
Non$top™ Systems

System Description Manual

Operating System Library

82507

Nonstop™ Systems

System Description Manual

Abstract
This manual provides architectural descriptions of the Tandem Nonstop IT™
and Nonstop TXP™ processor hardware and the GUARDIAN™ operating
system.

Product Version
Nonstop n and Nonstop TXP Processors
GUARDIAN BOO operating system

Operating System Version
GUARDIAN BOO (Nonstop Systems)

Part No. 82507 AOO

March 1985

Tandem Computers Incorporated
19333 Val lco Parkway
Cupertino, CA 95014-2599

--------·---------------·----------------·----------------------·---- --· NOTICE

Effective with the BOO/E08 software release, Tandem introduced a more formal nomenclature for its software
and systems.

The term "Nonstop 1+™ system" refers to the combination of Nonstop 1+ processors with all software that
runs on them.

The term "Nonstop™ systems" refers to the combination of Nonstop II™ processors, Nonstop TXP™ processors,
or a mixturn of the two, with all software that runs on them.

Some software manuals pertain to the Nonstop 1+ system only, others pertain to the Nonstop systems only,
and still others pertain both to the Non.Stop 1+ system and to the Nonstop systems.

The cover and title page of each manual clearly indicate the system (or systems) to which the contents of the
manual pertain.

DOCUMENT HISTORY

Operating
Part System

Edition Number Version Date

1st Edition 82077 AOO GUARDIAN AOO April 1981
2nd Edition 82077 BOO GUARDIAN A03 April 1982
3rd Edition 82077 coo GUARDIAN A04 October 1982
4th Edition 82077 DOO GUARDIAN A06 December 1983
5th Edition 82507 AOO GUARDIAN BOO March 1985

New editions incorporate all updates issued since the previous
edition. Update packages, which are issued between editions,
contain additional and replacement pages that you should merge
into the most recent edition of the manual.

ThE! part number of this manual changes with this fifth edition.
This change was made to accommodate two current versions of the
manual while the BOO software is in limited release.

Copyright © 1985 by Tandem Computers Incorporated.
Printed in U.S.A.

All rights reserved. No part of this document ~ay be reproduced
in any form, including photocopying or translatiQn to another
language, without the prior written consent of Tandem Computers
Incorporated.

The following are trademarks or service marks of Tandem Computers
Incorporated:

AXCESS BINDER CROSS REF DDL
DYNAMITE EDIT ENABLE ENCOMPASS
ENFORM ENSCRIBE ENTRY ENTRY520
EXCHANGE EXPAND FOX GUARDIAN
Nonstop Nonstop l+ Nonstop I I Nonstop TXP
PC FORMAT PERUSE SNAX Tandem
TGAL THL TIL TMF
T--TEXT XRAY XREF

INFOSAT is a trademark in which both Tandem and American
Satellite have rights.

DYNABUS
ENCORE
ENVOY
INSPECT
PATHWAY
TAL
TRANSFER

HYPERchannel is a trademark of Network Systems Corporation.

IBM is a registered trademark of International Business Machines
Corporation.

NEW AND CHANGED INFORMATION

This manual is the fifth edition of the System Description Manual
for Nonstop systems. It includes the following changes to the
fourth edition:

• Sections 1 and 2 have been revised and reorganized to improve
the system introduction.

• Sections 4 and 5 have been revised to reflect the multisegment
address space capability provided in the BOO version of the
operating system.

• Instruction definitions in Section 9 have been expanded to
document the microcode support for the BOO operating system.

• Two new sections, 10 and 11, have been added. These provide
an introduction to the internals of the GUARDIAN operating
system.

• Minor technical and typographical errors have been corrected.

~ 82507 AOO 3/85 l 1 l

CONTENTS

PREF ACE • • • . . • • • • . • . • • . • . . . • . • . • . • • . . . • . • . • . • . . • • • . • . . • . . • • . • x i i i

SECTION 1. INTRODUCTION ...•........
Hardware System Structure

Independent Multiple Processors ..
Dual-Bus Data Paths •....•......
Dual-Port Device Controllers
Dual-Ported and Mirrored Discs ..
Multiple Power Sources.
Power-Failure Recovery ..
Other Reliability Features ..

Operating System Overview •..••
Main Operating System Components.

User-Callable Library Procedures •.
System Processes •••••.••
Kernel ••••••.•••••••..••
System Data Structures ..

SECTION 2. HARDWARE PRINCIPLES OF
Fundamental Operations •.....•..
Processor Module Organization ..

Instruction Processing Unit ••
Memory ••••••••.•••.•••.....••
Input/Output Channel •.•••.•.•
Interprocessor Bus Interface.
Other Processor Components ..••.••••

Operations and Service Processor.
How the Hardware Executes Programs.

Code and Data Separation ..
Procedures ••••.
Memory Stack .•.•
Register Stack ••

~ 82507 AOO 3/85

1-1
1-1
1-2
1-2
1-4
1-4
1-4
1-8
1-9

1-11
1-14
1-15
1-16
1-22
1-29

2-1
2-1
2-4
2-4
2-6
2-7
2-9

2-11
2-14
2-15
2-15
2-15
2-16
2-18

CONTENTS

SE~CTION 3. DATA FORMATS AND NUMBER REPRESENTATIONS ..
Data Formats.

Words ..
Bi ts .•..•••
Bytes •••...
Doublewords ••
Quadruplewords.

Number Representations •.
Single Word ••
Doubleword ••
Byte .•••.•..•
Quadrupleword (Decimal Arithmetic Option).
Fl?ating~Point and Extended Floating-Point.
Ar1thmet1c ..•.•••.••••••....•...•..•••..•...

SBCTION 4. INSTRUCTION PROCESSING ENVIRONMENT ..
Code Space .•....•..

Addressing Code ...
Data Segment .••.••.

Data Storage and Access.
Addressing Data.

Registers •.•••......•.•
Register Stack
Environment Register.

Procedures and the Memory Stack ..
Attributes of Procedures ..
PCAL Instruction •...••....
EXIT Inst rue ti on .•.•......

Calling External Procedures.
Memory Stack Operation ••••..

Local Generation of and Access to
Parameter Passing ••••.••..••.•.••
Parameter Access •••...•......••.•
Returning a Value to the Caller.
Stack Marker Chain
Subprocedures•.

System Global Addressing.

Data •.

SECTION 5. ADDRESSING AND MEMORY ACCESS •.

Vl

Physical, Virtual, and Logical Memory.
16-Bit Addressing •••..
Extended Addressing •..............•.

Extended Addressing Instructions •.
Memory Access (Nonstop II Processor)

Maps • .••.••••••.•••.•
Map Entries and Mapping •...........
Segment Table and Segment Page Tables ..
Extended Address Cache ...•............

3-1
3-1
3-3
3-4
3-4
3-6
3-7
3-8
3-8
3-9
3-9

3-10
3-11
3-12

4-1
4-1
4-4
4-8
4-8

4-10
4-21
4-21
4-23
4-32
4-36
4-37
4-40
4-43
4-46
4-50
4-52
4-54
4-54
4-57
4-58
4-62

5-1
5-1
5-8
5-9

5-12
5-15
5-15
5-19
5-20
5-23

4J 82507 AOO 3/85

CONTENTS

Memory Access (Nonstop TXP Processor).
Short Address Spaces •..••••.•.....•.
Caches in the Nonstop TXP Processor •.

Memory Data Structures ••
I/O Addressing •.
Page Fault ••.••••••
Memory Errors.
System Tables ••.

SECTION 6. INTERRUPT SYSTEM.
INT and MASK Registers •••
System Interrupt Vector ..
Interrupt Stack Marker •.
Interrupt Sequence .••••.
Interrupt Types •••.•...
Reenabling Interrupts•.

SECTION 7. INTERPROCESSOR BUSES AND INPUT-OUTPUT CHANNEL.
Interprocessor Buses •.•..••.••.....•••..•••••••..•••••.

Bus Receive Table and Intercluster Bus Receive Table ..
SEND Instruction .•.•..
Bus Transfer Sequence.
OUTQ, INQ, and Packets ..
INT and MASK Registers.

Input-Output Channel.
I/0 Control Table•
EIO Instruction •...••.•.
!IO and HIIO Instructions.
Input-Output Sequence •••••
Dual-Port Controllers and Ownership.
I/0 Channel Interrupts •...•..•
High-Priority I/O ••••••

SECTION 8. COLD LOAD.
Disc Cold Load ...

Disc Cold Load (Nonstop II Processor).
Disc Cold Load (Nonstop TXP Processor)

Bus Cold Load •.•.•.•.••...•••.••.••..•••
Bus Cold Load (Nonstop II Processor) ..
Bus Cold Load (Nonstop TXP Processor).

SECTION 9. INSTRUCTION SET .•.
16-Bit Arithmetic •.•••.•..
32-Bit Signed Arithmetic .•.
16-Bit Signed Arithmetic ••.
Decimal
Decimal
Decimal
Decimal

Arithmetic Store and Load •.
Integer Arithmetic ••••••.•
Arithmetic Scaling and Rounding.
Arithmetic Conversions •......•..

~ 82507 AOO 3/85

5-27
5-27
5-29
5-36
5-37
5-38
5-42
5-42

6-1
6-2
6-4
6-7
6-8

6-12
6-16

7-1
7-1
7-3
7-5
7-6

7-10
7-13
7-15
7-15
7-19
7-21
7-22
7-25
7-27
7-28

8-1
8-1
8-2
8-3
8-5
8-5
8-6

9-1
9-2
9-4
9-7
9-8
9-8
9-9

9-10

v 11

CONTENTS

Floating-Point Arithmetic
Extended Floating-Point Arithmetic .•
Floating-Point Conversions ••....••.••••
Floating-Point Functionals ..
Register Stack Manipulation.
Boolean Operations •..••
Bit Deposit and Shift ..•....•
Byte Test ••••••.••.•..••.•••
Memory to/from Register Stack .•.
Load and Store via Address on Register Stack ••
Branching •.••.•••••••.•..•..•...•••.....•••.••
Moves, Compares, Scans, and Checksum Computations.
Program Register Control.. ...•. . .•.•.
Routine Calls and Returns ..•....•
Interrupt System •••.
Bus Communication ..
Input-Output ••..•...
Miscellaneous •....••..•..
Operating System Functions ••.

SECTION 10. GUARDIAN MODULES AND DATA STRUCTURES.

9-12
9-13
9-14
9-18
9-19
9-20
9-23
9-26
9-26
9-34
9-40
9-43
9-50
9-52
9-54
9-55
9-56
9-58
9-59

Segmented Organization of GUARDIAN Operating System •.
10-1
10-1

SECTION 11. THE PROCESS ENVIRONMENT ..
Process Definition•....
System Process Creation
Application Process Creation ••.........
Multiple Application Processes.
Process Life Cycle .••.••••.••.••
Process Pairs •.•..••..••••.•...
Requester-Server Relationships .. ~

APPENDIX A. HARDWARE INSTRUCTION LISTS.

APPENDIX B. INSTRUCTION SET DEFINITION.

APPENDIX C. HIGH-LEVEL COMPARISON

viii

11-1
11-1
11-3
11-7

11-15
11-16
11-20
11-23

A-1

B-1

C-1

Af' 82507 AOO 3/85

1-L
1-2.
1-3.
1-4.
1-5.
1-6.
1-7.
1-8.
1-9.
1-10.
1-11.
1-12.
1-13.
1-14.
1-15.
1-16.
1-17.
1-18.

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.

3-1.
3-2.
3-3.
3-4.
3-5.

4-1.
4-2.
4-3.
4-4.
4-5.
4-6.
4-7.
4-8.

4-9.
4-10.

FIGURES

CONTENTS
Figures

Elements of Hardware System Structure .••••.••.••...•... 1-3
Power Distribution for Nonstop II Processors •.......... 1-5
Power Distribution for Nonstop TXP Processors .•...•.... 1-7
Tandem Computer System Failure-Tolerant Environment •.. 1-11
Interprocessor Dependency .•••.•••..••..••••••.••.•••.• 1-12
Failure-Detect ion Messages............................ 1-13
Logical Operating System Components •••••••...•••..••.. 1-15
Application Process Access to System Services•.•.. 1-16
Distribution of System Processes ...••..•.........•.... 1-17
Memory Manager Process •...•.•..•••••••..•...•.••.•.•.. 1-18
Monitor Process •.•.•...•.•..•..•••.••..•••.•••........ 1-19
Operator Process • . . . • • • . • . • • . • . • . . . • • . . 1- 2 0
Input-Output Process ••..••..•...•.••..••••.•••.•..•... 1-21
Interrupt Handling ..•.•..••.••....•...••••.•..••..•... 1-23
Semaphore Use .•••.•.•..•..•..•..•.••••••••..•••...•.•. 1-25
Message Transfer Between CPUs•.... 1-27
Message Transfer Within a CPU c••········ 1-28
System Data Segment•.•....••.••..•.....• 1-29

Fault-Tolerant Application•............... 2-2
Application Takeover by Backup•..... 2-3
Input-Output Channel•..•••................. 2-8
Interprocessor Bus Interface•.•...••.•.•......... 2-10
Block Diagram of Processor Hardware .•.•.•...•....••... 2-12
Code and Data Separation ...••...•.••••••...••.....•.•• 2-15
Memory Stack Operation •••...••••••••••••••.•••••••••.• 2-17
Register Stack Operation•..•••..•••.••..•...... 2-18

Data Formats •••...•...•..•..•....••.••••••..•.••.•.••.. 3-2
Word Addressing ...•............•..•••.••••..•.••..••••• 3-3
Byte Addressing••..••....•..... 3-5
Doubleword Addressing. • 3-6
Quadrupleword Addressing•....•.......... 3-7

Elements of the Instruction Processing Environment •..• 4-2
Code Segment Addressing Range•......•........... 4-3
P Register and I Register•...••....•.•..••.•••... 4-4
Displacement Field for Code Segment Instructions ...•.. 4-5
Addressing in a Code Segment ...•...•.•••••••....•..... 4-7
Data Segment Addressing Range ..••••.•..••..••....•.•.. 4-8
L Register and S Register•.......•••...•.... 4-9
Mode and Displacement Field for Memory Reference

Instructions ••.•.............•.••..••...•.•....... 4-11
Memory Reference Instruction Addressing Modes 4-12
Direct Addressing in the Data Segment ..••.•.•........ 4-14

~ 82507 AOO 3/85 lX

CONTENTS
Figures

4--11.
4-12.
4--13.
4--14.
4-15.
4--16.
4--17.
4-18.
4-19.
4-20.
4-21.
4--22.
4--23.
4--24.
4-25.
4-26.
4--27a.
4--27b.
4--28.
4--29.
4--30.
4--31.
4-32.
4-33.
4-34.
4--35.
4--36.

5--1.
5--2.
5--3.
5-4.
5--5.
5--6.
5--7.
5--8.
5-9.
5-10.
5-11.
5--12.
5--13.
5--14.
5--15.
5-16.
5--1 7.
5--18.
5--19.
5-20a.
5--20b.
5--21.

x

Indirect Addressing in the Data Segment 4-16
Indirect Byte Addressing in the Data Segment•.• 4-17
Indexing 4 -18
Examples of Indexing•.•..•....•••.••.••.••..... 4-20
Register Stack•....•...•......•.••..•••••••••• ·4-21
Example of Register Stack Operation ..•..••..••••.•••. 4-22
Action of the Register Pointer ...••....•••..•••.....• 4-24
Naming Registers in the Register Stack .••...•....••.. 4-25
Environment Register ..•...•.•.•..••..•.••••.••••..•.• 4-26
Procedure Entry Point and External Entry Point Tables 4-34
Procedure Call and Exit ...•...•...••....•.•••.••.••.. 4-35
First Entries in Procedure Entry Point Table .•....... 4-37
Execution of PCAL Instruct ion .••.•.........•••.•..... 4-38
Space Identification in Stored Copy of ENV .•••••.•••. 4-39
Execution of EXIT Instruction•....•...•••••.•..• 4-41
System Procedure Call and Exit•....... 4-44
Land S Registers in Procedure Calls•...•..... 4-47
Land S Registers in Procedure Calls .•.....•.•.•.•... 4-48
L-Plus Addressing Mode •...•.................••••..•.• 4-50
PUSH and POP Instructions 4-52
Par am et er Pass i n g . 4 - 5 3
Parameter Access . 4 - 5 5
Value Returned Through Register Stack 4-56
Stack Marker Chain 4-59
Subprocedure Calls•.. 4-60
Example of S-Minus Addressing•.. 4-61
SG-Relative Addressing Mode•...........••..•.. 4-62

Physical Memory .••.•.•••..•...•............••..•..••.• 5-2
23-Bit Physical Address •..•..........•..•••.••••..••.• 5-2
Virtual Memory••................•..••..•..••.. 5-4
Logical Memory•.•.....•..........•.•••..••..••. 5-6
16-Bit Logical Address••••.•••.••..••.. 5-8
32-Bit Extended Address •......•..•...•..•...••••..•.•. 5-9
Relative Extended Addressing in Segments 0 through 3. 5-11
Relative Extended Addressing in Segments 4 and Up 5-13
Address Conversion for Relative Segments 4 and Up 5-14
Uses of Maps and Absolute Segments••....• 5-16
Map Entry.~•..... 5-20
Mapping ... 19 •• 5-21
Segment Table and Segment Page Tables ..••..•••.•..•.. 5-22
Extended Address Cache•.....•....••.•.••.• 5-24
Extended Address Translation Algorithm•....••.• 5-25
Layout of PCACHE .•...••..........•••...•..•••......•. 5-32
Layout of CACHE •......••.........••..•..•...••••.•.•. 5-34
Access to CACHE. • • • • . . • • • • • . • • . • 5- 3 5
I/0 Buffer Addressing••....•..•.•..• 5-39
Page Fault Interrupt Sequence••.............•... 5-40
Page Fault Interrupt Sequence•........•... 5-41
Dedicated Memory Locations in System Data 5-43

"182507 AOO 3/85

6-1.
6-2.
6-3.
6-4.
6-5.
6-6.

7-1.
7-2.
7-3.
7-4a.
7-4b.
7-5.
7-6a.
7-6b.
7-7.
7-8.
7-9.
7-10.
7-11.
7-12.
7-13.

9-1.
9-2.
9-3.
9-4.
9-5.
9-6.
9-7.
9-8.
9-9.
9-10.
9-11.
9-12.
9-13.

10-1.
10-2.
10-3.
10-4.
10-5.
10-6.

11-1.
11-2.
11-3.
11-4.
11-5.
11-6.
11-7.

CONTENTS
Figures

General Interrupt Sequence 6-1
INT and MASK Registers •.•....••.....•........•..•.•... 6-3
System Interrupt Vector••.•..•..•.•.......•••.•• 6-5
SIV Entry and Interrupt Stack Marker .••.....•...•••..• 6-6
Interrupt Sequence•..••.•.••••.....••.•...••.. 6-9
IXIT Sequence ••......•......••..•••..••.....•....•..• 6-11

Processor Module Addressing••..........•......... 7-1
Simplified Bus Transfer Sequence •..•..•.....•.•.•••••• 7-2
Formats Associated with Bus Transfers •..........•••..• 7-4
Bus Transfer Sequence (Send)•••••........•.•••..• 7-7
Bus Transfer Sequence (Receive) ..••...............•... 7-8
Incoming Data Storage ••...•.•.•••.••••..•............ 7-10
Sending and Receiving Packets ••.•..•••.•..•.•....•... 7-11
Sending and Receiving Packets •...•••..••....•........ 7-12
Bus Receive Enabling•.•...••....•...•..•. 7-14
I/0 Channel Addressing ••... , •...•..••..........•.•••.. 7-16
Simplified I/O Sequence ...••....••....•••.....•..•... 7-17
Formats Associated with Input-Output•......•.. 7-18
Input-Output Sequence•................. 7-23
Dual-Port Addressing 7-25
I/0 Controller Ownership•..............••.. 7-26

Immediate Operand 9-5
Boolean Operations 9-21
Boolean Instructions with Immediate Operands .•....•.. 9-22
Deposit Field Example ••...............•...........•.. 9-24
Arithmetic Versus Logical Shifts •.••....•..•.....•... 9-25
LWP Instruction Addressing ••.•..•.•.•••....••.•.••••• 9-27
LBP Instruct ion Addressing •..•••••••••.••..•..••••••. 9-28
Memory Reference Instruction Format •••..•..•....••... 9-29
Doubleword Addressing .••••••••..••••..•.•..•.•...•••. 9-31
PUSH and POP Instructions •.•.•.••.•..••.•..•••••••••. 9-33
Direct Versus Indirect Branching .•••.•...•.•....•.... 9-41
Branch Forward Indirect•............•.•... 9-44
Direction for Moves, Compares, and Scans 9-45

Locations of Major Software Structures •.•....•...•... 10-2
Access to System Data Structures •................•... 10-5
Access to System Procedures •......•.....•..•.•....•.. 10-7
Short-Address Access to Process Code and Data ...•.•.. 10-8
Extended-Address Access to Code Segments•...• 10-10
Access to Process File Segment ..••••.•.....•..••.•.. 10-11

Elements of a Process .•.••.•.....••••••....•.•....... 11-2
Process Creation, Execution, and Termination .••...... 11-3
System Configuration and Loading (Part 1) 11-4
System Configuration and Loading (Part 2) ..•.......•. 11-6
Logging On to GUARDIAN Operating System 11-7
Creating the Editor Process•.................. 11-8
Producing an Edit Text File•................. 11-8

~ 82507 AOO 3/85 Xl

CONTENTS
Tables

11-8.
11-9.
11.-10.
11-11.
11.-12.
11.-13.
11.-14.
11.-15.
11.-16.
11.-17.
11.-18.
11.-19.
11-20.
11-21.
11-22.
11-23.
11-24.
11-25.
11-26.
11-27.

3-· 1.
6-·1.
A-·1.
A-2.
A-·3.
A-·4.
A-·5.
A-·6.
A-·7.
A-·8.
A-·9.
B-·1.
B-·2.
C-1.

Xll

Terminating the Editor Process•...•..•........... 11-9
Requesting Access to the TAL Compiler•..... 11-9
Creating the TAL Cornpi ler Process•... 11-10
Compiling the Source Program into Object Code ...•... 11-11
Terminating the TAL Process•........... 11-11
Requesting Application Program Execution 11-12
Creating the Application Process•............. 11-13
Terminating the Application Process 11-14
Returning Control to the Command Interpreter 11-14
Command Interpreter File Assignments 11-15
Process Life Cycle 11-17
Named Process Pair Versus Named Device •............. 11-21
Process Pair Backup ..••.•........•.•.....••..•...... 11-22
Primary Process Failure•......•.•.•.....•... 11-23
Requester-Server Pair .•........•........•........... 11-24
Multiple Requester-Server Relationships .•....•.•.... 11-29
Pass-Through Arrangement•.....•.... 11-29
Communication with System Processes 11-30
Communication with Application Processes••... 11-31
Application with Multiple Requesters and Servers 11-32

TABLES

Floating-Point Error Terminations 3-13
Interrupt Condit ions 6-2
Alphabetical List of Instructions A-2
Categorized List of Instructions A-9
Binary Coding, Memory Reference Instructions A-18
Binary Coding, Immediate Instructions A-19
Binary Coding, Move/Shift/Call/Extended Instructions. A-20
Binary Coding, Branch Instructions A-21
Binary Coding, Stack Instructions A-22
Binary Coding, Decimal Arithmetic Instructions A-24
Binary Coding, Floating-Point Instructions A-25
Def in i t ions of S ymbo 1 s B- 1
Instruction Definition B-'3
Processor Comparison ,, C-1

~ 82507 AOO 3/85

PREFACE

This manual provides a conceptual and functional description of
Tandem Nonstop systems, which can be composed of Nonstop II
and/or Nonstop TXP processors, and the GUARDIAN operating
system. The manual content is presented as follows:

• Section 1 provides an overview of the Tandem Nonstop system,
introducing both the hardware architecture and the GUARDIAN
operating system.

• Section 2 describes the principles on which the hardware and
firmware operate and shows how these principles support the
Nonstop system architecture.

• Section 3 describes the data formats and the number
representation used for the Nonstop II and Nonstop TXP
processors.

• Section 4 describes program execution from the hardware
standpoint.

• Section 5 describes addressing and memory access from a
hardware viewpoint for the Nonstop II and Nonstop TXP
processors.

• Section 6 describes the hardware aspect of the Interrupt
System.

• Section 7 describes the interprocessor buses and the
input-output channel.

• Section 8 describes cold load (I/0 cold load and bus cold
load) for the Nonstop II and Nonstop TXP processors.

• Section 9 defines the instruction set for Nonstop II and
Nonstop TXP processors in text form with illustrations.

~ 82507 AOO 3/85 xiii

PHEFACE

• Section 10 describes the primary components and structures of
the GUARDIAN operating system.

• Section 11 describes the environment and fundamental
attributes of processes.

• Appendixes A and B consist of reference tables pertaining to
the instruction set.

• Appendix C provides a high-level comparison of three different
processors manufactured by Tandem Computers: the Nonstop 1+
processor, the Nonstop II processor, and the Nonstop TXP
processor.

• An index is provided to assist the reader in locating specific
topics in this manual.

This manual was written for potential and present Tandem
customers seeking a functional description of the system hardware
and the operating system, for Tandem field analysts and service
engineers, and for students in various courses provided by
Tandem.

Before using this manual, you should read Introduction to Tandem
Computer Systems for a more general overview. The introductory
manual explains the basic concepts and purposes behind the system
architecture described in this manual. Ideally, you should also
have some working experience with Tandem systems.

xiv '1J B2507 AOO 3/85

SECTION 1

INTRODUCTION

HARDWARE SYSTEM STRUCTURE

The Tandem Nonstop computer system is designed to provide
continuous operation, incorporating fault-tolerant features in
all levels of the system structure. Significantly, the hardware
and firmware components are designed to allow both continued
execution of processes and continued access to data bases when a
system component fails. These design goals are illustrated in
diagram 1 of Figure 1-1.

Fault tolerance for system and user processes is accomplished by
executing a secondary (or "backup") process in another processor,
programmed to require only periodic "checkpoint messages" to keep
up to date on the current state of the primary process. Upon any
failure of the processor that is executing the primary process,
the backup process can resume execution of the work from the
point of the last valid checkpoint. The backup process, instead
of the primary process, will then be accessing the data base on
disc. As indicated in the diagram (1), dual data paths between
processors assure communication of the checkpoint messages.

Fault tolerance for the user's data base is accomplished
primarily by the use of dual-ported controllers and, optionally,
by maintaining duplicate data on two separate disc volumes
("mirrored" volumes). For mirrored volumes, all data written out
to the user's files is automatically written into both disc
volumes. Thus, whenever data is read from the files, either
volume can be accessed, since they contain identical information.
As in the case of interprocessor communication, two data paths to
the disc volumes are provided.

The various hardware features that accomplish these design goals
are considered under the following subheadings--illustrated by
the remaining diagrams in Figures 1-1, 1-2, and 1-3.

~ 82507 AOO 3/85 1-1

INTRODUCTION
Hardware System Structure

It should be noted in considering the following information that,
although the mechanics for switching between multiple modules and
data paths reside in the hardware, the control of such actions is
a function of the GUARDIAN operating system.

Independent Multiple Processors

The Tandem Nonstop system consists of 2 to 16 processor modules.
A processor module is sometimes referred to as a central
processing unit, or CPU for convenience, although in a Tandem
system, no one processor is more "central" than any other. Each
processor (CPU) contains the functions that normally comprise a
complete computer system: instruction processing unit (IPU),
memory, and input-output channel. In addition, each module
contains logic for a fourth main function: the interprocessor
bus interface through which the processors communicate with each
other. Furthermore, each module is associated with its own
separate power supply. (See diagram 2 in Figure 1-1.)
Therefore, each processor module is capable of operating
independently of, and simultaneously with, all other processor
modules in the system.

This fundamental design feature means that each processor is
totally self-sufficient. An IPU failure, for example, cannot
prevent another processor from functioning, since there are no
shared elements such as memory. A failing IPU cannot contaminate
any memory data outside of its own module.

Dual-Bus Data Paths

Each processor module is connected to all other processor modules
through redundant high-speed interprocessor buses, each
controlled by its own separate bus controller. See diagram 3 in
Figure 1-1. Programs running in one processor module communicate
with programs running in other processor modules by means of
these buses. Each interprocessor bus is fully autonomous,
operating independently of (but simultaneously with) the other
bus.

The use of two buses assures that two paths exist between all
processor modules in the system. If one bus fails, all
interprocessor communication is automatically routed over the
remaining bus. The use of bus controllers that are separate and
independent of the logic circuits within the processors assures
that no failure of a processor module will cut off bus
transmission.

l·-2 ~ 82507 AOO 3/85

1. GOALS OF A NONSTOP SYSTEM

PROCESSOR 0 PROCESSOR 1

2. INDEPENDENT MULTIPLE PROCESSORS

INTERPROCESSOR BUSES

l
IPB INTERFACE

a:> IPU w ..J
:!:: a.
0 a.
a. ~ MEMORY

1/0 CHANNEL

1/0

3. DUAL-BUS DATA PATHS

BUS
CONTROLLERS

IPB INTERFACE

1
IPB INTERFACE

IPU

MEMORY

1/0 CHANNEL

1/0

XBUS

YBUS

IPB INTER FACE

a:>
w ..J
:!:: a.
0 a.
a.~

INTRODUCTION
Hardware System Structure

4. DUAL-PORT DEVICE CONTROLLERS

o~-

1/0 CHANNEL 1/0 CHANNEL

5. DUAL-PORTED/MIRRORED DISCS

D--·~----~---1

1/0 CHANNEL 1/0 CHANNEL

55001-001

Figure 1-1. Elements of Hardware System Structure

~ 82507 AOO 3/85 1-3

INTRODUCTION
Hardware System Structure

The interprocessor bus interface in each module is capable of
accepting transmissions from either bus, under control of the
operating system.

Dual-Port Device Controllers

Data is transferred between an input-output device (such as a
disc, terminal, or line printer) and a processor module by means
of an input-output channel. Each processor module has one I/O
channel that is capable of communicating with up to 256 I/O
devices. See diagram 4 in Figure 1-1.

I/O devices are interfaced to the I/O channels by dual-port
controllers. Each dual-port controller is connected to the I/O
channels of two processor modules. Therefore, each I/O device
can be controlled by either of two processor modules. However,
in operation, an I/O device is controlled exclusively by one
processor module until a failure occurs such that the processor
module can no longer communicate with the I/O device. If such a
failure occurs, the other processor module takes control of the
I/O device.

Dual-Ported and Mirrored Discs

Because discs represent the most critical class of I/O devices,
disc drives can also have dual ports. In combination with the
dual ports on the disc controller, various configurations are
possible to meet any desired degree of fault tolerance. For
example, connecting the dual ports of the controller to separate
I/O channels provides for fault tolerance of the I/O channels.
Connecting dual ports of a disc drive to separate controllers
provides for fault tolerance of the disc controllers. Diagram 5
of Figure 1-1 shows an example of a fully mirrored, fully
dual-ported configuration.

Multiple Power Sources

Power is distributed in the system in such a manner that each
dual-port controller receives power from two sources. If a
supply fails, causing a processor module to become inoperative,
the alternate power supply can assume the full loadu

1-4 "'182507 AOO 3/85

6. MULTIPLE POWER SOURCES

2A

BUS
CONTROLLER

BUS
CONTROLLER

7. POWER FAILURE RECOVERY

AC
LINE

48V
DC

BATTERY
MODULE

110 A Hl

PROCESSOR 0 SUPPLY
100A CAPACITY

72A LOAD

Cl'.:>
UJ ..J
;s:c..
0 c..
c.. ~

50A

10A

10A

10A

10A

INTRODUCTION
Hardware System Structure

1/0-0NLY
POWER
SUPPLY

10A

10A

10A

10A

PROCESSOR 1 SUPPLY
100A CAPACITY

72A LOAD

50A

Cl'.:>
UJ ..J
? c..
""C..
0 :::i
c.. rfl

100A CAPACITY
40A LOAD

SV UNINTERRUPTIBLE
IPB INTERFACE

IPU

12V UNINTERRUPTIBLE
MEMORY

1/0 CHANNEL

POWER FAIL WARNING INTERRUPT

$5001-002

Figure 1-2. Power Distribution for Nonstop II Processors

~ 82507 AOO 3/85 1-5

INTRODUCTION
Hardware System Structure

In a Nonstop II processor, the processor consumes approximately
half the power available from its supply: the remainder is
available to help power the device controllers. In some cases,
the power available from these supplies is sufficient to power
all the device controllers: in other cases, a supplementary power
supply for I/O only is necessary.

In a Nonstop TXP processor, the processor consumes most of the
power available from its supply--the CPU power supply is not
available to help power the device controllers. The device
controllers must receive their power from an I/O-only power
supply.

Diagram 6 in Figure 1-2 shows, in simplified form, the way in
which power is distributed in a system using Nonstop II
processors in order to achieve reliable power backup. The
current values shown are mostly illustrative only: device
controllers, for example, generally take much less than the 20
amperes assumed in this figure. Exact values and the adjustments
required to achieve good power distribution are evaluated by
Tandem for each particular system when the system is configured.

As shown, the two bus controllers require a total of about 4
amperes, 2 amperes each from the supplies associated with
processor 0 and processor 1. (Bus controller power is always
taken from the supplies for these particular CPUs.) The
processor modules are assumed to require 50 amperes each: this
depends on memory size and configuration. The output current
capacity of the supplies is 100 amperes each (for the 5-volt
interruptible supply, discussed later). Note that each device
controller nominally receives one-half of its requirements (10
amperes) from each of two different power supplies. (In
actuality, adjustments are made so that the CPU supply provides
somewhat less than half the needed power, and the I/O supply
provides slightly more than half.) Under the assumed conditions,
then, each processor's power supply is loaded to 72 amperes, and
the I/O-only supply is loaded to 40 amperes.

Now assume a failure in the processor 0 power supply. The
processor 0 module goes down, but none of the device controllers
or bus controllers is affected. The processor 1 power supply now
delivers the full 4 amperes needed by the bus controllers
(increasing its load to 74 amperes), and the I/O-only power
supply delivers the full 20 amperes to each of the uppermost two
device controllers (increasing its load to 60 amperes).

Likewise, if the I/O-only power supply should fail, the load on
each processor's power supply increases by 20 amperes (to 92),
still within the 100-ampere capacity. Thus, any single power
supply failure can be compensated by increased loading on the
remaining supplies. However, the failure of any two supplies
cannot always be accommodated by the remaining ones.

l·-6 Aj 82507 AOO 3/85

INTRODUCTION
Hardware System Structure

6. MULTIPLE POWER SOURCES

2A

BUS
CONTROLLER

BUS
CONTROLLER

7. POWER FAILURE RECOVERY

PROCESSOR 0 SUPPLY
100A CAPACITY

82ALOAD

a: >
w ..J s: a..
00..
a.. vi

BOA

10A

10A

10A

10A

PROCESSOR 1 SUPPLY
100A CAPACITY

82ALOAD

BOA

10A

10A

a: >
w ..J s: a..
00..
a.. vi

1/0-0NLY
POWER
SUPPLY 100A CAPACITY

______ _. 40A LOAD

1/0-0NLY
POWER
SUPPLY

10A

10A

100A CAPACITY
..._ ____ __. 40A LOAD

AC ---------1~
LINE

SV UNINTERRUPTIBLE

Figure 1-3.

~ 82507 AOO 3/85

48V
DC

BATTERY
MODULE
(10 A-H)

IPB INTERFACE

IPU

MEMORY

1/0 CHANNEL
5V INTERRUPTIBLE (100A)

POWER FAIL WARNING INTERRUPT

55001-003

Power Distribution for Nonstop TXP Processors

1-7

INTRODUCTION
Hardware System Structure

Diagram 6 in Figure 1-3 shows, in simplified form, the way in
which power is distributed in a system using Nonstop TXP
processors. The current values shown are illustrative only.

Again, the two bus controllers require a total of about 4
amperes, 2 amperes each from the supplies associated with
processor 0 and processor 1. The processor modules are assumed
to require 80 amperes each; this depends on memory size and
configuration. The output current capacity of the supplies is
100 amperes each (for the 5-volt interruptible supply, discussed
later). In this example, each device controller now receives
one-half of its requirements (10 amperes) from each of two
different I/O-only power supplies.

Now assume a failure in the processor 0 power supply. The
processor 0 module goes down, but neither the device controllers
nor the bus controllers are affected. The processor 1 power
supply now delivers the full 4 amperes needed by the bus
controllers (increasing its load to 84 amperes). Power
distribution to the device controllers remains unaffected.

Likewise, if an I/O-only power supply should fail, the load on
the remaining power supply increases by 40 amperes (to 80),
still within the 100-ampere capacity. Thus, any single power
supply failure can be compensated by increased loading on the
remaining supplies. However, the failure of any two supplies
cannot always be accommodated by the remaining ones.

Power-Failure Recovery

Diagram 7 in Figures 1-2 and 1-3 illustrates the power-failure
recovery features that are incorporated into the internal
circuits of each processor moaule. Note that memory is powered
separately from the rest of the module, with its own 5-volt and
12-volt supplies (memory for a Nonstop TXP processor does not
require 12 volts); these are termed uninterruptible supplies,
since they are maintained by battery power if an AC line failure
occurs. Battery power then allows memory to retain its contents
for 1.5 hours or more, depending on memory size and the charge
state of the battery.

The interruptible 5-volt supply powers the remainder of the
module. In order to allow the operating system to bring the CPU
to an orderly halt, the power supply issues a special signal
(power fail warning interrupt) when AC power is lost for more
than 24 milliseconds. This signal gives a minimum of 5
milliseconds warning (depending on loading of the supply) that
the 5-volt supply is going down.

l·-8 .-, 82507 AOO 3/85

INTRODUCTION
Hardware System Structure

The system automatically restarts upon restoration of power,
resuming execution of the processes that were in progress at the
time of the power failure.

Other Reliability Features

The ability of the Tandem Nonstop computer system to provide an
environment where applications can continue to run regardless of
a module failure is due primarily to its unique fault-tolerant
features, described above. In addition to those unique features,
the Nonstop system also incorporates various other reliability
features, which include the following:

• In the event of a power failure, each processor module (under
control of its operating system) saves its current operating
state in memory. When power is restored, the hardware
automatically invokes the appropriate operating system
procedures to resume all operations.

• If an uncorrectable error occurs in memory, the operating
system determines if the associated area is critical to system
operation. If it is not, the area is flagged as bad and not
used again until the memory is repaired. If the area is
critical, the operating system halts execution in its
processor.

• Critical portions of the operating system are main-memory
resident; this assures their availability in the event a
virtual memory (disc) failure occurs.

• The cooling system for the computer is designed so that if a
single failure occurs, ample cooling is still available.

• Any module in the system (i.e., processor, I/O controller,
power supply, fan, etc.) can be removed from the system and
replaced online without stopping operation of other system
modules.

• Routing, sequence, and checksum words are generated by the
transmitting processor module and checked by the receiving
processor for every packet of 13 data words transferred over
the interprocessor buses.

• A parity bit is associated with each 16-bit word transmitted
over the I/O channels.

• An interval timer is provided; the operating system uses the
timer to notify the application program in the event a data
transfer does not complete.

~ 82507 AOO 3/85 1-9

INTRODUCTION
Hardware System Structure

• Six error correction bits are generated and stored with each
16-bit word in the semiconductor memory: circuitry is provided
to correct all single-bit errors and detect all double-bit
errors.

• The addressing and count information associated with I/O
transfers is kept in the controlling processor module. This
prevents a controller from contaminating more than one
processor module because of a failure of an address or word
count register.

• The memory mapping scheme provides separate system and user
address spaces. Operating system data areas can be accessed
only by operating system programs: application programs cannot
inadvertently destroy the operating system.

• Parity checking is provided for the Nonstop II processor's
memory map registers.

• Parity checking is provided in the Nonstop TXP processor's
caches.

• Two hardware modes of processor operation are provided:
privileged and nonprivileged. Certain critical operations
(such as accessing system tables from application programs or
initiating input-output transfers) can be performed only while
in privileged mode. Typically, only the GUARDIAN operating
system runs in privileged mode: privileged operations are
performed on behalf of application programs through calls to
operating system procedures. Application programs running in
nonprivileged mode are prevented from becoming privileged.

1-10 ~ 82507 AOO 3/85

OPERATING SYSTEM OVERVIEW

INTRODUCTION
Operating System Overview

In the Tandem Nonstop computer system, master copies of the
GUARDIAN operating system software are maintained in the system
subvolume of a mirrored disc volume (Figure 1-4); each CPU uses
or executes appropriate portions of this master copy, depending
on its unique configuration. The mirrored system volume is a
pair of physically independent disc devices, usually attached to
separate controllers but accessed as a single volume and managed
by the same executing input-output program.

Critical and frequently used parts of the operating system reside
permanently in each CPU's memory. Noncritical or less frequently
used portions reside in virtual memory; they are brought into CPU
memory from disc only when needed, by way of the CPU (one of two)
that is currently controlling the system volume. The duplication
of GUARDIAN software, plus the fact that there is a dual path to

CPUO

GUARDIAN
(resident portion)

Dual-port
controller

Dual-port
controller

CPU1

GUARDIAN
(resident portion)

Dual-port
controller

CPU2

GUARDIAN
(resident portion)

S5001-004

Figure 1-4. Tandem Computer System Failure-Tolerant Environment

~ 82507 AOO 3/85 1-11

INTRODUCTION
Operating System Overview

the system volume, guarantees coninued system operation even if a
CPU, input-output channel, or disc drive fails.

Normal GUARDIAN software operation frequently requires that CPUs
in the system depend on one another (Figure 1-5). For example,
the virtual memory disc input-output done for a process in CPU 0
may actually be performed by a disc process in CPU 2.

PROCESS I

S5001--005

Figure 1-5. Interprocessor Dependency

Thus, although each CPU essentially operates independently under
control of its own operating system, all CPUs need to be able to
communicate with each other. To provide a reliable basis for
this interprocessor communication, each CPU monitors the status
of all other CPUs in the system. If a particular CPU ceases to
operate as it should, early detection of the failure and prompt
notification of any processes that back up those in the
malfunctioning CPU allow the system to continue operating. To
detect such problems, the GUARDIAN software uses messages

1-12 ._, 82507 AOO 3/85

INTRODUCTION
Operating System Overview

transferred over the interprocessor bus {Figure 1-6). In this
message scheme, every CPU in the system must receive a message
from all other CPUs {as well as itself) at least once during a
predetermined polling period of approximately one second. For
this reason, each CPU transmits messages to indicate that it is
still operating. Such messages are called "I'm alive" messages.

PROCESSOR

Cl

\l'M ALIVE}

(l'M ALIVE)

PROCESSOR
2

PROCESSOR

55001-006

Figure 1-6. Failure-Detection Messages

If a CPU does not receive any "I'm alive" messages from a
particular CPU during two consecutive polling periods, it
declares that CPU down. If a CPU does not receive its own "I'm
alive" message, it continues to operate but does not make any
attempt to take ownership of any terminals, disc drives, or other
devices. Usually, a CPU that does not respond has failed one of
the many internal consistency checks that the operating system
regularly performs. {Less likely, though also possible, is a
failure of one of the interprocessor buses.) A serious failure

~ 82507 AOO 3/85 1-13

INTRODUCTION
Operating System Overview

causes the CPU to halt, with the halt reason indicated to the
system operator. This prevents the CPU from sending "I'm alive"
messages; as a result, this CPU is soon declared down by all
other CPUs in the system.

MAIN OPERATING SYSTEM COMPONENTS

The GUARDIAN operating system contains four logically distinct
areas:

• User-callable library procedures (and associated routines)

• System processes (including associated data segments)

• Kernel

• System data structures

A conceptual view of these areas and their interrelationships
appears in Figure 1-7.

In this figure, oval symbols depict both system and user
processes. The two octagonal shapes represent portions of the
system library, which consists of user·-callable libr~
grocedures and kernel procedures. Pairs of dotted lines show
paths between the process and library elements of the diagram;
these paths illustrate the information flow within the system.
In some cases, the paths are traversed by procedure calls and
returns. In other cases, they actually carry messages to and
from processes. But in either event, they illustrate an ability
to make and satisfy requests--to pass and return information.

The natural focal points of the system, as illustrated in Figure
1-7, are the user-callable library and the kernel. Requests
generated by application processes focus on user-callable library
procedures--they form the application process's window to the
system. Communication paths between system processes, however,
focus naturally on the kernel portion of the system library.

A short discussion of these and other components appears under
the following subheadings.

l·-14 /182507 AOO 3/85

USER

GUARDIAN
OPERATING
SYSTEM

SYSTEM
PROCESSES

Figure 1-7.

INTRODUCTION
Operating System Overview

S5001-007

Logical Operating System Components

User-Callable Library Procedures

Executing application processes request operating system services
by issuing call~ to the user-callable library procedures (or
simply "callable" procedures). These procedures operate in the
data environment of the calling process. They use the process's
data area as their temporary storage space, but their
privileged-mode execution also gives them access to the system
table structures, such as those stored in the system data segment
(Figure 1-8).

User-callable library procedures, such as OPEN, READ, WRITE, and
CLOSE, are located in the system code area and so can be shared
by any and all processes that need the services they provide.

~ 82507 AOO 3/85 1-15

INTRODUCTION
Operating System Overview

USER PROCESS

DATA

PROCESS
STORAGE

PROCEDURE
TEMPORARY

STORAGE

Request for
System Services

SYSTEM LIBRARY

PROCEDURE

[

STEM DATA
SPACE

85001-008

Figure 1-8. Application Process Access to System Services

System Processes

System processes constitute a limited set of privileged processes
that come into existence at cold-load time and exist continuously
for a given configuration as long as the host CPU remains
operable. The system processes primarily consist of a memory
manager and a monitor in each CPU, and operator and I/O processes
distributed in various CPUs of the system. Each I/O process pair
logically "owns" one or more I/O devices, and in order to access
these devices, other processes must sent a request to the
"owning" process. If the owning process decides to honor the
request, it will provide the necessary service and return a
"reply" to the requesting process.

1-16 ~ 82507 AOO 3/85

INTRODUCTION
Operating System Overview

The location of the various system processes in a three-CPU
system is shown in Figure 1-9. Notice that some of the processes
are present in every CPU, but others (mainly those related to
input-output) are found only in the CPUs connected to their

GUARDIAN
SYSTEM

PROCESSES

0
0

0
CPU 8

USER
PROCESSES

Figure 1-9.

~ 82507 AOO 3/85

GUARDIAN
SYSTEM

PROCESSES

CPU 1

USER
PROCESSES

GUARDIAN
SYSTEM

PROCESSES

0
Q,

USER
PROCESSES

55001-009

Distribution of System Processes

1-17

I N'I'RODUCT I ON
Operating System Overview

associated peripheral devices. Actual determination of these
locations is dependent on system configuration, and is specified
at system generation time. The following paragraphs describe the
main functions of these system processes.

Memory Manager. The memory manager (Figure 1-10) services
requests generated by interrupt handlers as well as by other
system processes. Primarily, this process implements the paging
scheme for virtual memory.

The memory manager receives special requests from the Page-Fault
interrupt handler to bring needed pages into CPU memory from
disc. It is also used by the monitor process to help set up the
memory environment of a new process that is being created in the
CPU. Because the memory manager deals only with memory resources
in the CPU where it is running, a separate memory manager process
must reside in every CPU in the system.

Interrupt for
absent page

PAGE FAULT
INTERRUPT HANDLER

I

Make page
available
to the

, _______ .,/

Read absent
page in
from disc

Figure 1-10. Memory Manager Process

85001-010

l·-18 4J B2507 AOO 3/85

INTRODUCTION
Operating System Overview

Monitor. Like the memory manager, a monitor process runs in each
CPU on the system (Figure 1-11). This process handles many
housekeeping functions and initiates process creation and·
deletion done within its particular CPU. It also serves as an
information source for processes running in all CPUs in the
system. For example, if a process running in CPU 2 needs status
information about a process running in CPU 0, the monitor in CPU
0 is contacted with a request to locate and return the necessary
information.

CPUt CPU 1 CPU 2

55001-011

Figure 1-11. Monitor Process

~ 82507 AOO 3/85 1-19

INTRODUCTION
Operating System Overview

Operator Process. Another system process, the operator process,
runs as a process pair. Unlike the memory manager and the
monitor, there are only two copies of this process (a primary and
a backup) in the entire system. As illustrated in Figure 1-12,
the main responsibility of the primary process is to transmit
Operator process messages to the system console and to disc.

The backup process receives messages from the primary to inform
it of actions in progress. This enables the backup to assume the
duties of the primary if the primary fails.

Where os the

process named

$XXX lc:,cated?

CONSOLE

85001-012

L~~~~~~~~~~~~~~~~~~~~~~~··~~~~~~~~---~~~~~--'

Figure 1-12. Operator Process

1-20 .., 82507 AOO 3/85

INTRODUCTION
Operating System Overview

Input-Output Processes. These processes manage input-output
hardware. Typically, an input-output process controls a single
physical device. For instance, line printers, card readers, and
unmirrored discs each have their own input-output processes. As
exceptions to this rule, however, terminal processes,
communications processes, and disc processes associated with
mirrored disc volumes can each be called upon to control multiple
physical devices. A copy of the input-output process for a
particular device resides in the memory of each CPU connected to
the device's controller. A process pair is actually involved in
all input-output: the primary process is active in controlling
the device while the backup process takes over if a CPU or
input-output channel fails. These two processes run on separate
CPUs, but use the same code. At critical points, the primary
transmits its state and current data to the backup. This enables
the backup process to continue the operations being done by the
primary process if the primary is no longer able to function.

USER
PRIMARY

PROCESS CODE
1/0 PROCESS

t +
FILE SYSTEM DRIVER

85001-013

Figure 1-13. Input-Output Process

~ 82507 AOO 3/85 1-21

INTRODUCTION
Operating System Overview

Requests for input-output operations usually come from the
GUARDIAN file system. The file system is a set of system
procedures, part of which are in the user callable group and part
in the kernel. These procedures run as part of the user's
process and send messages to the input-output process, which is
responsible for controlling the device. The input-output
process, in turn, calls its own procedures to deal with the
device dependencies of the peripheral involved and to handle the
physical transfer of data. Appropriate status and data values
are returned to the user's process by reply messages (Figure
l·-13).

Kernel

The kernel is a set of system library procedures that provide
f :irst-level software extensions to the basic hardware capability
of the Tandem computer system. The kernel incorporates four
types of low-level system operations:

• Interrupt handling

• Resource coordination (including counting semaphores and
mutual exclusion)

• Interprocess message transfers

• Process management

Interrupt Handling. Some of the kernel procedures are invoked
when an interrupt occurs. These interrupts can result from a
number of causes, including: hardware errors, references to code
or data pages absent from memory, completion of interprocessor
bus messages, input-output transfer completions, timer list
updates, and process execution requests.

In most instances, each action that can cause an interrupt
corresponds to a particular bit in the Interrupt Request (INTA)
register. For example, an input-output interrupt request
g~~nerated by the hardware (standard I/O) always sets Bit 14 of
this register. When the microcode that manages interrupts
detects that one of these bits is ON, it checks to determine
whether the corresponding bit in the Interrupt Mask register is
also ON. If this matching bit is ON, the interrupt occurs:
otherwise, the interrupt is postponed until the matching bit in
the mask is set to allow it. For example, suppose that an
input-output controller needs to request an interrupt. The
following events take place (see Figure 1-14).

l ·-22 ..-, 82507 AOO 3/85

0

0

1/0 CONTROLLER

INTERRUPT

Interrupt
Request Register•

Interrupt
.__ _____ ,._..,__ Mask Register•

0

*Bit 14 is set for
Standard 1/0
Interrupt

INTERRUPT

CODE

INTRODUCTION
Operating System Overview

INTERRUPT

STACK
AREA

$5001-014

Figure 1-14. Interrupt Handling

1. The I/O controller sends an interrupt request to the IPU by
way of the I/O channel. The !PU accordingly sets bit 14 in
the Interrupt Request Register ON ("A" in Figure 1-14). When
the interrupt-managing microcode next checks this register,
it detects that Bit 14 is on.

2. Since Bit 14 of the Interrupt Mask register is also ON ("B"
in Figure 1-14), the microcode begins to process the
interrupt.

3. The microcode uses the number of the bit set in the Interrupt
Request register (bit 14) as an index to an entry in a table
in the system data segment ("C" in Figure 1-14). This entry
supplies data on how the interrupt environment should be

~ 82507 AOO 3/85 1-23

INTRODUCTION
Operating System Overview

established. It contains, among other elements, the
addresses of the code and data to be used by the interrupt
handler procedure.

4. The microcode saves the executing environment for the current
process in the interrupt handler's data area and sets the
code and data registers to define the interrupt handler's
environment ("D" in Figure 1-14). Execution now continues in
the interrupt handler's code.

NOTE

Although they use code and data, interrupt handlers
are NOT processes. Unlike processes, they are .
invoked by hardware or microcode, and have no entries
in the system tables associated with processes. The
operating system maintains interrupt-handler code and
data in main memory at all times because they must
respond instantaneously to interrupts.

5. When it completes its required operations, the Input-Output
interrupt handler takes one of these two actions:

a. It returns control to the interrupted process at the
point where the interrupt occurred ("E" in Figure 1-14).
To do this, the interrupt handler restores the
interrupted environment by resetting the process register
values saved in the interrupt's data area.

b. It passes control to the Dispatcher, another interrupt
handler. This typically occurs in the case of
significant interrupts where a process of greater
priority than the currently executing process has become
ready to run as a result of the interrupt. In such
cases, the Dispatcher changes the execution environment
by selecting the highest-priority process that is ready
to run and setting the CPU register values to permit it
to run.

Resource Coordination. In a sophisticated operating system
where competing processes often request system resources or try
to change system tables at the same time, some kind of
coordination is an absolute requirement. The Tandem Nonstop
architecture satisfies this requirement by providing two
mechanisms: a counting semaphore facility and a mutual exclusion
facility.

1-24 ~ 82507 AOO 3/85

INTRODUCTION
Operating System Overview

Counting Semaphores. The counting semaphore facility permits
competing processes to obtain temporary, exclusive access to a
particular resource (Figure 1-15). A semaphore (which represents
a resource) is composed of a resource count and a waiting list.
Processes that take a semaphore decrement the resource count:
those that free a semaphore increment the count.

A process actually "takes" or "frees" a semaphore by executing
special privileged instructions. When another process tries to
take a semaphore that is already taken, the taken semaphore
indicates that the resource controlled by the semaphore is
currently unavailable (its resource count is exhausted): the
requesting process then can be placed on the list of waiting
processes and can receive the semaphore when its turn comes.
Typically, instructions to take or free semaphores are issued by
system procedures called by system processes. Maintenance of the
semaphore waiting list, however, is managed by the Dispatcher.

fa\ Use the
\.J resource

"'1J 82507 AOO 3/85

RESOURCE
protected by
Semaphore

System Table
Device etc ...

,---
/

I
I
I
I
I
I
I
I
I

I
I
I

8 T•kotheS•m•pho" /

--------------'

Figure 1-15. Semaphore Use

SEMAPHORE

Resource NOT
currently
available

8aueueup

w
A

T

I

N
G

a
u
E
u
E

85001-015

1-25

INTRODUCTION
Operating System Overview

Mutual Exclusion. A semaphore, as noted in the preceding
paragraphs, is intended to protect access to a specific resource.
It does not affect other processes not needing the resource
related to the semaphore. In certain cases, however, a process
needs to extend its exclusive access far beyond the level
provided by semaphores. It needs, in fact, to gain absolute
control of the entire machine. A process can achieve this level
of control through "mutual exclusion." In achieving this
control, though, the process must operate in a state where most
types of interrupts are temporarily disabled. This effectively
trades the majority of the operating system's primary functions
for exclusive access to the machine; for instance:

• Because the Dispatcher Interrupt is off, no other process can
run.

• Because the memory manager process cannot be dispatched, page
faults cannot be processed.

• Because the Time List interrupt is off, timer interrupts are
delayed.

• Because the Input-Output interrupts are off, no input-output
can be completed.

• Because the Bus Receive interrupts are off, no interprocessor
bus transfers can be completed.

To ensure that these functions are disabled only for short
periods of time, a process uses mutual exclusion only during very
critical operations when no interference can be tolerated. Thus,
the process typically disables the interrupts, performs the
critical functions, and then immediately reenables the
interrupts. First, the process executes the MXON privileged
instruction which performs the following:

1. It ensures that the code and data pages required while the
interrupts are disabled are present in main memory. The
instruction uses two specified ranges, one for code and one
for data. It generates dummy memory references in each range
to cause page-fault interrupts that bring in the required
pages. When a page fault occurs, the instruction is
automatically re-executed. This reexecution continues until
all required pages are present.

2. Once all required pages are present, MXON saves the old
interrupt mask and then disables all interrupts (except the
power-fail and high-priority input-output interrupts) by
setting the mask bits to O. This allows the process to
secure and retain access to the machine.

1-26 ~ 82507 AOO 3/85

INTRODUCTION
Operating System Overview

After the process executes the critical code, it then executes
the MXFF privileged instruction. This instruction restores the
old interrupt mask, once again enabling the interrupts.

