segment Page Tables
special-purpose area 5-17
system code 5-17
system data 5-16
system library 5-17
user code 5-17
user data 5-15
user library 5-17
Mask register 6-2
Memory
board 2-6
logical 2-6
physical 2-
size 2-6, 5
virtual 5-3
Memory Control Unit (MCU) 2-13
Memory errors 5-42
Memory manager process 1-18
Memory stack 2-16
Memory stack operation 4-46
Microinstruction length 2-5

/I" 82507 A0Q 3/85

5-17

INDEX

Index-11

INDEX

Monitor process 1-19
Mutual exclusion 1-26

NEWPROCESS procedure 11-18
Nonprivileged mode 2-5
Nowait depth parameter 11-26
Number representations
byte 3-9
doubleword 3-9
extended floating point 3-11
floating point 3-11
quadrupleword 3-10
single word 3-8

Operating system
components 1-14
distribution of system processes 1-17
overview 1-11
Operations and Service Processor (OSP) 2-14
Operator process 1-20
OSIMAGE file 10-6
ouTQ buffer 7-5, 7-10
Overflow (V) bit 4-28
Overflow indicator 3-12
Ownership error bit 7-27
Ownership of I/0 controller 7-26

P Register 4-3
Packet timeout 7-6
Packet, bus 2-9, 7-10
Page 5-1
Page fault 5-38
Page Table Cache (PCACHE) 5-30
Page Table. See Segment Page Table (SPT)
Parameter access 4-54
Parameter passing, in procedure call 4-52
PCACHE 5-30
PCACHETAG 5-30
PHYPAGE table 5-36
PHYSEG table 5-36
Physical address 2-6, 5-1
Physical address format 5-
Physical memory 2-6, 5-1
Physical page 5-1
Physical page Page (PHYPAGE) table 5-36
Physical page Segment (PHYSEG) table 5-36
PID identifier 11-20
Port disable bits 7-27
Power distribution

NonStop II processor 1-5

NonStop TXP processor 1-7
Power failure recovery 1-8

2

Index-12) 82507 A0O 3/85

Primary process 2-1

PRIV bit 4-26

Privileged mode 2-5

Privileged mode (PRIV) bit 4-26
Procedure 2-15, 4-32

Procedure call 4-33, 4-46

Procedure Call (PCAL) instruction 4-37

Procedure calls, nested 4-57

Procedure Entry Point (PEP) table 4-33

Process
backup 2-1
input-output 1-21
memory manager 1-18
monitor 1-19
operator 1-20
primary 2-1
Process creation 11-7
Process environment 11-1
Process File Segment 10-4, 10-9
Process life cycle 11-16
Process pair 11-20
Processes, requester-server 11-23
Processor Maintenance Interface (PMI)

Quadrupleword addressing 3-7

Receive depth parameter 11-27
Receiver module 2-9

Reference (R) bit 5-20

Reference parameter 4-52
Register stack 2-18, 4-21
Register stack pointer (RP) 4-22
Relative extended address 5-9
Relative segment 5-10
Replacement of modules, on-line 1-9
Requester-server processes 11-23
Returning a value to caller 4-54
RP field, of ENV Register 4-31

S Register 4-10

S-minus-relative addressing mode 4-13,

Segment 5-3

Segment allocation 5-3
Segment Page Table (SPT) 5-21
Segment table 5-21

Segment, absolute, allocation of 10-1

Semaphore 1-25

SEND instruction 2-9, 7-5
Sender module 2-9

SETE instruction 4-31

Short address 2-6

Short address space 2-6, 5-5

I{|82507 AQ0 3/85

4-62

INDEX

Index-13

INDEX

Short Segment Table (SST) 5-7, 5-27, 5-36

SIT (System image tape) 11-3
Space ID 10-6
Space ID index 4-1, 4-39
Space, extended address 5-10
Spaces, address 2-6, 5-5
Stack

memory 2-16

register 2-18
Stack marker 4-37
Stack marker chain 4-57
Stack marker, interrupt 6-7
Subchannel, 1/0 7-15
Sublocal area, of procedure data 4-10
Subprocedure 4-32, 4-58
Swap file 10-1
Sync depth parameter 11-26
Sync ID 11-27
SYSGEN program 11-3
SYSnn subvolume 11-5
System code space 5-7
System configuration and loading 11-4
System data segment 1-29, 5-10, 5-19
System Entry-Point table 11-18
System global (SG) addressing 4-62
System image tape (SIT) 11-3
System Interrupt Vector (SIV) 5-42, 6-4
System library 5-7
System process creation 11-3
System subvolume 1-11

T bit 4-27

Top of memory stack 4-33, 4-51
Top of register stack 4-23
Top-of-stack area 4-10

Trap enable (T) bit 4-27

User code segment 5-10

User code space (UC) 4-1, 5-7

User library space (UL) 4-1, 5-7
User-callable library procedures 1-15
USESEGMENT procedure 5-12

V bit 4-28

Value parameter 4-52
Virtual memory 10-1, 5-3
Word 3-3

XCAL instruction 4-43
XEP (External Entry Point) table 4-33,

Index-14

4-43

I{' 82507 A00 3/85

READER COMMENT CARD

Tandem welcomes your comments on the quality and usefulness of its
software documentation. Does this manual serve your needs? If not, how
could we improve it? Your comments will be forwarded to the writer for review
and action, as appropriate.

If your answer to any of the questions below is “no,” please supply detailed
information, including page numbers, under Comments. Use additional
sheets if necessary.

» Is this manual technically accurate? Yes [No [J

» Isinformation missing? Yes [No J

» Are the organization and content clear? Yes [No O

» Are the format and packaging convenient? Yes [No [

Comments

Name Date

Company

Address

City/State Zip

System Description Manual
NonStop™ Systems

82507 A0O

»

| || || | NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES
S A

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 482 CUPERTINO, CA, US.A.
e
POSTAGE WILL BE PAID BY ADDRESSEE

Tandem Computers Incorporated

Attn: Manager—Software Publications
Location 01, Department 6350

19333 Vallco Parkway

Cupertino CA 95014-9990

TAPE TAPE

Tandem Computers Incorporated
19333 Vallco Parkway
Cupertino, CA 95014-2599