Interprocess Message Transfers. Since all Tandem Nonstop systems
have multiple CPUs, and thus multiple operating systems, the
GUARDIAN operating systems in all CPUs function together as a
group of cooperating processes. These processes communicate by
exchanging messages (Figures 1-16 and 1-17) through a "message
system." This system consists of a few privileged procedures and
a bus interrupt handler, all located in the system library.
Message system functions can be called directly by system
processes but not by user-written processes (which must invoke
the message system implicitly). For example, when a user-written
process calls the system procedure named NEWPROCESS, this
procedure in turn calls the message system to send a message
requesting process creation to the appropriate monitor process.

DISPATCHER
BUS SEND CODE

BUS RECEIVE
INTERRUPT CODE

,, ,,.----<-
/ ' I) ,......_ ___ """ Process

Creation
Requested

Figure 1-16. Message Transfer Between CPUs

85001-016

-'182507 AOO 3/85 1-27

INTRODUCTION
Operating System Overview

Implicit use of the message system is always accomplished through
user-callable system procedures; for instance, in the above
example, the call to the monitor was handled by the file
system and remained hidden from the user. Users' processes can,
however, send messages to other processes directly by opening
these other processes as files arid writing data to them; this
data, of course, is transmitted through the file system. With
either explicit or implicit calls, all message system procedures
except interrupt handlers run on the calling process's data area
and appear to be part of that process.

X BUS
------------------------------·~-----------------------

------------------------------·~------------------y~-- ----------------

Process
Creation
Requested

USER CODE

t
NEW PROCESS

+ Message System

85001-017

Figure 1-17. Message Transfer Within a CPU

1-·28 .., 82507 AOO 3/85

System Data Structures

INTRODUCTION
Operating System Overview

Several segments of memory (64K,words each) are allocated to
contain various system data structures, mostly used by kernel
procedures and system processes. One of these segments is the
system data segment (Figure 1-18). Essentially, as shown, this
segment is divided into four major parts: globals, fixed-length
tables, variable-length tables, and system pool space (SYSPOOL).

SYSTEM DATA
SPACE

System Global Addresses 0
a.---------t

Fixed Tables

Variable Tables

System Pool

L-.-------' 65535

S5001-018

Figure 1-18. System Data Segment

Af' 82507 AOO 3/85 1-29

INTRODUCTION
Operating System Overview

The globals are primarily known-address pointers into the
remainder of the system data segment and to system tables in
extended memory, thus permitting both microcode and software to
reference the primary system tables. 'rhe fixed-length tables
include, among other things, the Input-Output Control (IOC)
table, the Bus Receive Table (BRT), the System Interrupt Vector
(SIV), the Subchannel Table (SCT), and the interrupt stacks. The
variable-length tables include, among other things, the
Controller Table (CTL), Link Control Blocks (LCBs), Process
Control Block (PCB) table, and various message system elements.
The system pool area is used by the operating system to allocate
storage space for various pools, as needed, after which such
space is returned (deallocated).

All of the system data segment always remains in CPU memory.
Other tables maintained by the kernel are kept in "extended
system data segments" and usually are in CPU memory--although
unused areas in some cases may not always be. Tables located in
extended data segments include the Process Control Block
Extension (PCBX), Destination Control Table (DCT), XRAY counters,
Network Routing Table (NRT), System Entry Points (SEP), and
System Status Messages.

l·-30 ~ 82507 AOO 3/85

SECTION 2

HARDWARE PRINCIPLES OF OPERATION

This section describes the fundamental operations of the Tandem
Nonstop system hardware. Also included are a description of the
hardware modules, and the operation of data stacks.

FUNDAMENTAL OPERATIONS

To show how the Nonstop system provides the means for creating a
fault-tolerant application, the following example is given. The
example is illustrated in Figures 2-1 and 2-2.

The application consists of a primary application process running
in processor module 0 (the primary process is designated A) and
its backup process running in processor module 1 (the backup
process is designated A'). The coded instructions for A and A'
are identical. With the aid of the GUARDIAN software, each can
determine whether it is the primary or the backup process, then
perform its proper role.

The primary process, while operable, performs all of the
application's work. At critical points during each transaction
cycle (such as prior to altering the contents of a disc file),
the primary process sends a message to its backup process. These
messages contain checkpointing information (such as an updated
disc record) and keep the backup process up to date on the state
of the application. All such messages are the result of
checkpointing code that the programmer inserts in the application
programs.

The backup process's responsibility, while the primary is
operable, is to accept and process the checkpointing messages and
be ready to take over the application if the primary process
becomes inoperable.

~ 82507 AOO 3/85 2-1

HARDWARE PRINCIPLES OF OPERATION
Fundamental Operations

l'M ALIVE MESSAGES

~------.

------.

CHECKPOINT MESSAGE

TERMINAL

THE PROCESS: A THE PROCESS: A

CD READ (a record from the terminal) READ (the checkpo111t message from Al

® READ (a record from the disc)

® WRITE (the updated disc record to A') Checkpoint

© WRITE (the updated record to disc)

@ WRITE (the result on the terminal)

55001-019

Figure 2-1. Fault-Tolerant Application

2-2 Af" 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
Fundamental Operations

PROCESS A' ACTION

l'M ALIVE NOT
RECEIVED FROM

MODULEO

(DREAD (the cpu 0 down message)

CPU 1

TERMINAL

CPU 0
DOWN

@wRITE (to the disc using the last checkpoint message to ensure update of the record)

Then continue with the same program as A.

READ (a record from the terminal)

READ (a record from the disc)

Except that there is no backup for A' at this time, so no checkpoint message is sent.

S5001-020

Figure 2-2. Application Takeover by Backup

~ 82507 AOO 3/85 2-3

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

If processor module 0 fails (see Figure 2-2), the GUARDIAN
operating system in processor module 1 sends a "CPU 0 down"
message to backup process A'. This is the signal for the backup
process to take over the application's work. First, the backup
process uses the latest checkpointing message (e.g., an updated
disc record) to complete the transaction that the primary started
just prior to its failure, leaving the application's data in the
same state as if the primary had completed its last transaction
successfully. At that point, the backup becomes the primary and
continues with the application's work. (Note that there is no
backup process at this time; therefore, no checkpointing messages
are sent).

When processor module 0 is reloaded, the GUARDIAN operating
system sends a "CPU 0 Up" message to the current primary process
(formerly the backup process). The primary process can then
start a new backup process running in processor module 0. The
primary also begins sending checkpointing information to the
backup process. The application is now fully fault-tolerant once
again.

PROCESSOR MODULE ORGANIZATION

Instruction Processing Unit

The instruction processing unit (IPU) has four functions: 1) to
execute machine instructions, 2) to provide for the orderly
interruption of a running process, 3) to map logical to physical
memory, and 4) to transfer data from the interprocessor buses
into memory (this is invisible to the executing process and is
handled entirely by the IPU's microprocessor).

A program's instructions reside in memory. In order to execute
an instruction, it is first fetched from a location in memory
determined by the address held in an IPU register. The
instruction is loaded into another IPU register and is decoded by
the hardware to determine what sequence of microinstructions must
be used to execute the instruction. During execution of the
instruction, one or more memory transfers can occur, the IPU's
scratchpad registers can be used to hold intermediate
computations, and operands can be added to or deleted from the
IPU's Register Stack.

The IPU is "pipelined," processing multiple instructions at once.
For example, while the current instruction is being executed, the
next instruction in sequence can be fetched from memory at the
same time.

2-4 ~ 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

For a Nonstop II processor, the microinstruction cycle time is
100 nanoseconds; microinstructions are 32 bits (plus parity) in
length. For a Nonstop TXP processor, the microinstruction cycle
time is 83 nanoseconds; microinstructions are 109 bits long (74
bits for horizontal control store and 35 bits for vertical
control store) plus parity.

An IPU's basic instruction set consists of approximately 235
instructions. These include arithmetic operations such as add,
subtract, multiply, and divide; logical operations such as AND,
OR, and exclusive OR; bit shift and deposit; block (multiple­
element) moves, compares,and scans; procedure call and exit;
interprocessor bus send; and the input-output instructions.
All instructions are 16 bits in length.

Processor modules equipped with the decimal arithmetic option
have an additional 14 instructions (6 decimal arithmetic
instructions are standard in all processors). These instructions
operate on four-word operands and perform operations such as add,
subtract, multiply, divide, negate, compare, and round. (See
Decimal Arithmetic Option headings in Section 9, "Instruction
Set".) Modules equipped with the Floating-Point option have an
additional 41 instructions for doubleword and quadrupleword
(extended) floating-point arithmetic and related operations.
(See "Floating-Point Arithmetic" and "Extended Floating-Point
Arithmetic" in Section 9.) With these options, a processor has a
total of approximately 290 instructions.

Two modes of process execution are provided: privileged and
nonprivileged. A process executing in nonprivileged mode is not
permitted to execute the instructions designated as privileged.
Privileged instructions are associated with operations that, if
performed incorrectly or inadvertently, could have an adverse
effect on other processes or the operating system. These
privileged operations include: interprocessor bus send,
input-output, changes to map registers, execution of privileged
procedures, and access to system data. Normally, only the
GUARDIAN operating system executes in privileged mode;
application (user) processes execute in nonprivileged mode.
Privileged operations are performed for nonprivileged processes
through calls to operating system procedures. An attempt by a
nonprivileged process to execute a privileged instruction causes
the process to be trapped (interrupted).

The interrupt function provides for the orderly transfer of IPU
control from an executing process to one of several routines in
the operating system called interrupt handlers. This transfer of
control is called an interrupt. Interrupts occur for several
reasons. Among them are: data received over the interprocessor
bus, completion of an I/O transfer, memory error, memory page
absent, instruction failure (e.g., attempt by a nonprivileged
process to execute a privileged instruction), and power failure.

~ 82507 AOO 3/85 2-5

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

Memory

~hysical memory is the storage space provided by the actual
solid-state memory locations available to a processor on its
memory boards. There can be up to four memory boards. Thus, for
example, if a processor module contains four memory boards having
2 megabytes per board, that processor's physical memory is 8
megabytes. The maximum addressing range for physical memory is
l6 megabytes, and this defines the maximum physical memory size.
Since each processor module contains its own memory boards,
physical memory is private to the processor.

Data is stored in physical memory in the form of 16-bit words:
1024 words comprise a page. Although access to physical memory
is by word on word boundaries, specific instructions also provide
element access to bytes, doublewords, and quadruplewords. The
Nonstop TXP processor can access in parallel up to four words (64
bits) on a selected memory board.

~o~ical memory is memory as perceived by a particular process,
being some subset of the total virtual memory space.. (The
addressing range for virtual memory in a single processor is one
gigabyte: virtual memory consists of all "segments" in this range
that are currently allocated.) The logical memory for any given
process is defined as a certain number of virtual memory
segments, and is independent of the processor's physical memory.

Memory addressing can be defined in terms of logical addresses or
physical addresses.

A logical address most commonly consists of 16 bits: a 16-bit
address is capable of addressing a maximum of 64K words (i.e.,
one segment of memory). A short address is a 16-bit address plus
three bits to specify one of six short address spaces. Short
addresses and short address spaces are described later under
"Memory Access" in Section 5.

Because a process consists of three independently addressable
areas (one or two code spaces and one standard data segment), and
has access to the system code spaces, and because code spaces can
consist of multiple code segments, a single process potentially
can access over 4 megawords (32 user code and library segments,
33 system code and library segments, and one data segment)
without using extended addressing. Extended addressing (32-bit
addresses) permits an even greater range of logical memory
access, and is described later under "Extended Addressing" in
Section 5.

A physical address consists of 23 bits. A 23-bit address
provides an addressing range of sixteen megabytes, thus it is
capable of referencing any location in physical memory.

2-6 ~ 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

Many application processes and parts of the operating system can
reside in physical memory concurrently. As each process is
granted execution time in the processor, its logical memory space
becomes part of the currently accessible portion of physical
memory--that is, the process's segments become "mapped."

Mapping converts logical addresses to physical addresses: i.e.,
mapping makes physical pages scattered through memory appear to
the program to be a contiguous block of memory.

In a Nonstop II processor, address translation for the short
address spaces is implemented through hardware map registers.
(Each CPU actually has sixteen hardware maps.) Each map consists
of 64 entries (registers), and each entry points to an individual
physical page of memory. Thus, a map is capable of defining one
segment of logical memory. The sixteen hardware maps are
described later under the heading "Memory Access (Nonstop II
Processor)" in Section 5.

In a Nonstop TXP processor, address translation for the short
address spaces is provided within a larger (2048-entry) hardware
register array called "PCACHE". This PCACHE permanently maps
some of the short address spaces (system code and data, for
example), but primarily functions as a cache of page mappings-­
one page at a time, as needed, rather than all pages of a given
segment. PCACHE is described later under the heading "Memory
Access (Nonstop TXP Processor)" in Section 5.

The data path between memory and other processor module functions
is 16 bits wide. All data is verified for accuracy when it is
read from memory. Six error correction bits are appended to each
16-bit word when it is stored. The use of the six error
correction bits in the semiconductor memory permits the hardware
to correct all single-bit errors automatically and to detect all
double-bit errors. The detection of a memory error (whether
correctable or uncorrectable) causes an interrupt to an operating
system interrupt handler, which takes appropriate action.

Input-Output Channel

Each processor module has its own I/O channel that is capable of
transferring data between I/O devices and memory at full memory
speed. I/O operations, which are controlled by the operating
system, are initiated by setting up an entry in a table in memory
and then executing an Execute I/O (EIO) instruction. Once
initiated, data transfer occurs concurrently with software
process execution. When the I/O operation completes, the
currently executing process is interrupted, and control of the
IPU is transferred to an operating system interrupt handler.

~ 82507 AOO 3/85 2-7

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

IPU

INITIATE I 0
EIO ._...,. MICRO

PROCESSOR

MEMORY

IOC

1/0 CHANNEL

L

UP TO 256 BUFFERS

D·· · ··· D

MICRO
PROCESSOR

READY TO SEND

I I
I I

,~--.~ -_,I
~--H

11

I I
I I
11

I I
.----~_::~~1~1-~

p p I I
I t- -- ~,_. ~ _- -~ I
Tl- ' I ' ·11
I I
II ,'" ____ II __ ~
I I I 1.

I I I I
85001-021

Figure 2-3. Input-Output Channel

2-8 ~ 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

Each channel is capable of addressing 256 I/O devices, addressing
each as a separate "subchannel." A single I/O operation is
capable of transferring data in blocks of from 1 to 65,535
bytes.

The table to control I/O transfers is called the I/O Control
(IOC) table. Each processor module has its own IOC table.
(See Figure 2-3.) The IOC table is maintained both by the
operating system and be microcode. The IOC table contains up to
256 entries, corresponding to the 256 possible devices
(subchannels) on that processor's channel; each entry contains a
buffer address (in one of the I/O buffer segments) and a count of
the number of bytes to be transferred. The use of the IOC table
permits an I/O channel to run any number of devices (up to 256)
concurrently while maintaining control on a device-by-device
basis. When the number of bytes indicated in the IOC have been
transferred, the device interrupts the currently executing
process.

Data is buffered by each controller so that data is transferred
in bursts through the channel at memory speed (the number of
bytes in a "burst" depends upon the type of controller).
Controllers are designed so that they signal the channel prior to
actually emptying their buffers (during a write operation) or
filling their buffers (during a read operation). This gives the
channel ample time to respond, thereby providing a means to avoid
data overrun. All 256 devices can be transferring
simultaneously, with bursts from one device being interleaved
with bursts from others, subject to I/O data rate configuration
limits.

Interprocessor Bus Interface

The Nonstop system has two interprocessor buses (see Figure 2-4).
Each bus functions independently of the other, transferring data
from one processor module's memory to another processor module's
memory. Both buses can be in use simultaneously.

Data is transferred over each interprocessor bus at a maximum
rate of 13.33 megabytes per second. Each bus is capable of
transferring data among all processor modules concurrently on a
packet-multiplexed basis.

An interprocessor bus transfer involves two processor modules:
the sender module and the receiver module. The transfer is
initiated by the sender when a SEND instruction is executed. The
receiver module checks the incoming packet for correct
transmission (using checksum, sequence number, and destination
and receiver numbers), and directs the incoming data to a main

'1' 82507 AOO 3/85 2-9

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

BUS CONTROL

IPU

MICRO­
CODED

... ············
....,.;.:-~--............... -..o.;..~ ... _ ·.:..;· ·::~:-:~:· .·. -.. --.: __,-..o.;..,..,..,., _.,..o.;..;-~,----.....

. ·.·.·.·>.·.·.·.·.· .·.·.·.· ..

BUS CONTROL

~-
I -r-

MICRO-INTERRUPT
IPU

-----.WHEN BUFl=ER
MICRO- FULL I
CODED

SEND 10, Y PROCESSING PROCESSING \
LOGIC I

I
LOGIC

\
MEMORY

:DATA

PROCESSOR 1

Figure 2-4.

2--10

-----+----
MEMORY PROCESSOR

BRT

NUMBER I
__ .Al_

BUFFER ADDRESS

n
f}f}I-::::::::

.....

' .--___/
BUFFERS

PROCESSOR 10

Interprocessor Bus Interface
(Nonstop II Processor)

85001-022

~ 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

memory buffer indicated by a firmware-known, software-maintained
table--the Bus Receive Table (BRT). This table, the BRT, is then
updated.

The SEND instruction can transmit blocks of 1 to 65,535 bytes to
a designated processor module over one of the buses. Data is
actually sent across a bus in packets of 16 words (a routing
word, a sequence word, 13 data words, and a checksum word); each
processor module contains two high-speed 16-word buffers (one for
each bus) for receiving the incoming information. These buffers
are designated INQ X (for the X bus) and INQ Y (for the Y bus).
Transfers into the buffers occur simultaneously with IPU
microprogram execution; when a buffer fills, the IPU microprogram
is interrupted, and a special microroutine moves the contents of
the buffer into memory.

Each processor module's main memory contains a BRT. The BRT is
known by the firmware and is maintained by the operating system.
It is used to direct the incoming bus data to a specified
location in a processor module's memory. The BRT contains 16
entries (corresponding to the 16 possible processor modules in a
system); each entry specifies an expected packet sequence number,
a buffer address where the incoming data is to be stored, and the
number of bytes expected. When the expected number of bytes has
been received, the currently executing process is interrupted,
and the process for which the message is intended is notified.

Other Processor Components

In addition to the four main processor components just described
(the IPU, memory, I/O channel, and interprocessor bus interface)
each processor in a Nonstop system contains several other
important components. These are discussed briefly in the
following paragraphs. Figure 2-5 illustrates these components,
showing their relationships to each other and to the four major
components already discussed.

Clock Generator. The clock generator is the main processor
clock. It provides the synchronization of all hardware functions
within the processor. The Nonstop II processor's clock has a
full-cycle time of 100 nanoseconds (lOMHz) and a half-cycle time
of 50 nanoseconds. The Nonstop TXP processor clock has a
full-cycle time of 83.33 nanoseconds (12MHz) and a half-cycle
time of 41.66 nanoseconds.

~ 82507 AOO 3/85 2-11

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

OPERATIONS
AND SERVICE
PROCESSOR

(OSP)

X BUS
TO OTHER

PROCESSOR
Y BUS

MODULES

r------------------~

I I
I LOADABLE I

CLOCK CONTROL I I GENERATOR STORE

I
(LCS) I

1 I
CONTROL I I PANEL

I
~ I

I I I I I
TO DDTs OF I

INSTRUCTION
INTERPROCESSOR .1 PROCESSING

i--- BUS l"

OTHER CPusl
UNIT

INTERFACE
(IPU) I

INTHIS I I PROCESSOR
CABINET I I

I I
I --- ~

PROCESSOR DIAGNOSTIC

~
I

MAINTENANCE H- DATA 1/0 H-r-INTERFACE TRANSCEIVER CHANNEL
(PMI) I (DDT) 1----1 ~~ I
T I MEMORY I CONTROL

DAISY : UP TO I UNIT I
CHAINED • FOUR*

I IH l I I I
PROCESSOR I

.....,
I MAINTENANCE l'"""I

INTERFACE I MEMORY
I- I

(PMI)
I I..~

l I 1 I
I 1 I

TO DDTs OF ALL
CPUs IN THE CABINET
SERVED BY THIS PMI

I PROCESSOR MODULE (CPU) I
L-------------------~

*ONE PMI PER PROCESSOR CABINET

-1 ,
-1

' J

1/0
CONTROLLER

1/0
CONTROLLER

•
• .

$5001-023

Figure 2-5. Block Diagram of Processor Hardware

2-12 ..-, 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
Processor Module Organization

Loadable Control Store. The Loadable Control Store (LCS)
contains microinstructions for use by the !PU. Each machine
instruction causes the !PU to execute a specific set of
microinstructions to implement the functions of that machine
instruction. The LCS cannot be written to by user programs, but
it can be loaded with new versions of the system microcode and
microcode options as they are purchased from or supplied by
Tandem.

Control Panel. The control panel allows operators and
maintenance personnel to interact directly with each processor.
The control panel can be used to reset a processor, cold load a
processor, ready a processor for reload, and give visual
indications of a processor's status. It also can be used to
initiate some microdiagnostics.

Memory Control Unit. The memory control unit (MCU) provides
access to memory for both the I/O channel and the IPU. The MCU
queues memory requests by execution priority: provides overlapped
access, mapping of logical to physical memory (Nonstop II
processor only) error control, and error reporting: and provides
semiconductor memory refresh timing capability.

Dia nostic Data Transceiver. One Diagnostic Data Transceiver
DDT is associated with each processor in the system. Connected

to the Operations and Service Processor (OSP) through the
Processor Maintenance Interface (PMI), the DDT communicates at
two distinct levels, as directed by the microcode in the LCS or
by a process running in the CPU. It can accept commands from the
OSP to communicate with the operating system and run diagnostics
for operations or fault isolation. It can also report the status
of the !PU, MCU, I/O channel, and LCS to the OSP.

Processor Maintenance Interface. The Processor Maintenance
Interface (PMI) provides a common interface point for up to four
processors in a cabinet to communicate with the OSP. If there is
more than one processor cabinet in the system, a PM! is added for
each cabinet, and the PMis are connected together.

The PM! has switch functions that regulate communication between
processors and between a processor and the OSP. The PMI also has
indicator lights showing DDT status. In addition, it provides
signal-level conversion: it connects to the processors through
differential signals, which it passes on to the OSP. Finally,

~ 82507 AOO 3/85 2-13

HARDWARE PRINCIPLES OF OPERATION
Operations and Service Processor

the PM! notifies the DDT of the speed at which the local or
remote OSP is operating.

OPERATIONS AND SERVICE PROCESSOR

The Operations and Service Processor (OSP) is the control center
for the Nonstop system. Through the OSP, operators and
maintenance personnel can easily and flexibly invoke many
low-level system functions, including all the essential functions
of the control panel for each processor.

The OSP provides both local and remote operations and maintenance
capabilities. As previously described, it is connected to each
processor through the PM! and the DDT.

The OSP subsystem is made up of six components:

• Processor--The processor is the central part of the OSP. (The
OSP processor is not to be confused with a processor module,
or CPU.) Most of the OSP functions are controlled by the
processor. The processor provides intelligence and
coordination of the OSP.

• Floppy Disc Drives--A floppy disc drive is used to load the
OSP operating system and diagnostics from floppy disc
(diskette) into the OSP. Two floppy disc drives and
associated power supplies are provided for failure tolerance.

• Switches and Indicators--The OSP switches and indicators
provide access control and OSP status information.

• OSP Terminal--The OSP terminal provides an easy and flexible
operation and maintenance interface with the OSP and the
Nonstop system. Function keys are provided to allow fast
interaction with the OSP.

• Modem--The modem included in the OSP allows communication with
remote OSPs and remote terminals. Maintenance can be
performed from all of these devices. Operations can be
performed from a remote OSP or a remote OSP terminal.

• Optional Hard-Copy Printer--Optional printers are available
for hard-copy logging of system console activity.

2--14 ~ 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

HOW- THE HARDWARE EXECUTES PROGRAMS

Code and Data Separation

Programs executing as processes in a CPU's memory are physically
separated into two areas: code segments containing machine
instructions and program constants, and data segments containing
program variables. See Figure 2-6. The code segments of a
process can be thought of as read-only storage, since no machine
instructions can write into them. Since code segments cannot be
modified, they can be shared by a number of processes.

Procedures

Programs are functionally separated into blocks of machine
instructions called procedures. A procedure, like a program, has
its own local data area (in the process's data segment). A
procedure (that is, the block of instructions that a procedure
represents) is called into execution when a procedure call
instruction (PCAL, XCAL, or DPCL) is executed. The call
instruction saves the caller's environment and transfers control
to the entry-point instruction of the procedure.

NON­
MODIFIABLE.
SHARABLE

CODE
AREA

MACHINE
INSTRUCTIONS

MODIFIABLE,
PRIVATE

DATA
AREA

Figure 2-6. Code and Data Separation

EIGHT­
ELEMENT
REGISTER

STACK

ARITHMETIC
OPERATIONS

85001-024

~ 82507 AOO 3/85 2-15

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

The procedure's instructions are then executed. The last
instruction that a procedure executes is an EXIT instruction.
The EXIT instruction restores the caller's environment and
transfers control back to the caller's next instruction.

A procedure, while it executes, has its own local data area.
This area is allocated for a procedure each time the procedure is
called and is deallocated when the procedure exits (see "Memory
Stack"). The procedure can also access a shared global data
area, which is accessible to all procedures of the process. The
global data area and all the memory used for procedure local data
areas are contained in the process's data segment.

Procedures can be written so that they can receive parameter
information (arguments), perform computations using the
parameters, then return results to the caller. (The machine
instructions for passing parameters and returning results are
generated automatically by compilers.)

Procedures that are outside the currently executing code segment
(that is, in some other code segment accessible to this process)
are accessed by means of an "external call." For example,
operating system functions (such as file system operations) are
performed by calling procedures that are in one of the system
library segments. An external procedure is called when an
External Procedure Call (XCAL) instruction is executed. This is
discussed later in Section 4 under "Calling External Procedures."

Memory Stack

The first half of a process data segment is organize~d in memory
as a "stack." A stack is a storage allocation method in which
the last item (or block of items) added is the first item
removed--like a stack of dishes. The local areas for procedures
are blocks of data items in the memory stack. A procedure's
local data is allocated in the memory stack only while it
executes; after a procedure returns to the point where it was
called, its data area is deallocated and can be used by another
procedure called later. Therefore, the total amount of memory
space required by a program is kept to a minimum.

Figure 2-7 illustrates the memory stack manipulations ("Data
Area") during a sequence of procedure calls ("Code Area").
Sequence number (1) shows the memory stack when procedure A
starts executing. At (2), a call to procedure C pushes C's
parameters onto the stack (3), along with the link back to A. At
(4), C begins to execute, using the stack for its local variables
(5). Then a call to B (6, 7, 8) pushes B's parameters onto the

2-16 ~ 82507 AOO 3/85

CODE AREA

.
• .
•

MEMORY STACK
WHEN A
STARTS
EXECUTING

Figure 2-7.

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

MEMORY STACK
WHEN C
STARTS
EXECUTING MEMORY STACK

WHEN B
STARTS
EXECUTING

MEMORY STACK
AFTER RETURNING
FROM B

Memory Stack Operation

MEMORY STACK
AFTER RETURNING
FROM C

85001-025

stack, along with the link back to C, and B uses the stack for
its local variables (9). Then, when B completes, it executes a
return (10) back to C, deallocating its local variables, calling
parameters, and return link from the stack. Procedure C, in
turn, runs to completion and executes a return (11) back to A,
deallocating its unneeded information from the stack. Procedure

~ 82507 AOO 3/85 2-17

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

A continues its execution (12), with the stack back to the
condition it was in prior to the calls: no unneeded data from
these manipulations remains behind to waste memory.

Register Stack

Each instruction processing unit contains a "Register Stack,"
consisting of eight separate registers. Each register stores one
16-bit word. The Register Stack provides a highly efficient
means of executing arithmetic operations: operands are loaded
onto the stack, arithmetic operations are performed 1, the operands
are deleted, and a result is left on the stack. An add of two
16-bit numbers is illustrated in Figure 2-8.

REGISTER STACK

55001-026

Figure 2-8. Register Stack Operation

2~-18 ~ 82507 AOO 3/85

HARDWARE PRINCIPLES OF OPERATION
How the Hardware Executes Programs

The use of the Register Stack is usually transparent to
programmers using programming languages, and most application
programming does not require explicit stack operations. The
language compilers automatically generate the machine
instructions for efficiently using the Register Stack.

~ 82507 AOO 3/85 2-19

SECTION 3

DATA FORMATS AND NUMBER REPRESENTATIONS

DATA FORMATS

The basic unit of information in the Nonstop II and Nonstop TXP
processors is the 16-bit word. However, individual access to and
operations on single or multiple bits (bit fields) in a word,
8-bit bytes, 16-bit words, 32-bit doublewords, and 64-bit
quadruplewords are supported. See Figure 3-1.

In this manual, a number surrounded by brackets is used to denote
an individual element (that is, word, doubleword, byte, or
quadrupleword) in a block of elements:

block [element]

For example, to indicate the fourth element in a word block
(beginning with element 0), the following notation is used:

WORD [3]

When referring to a block of words (or any elements), the first
element is indicated by the element number that is the lowest
numerically: the last element has the highest element number.
The following notation is used to denote a block of elements:

block [first element:last element]

For example, to indicate the second through twentieth words in a
block, the following notation is used:

WORD [1:19]

~ 82507 AOO 3/85 3-1

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

3-2

BASIC ADDRESSABLE UNIT IS A WORD

0 1 2 3 4 5 6 1 8 9 10 11 12 13 14 15

D
A WORD CAN CONTAIN

TWO BYTES

0 7 8 15

D
BYTE 0 BYTE 1

TWO WORDS FORM A DOUBLEWORD

0 15 0 15

___ .---...._I~> _l __ ..___I_[]_I__,__..__._.......I u l...__.__ ... _.__...___.l_I

FOUR WORDS FORM A OUADRUPLEWORD (FOR PROCESSOR MODULES WITH DECIMAL ARITHMETIC OPTION I

0 15 15 0 15 0 15

I I IUITJ~~-1 _ll[]J=] I I 7ITJ:: 1 ~1DTI
"'---- __/ " / __/

WORDO WORDl WORD2 WORD3

TWO WORDS ARE NEEDED TO FORM A FLOATING-POINT DOUBLEWORD

0 1 15 0 5 6 1 8 9 10 11 12 13 14 15

__ I --....---... 1 \-\ 1-------[:ITJ2j_l -------
1

SIGN FRACTION (22 BITSI

FOUR WORDS ARE NEEDED TO FORM AN EXTENDED FLOATING-POINT OUADRUPLEWORD

SIGN FRACTION (54 BITSI

I

EXPONENT
(9 BITSI

EXPONENT
(9BITSI

~
0 1 15 0 15 0 15 0 6 7 15

---.....__....___IUIJ]~~-' _____ I l rn== I l_I 7 [IJ::f.__~l [IIJ] rn
" /

WORDO WORDl WORD2 WORD3

$5001-027

Figure 3-1. Data Formats

4' 82507 AOO 3/85

Words

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

The 16-bit word defines the machine instruction length and
logical addressing range for the Nonstop II and Nonstop TXP
processors. The 16-bit word is the basic addressable unit stored
in memory. The first word in each segment (i.e., code or data)
of logical memory is addressed as WORD[O]; the last addressable
location is WORD[65535]. This is shown in Figure 3-2.

0 15

WORD ADDRESS [0] ~ FIRST ELEMENT

[1]

[2]

[3]

[4]

[5]

j
ASCENDING ADDRESSES

[6]

[7]

[8]

[65,533]

[65,534]

[65,535] ~ LAST ELEMENT

85001-028

Figure 3-2. Word Addressing

The following instructions are provided for referencing words in
logical memory:

LOAD
STOR
LWP
NSTO

ADM

LDX
LWA
SWA

Load word into Register Stack from data segment
Store word from Register Stack into data segment
Load Word into Register Stack from Program (code seg)
Nondestructive Store word from Register Stack into
data segment
Add word from Register Stack to word in Memory (data
segment)
Load Index Register from data segment
Load Word via A
Store Word via A

-1' 82507 AOO 3/85 3-3

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

LWX
LWXX
swx
swxx
ANG
ORG
ANX
ORX
LWUC

Load Word Extended
Load Word Extended, Indexed
Store Word Extended
Store Word Extended, Indexed
AND to Current Data
OR to Current Data
AND to Extended Memory
OR to Extended Memory
Load Word from User Code Segment

Two instructions operate on blocks of words:

MOVW
COMW

Move Words from one memory location to another
Compare Words in one memory location with another

Bits

The individual bits in a word are numbered from zero (0) through
fifteen (15), from left to right:

1 1 1 1 1 1
WORD: 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5

The following notation is used in this manual (and in the TAL
language) to describe bit fields:

WORD.<left bit:right bit>

For example, to indicate a field starting with bit 4 and
extending through bit 15, the following notation is used:

WORD.<4:15>

To indicate just bit 0, the following is used:

WORD.<O>

Two bytes can be stored in a 16-bit word. The most significant
byte in a word occupies WORD.<0:7> (left half); the least
significant byte occupies WORD.<8:15>. The 16-bit address
provides for element addressing of 65,536 bytes.

In the data segment, byte-addressable locations start at BYTE[O]
and extend through BYTE[65535]. Two bytes are stored in each

3--4 ~ 82507 AOO 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

word: therefore the first 32,768 words of the data segment
(WORD[0:32767]) can store 65,536 bytes. The upper half of the
data segment, WORD[32768:65535], is not byte addressable without
the use of extended addressing.

In the code segment, byte addresses are computed by the hardware
relative to whether the current setting of the P (for Program
counter) Register is in the lower or the upper half of the code
segment. Therefore, the entire code segment (WORD[0:65535]) is
byte addressable, as explained in the description of the LBP
instruction in Section 9.

The IPU converts a byte address to a word address and bit field
in that word, as shown in Figure 3-3. In other words, bit 15 of

BYTE ADDRESS 0 7 8 15

[0] [1]

BYTE
[2] [3]

[4] [5)

[6] [7]

[8] [9]

[10] [11]

[12] [13]

l~

[65,532] [65,533]

UPPER LIMIT OF [65,534] [65,535]

BYTE ADDRESSING---+

BYTE ADDRESS TO WORD ADDRESS CONVERSION

0 15

WORD [0]

WORD [1]

WORD [2]

WORD [3]

WORD [4]

WORD [5]

WORD [6]

WORD [32,766]

WORD [32.767]

BYTE ADDRESS [O 6!>,535]

\
__BYTE 0 ~WORD. <0:7>, 1 ~WORD. <8:15>

\ \

l 1... _o l ___.._"'--...._~_..._....---.i.._.__~_.____.___.___....__...___.I woR D ADDA Ess r o 32. 767 J

85001-029

Figure 3-3. Byte Addressing

'1J 82507 AOO 3/85 3-5

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

the byte address is extracted and used to specify left byte (0)
or right byte (l); the remaining 15 bits are logically shifted
right by one bit to form the word address. In addressing a byte
in the code segment, bit 0 of the word address is copied from bit
0 of the P Register.

The following instructions are provided for referencing bytes in
logical memory:

LDB Load Byte into Register Stack from data segment
STB Store Byte from Register Stack into data segment
LBP Load Byte into Register Stack from Program (code

segment)

Four instructions operate on blocks of bytes:

MOVB
COMB
SBW

SBU

Move Bytes from one memory location to another
Compare Bytes in one memory location with another
Scan a block of Bytes While a test character is
encountered
Scan a block of Bytes Until a test character is
encountered

Doublewords

Two 16-bit words can be accessed as a single 32-bit element. The
hardware provides element access to doublewords in the data
segment (the software simulates doubleword access to elements in
the code segment). Doubleword elements are addressed on word
boundaries; therefore doubleword addressing is permitted in all
of the data segment.

A DOUBLEWORD CONSISTS OF ANY TWO CONSECUTIVE MEMORY LOCATIONS

DOUBLEWORD-(E~---· 1=

- - -

3 WORD [5]
- - - --

WORD [6]
- - - --)-DOUBLE-

WORD [7] WORD
- - - -

55001-030

Figure 3-4. Doubleword Addressing

3-6 -'182507 AOO 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Data Formats

Two instructions are provided for referencing doublewords in
logical memory:

LDD Load Doubleword into Register Stack from data segment
STD Store Doubleword from Register Stack into data segment

Quadruplewords

Four 16-bit words can be accessed as a single 64-bit element.
The hardware provides element access to quadruplewords in the
data segment (the software simulates quadrupleword access of
elements in the code segment). Quadrupleword elements are
addressed on word boundaries; therefore quadrupleword addressing
is permitted in all of the data segment.

Two instructions are provided for referencing quadruplewords in
the data segment:

QLD Quadrupleword Load into Register Stack from data segment
QST Quadrupleword Store from Register Stack into data

segment

A OUADRUPLEWORD CONSISTS OF ANY FOUR CONSECUTIVE MEMORY LOCATIONS

OUADRUPLEWORD {

WORD 1101
t----- - ---·------------

WORD 1111
------ ~--~--

WORD i 121
~--- -~--~- ---- ·- ---

WORD I 131

85001-031

Figure 3-5. Quadrupleword Addressing

~ 82507 AOO 3/85 3-7

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

NUMBER REPRESENTATIONS

The system hardware provides arithmetic on both signed and
unsigned numbers. Signed numbers are characterized by being able
to represent both positive and negative values; unsigned numbers
represent only positive values. Signed numbers are represented
in 16 bits (a word), 32 bits (doubleword), or 64 bits
(quadrupleword). Representation of unsigned numbers is
restricted to 8- and 16-bit quantities.

Positive values are represented in true binary notation.
Negative values are represented in two's-complement notation with
the sign bit of the most significant word set to 1 (that is,
WORD[0].<0>). The two's complement of a number is obtained by
inverting each bit position in the number, then adding a 1.
For example, in 16 bits, the number 2 is represented:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

and the number -2 is represented:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

The representable range of numbers is determined by the sizes of
operands (i.e., word, doubleword, and quadrupleword).

Single Word

Single-word operands can represent signed numbers in the range of

-32,768 to +32,767

and unsigned numbers in the range of

0 to +65,535

Whether a word operand is treated as a signed or an unsigned
value is determined by the instruction used when a calculation is
performed. Signed arithmetic is indicated by the execution of
integer instructions. The integer instructions are:

3-8

IADD
ISUB
IMPY
IDIV
INEG
ICMP
ADDI

Integer Add
Integer Subtract
Integer Multiply
Integer Divide
Integer Negate (two's complement)
Integer Compare
(integer) Add Immediate

4J 82507 AOO 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

CMPI
ADM

(integer) Compare Immediate
(integer) Add to Memory

Unsigned arithmetic is indicated by the execution of logical
instructions. The logical instructions are:

Logical Add
Logical Subtract
Logical Multiply (returns doubleword product)

LADD
LSUB
LMPY
LDIV
LNEG
LCMP
LADI

Logical Divide (returns 2-word quotient and remainder)
Logical Negate (one's complement)
Logical Compare
Logical Add Immediate

Doubleword

Doubleword operands can represent signed numbers in the range of

-2,147,483,648 to +2,147,483,647

Ten instructions perform integer arithmetic on doubleword
operands. They are:

DADD
DSUB
DMPY
DDIV
DNEG
DCMP
DTST
MOND
ZERD
ONED

Doubleword Add
Doubleword Subtract
Doubleword Multiply
Doubleword Divide
Doubleword Negate (two's complement)
Doubleword Compare
Doubleword Test
(load) Minus One in Doubleword form
(load) Zero in Doubleword form
(load) One in Doubleword form

Byte operands represent unsigned values in the range of

0 to +255

This, of course, includes the ASCII character set. Byte operands
are treated as the right half of word operands (that is,
WORD.<8:15>) when arithmetic is performed (the left half of the
word is assumed to be 0).

~ 825.07 AOO 3/85 3-9

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

There is one instruction for testing the class (i.e., ASCII
alphabetic, ASCII numeric, or ASCII special) of a byte operand.
It is:

BTST Byte Test

Quadrupleword (Decimal Arithmetic Option)

Quadrupleword operands for decimal arithmetic can represent
19-digit numbers in the range of

-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

NOTE

In this list, asterisks indicate optional instructions.
Quadrupleword instructions not marked with an astE!risk
are part of the basic instruction set.

Six instructions perform integer arithmetic on quadrupleword
operands:

QADD
QSUB

*QMPY
*QDIV
*QNEG
*QCMP

Quadrupleword Add
Quadrupleword Subtract
Quadrupleword Multiply
Quadrupleword Divide
Quadrupleword Negate
Quadrupleword Compare

Three instructions are provided for scaling (i.e, normalizing)
and rounding quadrupleword operands:

QUP
QDWN

*QRND

Quadrupleword Scale Up
Quadrupleword Scale Down
Quadrupleword Round

Nine instructions are provided for converting operands between
quadrupleword and other data formats:

*CQI
*CQL
*CQD
*CQA
*CIQ
*CLQ
*CDQ
*CAQ
*CAQV

3-10

Convert Quadrupleword to Integer
Convert Quadrupleword to Logical
Convert Quadrupleword to Doubleword
Convert Quadrupleword to ASCII
Convert Integer to Quadrupleword
Convert Logical to Quadrupleword
Convert Doubleword to Quadrupleword
Convert ASCII to Quadrupleword
Convert ASCII to Quadrupleword with Initial Value

Af' 82507 AOO 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

Floating-Point and Extended Floating-Point

The fraction of a floating-point number is always normalized, to
be greater than or equal to 1 and less than 2. The high-order
integer bit is therefore dropped and assumed to have the value of
1. For all calculations, the sign is moved and the bit inserted.
The integer plus 22 fraction bits of a floating-point number are
equivalent to 6.9 decimal digits; the 55 bits of an extended
floating-point number are equivalent to 16.5 decimal digits. If
the value of the number to be represented is zero, the sign is 0,
the fraction is 0, and the exponent is O.

The fraction of a floating-point number is a binary number with
the binary point always between the assumed integer bit and the
high-order fraction bit. The exponent part of the number, bits 7
through 15 of the low-order word (see Figure 3-1), indicates the
power of 2 multiplied by 1 plus the fraction. This field can
contain values from 0 to 511. In order to express numbers of
both large and small absolute magnitude, the exponent is
expressed as an excess-256 value; that is, 256 is added to the
actual exponent of the number before it is stored. The exponent
range is therefore actually -256 through +255.

The sign of a floating-point number is explicitly stated in the
high-order bit (i.e., signed magnitude representation). A 0 is
positive, and a 1 is negative.

The absolute-value range of floating-point numbers is:

-256
+/- 2

-78
(approx. +/- 8.62 * 10)

to
-23 256

+ /- (1 - 2) * 2
77

(approx. +/- 1.16 * 10)

For extended floating-point numbers, the range is the same; only
the precision is increased:

-256
+/- 2

-78
(approx. +/- 8.62 * 10)

to
-55 256

+/- (1 - 2) * 2
77

(approx. +/- 1.16 * 10)

(Note, however, that the value +2**-256 is not representable; it
would look like 0 in either floating point or extended floating
point.)

4J 82507 AOO 3/85 3-11

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

Arithmetic

The result of integer arithmetic {!ADD, !SUB, IMPY, DADD, DSUB,
DMPY, QADD, QSUB) must be representable within the number of bits
comprising the operand minus the sign bit {e.g., 15 bits for a
word operand, 31 bits for a doubleword operand). If the result
cannot be represented, an arithmetic overflow condition occurs,
and no part of the results on the stack can be assumed valid.
When an overflow occurs, the hardware Overflow indicator sets,
and {if enabled) an interrupt to the operating system overflow
interrupt handler occurs. An overflow condition also occurs if a
divide operation is attempted with a divisor of 0.

The results obtained from a logical add or subtract {LADD or
LSUB) are identical to that obtained from integer add or
subtract, except that logical add and subtract do not set the
Overflow indicator. The 16-bit result, the Condition Code
setting, and the Carry indicator setting are the same. Logical
divide {LDIV), however, sets the Overflow indicator if the
quotient cannot be represented in 16 bits.

In addition to the Overflow indicator, two other hardware
indicators are subject to change as the result of an arithmetic
operation. They are:

• Condition Code {CC). This generally indicates if the result
of a computation was a negative value, zero, or a positive
value. (The Condition Code can be tested by one of the
branch-on-condition-code instructions and program execution
sequence altered accordingly.)

• Carry {K). This indicates that a carry out of the high-order
bit position occurred.

For floating-point and extended floating-point arithmetic, the
Overflow indicator is set if the exponent becomes either greater
than +255 {exponent overflow) or less than -256 (exponent
underflow) when trying to represent the normalized result of some
operation. If the divisor in a divide operation is 0, the
Overflow indicator is also set. If any conversion instruction
causes a numeric overflow ("illegal conversion~), the Overflow
indicator is set, and the result {including Condition Code) is
undefined. If the result of some operation has a zero fraction
and nonzero exponent or sign, the value is forced to zero.

Table 3-1 defines termination conditions for various
floating-point arithmetic errors. (For further explanation of
the Condition Code, refer to the "Environment Register" in the
next section.)

3·-12 Lf' 82507 AOO 3/85

DATA FORMATS AND NUMBER REPRESENTATIONS
Number Representations

Table 3-1. Floating-Point Error Terminations

Condition Overflow cc Result
~-~- --- ··---1

Exponent Overflow 1 00
} Calculated

Exponent Underflow 1 10 result with
error

Divide by Zero 1 01 truncated

Illegal Conversion 1 xx Undefined

~ 82507 AOO 3/85 3-13

SECTION 4

INSTRUCTION PROCESSING ENVIRONMENT

A program executing as a process in a processor module consists
of instruction codes in a code space in memory that manipulate
variable data in a separate data segment in memory. The IPU's
eight-element Register Stack is used to perform arithmetic
operations and memory indexing. The instruction-to-instruction
environment of a program is maintained in the IPU's Environment
register. Programs themselves are separated into functional
blocks of instructions called procedures.

These fundamental elements of the instruction processing
environment are illustrated in Figure 4-1 and are discussed under
separate subheadings below.

CODE SPACE

The code space of a given process consists of a user code space
(UC) and optional library space (UL). Each space is a single
program file that can contain up to 16 code segments. A space ID
(space identifier) index is an octal number in range of 0 to %17
that is used to name the idividual segments within these two
spaces (for example, UC.O, UC.5, UL.17). The IPU microcode keeps
track of which segment is "current" for each space, and performs
segment "switching" when necessary. External procedure calls are
used to call procedures in other segments of the user space, as
well as to call procedures in the system library.

Information in a code segment consists of instruction codes and
program constants. Although it is possible to address the code
segments (using extended addressing or the LBP, LWP, or LWUC
instruction), only read access is permitted: a write access
attempt results in an address trap. Therefore, the code segments
cannot be modified during execution.

~ 82507 AOO 3/85 4-1

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

I REGISTER

CODE SEGMENT

IN MEMORY

/____l ___ ~

c (0) ---+ ------

I~
INSTRUCTION

CODES AND
CONSTANTS

__ P_R_E_G_1s"""r'"""E_R_I ___.,.

DEFINITIONS:

DATA SEGMENT
IN MEMORY

(MEMORY STACK)

r------1-~
G[O] ---+ -----.. -

GLOBAL
DATA

t-------_,

ONV REGISTER

BT-ELEMENT
EGISTER
STACK

LgfT~L ++------ I L REGISTER

t-- SUB-LOCAL - .~
DATA - Lii!EGISTER

t----- - -

ENVIR~~~~~A~~~ISTER I 0 , , 1 2 1 3 14 I 5 I 6 17 I 8 I 9 (10 / 1~[U I 14 I 15 f

EHV.<4> LIBRARY MAP(LIB·1)_J I I I I I
ENV.<5> PRIVILEGED------ ·
ENV.<6> DATA MAP (USER=O, SYS= 1)
ENV. < 7 > CODE MAP (USER= 0, SYS= 1) -·
ENV. < 8 > TRAP ENABLE= 1 -----·
ENV.<9> CARRY=1 ·

ENV.<10> OVERFLOW= 1 ---------------'

CONDITION CODE-(ENV.<11 >NEGATIVE OR NUMERIC CONDITION
ENV.<12> ZERO OR ALPHABETIC CONDITION-------------'

~

RP - ENV.<13:15> REGISTER STACK POINTER----------------

I REGISTER: CURRENT INSTRUCTION REGISTER

P REGISTER: PROGRAM COUNTER; ADDRESS OF CURRENT INSTRUCTION + 1 (RELATIVE TO C(O))
C(O]: FIRST ELEMENT IN THE CODE SEGMENT
G(O]: FIRST ELEMENT IN THE DATA SEGMENT
GLOBAL DATA: DATA AREA ACCESSIBLE FROM ANY POINT IN A PROGRAM
LOCAL DATA: DATA AREA ACCESSIBLE ONLY FROM CURRENTLY EXECUTING PROCEDURE
SUB·LOCAL DATA: DATA AREA ACCESSIBLE ONLY FROM CURRENTLY EXISTING SUBPROCEDURE
L REGISTER: LOCAL DATA POINTER: G[O] RELATIVE ADDRESS OF FIRST ELEMENT IN THE

LOCAL DATA AREA. ALSO INDICATES THE LOCATION IN THE MEMORY
STACK OF THE LINK (I.e., STACK MARKER) BACK TO THE CALLING PROCEDURE

S REGISTER: TOP OF STACK: G(O] RELATIVE ADDRESS OF THE LAST ACTIVE ELEMENT
IN THE MEMORY STACK

REGISTER STACK: EIGHT-ELEMENT REGISTER STACK WHERE ARITHMETIC OPERATIONS ARE

PERFORMED. THREE ELEMENTS CAN ALSO BE USED FOR INDEXING
RP: REGISTER STACK POINTER: INDICATES THE TOP ELEMENT IN THE REGISTER STACK

85001-032

1rigure 4-1. Elements of the Instruction Processing Environment

4--2 -'f' 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

A code segment consists of up to 65,536 16-bit words. Words in a
code segment are numbered consecutively from C[O] (code, element
0) through C[65,535]. This forms the basis for logical
addressing within the code segment and is illustrated in Figure
4-2.

Two registers are associated with code segments. These are
described in the following two paragraphs.

C[O)

t-

C[65,535] -

CODE

SEGMENT

85001-033

Figure 4-2. Code Segment Addressing Range

P register. The P (program) register is the program counter.
It contains the 16-bit C[O]-relative address of the current
instruction plus one. The contents of the P register are
incremented by one at the beginning of instruction execution so
that, nominally, instructions are fetched (and executed) from
ascending memory locations. (See top diagram of Figure 4-3.)

When a program branch is taken, a procedure or subprocedure is
called, or an interrupt occurs, the C[O]-relative address of the
next instruction to be executed is placed in the P register.
(See bottom diagram of Figure 4-3.)

I register. The I (instruction) register contains the machine
instruction currently being executed. When the current
i·nstruction is completed, this 16-bit register is filled with the
instruction in a code segment pointed to by the current setting
of the P register. The contents of the P register are then
incremented by one, as described above.

~ 82507 AOO 3/85 4-3

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

C[OJ RELATIVE

ADDRESS OF NEXT

INSTRUCTION TO

BE [XECUTED

C[O]

P REGISTER _...

INITIALLY S[T BY OPERATING

SYSTEM TO C[OJ RELATIVf

ADDRESS OF FIRST INSTRUCTION

IN PROGRAM

INSTRUCTIONS ARE E XECUT[D

IN ASCENDING OH DER UNLESS

A BRANCH INSTRUCTION IS

ENCOUNTER[D

P REGISTER

1016

1021

t--

CODE

SEGMENT

~

.....,

----...! I REGISTER

CURRENT INSTRUCTION

DECODED AND
EXECUTED BY HARDWARE

I REGISTER

.____.._B U-.;N._• .._5 --·
1

BRANCH

)
1 UNCONDITIONALLY

85001-034

Figure 4-3. P Register and I Register

bddressing Code

Addresses for branching (and for constants) in a code segment are
calculated relative to the current setting of the P register.
This is referred to as self-relative addressing.

Instructions that reference a code segment have an eight-bit
f:ield for specifying a relative displacement from the current P
register setting. The range of the displacement is therefore
-128:+127 words. An example, the BUN instruction, is shown in
E~igure 4-4.

The location that is addressed by the displacement is referred to
as the directly addressable location. It might be the location
ultimately referenced by the instruction (that is, it might be
the branch location, or it might contain the constant) or might
itself contain a self-relative address. If the latter, then the

4-4 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

BUN (BRANCH UNCONDITIONALLY) INSTRUCTION FORMAT:

0 1 2 3 4 5 6 7 8 9 I 10 11 I 12 1 13 14 15
I l _l_ J _l_ -'-- I I I

T ~ T T

l
T T T ,. T I I

I 0 0 1 0 0 0 1 DISPLACEMENT

55001-035

Figure 4-4. Displacement Field for Code Segment Instructions

referenced location is a relative displacement from the directly
addressable location. This choice, whether the direct location
is the one referenced by the instruction or contains a self­
relati ve address, is specified by the indirect bit, <i>, in the
instruction.

The address of the location in a code segment ultimately
referenced by an instruction is called "branchAaddrs" (branch
address). This is the address placed in the P register when a
program branch is taken:

P := branchAaddrs;

I : = code [P] ; ! "code" refers to a code segment

and used when fetching a program constant from memory:

A := code [branchAaddrs];

(A is the top element of the Register Stack.)

The address calculated by adding the displacement to the current
P register setting is referred to as "dirAbranchAaddrs" (direct
branch address):

dirAbranchAaddrs = P + <displacement>;

If the referenced location is within the range of the
displacement (i.e., P [-128:+127]), then direct addressing is
indicated, and the direct branch address is used as the branch
address. If the referenced location is beyond the range of the
displacement, then indirection is indicated, and the referenced
location (branchAaddrs) is a relative displacement from the
direct branch address.

~ 82507 AOO 3/85 4-5

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

Direct addressing is specified when the <i> (indirection) bit,
I.<O>, of the instruction is equal to O; bits I.<8:15> are a
two's-complement number (bit I.<8> is the sign bit) giving a
positive or negative displacement from the current P register
setting; therefore:

Indirect addressing is specified when the <i> bit of the
Instruction is equal to l; bits I.<8:15> are a positive or
negative displacement from the current P register setting;
therefore:

branchAaddrs = dirAbranchAaddrs + code [dirAbranchAaddrs];

That is, the C[O]-relative direct branch address is first
calculated (a displacement from the current P register setting).
Then the contents of the direct location (containing a
displacement from itself) are added to the direct branch address.
The result is the C[O]-relative branch address.

Examples of both direct and indirect addressing are given in
Figure 4-5. The "I" in the LWP 9,I instruction signifies
indirect addressing.

In addition to direct and indirect addressing, an offset value in
a hardware register can be added to the address of the direct or
indirect location before the final address is calculated. This
permits a code segment location to be referenced as an offset
from a base location; this is called indexing. Indexing in a
code segment is discussed in Section 9, "Instruction Set," under
the LWP instruction.

Addressing of byte elements (with indexing) is also permitted in
the code segment, though restricted to only half of the segment
(the same half in which the current P register setting is
located). Byte addressing is discussed in Section 9 under the
LBP (load byte from program) instruction.

By whatever means the final address is calculated, that address
is the effective memory address.

4-6 .-, 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Code Space

115 -128 = --13)I+

DIRECT /

~
4 5 6 7 8 9 10 11 12 13 14 15
~ 1 I 1 I 1 I 1 I 0 I 0 I 1 I 1T _____ ----- -- --- -- -_ ~:::L~W~P=-=13=== c [607]

'(' I /------------ ------;-
s1GN DISPLACEMENT ----6"-08---,.""""

INDIRECT

r:t177/lW4?'M%J o I o I o 1 o 1 1 I o I o I 1 · 1- - - -
~ '(' I r---

s1GN DISPLACEMENT

P REGISTER

CODE
SEGMENT

-- - ---- -- ------------
___ -- __________ -·--L_W_P_9,_1 _ _. C [3727]

P REGISTER /

~,
/

,,
/

---------------------+

Figure 4-5.

~ 82507 AOO 3/85

I
r - - -3737 - - - , __ ..J:::--_-::3::-04::---1 c [3131]

L---,--- .J

t -304
+ ,. ___ ! ___ ,

__ !~3 ___ ...

Addressing in a Code Segment

85001-036

4-7

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

DATA SEGMENT

Data Storage and Access

The data segment contains a program's temporary storage locations
(i.e., variables). Information in this segment consists of
single-element items, multiple-element items (arrays), and
address pointers. Input/output transfers (which are performed on
behalf of application programs by the GUARDIAN file system) are
accomplished using arrays in a program's data segment.

The first half of the data segment is used for dynamic allocation
of storage when procedures are invoked (see "Procedures"): this
area is referred to as the memory stac~.

The data segment consists of up to 65,536 16-bit words.
Addresses in the data segment start at G[O] (global data, word 0)
and progress consecutively through G[65,535]. See F'igure 4-6.
The memory stack portion of the data segment is G[0:32,767].

Data is accessed through use of the memory reference
instructions. Locations in the data segment are addressed either
through the address field in a memory reference instruction
(direct addressing) or through an address pointer in memory
(indirect addressing). Additionally, the memory reference
instructions permit an offset value (in a hardware register) to
be added to a direct or indirect address before a f i.nal address
is calculated. This permits one data element to be referenced as
an offset from another data element (indexing).

G[O]

I
f- f -

MEMORY
STACK
AREA

~J ___ "_ " DATA
G [32,767]

" SEGMENT

I
I

l I- _,
G [65,535]

85001-038

Figure 4-6. Data Segment Addressing Range

4-8 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

Direct addressing permits only limited ranges of addressing
within the data stack area; these ranges are defined under the
next subheading ("Addressing Data"). Indirect addressing and
indexing permit access to the entire data segment, since an
entire 16-bit word is used to specify an address. Memory
reference instructions have only 5 to 8 bits (depending on the
instruction) to specify a direct address.

The memory reference instructions for the data segment are:

LDX
NSTO
LOAD
STOR
LDB
STB
LDD
STD
ADM

Load Index register from data segment
Nondestructive Store, Register Stack into data segment
Load word into Register Stack from data segment
Store word from Register Stack into data segment
Load Byte into Register Stack from data segment
Store Byte from Register Stack into data segment
Load Doubleword into Register Stack from data segment
Store Doubleword from Register Stack into data segment
Add to Memory

The memory stack portion of the data segment is logically
separated into three areas: global, local, and sublocal (or
"top-of-stack" area). Each logical area has an addressing base
so that relative addressing can be performed. The logical areas
are described in the following paragraphs and illustrated in
Figure 4-7.

G(O]

L REGISTER ___.

INITIALLY SET BY THE
OPERATING SYSTEM TO
AN ADDRESS JUST ABOVE
THE GLOBAL DATA

GLOBAL
DATA

LOCAL
DATA

I s REGISTER --+-------~-­
(TOP-OF - STACK)

DATA ACCESSIBLE
BY A NY INSTRUCTION
IN THE CODE SEGMENT

DATA KNOWN ONLY TO
THE CURRENTLY EXECUTING
PROCEDURE

85001-037

Figure 4-7. L Register and S Register

"'iJ 82507 AOO 3/85 4-9

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

Global Area. Data within the global area is addressable by any
instruction in the program. The addressing base of the global
area is defined as G[O].

The beginning of the global area coincides with the beginning of
the data segment. Thus, the G[O]-relative address of an item is
its logical address within the data segment. G[O] is logical
address 0.

Local Area. Data within the local area is known only to the
currently executing procedure. The local area is defined by the
16-bit L register. The L (for local) register contains the
G[O]-relative address of the word at the beginning of this area.
The addressing base of the local area is defined as L[O].

When a procedure is called, a new local area is defined. This
occurs because the address contained in the L register advances
to point above the current local area (the caller's local area is
then undefined). Conversely, when a procedure exits, the exiting
procedure's local area is deleted (and the precedin9 local area
redefined) because the address in the L register recedes back to
its previous setting.

Top-of-Stack Area. Data in the top-of-stack (or sublocal) area
Is known only to the currently executing procedure. The
top-of-stack location is defined by the i6-bit S re9ister, which
contains the G[O]-relative address of the last word currently
defined in the memory stack. The addressing "base" of the
top-of-stack area is defined as S[O], and the sublocal area
consists of up to 32 word locations including and preceding S[O].

During execution of a procedure, the address in the S register
advances as elements are moved from the Register Stack to the top
of the memory stack, and recedes as elements are moved from the
top of the memory stack to the Register Stack. The address also
advances when procedures and subprocedures are invoked and
recedes when they are exited, along with the L register address.

Addressing Data

Data elements in the data segment are fetched and stored by the
hardware in terms of word addresses, regardless of the type of
operand involved. (The instruction set microcode also provides
for the addressing of bytes within a word, as described in the
sections on "Direct Addressing" and "Indirect Addressing" that

4-10 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

follow.) For purposes of explanation, "data" refers to a data
segment and "address" refers to the G[O]-relative address of a
word referenced by an instruction. Together, "data" and
"address" are used to indicate access to a location in a data
segment referenced by an instruction. Thus, a LOAD instruction
into A (the top of the Register Stack) is:

A := data [address]:

All direct addressing in the data segment is relative to one of
the three addressing bases: G[O], L[O], or S[O]. Memory
reference instructions for data contain a 9-bit address field for
specifying one of the three addressing bases and a relative
displacement from that base. Four addressing modes are provided
for addressing relative to these bases. The address indicated by
the address field in a memory reference instruction is referred
to as the directAaddress. The addressing modes are: G-relative,
L-plus-relative, L-minus-relative, and S-minus-relative. These
are described in the following paragraphs. Figure 4-8 shows an
example of a memory reference instruction and defines the bit
patterns for the four addressing modes. Figure 4~9 illustrates
each of the addressing modes.

LOAD INSTRUCTION FORMAT:

0 1 2 3 4 5 6
r ~ + _a +9110-+-11 12 l 13 14 15

-+-~-+---'-~-~- f - - + ----+----
I 1 0 0 MODE AND DISPLACEMENT

ADDRESSING MODES:

G-RELATIVE 0 0: 255

L-PLUS-RELATIVE 1 0 0: 127

SG-RELATIVE 1 1 0 0: 63

t----

L-MINUS-RELATIVE 1 1 ~ 0 () : 31

S-MINUS-RELATIVE 1 1 1 1 () . 31

-
MODE DISPLACEMENT

85001-039

Figure 4-8. Mode and Displacement Field for Memory Reference
Instructions

~ 82507 AOO 3/85 4-11

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

MEMORY REFERENCE
INSTRUCTION IN CODE SEGMENT:

7 8 9 10 11 12 13 14 15

ADDRESSING MODE AND
DISPLACEMENT FROM BASE

G
(256 WORDS)

L·MINUS
(32 WORDS)

L-PLUS
(128 WORDS)

(S·MINUS
-----i .. _ ~32 WORDS)

DATA
SEGMENT

GLOBAL
DATA

LOCAL
DATA

G [OJ !BASE

G [255)

L [-31)

L [OJ !BASE

L [127)

TOP~F S [-31)
STACK :
AREA •

:::::: S [0] ! BASE

85001-040

Figure 4-9. Memory Reference Instruction Addressing Modes

• G-Relative Mode

This mode addresses the first 256 locations in the global area
(G[0:255]). The G-relative mode is indicated when bit I.<7>
of a memory reference instruction is equal to O; bits I.<8:15>
specify a positive word displacement from G[O]; that is:

directAaddress := I.<8:15>;

4--12 -'182507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

• L-Plus-Relative Mode

This mode addresses the first 128 words of a procedure's local
data area (L[0:127]). The L-plus-relative mode is indicated
when bits I.<7:8> of a memory reference instruction are equal
to 10 (binary); bits I.<9:15> specify a positive word
displacement from the current L[O].

The hardware calculates a G[O]-relative address by adding
I.<9:15> to the contents of the L register:

directAaddress := L + I.<9:15>;

• L-Minus-Relative Mode

This mode addresses the 32 words just below and including the
word pointed to by the current L register setting, L[-31:0].
(This area is used for procedure parameter passing.) The
L-minus-relative addressing mode is indicated when bits
I.<7:10> of a memory reference instruction are equal to 1110
(binary); bits I.<11:15> are a negative word displacement from
the current L[O]. The hardware calculates a G[O]-relative
address by subtracting I.<11:15> from the contents of the L
register:

directAaddress := L - I.<11:15>;

• S-Minus-Relative Mode

This mode addresses the 32 words just below, and including,
the current top-of-stack word (S[-31:0]). (This area is used
for a subprocedure's sublocal data and for temporary storage
of the Register Stack contents by the PUSH and POP
instructions). The S-minus-relative mode is indicated when
bits I.<7:10> of a memory reference instruction are equal to
1111 (binary); bits I.<11:15> are a negative word displacement
from the current S[O]. The hardware calculates a
G[O]-relative address by subtracting I.<11:15> from the
contents of the S register:

directAaddress := S - I.<11:15>;

An additional addressing mode is provided to access the system
data segment from the user environment--the SG-Relative mode (see
"Environment Register" for an explanation of user environment).
This mode addresses the first 64 locations of the system data
segment (SG[0:63]) and is usable only by procedures executing in
privileged mode (e.g., the operating system). The SG-relative
addressing mode is indicated when bits I.<7:9> of a memory

AJ182507 AOO 3/85 4-13

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

reference instruction are equal to 110 (binary). Bits I.<10:15>
are a positive word displacement from SG[O]. (See "Calling
External Procedures" later in this section for an explanation of
SG-relative addressing.)

Direct Addressing. If the <i> (indirection) bit, I.<O>, of a
memory reference instruction is equal to 0, then direct
addressing is specified. The ranges of directly addressable
locations in the data segment are:

G[0:255]
L[0:127]
L[-31:0]
S[-31:0]

256 words
128 words

32 words
32 words

G-Relative Mode
L-Plus-Relative Mode
L-Minus-Relative Mode
S-Minus-Relative Mode

With direct addressing, the address of an operand referenced by
an instruction, relative to one of the addressing bases, is
specified in the address field of the memory reference
instruction; therefore,

address := directAaddress;

and only one memory reference is needed to access the referenced
memory location. Figure 4-10 gives an example of direct
addressing.

If a byte operand is referenced, it is in the left half of the
referenced location:

byte :=data [address].<0:7>;

--··-----------------------------·~

7 8 9 10 11 12 13 14 15

~~ o Io Io Io Io l 1 Io l 1 l 1 I·-
DIRECT y ~------~-------__/

G-RELATIVE DISPLACEMENT
ADDRESSING (% 13)

MODE

85001-041
~-------------------------------~--~-----~----------------~

Figure 4-10. Direct Addressing in the Data Segment

4·-14 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

If a doubleword operand is referenced, it consists of two words
starting at the referenced location:

doubleword := data [address:address+l]; ! two words

Quadruplewords cannot be accessed as such by any of these modes.
A quadrupleword must be accessed as some combination of smaller
units, such as two doublewords or four words.

Indirect Addressing. If the <i> (indirection) bit, I.<O>, of a
memory reference instruction is equal to 1, then indirect
addressing is specified. The range of indirect addressing is
G[0:65,535] (i.e., any location in the data segment).

With indirect addressing, the address of the referenced location,
relative to G[O], is contained in a location that can be
addressed directly (the contents of the direct location are
referred to as an address pointer). Two memory references are
needed to access the referenced location; the first to fetch the
address,

address := data [directAaddress];

the second to access the operand. Figure 4-11 gives an example.

If a byte operand is accessed, the address pointer contains a
G[O]-relative byte address. Bits <0:14> of the address pointer
are the word address of the byte operand, bit <15> of the address
pointer indicates whether the referenced byte is in the left-hand
part of the word, <0:7>, or the right-hand part, <8:15>:

byteaddress :=data [directAaddress];

address := byteaddress.<0:14>;

and the referenced byte is

byte := if byteaddress.<15> then
data [address].<8:15>

else
data [address].<0:7>;

An example is shown in Figure 4-12.

right byte

left byte

Note that, because a byte address is effectively divided by two
(to provide a word address), and the maximum byte address is
65,535, addressing of bytes is limited to the lower 32,768 words
of a data segment (the memory stack area) •

.,, 82507 AOO 3/85 4-15

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

0 9 10 11 12 13 14 15

IFBITZERO!I • 0 •IOFTHE

INSTRUCTION IS A "1". THE

CONTENTS OF THE DIRECTLY

ADDRESSED WORD ARE USED

AS A GIOI RELATIVE ADDRESS
OF ANOTHER WORD IN THE

DA TA SEGMENT

G-REL

L-PLUS-REL

L-MINUS-REL

S-MINUS-REL

0 1 8 9 10 11 12 13 14 l!J

~ ~:~ 0 I 0 I 0 I 0 I I 0 l l 1]

INDIRECT Y''---r----~
G-RELATIVE

ADDRESSING
MODE

DISPLACEMENT

G ~O] __...

---·....,.. G~11; --...

.. -
85001-042

Figure 4-11. Indirect Addressing in the Data Segment

If a doubleword operand is accessed, the address pointer contains
a G[O]-relative word address:

address := data [directAaddress]:

and the referenced doubleword is

doubleword := data [address:address+l]:

4·-16 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

INDIRECT, NO INDEX t-
-< G[Oj

~'):l o Io I o I o I o I o Io I o I o I 1 I o I 12345 Gl21

~
INDEX G-REL OFFSET
REG ADDRESSING "--" - -(NONE) MODE

,.........

12345 2 6172, r 1 ~ Gi6172]
1 RIGHT HALF

i..-..__I

85001-043

Figure 4-12. Indirect Byte Addressing in the Data Segment

Indexing. Indexing is used to reference memory locations
relative to a data element in memory. A typical use is when an
element in an array is accessed.

Generally, indexing is done as follows. An initial address is
first calculated as described previously (any addressing mode as
well as direct and indirect addressing is permitted). This
initial address is then used as a base address for indexing. The
indexing value, contained in an index register (referred to as
"X"), is added to the initial address to provide the address of
the referenced operand. This is shown in the upper part of
Figure 4-13.

Any one of three registers in the Register Stack (R[5:7]) can be
used as index registers. The register to be used for indexing is
specified in the <x> (index) field, I.<5:6>, that is part of all
memory reference instructions. (Note the instruction format in
the lower part of Figure 4-13.) The index field cor=esponds to
Register Stack elements as follows:

I.<5:6> VALUE INDEX REGISTER

0 x = no indexing
1 x = R[5]
2 x = R[6]
3 x = R[7]

4'J 82507 AOO 3/85 4-17

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

DIRECT, INDEXED

....... , DIRECT ADDRESS I +

INDIRECT, INDEXED

....... 1 DIRECT ADDRESS 1 -. 1 INOIRECT ADDRESS 1 + ~EX VALUE 1 R~~frVis~~s~sLJ

INSTRUCTION FORMAT

0 4 5 6 7 8 9 10 11 12 13 14 15

~a?a I I I JJ
INDIR-
ECTION y '-------~--__/

INDEX
REGISTER

0 =NO INDEXING
1 =RS
2 = R6

3 = R7

ADDRESSING MODE
ANO

OFFSET FROM BASE

Figure 4-13. Indexing

55001-044

An index register can contain values from -32,768 through +32,767
to provide direct word and doubleword addressing of any location
in the data area (all addressing is modulo 65,535). The value in
an index register is always treated as an element indexing value.
That is, if a byte instruction is being executed, the contents of
an index register are treated as a byte offset; if a doubleword
instruction is being executed, the contents are treated as a
doubleword offset.

Specifically,

• For direct, indexed addressing of word operands,

address := directAaddress + X;

The contents of the index register, X, are added to the
direct address; and the referenced element (referred to
as "wordx") is:

wordx :=data [address];

4·-18 .., 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

• For indirect, indexed addressing of word operands,

address := data [directAaddress] + X;

wordx := data [address];

• For direct, indexed addressing of byte operands,

byteaddress := (2 * directAaddress) + X;

The directAaddress (a word address) is multiplied by two to
obtain a byte address. The indexing value (a byte offset) is
added to that. The G[O]-relative address of the referenced
byte is converted to a word address as follows:

address := byteaddress.<0:14>;

and the referenced byte (referred to as "bytex") is

bytex := if byteaddress.<15> then
data [address].<8:15>

else
data [address].<0:7>;

right byte

left byte

• For indirect, indexed addressing of byte operands,

byteaddress := data [directAaddress] + X;

The address pointer indicated by "data [directAaddress]"
contains a byte address. X, which contains a byte offset, is
added to the byte address. The "address" and "bytex" are then
determined as described above.

• For direct, indexed doubleword operands,

address := directAaddress + (2 * X);

That is, the indexing value (a doubleword element index) is
multiplied by two to provide a word index. This value is
added to the initial address (also a word address) to generate
a G[O]- relative word address, and the element referenced
(referred to as "dwordx") is

dwordx := data [address:address+l]; two words

• For indirect, indexed doubleword operands,

address :=data [directAaddress] + (2 * x>:

.., 82507 AOO 3/85 4-19

INSTRUCTION PROCESSING ENVIRONMENT
Data Segment

4-20

WORD:

DIRECT. INDEXED Gl51

G] lfdl 1 I 1 Io Io Io Io Io Io I 1 I oEJ

~Y"-- OFFSET

REG I

DIRECT

G-RELATIVE

I
ADDRESSING

MODE

l~---

INDIRECT, INDEXED

BYTE

INDIRECT, INDEXED

G·RELATIVE

ADDRESSING
MODE

Rl7 I

Rl61

REGISTER
STACK

REGISTER
STACK

1234

7
---+ +

GI 17!

GIOI

GI 1241 I

GIOI

@tlfdl 1I1I 0 I 0 I 0 I 0 I 0 I 0 I 0 1 1 I 0 1· ,------i:::=__.:.,:12::,:3,::45::.,_-' G 121

INDIRECT

~11
REG

G·RELATIVE

ADDRESSING
MODE

OFFSET

Rl71

Figure 4-14.

12345

REGISfER

7

1•12338
STACK

~ 12338-2- 6169
R-O -------i...v

-7 O~LEFTHALF
Gl61691

~--1""'+----4

0 Gl61721 --·---....

85001-045

Examples of Indexing

Af' 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

The address pointer indicated by "data [directAaddress]"
contains a word address. X, which contains a doubleword
offset, is multiplied by two (to generate a word offset) and
added to the initial address. The "dwordx" is the same as
described above.

Figure 4-14 shows examples of word and byte indexing.

Three instructions deal with loading and modifying index register
contents. They are:

LDX
LDXI
ADXI

Load an Index register from data segment
Load an Index register with Immediate operand
Add to an Index register the Immediate operand

An additional instruction is used for branching on the contents
of an index register. It is:

BOX Branch on Index register less than A (top of Register
Stack) and increment index register

REGISTERS

Register Stack

The Register Stack is where arithmetic computations are performed
and, except for the Compare Words and Compare Bytes instructions,
where comparisons are made. The Register Stack consists of eight
16-bit registers, designated R[O] (Register Stack, element 0)
through R[7]: see Figure 4-15. Three elements of the Register
Stack, R[5:7], also double as index registers (see "Indexing").

R(O] -

I- REGISTER
.....

I- STACK -
I- -

R[7] -

55001-047

Figure 4-15. Register Stack

4'J 82507 AOO 3/85 4-21

INSTRUCTION PROCESSING ENVIRONMENT
Registers

A typical operation to add two numbers in the Register Stack is
as follows: the operands are first loaded into the Register
Stack using LOAD instructions, an IADD (integer add) instruction
is then executed performing the desired arithmetic, and the
result is then stored back into memory using a STOR instruction.
Grouped together to form a program, the preceding operation looks
like this:

LOAD G + 002
LOAD G + 003
!ADD
STOR G + 004

load data element G[2] onto Register Stack
load data element G[3] onto Register Stack
integer add
store result from Register Stack into G[4]

The condition of the Register Stack for each of these
instructions is shown in Figure 4-16.

Usually, elements in the Register Stack are addressed implicitly.
That is, an instruction operates on the top element (or elements)
without specifying the actual registers involved. The current
top element of the Register Stack is defined by the Register
Stack Pointer, RP. RP, which is a three-bit field in the
Environment register (described in the next subsection), contains
the register number, 0:7, of the top element. The RP setting is
incremented when operands are loaded into the Register Stack:

RP := RP + <size of element>;

and decremented when arithmetic is performed or results are
stored:

DATA

AREA

GlOI
G[l]
Gl2] 5
Gl3] 6
Gl4l 11

REGISTER

STACK

~---C 5 LOAD G+002

,___~
5

LOAD G+003
6

I

t=·--'-1_1 _ __, IADD

I I

- C:~.tid STOA G+004

55001-048

Figure 4-16. Example of Register Stack Operation

4--22 ..., 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

RP := RP - <size of element>:

The empty state of the Register Stack is defined as RP = 7. The
full state is also RP = 7. There is no protection against
rolling RP over from 7 to 0.

The operation of the Register Pointer for the example of Figure
4-16 is shown in Figure 4-17.

The elements
relative to

in
the

the Register Stack are named as to their location
current top element. The top element is

designated "A", the second is "B", and so on through "H":

A = RP (top of Register Stack)
B = RP [-1]
c = RP [-2]
D = RP [-3]
E = RP [-4]
F = RP [-5]
G = RP [-6]
H = RP [-7]

Examples of register naming are shown in Figure 4-18.

Environment Register

The 16-bit ENV (Environment) register maintains the !PU state of
the currently executing process. The individual bits and bit
fields of the ENV register are continually referenced and updated
by the !PU hardware and firmware. The ENV register contents are
saved (along with the contents of the P and L registers) by the
firmware as part of the executing state of a process when a
procedure is invoked or when an interrupt occurs. The firmware
restores the ENV register to its previous state when the
procedure or interrupt finishes.

The format of the ENV register is shown in Figure 4-19. The
following paragraphs describe the meanings of the bits in this
register. (The four high-order bits are reserved for use as
flags by the microcode.)

NOTE

The stored copy of the ENV register in a stack marker
differs from the hardware format shown here, since the
IPU microcode uses ENV.<11:15> to save the space ID index;
compare with Figure 4-24.

~ 82507 AOO 3/85 4-23

INSTRUCTION PROCESSING ENVIRONMENT
Registers

•MnH<AH §

§"''' EMPTY

TOP

1 I 1 I 1] ~~~!STER
'-r----'/

_j
RP

~"
o [o [o] ~~~ISTER
~/

WADG+~ r~] RIOI

.___ ___________________ _

~~ ol O I 1]~~~ISTER

LOADG+003 ~ 67:

--------~-- ~~ -··

IADD

lOP
Rill .___ ___ _

AIOI ~--- -------------- -
RI 1 I UNDEFINED

"---1/

___ __)

0 I 0
J

0
] ~~~ISTER

"'----~

RP

1 I 1 I i] ~~~!STER
"'----r-/ STORG+004 ~61 AIOI UNDEFINED

Alli UNDEFINED

Rl71 _E_MP_r_v _______________ J
$5001-049

Figure 4-17. Action of the Register Pointer

4--24 ~ 82507 AOO 3/85

16-BIT OPERANDS

INSTRUCTION PROCESSING ENVIRONMENT
Registers

RP

/~
~~ol1l1I

"--~

__ T_OP~~-~~~~~-------__)

RP

, I 1 I 0 I

m
; "---,~

TOP J -R[61 ___:_ _____________ __..

L::J O.CRANO >!Bl

TOP-~ OPERAND2(AJ

32 BIT OPERANDS

64 BIT OPERANDS

>--OPERAND 1 (DC)

>--OPERAND 2 (BAI

)- OO'<RANO > IH"

)- O"RANO' IOAI

85001-050

Figure 4-18. Naming Registers in the Register Stack

~ 82507 AOO 3/85 4-25

INSTRUCTION PROCESSING ENVIRONMENT
Registers

4 5 6 7 8 9 10 11 12 13 14 15

~LsFR1qoslcsjTjKfv@zJ jRPj

ENV.<4>LS(LIBRARYSPACE):1=LS -----_) J~ J y~
ENV.<5> PRIV: O=NONPRIVILEGED, 1 =PRIVILEGED --------.

ENV.<S> OS (DATA SPACE): O=USER, 1 =SYSTEM ---

ENV. < 7 > CS (CODE SPACE): 0 =USER, 1 =SYSTEM

ENV. < 8 > T (TRAP ENABLE): 0 =DISABLE, 1 =ENABLE -----

ENV.<9> K (CARRY BIT) ----------

ENV.<10> V (OVERFLOW): 0 =NO OVERFLOW, 1 =OVERFLOW --------·--------

ENV. < 11:12 > CC (CONDITION CODE): 10 =CCL (LESS THAN)

01 = CCE (EQUAL)

00 = CCG (GREATER THAN) }-----
ENV.<13:15> RP (REGISTER STACK POINTER) ----------

Figure 4-19. Environment Register

85001-051

IJibrary Space Bit. The LS bit (ENV.<4>) works with the CS bit
17) to define the current code space. When this bit is equal to
1, one of the library code spaces (user library or system
library) is chosen for execution, rather than one of the standard
code spaces (system code or user code), as selected by the CS
bit. In the case of "system" selection by CS, the current system
library segment is chosen for execution: in the case of "user"
selection by CS, the user's current library segment is chosen for
execution. (There can be up to 32 system library segments and up
to 16 user library segments: only one of each is "current" at a
given instant.)

frivileged Mode Bit. The PRIV bit (ENV.<5>), when equal to 1,
means that the program is currently executing in privileged mode
and. is permitted to perform privileged operations. Privileged
operations have the potential to adversely affect the operating
system if misused. Some examples of privileged operations are:
sending data over an interprocessor bus .(SEND), initiating

4-26 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

input-output operations (EIO), calling privileged procedures, and
accessing system tables. Normally, only the operating system
executes in privileged mode: privileged operations are performed
on behalf of application programs by the operating system.
Nonprivileged programs can perform privileged operations only
indirectly, by calling procedures designated callable. (Callable
procedures execute in privileged mode but can be called by
nonprivileged procedures.) When a nonprivileged procedure calls
a callable procedure, its nonprivileged state is restored on
return.

Instructions designated privileged can be executed only if the
PRIV bit in the ENV register is equal to 1. If a nonprivileged
program (i.e., PRIV = 0) attempts to execute a privileged
instruction or call a privileged procedure, the firmware
transfers control to the operating system instruction failure
trap handler.

Data Space Bit. The DS bit (ENV.<6>) defines the current data
segment. This specifies which data area is to be accessed when a
data reference is made. DS, when equal to 0, specifies the user
data segment: when equal to 1, it specifies the system data
segment. DS equals 1 only in the interrupt environment: thus
this bit is useful to both software and firmware in determining
whether the current environment is an interrupt or a process.
Processes executing in privileged mode can make explicit system
data references regardless of the state of the DS bit through use
of the SG-relative addressing mode.

Code Space Bit. The CS bit (ENV.<7>), together with the LS bit
(ENV.<4>), defines the current code space. (Microcode selects
the current segment within that space.) CS, when equal to 0,
specifies the user code space (or the user library space if LS is
equal to 1): CS equal to 1 specifies the system code segment (or
the system library space if LS is equal to 1).

Trap Enable Bit. The T bit (ENV.<8>) specifies whether control
is to be transferred to the operating system if an arithmetic
overflow occurs or a divide with a divisor of 0 is attempted.
If T is equal to 1 and an arithmetic overflow occurs (V,
ENV.<10>, = 1), control is transferred to the operating system
arithmetic overflow interrupt handler (see the GUARDIAN Operating
System Programmer's Guide for possible recovery procedures). If
T is equal to 0, control remains with the program having the
overflow condition.

~ 82507 AOO 3/85 4-27

INSTRUCTION PROCESSING ENVIRONMENT
Registers

Generally, the T bit is under control of the operating system.
However, application programs can set T to 0 by means of the SETE
instruction if it is desired to handle arithmetic overflow
conditions locally.

Carry Bit. The K bit (ENV.<9>), when equal to 1, indicates that
a carry out of the high-order bit position occurred when
executing an arithmetic instruction on a 16-, 32-, or 64-bit
operand. The state of the K bit reflects the last arithmetic
type instruction executed. The state of the K bit is also
altered as the result of executing a scan instruction (SBW or
SBU).

Two instructions test the state of the carry bit. They are:

BIC Branch if carry
BNOC Branch if no carry

Overflow Bit. The V bit (ENV.<10>), if equal to 1, indicates
that an overflow condition occurred, or a divide (!DIV) with a
divisor of zero was attempted. Overflow is generally associated
with arithmetic operations on 16-, 32-, and 64-bit operands.
Overflow also occurs in an LDIV instruction if the quotient
cannot be represented in 16 bits, or in floating-point arithmetic
if the exponent is too large or too small (see "Number
Representation" in Section 3).

The state of the v bit is tested by the BNOV (Branch if No
Overflow) instruction.

Condition Code Bits. This two-bit field (ENV.<11:12>) forms the
Condition Code. The Condition Code generally reflects the
outcome of a computation, comparison, bus transfer, or
input-output operation. The Condition Code is also set by
various system procedures to reflect the outcome of calls to
those procedures, and by "load" instructions to identify the
characteristics of the word or byte loaded onto the Register
Stack.

The two bits that form the Condition Code are designated:

N = negative or numeric, ENV.<11>

z = zero or alphabetic, ENV.<12>

The Condition Code has three states:

4-28 ~ 82507 AOO 3/85

CCL =
CCE =
CCG =

The state

less than,
equal to,
greater than,

INSTRUCTION PROCESSING ENVIRONMENT
Registers

ENV.<11:12> = 10 (N = 1, z = 0)
ENV.<11:12> = 01 (N = 0, z = 1)
ENV.<11:12> = 00 (N = 0, z = 0)

of the Condition Code is tested by the following branch
instructions:

BLSS Branch if CCL BLEQ Branch if CCL or
BEQL Branch if CCE BLEG Branch if CCL or
BGTR Branch if CCG BGEQ Branch if CCE of

The Condition Code is set explicitly by the following
instructions:

CCL Set CCL
CCE Set CCE
CCG Set CCG

The following paragraphs define the manner of setting the
Condition Code in various cases.

CCE
CCG
CCG

Following a Computation. In this case, a hardware operation sets
the Condition Code as follows, where x is the result of the
computation:

CCL: x < 0
CCE: x = 0
CCG: x > 0

Following a computation, the Condition Code reflects the
resultant value in a data segment location, on the top of the
Register Stack, or in an index register. The location reflected
by the Condition Code depends on the last instruction executed
(see Section 9 for particulars). For example, a simple program
to add two numbers and then store the result affects the
Condition Code as follows:

Data in Global Area
G [2] = 5
G [3] = -5

LOAD G + 002
sets Condition Code to CCG (5 on the top of the Register
Stack).

LOAD G + 003
sets Condition Code to CCL (-5 on the top of the Register
Stack).

~ 82507 AOO 3/85 4-29

INSTRUCTION PROCESSING ENVIRONMENT
Hegisters

!ADD
sets Condition Code to CCE (0 on the top of the Register
Stack).

STOR G + 004
does not change the Condition Code.

l~or a Comparison. In this case, a hardware operation sets the
Condition Code bits as follows, where x and y are the operands:

For Signed Operands For Unsigned Operands

CCL: x < y CCL: x '<' y
CCE: x = y CCE: x = y
CCG: x > y CCG: x '>' y

The operand x is the first operand loaded onto the Register Stack
(i.e., the second operand from the top of the stack), and y is
the top operand in the Register Stack. For the DCMP instruction,
x and y each take two registers on the Register Stack; for ECMP,
each operand takes four registers. When two arrays are compared
by a COMW or COMB instruction, x is the element in the
destination array, and y is the element in the source array. For
these instructions, the Register Stack is loaded with the address
of the destination array (first item loaded), followed by the
address of the source array (second item loaded) and the number
of words or bytes to be compared (top of Register Stack). The
Bingle quote marks surrounding an operator symbol signify an
unsigned (logical) rather than a signed (arithmetic) operation;
thus '>' and '<' are unsigned comparison operators.

For a Byte Test. In this case, a hardware operation sets the
Condition Code bits as follows, where x is the operand:

CCL: x is an ASCII numeric character
CCE: x is an ASCII alphabetic character
CCG: x is an ASCII special character

For a byte test, the Condition Code is set according to bits
<8:15> of the operand on the top of the Register Stack when a
BTST (Byte Test) or any "load byte" instruction (LDB, LBP, LBA,
I~BAS, LBX, LBXX) is executed. A Condition Code of CCL indicates
that an ASCII numeric character (i.e., 0, 1, ••• , 9) is on the
top of the Register Stack. CCE indicates a lowercase or
uppercase ASCII alphabetic character (i.e. , a, b, ••• , z or A,
B, ••• , Z), and CCG indicates an ASCII special character (i.e.,
neither numeric nor alphabetic).

4-30 4J 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Registers

For Bus Communication and Input-Output. For the Condition Code
settings resulting from interprocessor bus communication, see the
interprocessor bus description later in this section, and see the
description of the SEND instruction in Section 9, "Instruction
Set."

For input-output, see the input-output channel description in
Section 7 and the EIO, IIO, and HIIO instructions in Section 9.

Register Stack Pointer. This three-bit field (ENV.<13:15>)
defines the current top element of the Register Stack. The value
of RP is implicitly changed by instructions that operate on
values on the top of the Register Stack. RP is incremented as
instructions are executed to load operands onto the Register
Stack, and decremented when computations are performed or results
stored.

The STRP instruction is used to explicitly set the RP value.

Environment Register Initial Settings. The ENV register is
given an initial setting following a cold load to distinguish
processor type. These settings are:

%3447 for a Nonstop II processor. This setting specifies
privileged mode, system data, system code, traps disabled, no
carry, overflow, CCG, and RP = 7.

%3507 for a Nonstop TXP processor. This setting specifies
privileged mode, system data, system code, traps disabled,
carry, no overflow, CCG, and RP = 7.

The ENV register is given the following setting whenever an
interrupt handler is entered:

%3447 for a Nonstop II processor
%3507 for a Nonstop TXP processor

SETE Instruction. The SETE instruction is used to alter the ENV
register contents. The bits of ENV.<8:15> can be set to any
value desired; the bits of ENV.<0:7> are either cleared or left
unchanged. This prevents nonprivileged processes from becoming
privileged or gaining access to system data. A similar mechanism
is used in the EXIT instruction to restore the ENV register
contents when a procedure finishes. The programmer should take
care when clearing ENV.<0:7>, since it is possible to
inadvertently clear the Library Space (LS) bit, ENV.<4>.

~ 82507 AOO 3/85 4-31

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

PROCEDURES AND THE MEMORY STACK

A procedure is a functional block of instructions that, when
called into execution, performs a specific operation. A
procedure can perform an operation as simple as adding two
numbers or as complex as locating an entry in a data base. A
program typically consists of many procedures.

Several characteristics of procedures are:

• A procedure can be called into execution (invoked) from any
point in a program.

• Procedures are assigned a "callability" attribute. The
attribute specifies whether or not the caller must be
executing in privileged mode, and whether or not the called
procedure executes in privileged mode.

•• The caller need not be concerned with its environment or the
environment of the procedure it called, because:

--The caller's environment is automatically saved by the
hardware when a procedure is called and is restored by the
hardware when the called procedure finishes.

--When a procedure is called into execution, it is allocated
its own temporary storage area called a local data area.
The local data area (shown earlier in Figure 4-7) is known
only to the executing procedure and is logically separate
from other procedures' local data areas.

• Parameters (or arguments) can be passed to a procedure for
evaluation. The parameters can be actual operands or can be
addresses of operands.

• A procedure can return a value (such as the result of a
computation) to its caller.

• A procedure itself can contain one or more subprocedures. A
subprocedure is similar to a procedure in that it is also a
functional block of instructions, called into execution to
perform a specific operation. There are several similarities
between procedures and subprocedures: a subprocedure, like a
procedure, is allocated a temporary (sublocal) storage area
while it executes, parameters can be passed to a subprocedure,
and a subprocedure can return a value to its caller. Some
significant differences between procedures and subprocedures
are: different instructions are used to call a subprocedure
than a procedure, a subprocedure has no "callability"
attribute (it executes in the mode of its caller), and the
amount of sublocal storage available to a subprocedure is

4-32 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

significantly less than the amount of local storage available
to a procedure. (BSUB and RSUB do not change the current L or
ENV register setting.) In addition, a subprocedure can be
called only by the procedure that contains it, or by another
subprocedure contained within the procedure. A subprocedure
can access both its sublocal storage as well as the
procedure's local and global storage.

A procedure consists of a contiguous block of instruction codes
and program constants in a code segment. The procedures that
compose a program are in one or more segments within the user
code space. They may call procedures in the system code segment,
any of the system library segments, or any of the segments in the
user library space. The address of the first instruction in a
procedure is called the entry point. The entry points for all
procedures in a program are located in a table, known to the
hardware, called the Procedure Entry Point (PEP) table. The PEP
itself is located at the beginning of each code segment. See
Figure 4-20.

The External Entry Point table, also shown in Figure 4-20, exists
in each segment, but will be discussed later under "Calling
External Procedures." This table ends on a page boundary, with
entries consecutively assigned backward toward the end of code,
using the first available space that fits (either on the same
page as the end of code or on a separate page).

Procedures are invoked using procedure call instructions--PCAL to
a procedure within the same code segment, or XCAL to a procedure
in some other code segment. During execution of either of these
instructions, the caller's environment (specifically, the address
of the instruction following the call, the L register setting,
and the current ENV register setting--modif ied to include space
ID index) is saved in a three-word stack marker. The stack
marker is written at the current top of the memory stack. The
call instruction then references the entry in the PEP table
corresponding to the procedure being called. The address in the
PEP entry is placed in the P register so that the next
instruction executed is the one at the procedure's entry point.

The last instruction that a procedure executes is an EXIT
instruction. The EXIT instruction is used to return control to
the caller. Specifically, the caller's L register setting is
restored, and the return address (i.e., that of the instruction
following the call instruction) is set into the P register. The
caller's ENV register setting also is restored--except for the
Condition Code (CC) and Register Pointer (RP) fields, which are
left as is, since these fields in the stack marker copy of ENV
were used to save the space ID index. The EXIT instruction
microcode performs a segment switch, using the space ID, if the
caller's segment is different from the segment of the called
procedure.

Af' 82507 AOO 3/85 4-33

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

c101_..,..

I

~------+

CODE SEGMENT

PROC c

PROC d

PROC z

UNASSIGNED

ADDRESSES

AD DRS OF xd

ADDRS OF xc
-·------
ADDRS OF xb

ADDRS OF Xd

UNALLOCATED

SPACE

C[%177777J ------

PROCEDURE ENTRY POINT TABLE 1PEP1

J, EXTEHNAL ENTRY POINT TAf:lLEIXEP1

PAGE BOUNDARY

END OF CODE SEGMENT

85001-·052

Figure 4-20. Procedure Entry Point and External Entry Point
Tables

4-34 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

An example of a procedure call and exit is shown in Figure 4-21.
This example assumes the called procedure is in the same segment
as the caller, UC.2; note the space ID index value of 2 in the
stack marker.

CODE
SEGMENT

(UC.2)

+ "' DATA
SEGMENT

TOP-OF-STACK
AT TIME OF
CALL TO PROC b

STACK MARKER
P REGISTER

272

~N>-
USED TO SAVE AND

Cl2721 ._ 272 RESTORE CALLER'S
(I.e., PROC a's)
ENVIRONMENT

401 Cl40ll

P REGISTER
PROC b

!

85001-053

Figure 4-21. Procedure Call and Exit

"'1J 82507 AOO 3/85 4-35

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

Attributes of Procedures

So that a nonprivileged process cannot execute in privileged mode
and so that execution of privileged operations can be controlled,
every procedure has one of the following attributes:

• Nonprivileged. Procedures having this attribute can be called
by any procedure. They execute in the same mode (privileged
or nonprivileged) as the calling procedure. This is the
attribute typically given to procedures in an application
program.

• Callable. Procedures having this attribute can also be called
by any procedure, but they execute in privileged mode (i.e.,
PRIV = 1). The caller's mode is restored when a callable
procedure exits. This attribute is typically assigned only to
operating system procedures. It is used so that a controlled
interface exists between a nonprivileged application program
and the privileged operating system.

• Privileged. Privileged procedures execute in privileged mode
and are callable only by procedures currently executing in
privileged mode. An attempt by a nonprivileged procedure to
call a privileged procedure results in an illegal instruction
trap. This attribute should be used only by the operating
system. It is typically used when an operation, if done
improperly, might have an adverse effect on processor module
operation. A nonprivileged application program's only
interface to an operating system privileged procedure is
through a procedure with the callable attribute. (For
example, many of the GUARDIAN file system procedures described
in the System Procedure Calls Reference Manual are callable
procedures that, in turn, call privileged operating system
procedures.)

In the PEP table, procedure entry points are grouped according to
attribute. There are three groups: the first is nonprivileged
procedures, the second is callable procedures, and the last is
privileged procedures.

The first two words in the PEP table, C[O:l], describe where the
callable and privileged entry points begin in the PEP.
Specifically, C[O] is the address of the first PEP entry for a
callable procedure, and C[l] is the address of the first PEP
entry for a privileged procedure. See Figure 4-22. These words
are used to check whether a nonprivileged caller is attempting to
invoke a privileged procedure.

j~-36 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

,----

PEP TABLE ADDRESS

OF FIRST CALLABLE

/PROCEDURE

-C [OJ PEP TABLE ADDRESS
-C(ll - OF FIRST PRIVILEGED

-C[2]} PROCEDURE

ENTRY POINTS OF
NON PRIVILEGED

-_- } PROCEDURES

ENTRY POINTS OF

CALLABLE
PROCEDURES

ENTRY POINTS OF

PRIVILEGED
PROCEDURES

t- PEP

85001-054

Figure 4-22. First Entries in Procedure Entry Point Table

PCAL Instruction

The steps involved when a Procedure Call (PCAL) instruction is
executed are described below, with step numbers referring to the
accompanying illustration, Figure 4-23. Note that before the
PCAL executes, the procedure parameters (and the mask word or
words, for procedures with a variable number of parameters) must
be pushed onto the stack. Also, it is usually assumed by the
called procedure that the Register Stack is empty when a PCAL is
about to be executed (RP=7). The RP (Register Pointer) and CC
(Condition Code) fields of ENV that are saved in the stack marker
(step 1, below) are overwritten by the space ID index of the
calling procedure.

1. The caller's environment is saved in a three-word stack
marker.

data [S+l]
data [S+2]
data [S+3]

·-.-. -.-. -.-
P;
ENV; stack marker.
L;

The stack marker is pushed onto the top-of-stack location,
as indicated by the address in the S register. The
stack marker contains the following information:

~ 82507 AOO 3/85 4-37

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

PROCEDURE CALL IPCALI

CODE
SEGMENT

~~CALLER
PCAL PN

C [PEP;

r
PROCEDURE

l

l'>

DATA
SEGMENT

CALLER'S

LOCAL

DATA

THREE WORD STACK

MARKER SAVING

CALLER'S ENVIRONMENT

CALLER'S ENV REGISTER

CALLER'S L REGISTER
ILAST STACK MARKER I

)-

PRECEDING

STACK

f\1ARKER

)-

85001-055

Figure 4-23. Execution of PCAL Instruction

4·-38 .., 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

• the current P register setting (the address of the
instruction following the PCAL)

• the current ENV register setting

• the current L register setting (the beginning of the
caller's local data area)

NOTE

The stored copy of the ENV register (see Figure 4-24)
contains the complete space identification of the
caller's segment, since code spaces can have multiple
segments. This consists of the LS and CS bits, to
select one of the four code spaces, plus a space ID
index to select a specific segment within that code
space. (Also note that, since bits 11 through 15 of
ENV, which normally contain CC and RP, are used to
save the space ID index in the stack marker, the CC
and RP fields must not be modified in the stack
marker.)

2. If the calling procedure is not executing in privileged mode,
the "callability" attribute of the procedure being called is
checked.

First, the PEP number field of the PCAL instruction is
compared with the entry in C[O] (the address of the first PEP
entry for callable procedures). If the PEP number is greater
than or equal to the C[O] entry, then this is a call to a
callable or privileged procedure, so a second check is made:
the PEP number field of the PCAL instruction is compared with
the entry in C[l] (the address of the first PEP entry for
privileged procedures). If the PEP number is greater than or
equal to the entry in C[l], then this is a call to a
privileged procedure; so, an instruction failure trap occurs,

4 5 6 7 8 9 10 11 12 13 14 15

LS PRIV OS CS T K V

SPACEID INDEX

85001-056

Figure 4-24. Space Identification in Stored Copy of ENV

~ 82507 AOO 3/85 4-39

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

and the PCAL instruction fails. Otherwise, this is a call to
a callable procedure, so the PRIV bit (in ENV) is set.

If the PEP number is less than the C[O] entry, then this is a
call to a nonprivileged procedure, so no special action is
taken.

3. The S and L registers are set with the G[O]-relative address
of the new top-of-stack location (the third word of the stack
marker).

L : = S : = S+3;

The new L register setting defines the base of the local area
for the procedure being called.

4. The new S register setting is tested for an address within
the memory stack area, G[0:327£7]. If the value is greater
than 32,767, control is transferred to the operating system
stack overflow trap (and the PCAL instruction is aborted).

if S '>' 32767 then stackAoverflowAtrap;

5. The C[O]-relative address of the procedure being called is
obtained from the PEP table entry pointed to by the <PEP
number> field in the PCAL instruction. This address is put
in the P register so that the next instruction executed will
be the first instruction of the called procedure.

6. Finally, RP is given an initial value of seven (stack empty)
if it does not already have this value.

RP := 7.
'

Following the PCAL, the instructions comprising the procedure are
executed. The last instruction that a procedure executes is an
EXIT instruction.

EXIT Instruction

The EXIT instruction uses the three-word stack marker to restore
the caller's environment. The sequence is as follows, with
reference to Figure 4-25. (For simplicity, and continuity with

4-40 ~ 82507 AOO 3/85

CODE AREA

PCAL PN

EXIT DECS

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

15

S DECREMENT INSTRUCTION FORMAT DATA AREA

P REGISTER

T K V

'---~--'/

"'---~-----/

K V cc RP

L REGISTER

r+' SREGISTER I

SDEC 8

Le , Ri!:'Ei\!!. J

THREE-WORD STACK MARKER

SAVING CALLER'S
ENVIRONMENT

CALLER'S P REGISTER

CALLER'S ENV REGISTER

CALLER'S L REGISTER

CURRENT ENV REGISTER SETTING

ENV REGISTER AFTER EXIT

CALLER'S
LOCAL
DATA

}

)-

85001-057

Figure 4-25. Execution of EXIT Instruction

~ 82507 AOO 3/85 4-41

INSTRUCTION PROCESSING ENVIRONMENT
Procedures and the Memory Stack

the preceding PCAL description, this sequence assumes the return
is from a procedure that was called with PCAL rather than XCAL.)

1. The S register setting is moved below the local area, the
stack marker, and any parameters to the exiting procedure.

S := L - SAdecrement;

The "SAdecrement" value (which is specified in the EXIT
instruction) is subtracted from the current L register
setting and placed in the S register. The value of
"SAdecrement" is three (for the stack marker) plus the number
of words of parameter and mask information passed to the
exiting procedure.

2. The P register is set with the P register value saved in the
stack marker at L[-2].

P : = data [L- 2] ;

The next instruction to be executed will be the one following
the PCAL instruction.

3. The ENV register is restored from a combination of the
current ENV register setting and the ENV register value saved
in the Register Stack at L[-1].

The mode (privileged or nonprivileged) and data area are
reestablished to be the lesser of the caller's and the
current settings. This ensures that a nonprivileged user
cannot exit with privileged capability. The caller's CS
(code space), LS (library space), T (traps), V (overflow),
and K (carry) are reestablished from L[-1]. Zand N
(Condition Code) are left at their current settings to
reflect the results of the call. RP is left at its current
setting so that a value in the Register Stack can be returned
to the caller.

4. The L register is restored from the L register value saved in
the stack marker at L[O].

L : = data [L] ;

This moves L back to point to the preceding stack marker,
thereby reestablishing the preceding local data area.

The instruction following the PCAL instruction then executes.

4-42 ~ 82507 AOO 3/85

CALLING EXTERNAL PROCEDURES

INSTRUCTION PROCESSING ENVIRONMENT
Calling External Procedures

Procedures in an external code segment can be called almost as
efficiently as the current segment's own procedures. The XCAL
(external procedure call) instruction and the space ID addressing
convention are two important features that make this possible.

Figure 4-26 illustrates an example of a call from a user code
segment to a procedure in the system code segment. (The general
method applies to any allowable external call between any pair of
segments in any of the four code spaces--user code, user library,
system code, and system library.) When the application program
program calls the external procedure, an XCAL instruction is
executed. This instruction places a three-word stack marker on
the top of the user stack and moves L and S in the same manner as
a PCAL instruction (i.e., defines a new local area). However,
instead of transferring control directly to a procedure within
the segment, control is vectored out of the segment (via its XEP,
External Entry Point table) into another code segment (through
that segment's PEP, Procedure Entry Point table). In this
example, the system code segment's Procedure Entry Point table
(PEP) is used to determine the procedure's starting address, and
the CS bit in the ENV register is set to "l" so that instructions
will be executed from the system code segment. The DS bit,
however, remains a "O" so that the user data segment (as opposed
to the system data segment) is still in effect. The local area
for the system procedure is therefore in the user data segment.
Specifically, the steps involved when the XCAL instruction is
executed are:

1. The caller's environment is stored in a stack marker.

data [S+l]
data [S+2]
data [S+3]

·-.-·-.-
:=

P;
ENV;
L• ,

The stored copy of the ENV register (see Figure 4-24)
contains the complete space identification (LS and CS bits,
plus the space ID index for the selected code space) of the
caller's segment, since code spaces can have multiple
segments. (Note that hardware bits 11 through 15 of the ENV
register, which normally contain the Condition Code and
Register Pointer, are not saved.)

2. The C[O]-relative address of the procedure being called is
obtained by a three-step process. First, the XCAL
instruction specifies a location in the caller's External
Entry Point table (XEP; refer back to Figure 4-20). Then,
the XEP entry is used to locate the desired code segment

.-, 82507 AOO 3/85 4-43

INSTRUCTION PROCESSING ENVIRONMENT
Calling External Procedures

USER
CODE

a } enoCEOUR•
ENTRY POINT

TABLE

~ (PEP)

XEPENTRY

lcslLsl INDEX I PEPNO. I
1 2 8 7 15 PROC z

CALL READ(.....);
XCAL 2 1---------11 c [4075) 4-- 4075

---- TT o T 41

~1----------.1

v-
SYSTEM

CODE

~~'~ { 1--1 _2_2 --'

~=~~:BLE.) 1-1------tl
PRIV

GROUP

42037

P REGISTER

AFTER EXIT, CS, OS, AND LS
POINT TO USER CODE, USER DATA,
AND USER LIBRARY, RESPECTIVELY

]

EXIT

P REGISTER

)

EXTERNAL
ENTRY POINT
TABLE(XEP)

C[O)

C[22]

C[41)

c (42037)

SYSTEM

PROCEDURE

ENTRY POINT
TABLE

(SEP)

PROCEDURES EXECUTING J
IN PRIVILEGED MODE FROM
THE USER ENVIRONMENT
CAN ACCESS SYSTEM DATA
AS WELL AS USER DATA

USER

DATA

D
z "s

LOCAL
DATA

READ'S

LOCAL
DATA

SYSTEM
DATA

G[O]

}
STACK MARKER
(IN THE CALLER'S ENV,
CS POINTS TO USER CODE,
OS POINTS TO USER DATA,
AND LS POINTS TO USER
LIBRARY)

SG[O)

85001-058

Figure 4-26. System Procedure Call and Exit

4-·44 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Calling External Procedures

(bits 0 and 1 specify CS and LS respectively, and bits 2
through 6 specify the segment index) and a Procedure Entry
Point number (bits 7 through 15 of the entry)--which in this
case is in the system code segment's Procedure Entry Point
table. Finally, the address in that PEP entry is put in the
P register so that the next instruction executed will be the
first instruction of the system procedure.

3. If the calling procedure is not executing in privileged mode,
the callability attribute of the system procedure being
called is checked.

sas := 3; ! system code segment--in this case
temp := <PEP number>;
if not PRIV then

if temp >= mem(3,0) then call to callable
begin

if temp >= mem(3,l) then ! call to privileged
instructionAfailureAtrap;

PRIV := l; ! set privileged mode
end;

P := mem(sas,temp); get entry point address into P

4. The S and L registers are set with the G[O]-relative address
of the new top-of-stack location.

L := S := S + 3;

The new L register setting defines the base of the local area
for the system procedure being called.

5. The new S register setting is tested for an address within
the memory stack area, G[0:32767]. If the value is greater
than 32,767, control is transferred to the operating system
stack overflow trap (and the XCAL instruction is aborted).

if S > 32767 then stackAoverflowAtrap;

6. The CS bit of the ENV register is set to 1 and the LS bit is
set to 0, so that further code area references will be in the
System Code segment (in this example). CS and LS settings
are derived from bits 0 and 1 of the XEP table entry,
respectively.

7. Finally, the Register Stack Pointer, RP, is given an initial
value of seven (stack empty).

Aj 82507 AOO 3/85 4-45

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

When the system procedure finishes, the EXIT instruction is
executed. The CS and LS bits, plus the space ID index bits from
the stored copy of the ENV register, are used to reestablish the
caller's segment of the user code space as the currently selected
code space, so that the next instruction is executed from that
segment.

NOTE

The foregoing example of an external procedure call is
the most straightforward case, in that the call is to
the system code segment (SC.0), which is always fully
mapped. If the call had been to a multisegment code
space (system library, or user code or library), the
possibility exists that the target segment might not
have been currently mapped. In that case, the XCAL
instruction automatically executes the MAPS instruction
during step 2 above, before proceeding with the
remaining steps. (The EXIT instruction similarly
invokes MAPS when necessary, prior to any of the four
steps shown earlier in Figure 4-25.)

MEMORY STACK OPERATION

Figures 4-27a and b depict an example of a memory stack operation
from an initial state (i.e., start of process execution) through
a call to, and subsequent return from, a procedure. The purpose
of the diagram is to show the action of the L and S registers as
a procedure generates its local variables and prepares to call a
procedure by passing parameters, how L and S are set when a
procedure is called, and how L and S are set when the return is
made to the caller.

1. Initial State

4-46

After the operating system has loaded a program into memory
but before the first instruction of the process executes, the
following initial conditions are present: the process's
global variables are initialized and present, and the L and S
registers are set to the address of the word just past the
global area. There are no local variables defined at this
time.

..,, 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

1. INITIALLY (PROGRAM STARTS)

D
Glo:

L
DATA

L REGISTER

123 :1 S REGISTER

123

3. PROC A PUTS PARAMETERS
ON THE STACK IN PREPARATION
TO CALLING B

l

G' 123'

1
L REGISTER

1--------1 G · 123
123 1-

A"s
LOCAL
DATA

I
I

2. PROC A GENERATES ITS
LOCAL VARIABLES

L REGISTER

123

_r------1,'

I

I

I

I

n

/'' L------..J

I

A"s
LOCAL
DATA

\
' S REGISTER

'_, 167 1-------1 GJ 158)

4. PROC A CALLS PROC B

I

I

I

/

I

/~~~~~~~~}--

/ -~ ~ ~ ~: =: _-::- --1--------1
I Pl I

1----P_2 _ ___.G: 160) \-~ = ~: _-_-_-_J- -\ S REGISTER

'....J 160

Figure 4-27a.

..-, 82507 AOO 3/85

/ \

II \ L REGISTER

\ , 163

' S REGISTER

'j 163

P2

STACK
MARKER

1-------1 GI 163 !

55001-059

L and S Registers in Procedure Calls

4-47

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

I

I

I

I

I

\

'

5. PROC B GENERATES ITS
LOCAL VARIABLES

n

P1

P2

STACK
MARKER

6. PROC B EXITS BACK TO A

I

I

I

L REGISTER

1L. 123

S REGISTER

I L .. _1~58_-J
I

I I

,1
\

\
\

As
LOCAL
DATA

L REGISTER

163 ,___ ___ G i 163 \~ = = -= = = -=- ~ j- - - -.

r - - - - - - - -,,. ,.
,,. - -L - - - - - - - .J

SREGISTER

B's
LOCAL
DATA

-1.___2_11 _ _.1-1-------f G: 217 ·

I
I

I
I
I

\
\

\

\~ ~ = = = ~ .=-J- --•

G 123'

G 158'

85001-060

Figure 4-27b. L and S Registers in Procedure Calls

2. Procedure A generates its local variables

The first few instructions of a procedure generate the
procedure's local variables. As the local variables are
generated, the S register setting increases, defining a new
upper limit to the procedure's local area. Note that the L
register setting does not change.

3. Procedure A passes parameters to procedure B

4-48

In preparation for calling the procedure B, the parameter
words (two in this example) are placed on the top-of-stack
location as indicated by the S register setting~ The S

'1' 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

register setting is increased by two to account for the
parameters.

4. A calls B

After the parameters are loaded onto the memory stack, a
procedure call instruction is executed; this could be a PCAL
(Procedure Call), XCAL (External Procedure Call), or DPCL
(Dynamic Procedure Call). Figure 4-27 assumes PCAL.
Execution of the call instruction places a three-word stack
marker at the current S register setting plus one (just above
the parameters). Land S registers are given a new setting;
they both point to the third word of the stack marker. The
new L register setting defines the start of B's local area.
At this point, no local variables have been generated for
procedure B. (Note that A's local area, which is normally
addressed relative to the L register, is no longer
addressable by the L-plus addressing mode.)

5. Procedure B generates its local variables

In the same manner as procedure A did, procedure B generates
its local variables. This increases the S register setting
accordingly, so that the S register defines the new upper
limit to B's local area.

6. Procedure B exits back to procedure A

When procedure B completes, an EXIT instruction is executed
to return to A. Execution of the EXIT instruction moves the
L register setting back to the beginning of A's local area
and moves the S register setting back to the top-of-stack
location that was in effect before the parameters were'loaded
on the stack (this is accomplished by the "SAdecrement" value
in the EXIT instruction). Specifically, for the return to
procedure A, the EXIT instruction is:

EXIT 5

This deletes the three-word stack marker, plus the two
parameter words, from the top of the stack.

AfJ 82507 AOO 3/85 4-49

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

Generation of and Access to Local Data

Unlike the global data area, which exists at all times, the local
data area for a procedure exists only while the procedure is
actually executing. The local variables are generated and
initialized by instructions at the start of a procedure's code.
Thus, a procedure can be called any number of times (and in fact
can call itself), and each call generates a fresh copy of the
procedure's local data area. An example of the instructions used
to generate the following local variables are considered next
(referring to Figure 4-28):

INT i,
j : = 5,
.k [0:3lb

L[l]
L[2]
L[3] (pointer to k, which starts at L[4])

These are three local variables declared in a TAL source program:
"i" is a one-word uninitialized variable, "j" is a one-word
variable initialized with the value 5, and "k" is an indirectly
addressed array variable consisting of ~2 words. The
instructions to generate these variables are:

ACCESS TO A PROCEDURE'S
LOCAL DATA USING THE
L·PLUS ADDRESSING MODE

L REGISTER

DATA
SEGMENT

STACK
Mi!\RKER

123 1----L[OJ G(123]
~L(1],....... _...

o ---r---.---..----.-1-0-.--~-....-1-3.....--~1 5 ___/ L(2J _____ _

~/m x ~~ ·-/L(3]
DIRECl L-PLUS DISPLACEMENT

ADDRESSING

MOOE _/

x j1jojol0Jojojol1j1j

K

~~
INDIRECl L-PLUS DISPLACEMENT

ADDRESSING

MODE:

85001-062

Figure 4-28. L-Plus Addressing Mode

4-·5Q -'1J 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

ADDS
LDI
LADR
PUSH
ADDS

+001
+005

L+004
711

+040

Add to S
Load Immediate
Load Address
PUSH to Memory
Add to S

The ADDS instruction increments the S register setting by one.
This allocates one word for the variable "i".

The LDI instruction puts the initialization value for "j" (5) on
the top of the Register Stack.

The LADR instruction calculates the G[O]-relative address of the
first word of the indirect array "k" and puts the address on the
top of the Register Stack.

The PUSH instruction performs two functions: (1) it puts the
initialization value given in "j" and the address of the array
"k" into L[2] and L[3] of the process's stack, respectively, and
(2) it increments the S register setting by two to allocate the
two words needed for "j" and the address pointer to "k".

The ADDS instruction increments the S register setting by 32
(octal 40). This allocates 32 words for the indirect array "k".

Following the generation of the local variables, the local area
for this example consists of:

L[l] = i
L[2] = j (initialized with a value of 5)
L[3] = an address pointer to the array "k"
L[4:35] = the array "k"

Once allocated, data in the local area is addressed relative to
the current L register setting using the L-plus addressing mode.
As illustrated, this mode can access local data directly or can
use the direct address as an address pointer (indexing is also
permitted).

The top-of-stack area is addressable implicitly through use of
the PUSH and POP instructions. These are illustrated in Figure
4-29. The PUSH instruction is used to store the Register Stack
contents, usually prior to calling a procedure, on the top of the
memory stack. When a PUSH instruction is executed, the S
register setting is incremented by the number of words pushed.
The POP instruction is used to restore the Register Stack
contents from the top of the memory stack, then decrement the S
register setting accordingly.

~ 82507 AOO 3/85 4-51

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

ADDING ELEMENTS TO THE

TOP OF-STACK (S INCREASES!

REGISTER STACK

'""""' ~l~ .
~)

DELETING ELEMENTS FROM THE

TOP OF-STACK (S DECREASES!

(

r- l58- _, -----· .__ __ _, (

------- -· ___ :'.,-5]l
S REGISTER

L 166] ---+ S[OI

G [1sa1

G [166!

G: 1sa:

'""" ~:,=,~~ }--C~~::. =~=~ ~~{-......,.,...,...,..,.,....,...,~ }''~~~:=·~:.::.
85001-061

Figure 4-29. PUSH and POP Instructions

Parameter Passing

Parameters are passed to a procedure in the top-of-stack area.
Naturally, there must be coordination between the caller and the
<:alled when passing parameters. The caller must know the order
in which a procedure expects parameters, and whether a parameter
is to be an actual operand (called a yalue parameter) or an
address pointer (called a reference parameter).

Before the caller invokes a procedure, the parameters are
prepared in the Register Stack. The actual operands (for value
parameters) and the addresses of operands (for reference
parameters) are loaded into the Register Stack in the order
required by the procedure being called. The address of a
reference parameter is obtained by the execution of a LADR (load
address) instruction. The parameters that have been prepared in
the Register Stack are loaded on the top of the memory stack by
~~xecuting a PUSH instruction (which increments the S register
accordingly).

An example will now be considered to show the instructions used
to prepare the top of the memory stack area for parameter
passing. This example uses the variables declared in the
preceding example, and is illustrated in Figure 4-30. The
procedure being called is of the form:

~~-52 Af" 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

LOAD L+002
LADA L+001 ~--­

RP AFTER LADA

0

DATA
SEGMENT

--------------L[1) G[124J --------------------L[2] G[125]

REGISTER
STACK

PUSH 711

S REGISTER
BEFORE PUSH

__ r - - 1s8 - - 1
/,, L _______ J

I -------~ .,._.. ____ G [159]

,J'.._ __ 1_24 _ ___, G [160]
1 S REGISTER
', AFTER PUSH

'-1 __ 1_60 __

85001-063

Figure 4-30. Parameter Passing

PROC b (pl,p2);
INT pl,.p2;

Parameter "pl" is a value parameter; therefore, the procedure
expects an actual value to be passed. Parameter "p2" is a
reference parameter, and, therefore, the procedure expects the
G[O]-relative address of a variable to be passed.

The call being made from procedure A is:

CALL b (j,i);

The instructions to pass these two parameters are:

LOAD L +002
LADR L +001
PUSH 711

The LOAD instruction puts the contents of the variable "j" (the
value 5) on the top of the Register Stack. (This is the
parameter passed as "pl", a value parameter, to procedure B.)

~ 82507 AOO 3/85 4-53

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

The LADR instruction calculates the G[O]-relative address of the
variable "i" and puts the address on the top of the Register
Stack. (This is the parameter passed as "p2", a reference
parameter, to procedure B.)

The PUSH instruction places the two parameters from the Register
Stack on the top of the memory stack and increments the S
register setting by two.

Parameter Access

Parameters are accessed by using the L-minus addressing mode.
This mode provides access to the 32 locations just below and
including the current L register setting (L[-31:0)). Subtracting
the three words used for the stack marker, this leaves 29 words
addressable as parameters. If value parameters are passed, the
parameter location is addressed directly (<i>, indirect, bit of a
memory reference instruction= O): if reference parameters are
passed, the parameter location is used as an indirect address
(<i> bit= 1). Indexing in either mode is permitted.

Figure 4-31 shows an example of both value and reference
parameter access.

Returning a Value to the Caller

A procedure can return a value to its caller using the top of the
Register Stack. This, like parameter passing, requires
coordination between the caller and the called. That is, the
calling procedure must know the element size of the return value
(i.e., number of words comprising the value).

The following paragraphs describe an example of a procedure,
named "f", that returns a value, and the instructions used to do
so. The example is illustrated in Figure 4-32.

The procedure is of the form:

INT PROC f (x) :
INT x:

BEGIN
RETURN x * x:

END:

4-54 ~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

ACCESS TO A PROCEDURE'S

PARAMETERS USING THE

L·MINUS ADDRESSING MOOE

l) I JU 13 1~

S>f0 x

t
DIRECT

1FOR VALUE

PARAMETER I

L-MINUS

ADDRESSING
MODE

DISPLACEMENT

L [-4 J ,............_._._............,......._..--1

I 1 l 1 l 1 I 0 I u l () l () I 1 \ 1) _____,r-L[-J] _ ____.

INDIRECT

(FOR REFERENCE
PARAMETER1

~~I/
L-MINUS

ADDRESSING

MODE

DISPLACEMENT

L REGISl ER

163

S REGISTER

85001-064

Figure 4-31. Parameter Access

This procedure returns the square of a number, "x". The
instructions to return the square of "x" are:

LOAD L -003
LOAD L -003
IMPY
EXIT 4

parameter x is obtained from L-003
load another copy of x
squared result now exists in R[O]
delete stack marker and parameter x

The first LOAD instruction loads the parameter "x" onto the top
of the Register Stack. Following the LOAD, the RP setting is O.
(The RP setting is 7 when a procedure begins executing.) The
second LOAD again loads the parameter "x". Following this load,
the RP setting is 1.

The IMPY instruction multiplies the values in the Register Stack,
leaving the result of the multiplication in R[O]. Following this
operation, the RP setting is O.

The EXIT instruction causes a return to the caller, deleting the
parameter and stack marker (1 + 3 = 4) from the data stack. The
squared value is left on the top of the register stack.

Suppose a call is now made to procedure "f", as follows:

z := i + j - f(5);

~ 82507 AOO 3/85 4-55

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

INSTRUCTIONS IN THE CALLING PROCEDURE
TO EXECUTE THE FOLLOWING STATEMENT:
Z: =I+ j - f(5);

REGISTER

STACK

LOAD L + 001

~I 1: LOAD L + 002

IADD
0 I I+ j

LDI 5 : I I+ J j) PUSH 711
5

PCAL I

ON RETURN
0 I 25 r-1 FROM I

I
I

: I 25 I
STAR 1 I 25

I
I

:1
I+ j H POP 100 25

I ISUB
0 I I+ J - 25

STOA L +003

INSTRUCTIONS IN THE PROC f

LOAD L ·003 0

LOAD L 003 5

IMPY
0 I 25

EXIT 4

Figure 4-32. Value Returned

DATA AREA
KNOWN TO

THE CALLING
PROCEDURE

L[·1J

L [;~]

L[:l]

S REGISTER

AFTER EXIT 4

/[
/ S REGISTER

·4 I+ J ~ AFTERPUSH
5 I

DATA AREA

KNOWN TO

PROCEDURE f

5 L l-3]

STACK

MARKER
LIO]

85001-065

Through Register Stack

That is, subtract the square of 5 from the sum of the contents of
the variables "i" and "j" then store the result in the variable
"z". Variables "i", "j", and "z" are local variables at L[l],
L[2], and L[3], respectively.

The instructions to perform this operation are:

4-56 "'82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

LOAD L
LOAD L
IADD
LDI
PUSH
PCAL
STAR
POP
ISUB
STOR L

+001
+002

+005
711

1
100

+003

load i
load j
i + j
load parameter to f
push sum and parameter onto memory stack
procedure call to f
move returned value from R[O] to R[l]

. bring saved sum back to R[O]
subtract returned value from i+j sum
store result into z

The first three instructions calculate the sum of i + j and leave
the result in R[O]. The LDI +005 instruction loads the parameter
to "f" onto the top of the Register Stack at R[l].

The PUSH instruction pushes R[O:l] onto the memory stack.
Following the PUSH, the two top-of-memory-stack locations
contain:

S[-1] = sum of i + j
S[O] = 5, the parameter to f

This clears the Register Stack for use by the procedure which now
is invoked by the PCAL instruction. On the return from f, R[O]
of the Register Stack contains the square of 5.

The STAR instruction moves the return value in the R[O] Register
Stack location to R[l] in preparation for the subtraction from
the sum of "i" + "j".

The POP 100 instruction brings the sum of "i" + "j" (calculated
previously) into R[O] and sets RP to 1 (to point to the returned
value).

The ISUB instruction subtracts the return value of "f" from the
sum of "i" + "j". The STOR instruction stores the result in the
variable "z", and RP becomes 7.

Stack Marker Chain

In examples shown previously, only one procedure call occurred,
and, therefore, only one stack marker was generated. However, in
practice, there can be several stack markers (and local areas)
present in a memory stack at once. This occurs when a called
procedure calls another procedure and that procedure calls still
another procedure, etc. The nature of this "chain" of stack
markers and the action of the L and S registers is such that the
returns are always made in the reverse order of the calls, and
the local data areas are redefined as the returns are made •

..-, 82507 AOO 3/85 4-57

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

Figure 4-33 shows the condition of a memory stack after the
following calls have taken place:

In procedure "a", CALL b;

In procedure "b", CALL c;

In procedure "c", CALL d;

The procedure "d" is currently executing.

Specifically, the L register, which is given a new (higher)
setting when a procedure is called, and the local data areas,
which are allocated and generated relative to the current L
register setting, result in a stack of procedure environments
that are physically placed in the chronological order in which
the calls were made. (Remember, when a procedure is called, the
stack marker is placed at the current S register setting plus
one. In this manner, a procedure's local data is always retained
when it calls another procedure.) The stack markers, which
contain the environment of the preceding procedure (and point to
the preceding stack marker) restore the preceding environments in
the reverse order of the calls.

§ubprocedures

Subprocedures are invoked using the BSUB (branch to subprocedure)
instruction. Because the BSUB is a branching-type instruction,
the subprocedure entry point is calculated as a self-relative
address. Execution of the BSUB instruction differs from other
branching instructions in that it places a return address on the
top of the memory stack. See Figure 4-34. Note that before the
BSUB executes, the subprocedure parameters must be pushed onto
the stack.

Specifically, the steps involved when a BSUB instruction is
executed are as follows:

1. The return address (i.e., that of the instruction following
the BSUB) is placed on the top of the memory stack.

"> "'· .

4-58

s := s + l;
data [S] : = P;

The self-relative branch address of the subprocedure is put
into the P register.

P := branchAaddress;

'1J 82507 AOO 3/85

PROC

PROC

PROC

I
I
I
I
I
I
I
L_

L->

CODE

SEGMENT

C[O]

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

DATA

SEGMENT 1- c;101

(;l OBAL

PATA

t+-,,..., "--74 C[201J +- - - - - - - - - - \

\

\
\

\
\

.,....,......,......,._,,....,._.,....,....,... C[564] - - - - - - - - - - - - - \

I REGISTER

L
l~-----

p REGISTER

I

\

\

\

\

\

\

\

\
\

r -
I

''- ______ I_

\

\

I

I

I

' I

cir,~ ·
t--.---r-r-.-r-r"T""""">..-f

(1 I 1 t . ~:
.........................,._ o...c

'- - - - - -,- - ________ ,,.__,,.-.!
I
L __ --.-.-...--....
I G[2.17i

\

\
I

I
I

'-- - - - - - - p 1485

L REGISTER

452 I~

S REGISTER

529 I-

ENV

l 237

PROC

d s
LOCAL

DATA

G[529J
----!

85001-066

Figure 4-33. Stack Marker Chain

"'182507 AOO 3/85 4-59

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

BSUB

P REGISTER

AFTER BSUB

RSUB

(2)

CODE
AREA

BSUB + 10

SUB·
PROCEDURE

~PREGISTER
BEFORE BSUB

MEMORY STACK WHILE
SUBPROCEDUREEXECUTES

SUBLOCAL DATA
ADDRESSED S·MINUS
RELATIVE (INCLUDING
PARAMETERS)

CURRENT TOP
ELEMENT OF

DATA
AREA

SUBLOCAL
VARIABLES

Figure 4-34. Subprocedure Calls

4-60

s::!:EGISTI:R }_

\

-S-R-·E-G-IS_T_E_R-(

STACI(MUST
BE CUIT BACK
POINTING S
AT RETURN P
BEFOIAE RSUB

\
\
l
I

I

85001-067

~ 82507 AOO 3/85

INSTRUCTION PROCESSING ENVIRONMENT
Memory Stack Operation

The last instruction that a subprocedure executes is an RSUB
(return from subprocedure) instruction. The RSUB instruction
returns control to the instruction following the BSUB instruction
by putting the return address, at the current top of memory stack
location, into the P register:

P : = data [S] :
S := S - SAdecrement;

The "SAdecrement" value (which is specified in the RSUB) is used
to move the S register setting below the sublocal data area.
"SAdecrement" is at least one, to account for the one-word return
address.

s 014

/ 8 9 10 11 12 13 14 15

GJZ~ 1 ! 1 I 1 I 1 I o I 1 I 1 I o I o I

t
DIRcCT

s 00~ 1

S-MINUS

ADDRESSING

MODE

DISPLACEMENT

I 141

C]~ 1\ 1\ 1j 1\olol1\o\1 I
t ""- / ' ----i __ ____,/ '

INDll~lCT S-MINUS DISPLACEMENT

ADDRESSING

MODE

L REGISTER

__ 2_04_7 --' -~

~---~

S REGISTER

3102

DEFINES TOP OF STACK

LDCAT.ION

""'D
Gl170ll 27/////,,.Z +-----

85001-068

Figure 4-35. Example of S-Minus Addressing

"'82507 AOO 3/85 4-61

INSTRUCTION PROCESSING ENVIRONMENT
System Global Addressing

The sublocal data area consists of a subprocedure's variables and
parameters. It is addressable using the S-minus addressing mode,
shown in Figure 4-35. This provides direct access to the 32
locations including and below the current S register setting
(i.e., S[-31:0]).

SYSTEM GLOBAL ADDRESSING

If a system procedure must access the system data segment from
the user environment, it is given the attribute "callable" (so
that it can be called by the nonprivileged application program)
and executes in privileged mode. Executing in privileged mode
permits the procedure to make use of the SG-relativE~ (system
global relative) addressing mode. This addressing mode,
illustrated in Figure 4-36, provides access to the system data

x l1 1 ol oool 100]---

~~~~ 
DIRECT SG·RELATIVE DISPLACEMENT 

ADDRESSING 
MODE 

SYSTEM 
DATA 

x I 1 1 0 I 0 0 1 I 1 0 1] --·--+ SG[13) t----~4~21~76_-t 

~~---.--~ 
INDIRECT SG·RELATIVE DISPLACEMENT 

ADDRESSING 
MODE 

0722 

85001-069 

Figure 4-36. SG-Relative Addressing Mode 

4-62 '1' 82507 AOO 3/85 



INSTRUCTION PROCESSING ENVIRONMENT 
System Global Addressing 

segment (and, therefore any system tables) even when DS indicates 
user data. 

The SG-relative mode for a memory reference instruction allows 
direct addressing of the first 64 locations of the operating 
system's data segment (SG[0:63]). This mode is indicated when 
bits I.<7:9> of the memory reference instruction are equal to 
110. Bits I.<10:15> are a positive word displacement from SG[O]: 

directAaddress = I.<10:15> 

The short address space used for the SG-relative addressing mode 
is determined by the function: 

short address space: 
if I.<7:9> = 6 and PRIV then 1 

else DS: 
system data 
current data 

Indirect addressing and indexing are both permitted with the 
SG-relative addressing mode. Executing in privileged mode while 
in the user environment also means that data can be moved, 
compared, and scanned (with the MOVW, MOVB, COMW, COMB, SBW, and 
SBU instructions) between the user data segment and the system 
data segment. 

AJ182507 AOO 3/85 4-63 





SECTION 5 

ADDRESSING AND MEMORY ACCESS 

This section discusses the form of physical and logical addresses 
and the relationship between these address types. Mapping--that 
is, how memory is actually accessed using these addresses--is 
also described. This level of information is useful to most 
systems programmers and some applications programmers. 

NOTE 

Throughout this discussion, the suffix "k" represents the 
number 1024, and the prefix "mega", when applied to a number 
of bytes or words, represents lk squared, or 1,048,576. 
Likewise, the prefix "giga" means lk cubed, or 1,073,741,824. 

PHYSICAL, VIRTUAL, AND LOGICAL MEMORY 

Physical memory is the semiconductor memory storage that is 
provided by each processor's own memory boards (one to four). 
A processor module's physical memory address space can consist of 
up to 8,388,608 words (8 megawords) of 16 bits each. (The 
maximum physical memory presently available is 4 megawords.) 
Physical memory is divided into contiguous blocks called 
"phy~ical pages." (A page is a block of 1024 consecutive words, 
or 2048 consecutive bytes.) The maximum physical memory address 
space is, therefore, 8192 pages. 

Pages in physica~ memory are numbered consecutively from page 0 
to page 8191. Words in physical memory are numbered 0 through 
8,388,607 and are addressed with a 23-bit physical address. The 
range of ·physical memory is shown in Figure 5-1; the format of a 
23-bit physical address is illustrated in Figure 5-2. Note that, 

-1J 82507 AOO 3/85 5-1 



ADDRESSING AND MEMORY ACCESS 
Physical, Logical, and Virtual Memory 

PHYSICAL WOAD 
ADDRESS 
(DECIMAL) 

PHYSICAL WOAD 
ADDRESS 
(OCTAL) -----0-

1024-

2048-

3072-

4096-

5120 -

1311580 -

Ul75M -

Figure 5-1. 

PHYSICAL 
PAGE 

0 

%2000 

%4000 

%6000 

%10000 

%12000 

"la37774000 

%37778000 

55001-070 

Physical Memory 

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

PHYSICAL PAGE WORD 

(0:8191) (0:1023) 
$5001-071 

Figure 5-2. 23-Bit Physical Address 

5·-2 ~ 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Physical, Logical, and Virtual Memory 

as shown in Figure 5-2, bits 0 through 12 of a physical address 
specify the number of the physical page, and bits 13 through 22 
specify the word within the page. 

Note that the physical address does not specify a byte. Memory 
references are controlled by the Memory Control Unit (MCU), which 
cannot perform byte addressing; it can address only full words on 
word boundaries. Addressing of a particular byte within memory 
is done by the IPU microcode. 

In the Nonstop II processor, physical memory is accessed by 
logical pages mapped either in maps 0-14 or in the extended 
address cache. The maps translate logical page numbers to 
physical page numbers. There is no caching of data or 
instructions. 

In the Nonstop TXP processor, physical memory is accessed by 
logical pages mapped in a page table entry cache (PCACHE). 
PCACHE translates logical page numbers to physical page numbers. 
If the desired information is already present in the data cache 
(CACHE), it is not necessary to go through the process of 
translating the logical address to a physical address and 
accessing physical memory. 

Virtual memory utilizes disc space to extend the storage space 
that is accessible in physical memory. In a multiprogramming 
environment, the total memory space needed for all processes and 
the operating system usually exceeds the physical memory 
available. However, at any moment, only a subset of the total is 
required for continued operation. Images of memory pages are 
maintained in disc storage and are brought into physical memory 
as required by process execution. These disc images can be 
either code or data. Data images not currently required for 
execution of a given program can be "swapped out" (returned to 
disc) so that their physical memory can be used by another 
process. Because code images cannot be modified, it is not 
necessary to return current copies of them to disc before giving 
their physical memory space away. 

The virtual memory for a given processor is the sum total of all 
code and data images that can possibly be brought into its main 
memory. To provide addressability to this entire range of 
virtual memory, a processor's virtual memory is divided into 8192 
blocks called segments (or, more specifically, "absolute 
segments"). See Figure 5-3. Each segment can be up to 64 pages 
in length, or 64k words. 

Individual segments may be unallocated (not presently in use) or 
allocated. A segment that is allocated can have fewer than 64 
pages in use. In such a case, the entire segment address space 
is reserved (that is, no address within that segment can be used 

~ 82507 AOO 3/85 5-3 



ADDRESSING AND MEMORY ACCESS 
Physical, Logical, and Virtual Memory 

SEGMENT 
NO. 

0 

N 

N+1 

N+2 

N+3 

8191 

VIRTUAL MEMORY 

' 

PAGEO 

PAGE 1 

• 
• 
• 

PAGE63 

PAGE 0 
PAGE 1 

• • 

PAGE 1 

• 
• 
• 

- ~ 

PHYSICAL STORAGE 

PHYSICAL MEMORY 

DISC STORAGE 

85001-072 

Figure 5-3. Virtual Memory 

5-4 '1* 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Physical, Logical, and Virtual Memory 

by any other process), but the process that owns the segment can 
use only as many memory pages as it requested. Also, only 
individual pages of a segment are brought into main memory, 
rather than the entire segment--and only as needed. This also is 
illustrated in Figure 5-3. 

A privileged process can see and access all of virtual memory 
using 32-bit absolute addresses. Absolute addresses are 
described later under "Extended Addressing". 

Logical memory is memory as a process views it. In general, a 
process is allowed to see only a subset of virtual memory, 
consisting of code and data areas that it owns or shares. It 
usually does not matter to a process whether the words being 
addressed are present in physical memory or are absent (stored on 
disc). The process simply uses logical addresses that are valid 
within its own set of addressable segments. The operating system 
takes care of bringing in absent pages as needed. 

For nonprivileged processes, logical memory is separated into six 
"short address" spaces (addressable with either 16-bit logical 
addresses or 32-bit relative addresses) and one "extended 
address" space (addressable only with 32-bit relative addresses). 
The extended address space is considered later under "Extended 
Addressing." The six short address spaces (SASs) accessible to a 
process consist of the following (refer to Figure 5-4): 

Space 

0 
1 
2 
3 
4 
5 

Description 

User Data 
System Data 
User Code 
System Code 
User Library 
System Library 

(one segment per process) 
(one segment per CPU) 
(1 to 16 segments per process) 
(one segment per CPU) 
(0 to 16 segments per process) 
(1 to 32 segments per CPU) 

The odd-numbered short address spaces (1, 3, 5) belong 
exclusively to the GUARDIAN operating system. SAS 1 is always 
the system data segment: this segment contains various system 
values and tables, and is accessible by all processes. (Such 
access is usually performed by the system on behalf of the 
process, since the DS or PRIV bit in the Environment Register 
must be set in order for the access to be allowed.) SAS 3 and 
SAS 5, system code and system library, contain the system 
procedures and interrupt handlers (but not the program code for 
system processes) of the GUARDIAN operating system. Many of 
these procedures are callable by any process: others require 
privileged mode. As indicated in Figure 5-4, there can be up to 
33 segments for these procedures and interrupt handlers: one 
system code segment, and up to 32 system library segments. 

..,, 82507 AOO 3/85 5-5 



ADDRESSING AND MEMORY ACCESS 
Physical, Logical, and Virtual Memory 

OTHER 
SEGMENTS 

OF THE 
USER CODE 

SPACE 

G(O) 

USER 
DATA 

SEGMENT 
(64KW) 

(SASO) 

1 

I UPTO 16 I 

USER 
CODE 

SEGMENT 
(64KW) 

USER 
CODE 

SEGMENT 
(64KW) 

I 
I 
I 
I 

I I 
CURRENTLY 
SELECTED 

USER SEGMENTS 

C(O) 

CURRENT 
USER 
CODE 

SEGMENT 
(64KW) 

(SAS2) 

0 0 

ENVIRONMENT 

C(O) 

UPTO 16 
I I 

USER 
LIBRARY 

SEGMENT 
(64KW) 

USER 
LIBRARY 

SEGMENT 
(64KW) 

CURRENT 
USER 

LIBRARY 
SEGMENT 

(64KW) 

(SAS4) 

0 

0 

OTHER 
SEGMENTS 
OF THE 
USER LIBRARY 
SPACE 

SG(O) 

SYSTEM 
DATA 

SEGMENT 
(64KW) 

(SAS 1) 

1-

OTHER 
SYSTEM 
LIBRARY 

SEGMENTS 

CURRENTLY 
SELECTED 

SYSTEM SEGMENTS 

C(O) 

SYSTEM 
CODE 

SEGMENT 
(64KW) 

(SAS3) 

C(O) 

REGISTER ""'..-.;."""~"""";a........&.11.~-L..-..-;..i;.L~~&LA:..L"'-"llll~"-'"I~"~ 
4 6 7 

Figure 5-4. Logical Memory 

UPT032 

SYSTEM 
LIBRARY 

SEGMENT 
(64KW) 

SYSTEM 
LIBRARY 

SEGMENT 
(64KW) 

CURRENT 
SYSTEM 
LIBRARY 

SEGMENT 
(64KW) 

(SAS5) 

S5001-073 

5-6 ~ 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Physical, Logical, and Virtual Memory 

Generalized terms such as "the system library" or "the system 
code space" refer to the entire set of up to 33 segments in 
SASS 3 and 5. 

NOTE 

Segment selection for the multiple-segment code spaces is 
performed by the microcode of the XCAL, DPCL, EXIT, and 
IXIT instructions, using a space ID index value (as described 
earlier in Section 4, under "Procedures and the Memory 
Stack"). The currently-selected segment for each space is 
identified in a table in system data space (CSSEG, Current 
Short-address Segments). The Nonstop TXP processor also 
retains this information in a set of hardware registers called 
the Short Segment Table (SST). 

The even-numbered short address spaces (0, 2, 4) contain the code 
and data of the currently executing process. Since many 
processes typically exist in a processor (such as user 
application processes, I/O processes, compiler processes, and 
GUARDIAN processes), the actual code and data indicated by these 
spaces switches each time a different process comes into 
execution. Every such process performs its addressing relative 
to its own G[O] and C[O] bases. As indicated in Figure 5-4, the 
user code space can consist of up to 16 code segments (that is, 2 
megabytes), and the user library space provides an additional 16 
segments for library procedures. 

Any single memory-reference instruction can access only one code 
segment and one data segment. Their selection, from among the 
six short address spaces in logical memory, is made by the 
existing state of three bits in the Environment Register: in the 
case of multisegment code spaces, further resolution is made by 
the space ID index (discussed earlier) to select one segment 
within the short address space. As shown in Figure 5-4, the 
selection of a data segment is made by the state of the DS bit 
(bit 6). If DS is equal to 1, the system data segment is 
accessed by the instruction: if DS is equal to 0, the user data 
segment is accessed. The selection of a code space is made by 
the combined settings of the LS and CS bits, as follows: 

LS cs 

0 0 
0 1 
1 0 
1 1 

~ 82507 AOO 3/85 

User Code 
System Code 
User Library 
System Library 

(SAS 2) 
(SAS 3) 
(SAS 4) 
(SAS 5) 

5-7 



ADDRESSING AND MEMORY ACCESS 
16-Bit Addressing 

16-BIT ADDRESSING 

The memory area addressable by 16-bit addresses is limited, being 
applicable only in the six short address spaces. Since this mode 
of access is fast and efficient, the six address spaces most 
important to the execution of a process are made accessible with 
this type of addressing. 16-bit addresses are actually a kind of 
shorthand, and additional information is needed to identify the 
address space. The addressing modes described earlier under 
"Program Environment" (G-relative, L-plus-relative, 
L-minus-relative, S-minus-relative, and SG-relative) all use 
16-bit addresses. 

The IPU hardware uses the currently executing instruction and the 
LS, DS, and CS bits of the ENV register to select one of the six 
short address spaces. These address spaces are: user data, 
system data, user code, system code, user library, and system 
library. Since the SAS numbers for these address spaces are only 
in the range of 0:5, only three bits are needed to :identify the 
space number. 

The range of addressing within any of these six spaces is that of 
the 16-bit logical address, 0 through 65,535. Access to these 
six spaces is described later under the headings "Memory Access 
(Nonstop II Processor)" and "Memory Access (Nonstop TXP 
Processor)". 

The formats for 16-bit addresses are shown in Figure 5-5. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PAGE WORD WORD 
ADDRESS 

(0:63) (0:1023) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PAGE WORD I B I BYTE 
ADDRESS 

(0:31) (0:1023) (0:1) 

85001-074 

Figure 5-5. 16-Bit Logical Address 

5-8 ..,, 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Extended Addressing 

As shown, a 16-bit address can take one of two forms, depending 
on whether the instruction being executed is a word-addressing 
instruction or a byte-addressing instruction. For word access, 
the first six bits (0 through 5) specify the logical page number 
(0 to 63). Bits 6 through 15 then specify which of the 1024 
words on that page is desired. For byte access, bit 15 is used 
to specify a particular byte within the word: 0 for the left 
byte or 1 for the right byte. The other fields appear one bit to 
the left of their positions in the word address, making the page 
field one bit smaller. Thus only the first 32 pages of a data 
segment--that is, the first 32768 words of the segment--can be 
accessed by byte. (For code addressing, however, either half of 
the segment can be accessed, since the address is taken to be in 
the same 32-page half of the segment as the current setting of 
the P Register.) 

EXTENDED ADDRESSING 

Extended addresses provide a uniform method of addressing all 
items in virtual memory. An extended address is 32 bits long; 
its format is shown in Figure 5-6. 

Bit 0 (the absolute bit) indicates whether the address is an 
absolute extended address (bit 0 = 1), or a relative extended 
address (bit 0 = 0). Bit 1 is reserved and must always be zero. 
Bits 2 through 14 (the segment field) define which of the 8192 
possible segments is being addressed. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

SEGMENT PAGE; 

PAGE WORD BYTE 

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 

A (ABSOLUTE) 
SEGMENT 
PAGE 
WORD 
B (BYTE) 

0:1 
0:8191 
0:63 
0:1023 
0:1 

Figure 5-6. 32-Bit Extended Address 

85001-075 

'1' 82507 AOO 3/85 5-9 



ADDRESSING AND MEMORY ACCESS 
Extended Addressing 

Bits 15 through 20 (page field) define which of the 64 pages in 
the segment is selected. Bits 21 through 30 (word field) specify 
which of the 1024 words in the page is addressed. Bit 31 (byte 
field) defines which byte of the word (0 for left or 1 for right) 
is to be accessed. Extended addresses are always byte addresses. 

Absolute extended addresses can be used only by privileged 
processes. If a process executing in nonprivileged mode attempts 
to use an absolute extended address, an instruction failure 
occurs. In an absolute extended address, the segment field 
represents the number, 0 to 8191, of an absolute segment. 

Relative extended addresses can be used in any program, 
privileged or nonprivileged. A relocation mechanism is provided 
for these addresses, so that all processes can use the same range 
of addresses, relative to a base address of O. To use a relative 
extended address, the processor must translate it into an 
absolute extended address. In a relative extended address, the 
segment field represents the number of a relative segment. Each 
accessible relative segment is mapped onto one absolute segment. 

A process's currently accessible short address spaces--namely, 
current data, system data, current code, user code--can be 
accessed with 32-bit relative addresses as relative segments 0 
through 3, respectively. The selection of "current data" and 
"current code" for relative segments 0 and 2 are determined by 
the current bit settings of the ENV register, as illustrated 
earlier in Figure 5-4. System data is always accessible as 
relative segment 1. Relative segment 3 provides access to the 
currently mapped user code segment; this is useful for accessing 
code segment arrays, analogous to the "UC" mode addressing with 
16-bit addressing (see footnote of Table A-5 in Appendix A). 

Figure 5-7 illustrates relative extended addressing in segments 0 
through 3. Note that with relative extended addresses, all (or 
as much as exists) of a data segment can be byte-addressed--not 
just the first 32k words as with 16-bit addresses. 

The more significant application of 32-bit relative addresses, 
however (besides addressing the short address spaces), is to 
provide access to the extended address space. This space, for 
each process, consists of the relative segments numbered 4 and up 
(to a maximum segment number of 1027). 

The extended address space is used (by both Nonstop II and 
Nonstop TXP processors) to contain an extended data segment. 
A process may allocate one or more extended data segments to 
contain large blocks of process data (up to 128 megabytes each). 
Although the process may have several extended data segments, 
only one at a time may be in use. Only the current one is 
effectively included in the process's logical memory. 

5·-10 -'1J 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Extended Addressing 

0 1 2 

(RELATIVE) SEGMENT (0:3) 

ENVIRONMENT 
REGISTER 

...... 

l 
0 4 5 6 7 15 

[] ( I LS IPRVI OS I cs I ( 0 

l 
PROVIDES ADDITIONAL 

INFORMATION 
FOR SELECTING ONE OF 
RELATIVE SEGMENTS 0·3 

14 15 20 21 30 31 

PAGE WORD I B I 

LOCATE PAGE, WORD, AND BYTE 
WITHIN THE RELATIVE SEGMENT 

RELATIVE 
SEGMENTS 

0 

2 

3 

CURRENT DATA 
SEGMENT 

SYSTEM DATA 
SEGMENT 

CURRENT CODE 
SEGMENT 

CURRENTLY 
MAPPED 

USER CODE 
SEGMENT 

85001-076 

Figure 5-7. Relative Extended Addressing in Segments 0 through 3 

NOTE 

In this manual, the word segment generally means a 
nonextended segment (that is, a simple lK to 64K word 
segment) except where the word "extended" is 
specifically used. 

The base address of an extended data segment is always relative 
segment 4, page 0, word 0, byte O. The relative addresses within 
an extended data segment are consecutive, no matter how large it 
is; for example, segment 5, page 1, word 0, byte 0 refers to the 
first byte of the 66th page of the extended segment. A relative 
extended address with a segment number of 4 or greater always 
refers to a location within an extended data segment. 

An extended data segment is always allocated as a contiguous 
block of absolute segments, so that a simple relocation mechanism 
can be used. See the discussion of base and limit that follows. 

~ 82507 AOO 3/85 5-11 



ADDRESSING AND MEMORY ACCESS 
Extended Addressing 

To request allocation of an extended data segment, a process 
calls the operating system procedure ALLOCATESEGMENT. Once the 
segment has been allocated successfully, it must be put in use by 
a call to the USESEGMENT procedure before it can be accessed. A 
process can have several extended data segments, but only one can 
be accessed at any given time: a new call to USESEGMENT must be 
made each time a different extended data segment is to be used. 
A call to DEALLOCATESEGMENT (or stopping the process) frees a 
segment when it is no longer needed. 

Figure 5-8 illustrates three extended data segments belonging to 
a process. 

In extended data segments, two special values--the segment base 
and limit--are used to determine the absolute virtual memory 
location represented by a relative extended address.. The base 
defines the beginning of the relative segment: it is the absolute 
extended address of the first byte in the relative segment, minus 
%2,000,000 (%2,000,000 is the address of the beginning of segment 
4). The limit defines the maximum relative address that can be 
used within the segment. For efficiency, the limit is stored as 

- (segment size in bytes + %2000000) 

so that the following algorithm can be used in resolving a 
relative extended address: First, the limit is added to the 
address. If the result is large enough to cause a carry, the 
address is out of bounds, and an instruction failure trap occurs. 
Otherwise, the relative extended address and the base are added 
together to produce an absolute extended address. See Figure 
5-9. 

The base and limit for an extended data segment are determined 
when a process requests allocation of that extended segment. The 
limit is determined from the segment size specified by the user 
process: the base is determined by the operating system. 

Extended Addressing Instructions 

The Nonstop II and Nonstop TXP processors provide a class of 
instructions to access data using extended addresses. An example 
is the MVBX instruction, which allows bytes to be moved between 
any two locations in virtual memory. 

The following is a list of extended addressing instructions. 
These 23 instructions are nonprivileged, and most (all except 
MNDX, XSMX, and CDX) are supported by TAL language constructs. 
For detailed descriptions of these instructions, refer to 
Section 9, "Instruction Set." 

5-12 ~ 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Extended Addressing 

RELATIVE EXTENDED ADDRESS 

0 2 14 15 

O 0 (RELATIVE) SEGMENT <4:1027) 

.----., 
I RELATIVE I 
I SEGMENT I 
I 4 I r----, 
I RELATIVE I 
I SEG~ENT I 

t-:::;-1 
I SEG:ENT I 
L-----...J 

1

1

.--;;L:;:-1
1 SEGMENT I 

I o 
'-----_J 
I RELATIVE I 
I SEGMENT I 
I 1 I 
r-----1 
I RELATIVE I 
I SEGMENT I 
I 2 I r----.., 
I RELATIVE I 
I SEG~ENT I 

RELATIVE 
SEGMENT 

4 

RELATIVE 
SEGMENT 

5 

CURRENT 
EXTENDED DATA 

SEGMENT 
(IN RELATIVE 

SEGMENTS 4 AND 5) 

20 21 30 31 

PAGE WORD B 

LOCATE PAGE, WORD, AND BYTE 
WITHIN THE SEGMENT AFTER 

ADDRESS CONVERSION 

r----, 
I RELATIVE I 
I SEGMENT I 

4 
L----...J 

EXTENDED DATA 
SEGMENTS FOR 

A PROCESS 

85001-077 

Figure 5-8. Relative Extended Addressing in Segments 4 and Up 

~ 82507 AOO 3/85 5-13 



ADDRESSING AND MEMORY ACCESS 
Extended Addressing 

RELATIVE EXTENDED ADDRESS 

0 2 14 15 

1+1 (RELATIVE) SEGMENT (4:1027) c 
0 31 1 Di LIMIT BOUNDS CHECKING 

0 31 AND 

Dl BASE RELOCATION 

(FOR CURRENT EXTENDED 
DATA SEGMENT) 

PAGE 

ABSOLUTE EXTENDED ADDRESS 

0 2 u 15 

- ABSOLUTE SEGMENT (0:8191) PAGE 

20 21 30 31 

WORD I B I 

20 21 30 31 

WORD I B I 
85001-078 

Figure 5-9. Address Conversion for Relative Segments 4 and Up 

ANX 
ORX 
MNDX 
XSMX 
CDX 
LBX 
SBX 
LWX 
swx 
LDDX 
SDDX 
LQX 
SQX 
DFX 
MVBX 
MBXR 
MBXX 

5·-14 

AND to Extended Memory 
OR to Extended Memory 
Move Words While Not Duplicate 
Checksum Extended Block 
Count Duplicate Words Extended 
Load Byte Extended 
Store Byte Extended 
Load Word Extended 
Store Word Extended 
Load Doubleword Extended 
Store Doubleword Extended 
Load Quadrupleword Extended 
Store Quadrupleword Extended 
Deposit Field Extended 
Move Bytes Extended 
Move Bytes Extended, Reverse 
Move Bytes Extended, and Checksum 

4J 82507 AOO 3/B5 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

CMBX 
scs 
LWXX 
swxx 
LBXX 
SBXX 

Compare Bytes Extended 
Set Code Segment 
Load Word Extended, Indexed 
Store Word Extended, Indexed 
Load Byte Extended, Indexed 
Store Byte Extended, Indexed 

MEMORY ACCESS (Nonstop II PROCESSOR) 

This subsection describes the actual mechanisms used to access 
memory in the Nonstop II processor. This information is 
primarily needed by systems analysts, though it may also be of 
interest to others. A parallel subsection dedicated to the 
Nonstop TXP processor follows this description. 

A processor module converts 16-bit logical addresses and 32-bit 
absolute extended addresses to 23-bit physical addresses by means 
of mapping, a method which uses a set of special map registers in 
the processor. Each processor in a Nonstop II processor has 
sixteen maps, each map consisting of 64 map registers. 

Maps 0 through 5 provide address translation for the six short 
address spaces that are accessible to the current process 
(illustrated earlier in Figure 5-4). Each of these six maps is 
capable of mapping a logical segment (up to 64 pages): each map 
register contains the starting address in physical memory of one 
page of the segment. The remaining ten maps define other 
segments (not accessible to most processes) or have other 
specialized purposes. 

Figure 5-10 shows the uses of all sixteen maps and compares them 
to the uses of the first sixteen absolute segments. As shown, 
some maps correspond to the absolute segments of the same 
numbers. The uses of the maps are as follows: 

0 User Data. This map defines the data segment of the 
currently executing process: that is, it maps the physical 
location of each page of the segment that is assigned to be 
the current process's data space. If the DS bit of the ENV 
Register is set to 0, all data references are directed into 
the segment defined by this map unless they are made by 
instructions which use either extended addresses or the 
SG-relative addressing mode. 

~ 82507 AOO 3/85 5-15 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

0 

1 

2 

3 

4 

5 

6-13 

14 

15 

MAPS 

USER DATA 
SEGMENT 

SYSTEM DATA 
SEGMENT 

USER CODE 
SEGMENT 

SYSTEM CODE 
SEGMENT 

USER LIBRARY 
SEGMENT 

SYSTEM LIBRARY 
SEGMENT 

1/0 BUFFERS 
AND SPT 
STORAGE 

SCRATCH REGISTERS, 
MEMORY MGMT. TABLES, 
EXTENDED BASE & LIMIT 

EXTENDED ADDRESS 
CACHE 

*AS BUILT BY SYSGEN 

.. ~ 

___..... 

___..,.. 

.. .. 

ABSOLUTE 
SEGMENTS 

XRAY 
SEGMENT 

SYSTEM DATA 
SEGMENT 

SYSTEM PROCESS 
CODE* 

SYSTEM CODE 
SEGMENT 

SYSTEM PROCESS 
CODE* 

SYSTEM PROCESS 
CODE* 

1/0 BUFFERS 
AND SPT 
STORAGE -

:~ 

MEMORY MANAGEMENT 
TABLES 

RESERVED 

• 
• 

0 

2 

3 

4 

5 

6-13 

14 

15 

85001-079 

Figure 5-10. Uses of Maps and Absolute Segments 

1 System Data. This map defines the segment that contains 
system tables and stacks for the interrupt handlers. The 
space defined by this map is common to all processes, but 
it may be accessed only if the DS bit in the ENV register 
is set to 1, or if explicit reference is made to the system 
data segment (for example, with SG-relative addressing) and 
the PRIV bit is set. This space is always absolute segment 
1. 

5-16 ~ 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

2 User Code. This map defines the current code segment of 
the currently executing process; that is, it maps the 
absolute segment invoked by the most recent call 
instruction (XCAL or DPCL) or return instruction (EXIT or 
IXIT) to or from these segments. All code references 
specify this segment if the CS and LS bits in the ENV 
register are 0. In addition, "UC" mode addresses always 
reference this segment regardless of the ENV register bit 
settings. 

3 System Code. This map defines the code segment for 
operating system code (interrupt handlers and frequently 
used system procedures). The space defined by this map is 
common to all processes, and is always absolute segment 3. 
All code segment references (except "UC" mode addresses) 
specify this segment if the LS bit in the ENV register is 0 
and the CS bit is 1. 

4 User Library. This map defines the current user library 
segment for the currently executing process, if one exists 
for that process. It maps the absolute segment invoked by 
the most recent call instruction (XCAL or DPCL) or return 
instruction (EXIT or IXIT) to or from these segments. User 
library segments are mapped "on demand"; until there is a 
library call, none of these segments is current. All code 
references (except "UC" mode addresses) specify this 
segment if the LS bit in the ENV register is 1 and the CS 
bit is O. 

5 System Library. This map defines one of up to 32 
additional segments for operating system code. These 
segments--absolute segments %34 (#28) and up--may be viewed 
as an extension to the system code segment and are common 
to all processes. Map 5 maps the absolute segment invoked 
by the most recent call instruction (XCAL or DPCL) or 
return instruction (EXIT o'r IXIT) to or from these 
segments. All code references (except "UC" mode addresses) 
specify this segment if the LS bit in the ENV register is 1 
and the CS bit is 1. 

6-13 I/O Buffers and Segment Page Tables. Buffers for I/O 
transfers and the Segment Page Tables are normally kept in 
the segments defined by these maps. They are always 
associated with absolute segments 6 through 13, 
respectively. The Segment Page Tables and the use of I/O 
buffers are discussed later in this section. 

14 Special-Purpose Area. This map is not used to map any 
entire segment, but is reserved by the system for special 
purposes. It is divided into several areas: 

~ 82507 AOO 3/85 5-17 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

Area 

Microcode Scratch Registers 
Map Entries for Segment Table (SEG) 
Map Entries for Physical Page Segment Table 

(PHYSEG) 
Map Entries for Physical Page/Logical Page 

Table (PHYPAGE) 
Base for Current Extended Data Segment 
Limit for Current Extended Data Segment 

Map Entries 

0:27 
28:43 

44:51 

52:59 
60:61 
62:63 

The scratch registers are for use by the processor 
microcode. The SEG, PHYSEG, and PHYPAGE tables are used 
for mapping and other memory management functions; their 
map entries reside permanently in Map 14, and the tables 
themselves reside in absolute segment 14. The current base 
and limit, which are used in resolution of relative 
extended addresses in segments 4 and up, are also stored 
here for efficiency. 

15 Extended Address Cache. This map is not used to map any 
segment, but is used for the extended address cache 
(discussed later in this section). 

The segments mapped by Maps 0 through 5 (short address spaces) 
are accessible by 16-bit addressing and by relative extended 
addressing as relative segments 0 through 3. The absolute 
segments mapped by maps 0, 2, and 4 change as differeni processes 
come into execution, since new sets of code and data are mapped 
by the "user" maps. When a process is activated, Map 0 is loaded 
with the entries that define the process's data space, and Map 2 
is loaded with the entries for the current segment of the 
process's code space. Map 4 is loaded with the entries for one 
segment of the process's library code space, if any, on demand 
(by XCAL, DPCL, EXIT, or IXIT instructions). 

On the other hand, Maps 1, 3, and 5 do not change when different 
processes are dispatched. Maps 1 and 3 always map the same 
absolute segments; Map 5 changes to another absolute segment only 
when a call to a system procedure references a procedure that is 
in a system library segment other than the one currently mapped. 

At any given time, each segment mapped by maps 0 through 14 
corresponds to some specific absolute segment. This 
correspondence is maintained in a software table called CSSEG 
(Current Short-address Segments), which has entries for all 16 
maps. 

For relative extended addressing of the segments represented by 
Maps 0 through 5, four segments are accessible as relative 
segments 0 through 3 (refer back to Figure 5-7). For efficiency, 
memory access for these segments normally uses the maps, rather 

5·-18 ..-, 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

than the extended address translation algorithm. The map used 
for a given relative segment number is determined by the settings 
of the LS, PRIV, DS, and CS bits in the ENV register. The 
currently accessible segments, with their relative segment 
numbers, are defined as follows: 

0 Current Data Segment. If DS=O, map 0 (user data) is used to 
access this segment; if DS=l, map 1 (system data) is used. 
This specifies the same segment that a LOAD G+O instruction 
would access. 

1 System Data Segment. If DS=l, or if explicit reference is 
made to system data (e.g., with SG-relative addressing) and 
PRIV=l, map 1 (system data) is used to access this segment. 
Otherwise, map 0 (user data) is used. This specifies the 
same segment that a LOAD SG+O instruction would access. 

2 Current Code Segment. If LS=O and CS=O, map 2 (user code) is 
used to access this segment. If LS=O and CS=l, map 3 (system 
code) is used. If LS=l and CS=O, map 4 (user library) is 
used. If LS=l and CS=l, map 5 (system library) is used. 
This specifies the same segment that instructions are fetched 
from and that an LWP instruction would access. 

3 Currently Mapped User Code Segment. Map 2 is always used to 
access this segment. This specifies the same segment that an 
LWUC instruction would access. 

Map Entries and Mapping 

As already mentioned, each map contains 64 map registers. Each 
map register in maps 0 through 13 (and in parts of map 14 and map 
15) contains a map entry. Map entries are used to convert 
logical addresses to physical addresses. 

In the case of 16-bit addressing or relative extended addressing 
in segments 0 through 3, the map is first selected; it is always 
one of Maps 0 through 5. Then the logical page number from the 
16-bit address or the 32-bit relative extended address is used as 
an index into the map to obtain the map entry. 

Figure 5-11 shows the format of a map entry. Since maps are 
loaded from Segment Page Tables, this format also applies to 
entries in Segment Page Tables and in the map entry cache, both 
of which are described later. 

If bit 15 is not set, bits 0 through 12 of the map entry indicate 
the physical page number (0 through 8191) of the memory page to 
be accessed whenever a memory reference is made through this 

~ 82507 AOO 3/85 5-19 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PHYSICAL PAGE 

(0:8191) 

85001-080 

Figure 5-11. Map Entry 

entry. (If bit 15 is set, the page is considered absent from 
physical memory; all other bits are undefined to the hardware, 
although the memory manager process may use these bits.) Bit 13, 
the R (reference) bit, is set on any access to the page. Bit 14, 
the D (dirty) bit, is set whenever a write access is made to the 
page. These two bits are checked by the memory manager software 
in the operating system in order to select the best pages for 
overlay when absent pages need to be brought into physical memory 
from disc, and to keep track of whether a page that is being 
replaced must first be copied to disc (i.e., is a dirty page). 
Bit 15, the A (absent) bit, if set to 1, indicates that the page 
referred to is not present in physical memory. An attempt to 
access memory via an entry with this bit set to 1 will result in 
a Page Fault interrupt if the attempted access was made by an 
instruction, or a transfer error if the I/O channel attempted the 
access. 

Once the map entry is selected, bit 15 of the entry is checked to 
determine if the page is absent. If so, a page fault interrupt 
occurs, and the page fault interrupt handler takes over to swap 
in the page from disc. Once the physical page is present, the 
physical page field of the map entry (now updated) is used to 
select it, and the word field of the 16-bit or 32-bit address is 
used to select one of the 1024 words within the page. See Figure 
~5-12. 

§egment Table and Segment Page Tables 

Pages accessed by 16-bit addresses, or by relative addresses with 
segment numbers of 0 through 3, are usually already mapped at the 
time they are referenced by a procedure. A map entry (in Maps 0 
through 5) provides the physical location of the page. However, 

5-20 ~ 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

ENTRY 
NO. MAP o-----

1 
2------

N ____ __ 

63 ____ _ 

MAP ENTRY 

0 

PHYSICAL PAGE (0:8191) 

....... 

l 

16-BIT ADDRESS OR 32-BIT ADDRESS 

[] I ,I 

[] ~.r 
WORD FIELD 

12 13 15 l 
WORD (0:1023) 

l ________ _...-.__ ________________________________ _ 
0 12 13 22 

I PHYSICAL PAGE I WORD 

23-BIT PHYSICAL ADDRESS (0:8388607) 

85001-081 

Figure 5-12. Mapping 

pages referenced by calls to procedures in segments other than 
those currently mapped, or by absolute extended addresses, or by 
relative extended addresses with segment numbers of 4 or greater, 
are not necessarily already mapped at the time the address 
reference is made. 

Before any page can be accessed, its map entry must exist in a 
map. The processor maintains sets of tables in memory so that 
the appropriate map entry for any page in a process's logical 
memory can be located and brought into a map when needed. These 
tables are permanently mapped so that the processor can always 
access them through a normal mapped reference. 

The Segment Table contains a two-word entry for each absolute 
segment of the CPU's virtual memory. Each allocated segment 
entry (some segment numbers may not be allocated) points to the 
Segment Page Table for that segment, and indicates whether the 
segment is mapped. See Figure 5-13. 

There is one Segment Page Table (SPT) for each allocated absolute 
segment (Figure 5-13). Each Segment Page Table contains a map 

~ 82507 AOO 3/85 5-21 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

ENTRY 
NO. 

0 
1 
2 

N 

8191 

SEGMENT TABLE 
SEGMENT TABLE ENTRY 

0 4 5 8 9 15 

MAPPED PAGE TABLE MAP PAGE TABLE S~ 
~ PAGE TABLE ADDRESS =i -------- -16----------~----------------~ 31 

SEGMENT PAGE 
TABLE (SPn 

l 
ENTRY 

PAGE TABLE MAP NO. l OPERATING --------------- l_.. HEADER SYSTEM 
PAGE TABLE ADDRESS INFORMATION 

--------------~------- 0 --------

0 12 13 14 15 

PHYSICAL PAGE 

MAP ENTRY 

1 
2 

N 

PAGE TABLE----­
SIZE -1 

MAP ENTRIES 

85001-083 

Figure 5-13. Segment Table and Segment Page Tables 

entry for each allocated page in the corresponding segment. 
(Informally, an SPT is frequently called a "page table.") 

The Segment Table has a two-word entry for each absolute segment. 
Thus it occupies 16k words (16 pages) of physical memory. It is 
permanently mapped in entries 28 through 43 of Map 14. Bits 0 
through 4 of a Segment Table entry contain the map number of the 
map for that segment if the segment is currently mapped (in this 
case, all other bits of the entry can be ignored), or all ones 
(%37) if the segment is not mapped. Bits 5 through 8 specify 
which map (by convention, in the range 6 through 13) maps the 
Segment Page Table for that segment. 

Bits 9 through 15 specify the number of pages (0 to 64) in the 
segment; this equals the size of the Segment Page Table in words, 
not including the header. The remainder of the entry (the second 
word) gives the 16-bit address of the Segment Page Table for the 
segment. This address, together with the map number in bits 5 
through 8, specifies the location of the Segment Page Table in 
memory. 

5·-22 ~ 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

Segment Page Tables for segments that are currently allocated but 
not in use (i.e., not mapped) are located in an area of memory 
called MAPPOOL. The operating system allocates the MAPPOOL areas 
out of absolute segments 6 through 13, which are permanently 
mapped by Maps 6 through 13. In MAPPOOL, each Segment Page Table 
is preceded by a header that gives operating system information, 
and it contains only as many entries as there are pages in the 
segment. 

The Segment Page Table for each allocated absolute segment 
contains one entry for each page in the segment. Each of these 
entries, identical to map entries (Figure 5-11), defines the 
physical memory where a page of the segment resides, or indicates 
that the page is absent from physical memory. If a segment is 
not allocated (i.e., the page table size entry in the Segment 
Table is equal to 0), then no Segment Page Table exists for that 
segment. 

When a new process is dispatched by the operating system, the 
entries in the Segment Page Table for that segment are copied 
into a map using the MAPS instruction. (When this is done, if 
fewer than 64 pages of the segment are allocated, the remainder 
of the entries in the map are marked absent by setting these 
entries equal to 1.) 

For data segments, if the segment being addressed is currently 
mapped, the only valid copy of the map entries is the one in the 
map: the copy kept in the Segment Page Table in memory is 
updated only when the segment is unmapped. For code segments, 
map copy and the memory copy are generally identical. 

Extended Address Cache 

For a memory access using an extended address, the address 
translation algorithm requires that the Segment Table entry for 
the required absolute segment be examined to determine whether 
the segment is mapped. If the segment is not mapped, then it 
becomes necessary to use the extended address cache, which 
occupies all of Map 15. 

The extended address cache (see Figure 5-14) is used in memory 
accesses that specify absolute extended addresses (or relative 
extended addresses with relative segment numbers of 4 or greater) 
to temporarily map one single page being referenced. Its content 
is a collection of page mappings for recently accessed pages, 
which thus have a high probability of being accessed repeatedly 
in succeeding references. This greatly improves the speed of 
access to frequently used pages. 

~ 82507 AO~ 3/85 5-23 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

ENTRY 
NO. 

0 

31 

0 

31 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PHYSICAL PAGE R 0 A 

PHYSICAL PAGE R 0 A 

• 
• 

PHYSICAL PAGE R 0 A 

0 0 SEGMENT PG 

0 0 SEGMENT PG 

• 
• 

0 0 SEGMENT PG 

0 1 2 3 4 5 6 7 8 9 10 11 ·12 13 14 15 

Figure 5-14. Extended Address Cache 

MAP ENTRY 
CACHE 

CACHE 
TAGS 

85001-082 

As shown in the figure, the cache is divided into two halves: 
the map entry cache and the cache tags. The map entry cache 
consists of 32 map entries; these are identical in format to the 
map entries in the other maps and in the Segment Page Tables in 
memory. The 32 cache tags each contain a 13-bit segment number 
and a single bit that represents the most significant bit of a 
page number. A cache tag identifies the corresponding entry in 
the map entry cache. 

Using the extended address cache, a byte represented by an 
absolute extended address is accessed as follows (see Figure 
5·-15): 

1. The corresponding cache tag is obtained by using the least 
significant 5 bits of the page number from the address as an 
index into the entries in the upper half of Map 15. 

2. The cache tag is compared to the high-order word of the 
absolute extended address (ignoring bits 0 and 1 of the 
extended address). If they are equal, the correct map entry 
is present at the corresponding position in the map entry 
cache. The map entry is obtained by using the least 
significant 5 bits of the page number from the address as an 

5--24 ~ 82507 AOO 3/85 



ABSOLUTE EXTENDED ADDRESS 

I I I I 

HIGH-ORDER WORD OF ADDRESS 

m SEGMENT I I 
t 

SEGMENT TABLE 
(3) 

N 

8191 

SEGMENT TABLE ENTRY 

MAPPED P.T. MAP P.T. SIZE 

PAGE TABLE ADDRESS 

(91) SET CACHE 
ENTRY 

,.N 

31 

SEGMENT PAGE 
TABLE (SPT) 

(8) 
. . 

1~ .. 1 N . . 
8191 

ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

(1) 

31 

(2) + 
* 

H0I 
EQUAL? 

) 

l"' NO 

GO TO 
STEP (10) 

(4) 

MAPPED YES GO TO 
... (= 0:13)? ___.,. STEP (10) 

L I 11 

MAP ENTRY CACHE 

~ . . 

(5) 

CACHE TAGS 

CACHE TAG 

CACHE TAG 

t 
FREE ( = %177777)? 

(6) 

WRITE OUT OLD CACHE "'j ! •o 

(7) 

ENTRY TO ITS SPT 

~ 
ADDRESS OUT OF 

NOS? BOU 

NO J t YES 

INSTRUCTION 
FAILURE 

ABSOLUTE EXT ENDED ADDRESS 

J 

II 

fl!= I WOAD ---~ (llb) SET CACHE 

TAG 

• MAP ENTRY 

PHYSICAL PAGE IIH 
t 

(10) PAGE ABSENT? 

l 
IF YES, PAGE 

FAULT INTERRUPT 

(11) • ..------J FIND WORD EXTRACT BYTE 

IN PAGE (DONE BY IPU) 

(12) (13) 

SELECT MEMORY PAGE 

85001-084 

Figure 5-15. Extended Address Translation Algorithm 

~ 82507 AOO 3/85 5-25 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop II Processor) 

index into the lower half of Map 15. The page in memory can 
then be accessed using the map entry (go to step 10). 

3. If the desired map entry is not in the cache, the absolute 
segment number from the address is used as an index into the 
Segment Table to find the appropriate entry for this segment. 

4. Bits 0 through 4 of the entry are checked to determine 
whether the segment is currently mapped. If bits 0 through 4 
are not all ones (%37), the segment is currently mapped, and 
the map number is given in this field. The page number from 
the address is used as an index into the specified map to 
find the entry for the desired page. The page in memory can 
then be accessed using the map entry (go to step 10). 

51
• If bits 0 through 4 of the Segment Table entry are all ones, 

the segment is not currently mapped. The cache tag is then 
checked to see if the corresponding cache entry is free (not 
in use): a free cache entry is indicated if the tag is equal 
to -1 (%177777). If the entry is free, go to step 7. 

6. If the entry is not free, the existing cache entry is written 
out to its corresponding Segment Page Table entry in memory. 
This is done by using the information in the existing cache 
tag and cache entry to go through the appropriate Segment 
Table entry. 

7. Bits 9 through 15 of the Segment Table entry for the new 
address (the page table size field) are compared with the 
page number in the address. If the page number is greater 
than or equal to the number of pages given in the Segment 
Table, the address is out of bounds, and an instruction 
failure trap occurs. 

8. The page table map and page table address in the Segment 
Table entry are used to find the beginning of that segment's 
Segment Page Table in memory. Then the page number from the 
absolute extended address is used as an index into the 
Segment Page Table to find the entry for the desired page. 

9. The appropriate map entry in the cache is loaded with the 
Segment Page Table entry, and the corresponding cache tag is 
set to match the high-order word of the absolute extended 
address (ignoring bits 0 and 1). 

10. If the map entry shows that the page is absent, a page fault 
interrupt occurs. The page fault interrupt handler then 
takes over to swap in the desired page from disc, as 
discussed under "Page Fault" later in this section. 

11. Once the page is in main memory, the physical page number 
found in the map entry is used to select the physical page. 

5-26 ~ 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

12. The word field of the address is used to locate the desired 
word in memory. 

13. The byte field of the address can then be used by the IPU to 
extract the specified byte. 

MEMORY ACCESS (Nonstop TXP PROCESSOR) 

This subsection describes the actual mechanisms used to access 
memory in the Nonstop TXP processor. This information is needed 
primarily by systems analysts, though it may also be of interest 
to others. The information parallels that of the preceding 
subsection (describing memory access for the Nonstop II 
processor). 

Short Address Spaces 

A process accesses logical memory either by 16-bit logical 
addresses or by 32-bit relative extended addresses. 

The 16-bit addresses access one of six address spaces, called 
"short address spaces" (SASs). These six address spaces 
constitute a process's normal view of memory. The SASs are 
known as: user data, system data, user code, system code, user 
library, and system library. 

Some of these six short address spaces can consist of more than 
one logical segment, and each such segment corresponds to a 
specific absolute segment. At any given time, only one segment 
of a short address space is the currently "mapped" segment. In a 
Nonstop TXP processor, the absolute segment number of the 
currently mapped segment for each SAS is kept in the first six 
locations of a set of hardware registers called the SST (Short 
Segment Table); a copy of the SST is kept in a software table, 
CSSEG (the Current Short-address Segment table). However, unlike 
the Nonstop II, the Nonstop TXP processor normally does not fully 
map all 64 pages of a current segment, but rather "caches" 
individual page mappings when needed. (The exceptions are SAS 1 
and SAS 3, system data and system code, which are always fully 
mapped in PCACHE--described later.) 

The current segments of the six short address spaces are defined 
as follows: 

~ 82507 AOO 3/85 5-27 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

0 User Data Segment. This is the data segment for the 
process that is currently in execution. If DS is a 0, all 
data references will be into this segment unless they are 
by instructions which use either extended addressing or the 
SG addressing mode. 

1 System Data Segment. This segment, which is always 
absolute segment 1, contains system tables and interrupt 
stacks. This segment is common to all processes, but it 
may only be accessed if DS or PRIV is set. 

2 User Code Segment. This is the current segment of the user 
code space for the currently executing process; that is, 
it is the absolute segment invoked by the most recent call 
instruction (XCAL or DPCL) or return instruction (EXIT or 
(IXIT) to or from these segments. All code segment 
references specify this space if the CS and LS bits in the 
ENV register are 0. In addition, "UC" mode addresses 
always reference this segment regardless of the ENV 
register bit settings. 

3 System Code Segment. This segment, which is-always 
absolute segment 3, contains the most frequently used 
operating system procedures and interrupt handlers. This 
segment is common to all processes. All code references 
(except "UC" mode addresses) specify this segment if the LS 
bit in the ENV register is 0 and the CS bit is 1. 

4 User Library Segment. This is the current segment of the 
user library space for the currently executing process. 
That is, it is the absolute segment (if any) invoked by the 
most recent call instruction (XCAL or DPCL) or return 
instruction (EXIT or IXIT) to or from these segments. User 
library segments are mapped "on demand"; until there is a 
library call, none of these segments is current. All code 
references (except "UC" mode addresses) specify this space 
if the LS bit in the ENV register is 1 and the CS bit is O. 

5 System Library Segment. This is the current segment of the 
system library, which provides additional code space for 
system procedures. These segments--absolute segments %34 
(#28) and up--be viewed as an extension to the system code 
segment (SAS 3) and are common to all processes. SAS 5 is 
the absolute segment invoked by the most recent call 
instruction (XCAL or DPCL) or return instruction (EXIT or 
IXIT) to or from these segments. All code references 
(except "UC" mode addresses) specify this space if the LS 
bit in the ENV register is 1 and the CS bit is 1. 

Other segments defined by the SST are the following: 

5--28 "'82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

6-13 Buffers and Tables. Buffers for I/O transfers and Segment 
Page Tables are normally kept in these spaces, which are 
absolute segment numbers 6-13, respectively. 

14 Memory Management. This space is absolute segment 14. It 
is divided into several areas: 

Reserved for microcode (scratch) 
Segment Table (SEG) 
Physical page Segment table (PHYSEG) 
Physical page Page table (PHYPAGE) 
Reserved for microcode (scratch) 

%0:%067777 
%70000:%127777 

%130000:%147777 
%150000:%167777 
%170000:%177777 

The portions of this space marked "Reserved for microcode" 
are not available to the GUARDIAN operating system because 
the resources that would be used to access them in a 
Nonstop II processor have been allocated to its micro 
machine. 

In a Nonstop II processor, slots 0:%33 of map 14 are 
scratch registers and slots %74:%77 hold the extended 
base and extended limit for the current extended data 
segment. Therefore, in the Nonstop TXP processor, the 
corresponding page table cache entries (for pages 0:%33 and 
%74:%77 of absolute segment 14) may be used as scratch 
registers. The page table cache (PCACHE) is described 
later in this section. 

15 Unused by the GUARDIAN operating system. The Nonstop TXP 
processor microcode may use the SST register for short 
address space 15 as a scratch register. (The Nonstop II 
processor uses map 15 for the extended address cache.) 

Caches in the Nonstop TXP Procesor 

The Nonstop TXP processor gains much of its performance through 
the use of cache memory. Cache memory is a mechanism used to 
improve effective memory transfer rates and increase processor 
speed. The term "cache" refers to the fact that a copy of 
frequently used information is cached close to where it will be 
used--on the processor logic boards. The cache mechanism is 
essentially hidden and is transparent to the user. 

Processors that do not use cache memory need to go to physical 
memory for every word accessed. Cache memory allows the system 
to store frequently used information in a set of hardware 
registers to take advantage of fast register access time as 
compared to slower memory access time. 

~ 82507 AOO 3/85 5-29 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

When a process requests information that it needs to continue its 
work, the processor microcode first checks whether that 
information is present in cache. The Nonstop TXP processor uses 
two caches to speed access to memory. 

• PCACHE is a page table cache that stores frequently used page 
table entries. Its use is analogous to that of the map 
registers in the Nonstop II processor. 

• CACHE is a cache that stores frequently used blocks of code or 
data in another set of hardware registers. Transfers between 
memory and CACHE occur by single 16-byte fetch operations. 

Both caches are accessed by absolute extended addresses. Because 
both caches are much smaller than the processor's virtual address 
space of one gigabyte, it is possible for multiple logical 
addresses to map into a given cache entry. However, in the cache 
technique chosen for the Nonstop TXP processor, a tag word 
associated with each cache entry isolates the entry to a unique 
logical address. This type of cache is commonly referred to as 
"direct-mapped" or "single-set associative" cache. 

To ensure that information in main memory remains consistent with 
the version in cache, the processor updates the information in 
main memory for each write to cache. This technique is commonly 
known as "write-through." 

The following paragraphs describe the operation of both caches. 

Page Table Cache (PCACHE). Unlike the Nonstop II processor, the 
Nonstop TXP processor does not have sixteen sets of map 
registers. Instead, the Nonstop TXP processor uses a 
2048-location hardware register array called "PCACHE" to store 
frequently used page table entries. 

In a directly-mapped cache, each possible entry maps into exactly 
one cache location. In the case of PCACHE, "each possible entry" 
is each combination of absolute segment and page within a 
segment. Because there are many more potential entries than 
cache locations, it is necessary to associate a tag with each 
cache location to identify which entry is in that cache location 
at a given moment. The tags for PCACHE are kept in another 
2048-location hardware array called PCACHETAG. 

PCACHE is divided into two halves. The first half is a 
"dedicated" cache which continuously maps the page table entries 
for absolute segments 0-15. This ensures that the page table 
entries of the physical memory pages assigned to system data, 
system code, I/O buffers, and memory management will always be 
available--they will never be swapped out. 

5-30 ~ 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

The second half of PCACHE is managed as a direct-mapped or 
single-set associative cache. Its 1024 locations store 
individual page table entries related to absolute segments other 
than segments 0-15. The technique of storing individual page 
table entries eliminates the overhead of loading the page table 
entries for an entire segment into registers when access is 
required to only a single page. 

The hardware maintains the segregation of the dedicated and 
single-set associative sections of PCACHE--they appear to the 
microcode and the software to be a single cache. 

PCACHE is accessed directly by 32-bit extended addresses. This 
means that each absolute extended address uniquely maps into a 
single cache location. The layouts for both PCACHE and PCACHETAG 
are shown in Figure 5-16. 

The microcode executes the following four operations each time 
that it services a request for memory access through PCACHE: 

1. reads a PCACHE entry 

2. determines whether or not the entry is valid 

3. generates a physical memory address 

4. reports on the status of the memory page designated in the 
physical memory address generated. 

The function that maps an address into PCACHE is: 

(segment.<0:8><>0) A segment.<9:12> A page.<0:5> 

which can also be thought of as the concatenation of a bit 
indicating whether the segment number is in the range of 0:15 
with bits 11:20 of the extended address. It is the checking of 
segment.<0:8> that causes the partitioning of PCACHE. If all 
nine bits are 0, the segment number must be <=15, and the mapping 
is forced into the first half of PCACHE; if any of those nine 
bits is nonzero, the address mapping is forced into the second 
(single-set) half of PCACHE. The remaining information needed to 
uniquely identify the entry (segment.<0:8>, that is, extended 
address bits 2:10) is kept in the entry's associated tag. 

The notation used to reference a Segment Page Table entry is: 

PCACHE[segment, page]= 

PCACHETAG[segment, page]= 

...,.., 82507 AOO 3/85 

segment page table entry for an 
absolute segment (0-8191) and 
logical page (0-63) 

tag for that segment and page's 
entry 

5-31 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

PCACH E ENTRY 0000 

0001 

1023 

ENTRY1024 

1025 

2047 

PCACHETAG ENTRY 0000 

0001 

1023 

1024 

2047 

.,,.,.,,,, 

/1 ~ 

~ "1 

PHY PG NO, e.g., %05530 

PHY PG NO, e.g., %03724 

DEDICATED CACHE 
ABS SEGMENT 0·15 

PHY PG NO, e.g., %03720 

PHY PG NO, e.g., %00773 

PHY PG NO, e.g., %00546 

SINGLE-SET CACHE 
ABS SEGMENT> 15 

PHY PG NO, e.g., %04720 

TAG FOR PCACHE ENTRY 0000 

TAG FOR PCACHE ENTRY 0001 

TAG FOR PCACHE ENTRY 1023 

TAG FOR PCACHE ENTRY 1024 

13 14 15 

1:1:q 
-1 

x D I 

x D I 

x D I 

/1 ~ 

x D I 

D I 

D I 

v 
--1 

I 
DIF 
D I 

--
v v 

t-t-A_G_F_O_R_P_C-AC_H_E __ E_N_T_R_Y .. _20_4_7~~~·---..-1-D-~ 
0 4 5 13 --- -·-------

PAGE 
<0:4> 

SEGMENT 
<0:8> 

:55001-085 

Figure 5-16. Layout of PCACHE 

where PCACHE contains a physical page number and PCACHETAG 
contains the corresponding tag, in the formats shown in Figure 
5-16. (The PCACHE Segment field equals zero in entries for 
absolute segments 0 through 15.) The PCACHETAG "Page" field 
is a copy of the upper five bits of the physical page number 
given in PCACHE: this is used by the microcode for preprocessing 
before the full physical page number is available in PCACHE. 

5-32 "'1J 82507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

Bits 13:15 of PCACHE contain the following status information: 

PCACHE.<13> is the reference bit. In the context of PCACHE, this 
bit can be interpreted as a "don't care" bit because it is 
assumed to be set to 1 for any valid entry. 

PCACHE.<14> and its copy in PCACHETAG.<14> act as the dirty 
bit. If this bit is set to 1, a data page has been modified. 
This means the memory manager must swap this page to disc before 
it can give away that page's physical memory space. 

PCACHE.<15> and its copy in PCACHETAG.<15> serve as the invalid 
bit. This bit is 1 if the page is absent or the entry is 
invalid. If the invalid bit is 1, the system then checks the 
absent bit in the memory-resident copy of the Page Table. If it 
is also set to 1, then the page is considered to be absent. 

Data Cache. The Nonstop TXP processor maintains a 64K-byte cache 
that holds a combination of instructions and data. This 
"code-and-data" cache, called CACHE, is a direct-mapped or 
single-set associative cache. It provides parallel, high-speed 
access to pieces of data stored in physical memory. (For this 
discussion, the term "data" applies to either an instruction or 
an operand.) The layout of CACHE "data store" and its associated 
"tag store" is shown in Figure 5-17. 

Like PCACHE, CACHE is accessed by 32-bit absolute extended 
address. This means that before CACHE can be checked for the 
presence of a desired word, the address of that word must be in 
absolute extended address format. Address conversion for the 
three kinds of addresses (absolute extended, relative extended, 
and "short address") is handled in the manner shown below: 

• An absolute extended address requires no conversion. 

• A relative extended address must be converted to an absolute 
address. That is, the system adds a base address offset to 
the relative address and performs a bounds check on the 
resultant absolute address. 

• A "short address" must be converted to an absolute address. 
A short address is a 16-bit address (logical page within the 
segment and word offset within a page) combined with selected 
bits of the ENV register. 

All references to memory are routed through CACHE. CACHE 
executes the following four operations every time it services a 
memory reference request: 

~ 82507 AOO 3/85 5-33 



ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

DATA STORE TAG STORE 

BLOCKO 
CODE/DATA TAG WORD FOR BLOCt( 0 

--
16 BYTES TAG WORD FOR BLOCK 1 

BLOCK 1 TAG WORD FOR BLOCt( 2 
r-· --

TAG WORD FOR BLOCK 3 
r-· --

BLOCK2 TAG WORD FOR BLOCK 4 
r-· --

TAG WORD FOR BLOCK 5 
r-· --

BLOCK3 

BLOCK4 ~~ :::~ 

r-· --
TAG WORD FOR BLOCK 4093 

--
~~ ~~ ~ ~ 

TAG WORD FOR BLOCK 'iG94 

TAG WORD FOR BLOCK ~~095 

BLOCK4095 

55001-086 

Figure 5-17. Layout of CACHE 

1.. retrieves code or data from CACHE 

2.. generates a CACHE fault if the code/data is invalid 

3.. generates a physical memory address in anticipation of the 
next operation 

4.. reports on the status of the memory page designated in the 
physical memory address generated. 

CACHE is arranged in 16-byte blocks whose starting addresses fall 
on 16-byte boundaries. This minimizes the number of tags 
required (one for each 16-byte block) and also speeds up the 
filling of cache. Figure 5-18 shows a simplified view of how 
CACHE is accessed. 

5--34 ~ 82507 AOO 3/85 



0 

ADDRESSING AND MEMORY ACCESS 
Memory Access (Nonstop TXP Processor) 

31 

ABSOLUTE EXTENDED ADDRESS 

-------.r-~_) 

XOR 

CACHE HIT 

TAG 
STORE 

DATA 
STORE 

Figure 5-18. Access to CACHE 

85001-087 

As indicated, the hardware applies a hashing function to the 
extended address to evenly distribute highly accessed areas of 
CACHE; e.g., System Data segment page O. Once the data has been 
brought into cache by the initial "fault", the hashing algorithm 
assures a high probability that the requested code or data will 
already be in cache the next time that it is needed. 

The hardware performs an XOR (exclusive OR) operation on the tag 
and selected bits of the 32-bit extended address. The result of 
the XOR (i.e., cache hit or miss) indicates whether or not that 
block's contents cor~espond to the address used. If a cache miss 
occurs, the current code or data is discarded and the intended 
code or data is "faulted in" from memory. 

~ 82507 AOO 3/85 5-35 



~~DDRESSING AND MEMORY ACCESS 
Memory Data Structures 

MEMORY DATA STRUCTURES 

Several data structures known by the hardware and maintained by 
the operating system play an active role in performing memory 
management tasks. Briefly, these system data structures include: 

• SEG (Segment Table) resides in segment 14, words 
%70000:%127777. 

• Segment Page Tables are scattered through segments 6-13. 

• CSSEG (Current Short-address Segment table) resides in memory 
mapped by segment 1, words %1340:%1357. This table maintains 
the correlation between address spaces 0:15 and their 
associated absolute segments. 

•• SST (Short Segment Table) resides in hardware registers--for 
Nonstop TXP processors only. It contains a copy of the 
CSSEG table contents. 

•• PHYSEG (Physical page Segment table) resides in segment 14, 
words %130000:%147777. 

u PHYPAGE (Physical page Page table) resides in segment 14, 
words %150000:%167777. 

The Segment Table and Segment Page Tables define whether or not a 
segment is mapped, and if mapped the physical memory it occupies. 

The Nonstop II processor uses only CSSEG to maintain the 
correlation between address spaces 0:15 and specific absolute 
segments. Each entry either contains a value in the range 
0:%17777 for segments 0:8191 or a -1 (i.e., no segment is 
currently in this short address space). The Nonstop TXP 
processor normally uses the register-speed path through the SST 
in preference to the slower path through the memory-resident 
CSSEG table. 

The memory manager process handles requests for individual pages 
by searching the PHYPAGE and PHYSEG tables to see whether or not 
the page is available. The PHYPAGE table contains a one-word 
entry for each page of physical memory. It is accessed by 
physical page number index; i.e., entries 0:%17777 correspond to 
physical pages 0:8191. Each PHYPAGE table entry contains the 
following information: 

u PHYPAGE[p].<10:15> contains a given segment's logical page 
number 0:%77. 

~i-36 4'182507 AOO 3/85 



ADDRESSING AND MEMORY ACCESS 
I/O Addressing 

• PHYPAGE[p].<0:9> is set to zero when the physical page is 
allocated. This bit-field is subsequently available to the 
memory manager for recording additional "usage" information. 

Correspondingly, the PHYSEG table contains a one-word entry for 
each physical page of main memory. It too is accessed by 
physical page number index; i.e., entries 0:%17777 for physical 
pages 0:8191. Each PHYSEG table entry contains one of the 
following items: 

• %0 <= PHYSEG[p] <= %17777 indicates that page 'p' is in 
segment PHYSEG[p] and the page may be swapped out. When the 
memory manager must select a page that is already allocated to 
another process, it uses the PHYSEG table to locate the 
associated segment number and then flags the page as "absent" 
in that segment's Page Table. 

• PHYSEG[p] = %40000 indicates that page 'p' is free. This 
means the page is not currently allocated to any process and 
is available for overlay. 

• PHYSEG[p] = %40001 indicates that page 'p' has had an UCME 
(uncorrectable memory error) and is no longer available. 

• PHYSEG[p] = %40002 indicates that page 'p' has had a hard CME 
(a single-bit error that can be corrected but causes system 
interrupts on every reference) and is no longer available. 

• PHYSEG < 0 indicates that page 'p' is locked into memory and 
cannot be swapped out. -PHYSEG[p] is the number of locks 
queued on the page. 

I/O ADDRESSING 

The memory mapped by address spaces 6 through 13 (i.e., absolute 
segments 6 through 13) represents one megabyte of logical address 
space. This space is accessible only by using absolute extended 
addresses; however, it is a special case because it is always 
fully mapped. As a result, memory accesses to these segments are 
fairly fast, because they need not go through the Segment Page 
Tables. These segments may be accessed using only 20 bits of 
information--a 4-bit absolute segment number, a 6-bit page 
number to locate the entry within the segment, and a 10-bit word 
offset. Absolute segments 6 through 13 are used by the operating 
system for two purposes: for MAPPOOL storage, which (as has 
already been discussed) contains the Segment Page Tables, and for 
I/O buffers. Because these segments are reserved for operating 
system use, only privileged processes (such as I/O processes) can 

AJ' 82507 AOO 3/85 5-37 



ADDRESSING AND MEMORY ACCESS 
Page Fault 

access them. (Being accessible only by absolute extended 
addresses provides this protection.) 

The I/O channel addresses its buffers by means of the I/O Control 
(IOC) table, which is located in page 1 of the system data 
segment. Fields within the IOC entry for the subchannel 
associated with a device keep track of the channel's current 
position in the buffer during a transfer. 

Before beginning a transfer, the I/O process initializes the IOC 
entry. The segment base, page base, and page offset fields are 
initialized with the segment number, page number, and word offset 
for the beginning of the buffer. The segment number, of course, 
is always in the range 6 through 13. The byte count field is 
initialized with the total number of bytes to be transferred 
(which can be odd or even), and the segment offset field is 
initially zero. I/O buffers do not need to begin on page 
boundaries, and they may span page boundaries and segemnt 
boundaries: however, they always begin on a word boundary. 

As the transfer proceeds, the third word of the IOC entry-­
containing the page offset field in the low-order bits and the 
segment offset in the high-order bits--is incremented and the 
byte count is decremented. The segment base and page base fields 
in the IOC entry remain unchanged, but the segment and page 
numbers of the word to be accessed at any given time are obtained 
by adding the segment offset to the page base, using any overflow 
to increment the segment number. The transfer continues until 
the byte count is zero or an I/O error occurs. See Figure 5-19. 

The Nonstop TXP processor caches active IOC entries. This cache, 
as well as the operation of the I/O channel, is described more 
fully in Section 7. 

P.AGE FAULT 

A page fault occurs when a reference is made to a page that does 
not currently reside in main memory. The absent page can be a 
code page, a data page that has been previously written into and 
then swapped out to disc ("dirty" page), a new data page 
containing initialization data that must be read in from disc, or 
a data page with no initialized or previously written data 
("clean" page). 

When a page fault is detected, an interrupt to the c>perating 
system page fault interrupt handler occurs. The following 
discussion assumes familiarity with the hardware mec:hanism for 
handling interrupts, as described under "Interrupt System" in 
Section 6. 

5-38 1J 82507 AOO 3/85 



IOC ENTRY 

0 1 5 6 9 10 15 

ADDRESS SPACE 
OFFSET 

ADDRESS PAGE 
SPACE BASE BASE 

BYTE 
COUNT 

PAGE 
OFFSET 

(CURRENT ADDRESS 
SPACE & PAGE) 

ADDRESSING AND MEMORY ACCESS 
Page Fault 

ADDRESS SPACE 6·13 1/0 BUFFER SPACE 
(IN ABSOLUTE 

SEGMENTS 6·13) 

START OF 
BUFFER !(STARTING ADDRESS 

SPACE & PAGE) 

-----!• CURRENT 
WORD IN 
BUFFER 

_l_A_D_D_R-ES-s---1---P-AG_E ____ I 
SPACE BASE BASE _ 

+ 
ADDRESS 

SPACE OFFSET 

CURR.ADDRESS CURRENT 
SPACE PAGE 

PAGE OFFSET 

Figure 5-19. I/O Buffer Addressing 

85001-088 

The page fault interrupt sequence is illustrated in Figures 5-20a 
and 5-20b, which show an example page fault for a user data page. 
The sequence is as follows: 

1. An address reference is made to a page that is absent from 
physical memory; that is, a page whose entry has its A 
(absent) bit set to 1. 

2. An interrupt through the System Interrupt Vector (SIV) table 
entry at SG[%1220]--the entry for the page fault interrupt-­
occurs. The hardware passes the absolute extended address of 
the absent page to the interrupt handler. (For a Nonstop TXP 
processor, the low-order word of the address contains the 
word offset within the page; for the Nonstop II processor it 
is cleared to zero.) The high-order word of the address is 
passed as the interrupt parameter in the Vi location of the 

~ 82507 AOO 3/85 5-39 



ADDRESSING AND MEMORY ACCESS 
Page Fault 

USER 
CODE 

LOAD L + 5 
P REGISTER 

11---------1,,._ 2722 

ABSOLUTE EXTENDED ADDRESS OF FAUL TED PAGE 

HIGH-ORDER WORD: PAGE FAULT INTERRUPT PARAMETER 
LOW-ORDER WORD: PASSED IN R7 

0 1 2 14 15 

16 20 21 

SYSTEM 
CODE 

PAGE 
FAULT 

INTERRUPT 
HANDLER 

(3) 

REGISTER 
31 

STACK 

RO 
R1 
R2 
R3 
R4 
RS 
R6 
R7 

G[2048] 

USER 
DATA 

LOGICAL 
PAGE 

0 

LOGICAL 
PAGE 

LOGICAL 
PAGE 

2 

USER 
DATA 
MAP 

L REGISTER 

.. .__ 2045 

..... \ 
I +5 

I + 
'-r=~~=J 

( 1) 

[!8·-
~~~-----. \_%•:·· J "' 

~ ~IV ENTRY FOR
PAGE FAULT

(5,1
SPACEID.

M
} INTERRUPT STACK

,I MARKER SAVING p 2721
I ENV INTERRUPTED

~ L ENVIRONMENT

RO
R1
R2
R3
R4
RS
R6
R7

PAGE
FAULT

INTERRUPT
HANDLER

STACK

55001-089

Figure 5-20a. Page Fault Interrupt Sequence

Af' 82507 AOO 3/85

ADDRESSING AND MEMORY ACCESS
Page Fault

RESTORED USING
P REGISTER INFORMATION

__ L_o_A_o_L_+o_os_\ I 2721 I-+-- SAVED IN THE
INTERRUPT STACK
MARKER

\
\ THE INSTRUCTION THAT HAD THE

PAGE FAULT IS RE-EXECUTED

85001-090

Figure 5-20b. Page Fault Interrupt Sequence

SIV entry. The low-order word of the address is passed in R7
of the Register Stack after the current environment has been
saved.

The current P Register setting is decremented by one (so that
the faulted instruction will be repeated upon return from the
interrupt handler), and then the current environment--Space
ID, interrupt mask (M), the S, P, ENV, and L Registers, and
the Register Stack--is saved in the interrupt stack marker.
The interrupt environment is established in the manner
described later in Section 6.

3. The page fault interrupt handler saves the interrupted
environment and the absolute extended address of the absent
page, and passes control to the Dispatcher.

4. The Dispatcher in turn invokes the memory manager process.
If necessary to make room in physical memory for the new
page, the memory manager chooses another page already in main
memory and removes (or "replaces") it. The memory manager
reads the absent page from disc, overlaying the replaced
page, and then sets the page table entry for the retrieved
page to the address of its physical page. The process is
then allowed to execute again.

-1J 82507 AOO 3/85 5-41

ADDRESSING AND MEMORY ACCESS
Memory Errors

The memory manager can replace only "clean~ pages. These are
either code pages or pages for which the "dirty~ bit is not
set. The memory manager periodically cleans dirty pages by
writing them to disc and clearing the dirty bit.

5. Because the P Register setting of the faulted environment was
decremented by one before it was saved, the instruction
previously causing the page fault is now reexecuted.

MEMORY ERRORS

Correctable and uncorrectable memory errors are reported to the
processor either as interrupts or as I/O termination conditionso
An uncorrectable error generally indicates that the physical page
should no longer be used. A correctable error, on the other
hand, may occur because of either a transient failure or a hard
error. A hard error can be detected by rewriting a page that
gets a correctable error and then seeing if the error occurs
again. A privileged instruction, CMRW, is used by the operating
system for this purpose; this instruction holds off memory
accesses by the I/O channel while a word of memory is being
rewritten.

SYSTEM TABLES

The locations of some major tables discussed at length later in
this manual are illustrated in Figure 5-21. These tables are
located in pages 0 and 1 of the system data segment, which are
always located in physical pages 0 and 1, respectively. Note
that all of page 1 is used for the I/O Control Table (IOC).

The following paragraphs briefly describe the tables shown in
Figure 5-21.

System Interrupt Vector. SG[%1200:%1337] is the System Interrupt
Vector (SIV). This table contains 24 four-word entries; each
entry defines the executing environment for one of the operating
system interrupt handlers (see "Interrupt System," Section 6).

Bus Receive Table. SG[%1400:%1477] is the Bus Receive Table
TBRT). This table contains 16 four-word entries, each of which
is assigned to manage the interprocessor bus transfers for one

5-42 ~ 82507 AOO 3/85

96 WORDS
(4 WORDS*
24 ENTRIES)

84 WORDS
(4 WORDS*
16 ENTRIES)

1024 WORDS
(4 WORDS*

258 ENTRIES)

F

~F

~~

~~

SYSTEM
DATA

SYSTEM
INTERRUPT

VECTOR
(SIV)

BUS
RECEIVE
TABLE
(BRTI

INPUT/
OUTPUT
CONTROL

TABLE
(IOC)

ADDRESSING AND MEMORY ACCESS
System Tables

~F

~F

~F

~~

SG[O)

SG [%1177)

SG [%1200)

SG [%1337)

SG [%1400)

SG [%1477)

SG [%2000)

SG [%3777)

~

85001-091

Figure 5-21. Dedicated Memory Locations in System Data

~ 82507 AOO 3/85 5-43

ADDRESSING AND MEMORY ACCESS
System Tables

processor module. Each entry describes the number of words
expected and the system buffer location where the data is to be
stored (see "Interprocessor Buses" in Section 7).

Bus Receive Table Long. SG[%1600:%1677] is the Bus Receive Table
Long (BRTLONG). This table contains 16 four-word entries, each
of which points to the BRT entries for another cluster in the FOX
network (see "Interprocessor Buses" in Section 7).

I/O Control Table. SG[%2000:%3777] is the I/O Control Table
Troe). This table contains 256 entries corresponding to the 256
subchannels that can be connected to an I/O channel. Each entry
describes the number of bytes to be transferred and the system
buffer location to be used for the data transfer (see
"Input/Output Channel" in Section 7).

5--44 '°1' 82507 AOO 3/85

SECTION 6

INTERRUPT SYSTEM

The interrupt system transfers control to a specific location in
the operating system (called an interrupt handler) upon the
occurrence of any of the conditions listed in Table 6-1. All
interrupt handlers for these events are located in the system
code segment (SAS 3, or absolute segment 3).

When an interrupt occurs, the interrupted environment is saved in
an interrupt stack marker. An operating system interrupt handler
executes to process the particular interrupt. Then an IXIT
(interrupt exit) instruction is executed to restore the
interrupted environment (see Figure 6-1).

INTERRUPT
HANDLER

PROCESSES
INTERRUPT

85001-092

Figure 6-1. General Interrupt Sequence

~ 82507 AOO 3/85 6-1

INTERRUPT SYSTEM
INT and MASK Registers

Table 6-1. Interrupt Conditions

Interrupt No.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21-23

INT AND MASK REGISTERS

Event

Special channel error
Uncorrectable memory error
Memory access breakpoint
Instruction failure
Page fault
Undefined
Undefined
OSP (Operations & Service Processor) I/O
Power fail
Correctable memory error
High-priority I/O
Interprocessor bus receive completion
Undefined
Time list
Standard I/O
Dispatcher
Power on
Stack overflow
Arithmetic overflow or divide by zero
Instruction breakpoint
XRAY Sampler (Nonstop TXP processor only)
Undefined

Three registers are associated with interrupts: two 16-bit
interrupt registers (INTA and INTB) and a 16-bit MASK register.
The bit assignments of these registers are illustrated in Figure
6-2. Only four bits of INTB are relevant to interrupts: however,
these four are the highest-priority interrupt bits, being
examined first at the conclusion of each instruction. The
interrupts represented by the bits of INTA are maskable--that is,
the corresponding bits of the MASK register are used by the
operating system to allow or disallow particular interrupt types
at various critical or noncritical times. Bit 6 of INTA
(arithmetic overflow or divide by zero) is separately masked by
the trap enable bit of the Environment Register (ENV.<8>), but is
used in a similar way to enable or disable that interrupt. For
all maskable interrupts, the interrupt condition is ignored if
the corresponding MASK bit is equal to 0, and will continue to be
deferred until the MASK bit is set to 1. The checking operation
is performed by a logical AND of the two registers.

6-2 ~82507 AOO 3/85

INTB

*
HALT

OSP HALT 9

MANUAL RESET 10

POWER ON 11

* 12

* 13

* 14

* 15

~

~

MASK

MICROCODE
INTERRUPT SERVICE

ROUTINES

HALT

OSP HALT

MANUAL RESET

INSTRUCTION
FAILURE

SYSTEM

INTERRUPT SYSTEM
INT and MASK Registers

REGISTER INTERRUPT INTERRUPT
HANDLERS INTA ("AND")

SPECIAL CHANNEL ERROR

UNCORRECTABLE MEM. ERROR

MEMORY ACCESS BREAKPOINT

XRAY SAMPLER

DATA PAGE ABSENT

CODE PAGE ABSENT

ARITHMETIC OVERFLOW 6 -
OSP 1/0

POWER FAIL

CORRECTABLE MEMORY ERROR 9

HIGH-PRIORITY 1/0 10

X·BUS RECEIVE COMPLETION 11

Y-BUS RECEIVE COMPLETION 12

TIME LIST 13

STANDARD 1/0 14

DISPATCHER 15

TRAP ENABLE

STACK OVERFLOW

INSTRUCTION BREAKPOINT

Figure 6-2.

AJ' 82507 AOO 3/85

VECTOR

2

4

5 UNDEFINED

6 6 UNDEFINED

9

10 10

11 11

12 12 UNDEFINED

13 13

14 14

15 15

16

17

16

19

20

21 UNDEFINED

22 UNDEFINED

23 UNDEFINED

SPECIAL CHANNEL ERROR

UNCORRECTABLE MEM. ERROR

MEMORY ACCESS BREAKPOINT

INSTRUCTION FAILURE

PAGE FAULT

OSP 1/0

POWER FAIL

CORRECTABLE MEM. ERROR

HIGH PRIORITY 1/0

BUS RECEIVE COMPLETION

TIME LIST

STANDARD 1/0

DISPATCHER

POWER ON

STACK OVERFLOW

ARITHMETIC OVERFLOW

INSTRUCTION BREAKPOINT

XRAY SAMPLER
(Nonstop TXP
PROCESSOR ONLY)

* NON INTERRUPT BITS
USED AS MICROCODE FLAGS

85001-093

INT and MASK Registers

6-3

INTERRUPT SYSTEM
System Interrupt Vector

Most interrupt types can occur only at the end of an instruction,
when the hardware routinely checks for the presence of 1 bits in
the interrupt registers. However, three interrupt types (power
on, uncorrectable memory error, and page fault) are preemptive;
that is, they will interrupt during an executing instruction.
Also, certain long-running instructions (e.g., the move
instructions) may be interrupted during execution.

If two or more interrupt conditions exist simultaneously in INTA,
and each has its corresponding MASK register bit set, the
interrupt type with the highest priority (lowest bit number)
takes precedence; the others are deferred until the interrupt
handler finishes executing and executes an IXIT instruction.

Interrupts for stack overflow, instruction failure, and
instruction breakpoint have entries neither in the interrupt
registers nor in the MASK register; these cause an interrupt
whenever they occur, ignoring priority. The hardware-only
interrupts (halt, OSP halt, and manual reset) are serviced
entirely within microcode.

As shown in Figure 6-2, detected interrupt conditions are passed
to software interrupt handlers through the System Interrupt
Vector.

SYSTEM INTERRUPT VECTOR

Each interrupt event that is to be serviced by software has a
corresponding entry in the System Interrupt Vector (SIV). The
SIV, which is initialized by the operating system, defines the
executing environment for each of the 18 operating system
interrupt handlers. The SIV, shown in Figure 6-3, begins at
system data location %1200 and contains 24 four-word entries (six
are undefined).

Each four-word entry in the System Interrupt Vector contains the
following information:

Li =
Mi =
Pi =

Vi =

L register setting for interrupt handler
MASK register setting for interrupt handler
P Register setting of first instruction in interrupt
handler
Interrupt-related parameter put here by firmware

The following paragraphs further describe the functions of each
of these entries, as illustrated in Figure 6-4.

• Li: This is the address in system data space for an
interrupt handler's local storage (stack).

6·-4 4°' 82507 AOO 3/85

INTERRUPT
SYSTEM

NUMBER
INTERRUPT

VECTOR

SG[%1200]

SG[%1204]

SG[%1210]

SG(%1214]

SG[%1220]

SG[%1224]

SG[%1230]

SG[%1234]

SG[%1240]

SG[%1244]

10 SG[%1250]

11 SG[%1254]

12 SG[%1260]

13 SG[%1264]

14 SG[%1270]

15 SG[%1274]

16 SG[%1300]

17 SG(%1304]

18 SG[%1310]

19 SG[%1314]

20 SG[%1320]

21 SG[%1324]

22 SG[%1330]

23 SG[%1334]

Figure 6-3. System

-1J 82507 AOO 3/85

INTERRUPT SYSTEM
System Interrupt Vector

SPECIAL CHANNEL ERROR

UNCORRECTABLE MEMORY ERROR

MEMORY ACCESS BREAKPOINT

INSTRUCTION FAILURE

PAGE FAULT

UNDEFINED

UNDEFINED

OSP 1/0

POWER FAIL

CORRECTABLE MEMORY ERROR

HIGH-PRIORITY INPUT/OUTPUT

INTERPROCESSOR BUS RECEIVE COMPLETION

UNDEFINED

TIME LIST

STANDARD INPUT/OUTPUT

DISPATCHER

POWER ON

MEMORY STACK OVERFLOW

ARITHMETIC OVERFLOW OR DIVIDE BY ZERO

INSTRUCTION BREAKPOINT

XRAY SAMPLER (Nonstop TXP PROCESSOR ONLY)

UNDEFINED

UNDEFINED

UNDEFINED

85001-094

Interrupt Vector

6-5

INTERRUPT SYSTEM
System Interrupt Vector

SYSTEM
INTERRUPT

VECTOR
(SYSTEM

1------L-i----~-- --- ~

Mi
Pi
Vi

----------'-..

INTERRUPT
HANDLER

STACK
(i.e., LOCAL
STORAGE)

'-..

Li

Mi

Pi

Vi

SIV TABLE ENTRY
iDEFINES THE INTERRUPT

HANDLER'S ENVIRONMENT)

ADDRESS OF INTERRUPT STACK
MARKER FOR INTERRUPT HANDLER

MASK FOR MASKING OFF
OTHER INTERRUPTS

STARTING ADDRESS OF
INTERRUPT HANDLER

PARAMETER RELATED TO
INTERRUPT

INTERRUPT STACI< MARKER
(SAVES THE INTERRUPTED

ENVIRONMENT)

INTERRUPTED SPACEID

INTERRUPTED MASK

INTERRUPTED S

INTERRUPTED P (OR P-1)

INTERRUPTED E

INTERRUPTED L

RO

R1

R2

R3

R4

RS

R6

R7

SYSTEM
CODE

INTERRUPT
HANDLER

CODE

C[Pi]

85001-095

'-·--------------------------------------~-----------~-----·-------------------~-----------------~

Figure 6-4. SIV Entry and Interrupt Stack Marker

6-6 "°182507 AOO 3/85

INTERRUPT SYSTEM
Interrupt Stack Marker

• Mi: This is a mask value for masking off unwanted interrupts
while an interrupt handler executes. The MASKi value in the
SIV entry is ANDed with the current MASK register setting to
derive a new setting. This permits nesting of interrupts of
different types.

• Pi: This is the system code address of the interrupt handler's
entry point.

• Vi: This is a location where an interrupt-related parameter
may be returned by processor firmware.

INTERRUPT STACK MARKER

When an interrupt occurs, the interrupted environment is saved in
an interrupt stack marker. The interrupt stack marker is placed
at Li[-5:0] in the interrupt handler's stack; see Figure 6-4.
The interrupt stack marker contains the following register values
as they existed at the time of the interrupt:

Li[-5] = space ID, space identification of interrupted code
Li[-4] = M, the MASK register setting
Li[-3] = S, the S register setting
Li[-2] = P, the P Register setting
Li[-1] = ENV, the ENV register setting
Li[O] = L, the L register setting

The format of the space ID is the same as is stored by a
procedure call, described earlier in Section 4 (see Figure 4-24);
that is, LS is in bit 4, CS is in bit 7, and the space ID index
is in bits 11:15. Unlike the case of a procedure call, however,
an interrupt saves the contents of the hardware ENV register
intact and complete in Li[-1]; this is because the current CC and
RP values must be restored on return from the interrupt.

In addition to the stack marker, each time an interrupt occurs
the current contents of the Register Stack (RO through R7) are
saved in the first eight locations of local storage (i.e.,
sysstack[Li+l] through sysstack[Li+B]).

-1' 82507 AOO 3/85 6-7

INTERRUPT SYSTEM
Interrupt Stack Marker

INTERRUPT SEQUENCE

An interrupt (i is the interrupt number) is defined as:

if INTA.<i> land MASK.<i> then
begin

Vi := interrupt parameter;
sysstack[Li-5] := space ID;
sysstack[Li-4] := MASK;
sysstack[Li-3] := S;
sysstack[Li-2] := P;
sysstack[Li-1] := ENV;
sysstack[Li] := L;
sysstack[Li+l] := RO;

thru
sysstack[Li+8] := R7;

an interrupt occurred

if any

interrupt stack marker

saved Register Stack

R7 := 2nd interrupt parameter; if any; otherwise
undefined

ENV ·-.-
ENV ·-.-
L ·-.-
s :=
p ·-.-
MASK :=

end;

%3447;

%3507;

Li;
L + 8;
Pi;
MASK LAND Mi;

if Nonstop II processor
PRIV, DS, CS, V, RP = 7

if Nonstop TXP processor
PRIV, DS, CS, K, RP = 7

An example is discussed in the following paragraphs, with
reference to Figures 6-5 and 6-6. (The first 10 steps are shown
in Figure 6-5.)

1. An interrupt condition occurs (in this example, a device is
requesting standard I/O servicing).

INTA.<14> := l;

2. The current instruction completes executing and, since
MASK.<14> is equal to 1, an interrupt occurs.

if INTA land MASK then
begin

interrupt.

3. There is no interrupt parameter for a standard I/O
interrupt;.

4a. The interrupted environment (including the current space
ID, MASK and S register settings) is saved in the area
pointed to by Li in the SIV entry for the standard I/O
interrupt. The space ID is built by the interrupt
microcode.

6-8 ~ 82507 AOO 3/85

INTERRUPT SYSTEM
Interrupt Sequence

INTERRUPTED
CODE

(USER OR SYSTEM I

~------.,

(21 INSTRUCTION

/COMPLETES

..____----~ / P REGISTER

,__ ____ ____. ..__ C =%J2BS.:-_

SYSTEM

CODE

INTA REGISTER

(11STANDARD110 INTERRUPT

OCCURS

10 11 12 13 ~ 15

lololololololololololololol 1 l 0 l 0 l
MASK REGISTER ~

/'
1 ~[EEEEI~I~-EE.CECEfJ

• -------------~• IBlLAND
MASK • REGISTER

l1l1l1l1l1l1l1l1lolol1jojolololol

STACK {
MARKER

"10177440
INTERRUPTED

DATA
(USER OR SYSTEM)

,/~ ~

L REGISTER

t-------1 - [~'£7£&::_

LOCAL
DATA

SYSTEM

DATA

~ __...,

L1 %3131
Ml %177440

191

P REGISTER (71

- l %1747 +---+--1---~~-+---~-~~r-~~~:~%~1~14~1-~

L1

}

SG(%1270]
SIV ENTRY FOR
STANDARD 110

STANDARD 1/0
INTERRUPT
HANDLER

Nonstop II PROCESSOR

Nonstop TXP PROCESSOR

/1J 82507 AOO 3/85

ENV REGISTER

[% 17 1
• .J

ENV REGISTER

I %3447 I
ENV llJ'GISTER

I %3507 I
(&)PRIV MODE
SYSTEM DATA
SYSTEM CODE

Figure 6-5.

M1
Pi

\II

SPACE ID

M %177777
s %3870
p %12765

ENV %17
L %3476

RO
R1
R2
R3
R4
RS
R6
R7

STANDARD 1/0
INTERRUPT
HANDLER

STACK

L.__.-..,,~

}

(4) INTERRUPT STACK
MARKER PUSHED

L REGISTER

-L %3131 ~ 16 1

S REGISTER

--.._ L..----:.::--:y.11::::1~41~--.

85001-096

Interrupt Sequence

6-9

INTERRUPT SYSTEM
Interrupt Sequence

sysstack[Li-5]
sysstack[Li-4]
sysstack[Li-3]
sysstack[Li-2]
sysstack[Li-1]
sysstack[Li]
sysstack[Li+l]

thru
sysstack[Li+8]

·-.-. -.-
·-.-. -.-. -.-. -.-. -.-
·-.-

space ID
MASK;
S;
P· , interrupt stack marker
ENV;
L;
RO

saved Register Stack
R7

4b. Register stack R7 receives the second interrupt parameter,
if any; otherwise, R7's contents are undefined.

5. The PRIV (privileged mode), DS (data space), and CS (code
space) bits in the ENV register are set. This defines the
interrupt handler executing environment.

ENV := %3447;
or ENV := %3507;

! if Nonstop II processor
! if Nonstop TXP processor

6. The L and S registers are set with the address of the
interrupt handler's local data area. This is the value Li
in the SIV entry for the standard I/O interrupt.

L := Li;
S := L + 8;

7. The P Register is set with the address of the first
instruction in the standard I/O interrupt handler. This is
the value Pi in the SIV entry for standard I/O.

P := Pi;

8. The Mi value in the SIV entry is ANDed with the current
MASK register setting to derive a new MASK register
setting.

MASK := MASK land Mi;

9. The first instruction of the standard I/O interrupt handler
executes.

10. The interrupt handler runs to completion, unless the
interrupt handler's mask allows interrupts or purposely
unmasks any or all interrupts and corresponding interrupts
do occur. Finally, an IXIT instruction is executed to
return to the interrupted process.

11. The IXIT instruction (see Figure 6-6) restores the
interrupted environment saved in the interrupt stack marker
(at L[-5:0]); that is, the MASK, S, P, ENV, and L registers

6·-10 '1' 82507 AOO 3/85

INTERRUPTED
CODE

SYSTEM
CODE

STANDARD 1/0
INTERRUPT
HANDLER

~ 82507 AOO 3/85

INTERRUPT SYSTEM
Interrupt Sequence

DISPATCHER
INTERRUPT

I
INT REGISTER f

MASK REGISTER f
(11 a) f 1 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I

P REGISTER (11c)

%12765

P REGISTER --c===:i
ENV REGISTER

%17

ENV REGISTER c -:_--=._-_--:i

Figure 6-6.

STACK A(
MARKER

INTERRUPTED
DATA

SYSTEM

DATA

MASK REGISTER

L REGISTER - %3476

S REGISTER - %3670

S REGISTER -c %3157=']

IXIT Sequence

I
..___. (12b)

(11el

(11b)

85001-097

6-11

INTERRUPT SYSTEM
Interrupt Types

are returned to their preinterrupt values, and the current
space ID is restored.

MASK . - sys stack [L-4]; (a) .-
s ·-.- sys stack [L-3]; (b)
p . -.- sysstack [L-2]; (c)
ENV ·-.- sysstack [L-1]; (d)
L ·-.- sysstack [L]; (e)

Also the Register Stack (values saved in L+l through L+8)
is returned to its pre-interrupt condition. If the segment
being returned to is not currently mapped, the IXIT
instruction automatically executes a MAPS (Map Segment)
instruction, using the space ID information in L-5, prior
to restoring the registers.

12a. If no interrupt is pending when the IXIT instruction
completes, process execution resumes at the point of
interruption.

12b. If another interrupt is pending, the interrupt sequence is
repeated from step 1, using the appropriate SIV entry to
set up the interrupt handler's environment.

INTERRUPT TYPES

The following paragraphs describe each of the interrupt types.

Special Channel Error (0). This interrupt occurs when the I/O
channel detects types of errors that require software servicing.
The error number is placed in the parameter word. Certain errors
have a second error word giving the subchannel address and
command, which is found in R7 on entry to the interrupt handler.

Uncorrectable Memory Error (1). This interrupt occurs when a
memory word is accessed by the IPU and contains an error which
cannot be corrected. The parameter contains the 109ical address
of the page at fault and the six syndrome bits generated by the
error correction circuitry. These syndrome bits provide
information for Tandem service personnel.

For a Nonstop II processor, the format of the parameter word is:

6-12 '1J 82507 AOO 3/85

Vl.<0:5>
Vl.<6:11>
Vl.<12:15>

= logical page
= syndrome
= map number {SAS)

INTERRUPT SYSTEM
Interrupt Types

The contents of the data word that was in error are found in R7
on entry to the interrupt handler.

For a Nonstop TXP processor, the parameter contains the MSTATUS
word:

Vl.<0:15> = MSTATUS word

The number of the physical page that contains the word in error
is found in R7 in entry to the interrupt handler.

Memory Access Breakpoing (2). This interrupt occurs when the
memory breakpoint has been armed by the SMBP instruction and the
breakpoint memory address has been accessed in the desired
manner. There is no parameter.

If a data page fault interrupt is pending, the processor clears
the memory access breakpoint and processes the page fault. Any
pending code page fault is cleared if the breakpoint is taken.
No interrupt occurs if the breakpoint was armed by the Operations
and Service Processor {OSP); in this case, the processor performs
a system freeze and enters the idle loop.

Instruction Failure (3). This interrupt occurs when an
unimplemented instruction is executed, or when execution of a
privileged instruction is attempted by a program which is not in
privileged mode, or when an abnormal condition is detected during
the execution of certain instructions. The parameter for this
trap is the current instruction.

Page Fault (4). This interrupt occurs when an attempt is made to
access an absent memory page {i.e., its page table entry "absent"
bit is set to 1). The parameter word is the high-order word of
the absolute extended address of the absent page. R7 contains
the low-order word of this address.

OSP I/O Completion (7). The I/O completion interrupt for the
Operations and Service Processor occurs when either a read or a
write operation to the OSP completes. The parameter word
indicates the status, as follows:

~ 82507 AOO 3/85 6-13

INTERRUPT SYSTEM
Interrupt Types

0
1

%177777
%177776
%177775

normal read completion
normal write completion
character overrun detected on a read
write interrupt with negative byte count
read interrupt with zero or negative byte count

Power Fail (8). This interrupt occurs when a processor module
power failure is detected. A minimum of five milliseconds is
available for processing after this interrupt occurs before power
is lost. There is no parameter.

Correctable Memory Error (9). This interrupt occurs when a memory
error occurred and can be corrected. The parameter word is of
the same form as that for an uncorrectable memory error.

The Nonstop II processor is able to rewrite the page in place
because its page table entry remains in a map register for the
duration of the CMRW.

In a Nonstop TXP processor, the CMRW instruction cannot tolerate
a page table cache miss. Thus, the processor temporarily maps
the errant page somewhere in segments 0-15 while it is being
rewritten.

High-Priority I/O Completion (10). This interrupt occurs when a
device that is connected to the high-priority interrupt poll line
requires servicing. There is no parameter.

Interprocessor Bus Receive Completion (11). This interrupt
occurs when a transmission is received on either the X-bus or the
Y-bus. The parameter word is of the following form~

Vll.<O>

Vll.<1:7>

6-14

= bus flag
0 received on X-bus
1 received on Y-bus

= status
0 normal completion
1 unexpected packet
2 checksum error
3 misrouted packet or sending cluster/CPU

unknown

..,., 82507 AOO 3/85

INTERRUPT SYSTEM
Interrupt Types

4 unsequenced packet
5 sequence error
6 illegal extended buffer address

Vll.<8:15> = cluster/processor number of sending processor

In addition, R7 contains the checksum+l computed by the microcode
when a checksum error is detected.

Time List (13). Every 10 milliseconds the microcode detects an
interval clock micro-interrupt, updates the quadword clock at
SG[l03], and decrements the wait time of the element at the head
of the Time List. If it has gone to zero, control passes to the
time list interrupt handler: otherwise, no action is taken.
There is no parameter.

Standard I/O Completion (14). This interrupt occurs when a
device that is connected to the standard interrupt poll line
requires servicing. There is no parameter.

Dispatcher (15). This interrupt occurs when a DISP or SNDQ
instruction is executed~ when a process-time timeout occurs, or
when a PSEM or VSEM instruction is executed that requires
operating system aid. Bit 15 of the parameter word is set on a
DISP, bit 14 is set on a SNDQ, bits 13 and 15 are set on a PSEM
when the semaphore cannot be obtained, and bit 12 is set when a
VSEM instruction must release a blocked process. No part of the
parameter word is ever cleared by the processor. If a Dispatcher
interrupt is pending but the contents of the parameter word are
zero, the interrupt is cleared.

Power On (16). This interrupt occurs when power is applied
following a power failure when memory is in a valid state and the
maps (Nonstop II processor) or "dedicated half" of PCACHE
(Nonstop TXP processor) have been successfully loaded with no
uncorrectable memory errors. The contents of Loadable Control
Store are invalid. There is no parameter for this interrupt.

Stack Overflow (17). This interrupt occurs when S exceeds 32,767
(i.e., the limit of the memory stack) following the execution of
any instruction that can change the S register setting--SETS,
PCAL, XCAL, ADDS, BSUB, or PUSH. There is no parameter.

4J 82507 AOO 3/85 6-15

INTERRUPT SYSTEM
Reenabling Interrupts

Arithmetic Overflow (18). This interrupt occurs when the T (trap
enable) and V (arithmetic overflow) bits in the ENV register are
simultaneously set to 1. There is no parameter.

Instruction Breakpoint (19). This interrupt occurs when a BPT
instruction is executed, or when an EXIT or DXIT instruction is
executed with ENV.<l> set to 1 in the stack marker. The
parameter is the instruction which caused the interrupt.

XRAY Sampler (20). This interrupt, which only exists in the
Nonstop TXP processor, occurs when the sampler interval timer
reaches zero. The sampler interval timer is a pseudo-random
timer maintained by the DDT (the DDTX instruction enables and
disables the timer). This interrupt is enabled only if XRAY
sampling has been requested. There is no parameter word for this
interrupt.

REENABLING INTERRUPTS

When an interrupt occurs, further interrupts of the same type are
disabled while the current environment is being saved and the
interrupt handler environment established. Interrupts of that
type are automatically reenabled at the time of entry into the
interrupt handler; however, interrupts masked by the setting of
the Mi location in the SIV entry will still be prevented from
occurring until the interrupt handler has completed. Mi must
therefore be set to mask all unwanted interrupts. Note that this
requires that Mi bits 11 and 12 both be zero when executing the
interprocessor bus receive interrupt handler, to prevent an
interrupt due to inbound traffic on the other bus.

6-·16 ..,, 82507 AOO 3/85

SECTION 7

INTERPROCESSOR BUSES AND INPUT-OUTPUT CHANNEL

INTERPROCESSOR BUSES

A Nonstop computer system has two interprocessor buses,
designated the X-bus and the Y-bus. Each processor module in the
system is connected to both buses and is capable of communicating
with any processor module (including itself) over either bus.
See Figure 7-1.

With any given interprocessor bus transfer, one processor module
is the source (and initiator), and the other is the destination
(and receiver). Before a processor module can receive data over

X BUS (0)
)}_

"""((""

Y BUS (1)
.J}_

l
"""((""

I
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

MODULE MODULE MODULE • • • MODULE
0 1 2 15

85001-098

Figure 7-1. Processor Module Addressing

.-, 82507 AOO 3/85 7-1

INTERPROCESSOR BUSES AND I/O CHANNEL
Interprocessor Buses

an interprocessor bus, the operating system first configures an
entry in a table known as the Bus Receive Table (BRT). Each BRT
entry contains, among other things, the address where the
incoming data is to be stored and the number of bytes expected.

The FOX network is a fiber optic extension to the X- and Y-buses
of the interprocessor bus. A FOX network establishes a
high-speed communication link for a ring of systems composed of
Nonstop II and/or Nonstop TXP processors. A ring can contain up
to fourteen systems: each system, also known as a cluster, can
contain up to sixteen processors.

The FOX network uses pass-through routing. Systems need not be
connected directly to one another to exchange data: messages can
be passed through intermediate systems, allowing the fiber optic
links in the FOX network to connect the systems in a ring
configuration rather than a star (each system directly connected
to each other system).

To transfer data over a bus (see Figure 7-2), a SEND instruction
is executed in the source processor module. The SEND instruction
specifies the bus to be used for the transfer, the destination
processor module, the number of bytes to be sent, the source
location in memory of the data to be sent, the sender's processor
number, a timeout value, and a sequence number.

While the source processor module is executing the SEND
instruction and sending data over the bus, the firmware in the

SOURCE
PROCESSOR
MODULE

SOFTWARE

DESTINATION
PROCESSOR
MODULE

SOFTWARE

DATA IS STORED IN
THE SYSTEM DATA
AREA POINTED TO

BY THE BUS
RECEIVE TABLE.

SOFTWARE PROGRAM
IS INTERRUPTED WHEN
TRANSFER COMPLETES.

HARDWARE

85001-099
------~------------~----------~~~---------~------------~~-~--------·~

Figure 7-2. Simplified Bus Transfer Sequence

7-2 ~ 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
Bus Receive Table

destination processor module is storing the data away according
to the appropriate BRT entry (this occurs concurrently with
program execution). When the destination processor module
receives the expected number of bytes (the bus transfer is
complete), an interprocessor bus receive interrupt is posted.

Bus Receive Table and Intercluster Bus Receive Table

The Bus Receive Table (BRT) contains 16 four-word entries, which
correspond to the 16 processor modules possible in a system. The
table begins at location SG[%1400].

Each entry in the BRT (see format in Figure 7-3) contains the
address in virtual memory where the incoming data is to be
stored, a count of the number of bytes expected, and the expected
sequence number. (Refer to Section 5 for a description of
virtual memory addressing using absolute extended addresses.)

If a processor is to receive data over a designated bus, the
corresponding bit in the interrupt MASK register must be equal
to 1. These mask bits, when on, enable both the receipt of data
and the interrupt itself. The bits are:

X-Bus Receive Enable = MASK.<11>
Y-Bus Receive Enable = MASK.<12>

If a processor is part of a FOX network, its system has a unique
cluster number in the range of 1-14. This cluster number,
available to the microcode, is stored in location %154 of the
system data segment, with the format shown in Figure 7-3.

Each system also considers itself to have a cluster· number of 0
which it uses for all transfers that are local to its own
interprocessor buses. The BRT table that starts at location
%1400 of system data is treated as the BRT for cluster O.

Cluster 15 is reserved for special functions (e.g., messages that
require special handling by the bus controller). There cannot be
an actual cluster number 15.

Another table, BRTLONG, points to the BRT entries for clusters
1 through 14 in the FOX network. BRTLONG contains sixteen 4-word
entries, one entry per cluster.

The BRTLONG entry for a given cluster is located at:

SG [%1600 + 4 * cluster no.]

The format is shown in Figure 7-3.

"1J 82507 AOO 3/85 7-3

INTERPROCESSOR BUSES AND I/O CHANNEL
Bus Receive Table

CPU 0-<

1-<
2-<

13-<

15-<

BUS RECEIVE
TABLE

(SYSTEM DATA)

~
~

Figure 7-3.

7-4

BRT ENTRY

SG[%1400y ABSOLUTE EXTENDED BUFFER ADDRESS
.,,,,,... --~~~~~~·~~~~~~~~~-~

/ (ADDRESS CONTINUED)

UNSIGNED BYTE COUNT

SEQUENCE NUMBER EXPECTED - - - ..._ _____________________ _

G

F

E

D

c

B

A

0

SEND PARAMETERS
IN REGISTER STACK

7 8

SEQUENCE NUMBER

12

SENDER CPU RECEIVER CPU

TIMEOUT VALUE

ABSOLUTE EXTENDED BUFFER ~mDRESS

(ADDRESS CONTINUED)

BYTE COUNT

FOX CPU
IDENTIFICATION

15

B

0 7 8 11 12 15

SG[%154) CLUSTER--r CPU NO.

0
BRTLONG ENTRY

MAXIMUM CPU NO. IN THIS CLUSTER PLUS ONE

SYSTEM DATA ADDRESS OF BRT FOR THIS CLUSTER

RESERVED

RESERVED

15

85001-100

Formats Associated with Bus Transfers

~ 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
SEND Instruction

SEND Instruction

The SEND instruction expects seven parameter words in the
Register Stack. These are shown in Figure 7-1, and are described
as follows.

• G.<15> specifies the bus (0 = X-bus, 1 = Y-bus) to be used.

• F.<0:15> is the sequence number to be sent.

• E.<0:7> specifies the sender processor module, and E.<8:15>
specifies the receiver processor module.

• D.<0:15> is a value that is subtracted from 32,768 to derive
the number of 0.8-microsecond units (Nonstop II processor) or
0.833-microsecond units (Nonstop TXP processor) allotted to
completing a single packet (16-word) transfer. The timeout
period is restarted for each packet transferred. (This
parameter is normally zero when the operating system issues a
SEND.)

• C.<0:15> and B.<0:15> form the absolute extended (byte)
address of the buffer containing the data to be transferred.

• A.<0:15> is an unsigned count of the number of data bytes to
be transferred.

Following execution of the SEND instruction, the Condition Code
is set to either of two values:

CCL = Packet Timeout
CCE = Successful

Specifically, the SEND instruction executes as follows:

1. The IPU firmware checks whether the OUTQ is empty, since it
must be empty when the send begins. If the OUTQ is not
empty, the firmware checks for interrupts and services any
that are pending. Then it checks for a timer overflow. If
the timer did not overflow, it updates the timer and begins
step 1 again. If a timer overflow occurred, indicating that
the OUTQ did not become empty within the timeout period, a
packet timeout occurs and the SEND is aborted. Timeout is
defined as:

0.8(32768 - D) microseconds
0.833(32768 - D) microseconds

(Nonstop II processor)
(Nonstop TXP processor)

2. If data remains to be sent (i.e., count<> 0), it is placed
in the OUTQ (bytes 4 through 29, or OUTQ[2:14]). If there
are fewer than 26 bytes to be transferred, OUTQ[2:14] is

..-, 82507 AOO 3/85 7-5

INTERPROCESSOR BUSES AND I/O CHANNEL
Bus Transfer Sequence

padded with zeros. The sequence number is placed in OUTQ[l]
and the routing word in OUTQ[O]: an odd parity checksum is
calculated and placed in OUTQ[l5]. The packet is then sent,
and the transfer address and count parameters are updated.

3.. If no data remains to be sent, the SEND is flagged internally
as "done" and the condition code is set to CCE to indicate a
successful completion.

4.. If a packet timeout occurs, the operation is also flagged
internally as "done". However, the condition code is set to
CCL to indicate a packet timeout.

5~ The sequence repeats back to step 2 if the SEND is not
"done".

Bus Transfer Sequence

As previously stated, there must be coordination between the
source processor module and the destination module in regard to
the number of bytes to be transferred. The operating system
accomplishes this by preceding each transfer with a separate
transfer (i.e., SEND) of a predetermined number of bytes of
control information. In general, this control information tells
the operating system in the destination module to expect a
specified number of bytes over a specified bus. In the following
example, illustrated in Figures 7-4a and b, assume that the
initial transfer has taken place. The operating system in the
destination module has configured the appropriate BRT entry for
receiving 400 bytes.

1.. A SEND instruction is executed in the source processor module
(processor module 1). The SEND parameters specify:

• X-Bus to Processor Module 3 (stack register G).

• A sequence number (ignored in this example) (F).

• Sender CPU 1 and receiving CPU 3 (E).

• A packet timeout value of 0 (meaning that a timeout occurs
if a single packet transfer takes longer than 26
milliseconds) (D).

• A source buffer location address of 1466, which represents
only the word and byte field values (11 bits of B) of the
full 32-bit virtual memory address. (This is an absolute
extended address. For simplicity, the other 21 bits of
the address, representing the segment and page fields, are

7-·6 ~ 82507 AOO 3/85

SYSTEM
CODE

0
(1) F t------'-"-1

t---S-EN-D---t Et----'---0---1

~ Dt-------1
~ c

-.......... B ..----.-. -.. -.. -. --14_88__,,

A 400 -----

INTERPROCESSOR BUSES AND I/O CHANNEL
Bus Transfer Sequence

X BUS

Y BUS

ABSOLUTE
ADDRESS

..... ·1488 I-

SOURCE
DATA

BUFFER

t-

DATA
TO BE
SENT

(400 BYTES)

TO PROCESSOR
MODULE 3

PROCESSOR
MODULE 1

85001-101

Figure 7-4a. Bus Transfer Sequence (Send)

~ 82507 AOO 3/85 7-7

INTERPROCESSOR BUSES AND I/O CHANNEL
Bus Transfer Sequence

.~--·----------------~·---------------------·---.

FROM PROCESSOR
MODULE 1

INTERRUPT PARAMETER

X BUS

Y BUS

lololololololololololololololol 1 l­
I

BUS

1--

STATUS

SYSTEM
CODE

X BUS
COMPLETION

-

INTERRUPT (51
HANDLER

CODE

IXIT (6)

CPU 1

(4)

(2) X BUS RECEIVE-,

MASK REGISTER ~

I
I
I
I
I
I

SYSTEM
DATA

I I

~

400 B'YTES

OF DATA
FROM CPU 1

VIA X BUS

DESTINATION
DATA EIUFFER

MARKER SAVING

.... 1530

(3)

}

INTERRUPT STACI<

1-"------t INTERRUPTED
~-----1 ENVllRONMENT
--=-~----t ..,_;;;------

STACK FOR
X BUS

COMPLETION
INTERRUPT

PROCESSOR
MODULE 3

85001-102

·---~----------··---------------------------------------·--'

Figure 7-4b. Bus Transfer Sequence (Receive)

7-8 -'ff 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
Bus Transfer Sequence

ignored throughout this example. Refer to the
"Addressing" and "Memory Access" discussions for a
description of virtual memory addressing using absolute
extended addresses. Also note that since extended
addresses are byte addresses, transfers on odd byte
boundaries are permitted.)

• A count of 400 bytes to be transmitted (A).

The SEND instruction transmits the 400 bytes to processor
module 3 via the X-bus, then completes. The parameters are
deleted from the Register Stack and the condition code is set
to CCE (indicating a successful operation).

2. Meanwhile, processor module 3, which has been previously
readied for this transfer, has MASK.<11> set to 1 to enable
receipt of data over the X-bus and has its BRT entry for
processor module 1 configured as follows:

• The transfer address where the incoming data is to be
stored, starting at byte address 1530.

• The count of the number of bytes expected, 400.

• The initial sequence number.

3. The data, as received, is stored away as indicated by the BRT
entry. As the data is stored, the transfer address is
incremented accordingly and the count is decremented
accordingly.

4. When the count in the BRT entry reaches zero, 400 bytes have
been received. At this point an interrupt occurs through the
SIV (System Interrupt Vector) for interprocessor bus
completion. The parameter associated with this type of
interrupt contains the processor module number of the source
processor module, the bus flag (0 in this example), and the
status (also 0 in this example).

5. The interrupt handler code for bus completion now executes.
Because INT.<11> in the interrupt register is now set,
further data transmissions to this processor module over the
X-bus are rejected. Additionally, the Mi word in the SIV
entry for bus completion masks off further interrupts in the
MASK.<11:12> positions.

6. When the IXIT instruction executes, the previous MASK
register setting is restored. Since the interrupt handler
has already reset INT.<11>, processor module 3 is again
enabled for receiving data over the X-bus.

~ 82507 AOO 3/85 7-9

INTERPROCESSOR BUSES AND I/O CHANNEL
OUTQ, INQ and Packets

Figure 7-5 shows the relationships of the transfer address,
count, and sequence number in the BRT entry, and also the
incoming data storage in the transfer location.

BRT ENTRY

ADDRESS:
COUNT:
SEQUENCE:

DESTINATION
DATA BUFFER

START MIDDLE FINISH

Figure 7-5. Incoming Data Storage

OUTQ, INQ, and Packets

___.... INTERRUPT

85001-103

The interprocessor buses are significantly faster than memory.
Therefore each processor has a buffered interface to both buses;
Nonstop II processors have two 16-word output buffers (called
OUTQ X and OUTQ Y), Nonstop TXP processors have one 16-word
output buffer (called OUTQ); both processor types have two
16-word input buffers (called INQ X and INQ Y). See Figures 7-6a
and b.

Data is transmitted over a bus in the form of 16-word packets.
The SEND instruction fills the output buffer with 26 data bytes
(13 words), plus a one-word sequence number, one word for sender
and receiver numbers, and a one-word odd-parity checksum. The
instruction then signals the bus interface hardware that it has a

7-·10 ~ 82507 AOO 3/85

r----,
I I
I I--_;
I I
L..----.J

OUTQ Y

ADDRESS
c -------------
B .•..•• •• 1230

COUNT A 400

1~ ... ••••• 1258
374

1-----·•·••••• 1282
348

I :::::;;;;~ I--_.

28
BYTES

28
BYTES

28
BYTES

28
BYTES

INTERPROCESSOR BUSES AND I/O CHANNEL
OUTQ, INQ and Packets

Y BUS

X BUS

l!Q_UTING WORD

)-SEQUENCE#

-< 13 WORDS

::HECKSUM

OUTQ X

)- '"
I

Y-~
I

)- (3~ ~
I

)-

(4) _,)

- I

____ __ _

1--------:······;~;"'" 1~As ~-(
COMPL~~: _/ I ---1830 I

OF SEND ~ _ _

10 BYTES

18 ZEROS

Figure 7-6a.

.,, 82507 AOO 3/85

PROCESSOR
MODULE 1

Sending and Receiving Packets

S5001-104

7-11

INTERPROCESSOR BUSES AND I/O CHANNEL
OUTQ, INQ and Packets

X BUS

Y BUS

{
ROUTING WORD

SEQUENCE N

13 WORDS

CHECKSUM

INQ X

[__ ~. - CHEC"D BY "' i HARDWARE

10 12 13 14 15

MASK REGISTER m 1 ~

L
I

_I~
I

__ (~
I

__ (~
I

I
I
L

INQY

BUS RECEIVE

TABLE ENTHY

I :::::~:~~§ ~~~:~ss
~
~
~
I I
I I
I I
I I
I I

~§
I ::::>~ -- ,.,.,

THROUGH
SIV 11

PROCESSOR

MODULE 3

85001-105

Figure 7-6b. Sending and Receiving Packets

7-12 '°1' 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
INT and MASK Registers

packet ready for transmission. After the 16-word packet is
transmitted, execution of the SEND instruction resumes at the
point where it left off. If the last packet of the block
contains less than 26 data bytes, the remaining data bytes are
filled in with zeros. The SEND instruction terminates when the
last packet is transmitted.

When either of the INQ X or INQ Y buffers in the destination
processor module is filled and the corresponding MASK register
bit is equal to 1, a microinterrupt occurs. The action taken by
the processor module during the microinterrupt (which is
transparent to the executing process and to the operating system)
is:

• The count in the BRT entry is checked. If the count indicates
that data is expected, 26 bytes (or less if the count is less)
are read into memory at the location specified. The transfer
address and count are then updated accordingly.

• The checksum of the packet is checked. If the checksum is
valid and the count still exceeds zero, the INQ is marked
empty (permitting further transmissions to take place) and the
normal instruction execution sequence continues.

• If the count is now zero or if any transmission error is
detected (checksum error, incorrect target, sequence error,
etc.), the INT register bit associated with the bus used for
the transmission is set to 1, and an interrupt occurs. In the
case of a transmission error, the count word is not updated.
When a normal receive completes, the count word will contain
zero.

INT and MASK Registers

These registers have a direct bearing on the ability of a
processor module to accept data over an interprocessor bus. As
shown in Figure 7-7, data packets from the buses are accepted
into INQ X or INQ Y whenever the data is sent to this module
(provided that the INQ is empty). Once the data is accepted, the
corresponding bit in the interrupt register (bit 11 and/or 12 of
INTA) is then set. If the corresponding bit of the MASK register
is also set (i.e., MASK and INTA bits ANDed together), a Bus
Receive interrupt occurs that causes the IPU to transfer data to
memory.

If a source processor module attempts a SEND to a processor
module that is not enabled for receiving data (MASK bit inhibits
destination processor from emptying its INQ), the source module
receives a packet timeout indication.

~ 82507 AOO 3/85 7-13

INTERPROCESSOR BUSES AND I/O CHANNEL
INT and MASK Registers

X BUS

Y BUS

~c:Jl
' INTA REGISTER 11 12

1 I 1 ~ ::~:: : ~c::~K~;cEPTED

t +
AND AND

• +
MASK REGISTER 11 12 ---------11 rn:TI

+ + --TO MEMORY

"1" = ENABLES INTERRUPT
"0" = INHIBITS INTERRUPT

85001-106

Figure 7-7~ Bus Receive Enabling

7-14 4J 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
Input-Output Channel

INPUT-OUTPUT CHANNEL

Each processor module has a single block-multiplexed input-output
channel through which all input-output takes place.
Device-dependent I/O controllers are attached to the channel, and
each controller may have one or more subchannels. A processor
may address up to 256 subchannels. See Figure 7-8. Each
controller is connected to two different processors, and the
subchannel numbers that it responds to need not be the same on
both processors. (Dual-port operation is considered later in
this section.)

The first subchannel number for a given controller must be a
multiple of 8, and the remaining subchannels follow in
consecutive order.

The operating system performs input-output operations (see Figure
7-9) by first configuring an entry in a system table called the
I/O Control Table (IOC). The IOC contains 256 entries, one for
each subchannel that can possibly communicate over the I/O
channel. Each entry contains the address of the data buffer and
a count of the number of bytes to be transferred. Once the entry
corresponding to the device is configured, an EIO (Execute I/O)
instruction is executed to initiate the I/O transfer. When the
transfer completes, an interrupt to an operating system interrupt
handler takes place. In the interrupt handler, an !IO
(Interrogate I/O) instruction or an HIIO (High-priority
Interrogate I/O) instruction is executed to check the outcome of
the operation.

I/O Control Table

The data to be transferred between memory and a specific unit is
determined by an entry in the I/O Control Table (IOC). As
illustrated earlier (Figure 5-21), this table occupies all of the
second page of the system data segment. It contains a four-word
entry for every possible subchannel which may be connected to a
processor module. See Figure 7-10.

The first word of the the IOC entry specifies the base address of
the I/O buffer in virtual memory. Bits 6 through 9 specify the
absolute segment number (6:13), and bits 10 through 15 specify
the starting logical page number within the segment. It is
permissible for I/O buffers to cross address space boundaries.

The second word of the IOC entry specifies the number of bytes
remaining to be transferred. This value is decremented after
each word transfer.

~ 82507 AOO 3/85 7-15

INTERPROCESSOR BUSES AND I/O CHANNEL
I/O Control Table

PROCESSOR

MODULE

%30 %31

DUAL-PORT

CONTROLLER

r
I
L

UP TO 8 UNITS PER CONTROLLER

r
I
L

%32 %33 %34 %35 %38 %37

r
I
L

%200 %201 %202 %203 %204 %205 %206 %207

SUBCHANNIELS

SUBCHANNl:LS

SUBCHANNE!LS

85001-1'07

Figure 7-8. I/O Channel Addressing

7·-16 ~ 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
I/O Control Table

The third word of the IOC entry Specifies the current word in the
buffer that needs to be transferred. Since the segment off set
value given in bits 0 through 5 is relative to the page base
value given in the first word of the entry, these two values are
added together to derive the actual logical page in memory
currently being accessed for word transfers. This value is
incremented after each word transfer.

SOFTWARE HARDWARE

1/0 TRANSFER,
DIRECTED BY IOC TABLE,
OCCURS CONCURRENTLY

WITH SOFTWARE
PROCESS EXECUTION

SOFTWARE PROCESS
IS INTERRUPTED

WHEN 1/0 COMPLETES

1458

55001-108

Figure 7-9. Simplified I/O Sequence

~ 82507 AOO 3/85 7-17

INTERPROCESSOR BUSES AND I/O CHANNEL
I/O Control Table

7·-18

SUBCHANNEL

1/0 CONTROL
TABLE

(SYSTEM DATA)

.~

~~

Figure 7-10.

5 6 9 10 15

SG[%2000) ,,,,,.. -

,,....,,....,,.
STATUS l ADDRESS SPACE BASE l PAGE BASE~

BYTE COUNT

ADDRESS SPACE OFFSET I PAGE OFFSET

(RESERVED)
_____ ... __________________ _

SG[%3777)

P =PROTECT BIT (1 =OUTPUT ONLY)
STATUS = TRANSFER SYATUS

ADDRESS SPACE BASE = STARTING ADDRESS SPACE NUMBER
PAGE BASE = STARTING PAGE OF BUFFER

BYTE COUNT = NUMBER OF BYTES REMAINING TO BE TRANSFERRED
ADDRESS SPACE OFFSET = PAGE NUMBER RELATIVE TO PAGE BASE FOR

CURRENT WORD TRANSFER
PAGE OFFSET = WORD IN PAOE FOR CURRENT WOAD TRANSFER

EIO PARAMETERS IN
REGISTER STACK

B ~------r--P_A_RA.,.M_ET_E_A_1N.,.F_o_R_M_A_T_1o_N ______ ..,

A CMD MOD CMD CXT SUBCHANNEL :J
3 4 5 6

CMD =COMMAND (A. <4:5>)
0 =SENSE
1 =WRITE
2 =READ
3 =CONTROL

CXT = COMMAND EXTENSION

7 6

CMD MOD= COMMAND MODIFIER (A. <0:3>) IS
DEVICE DEPENDENT EXCEPT:

O = COLD LOAD IF CMD = 2
%17 = TAKE OWNERSHIP & CLEAR DEVICE IF CMD < > 2
%17 =POAT DISABLE IF CMD = 2

DEVICE STATUS RETURNED
IN REGISTER STACK

FROM EIO

15

B o_,,_.._B_.__:..&...

4

_____ , ___ s_u_B_cH_A_N_N_E_L_s_T_A_Tu_s ______ ~
A CHANNEL STATUS ::1

0 = OWNERSHIP (1 = OWIJED BY OTHER PORT)
I = INTERRUPT PENDING (1 = DEVICE IS

SIGNALING INTERRUPT)

B = BUSY CONTROLLER (0 1)
P = PARITY ERROR (= 1)

EIO CONDITION CODES:
CCL = CHANNEL ERROR
CCE = OPERATION SUCCESSFUL
CCG = CHANNEi. ERROR

STATUS RETURNED IN REGISTER
STACK FROM 110 & HllO

C INTERRUPT CAUSE §
B 0 I I I A I p I ' I SUBCHANNEL

A CHANNEL STATUS__ ___ ,
0 & I ARE DESCRIBED ABOVE

A = DATA TRANSFER ABORTED (= 1)
P = PARITY ERROR (= 1)

110 & HllO CONDITION CODES:
CCL = CHANNEL ERROR DURING 110
CCE = OPERATION SUCCESSFUL
CCG = CHANNEL ERROR

15

85001-109

Formats Associated with Input-Output

..-, 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
EIO Instruction

To prevent erroneous data transfers, the operating system either
sets the second word in the IOC entry to zero when transfers are
not expected, or, if the last transfer was outbound, sets the
protect bit. If a device attempts to transfer data when the byte
count is zero, the I/O channel aborts the operation, causing an
interrupt to occur. In such a case, the status returned by the
device as a result of an IIO or HIIO reflects the error.

The Nonstop TXP processor caches active IOC entries, and updates
only the cache copy during the transfer. As a result, the
operating system must copy each entry that will be used into the
IOC cache before the EIO instruction is issued. Similarly, the
operating system must copy each entry that it wishes to inspect,
during or after the transfer, back to the corresponding IOC entry
in memory. Two instructions in the Nonstop TXP processor
(supported as no-ops in the Nonstop II processor) perform these
functions:

• LIOC copies the specified subchannel's IOC entry from the
memory-resident IOC Table to the IOC cache which is resident
in scratchpad registers.

• SIOC copies the specified IOC entry from scratchpad back to
the memory copy of the IOC Table.

A third instruction, XIOC, exchanges the specified subchannel's
IOC entry with the IOC entry that is currently in the
scratchpad--basically a combination of SIOC with LIOC. This
instruction is fully supported on both processor types.

EIO Instruction

To perform an I/O operation, the roe entry for the unit must
first be correctly initialized. (In a Nonstop TXP processor, the
entry must be cached in scratchpad registers via the LIOC
instruction.) An EIO instruction can then be executed,
specifying the controller, unit, command, and other parameter
information. These parameters are placed in B and A of the
Register Stack. (See format in Figure 7-10.)

The parameters to the EIO instruction are described as follows:

• The parameter information word in B is a device-dependent
parameter that is sent to the specified device.

• Command bits A.<0:5> specify the operation that the device is
to perform. The CMD bits, A.<4:5>, specify the general type
of command:

'1J 82507 AOO 3/85 7-19

INTERPROCESSOR BUSES AND I/O CHANNEL
EIO Instruction

0 = sense
1 = write
2 = read
3 = control

The CMD MOD bits, A.<0:3>, modify the command, allowing up to
64 device-dependent commands.

Three configurations of these fields are reserved:

CMD CMD MOD Description

perform cold load
disable port (kill)

2
3
3

0
%16
%17 take ownership and clear device

• The CXT bits, A.<6:7>, are available as command extension
bits, specific to each device that requires them~

• The subchannel field, A.<8:15>, specifies one of 256
subchannels.

The EIO instruction replaces the two parameter words by two words
containing the device status and the channel status, and sets the
Condition Code according to the outcome of the instruction. The
Condition Code settings are as follows:

CCL: channel error (while executing EIO)
CCE: operation successful
CCG: channel, controller, or device error

The device status is of the form:

B.<O> = ownership
B.<l> = interrupt pending
B.<2> = busy
B.<3> = parity error
B.<4:15> = subchannel status

The status bits returned in B have the following meanings:

• 0 (ownership), B.<O>, is equal to 1 if the device is owned by
the other port. No data is transferred.

• I (interrupt pending), B.<l>, is equal to 1 if the device is
interrupting. No data is transferred.

• B (busy), B.<2>, indicates that the device is already
executing an I/O transfer (this include.s seeking on a disc or
rewinding on a magnetic tape). No data is transferred because
of this EIO.

7-20 ..-, 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
EIO Instruction

• P (parity), B.<3>, indicates (if equal to 1) that a parity
error occurred.

The channel status word returned in A can have the following
values:

%000000
%000100
%000200
%000400
%1XXXXX

no error detected in the channel
device status <0:3> non-zero
channel detected a parity error on RIC
channel detected a parity error on RIST or RDST
channel status = IOBUS Control field

!IO and HIIO Instructions

Following the successful initiation of an I/O operation by an EIO
instruction, an interrupt occurs when the operation completes.
At this point, an !IO (Interrogate I/O) or HIIO (High-Priority
Interrogate I/O) instruction must be executed to determine the
cause of the interrupt. When the !IO or HIIO is executed, the
highest-priority device with an interrupt pending returns its
subchannel number and a three-word status pertaining to the
interrupt.

The three status words returned to the Register Stack by the
execution of an !IO or HIIO instruction are of the form:

C.<0:15> = interrupt cause
B.<O> = ownership
B.<l> = interrupt pending
B.<2> = aborted
B.<3> = parity error
B.<8:15> = subchannel number
A.<0:15> = channel status

The status bits have the following meanings:

• The interrupt cause field, C.<0:15>, is related to the
particular subchannel that is interrupting.

• O (ownership), B.<O>, is equal to 1 if the controller is owned
by the alternate port (see the description of "Dual-Port
Controllers and Ownership" that follows).

• I (interrupt pending), B.<l>, is equal to 1 if the device has
an interrupt pending. Normally this bit should not be set at
this time; if it is set, some problem is indicated.

• A (aborted), B.<2>, is equal to 1 if the data transfer was
aborted.

~ 82507 AOO 3/85 7-21

INTERPROCESSOR BUSES AND I/O CHANNEL
IIO and HIIO Instructions

• P (parity error), B.<3>, is equal to 1 if a parity error was
detected during the data transfer sequence.

• The subchannel field, B.<8:15>, is the controller and unit
number associated with the interrupt.

• The channel status field, A.<0:15>, defines a possible channel
error and may have the following values:

%000000
%000100
%000200

%000400

%177777

%1-----

no error detected by the channel
device status bits <0:3> nonzero
channel detected a parity error on RIC (Read

Interrupt Command)
channel detected a parity error on RIST (Read

Interrupt Status) or RDST (Read Status)
instruction timed out waiting for the I/O channel

to become available
channel status = IOBUS Control Field

Following execution of an IIO or an HIIO instruction, the
Condition Code is set as follows:

CCL: channel error (while executing the instruction)
CCE: operation successful
CCG: channel, controller, or device error

Input-Output Sequence

A typical data transfer sequence over the input-output channel is
depicted in Figure 7-11. The sequence is as follows:

1. Instructions in the I/O driver procedure are executed to
configure the IOC entry for the subchannel through which the
transfer is to take place. In this case, the IOC entry is at
SG[%2030] for subchannel 6.

For a Nonstop TXP processor, the initialized IOC entry must
be moved into the IOC cache by an LIOC instruction.

2. The EIO parameters are loaded onto the Register Stack.

3. An EIO instruction is executed. The parameter information is
sent to subchannel 6.

4. To indicate its outcome, the EIO instruction returns two
status words to the top of the Register Stack and sets the
Condition Code. These are checked by subsequent
instructions.

7·-22 ~ 82507 AOO 3/85

SYSTEM
CODE

110

STANDARD

1/0
INTERRUPT
HANDLER

CODE

IXIT

~ 82507 AOO 3/85

(8)

INTERPROCESSOR BUSES AND I/O CHANNEL
Input-Output Sequence

REGISTER

STACK

(2~ ~~PARAM 6 1 tJ)--------·------

(4)

B STATUS

A :==:s:T:A:Tu:s:===: ~------------~--...

c INT CAUSE } B 6
A STATUS

(7) CONTROLLER

SYSTEM

DATA

SUBCHANNEL

} 6
SIV ENTRY FOR
STANDARD 1/0
COMPLETION

(6)

INTERRUPT

WHEN
COUNT~ 0

SG[%2030) --- - _ _..
IOC ENTRY
FOR SUBCHANNEL 6 BUFFER

AREA

\.._ __ __.
SPACE ID

} INTERRUPT
MASK

STACK MARKER s
p SAVING INTERRUPTED

ENV ENVIRONMENT

L

STACK
FOR

STANDARD
1/0

INTERRUPT
HANDLER

}

85001-110

Figure 7-11. Input-Output Sequence

7-23

INTERPROCESSOR BUSES AND I/O CHANNEL
Input-Output Sequence

5. Meanwhile, the data transfer takes place. Data is
transferred from subchannel 6 to the location in memory
indicated by the IOC entry for that subchannel~ As the data
is transferred into memory, the transfer address and count
word in the IOC are updated accordingly.

For a Nonstop TXP processor, the cached copy of: the IOC entry
is updated rather than the memory copy.

6. When the count word in the IOC reaches zero, indicating that
the transfer is completed, the channel signals the
controller. The controller stops transferring and signals
the IPU with an interrupt. The INTA.<14> bit in the
interrupt register is set to 1 to signal interrupt pending.
If the corresponding bit in the MASK register is set, an
interrupt through the SIV entry for standard I/O (at
SG[%1270]) occurs. The Mi entry in the SIV causes any
further standard I/O interrupts to be deferred while the I/O
completion interrupt handler is active.

7. The interrupt handler executes an IIO instruction. Executing
!IO signals the highest-priority interrupting controller to
stop interrupting and returns three words of status
information to the top of the Register Stack. (Controller
priorities are set into the hardware at installation time,
and may be adjusted by Tandem field service representatives
as necessary for load balancing.) The status words contain
the subchannel number of the interrupting device as well as
interrupt cause and channel status informationti

For a Nonstop TXP processor, the IOC entry must be retrieved
from its scratchpad register copy and written back to the
memory copy of the entry before its contents can be
inspected. The SIOC instruction performs this function.

8. When the interrupt handler for standard I/O completes, an
IXIT instruction is executed. IXIT restores the previous
MASK register value (which allows any pending standard I/O
interrupt to occur) and attempts to return control to the
interrupted code. Typically the operating system intervenes
at this point and the I/O process and, later, the user
process are notified of the completion of the original I/O
request.

7-24 ..,, 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
Dual-Port Controllers and Ownership

Dual-Port Controllers and Ownership

Each controller in the Nonstop II and Nonstop TXP computer system
is connected to the I/O channels of two processor modules. This
provides redundant communication paths to I/O devices. As shown
in Figure 7-12, this means that a single subchannel has entries
in the IOCs of two processor modules. Note that the ports need
not have the same subchannel address on both channels.

IOC

D
CPU 0

1/0 CHANNEL JUMPER WIRED
WITH SUBCHANNEL

ADDRESSES ON
CPU O'S 1/0 CHANNEL

SUBCHANNEL NO.

FROM CPU 0: %20 %21

FROM CPU 2: %40 %41

DUAL-PORT
CONTROLLER

/ "
p p

0 0
R R
T T

JUMPER WIRED
WITH SUBCHANNEL
ADDRESSES ON
CPU 2'S 1/0 CHANNEL

%22 %23 %24 %25 %26 %27

%42 %43 %44 %45 %46 %47

Figure 7-12. Dual-Port Addressing

IOC

D
CPU 2

1/0 CHANNEL

85001-111

Af' 82507 AOO 3/85 7-25

INTERPROCESSOR BUSES AND I/O CHANNEL
Dual-Port Controllers and Ownership

Although each controller has two ports and is fully capable of
communicating through either I/O channel, only one channel is
used during normal operation~ the other channel, as far as a
particular controller is concerned, is not used. The I/O channel
through which communication to a particular controller occurs is
said to "own" the controller. All I/O transfers (both control
and data) occur through the channel owning the controller. This
is illustrated in Figure 7-13.

ALL DATA AND
CONTROL

INFORMATION
TRANSFERS

OCCUR VIA THE
"OWNED" SIDE.

TYPICALLY,
OWNERSHIP IS NOT
CHANGED UNLESS

A FAILURE OCCURS.

CPU 0

OWNERSHIP IS TAKEN
BY CPU 0 WHEN AN
EIO WITH "TAKE OWNERSHIP"
IS ISSUED TO THIS CONTROLLER.

OWNERSHIP OWNERSHIP
ERROR BIT ERROR BIT

,- ~· ----~
I
I

PORT PORT

SUBCHANNELS

____]

AN EIO TO THE
"UNOWNED" SIDE
IS REJECTED WITH
A "DEVICE IS
OWNED BY OTHER
PORT" STATUS

IF NECESSARY, CPU 2 CAN
TAKE OWNERSHIP AWAY FROM
CPU 0 BY ISSUING AN EIO
WITH "TAKE OWNERSHIP" TO
THIS CONTROl.LER.

85001-112

Figure 7-13. I/O Controller Ownership

7-26 ~ 82507 AOO 3/85

INTERPROCESSOR BUSES AND I/O CHANNEL
I/O Channel Interrupts

Each of the two ports in a controller contains a flag bit known
as the ownership error bit. The settings of these bits determine
the channel from which the controller will accept commands. An
operating system configuration parameter specifies which channel
is to be the primary channel of communication for a particular
controller.

The operating system transfers data only through the owned side.
{An attempt to communicate through the unowned side results in
the EIO instruction being rejected with an ownership error.) If,
during the course of a data transfer, the primary path to the
controller {i.e., the primary processor module, channel, or port)
becomes inoperable, the operating system generally executes a
"take ownership" operation {of an EIO instruction) over the
alternate {backup) channel. {One exception: in case of a port
failure on a multiple-controller device, the operation is retried
using another controller, with no change of ownership.) The
ownership bits in the controller switch over to point to the
alternate I/O channel. All subsequent data transfers now occur
through this channel.

Each port also has two "disable" bits that are separate from its
ownership bits. A disable bit, if set to 1, prevents a
controller from transmitting information through that port onto
an I/O channel. The disable bit is set by an EIO instruction
"set disable" command. Normally, this is used by the operating
system when a controller performs some unexpected action that
could affect the entire channel. The disable bit is associated
with a port, so if the malfunction is in one port, normal
communication with the controller still occurs via the other
port.

I/O Channel Interrupts

A controller signals an interrupt to the IPU when its associated
transfer has completed. A controller also interrupts if it is
necessary to terminate a transfer prematurely.

When simultaneous interrupts occur on an I/O channel, a priority
scheme determines which interrupt is handled first. A subchannel
continues to interrupt until it is cleared. Normally, this
clearing is done with an IIO or HIIO instruction.

~ 82507 AOO 3/85 7-27

INTERPROCESSOR BUSES AND I/O CHANNEL
High-Priority I/O

High-Priority I/O

Two levels of interrupt are available on an I/O channel:
standard I/O and high-priority I/O. Standard I/O is performed
via controllers that interrupt through the SIV entry for standard
I/O. Likewise, high-priority I/O is performed via controllers
that interrupt through the SIV entry for high-priority I/O.
Whether a controller interrupts with standard or high priority is
determined by a jumper connection on the controller.

High-priority I/O is used by applications requiring an ultra-fast
response time (as in some data communication environments). The
operating system never masks off the high-priority interrupt
position, thereby ensuring that no matter what is executing in a
processor module, a high-priority I/O interrupt will be
recognized instantly.

7·-28 "1' 82507 AOO 3/85

SECTION 8

COLD LOAD

A processor may be initially loaded in one of two ways: from an
I/O device (disc) or from another processor using one of the
interprocessor buses. The cold-load command may, in turn, be
issued from either the control panel switches or the OSP
(Operations and Service Processor).

DISC COLD LOAD

To execute a disc cold load from the control panel, the operator
sets the Switch Register bits in the following manner: bit 0
to O; bits 1-6 to the system subvolume of the operating system
image to be loaded (SYSnn); bit 7 to 0 unless a LOBUG "boot halt"
is requested; and bits 8-15 to the 8-bit subchannel number of the
device to be used. After the switches are set, the operator
turns the RESET/LOAD key first to the RESET position, then to the
LOAD position.

For a disc cold load from the OSP, the operator uses the OSP
terminal processor status screen in the following manner: enter
the number of the processor to be loaded, then press the Fl
function key to select it; then press the FlO function key to
reset it. After this, the operator selects the device subchannel
number (and SYSnn subvolume, if loading from disc), and presses
the Fll function key. The OSP then sends the appropriate
cold-load command to the processor. (The equivalent operations
can also be peformed using the CPU, SWITCH, RESET, and LOAD
commands in the OSP's LOBUG conversational interface.)

The following discussion separately describes a disc cold load
for both the Nonstop II processor and the Nonstop TXP processor.

~ 82507 AOO 3/85 8-1

COLD LOAD
Disc Cold Load

Disc Cold Load (Nonstop II Processor)

In a disc cold-load sequence, the Nonstop II processor first
executes some microdiagnostics and then performs the following
steps:

1. Sets the system data and system code maps (Maps 1 and 3) to
map onto physical pages 0 through 63.

2. Sets the ENV, L, and S registers as follows:

ENV := %3447; PRIV, DS, and cs bits set;
V bit set, K bit cleared to identify
Nonstop II CPU

L := %1000;
s := %1100;

3. Clears the control panel display.

4. Saves the subchannel number from the control panel switches
or the OSP in R7 of the Register Stack. The value 1 for an
OSP cold load, or the value 0 for a cold load from the
switches, is saved in R6.

fi. Sets the MASK register to %176000.

6. Sets location %677 in system data to %10777, the value of a
BUN -001 (branch to self) machine instruction.

7. Sets the P register to %677.

B. Initializes the IOC entry for the subchannel specified in the
switches to the following values:

entry.<0:15>
entry.<16:31>
entry.<32:47>
entry.<48:63>

·-.-
:=
:=
·-.-

%100;
%1600;
O;
O;

9. Takes ownership of the I/O device.

10. Clears pending device interrupts.

11. Issues a cold-load read command to the device to read in the
bootstrap program.

12. Begins instruction execution.

~rhe bootstrap program read in in step 11 must perform anything
else necessary to load the memory and the Loadable Control Store.
This program begins running as soon as location %677 in system

B-2 Af~ 82507 AOO 3/85

COLD LOAD
Disc Cold Load

data is overwritten. Its starting conditions are:

s = %1100
p = %677
ENV = %3 4 4-- 1 (N and Z bit settings are determined by EIO)
L = %1000
R7 = value from switches or OSP
R6 = 0 if cold load from switches

1 if cold load from OSP
RO/Rl = EIO status
Maps 1 and 3 refer to physical pages 0:63
MASK = %176000

Disc Cold Load (Nonstop TXP Processor)

The Nonstop TXP processor performs the following steps during a
disc cold-load sequence:

1. Loads the basic instruction set from DDT prom.

2. Executes microdiagnostics.

3. Sets the invalid bit in the tag word associated with each
entry in the data cache and the page table cache.

4. Maps physical pages 0:63 into segment 1. Sets both system
code and system data space to segment 1.

5. Sets the ENV, L, and S registers as follows:

ENV := %3507;

L := %1000;
s := %1100;

PRIV, DS and CS bits set to l;
K bit set, V bit cleared to identify
Nonstop TXP processor

6. Clears the control panel display.

7. Saves the subchannel number from the control panel switches
or the OSP in R7 of the Register Stack. Saves a value of 1
in R6 for an OSP cold load, or a value of 0 in R6 for a cold
load from the switches.

8. Sets the MASK register to %166000.

9. Null-fills SG[%670:%707] to prevent uncorrectable memory
errors due to uninitialized data cache words.

..-, 82507 AOO 3/85 8-3

COLD LOAD
Disc Cold Load

10. Sets SG[%677] equal to %10777, the octal representation of a
BUN -001 (branch to self) machine instruction.

11. Sets the P register to %677.

12. Initializes the scratchpad register copy of the IOC entry for
the subchannel specified in the switches to the following
values:

IOC[device] := [%100, %1600, 0, 0] ;

13. Takes ownership of the I/O device.

14. Clears pending device interrupts.

15. Issues a cold-load read command to the device to read in the
bootstrap program.

16. Checks the Condition Code; halts with SD=%100004 if ENV.Z is
not set.

17. Begins instruction execution.

The bootstrap program read in (in step 16) must perform anything
else necessary to load the memory and the Loadable Control Store.
This program begins running as soon as location %677 is overlaid.

Its starting conditions are:

8-·Q:

s = %1100
p = %677
ENV = %3 5 0-- 1 (N and Z settings are determined by EIO)
L = %1000
R7 = value from switches or OSP
R6 = 0 if cold load from switches

= 1 if cold load from OSP
RO/Rl = EIO status
PCACHE[1, 0:63] refers to physical pages 0:63
SST[0: 15] refer to segments 0, 1, 2, 1, 4, 5 ,. • •• , 15
! Both System Code and System Data space set to segment 1
MASK = %166000

NOTE

A given physical page must be accessed only through
a single absolute segment/logical page combination;
otherwise, the Nonstop TXP processor's code/data
cache contents may become inconsistent.

.-, 82507 AOO 3/85

COLD LOAD
Bus Cold Load

BUS COLD LOAD

For a bus cold load from the control panel, the operator sets
Switch Register bit 0 to one and all other bits to zero. Then
the operator turns the RESET/LOAD key first to the RESET
position, then to the LOAD position.

For a bus cold load from the OSP, the operator loads the
processor number to be loaded through a field in the processor
status screen, and then selects the processor by pressing
function key Fl. On the same screen, the operator enters a value
of %100000 into the Switch Register field, and resets and loads
the processor by pressing FlO and Fll. Finally, the operator
invokes the operating system's RELOAD program to start the bus
cold load. All down CPUs that have been appropriately prepared
can be reloaded concurrently.

The following discussion separately describes the bus cold load
operation for both Nonstop II and Nonstop TXP processors.

Bus Cold Load (Nonstop II Processor)

In a bus cold-load sequence, the Nonstop II processor first
executes some microdiagnostics and then performs the following
steps:

1. Sets the system data and system code maps (Maps 1 and 3) to
map onto physical pages 0 through 63.

2. Sets the ENV, L, and S registers as follows:

ENV := %3447;

L := %1000;
s := %1100;

PRIV, DS, and cs bits set;
V bit set, K bit cleared to identify
Nonstop II CPU

3. Clears the control panel display.

4. Saves the value from the control panel switches or the OSP in
R7 of the Register Stack. The value 1 for an OSP cold load,
or the value 0 for a cold load from the switches, is saved in
R6.

5. Sets the MASK register to %176000.

6. Sets the P register to O.

~ 82507 AOO 3/85 8-5

COLD LOAD
Bus Cold Load

7. Reads the bootstrap program and microcode, over one of the
buses, into memory starting at SG[O].

8. Begins instruction execution.

The bootstrap program read in in step 7 must perform anything
else necessary to load the memory and the Loadable Control Store.
This program begins running as soon as 10,530 words have been
transferred over the bus to memory. Its starting conditions are:

s = %1100
p = 0
ENV = %3447
L = %1000
R7 = value from switches or OSP
R6 = 0 if cold load from switches

1 if cold load from OSP
Maps 1 and 3 ref er to physical pages 0:63
MASK = %176000

The initial data transfer size allows a transfer of 4096 words of
control store, which would occupy 10,240 words of memory, and a
bootstrap program of 290 words.

Note that the cold-load bus transfer does not use extended memory
addressing. The microcode reads the data from the INQ directly
into memory without using the Bus Receive Table (BR~~).

Bus Cold Load (Nonstop TXP Processor)

The Nonstop TXP processor performs the following steps during a
bus cold-load sequence:

1. Loads the basic instruction set from DDT prom.

2. Executes microdiagnostics.

3. Sets the invalid bit in the tag word associated with each
entry in the data/instruction cache and the page table cache.

4. Maps physical pages 0:63 into segment 1. Sets both system
code and system data space to segment 1.

5. Sets the ENV, L, and S registers as follows:

ENV := %3507:

8·-6

PRIV, DS and CS bits set to l:
K bit set, V bit cleared to identify
Nonstop TXP processor

~ 82507 AOO 3/85

COLD LOAD
Bus Cold Load

L := %1000:
s := %1100:

6. Clears the control panel display.

7. Saves the value from the control panel switches or the OSP in
R7 of the Register Stack. Saves a value of 1 in R6 for an
OSP cold load, or a value of 0 in R6 for a cold load from the
switches.

8. Sets the MASK register to %166000.

9. Sets the P register to O.

10. Reads the bootstrap program and microcode, over one of the
buses, into memory starting at SG[O].

11. Begins instruction execution.

The "bootstrap" program read in during the cold-load sequence
must perform anything else necessary to load the memory and the
control store. Its starting conditions are:

s
p
ENV
L
R7
R6

= %1100
= %0
= %3507
= %1000
= value from switches or OSP
= 0 if cold load from switches
= 1 if cold load from OSP

RO/Rl = EIO status
PCACHE[1, 0:63] refers to physical pages 0:63
SST[0:15] refer to segments 0, 1, 2, 1, 4, 5,
! Both system code and system data space set to
MASK = %166000

••• ' 15
segment 1

Note that the cold-load bus transfer does not use extended memory
addressing. The microcode reads the data from the INQ directly
into memory without using the Bus Receive Table (BRT).

..,, 82507 AOO 3/85 8-7

SECTION 9

INSTRUCTION SET

The instruction sets of the Nonstop II and Nonstop TXP
processors, including the decimal arithmetic and floating-point
options, consist of approximately 285 machine instructions. This
section provides text descriptions of all these instructions,
with the exception of those reserved for operating system use.
Diagrams are also included showing the action of some of the more
commonly used instructions. To locate the text description for
any instruction, refer to the alphabetical listing under
"Instructions" in the general index at the back of this manual.

These descriptions assume familiarity with the information
presented in Sections 1 through 8. For explanations of terms and
concepts mentioned here, refer to the Index to find the
appropriate reference.

In addition, Appendixes A and B provide a number of useful
reference tables pertaining to the instruction set.

Instructions in this section are categorized by general function
and discussed under the following headings:

16-Bit Arithmetic
32-Bit Signed Arithmetic
16-Bit Signed Arithmetic (Register Stack Element)
Decimal Arithmetic Store and Load (Standard Instructions)
Decimal Integer Arithmetic (Standard and Optional Instructions)
Decimal Arithmetic Scaling and Rounding (Standard and Optional

Instructions)
Decimal Arithmetic Conversions (Optional Instructions)
Floating-Point Arithmetic (Optional Instructions)
Extended Floating-Point Arithmetic (Optional Instructions)
Floating-Point Conversions (Optional Instructions)
Floating-Point Functionals (Optional Instructions)
Register Stack Manipulation

~ 82507 AOO 3/85 9-1

INSTRUCTION SET
16-Bit Arithmetic

Boolean Operations
Bit Deposit and Shift
Byte Test
Memory to or from Register Stack
Load and Store Via Address on Register Stack
Branching
Moves, Compares, Scans, and Checksum Computations
Program Register Control
Routine Calls and Returns
Interrupt System
Bus Communication
Input-Output
Miscellaneous
Operating System Functions

NOTE

The instruction descriptions in this section state the
conditions under which Overflow is set in the ENV register.
If Overflow is set, not part of the results on the stack
can be assumed valid. For details on the setting of the
Condition Code and Carry bits, refer to Section 4,
"Program Environment". Unless otherwise stated,
"stack" refers to the Register Stack.

16-BIT ARITHMETIC (Top of Register Staqk)

IADD (000210). Integer (signed) Add A to B. A is added to B in
integer form. A and B are then deleted from the stack and the
sum is pushed onto the stack. Overflow is set if the result is
greater than 32767 or less than -32768. Condition Code is set.

LADD (000200). Logical (unsigned) Add A to B. A and Bare added
as 16-bit positive integers. A and B are then deleted from the
stack and the result pushed on. Carry is set if the addition
overflows bit O. Condition Code is set.

!SUB (000211). Integer (signed) Subtract A from B. A is
subtracted from B in integer form. A and B are deleted and the
difference is pushed onto the stack. Overflow is set if the
result is greater than 32767 or less than -32768. Condition Code
is set.

9-·2 ~ 82507 AOO 3/85

INSTRUCTION SET
16-Bit Arithmetic

LSUB (000201). Logical (unsigned) Subtract A from B. A is
subtracted from B logically. A and B are then deleted from the
stack and the result pushed on. Carry is set if A is less than
or equal to B. Condition Code is set.

IMPY (000212). Integer (signed) Multiply A times B. Bis
multiplied by A in integer form. A and B are deleted from the
stack and the result pushed on. Overflow is set if the result is
greater than 32767 or less than -32768. Condition Code is set.

LMPY (000202). Logical (unsigned) Multiply A times B. A and B
are multiplied as 16-bit positive integers. A and B are then
replaced by the doubleword result, with the least significant
half in A. Overflow is implicitly cleared. Condition Code is
set.

!DIV (000213). Integer (signed) Divide B by A. Bis divided by
A in integer form. A and B are deleted from the stack and the
result pushed on. Overflow is set if the divisor is zero, or if
the result is greater than 32767 or less than -32768. Condition
Code is set.

LDIV (000203). Logical (unsigned) Divide CB by A, leaving the
remainder in B. The 32-bit positive integer in C and B is
divided by the 16-bit positive integer in A. The divisor and
dividend are deleted from the stack, the remainder is pushed onto
the stack (B), and the quotient is pushed onto the stack (A).
Overflow is set if the original C is greater than or equal to the
original A. Condition Code is set.

!NEG (000214). Integer (signed) Negate A. A is converted to its
two's complement form. Overflow is set if the original operand
was -32768. Condition Code is set.

LNEG (000204). Logical (unsigned) Negate A. A is converted to
its two's complement. Carry is set if the original value of A is
zero. Condition Code is set.

~ 82507 AOO 3/85 9-3

INSTRUCTION SET
32-Bit Signed Arithmetic

ICMP (000215). Integer (signed) Compare B with A. B is compared
to A in integer form and the Condition Code set accordingly. A
and B are then deleted from the stack.

LCMP (000205). Logical (unsigned) Compare B with A. Bis
logically compared to A and the Condition Code set accordingly. A
and B are then deleted from the stack.

CMPI (001---). Compare A with Immediate Operand. The Condition
Code is set as a result of the 16-bit integer comparison of A and
the immediate operand. A is then deleted from the stack.
I~xamples of the use of immediate operands are shown in Figure
9-1.

ADDI (104---). Add Immediate Operand to A. The immediate
operand is added to A in integer form. Overflow is set if the
result is greater than 32767 or less than -32768. Condition Code
is set.

I~ADI (003---). Logical (unsigned) Add Immediate Operand to A.
The immediate operand is pushed onto the stack, with the sign bit
propagating into the high order bits. Then A and B are added in
16-bit unsigned integer form. A and B are then both deleted from
the stack and the result pushed on. Carry is set if the addition
overflows bit O. Condition Code is set.

32-BIT SIGNED ARITHMETIC

DADD (000220). Double Add DC to BA. The two doubleword integers
contained in DC and BA are added in doubleword integer form.
Both operands are then deleted, and the doubleword result is
pushed onto the stack. Overflow is set if the result is greater
than (2**31)-1 or less than -(2**31). Carry can be set, and
Condition Code is set on the result.

DSUB (000221). Double Subtract BA from DC. The doubleword
integer contained in BA is subtracted in doubleword integer form
from the doubleword integer in DC. Both operands are then
deleted, and the result is pushed onto the stack. Overflow is

9-4 ~ 82507 AOO 3/85

INSTRUCTION SET
32-Bit Signed Arithmetic

EXAMPLES

INSTRUCTION FORMAT

0 1 4 7 10 13

/''------­
SIGN

BIT IMMEDIATE OPERAND

__/

TWO'S COMPLEMENT INTEGER

RANGE IS -256 : +255

CMPI -2 (COMPARE IMMEDIATE -2)

[~ fo, , ?,' 'H-~ -f,, i,--J , , , , , , 1 1 l 1 1 o 1

IS TREATED AS

OPERAND 2:

IS EXTENDED

THROUGH (0:7)

LDLl-2 (LOAD LEFT IMMEDIATE -2)

VALUE LOADED INTO A

Figure 9-1. Immediate Operand

, l 1 1 o I (-2)

SIGN BIT IS

EXTENDED
THROUGH A. (8: 15)

1 , , 1 1 J (-25 7)

$5001-113

set if the result is greater than (2**31)-1 or less than
-(2**31). Carry can be set, and Condition Code is set on the
result.

DMPY (000222). Double Multiply DC by BA. The doubleword integer
contained in DC is multiplied in doubleword integer form by the
doubleword integer in BA. Both operands are then deleted, and
the result is pushed onto the stack. Overflow is set if the
result is greater than (2**31)-1 or less than -(2**31). Carry
can be set, and Condition Code is set on the result.

Af' 82507 AOO 3/85 9-5

INSTRUCTION SET
32-Bit Signed Arithmetic

DDIV (000223). Double Divide DC by BA. The doubleword integer
contained in DC is divided in doubleword integer form by the
doubleword integer in BA. Both operands are then de~leted, and
the result is pushed onto the stack. Overflow is set if the
result is greater than (2**31)-1 or less than -{2**31), or if the
divisor (BA) is zero. Carry can be set, and Condition Code is
set on the result.

DNEG (000224). Double Negate BA. The doubleword integer
contained in BA is replaced with its two's complement. Overflow
is set if the original operand was -{2**31). Carry can be set,
and Condition Code is set on the result.

DCMP (000225). Double Compare DC with BA. The Condition Code in
the ENV register is set as a result of the doubleword integer
comparison of DC and BA. Both operands are then deleted from the
stack.

DTST (000031). Double Test BA. The Condition Code is set
according to the contents of the doubleword contained in BA.

CDI (000307). Convert Double to Integer. The doubleword integer
in BA is converted to a singleword integer by copying the
contents of A into B and deleting A. Overflow is set if the
doubleword quantity is greater than 32767 or less than -32768.

CID (000327). Convert Integer to Double. The singleword integer
in A is extended to a doubleword quantity on the top of the
Register Stack. A is copied into H, and then A is filled with
zeros if A was positive, or ones if A was negative: the Register
Pointer is incremented to give the result in BA.

MOND (000001). Minus One Double. A doubleword minus one is
pushed onto the top of the Register Stack (BA). Condition Code
i:s set.

ZERD (000002). Zero Double. A doubleword zero is pushed onto
the top of the Register Stack (BA). Condition Code is set.

9-6 ~ 82507 AOO 3/85

INSTRUCTION SET
16-Bit Signed Arithmetic

ONED (000003). One Double. A doubleword of one is pushed onto
the top of the Register Stack (BA). Condition Code is set.

16-BIT SIGNED ARITHMETIC (REGISTER STACK ELEMENT)

NOTE

For binary coding details of the first four instructions
that follow (ADRA, SBRA, ADAR, SBAR), refer to Table A-7
in Appendix A. For ADXI, refer to Table A-4.

ADRA (00014-). Add Register to A. The contents of the register
pointed to by the Register field of the instruction are added in
integer form to register A. Overflow is set if the result is
greater than 32767 or less than -32768. Carry can be set, and
Condition Code is set on the result.

SBRA (00015-). Subtract Register from A. The contents of the
register pointed to by the Register field of the instruction are
subtracted in integer form from register A. Overflow is set if
the result is greater than 32767 or less than -32768. Carry can
be set, and Condition Code is set on the result.

ADAR (00016-). Add A to a Register. A is added in signed
integer form to the register pointed to by the Register field of
the instruction. A is deleted from the stack. Overflow is set
if the result is greater than 32767 or less than -32768. Carry
can be set, and Condition Code is set on the result.

SBAR (00017-). Subtract A from a Register. A is subtracted in
signed integer form from the register pointed to by the Register
field of the instruction. A is deleted from the stack. Overflow
is set if the result is greater than 32767 or less than -32768.
Carry can be set, and Condition Code is set on the result.

ADXI (104---). Add Immediate Operand to an Index Register. The
immediate operand is added in signed integer form to the contents
of the index register specified by "x" field of the instruction.
Overflow is set if the result is greater than 32767 or less than
-32768. Carry can be set; Condition Code is set on the result.

"'82507 AOO 3/85 9-7

INSTRUCTION SET
Decimal Arithmetic

DECIMAL ARITHMETIC STORE AND LOAD (STANDARD INSTRUCTIONS}

NOTE

For binary coding details of the following two instructions,
refer to Table A-8 in Appendix A.

QST (00023-). Quadruple Store. The quadrupleword operand
contained in EDCB is stored in the effective memory location
indicated by A plus 4 times the index value. No indexing occurs
for coding 000230. For code 000231, 000232, or 000233, indexing
for the effective address uses register. R[5], R[6], or R[7],
respectively. The quadrupleword operand and A are then deleted
from the stack.

QLD (00023-). Quadruple Load. The quadrupleword operand
contained in the effective memory location indicated by A plus 4
times the index value is fetched. A is deleted, and the fetched
quadrupleword is pushed onto the stacka No indexing occurs for
coding 000234. For code 000235, 000236, or 000237, indexing for
the effective address uses register R[5], R[6], or R[7],
respectively. Condition Code is set on the loaded quadrupleword.

D:~CIMAL INTEGER ARITHMETIC (STANDARD AND OPTIONAL INSTRUCTIONS}_

QADD (000240). Quadruple Add. The two quadrupleword integers
contained in HGFE and DCBA are added in quadrupleword integer
form. Both operands are deleted, and the quadrupleword result is
pushed onto the stack. Overflow is set if the result is greater
than (2**63)-1 or less than -(2**63}. Carry can be set, and
Condition Code is set on the result. (This is a standard
instruction.}

QSUB (000241). Quadruple Subtract. The quadrupleword integer
contained in DCBA is subtracted in quadruple-length integer form
from the quadrupleword integer in HGFEa Both operands are
deleted, and the quadrupleword result is pushed onto the stack.
Overflow is set if the result is greater than (2**63)-1 or less
than -(2**63}. Carry can be set, and Condition Code is set on
the result. (This is a standard instruction.}

9-8 ""82507 AOO 3/85

INSTRUCTION SET
Decimal Arithmetic

QMPY (000242). Quadruple Multiply. The quadrupleword integer
contained in HGFE is multiplied in quadrupleword integer form by
the quadrupleword integer in DCBA. Both operands are deleted,
and the quadrupleword result is pushed onto the stack. Overflow
is set if the result is greater than (2**63)-1 or less than
-{2**63). Carry can be set, and Condition Code is set on the
result. (This is an optional instruction.)

QDIV (000243). Quadruple Divide. The quadrupleword integer
contained in HGFE is divided in quadrupleword integer form by the
quadrupleword integer in DCBA. Both operands are deleted, and
the quadrupleword result is pushed onto the stack. Overflow is
set if the divisor (DCBA) is zero. Condition Code is set. (This
is an optional instruction.)

QNEG (000244). Quadruple Negate. The quadrupleword integer
contained is DCBA is replaced with its two's complement.
Overflow is set if the original operand was -{2**63). Condition
Code is set on the result. (This is an optional instruction.)

QCMP (000245). Quadruple Compare. The Condition Code in the
Environment Register is set according to the quadruple integer
comparison of HGFE (operand 1) and DCBA (operand 2). (See Table
A-3 for Condition Code settings: the "a" states apply for
compares.) Both operands are then deleted from the stack. (This
is an optional instruction.)

DECIMAL ARITHMETIC SCALING AND ROUNDING (STANDARD AND OPTIONAL
INSTRUCTIONS)

NOTE

For binary coding details of the following three
instructions, refer to Table A-8 in Appendix A.

QUP (00025-). Quadruple Scale Up. The operand value in DCBA is
multiplied by a specified power of ten (1, 2, 3, or 4), and the
new value replaces the former contents of DCBA. Overflow is set
if the result is greater than (2**63)-1 or less than -{2**63).
Condition Code is set on the result. (This is a standard
instruction.)

'1J 82507 AOO 3/85 9-9

INSTRUCTION SET
Decimal Arithmetic

QDWN (00025-). Quadruple Scale Down. The operand value in DCBA
is divided by a specified power of ten (1, 2, 3, or 4), and the
new value replaces the former contents of DCBA. Condition Code
is set, and the Overflow bit is cleared. (This is a standard
instruction.)

QRND (000263). Quadruple Round. Five is added to the operand in
DCBA if the operand is positive (-5 is added if negative), and
the result is divided by 10. The new value replaces the former
contents of DCBA. Condition Code is set, and the Overflow bit is
cleared. (This is an optional instruction.)

DECIMAL ARITHMETIC CONVERSIONS (OPTIONAL INSTRUCTIONS)

CQI (000264). Convert Quad to Integer. The four-word value in
DCBA is converted to an integer by extracting the least
significant word. DCBA is deleted, and the integer result is
pushed onto the stack. Overflow is set if the operand was
greater than 32767 or less than -327£8.

CQL (000246). Convert Quad to Logical.
DCBA is converted to a logical value by
significant word. DCBA is deleted, and
pushed onto the stack. Overflow is set
greater than 65535.

The four-word value in
extracting the least
the integer result is
if the operand was

CQD (000247). Convert Quad to Double. The four-word value in
DCBA is converted to a doubleword by extracting the least
significant two words. DCBA is deleted, and the doubleword
result is pushed onto the stack. Overflow is set if the operand
was greater than (2**31)-1 or less than -(2**31).

CQA (000260). Convert Quad to ASCII. The absolute value of the
binary-coded quadrupleword integer in FEDC is converted to a
string of ASCII-coded digits (decimal base), and the resulting
string is stored in the memory space defined by a starting byte
address in B and a byte count in A. If the conversion results in
a truncation of leading digits, overflow is set. Condition Code
is set on the original value.

9·-10 ~ 82507 AOO 3/85

INSTRUCTION SET
Decimal Arithmetic

CIQ (000266). Convert Integer to Quad. The singleword integer
in A is extended to a quadrupleword quantity, filling the most
significant three words with zeros if A was positive, or ones if
A was negative. A is deleted, and the quadrupleword result is
pushed onto the stack.

CLQ (000267). Convert Logical to Quad. The singleword logical
quantity in A is extended to a quadrupleword quantity, filling
the most significant three words with zeros. A is deleted, and
the quadrupleword result is pushed onto the stack.

CDQ (000265). Convert Double to Quad. The doubleword integer in
BA is extended to a quadrupleword quantity, filling the most
significant two words with zeros if B is positive, or ones if B
is negative. BA is deleted, and the quadrupleword result is
pushed onto the stack.

CAQ (000262). Convert ASCII to Quad. A string of 7-bit
ASCII-coded digits in memory, defined by a starting byte address
in B and a byte count in A, is converted to a binary-coded
quadrupleword integer. The quadrupleword result is pushed onto
the stack. If a nondigit ASCII code is encountered, only the
preceding digits are converted, and CCG indicates that only part
of the string was converted; CCE indicates that the entire string
was converted. Overflow is set if the result is greater than
(2**63)-1 or less than -(2**63). If overflow is set, the value
in DCBA is undefined.

CAQV (000261). Convert ASCII to Quad with Initial Value. A
string of ASCII-coded digits in memory, defined by a starting
byte address in F and a byte count in E, is converted to a
binary-coded quadrupleword integer in DCBA. DCBA contains an
initial value (greater than or equal to zero) which is multiplied
by 10, providing a high-order value to which the converted value
is added to produce the result in DCBA. If a nondigit ASCII code
is encountered, only the preceding digits are converted, and CCG
indicates that only part of the string was converted; CCE
indicates that the entire string was converted. Overflow is set
if the result is greater than (2**63)-1 or less than -(2**63).
If overflow is set, the value in DCBA is undefined.

~ 82507 AOO 3/85 9-11

INSTRUCTION SET
Floating-Point Arithmetic

FLOATING-POINT ARITHMETIC (OPTIONAL INSTRUCTIONS)

NOTE

For the range of floating-point numbers, refer to "Number
Representations" in Section 3.

FADD (000270). Floating-Point Add. The floating-point
quantities in DC and BA are added in floating-point form. Both
operands are deleted, and the two-word result is pushed onto the
stack. Overflow is set if the result falls outside the range of
floating-point numbers. Condition Code is set on the result.

FSUB (000271). Floating-Point Subtract. The floating-point
quantity in BA is negated, and then DC and BA are added in
floating-point form. Both operands are deleted, and the result
is pushed onto the stack. Overflow is set if the result falls
outside the range of floating- point numbers. Condition Code is
set on the result.

FMPY (000272). Floating-Point Multiply. The floating-point
quantities in DC and BA are multiplied in floating-point form.
Both operands are deleted, and the result is pushed onto the
stack. Overflow is set if the result falls outside the range of
floating-point numbers. Condition Code is set on the result.

FDIV (000273). Floating-Point Divide. The floating-point
quantity in DC is divided in floating-point f-0rm by ~he
floating-point quantity in BA. Both operands are deleted and the
result is pushed onto the stack. Overflow is set if the result
falls outside the range of floating-point numbers. Condition
Code is set on the result.

FNEG (000274). Floating-Point Negate. The floating-point
quantity in BA (if not zero) is negated. The sign of BA is
reversed from positive to negative or negative to positive, and
the Condition Code reflects the final state of the sign (see
Table A-3).

9-12 ~ 82507 AOO 3/85

INSTRUCTION SET
Floating-Point Arithmetic

FCMP (000275). Floating-Point Compare. The Condition Code is
set according to the comparison of DC (operand 1) with BA
(operand 2). (See Table A-3 for Condition Code settings; the "a"
states apply for comparisons.) Both operands are then deleted
from the stack.

EXTENDED FLOATING-POINT ARITHMETIC (OPTIONAL INSTRUCTIONS)

NOTE

For the range of extended floating-point numbers, refer to
"Number Representations" in Section 3.

EADD (000300). Extended Add. The extended floating-point
quantities in HGFE and DCBA are added in extended floating-point
form. Both operands are deleted and the result is pushed onto
the stack. Overflow is set if the result falls outside the range
of extended floating-point numbers. Condition Code is set on the
result.

ESUB (000301). Extended Subtract. The extended floating-point
quantity in HGFE is negated, and then HGFE and DCBA are added in
extended floating-point form. Both operands are deleted and the
result is pushed onto the stack. Overflow is set if the result
falls outside the range of extended floating-point numbers.
Condition Code is set on the result.

EMPY (000302). Extended Multiply. The extended floating-point
quantities in HGFE and DCBA are multiplied in extended
floating-point form. Both operands are deleted and the result is
pushed onto the stack. Overflow is set if the result falls
outside the range of extended floating-point numbers. Condition
Code is set on the result.

EDIV (000303). Extended Divide. The extended floating-point
quantity in HGFE is divided in extended floating-point form by
the extended floating-point quantity in DCBA. Both operands are
deleted and the result is pushed onto the stack. Overflow is set
if the result falls outside the range of extended floating-point
numbers. Condition Code is set on the result.

~ 82507 AOO 3/85 9-13

INSTRUCTION SET
Floating-Point Arithmetic

ENEG (000304). Extended Negate. The extended floating-point
quantity in DCBA (if not zero) is negated. The sign of DCBA is
reversed from positive to negative or negative to positive.
Overflow is cleared, and the Condition Code reflects the final
state of the sign.

ECMP (000305). Extended Compare. The Condition Code is set
according to the comparison of HGFE (operand 1) with DCBA
(operand 2). Both operands are then deleted from the stack.

FLOATING-POINT CONVERSIONS (OPTIONAL INSTRUCTIONS)

CEF (000276). Convert Extended to Floating. The four-word
floating-point quantity in DCBA is converted to a two-word
floating-point quantity. DCBA is deleted, and the two-word
result is pushed onto the stack.

CEFR (000277). Convert Extended to Floating, Rounded. The
four-word floating-point quantity in DCBA is converted to a
two-word floating-point quantity. The new quantity is rounded
according to the contents of truncated bit 7 of C. DCBA is
deleted, and the two-word result is pushed onto the stack.

CFI (000311). Convert Floating to Integer. The floating-point
quantity in BA is converted to a singleword signed integer. A is
deleted, and the singleword result is pushed onto the stack.
Overflow is set if the value of the operand was greater than
32767 or less than -32768. Condition Code is set on the resulte

CFIR (000310). Convert Floating to Integer, Rounded. The
floating-point quantity in BA is converted to a singleword signed
integer, with rounding according to the contents of the most
significant fractional bit. A is deleted, and the singleword
result is pushed onto the stack. Overflow is set if the value of
the operand was greater than 32767 or less than -32768.
Condition Code is set on the result.

CFD (000312). Convert Floating to Double. The floating-point
quantity in BA is converted to a doubleword signed integer in BA.

9·-14 '1' 82507 AOO 3/85

INSTRUCTION SET
Floating-Point Arithmetic

Overflow is set if the value of the operand was greater than
(2**31)-1 or less than -{2**31). Condition Code is set on the
result.

CFDR (000313). Convert Floating to Double, Rounded. The
floating-point quantity in BA is converted to a doubleword signed
integer in BA, with rounding according to the contents of the
most significant fractional bit. Overflow is set if the value of
the operand was greater than (2**31)-1 or less than -{2**31).
Condition Code is set on the result.

CED (000314). Convert Extended to Double. The extended
floating-point quantity in DCBA is converted to a doubleword
signed integer. BA is deleted, and the doubleword result is
pushed onto the stack. Overflow is set if the value of the
operand was greater than (2**31)-1 or less than -{2**31).
Condition Code is set on the result.

CEDR (000315). Convert Extended to Double, Rounded. The
extended floating-point quantity in DCBA is converted to a
doubleword signed integer, with rounding according to the
contents of the most significant fractional bit. BA is deleted,
and the doubleword result is pushed onto the stack. Overflow is
set if the value of the operand was greater than (2**31)-1 or
less than -{2**31). Condition Code is set on the result.

CE! (000337). Convert Extended to Integer. The extended
floating-point quantity in DCBA is converted to a singleword
signed integer. CBA is deleted, and the singleword result is
pushed onto the stack. Overflow is set if the value of the
operand was greater than 32767 or less than -32768. Condition
Code is set on the result.

CEIR (000316). Convert Extended to Integer, Rounded. The
extended floating-point quantity in DCBA is converted to a
singleword signed quantity, with rounding according to the
contents of the most significant fractional bit. CBA is deleted,
and the singleword result is pushed onto the stack. Overflow is
set if the value of the operand was greater than 32767 or less
than -32768. Condition Code is set on the result.

~ 82507 AOO 3/85 9-15

INSTRUCTION SET
Floating-Point Arithmetic

CFQ (000320). Convert Floating to Quadruple. The floating-point
quantity in BA is converted to a quadrupleword integer in DCBA.
Overflow is set if the value of the operand was greater than
(2**63)-1 or less than -(2**63). Condition Code is set on the
result.

CFQR (000321). Convert Floating to Quadruple, Rounded. The
floating-point quantity in BA is converted to a quadrupleword
integer in DCBA, with rounding according to the contents of the
most significant fractional bit. Overflow is set if: the value of
the operand was greater than (2**63)-1 or less than -(2**63).
Condition Code is set on the result.

CEQ (000322). Convert Extended to Quadruple. The extended
floating-point quantity in DCBA is converted to a quadrupleword
integer in DCBA. Overflow is set if the value of the operand was
greater than (2**63)-1 or less than -(2**63). Condition Code is
set on the result.

CEQR (000323). Convert Extended to Quadruple, Rounded. The
extended floating-point quantity in DCBA is converted to a
quadrupleword integer in DCBA, with rounding according to the
contents of the most significant fractional bit. Overflow is set
if the value of the operand was greater than (2**63)-1 or less
than -(2**63). Condition Code is set on the result.

CFE (000325). Convert Floating to Extended. The floating-point
quantity in BA is converted to an extended floating--point
quantity. BA is deleted, and the four-word result is pushed onto
the stack.

CIF (000331). Convert Integer to Floating. The signed integer
in A is converted to a floating-point quantity. A is deleted,
and the two-word result is pushed onto the stack.

CDF (000306). Convert Double to Floating. The doubleword signed
integer in BA is converted to a floating-point quantity in BA,
with truncation if the result exceeds 23 significant bits.

9-16 ~ 82507 AOO 3/85

INSTRUCTION SET
Floating-Point Arithmetic

CDFR (000326). Convert Double to Floating, Rounded. The
doubleword signed integer in BA is converted to a floating-point
quantity in BA, with rounding if the result exceeds 23
significant bits.

CQF (000324). Convert Quadruple to Floating. The quadrupleword
signed integer in DCBA is converted to a floating-point quantity,
with truncation if the result exceeds 23 significant bits. DCBA
is deleted, and the two-word result is pushed onto the stack.

CQFR (000330). Convert Quadruple to Floating, Rounded. The
quadrupleword signed integer in DCBA is converted to a
floating-point quantity, with rounding if the result exceeds 23
significant bits. DCBA is deleted, and the two-word result is
pushed onto the stack.

CIE (000332). Convert Integer to Extended. The signed integer
in A is converted to an extended floating-point quantity. A is
deleted, and the four-word result is pushed onto the stack.

CDE (000334). Convert Double to Extended. The doubleword signed
integer in BA is converted to an extended floating-point
quantity. BA is deleted, and the four-word result is pushed onto
the stack.

CQE (000336). Convert Quadruple to Extended. The quadrupleword
signed integer in DCBA is converted to an extended floating-point
quantity in DCBA, with truncation if the result exceeds 55
significant bits.

CQER (000335). Convert Quadruple to Extended, Rounded. The
quadrupleword signed integer in DCBA is converted to an extended
floating-point quantity in DCBA, with rounding if the result
exceeds 55 significant bits.

~ 82507 AOO 3/85 9-17

INSTRUCTION SET
Floating-Point Arithmetic

FIJOATING-POINT FUNCTIONALS (OPTIONAL INSTRUCTIONS)

IDXl (000344). Calculate Index, 1 Dimension. For a
one-dimensional array, IDXl compares the subscript value in B
a~Jainst lower and upper bounds in a two-word table in the current
code segment starting at the address specified in A. If the
value is in bounds, the element offset value is computed and is
stored in register R[7]. If the subscript is out of bounds,
overflow is set, R[7] receives the erroneous subscript, and CCL
indicates too low or CCG indicates too high. BA is then deleted.

IDX2 (000345). Calculate Index, 2 Dimensions. For a
two-dimensional array, IDX2 compares the subscript values in B
and C against lower and upper bounds in a four-word table in the
current code segment starting at the address in A. If the values
are in bounds, the element offset value is computed and stored in
register R[7]. If a subscript is out of bounds, overflow is set,
R[7] receives the erroneous subscript, and CCL indicates too low
or CCG indicates too high. CBA is then deleted.

IDX3 (000346). Calculate Index, 3 Dimensions. For a three­
dimensional array, IDX3 compares the subscript values in B, C,
and D against lower and upper bounds in a six-word table in the
current code segment starting at the address in A. If the values
are in bounds, the element offset value is computed and stored in
register R[7]. If any subscript is out of bounds, overflow is
set, R[7] receives the erroneous subscript, and CCL indicates too
low or CCG indicates too high. DCBA is then deleted.

IDXP (000347). Calculate Index, Code Space. For an
n-dimensional array, IDXP compares the subscript values in n
stack registers (B, C, D, etc.) against lower and upper bounds in
a table in the current code segment (2n words) specified by a
starting address in A. (The first word of the table in memory is
the number of dimensions.) If the values are in bounds, the
element offset value is computed and stored in register R[7]. If
any subscript is out of bounds, overflow is set, R[7] receives
the erroneous subscript, and CCL indicates too low or CCG
indicates too high. All stack data used is deleted.

IDXD (000317). Calculate Index, Data Space. For an
n-dimensional array, IDXD compares the subscript values in n
stack registers (B, C, D, etc.) against lower and upper bounds in

9-18 ~ 82507 AOO 3/85

INSTRUCTION SET
Register Stack Manipulation

a table in the current data·segment (2n words) specified by a
starting address in A. (The first word of the table in memory is
the number of dimensions.) If the values are in bounds, the
element offset value is computed and stored in register R[7]. If
any subscript is out of bounds, overflow is set, R[7] receives
the erroneous subscript, and CCL indicates too low or CCG
indicates too high. All stack data used is deleted.

REGISTER STACK MANIPULATION

EXCH (000004). Exchange A and B. A and B of the Register Stack
are interchanged. Condition Code is set on the result in A.

DXCH (000005). Double Exchange BA with DC. The doubleword
contained in DC is interchanged with the doubleword contained in
BA. Condition Code is set on the result in BA.

DDUP (000006). Double Duplicate BA in DC. The doubleword in the
top two registers of the stack is duplicated by pushing a copy of
it onto the Register Stack. Condition Code is set.

NOTE

For binary coding details of the following three
instructions (STAR, NSAR, LDRA), refer to Table A-7
in Appendix A.

STAR (00011-). Store A in a Register. The A Register contents
are stored in the register pointed to by the Register field of
the instruction. A is then deleted from the stack.

NSAR (00012-). Non-destructive Store A into a Register. The A
Register is stored in the register pointed to by the Register
field of the instruction.

LDRA (00013-). Load A from a Register. The contents of the
register pointed to by the Register field of the instruction are
pushed onto the stack. Condition Code is set.

"f' 82507 AOO 3/85 9-19

INSTRUCTION SET
Boolean Operations

NOTE

For binary coding details of the following three
instructions (LDI, LDXI, LDLI), refer to Table A-4
in Appendix A.

LDI (100---). Load Immediate Operand into A. The immediate
operand is pushed onto the stack, with the sign bit propagating
into the high-order bits. Condition Code is set.

LDXI (10----). Load Index Register with Immediate Operand. The
index register specified by the "x" field of the instruction is
loaded with the immediate operand, and the sign bit propagates
into the high- order bits. Condition Code is set.

LDLI (005---). Load Left Immediate Operand into bits 0:7 of A.
~~he immediate operand, shifted left eight places, is loaded into
A, with the sign bits propagating into the low-order bits of A.
Condition Code is set.

BOOLEAN OPERATIONS

F'igure 9-2 illustrates the fundamental principles of boolean
operations as performed by four of the instructions. Figure 9-3
shows equivalent operations as performed on immediate operands.

LAND (000010). Logical AND A with B. A and Bare logically
ANDed. The two words are deleted from the stack and the result
pushed on. Condition Code is set.

LOR (000011). Logical OR A with B. A and Bare merged by a
logical inclusive OR. A and B are deleted and the result pushed
onto the stack. Condition Code is set.

XOR (000012). Logical Exclusive OR A with B. The two words in A
and B of the Register Stack are combined by a logical exclusive
OR. The two words are then deleted and the result is pushed onto
the stack. Condition Code is set.

9-20 "'182507 AOO 3/8!'.i

INSTRUCTION SET
Boolean Operations

LOGICAL ANO
LAND

0 + 0 = 0
0 + 1 = 0
1 + 0 = 0
1 + 1 = 1

LOGICAL OR
LOR:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 1

EXCLUSIVE OR
XOR:

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0

ONE'S COMPLEMENT
NOT:

0 = 1
1 = 0

Wffi;I o 1 1 I o 1 1 I OPERAND 1

~#Ao 0 1 I 1 1 ol OPERAND 2

~~o 0 1 I o 1 ol RESULT

t/ml 0 1 I o 1 1 I OPERAND 1

~ij_d 0 0 1 I 1 1 ol OPERAND 2

Vu//l o 1 1 I 1 1 1 I RESULT

1v010 1 1 I o 1 1 I OPERAND 1

~.2]o 0 1 I 1 1 ol OPERAND 2

~~o 1 ol 1 0 1 I RESULT

v ,//;'.j 0 1 1 I 0 1 1 I OPERAND

V$;11 0 0 I 1 0 0 I RESULT

85001-114

Figure 9-2. Boolean Operations

NOT (000013). One's Complement A. The word contained in
Register A of the stack is converted to its one's complement.
Condition Code is set.

NOTE

For binary coding details of the following four
instructions (ORRI, ORLI, ANRI, ANLI), refer to
Table A-4 in Appendix A.

ORRI (004---). OR Right Immediate Operand with A. The 8-bit
immediate operand is merged with the A Register by a logical
inclusive OR. The sign bit is not propagated, but is actually
part of the instruction; see Figure 9-3. Condition Code is set.

Af' 82507 AOO 3/85 9-21

INSTRUCTION SET
Boolean Operations

ORAi (OR RIGHT IMMEDIATEi

THE IMMEDIATE IS
TREATED AS:

ORLI (OR LEFT IMMEDIATE)

THE IMMEDIATE IS
TREATED AS:

ANAi (AND RIGHT IMMEDIATE)

THE IMMEDIATE IS
TREATED AS:

ANLI (AND LEFT IMMEDIATE)

OPERAND 1

[0Z,o/;%'0/2'0M//)~:i 1 --oT-1--o-·-11-0---1-1]
----.-----~/

SIGN BIT IS
THE IMMEDIATE OPERAND IS --- EXTEl~DED

TREATED AS: _C==--v----- THROUGH \8:15i

[ITo 1 . _Q_IJ ~~~-~_J_1-_ 1 -ITf_1 __ 1_[_1 ___ 1_1 OPERAND 1

85001-115

Figure 9-3. Boolean Instructions with ImmediatE~ Operands

ORLI (004---). OR Left Immediate Operand with A. The 8-bit
immediate operand is shifted left eight places and merged with A
by a logical inclusive OR. The sign bit is not propagated, but
is actually part of the instruction; see Figure 9-3~ Condition
Code is set.

9-22 "'f' 82507 AOO 3/8~i

INSTRUCTION SET
Bit Deposit and Shift

ANRI (006---). AND Right Immediate Operand to A. The 8-bit
immediate operand is extended to 16 bits by propagating the sign
into the high-order bits, and the resulting integer is logically
ANDed to A; see Figure 9-3. Condition Code is set.

ANLI (007---). AND Left Immediate Operand with A. The 8-bit
immediate operand is shifted left eight places, the sign bit is
propagated into the low-order bits, and the resulting integer is
logically ANDed to A; see Figure 9-3. Condition Code is set.

BIT DEPOSIT AND SHIFT

DPF (000014). Deposit Field in A. This instruction combines the
words contained in registers A and C of the stack as a function
of a mask word contained in register B of the stack. A logical
OR operation is performed on the logical AND of B and C and the
logical AND of not B and A, so that all bits in C corresponding
to ones in B are deposited into corresponding bits in A. The
original three words are deleted from the stack and the result
pushed onto the stack. Condition Code is set. An example of
this operation is shown in Figure 9-4.

LLS (0300--). Logical (unsigned) Left Shift. If the Shift Count
field is zero, the word contained in B is shifted left by the
count (modulo %400) contained in A. A is then deleted from the
stack. However, if Shift Count is not zero, A is shifted left by
that number. Condition Code is set. Figure 9-5 presents a
comparison of logical (unsigned) shifts and arithmetic (signed)
shifts.

DLLS (1300--). Double Logical (unsigned) Left Shift. If the
Shift Count field is zero, the doubleword contained in CB is
shifted left by the count (modulo %400) contained in A. A is
then deleted from the stack. However, if Shift Count is not
zero, BA is shifted left by that number. Condition Code is set.

LRS (0301--). Logical (unsigned) Right Shift. If the Shift
Count field is zero, the word contained in B is shifted right by
the count (modulo %400) contained in A. A is then deleted from
the stack. However, if Shift Count is not zero, A is shifted
right by that number. Condition Code is set.

"'82507 AOO 3/85 9-23

INSTRUCTION SET
Bit Deposit and Shift

INT i : % 023003

i. (5:10) : 5;

VALUE IN REGISTER STACK DO ABOVE:

c

B

0 1 4 7 10 13

l?;~o?i:o™ o o I o 1 -<f11'{0~0/f 0%0Z'o':J
I
I
I
I

VALUE TO 13E DEPOSITED: 5

MASK CONTAINING "1" BITS
IN POSITIONS SUBJECT TO
DEPOSIT: (5:10)

A f<o%oz):ZoX<B 1 1 I 0 0 . ~[o 1>%o')f o;%1;/,1;a OPERAND ACCEPTING DEPOSIT:
% 023003

RESULT IN A I 0 I 0 1 0 I 0 0 0 I 0 1 0 r1-·-0Jfro 1 1 I % 020243

85001-116

Figure 9-4. DPF Instruction Example

DLRS (1301--). Double Logical (unsigned) Right Shift. If the
Shift Count field is zero, the doubleword contained in CB is
shifted right by the count (modulo %400) contained in A. A is
then deleted from the stack. However, if Shift Count is not
zero, BA is shifted right by that number. Condition Code is set.

ALS (0302--). Arithmetic (signed) Left Shift. If the Shift
Count field is zero, the word contained in B is shifted left
preserving the sign bit by the count (modulo %400) contained in
A@ A is then deleted from the stack. However, if Shift Count is
not zero, A is shifted left, preserving the sign bit, by that
number. Condition Code is set.

DALS (1302--). Double Arithmetic (signed) Left Shift. If the
Shift Count field is zero, the doubleword contained in CB is
shifted left, preserving the sign bit, by the count (modulo %400)
contained in A. A is then deleted from the stack. However, if
Shift Count is not zero, BA is shifted left, preserving the sign
bit, by that number. Condition Code is set.

9-·24 ~ 82507 AOO 3/85

LEFT SHIFTS

ALS 3 (ARITHMETIC LEFT SHIFT THREE POSITIONS)

INSTRUCTION SET
Bit Deposit and Shift

OPERAND IN A: I 0 I o 1 I 1 o I o o o I 1 1 I o o 1 I % 056011

'~~~~~~~~~~~~___/

0
/

t v \.
RESULT IN A: I 0 I 1 1 o I o o o I 1 1 I o o 1 I o o o I % 06011 o

y
STATE OF SIGN BIT
IS PRESERVED

LLS 3 (LOGICAL LEFT SHIFT THREE POSITIONS)

OPERAND IN A: I o I 1 0 1 I

"
1 1 o I o 0 oJ 1

' _J /

RESULT IN A: '11 ol 0 0 o I 1

RIGHT SHIFTS

ARS 7 (ARITHMETIC RIGHT SHIFT SEVEN POSITIONS)

OPERAND IN A: 11 ! 1 1 I 0 0 1 I 1

~ t v
RESULT IN A: I 1 I 1 1 I 1 1 I 1

SIGN BIT IS PROPAGATED
SEVEN POSITIONS

LRS 7 (LOGICAL RIGHT SHIFT SEVEN POSITIONS)

1 I o

1 oi 0

/

1 1 I 1

1 1 o 0 1 I % 056071

/

0

\.. /
t

' 0 1 1 o 0 o I % 160710

0 o I o 0 1 I % 171601

!
\.

0 o 1 1 1 I % 177747

OPERAND IN A: I 1 I 1 1 I o o 1 I 1 1 o I o o o I o o 1 I %111601

"-~~~~~~~~~---'/
0

/

RESULT IN A: I 0 I 0 0 0 l 0 0 0 I 1 1 I % 000141

85001-117

Figure 9-5. Arithmetic Versus Logical Shifts

ARS (0303--). Arithmetic (signed) Right Shift. If the Shift
Count field is zero, the word contained in B is shifted right,
propagating the sign bit, by the count (modulo %400) contained in
A. A is then deleted from the stack. However, if Shift Count is
not zero, A is shifted right, propagating the sign bit, by that
number. Condition Code is set.

~ 82507 AOO 3/85 9-25

INSTRUCTION SET
Byte Test

DARS (1303--). Double Arithmetic (signed) Right Shift. If the
Shift Count field is zero, the doubleword contained in CB is
shifted right, propagating the sign bit, by the count (modulo
%400) contained in A. A is then deleted from the stack.
However, if Shift Count is not zero, BA is shifted right,
propagating the sign bit, by that number. Condition Code is set.

BYTE TEST

BTST (000007). Byte Test A. The Condition Code is set on the
value of the test byte in bits 8:15 of A: CCL indicates ASCII
numeric, CCE indicates ASCII alphabetic, and CCG indicates
special ASCII character. A is deleted after the test.

MEMORY TO OR FROM REGISTER STACK

NOTE

For binary coding details of the first twelve
instructions below (LWP through ADM), refer to
Table A-3 in Appendix A.

LWP (-2----). Load Word from Program (Current Code Segment)
into A. The contents of the address which is computed as a
function of displacement (a signed 8-bit value), and optionally
indexing and indirection, are pushed onto the Register Stack.
Condition Code is set on the loaded word. Figure 9-6 illustrates
the addressing operations for the LWP instruction.

LBP (-2-4--). Load Byte from Program (Current Code Segment)
into A. The contents of the P-relative byte address which is
computed as a function of displacement (a signed 8-bit value),
and optionally indexing and indirection, are pushed onto the
Register Stack. The high-order byte is set to zero. If the P
Register currently indicates an address in the upper half of the
code segment (bit 0 of P = 1), %100000 is added to the computed
address, so that the address will always be relative to whichever
half of the segment P currently indicates. The Condition Code is
set on the value of the loaded byte in bits 8:15 of A: CCL
indicates ASCII numeric, CCE indicates ASCII alphabetic, and CCL
indicates special ASCII character. Figure 9-7 illustrates the
addressing operations for the LBP instruction, assuming addresses
in the first half of the code segment.

9·-26 ~ 82507 AOO 3/85

INSTRUCTION SET
Memory to or from Register Stack

INDIRECT. INDEXED

CODE
SEGMENT

.,__ ____ ...,.

..

r.tt,'1 o l 1 I o ~o~ o I o I o I o I 1 I o I o I o l- - - - -
~ ~ ----

·- - - - - - -- - - - - - - --~-----1
LWP 8.1.X

- -- - -- - - - - - - - - --------
INDEX
REG

DISPLACEMENT p ._I __ 37_29_~1/

+8 i
~-------~------+

~ r - 3737 ___ 1 L _______ _J

i -304
+----~

i
r - - J4J3- - -1

REGIST,:OR

3439

L - - - r- --~
.____ _____ ,.. +

~---- R[6) _______ 6____.t

-304

C[3433]

C[3439]

C[3728]

C[3737]

85001-118

Figure 9-6. LWP Instruction Addressing

Af' 82507 AOO 3/85 9-27

INSTRUCTION SET
Memory to or from Register Stack

9·-28

DIRECT INDEXED

REGISTER
STACK

17

177 + 2 = 88, r = 1

CODE
A.REA

t--------t
C(80)

~ C(88) I 1 = right half t------'~~""I
17

........ + = 177 L 2 x 80 = 160

c=~=afo ==J
-29

-------·---·---- +

DISPLACEMENT
I

LBP INDIRECT

- - - - -- - -------1
,,

/
/

P+1 c:. __ 10_9 __ ,,,

P REGISTER

LBP-29,X7 C(108)

CODE
J\REA

lTik ~T~l5>J_~IiliJJ[[§]_: = = =-: = ·= = = = =: = = = __ u._1P_1_2,_1 -c c11s31

DISPLACEMENT

L

NOTE: THESE EXAMPLES ASSUME ADDRESSES IN THE LOWER
HALF OF THE CODE SEGMENT, I.e., P.<0> =0. IF P.<0> =1,
%100000 IS ADDED TO THE COMPUTED ADDRESS BEFORE THE
BYTE IS FETCHED FROM MEMORY.

/
P REGISTER /

c:~//
12 t ___,+

r ___ t_ -
L __ .!.76 __J

2·775 = 1552 r
2613

+

r _ _l __ -,
L ··- ~165 __ _J

4165 + 2 = 2082, r = 1

1 =right half

C(776]

C(2082(
I---·--'""~""'

85001-119

Figure 9-7. LBP Instruction Addressing

~ 82507 AOO 3/85

INSTRUCTION SET
Memory to or from Register Stack

LDX (-3----). Load Index Register from Data Space. The index
register specified by the "x" field of the instruction is loaded
with the contents of the effective memory address. Condition
Code is set. Figure 9-8 shows the instruction word format for
memory data reference instructions, such as LDX.

NSTO (-34---). Nondestructive Store from A. The contents of the
A Register are stored into effective address memory location.
The Register Stack is not modified.

LOAD (-40---). Load A from Data Space. The contents of the
effective address memory location are pushed onto the stack.
Condition Code is set.

STOR (-44---). Store A into Data Space. The contents of the A
Register are stored into the effective memory location. A is
then deleted from the stack.

0 5 6 7 15

I I I I I I I I I I I I
V 1 "'----./I

I I I I J
x MODE AND DISPLACEMENT

0 DISPLACEMENT (0:255)

1 0 DISPLACEMENT (0:127)
1 1 0 DISPLACEMENT (0:63)

\
\
\
\

I

I
I

1 1 1 0 I DISPLACEMENT (0:31)

[QJ =DIRECT

OJ = INDIRECT

1 1 1 1 j DISPLACEMENT (0:31)

ffi"B =NO

tilij~G
~R[S]
~ R[6]

R[7]

REGISTER
STACK

INDEX VALUE

INDEX VALUE

INDEX VALUE

MODE
G-RELATIVE
L-PLUS-RELATIVE
SG-RELATIVE
L·MINUS-RELATIVE
S·MINUS-RELATIVE

85001-120

Figure 9-8. Memory Reference Instruction Format

~ 82507 AOO 3/85 9-29

INSTRUCTION SET
Memory to or from Register Stack

LDB (-5----). Load A with Byte from Data Space. The contents of
the effective memory location are loaded into bits 8:15 of A.
(Refer to Figure 4-12 in Section 4 for calculation of the
e:Efective address in byte addressing.) The Condition Code is set
on the value of the loaded byte in bits 8:15 of A: CCL indicates
ASCII numeric, CCE indicates ASCII alphabetic, and CCG indicates
special ASCII character.

STB (-54---). Store Byte from A to Data Space. The contents of
the byte in bits 8:15 of A are stored in the effective memory
location. (Refer to Figure 4-12 in Section 4 for calculation of
the effective address in byte addressing.)

LDD (-6----). Load Double from Data Space into BA. The
doubleword integer contained in the effective memory location is
pushed into the stack. Condition Code is set. Figure 9-9
illustrates the addressing methods for doubleword instructions.

STD (-64---). Store Double from BA into Data Space. The
contents of BA are stored in the effective memory location. BA
is deleted.

LADR (-7----). Load G-Relative Address of Variable into A. The
G-relative address of the variable is pushed onto the stack.

ADM (-74---). Add A to Variable in Data Space. The A Register
is added in integer form to the contents of the effective memory
location and the Condition Code is set on the sum. Overflow is
set if the result is greater than 32767 or less than -32768.
Carry can also be set. A is then deleted from the stack.

9-30

NOTE

For binary coding details of the following six
instructions (PUSH through SBXX), refer to Table A-5
in Appendix A.

-'1J 82507 AOO 3/85

INSTRUCTION SET
Memory to or from Register Stack

G[O]

DIRECT. NO INDEXING

G[7] ~~ o I o I o Io I o I o I o I o 11 I

~r REG
(NONE)

DISPLACEMENT

G-RELATIVE
ADDRESSING

MODE
G[OJ

INDIRECT. INDEXED

9
DJ3SI o I 1 I 1 I o I o I o I o I o I 1 I o I o I 1 I .--~:::::::::~_.:::_24_.:_? _ ___J G[9]

_;rATIVE

DDRESSING
MODE

DISPLACEMENT

REGISTER
STACK

INDEX I

R-'G---------~--1-7----tt--2_*_17_=_3_4_24_:+
281

Figure 9-9. Doubleword Addressing

G[281]

85001-121

PUSH (024nrc). Push Registers to Data Space. This instruction
transfers the contents of a specified number of el~ments in the
Register Stack to the top of the data stack in memory. The "n"
field of the instruction is the value to which RP will be set
following the instruction: the "r" field specifies the last
register stack element to be pushed: the "c" field is the number

~ 82507 AOO 3/85 9-31

INSTRUCTION SET
Memory to or from Register Stack

of registers minus one that will be pushed to memory. Following
the PUSH instruction, the S register points to the last element
pushed onto the memory stack. If the resultant value of S is
greater than %77777, a stack overflow trap occurs. Figure 9-10
illustrates the bit fields and the action of the PUSH
instruction.

POP (124nrc). Pop Data Space to Registers. This instruction
loads the Register Stack with the top elements of the data stack
(as indicated by the current S register setting). The "n" field
of the instruction indicates the value RP will have following the
instruction: the "r" field specifies the last Register Stack
element to be loaded from memory: the "c" field specifies the
number of registers minus one that will be loaded. If the
resultant value of S is greater than %77777, a stack overflow
trap occurs. Figure 9-10 illustrates the bit fields and the
action of the POP instruction.

LWXX (0254--, 0264--). Load Word Extended, Indexed .. The word
contained in a computed extended memory location is loaded onto
the stack, replacing the prior contents of A. The extended
memory address is obtained as follows. The displacement value (0
through 63) in bits 10 through 15 of the instruction word is
added to a base value which is either G[O] (coded 0254--) or the
current L register value (coded 0264--): the data word so
indicated is assumed to be the first word of a two-word extended
memory pointer. The index value in A is sign-extended, then
arithmetically shifted left one bit position (multiplication by
2, since this instruction requires word addressing rather than
byte addressing) and is then added to the extended memory pointer
to address the word that is to be loaded. Condition Code is set.

SWXX (0255--, 0265--). Store Word Extended, Indexed. The word
contained in B is stored into a computed extended memory
location. The extended memory address is obtained as follows.
The displacement value (0 through 63) in bits 10 through 15 of
the instruction word is added to a base value which is either
G[O] (coded 0255--) or the current L register value (coded
0265--): the data word so indicated is assumed to be the first
word of a two-word extended memory pointer. The index value in A
is sign-extended, then arithmetically shifted left one bit
position (multiplication by 2, since this instruction requires
word addressing rather than byte addressing) and is then added to
the extended memory pointer to address the location that is to
receive the word being stored.

9-32 ~ 82507 AOO 3/85

PUSH

R[O]

R[7]

POP

R[OJ

R[7]

REGISTER
STACK

1
2
3

4

5
6

REGISTER
STACK

1

2
3
4

5
6

INSTRUCTION SET
Memory to or from Register Stack

n c

/ v 'V "

~0~{~6*'1~0Wo:a 1 I 1 I 1 I 1 I B 1JJ]yT1~J

I'\

....._

......_ RP AFTER PUSH

]._ RP AFTER POP

"- A A /
I I I

NEW RP LAST REG COUNT-1
R[7] R[S] (6 REGS)

/ --~~i°"B~lSI~R-=-~J ..
/ BEFORE PUSH

I

[I
\
\

' ---~~
AFTER PUSH

n c

' ~~---,..--~~ / I I I

I

I

/
I

' '

NEW RP LAST REG COUNT-1
R[SJ R[S] (6 REGS)

S REGISTER j ..
AFTER POP

' ... _rs-REGISTER--,
L-------~

____._
BEFORE POP

DATA
SEGMENT

r--------

L..-"

1
2
3
4
5
6

DATA
SEGMENT

,.._.....-

1
2
3
4
5
6

.,,,,. -
$5001-122

Figure 9-10. PUSH and POP Instructions

"1' 82507 AOO 3/85 9-33

INSTRUCTION SET
Load and Store by Address on Register Stack

LBXX (0256--, 0266--). Load Byte Extended, Indexedo The byte
contained in a computed extended memory location is loaded onto
the stack, replacing the prior contents of A. The extended
memory address is obtained as follows. The displacement value (0
through 63) in bits 10 through 15 of the instruction word is
added to a base value which is either G[O] (coded 0256--) or the
current L register value (coded 0266--): the data word so
indicated is assumed to be the first word of a two-word extended
memory pointer. The index value in A is then added to the
extended memory pointer to address the byte that is to be loaded.
The Condition Code is set on the value of the loaded byte in bits
8:15 of A: CCL indicates ASCII numeric, CCE indicatE~s ASCII
alphabetic, and CCL indicates special ASCII character.

SBXX (0257--, 0267--). Store Byte Extended, Indexed. The byte
contained B.<8:15> is stored into a computed extended memory
location. The extended memory address is obtained as follows.
The displacement value (0 through 63) in bits 10 through 15 of
the instruction word is added to a base value which is either
G[O] (coded 0257--) or the current L register value (coded
0267--): the data word so indicated is assumed to be the first
word of a two-word extended memory pointer. The index value in A
is then added to the extended memory pointer to address the
location that is to receive the byte being stored.

LOAD AND STORE BY ADDRESS ON REGISTER STACK

ANS (000034). AND to SG Memory. The word in Bis logically
ANDed to a word in the system data segment that is specified by a
16-bit address in A. The result remains in the system data
location, and A and B are deleted from the stack. If privileged
mode is in effect when this instruction is executed, A refers to
an address in the system data segment. Otherwise data segment
selection (system or user) is determined by the DS bit (bit 6) of
the ENV register. Condition Code is set.

ORS (000035). OR to SG Memory. The word in Bis logically ORed
to a word in the system data segment that is specified by a
16-bit address in A. The result remains in the system data
location, and A and B are deleted from the stack. If privileged
mode is in effect when this instruction is executed, A refers to
an address in the system data segment. Otherwise data segment
selection (system or user) is determined by the DS bit (bit 6) of
the ENV register. Condition Code is set.

9-34 '1J 82507 AOO 3/85

INSTRUCTION SET
Load and Store by Address on Register Stack

ANG (000044). AND to Memory. The word in B is logically ANDed
to a word in the current data segment that is specified by a
16-bit address in A. The result remains in the data segment
location, and A and B are deleted from the stack. Condition Code
is set.

ORG (000045). OR to Memory. The word in Bis logically ORed to
a word in the current data segment that is specified by a 16-bit
address in A. The result remains in the data segment location,
and A and B are deleted from the stack. Condition Code is set.

ANX (000046). AND to Extended Memory. The word in C is
logically ANDed to a word in extended memory that is specified by
a 32-bit address in BA. The result remains in the memory
location, and A, B, and C are deleted from the stack. Condition
Code is set.

ORX (000047). OR to Extended Memory. The word in C is logically
ORed to a word in extended memory that is specified by a 32-bit
address in BA. The result remains in the memory location, and A,
B, and C are deleted from the stack. Condition Code is set.

LWUC (000342). Load Word from User Code Space. A word in the
user code segment, specified by a 16-bit address in A, is loaded
onto the stack, replacing the prior contents of A. Condition
Code is set.

LWAS (000350). Load Word via A from System. The word contained
in the effective memory location pointed to by the address in A
is loaded onto the stack, replacing the prior contents of A. If
privileged mode is in effect when this instruction is executed, A
refers to an address in the system data segment. Otherwise data
segment selection (system or user) is determined by the DS bit
(bit 6) of the ENV register. Condition Code is set.

LWA (000360). Load Word via A. The word contained in the
effective memory location pointed to by the address in A is
loaded onto the stack, re.placing the prior contents of A. LWA
accesses the current data segment only. Condition Code is set.

~ 82507 AOO 3/85 9-35

INSTRUCTION SET
Load and Store by Address on Register Stack

SWAS (000351). Store Word via A into System. The word contained
in B is stored into the effective memory location pointed to by
the address in A. Both words are then deleted from the stack.
If privileged mode is in effect when this instruction is
executed, A refers to an address in the system data segment.
Otherwise data segment selection (user or system) is determined
by the DS bit (bit 6) of the ENV register.

SWA (000361). Store Word via A. The word contained in Bis
stored into the effective memory location pointed to by the
address in A. Both words are then deleted from the stack. SWA
accesses the current data segment only.

LDAS (000352). Load Double via A from System. The doubleword
contained in the effective memory locations starting at the
location pointed to by the address in A is loaded into BA (after
the address in A is deleted). If privileged mode is in effect
when this instruction is executed, A refers to an address in the
system data segment. Otherwise data segment selection (user or
system) is determined by the DS bit (bit 6) of the ENV register.
Condition Code is set.

LDA (000362). Load Double via A. The doubleword contained in
the effective memory locations starting at the location pointed
to by the address in A is loaded into BA (after the address in A
is deleted). LDA accesses the current data segment only.
Condition Code is set.

SDAS (000353). Store Double via A into System. ThE! doubleword
in CB is stored into the effective memory locations starting at
the location pointed to by the address in A. CBA is then
deleted. If privileged mode is in effect when this instruction
is executed, A refers to an address in the system data segment.
Otherwise data segment selection (user or system) is determined
by the DS bit (bit 6) of the ENV register.

SDA (000363). Store Double via A. The doubleword in CB is
stored into the effective memory locations starting at the
location pointed to by the address in A. CBA is then deleted.
SDA accesses the current data segment only.

9-36 "''182507 AOO 3/85

INSTRUCTION SET
Load and Store by Address on Register Stack

LBAS (000354). Load Byte via A from System. The byte contained
in the effective memory location pointed to by the byte address
in A is loaded onto the stack, replacing the prior contents of A.
If privileged mode is in effect when this instruction is
executed, A refers to an address in the system data segment.
Otherwise data segment selection (user or system) is determined
by the DS bit (bit 6) of the ENV register. The Condition Code is
set on the value of the loaded byte in bits 8:15 of A; CCL
indicates ASCII numeric, CCE indicates ASCII alphabetic, and CCL
indicates special ASCII character.

LBA (000364). Load Byte via A. The byte contained in the
effective memory location pointed to by the byte address in A is
loaded onto the stack, replacing the prior contents of A. LBA
accesses the current data segment only. The Condition Code is
set on the value of the loaded byte in bits 8:15 of A; CCL
indicates ASCII numeric, CCE indicates ASCII alphabetic, and CCL
indicates special ASCII character.

SBAS (000355). Store Byte via A into System. The byte in B is
stored into the effective memory location pointed to by the byte
address in A. Both B and A are then deleted. If privileged mode
is in effect when this instruction is executed, A refers to an
address in the system data segment. Otherwise data segment
selection (user or system) is determined by the DS bit (bit 6) of
the ENV register.

SBA (000365). Store Byte via A. The byte in Bis stored into
the effective memory location pointed to by the byte address in
A. Both B and A are then deleted. SBA accesses the current data
segment only.

DFS (000357). Deposit Field into System Data. Using the mask
bits in register B, this instruction deposits the bits in
register C into the location specified by the 16-bit address in
A. A, B, and C are then deleted. (See Figure 9-4 and DPF
description under "Bit Deposit and Shift" for further details on
this operation.) If privileged mode is in effect, the destination
is in the system data segment; otherwise, the destination is in
the current data segment. A, B, and C are then deleted.
Condition Code is set.

~ 82507 AOO 3/85 9-37

INSTRUCTION SET
Load and Store by Address on Register Stack

DFG (000367). Deposit Field in Memory. Using the mask bits in
register B, this instruction deposits the bits in register C into
the location specified by the 16-bit address in A. A, B, and C
are then deleted. (See Figure 9-4 and DPF description under "Bit
Deposit and Shift" for further details on this operation.) DFG
accesses the current data segment. Condition Code is set.

LBX (000406). Load Byte Extended. The byte in the extended
memory location specified by the 32-bit address in registers B
and A is loaded onto the Register Stack (bits 8 through 15 of A),
after the address in BA is deleted. The left byte is zero. The
Condition Code is set on the value of the loaded byte in bits
8:15 of A: CCL indicates ASCII numeric, CCE indicates ASCII
alphabetic, and CCL indicates special ASCII character.

SBX (000407). Store Byte Extended. The byte in bits 8 through
15 of C is stored into the extended memory location specified by
the 32-bit address in registers B and A. C, B, and A are then
deleted.

LWX (000410). Load Word Extended. The word in the extended
memory location specified by the 32-bit address in registers B
and A is loaded into register A (after the address in BA is
deleted). Condition Code is set.

SWX (000411). Store Word Extended. The word in register C is
stored into the extended memory location specified by the 32-bit
address in registers B and A. C, B, and A are then deleted.

LDDX (000412). Load Doubleword Extended. The doubleword
starting at the extended memory location specified by the 32-bit
address in registers B and A is loaded onto the register stack,
replacing the prior contents of B and A. Condition Code is set~

SDDX (000413). Store Doubleword Extended. The doubleword in
registers D and C is stored into extended memory starting at the
location specified by the 32-bit address in registers B and A.
All four words are then deleted from the Register Stack.

9-38 ~ 82507 AOO 3/85

INSTRUCTION SET
Load and Store by Address on Register Stack

LQX (000414). Load Quadrupleword Extended. The quadrupleword
starting at the extended memory location specified by the 32-bit
address in registers B and A is loaded into registers DCBA of the
Register Stack (after the address in BA is deleted). Condition
Code is set.

SQX (000415). Store Quadrupleword Extended. The quadrupleword
in registers FEDC is stored into extended memory (8 bytes)
starting at the location specified by the 32-bit address in
registers B and A. All six words are then deleted from the
Register Stack.

DFX (000416). Deposit Field Extended. Using the mask bits in
register C, this instruction deposits the bits in register D into
the extended memory location specified by the 32-bit address in
registers B and A. All four words are then d~leted from the
Register Stack. (See Figure 9-4 and DPF description under "Bit
Deposit and Shift" for further details on this operation.)
Condition Code is set.

SCS (000444). Set Code Segment. Registers Band A are assumed
to contain a 17-bit byte address. This instruction sets a
logical segment number into the segment number field (bits 0
through 14 of B) to formulate a complete 32-bit address. Only
two values may be set for this field: 2 (indicating current code
segment) if either the CS or LS bit of the Environment Register
contains a one; 3 (indicating user code segment) if both of these
bits are zero.

LQAS (000445). Load Quadrupleword via A from SG. The
quadrupleword contained in the four memory locations starting at
the location pointed to by the address in A is loaded into DCBA
(after the address in A is deleted). The address in A refers to
an address in the system data segment. Condition Code is set.
This is a privileged instruction.

SQAS (000446). Store Quadrupleword via A to SG. The
quadrupleword in registers EDCB is stored into the four memory
locations starting at the location pointed to by the address in
A. The address in A refers to an address in the system data
segment. All five words are then deleted from the Register
Stack. This is a privileged instruction.

~ 82507 AOO 3/85 9-39

INSTRUCTION SET
Branching

BRANCHING

NOTE

For binary coding details of the following branch
instructions, refer to Table A-6 in Appendix A.

BIC (-100--). Branch if CARRY. If the carry bit (K) in the
Environment Register is set (K = 1), a direct or indirect branch
is taken (depending on the "i" field of the instruction). If the
condition is not met, the next instruction is executed. Figure
9-11 compares direct and indirect branching.

BUN (-104--). Branch Unconditionally. A direct or indirect
unconditional branch is taken (depending on the "i" field of the
instruction).

BOX (-1-4--). Branch on X Less Than A and Increment X. If the
index register as specified by the "x" field of the instruction
is less than A, that index register is incremented and a direct
or indirect branch is taken (depending on the "i" field of the
instruction). If Xis greater than or equal to A, A is deleted
from the stack and the next instruction is executedo

BGTR (-11---). Branch if CC is Greater. If the Condition Code
in the ENV register is CCG (N = 0, z = 0), a direct or indirect
branch is taken (depending on the "i" field of the instruction).
If the condition is not met, the next instruction is executed.

BEQL (-12---). Branch if CC is Equal. If the Condition Code in
the ENV register is CCE (N = 0, z = 1), a direct or indirect
branch is taken (depending on the "i" field of the instruction).
If the condition is not met, the next instruction is executed.

BGEQ (-13---). Branch if CC is Greater or Equal. If the
Condition Code in the ENV register is CCG or CCE (N = 0) a direct
or indirect branch is taken (depending on the "i" field of the
instruction). If the condition is not met, the next instruction
is executed.

9-40 ~ 82507 AOO 3/85

DIRECT

INSTRUCTION SET
Branching

CODE
SEGMENT

~~~ 0 I 0 I 0 I 0 I 1 I 1 I 0 I 1 '=======-=--=--=-------=--=-=----~- BRANCH+ 13 C[105J 

PR EGISTER ,.,,~ 

..._ __ 1_06 __ ...... l,.,, / DISPLACEMENT 

I '13 l 
~------------ + 

l 
119 

P REGISTER 

INDIRECT 

~----...----__/ P REGISTER 

DISPLACEMENT ..._ __ 3-.2_1 __ _,I~ 
I_._ ·-··- -~-----+ 1_5 __ i 

P REGISTER 

CODE 
SEGMENT 

207 1--------

85001-123 

Figure 9-11. Direct vs. Indirect Branching 

~ 82507 AOO 3/85 

c [ 119] 

C[ 336 J 

9-41 



INSTRUCTION SET 
Branching 

BLSS (-14---). Branch if CC is Less. If the Condition Code in 
the ENV register is CCL (N = 1), a direct or indirect branch is 
taken (depending on the "i" field of the instruction). If the 
condition is not met, the next instruction is executed. 

BAZ (-144--). Branch on A Zero. If the A Register equals zero, 
a direct or indirect branch is taken (depending on the "i" field 
of the instruction). If the A Register does not equal zero, the 
next instruction is executed. In either case, A is deleted from 
the stack. 

BNEQ (-15---). Branch if CC is not equal. If the Condition Code 
in the ENV register is not CCE (Z = 0), a direct or indirect 
branch is taken (depending on the "i" field of the instruction)~ 
If the condition is not met, the next instruction is executed. 

BANZ (-154--). Branch on A Not Zero. If the A Register is 
non-zero, a direct or indirect branch is taken (depending on the 
"i" field of the instruction). If the A Register equals zero, 
the next instruction is executed. In either case, A is deleted 
from the stack. 

BLEQ (-16---). Branch if CC is Less or Equal. If the Condition 
Code in the ENV register is CCL or CCE (N = 1 or z = 1), a direct 
or indirect branch is taken (depending on the "i" field of the 
instruction). If the condition is not met, the next instruction 
is executed. 

BNOV (-164--). Branch if no OVERFLOW. If the Overflow bit (V) 
in the ENV register is not set (V = 0), a direct or indirect 
branch is taken (depending on the "i" field of the instruction). 
If the condition is not met, the next instruction is executed. 

BNOC (-17---). Branch if no CARRY. If the Carry bit (K) in the 
ENV register is not set (K = 0), a direct or indirect branch is 
taken (depending on the "i" field of the instruction). If the 
condition is not met, the next instruction is executed. 

9-42 4J 82507 AOO 3/85 



INSTRUCTION SET 
Moves, Compares, Scans, and Checksum Computations 

BFI (000030). Branch Forward Indirect. The instruction expects 
an offset from the current P register setting to be contained in 
A. An indirect branch is then made through the location 
specified by P + A. Figure 9-12 illustrates the action of the 
BFI instruction. 

MOVES, COMPARES, SCANS, AND CHECKSUM COMPUTATIONS 

MNGG (000226). Move Words While Not Duplicate. Register Dis 
assumed to contain a destination address in the current data 
segment, and register C is assumed to contain a source address in 
the current data segment. The MNGG instruction moves words from 
the source to the destination while the count value in register B 
is not zero and the source word is not equal to the word in A. 
The word in A is always the previous word moved. The instruction 
stops on the first duplicate word or on zero count. After 
execution, the word in A is deleted, so that A then contains the 
count, B contains the source address, and C contains the 
destination address. Interrupts can occur after each word moved. 

CDG (000366). Count Duplicate Words. Beginning at the address 
(in the current data segment) specified in register C, and for a 
maximum count of words specified in register B, this instruction 
counts the number of duplicate words in the buffer. Register A 
is incremented on each duplicate found, and may contain an 
initial value. After execution, A contains the original A value 
plus the number of duplicate words, B contains a count of the 
words left in the buffer (zero if empty), and C contains the 
address of the first word that did not match its predecessor (or 
the word after the last word in the buffer). The comparison 
actually starts with the words specified by C and C-1. This 
instruction is intended to be used in conjunction with MNGG. 
Interrupts can occur after each compare. 

NOTE 

For binary coding details of the following six move 
instructions (MOVW, MOVB, COMW, COMB, SBW, SBU), refer 
to Table A-5 in Appendix A. Also, for these six 
instructions, it is possible to specify either 
ascending or descending directions. Figure 9-13 
provides a comparison of ascending and descending 
moves, compares, and scans, as described in the 
following paragraphs. Bit 9 of the instruction word 
specifies ascending (0) or descending (1). 

~ 82507 AOO 3/85 9-43 



INSTRUCTION SET 
Moves, Compares, Scans, and Checksum Computations 

w K 

A 

P REGISTER 

162 

0 
+ 

,_J __ -, 
L __ ~~ - - .J 

209 
+~ 

P REGISTER 

BFI 

209 

310 

863 

1070 

1134 

BFI 

Ci 161 i 

}RANCH LIST 

Ci161 i -
209 

}RANCH 
162 J--·----llJlo~~-------1 

310 

863 LIST 3 
1070 

1134 

1070 +- ..____ __ __, 

85001-124 

Figure 9-12. Branch Forward Indirect 

9-44 ~ 82507 AOO 3/85 



INSTRUCTION SET 
Moves, Compares, Scans, and Checksum Computations 

MOVESTEP: 
0 = LEFT-TO-RIGHT (ASCENDING ADDRESSES) 

1 = RIGHT-TO-LEFT (DESCENDING ADDRESSES) 

MOVESTEP = 0 (ASCENDING) 

REGISTER 
STACK 

C DESTINATION 

B SOURCE ~ 
A .____;;...c __ o_u N_T _ __. 

MOVESTEP = 1 (DESCENDING) 

REGISTER 
STACK 

c DESTINATION 

8 SOURCE 

A COUNT 

l DEST 

------

--------1 

I SOURCE 

• 1----------1 

DEST 

r-- ...... -

1 
SOURCE 

~ 

- -v 

] 

} 

COUNT 
ELEMENTS 

COUNT 
ELEMENTS 

85001-125 

Figure 9-13. Direction for Moves, Compares, and Scans 

'1J 82507 AOO 3/85 9-45 



INSTRUCTION SET 
Moves, Compares, Scans, and Checksum Computations 

MOVW (026---). Move Words. This instruction transfers a 
specified number of words from one area of memory to another. 
The instruction expects A to contain a word count, B to contain 
the source word address, and C to contain the destination word 
address. The source and destination maps to be used are 
specified by the "s" and "d" fields of the instruction and by the 
DS, CS, LS, and PRIV bits of the ENV register. The "m" field of 
the instruction (see format diagram at the top of Figure 9-13) 
determines whether the source and destination addresses will be 
incremented ("m" = 0) or decremented ("m" = 1) after each move. 
The "n" field of the instruction is the value to which RP is set 
upon instruction end. The move is made one word at a time from 
the source to the destination. After each word transfer the 
addresses are decremented or incremented and A is decremented. 
If A is equal to zero the instruction ends: otherwise the next 
word is moved. Interrupts can occur after each word moved. 

MOVB (126---). Move Bytes. This instruction transfers a 
specified number of bytes from one area of memory to another. 
The instruction expects A to contain a byte count, B to contain 
the source byte address, and C to contain the destination byte 
address. The source and destination maps to be used are 
specified by the "s" and "d" fields of the instruction and by the 
DS, CS, LS, and PRIV bits of the ENV register. The "m" field of 
the instruction determines whether the source and destination 
addresses will be incremented ("m" = 0) or decremented ("m" = 1) 
after each move. The "n" field of the instruction is the value to 
which RP is set upon instruction end. The move is made one byte 
at a time from the source to the destination. After each byte 
transfer the addresses are decremented or incremented and A is 
decremented. If A is equal to zero, the instruction ends: 
otherwise the next byte is moved. If the source is a code 
segment and the P register currently indicates an address in the 
upper half of the code segment (bit 0 of P = 1), %100000 is added 
to the computed address, so that the source and destination 
addresses will always be relative to whichever half of the 
segment P currently indicates. Interrupts can occur after each 
destination word (two bytes) moved •. 

COMW (0262--). Compare Words. This instruction compares one 
area of memory with another, a word at a time, until a 
miscomparison occurs or until a specified number of comparisons 
have been made. The words being compared are treated as unsigned 
quantities. COMW expects A to contain a word count, B to contain 
a source word address and C to contain a destination word 
address. The source and destination maps to be used are specified 
by the "s" and "d" fields of the instruction and by the DS, CS, 
LS, and PRIV bits of the ENV register. The "m" field determines 

9-46 4' 82507 AOO 3/85 



INSTRUCTION SET 
Moves, Compares, Scans, and Checksum Computations 

whether the source and destination addresses will be incremented 
("m" = 0) or decremented ("m" = 1) after each comparison. The 
"n" field is the value to which RP will be set upon instruction 
termination. The instruction fetches the contents of source and 
destination addresses, compares them, increments or decrements 
the address by one according to the "m" field, and decrements the 
word count in A until either A = 0 or a miscomparison is reached. 
If termination is due to a miscomparison, CC indicates the 
results of the compare or CCE due to A going to zero. Interrupts 
can occur after each comparison. 

COMB (1262--). Compare Bytes. This instruction compares one 
area of memory with another, a byte at a time, until the bytes 
are not equal or until a specified number of comparisons have 
been made. It expects A to contain a byte count, B to contain a 
source byte address and C to contain a destination byte address. 
The source and destination maps to be used are specified by the 
"s" and "d" fields of the instruction and by the DS, CS, LS, and 
PRIV bits of the ENV register. If the source address is in a 
code segment, the byte address is taken to be in the same 64K 
half of the code space as the current P register value. The "m" 
field determines whether the source and destination addresses 
will be incremented ("m" = 0) or decremented ("m" = 1) after each 
comparison. The "n" field is the value to which RP will be set 
upon instruction termination. The instruction fetches the 
contents of source and destination addresses, compares them, 
increments or decrements the address by one according to the "m" 
field, and decrements the byte count in A until either A = 0 or a 
miscomparison is reached. If termination is due to a 
miscomparison, CCG indicates that the byte at C is greater than 
the byte at B, or CCL indicates that the byte at C is less than 
the byte at B; A indicates the number of bytes left to compare. 
If termination is due to the count running out, CCE indicates 
that all bytes compared exactly, and C and B will point to the 
next locations not compared. Interrupts can occur after each 
comparison. 

SBW (1264--). Scan Bytes While. The SBW instruction expects A 
to contain a comparison byte in bits 8:15 and B to contain the 
byte address of the string to be scanned. The map to be used is 
determined by the "s" field of the instruction and by the DS, CS, 
LS, and PRIV bits of the ENV register. The "m" field of the 
instruction determines whether the source address will be 
incremented ("m" = 0) or decremented ("m" = 1) after each 
comparison. The scan is terminated when either a null byte is 
found in the string or a byte in the string does not match the 
test byte in A. When null byte termination occurs, the Carry (K) 
bit in the ENV Register is set. In either termination case, B 

~ 82507 AOO 3/85 9-47 



INSTRUCTION SET 
Moves, Compares, Scans, and Checksum Computations 

points to the byte address that caused termination. RP is set to 
the "n" field of the instruction at instruction termination. 
Interrupts can occur after each comparison. 

SBU (1266--). Scan Bytes Until. The SBU instruction expects 
A.<8:15> to contain a test byte and B to contain the byte address 
of the string to be scanned. The map to be used is determined by 
the "s" field of the instruction and by the DS, CS, LS, and PRIV 
bits of the ENV register. The "m" field of the instruction 
determines whether the scan address will be incremented ("m" = 0) 
or decremented ("m" = 1) after each comparison. The scan is 
terminated when either a null byte is found in the string or the 
test byte matches a byte in the string. The Carry (K) bit is set 
in the ENV register when null byte termination occurs. In either 
case, B points to the byte address that caused the scan to cease. 
RP is set to the "n" field of the instruction at termination. 
Interrupts can occur after each comparison. 

MNDX (000227). Move Words While Not Duplicate, Externded. FE is 
assumed to contain a 32-bit destination address in extended 
memory, and DC is assumed to contain a 32-bit source address. 
The MNDX instruction moves words from the source to the 
destination while the count value in register B is not zero and 
the source word is not equal to the word in A. The word in A is 
always the previous word moved. The instruction stops on the 
first duplicate word or on zero count. After execution, the word 
in A is deleted, so that A then contains the count, CB contains 
the source address, and ED contains the destination address. 
Interrupts can occur after each word has been transferred. 

CDX (000356). Count Duplicate Words, Extended. Be~Jinning at the 
32-bit address (in extended memory) specified in DC, and for a 
maximum count of words specified in B, this instruction counts 
the number of duplicate words in the buffer. A is incremented on 
each duplicate found, and may contain an initial value. After 
execution, A contains the original A value plus the number of 
duplicate words, B contains a count of the words left in the 
buffer (zero if empty), and DC contains the extended address of 
the first word that did not match its predecessor (or the word 
after the last word in the buffer). The comparison actually 
starts with the words specified by DC and DC-2. Interrupts can 
occur after each comparison. This instruction is intended to be 
used in conjunction with MNDX. 

9-48 ~ 82507 AOO 3/85 



INSTRUCTION SET 
Moves, Compares, Scans, and Checksum Computations 

MVBX (000417). Move Bytes Extended. This instruction transfers 
a specified number of bytes from one area of extended memory to 
another. The instruction expects A to contain a byte count, CB 
to contain a 32-bit source byte address, and ED to contain a 
32-bit destination byte address. The move is made one byte at a 
time from the source to the destination. After each byte 
transfer the addresses are incremented and A is decremented. If 
A is equal to zero the instruction ends; otherwise the next byte 
is moved. All five words are deleted from the stack when the 
instruction ends. Interrupts can occur after each byte has been 
transferred. 

MBXR (000420). Move Bytes Extended, Reverse. This instruction 
transfers a specified number of bytes from one area of extended 
memory to another, using reverse (decrementing) addresses. The 
instruction expects A to contain a byte count, CB to contain a 
32-bit source byte address, and ED to contain a 32-bit 
destination byte address. The move is made one byte at a time 
from the source to the destination. After each byte transfer the 
addresses are decremented and A is decremented. If A is equal to 
zero the instruction ends; otherwise the next byte is moved. All 
five words are deleted from the stack when the instruction ends. 
Interrupts can occur after each byte transferred. 

MBXX (000421). Move Bytes Extended, and Checksum. This 
instruction transfers a specified number of bytes from one area 
of extended memory to another, and computes a checksum value 
(byte exclusive "oru) after each byte is moved. The instruction 
expects A to contain a byte count, CB to contain a 32-bit source 
byte address, ED to contain a 32-bit destination byte address, 
and F to contain the initial checksum value. The move is made 
one byte at a time from the source to the destination. After 
each byte transfer the addresses are incremented, A is 
decremented, and new checksum is entered in F. If A is equal to 
zero, the instruction ends; otherwise the next byte is moved. 
Five words are deleted from the Register Stack when the 
instruction ends, leaving the final checksum value in A. 
Interrupts can occur after each byte has been transferred. 

CMBX (000422). Compare Bytes Extended. This instruction 
compares one area of extended memory with another, a byte at a 
time, until the bytes are not equal or until a specified number 
of comparisons have been made. Before beginning the compare, 
CMBX checks to make sure that both strings in the compare are 
mapped in extended memory. This instruction expects A to contain 
a byte count, CB to contain a 32-bit source byte address and ED 

"'182507 AOO 3/85 9-49 



INSTRUCTION SET 
Program Register Control 

to contain a 32-bit destination byte address. The instruction 
fetches the contents of the source and destination addresses, 
compares them, increments the addresses by one, and decrements 
the byte count in A until either A = 0 or a noncomparison is 
reached. If termination is due to a noncomparison, CCG indicates 
that the byte at ED is greater than the byte at CB, or CCL 
indicates that the byte at ED is less than the byte at CB: A 
indicates the count of bytes left to compare. If termination is 
due to the count running out, CCE indicates that all bytes 
compared exactly: ED and CB point to the bytes after the last 
ones compared, and A is O. Interrupts can occur after each 
comparison • 

.XSMG (000343). Compute Checksum in Current Data. Starting at 
the address defined in register B, for a count of words defined 
in register A, the XSMG instruction exclusive-ORS each word into 
register C. When the count goes to zero, the two top words on 
the stack are deleted, leaving the final checksum in register A. 
The address in B refers to the current data segment only. 
Interrupts can occur after each word checksummed. 

XSMX (000333). Compute Checksum Extended. Startinq at the 
extended memory location defined by the 32-bit address in CB, for 
a count of words defined in register A, the XSMX instruction 
exclusive-ORS each word into register D. When the c:ount goes to 
zero, the three top words on the stack are deleted, leaving the 
final checksum in register A. Interrupts can occur after each 
word checksummed. 

PROGRAM REGISTER CONTROL 

SETL (000020). Set L with A. The contents of the L register, 
which points to the current stack marker, are replaced with the 
contents of register A. A is then deleted from the Register 
Stack. 

SETS (000021). Set S with A. The contents of the S register, 
which points to the top word of the stack in memory, are replaced 
with the contents of register A. A is then deleted from the 
stack·. A stack overflow trap occurs if the result :is greater 
than 32767. 

9-50 ~ 82507 AOO 3/85 



INSTRUCTION SET 
Program Register Control 

SETE (000022). Set ENV with A. The least significant eight bits 
of the Environment Register (ENV) are replaced with the lower 
eight bits of the A Register. The most significant eight bits of 
the Environment Register are logically ANDed with the upper eight 
bits of the A Register. Thus this instruction may only clear the 
PRIV, DS, CS, and LS bits of the Environment Register, and may 
not set them. The programmer should take care with this 
instruction on Nonstop II systems, since it is possible to 
inadvertently clear the Library Space (LS) bit, ENV.<4>. 

SETP (000023). Set P with A. The contents of the Program 
Counter (P) are replaced with the contents of the A Register. A 
is deleted from the stack, and control is transferred to the new 
location indicated by P. 

RDE (000024). Read ENV into A. The contents of the Environment 
Register (ENV) are pushed onto the Register Stack. 

RDP (000025). Read Pinto A. The contents of the Program 
Counter (P) are pushed onto the Register Stack. 

STRP (00010-). Set RP. The register pointer is set to the value 
in the Register field of the instruction. For binary coding 
details, see Table A-7 in Appendix A. 

ADDS (002---). Add Immediate Operand to S. The signed immediate 
operand is added to the S register in integer form. If the 
resultant S is greater than 32767, then a stack overflow trap 
occurs. 

CCL (000015). Set Condition Code to Less. A Condition Code of 
CCL (N = 1 and z = 0) is set into the ENV register. 

CCE (000016). Set Condition Code to Equal. A Condition Code of 
CCE (N = 0 and z = 1) is set into the ENV register. 

~ 82507 AOO 3/85 9-51 



INSTRUCTION SET 
Routine Calls and Returns 

CCG (000017). Set Condition Code to Greater. A Condition Code 
of CCG (N = 0 and Z = 0) is set into the ENV register. 

ROUTINE CALLS AND RETURNS 

PCAL (027---). Procedure Call. Control is transferred to an 
instruction specified by an entry in the Procedure Entry Point 
(PEP) Table; the specific PEP entry is indicated by the PEP 
Number field of the instruction. First, a three-word stack 
marker, consisting of the current P, ENV, and L, is stored on the 
top of the current stack. (ENV includes the space ID index in 
bits 11:15; CC and RP are not preserved.) If the caller is not 
privileged, the PEP number is checked against PEP[O] and PEP[l] 
to see if the call is legal. If the call is not legal, an 
instruction failure trap occurs. (If the caller is privileged no 
checks are made.) Land Sare set to S + 3 to point to the base 
of a new local data area. The final value of S is then checked 
for a value greater than 32767; if it is, a stack overflow trap 
occurs. Finally, P is set from the PEP entry and control is 
transferred to the procedure. 

XCAL (127---). External Procedure Call. The XCAL instruction is 
used to invoke procedures that are outside the current code 
segment. Like PCAL, XCAL creates a three-word stack marker. 
Then control is transferred to an instruction in the external 
segment by a three-step sequence: 1) a number in the XEP field 
of the instruction refers to an entry in the XEP table of the 
current code segment; 2) the XEP entry specifies a segment and a 
PEP entry in that segment; 3) the PEP entry of the other code 
!3egment specifies a procedure entry point within that segment. 
See detailed description in Section 4 under the heading, "Calling 
External Procedures". 

SCMP (000454). Set Code Map. This instruction is used to 
establish a procedure label in register A for use by the DPCL 
instruction (described next). If the label to be passed is for a 
procedure in the current code segment (signified by A.<0:6> = 0), 
the PEP index is expected to be in A.<7:15>, and SCMP will insert 
the space ID of the current code segment in A.<0:6>, thus forming 
a complete procedure label. If the label to be passed is for a 
procedure in some other code segment (as indicated by 
A.<0:6>=%133), the XEP index is expected to be in A.<7:15>, and 
SCMP will load that XEP entry (which is already in procedure 
label format) into A.<0:15>. In typical usage, succeeding 
instructions would pass this value to a procedure which would 
then issue the DPCL instruction. 

9-52 "'82507 AOO 3/85 



INSTRUCTION SET 
Routine Calls and Returns 

DPCL (000032). Dynamic Procedure Call. Control is transferred 
to a procedure which is dynamically specifiable in the Register 
Stack (Register A). The specified procedure may be in any of the 
four short address code spaces (UC, SC, UL, SL). The format of 
the word in Register A for specifying the target procedure is the 
same as that for a XEP table entry (see Figure 4-26). DPCL first 
stores a three-word stack marker, consisting of the current P, 
ENV, and L, on the top of the stack. (ENV includes the caller's 
space ID index in bits 11:15.) Then a check is made to see if 
the target segment is currently mapped; if not, a MAPS (Map 
Segment) instruction is executed at this point. Then, if the 
caller is not privileged, the PEP number is checked to see if the 
call is legal. If the call is not legal, an instruction failure 
trap occurs. If the caller is privileged, this check is not 
made. L and S are set to S + 3 to point to the base of a new 
local data area. The final value of S is then checked for a 
value greater than 32767; if it is, a stack overflow trap occurs. 
Next, if the call is to a callable system procedure, the PRIV bit 
in the ENV Register is set. CS and LS of ENV are set according 
to the corresponding bits of A (0 and 1 respectively). Finally, 
P is set from the PEP entry, transferring control to the target 
procedure. 

EXIT (125---). Exit from Procedure. This instruction is used to 
return from a procedure called by a PCAL, XCAL, or DPCL 
instruction. EXIT assumes L-2:L to contain a standard 
three-word stack marker consisting of P, ENV, and L. (ENV 
includes the caller's space ID index in bits 11:15.) The first 
action of EXIT is to check if the procedure being returned to is 
currently mapped; if not, a MAPS (Map Segment) instruction is 
executed at this point to map the return segment. Then S is 
moved below the current stack marker and any parameters by 
setting it with the "S decrement" value subtracted from the 
current L register setting. P is set to the return P value 
contained in L[-2] of the current stack marker. The caller's ENV 
register value is set as follows: the mode (privileged or 
nonprivileged) and data area are reinstated to the lesser of the 
caller's and the current settings (e.g., a privileged calling 
process can be made nonprivileged on the return, but not vice 
versa); the calling process's CS (code space), LS (library 
space), T (traps), V (overflow), and K (carry) are reinstated 
from L[-1]; Z and N (Condition Code) and RP are set to those of 
the current procedure. L is moved back to the preceding stack 
marker, thereby reinstating the preceding local data area, by 
setting L with the contents of the L[O] of the current stack 
marker. 

..-, 82507 AOO 3/85 9-53 



INSTRUCTION SET 
Interrupt System 

DXIT (000072). DEBUG Exit. This instruction is used to 
reestablish the environment present at the time DEBUG was called. 
P,, ENV, and L are restored from the stack marker generated by the 
DEBUG call, and S is reset to its value at the time of the call 
to DEBUG. Lastly, the instruction checks CSSEG to see if the 
segment specified by space ID in L-5 is currently mapped. If the 
segment is not currently mapped, a MAPS (Map Segment) instruction 
is executed at this point. This is a privileged instruction. 

BSUB (-174--). Branch to Subprocedure. Sis incremented by one 
and the return address (P) is saved in that location. Then a 
direct or indirect unconditional branch is taken (depending on 
the "i" field of the instruction). For binary coding details, 
see Table A-6 in Appendix A. 

RSUB (025---). Return from Subroutine. This instruction is used 
to return from a subroutine called by a BSUB instruction. The 
instruction assumes that the return address is on the top of the 
memory stack (indicated by S) and returns control to that 
address. S is set to S - SAdecrement. "SAdecrement" may be any 
number from 0 to 255; however, in order to delete the return 
address from the stack, it must be at least 1. For binary coding 
details, see Table A-5 in Appendix A. 

INTERRUPT SYSTEM 

RIR (000063). Reset Interrupt Register. This instruction is 
used by the operating system interrupt handlers to reset the 
appropriate INTA Register bit after an interrupt has occurred. 
Some interrupt bits must be reset (along with the clearing of a 
MASK bit) in order to allow further interrupts through that SIV 
(System Interrupt Vector Table) entry. The instruction expects A 
to contain the number of the bit in the INTA Register that is to 
be reset. This is a privileged instruction. 

XMSK (000064). Exchange MASK with A. The contents of the MASK 
Register are interchanged with the contents of the A Register. 
This is a privileged instruction. 

IXIT (000071). Interrupt Exit. This instruction is used by the 
operating system interrupt procedures to return control to the 

9-·54 ~ 82507 AOO 3/85 



INSTRUCTION SET 
Bus Communication 

interrupted process. At the time the interrupt occurred, a stack 
marker was generated at the L pointed to by the System Interrupt 
Vector Table (SIV) for the specific interrupt. This was a 
special six-word marker that consisted of the space ID, MASK, S, 
P, ENV, and L at the time of the interrupt. This instruction 
reestablishes this environment and resumes execution of the 
interrupted process. In order to reestablish the interrupted 
environment, IXIT first loads the five registers with the values 
in L-4:L of the stack marker, and then checks CSSEG to see if the 
segment specified by the space ID in L-5 is currently mapped. If 
the segment is not currently mapped, a MAPS (Map Segment) 
instruction is executed at this point. Then the Register Stack 
is loaded with the values in L+l through L+8. Lastly, the 
process timer is allowed to resume counting if the return is to a 
user environment (DS = 0). At the time this instruction is 
executed, the needed values in L-5 through L+8 must be present. 
This is a privileged instruction. 

DISP (000073). Dispatch. This instruction sets bit 15 of INTA, 
and also sets Vi.<15> in the System Interrupt Vector (SIV) table 
entry for the Dispatcher interrupt. If bit 15 of MASK is set, a 
Dispatcher interrupt occurs immediately following this 
instruction (provided there are no interrupts of higher priority 
pending). Control is then transferred to the operating system 
Dispatcher whose location is pointed to by the SIV table entry. 
This is a privileged instruction. 

BUS COMMUNICATION 

TOTQ (000056). Test Out Queues. In a 
instruction sets CCE if neither of the 
CCG if at least one Out Queue is full. 
processor this instruction sets CCG if 
and CCE if empty. 

Nonstop II processor this 
two Out Queues is full, or 
In a Nonstop TXP 

the single OUTQ is full, 

SEND (000065). Send Data over Interprocessor Bus. The SEND 
instruction expects register A to contain a byte count and 
registers CB to contain the absolute extended address of the 
source buffer. Register D is the OUTQ Full Timer. 

In a Nonstop II processor, the timeout value is computed as: 
(32768 - <timeout>) times 0.8--this value specifies the time in 
microseconds for the specified bus to become ready (e.g., 
<timeout> of 0 = 32768 * 0.8 microseconds). 

~ 82507 AOO 3/85 9-55 



INSTRUCTION SET 
Input-Output 

In a Nonstop TXP processor, the timeout value is computed as: 
(32768 - <timeout>) times 0.833--this value specifies the time in 
microseconds for the specified bus to become ready (e.g., 
<timeout> of 0 = 32768 * 0.833 microseconds). 

Register E bits 0:7 specify the sender CPU and 8:15 specify the 
destination CPU. Register F specifies a sequence number, and 
register G bit 15 specifies which bus is to be used (0 = X, 1 = 
Y). 

Data in the buffer is transmitted in 16-word packets consisting 
of 26 data bytes (13 words) plus three words for sequence number, 
sender and receiver CPU numbers, and checksum. Packets are 
transmitted until the byte count is zero. If the byte count is 
not a multiple of 26, then the last packet is padded with zeros 
to round the number of data bytes up to 26. Condition Code CCE 
indicates successful completion, and the Register Stack is marked 
empty. 

If a timeout condition occurs, a Condition Code of CCL is 
returned, and the instruction terminates. The Out Queue is 
cleared. SEND is a privileged instruction. 

INPUT-OUTPUT 

RSW (000026). Read the Switch Register into A. The contents of 
the Switch Register are pushed onto the Register Stack. 
Condition Code is set. 

SSW (000027). Store A into Switch Register. The contents of the 
A Register are set in the Register Display and into 
sysstack[%122]. A is then deleted. 

EIO (000060). Execute Input-Output. The EIO instruction expect~ 
bits 8:15 of A to contain the subchannel number, bits 0:7 of A to 
contain a command to its controller, and 0:15 of B to contain a 
parameter which is to be passed to that controller via the 
channel. (In a Nonstop TXP processor, before issuing the EIO, 
you must execute an LIOC to load the IOC entry for a given 
subchannel into its roe cache entry.) The EIO instruction first 
checks to see if the channel is available. If not it loops, 
waiting for channel availability but testing for other 
interrupts. When the channel becomes available, the command and 
address are sent to the controller by the channel via the LAC 
(Load Address and Command) T-bus command and the parameter is 

9-·56 ~ 82507 AOO 3/85 



INSTRUCTION SET 
Input-Output 

sent to the controller which is now selected via the LPRM (Load 
Parameter) T-bus command. Device status is then read from the 
controller via the RDST (Read Device Status) T-bus command. RP 
is decremented by one, and if there were no channel errors, 
device status is placed in A, the controller is then deselected 
via the DSEL (Deselect) T-bus command, the Condition Code is set 
to CCE and the instruction terminates. If there was a channel 
error, the ABT! (Abort Instruction) T-bus command is issued to 
the controller, deselecting it and terminating its activity. The 
contents of IOD, although probably invalid due to the channel 
error, are placed in A for evaluation. The Condition Code is set 
to CCL and the instruction terminates. This is a privileged 
instruction. 

!IO (000061). Interrogate I/O. This instruction is used by the 
operating system interrupt handler to get the interrupt cause and 
interrupt status from a controller and to reset that interrupt. 
It first checks to see if the channel is available. If not it 
loops, waiting for channel availability but testing for other 
interrupts. When the channel is available, first rank 0 and then 
rank 1 of the I/O system are polled via the LPOL (Low Poll) T-bus 
command. The interrupting controller on the highest rank with 
the highest priority is then selected via the SEL (Select) T-bus 
command. The channel then loads the controller's interrupt cause 
into the C register, the interrupt status into the B register, 
and the channel status into the A register. Then the interrupt 
in the controller is cleared. If there were no channel errors 
indicated in A, and if interrupt status bits 0:3 are equal to 
zero, then CCE is set, and the instruction terminates. If there 
was a channel error then CCL is set, and the instruction 
terminates. CCG is set in the event of a device error or parity 
error. This is a privileged instruction. 

HIIO (000062). High-Priority Interrogate I/O. This instruction 
is used by the operating system's high-priority interrupt handler 
to get the interrupt cause and status from a high-priority 
controller and to reset the corresponding interrupt. Execution 
is identical to the !IO instruction, except that HPOL (high 
priority polls) TBUS commands are issued and only controllers 
with the high-priority interrupt jumper installed can respond. 
This is a privileged instruction. 

RCHN (000447). Reset I/O Channel. This instruction is used by 
the operating system to control the I/O channel in the event of a 
catastrophic error. If register A contains a value greater than 
or equal to zero, RCHN resets the I/O channel; if A contains a 

~ 82507 AOO 3/85 9-57 



INSTRUCTION SET 
Miscellaneous 

negative value, RCHN performs a lockup on the channel. Condition 
Code CCE indicates that the reset or lockup was performed, or CCL 
indicates that the channel was not available. This is a 
privileged instruction. 

LIOC (000457). Load IOC entry. During an I/O operation, the 
Nonstop TXP processor uses a cached copy of the IOC entry 
associated with a given subchannel. This technique allows the 
system to defer updating the memory-resident IOC entry until 
after the I/O has completed. The LIOC instruction copies the 
four-word IOC entry from memory to its associated scratchpad 
registers. The subchannel number is specified in the contents of 
the A register. This is a privileged instruction. (In a Nonstop 
II processor, this instruction executes as a NOP.) 

SIOC (000460). Store IOC entry. In a Nonstop TXP processor, 
this instruction copies the four-word IOC information from 
scratchpad registers to its associated memory-resident IOC entry. 
The subchannel number is specified in the A register contents. 
This is a privileged instruction. (In a Nonstop II processor, 
SIOC executes as a NOP.) 

MISCELLANEOUS 

NOP (000000). No Operation. 

RCLK (000050). Read Clock. This instruction reads the 
quadrupleword microsecond counter (located in the system data 
segment), adds the instantaneous value of the 14-bit hardware 
microsecond counter to it, and pushes the result onto the 
Register Stack. Note that since the software counter is updated 
only every 10 milliseconds (each time the hardware counter rolls 
over), adding the hardware count to it provides an accurate clock 
indication at the instant that RCLK is executed. 

RCPU (000051). Read CPU Number. This instruction reads this 
processor's CPU number from bits 0:7 of INTB and pushes this 
value onto the register stack. 

9-58 ~ 82507 AOO 3/85 



INSTRUCTION SET 
Operating System Functions 

BPT (000451). Instruction Breakpoint Trap. This instruction, 
although necessarily nonprivileged, can be used only by system 
software (DEBUG); proper operation requires access to the 
Environment Register, which requires privileged capability. The 
instruction assumes that DEBUG has inserted the BPT instruction 
at some user-specified point in the code, and has saved the 
instruction that formerly occupied that location in the 
Breakpoint Table in the system data segment. When the code 
containing the BPT instruction is executed, BPT is normally 
executed twice--once when encountered following the preceding 
instruction, and once again to resume program execution at the 
following instruction. A bit (1) in the Environment Register is 
used as a flag to differentiate the two functions. 

When BPT is first executed, bit 1 of the Environment Register is 
zero, which causes an interrupt to be generated (through SIV 19) 
to DEBUG. DEBUG sets ENV bit 1 to one and, after user debugging 
has been completed, returns to the interrupted code at the BPT 
instruction. This time, BPT first sets ENV bit 1 back to zero, 
then searches the Breakpoint Table, locates the saved 
instruction, loads that instruction into the Instruction (I) 
Register, and sets the microcode entry point for that instruction 
into the ROMA Register. Thus the breakpointed instruction is 
executed, and execution proceeds normally to the succeeding 
instruction. 

OPERATING SYSTEM FUNCTIONS 

The following groups of instructions, most of them privileged, 
are used solely to implement certain operating system and 
diagnostic functions in firmware. These instructions are not 
intended for use in any user applications, and are listed here 
only for completeness. 

Resource Management 

XCTR 
MXON 
MXFF 
SNDQ 
SFRZ 
DOFS 
DLEN 
HALT 
PSEM 
VSEM 
RPV 
wwcs 

(000033) 
(000040) 
(000041) 
(000052) 
(000053) 
(000057) 
(000070) 
(000074) 
(000076) 
(000077) 
(000216) 
(000400) 

~ 82507 AOO 3/85 

XRAY Counter Bump 
Mutual Exclusion On 
Mutual Exclusion Off 
Signal a Send Is Queued 
System Freeze 
Disc Record Offset 
Disc Record Length 
Processor Halt 
"P" a Semaphore 
"V" a Semaphore 
Read PROM Version Numbers (Nonstop II) 
Write LCS 

9-59 



INSTRUCTION SET 
Operating System Functions 

vwcs 
RWCS 
FRST 
RSMT 
WSMT 
RIBA 
RPT 
SPT 
BCLD 
TPEF 
SRST 
DDTX 
RUS 
BIKE 

(000401) 
(000402) 
(000405) 
(000436) 
(000437) 
(000440) 
(000442) 
(000443) 
(000452) 
(000453) 
(000455) 
(000456) 
(000461) 
(000464) 

Verify LCS 
Read LCS 
Firmware Reset 
Read from Operations and Service Processor (OSP) 
Write to Operations and Service Processor (OSP) 
Read INTB and INTA Registers 
Read Process Time 
Set Process Timer 
Bus Cold Load 
Test Parity Error Freeze Circuits (Nonstop II CPU) 
Soft Reset (Nonstop TXP; NOP on Nonstop II) 
DDT Request (Nonstop TXP; NOP on Nonstop II) 
Read micro state (Nonstop TXP) 
Bicycle While Idle 

Memory Management 

MAPS (000042) 
UMPS (000043) 
RMAP (000066) 
SMAP (000067) 
CRAX (000423) 
RSPT (000424) 
WSPT (000425) 
RXBL (000426) 
SXBL (000427) 
LCKX (000430) 
ULKX (000431) 
CMRW (000432) 
SVMP (000441) 
BNDW (000450) 
SCPV (000463) 
ASPT (000470) 

List Management 

DLTE 
INSR 
MRL 
FTL 
DTL 

(000054) 
(000055) 
(000075) 
(000206) 
(000207) 

Map in a Segment 
Unmap a Segment (Nonstop II processor only) 
Read Map (Nonstop II processor only) 
Set Map 
Convert Relative to Absolute Extended Address 
Read Segment Page Table Entry 
Write Segment Page Table Entry 
Read Extended Base and Limit 
Set Extended Base and Limit 
Lock Down Extended Memory 
Unlock Extended Memory 
Correctable Memory Error Read/Write 
Save Map Entries 
Bounds Test Words 
Set Current Process Variables 
Address of Segment Page Table Header 

Delete Element from List 
Insert Element into List 
Merge onto Ready List 
Find Position in Time List 
Determine Time Left for Element 

Trace and Memory Breakpoint 

TRCE (000217) 
SMBP (000404) 

9-·60 

Add Entry to Trace Table 
Set Memory Breakpoint 

/f' 82507 AOO 3/85 



SECTION 10 

GUARDIAN MODULES AND DATA STRUCTURES 

This section begins a description of the GUARDIAN operating 
system. The general approach is to first present an overview of 
the locations of the various modules and data structures of the 
operating system, in the context of virtual memory segments, and 
then to follow this later with descriptions of the functioning of 
these components. 

SEGMENTED ORGANIZATION OF GUARDIAN OPERATING SYSTEM 

Figure 10-1 presents an overview of the locations of the major 
structures of the operating system. 

As shown, virtual memory (or "absolute extended memory") consists 
of 8192 absolute segments numbered from 0 through 8191. These 
exist primarily as code files and data swap files on the system 
disc (see lower right corner of the diagram), though various 
pages of these segments will be present in physical memory at 
various times. Each segment is 64K words of storage. 

The first 128 absolute segments are reserved by the operating 
system. The first sixteen of these are permanently mapped by 
the Nonstop TXP processor. (The Nonstop II processor permanently 
maps only absolute segments 1, 3, and 6 through 13.) The 
allocations for all the processes that exist in a given processor 
at a given time begin at segment 128. Usually, the first several 
processes will be GUARDIAN operating system processes. 

The following paragraphs describe the present allocations of 
absolute segments. 

Segment 0 is used by the XRAY peformance monitor software, and 
contains the XRAY counters. 

-1' 82507 AOO 3/85 10-1 



GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

System Process 
Code 

Segment 
Page Tables 

and 
1/0 Buffers 

ABSOLUTE SEGMENTS 

System 
Library 

(Up to 32 
Segments) 

l 
User 

Code 

(Up to 16 
Segments) 

/ Code Flies and 
Data Swap Files 

' ~ 
SYSTEM DISC 

~ 
85001-126 

Figure 10-1. Locations of Major Software Structures 

10-2 "182507 AOO 3/85 



GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

Segment 1 is the system data segment, which contains most of the 
major system tables; accordingly, the contents of this segment 
are referenced frequently. Segments 2, 4, and 5 are allocated by 
SYSGEN to system process code segments that are frequently 
referenced and (on a Nonstop TXP processor) will benefit from 
being permanently mapped. 

Segment 3, the system code segment, contains all interrupt 
handlers and the most frequently used system procedures; less 
frequently used procedures are relegated to the system library, 
which is the set of segments beginning at segment 28 (%34). 

Segments 6 through 13 are used to store all of the page tables 
for every segment currently allocated in the processor, and also 
are used as storage space for I/O buffers. Segment 14 is used to 
store memory management tables other than the page tables. 
Segment 15 is used by the Nonstop TXP processor to save loadable 
portions of CPU microcode in the event of power failure. 

Segments 16 through 127 (mostly not listed in Figure 10-1) are 
used for the following purposes: 

16 (%20) 

17 (%21) 
18 (%22) 
19 (%23) 
20 (%24) 
21 (%25) 
22 (%26) 
23 (%27) 
through 

27 (%33) 
28 (%34) 
through 

92 (%133) 
93 (%134) 
through 

120 (%170) 
121 (%171) 

through 
124 (%174) 
125 (%175) 
126 (%176) 
127 (%177) 

Process Control Block Extension, Subchannel 
Table Extension (PCBX, SCTX) 

Destination Control Table (DCT) 
Page-Process Indentif ication Table (PAGEPIN) 
Network Routing Table (NRT) 
System library Entry Point Table (SEP) 
Extended System Pool 
DST Transition Table 
Reserved 

System library (SL) segments (see Figure 10-1) 
(First 32 presently allocatable) 

Reserved 

Debug stack segments 

Messenger process's System Status Message Buffer 
Reserved 
Microcode save area (Nonstop II processor) 

Beginning at segment 128 (%200) are the segment allocations for 
the first process. The example in Figure 10-1 shows 15 segments 
allocated to the first process--with the second process beginning 
at segment 143. The allocations shown in this example are not 
necessarily typical, but they do illustrate the allocations that 
can be made for a process. 

~ 82507 AOO 3/85 10-3 



GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

'rhe first allocation for a given process is the user data segment 
(the process stack segment). This is followed by one or more 
segments of user code--not necessarily in numerical sequence. 
'rhese segments comprise the main program code of the process. 
Optionally, there can also be up to 16 segments of user 
library--that is, a collection of procedures that are privately 
callable only within this process. (The user code and user 
library may not need to be allocated for some processes if these 
can be shared with another process in this CPU.) 

As the process executes, there may be additional allocations for 
~~xtended data segments. Any such segment (it is viewed as one 
logical segment by the user) may be made up of any practical 
number of contiguous absolute segments. (The block of segments 
need not be contiguous with the other segment allocations of the 
process--though shown this way for simplicity.) For each 
process, one extended data segment is always present, 
automati~ally assigned by the operating system: the process file 
segment. Other extended data segments are optional, being 
present only when specifically requested by the process. The 
process file segment is used by the file system to track the 
status of communication with every file that is opened by the 
process. 

It should be noted that there is not necessarily a one-to-one 
correspondence between segments and disc files. A single code 
file for a process's user code may be up to 16 absolute segments 
in length, and the file for an extended data segment may be even 
longer. Conversely, the user code segment allocation for many 
similar processes (for instance, command interpreters) may all 
correspond to the same shared code file on the system disc. 

Having viewed the overall storage arrangement for the GUARDIAN 
operating system, we can now observe the methods used to access 
these system structures. As noted previously, nonprivileged 
processes cannot directly use absolute addresses. Consequently, 
absolute segment numbers are meaningless in the user process 
context. Instead, these processes use relative addressing, which 
allows access to only a limited set of segments. This both 
simplifies the addressing requirements and protects each process 
from all others. 

Figure 10-2 illustrates one example of process access to a 
frequently used absolute segment, system data. System data, as 
e>bserved in the preceding figure, is absolute segment 1. This 
segment is accessed by the system (on behalf of any process) 
E~ither as Short Address Space 1 (using 16-bit addresses) or as 
relative segment 1 (using 32-bit addresses). (This happens to be 
the only example of direct numerical correspondence of address 
spaces.) Other examples are illustrated in the succeeding 
j: igures. 

10-4 ~ 82507 AOO 3/8~i 



I I I I 
I I I 
I I 2 I I 
I ,+- -l-~ k... __ _v I 
I I I I 
II I 3 I I 

I I I 
I 'f--r:71 
~,--( I 

I 14 I l 
I I I 
I .,.....r--1;:~ 
~---1 I 
I I I 
I I 5 : I 

I L--1-7' 
~--.....I/ 

GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

I 
I I I 
12 I I 

I I I J 
I ,,,.,, -+,.,-
f j--I : 
I 13 1

1 
I 

I I I 
I /f--~71 
l~T--: I 
I I 4 I I 

I
I L __ ,_J 

.,.....I ,,,,.,~, 

~--- I I I 
I 15 I I 
: L __ 1_) 
~--_J/ 

ABSOLUTE 
SEGMENTS 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

System 
Data 

85001-127 

Figure 10-2. Access to System Data Structures 

~ 82507 AOO 3/85 10-5 



GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

Figure 10-3 illustrates user access to the system procedures in 
the system code and system library segments. The single system 
code segment, absolute segment 3, is accessed by the system (on 
behalf of any process) as Short Address Space 3. The space ID 
for this segment is SC.O. 

The 32 system library segments, absolute segments 28 through 59, 
are accessed by the system (on behalf of any process) as Short 
Address Space 5. The specific segment selected depends on the 
current space ID value, which can range (octally) from SL.O for 
segment 28 up to SL.%37 for segment 59. 

The system code segment and all system library segments 
correspond to separate portions of the OSIMAGE file on the system 
disc. This is depicted on the right side of Figure 10-3. 

System code and system library segments may also be accessed with 
relative extended addresses, but only as part of the "current 
code" arrangement that will be described later in connection with 
Figure 10-5. 

Figure 10-4 illustrates short-address access for a process to its 
own code, data, and library segments. (Relative extended-address 
access will be considered in the subsequent figure.) 

User data (that is, the process stack segment) is accessed by the 
system (on behalf of the process) as Short Address Space O. This 
corresponds to some allocated absolute segment, illustrated as 
segment 422 in the figure. Physically, this segment consists of 
a data swap file on the system disc. 

Current user code is one of the user code segments, illustrated 
as segments 423 through 426 in the figure. The selected segment 
is individually identified by a space ID value in the range of 
UC.O through UC.%17; UC.2 is assumed in the figure. This segment 
is accessed by the system (on behalf of the process) as Short 
Address Space 2. Physically, it consists of a portion of the 
main program code file (object file) for the process. 

The User Library is illustrated as segments 427 through 430 in 
the figure. One of these is "current" if the process is 
presently executing a user library procedure. The selected 
segment is individually identified by a space ID value in the 
range of UL.O through UL.%17. UL.l is assumed in the figure. 
This segment is accessed by the system (on behalf of the process) 
as Short Address Space 4. Physically, it consists of a portion 
of the user library file (object file) which is bound to the main 
program code file for the process. A "demand mapping" scheme is 
used for such segments--that is, a user library segment is mapped 
only by a procedure call to (or exit from) that segment. 

10-6 ~ 82507 AOO 3/85 



GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

ABSOLUTE SEGMENTS 

0 

I I 
11 

I I 
I I 

Figure 10-3. Access to System Procedures 

SYSTEM 
DISC 

85001-128 

~ 82507 AOO 3/85 10-7 



GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

ABSOLUTE SEGMENTS 

Start of Segment ~ 
Allocations for ~ 
This Process 

I I 
I I 

I I 
I I 
I I 

Space 

85001-129 

Figure 10-4. Short-Address Access to Process Code and Data 

10-8 ..-, 82507 AOO 3/85 



GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

Figure 10-5 illustrates the case of relative extended address 
access to the code segments that are accessible to a given 
process. In this case, "current code" and "user code" can be 
accessed as relative segments 2 and 3 respectively. The specific 
absolute segments selected for these functions at any given time 
are dependent on the current space ID value. 

For current code (relative segment 2), there are two levels of 
selection ("switching"). One level selects the space (SC, SL, 
UL, UC): this is done in the Environment register (ENV). The 
second level is the space ID index value (0 - %17 for UL and UC, 
0 - %37 for SL, and 0 always for SC). For illustrative 
convenience, the absolute segment numbers shown in Figure 10-5 
correspond to the numbers used in the preceding two figures. The 
correspondence ~o disc files is not shown: this was illustrated 
in those preceding figures. 

For user code (relative segment 3), the space is predetermined: 
UC. The space ID index value selects one of the segments 
allocated to the current process. 

For performance reasons, no indexing occurs for system code. The 
space ID is always SC.O, and the corresponding absolute segment 
(3) is permanently mapped. 

Figure 10-6 illustrates the case of access to the Process File 
Segment. This is an extended data segment belonging to the 
process: like any other extended data segment it can be addressed 
only by relative extended addresses--beginning at relative 
segment 4. The process file segment, however, is different from 
other extended data segments in that it cannot be accessed by 
nonprivileged users: access is permitted only for privileged or 
callable procedures. For access to be possible, the process file 
segment must be the "current" extended data segment. 

The foregoing five illustrations have outlin'ed the general layout 
and access for most of the GUARDIAN operating system components 
originally presented in Figure 10-1. The accessing of some 
structures, such as I/O buffers, Segment Page Tables, and other 
memory management tables has not been shown, since these are 
addressable only by absolute extended addresses referring to the 
absolute segments. 

"'182507 AOO 3/85 10-9 



GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

Current 
Code 

(SC,SL,UC,UL) 

Currently Mapped 
User Code 

(UC) 

0 

4 

5 

6 

7 

8 

SPACEID 

INDEX' 
... 0 

~Other 
g::= Abs. 
g::= Segs. 
0--
0--
0--
0--
0--
0--
0--
0--

r""~ 
0--
0--
0--
0--
0--
0--
0--
0--
0---
0--
0--
0---
0---
o---+ 

ABSOLUTE 
SEGMENTS 

55001-130 

Figure 10-5. Extended-Address Access to Code Segments 

10-10 ..,, 82507 AOO 3/85 



Current o 
Data 

System 
Data 

Current 
Code 

User 
Code 

Current 
Extended 

2 

3 

Data ~~~'Ir"' 

Segment •.. , .. , .... ,,,.··'·'.''"''··, .. ,.··'·· 

8 

9 

v 

GUARDIAN MODULES AND DATA STRUCTURES 
Segmented Organization 

I 
I 

I 

I 
I 

--""> - -vi / / 
/ / 

/ / 
// / 

/ 
/ 

I 
I 

I 

ABSOLUTE 
SEGMENTS 

Process 
File 

l4@;;#il4~ Segment 

I I 
I I 
I I 
I 

Other 
Extended 
Data 
Segment 

55001-131 

Figure 10-6. Access to Process File Segment 

~ 82507 AOO 3/85 10-11 





SECTION 11 

THE PROCESS ENVIRONMENT 

At any instant of time, the processor is operating in one of two 
fundamental environments: either the process environment or the 
interrupt environment. This section describes the process 
environment. 

PROCESS DEFINITION 

In the Tandem Nonstop system, a process is created either by 
entering the RUN command or by programmatically calling the 
NEWPROCESS procedure. As illustrated in Figure 11-1, each 
process consists of the following: 

• An unmodifiable code area that contains instructions 

• A separate, private data area called a stack 

• A system table entry called the Process Control Block (PCB) 
that.defines the state of the process in the system. (The 
Process Control Block Extension, PCBX, which contains less 
frequently used information pertaining to the process, is 
considered to be a logical part of the PCB.) 

Each time a user requests program execution, a process is 
created. Thus, if a user runs two separate programs, the 
GUARDIAN operating system creates two corresponding processes. 
And if he runs the same program twice, or two users run the same 
program concurrently, again two processes are created. Neither 
process "owns" the program code; code is sharable among 
processes within the same processor. The data, however, is 
private to the process. 

~ 82507 AOO 3/85 11-1 



THE PROCESS ENVIRONMENT 
Process Definition 

HARDWARE 

REGISTERS 

85001-132 

Figure 11-1. Elements of a Process 

Up to 256 processes can be executing concurrently in each CPU. 
Although these processes share some resources, such as main 
memory, only one process can be executing at any instant. 

A process executes until either: 1) it must wait for a resource 
or for a message or an I/O operation: or 2) a higher priority 
process becomes ready to execute. The GUARDIAN operating system 
then saves the process state (the space ID of the currently 
executing code segment, and the contents of registers P, ENV, 
L, S, and RO:R7) in the process's PCB, and then chooses a new 
process to execute, if one is ready. That process's state is 
taken from its PCB and used to continue its execution from the 
point where it was last executing. 

Application processes (that is, all processes that are not system 
processes) have only a temporary existence--they are subject to a 
"life cycle" that has as its phases: creation, execution, and 
termination (see Figure 11-2). 

System processes, on the other hand, have all the same physical 
characteristics of application processes, but are a permanent 
part of the system. They are automatically executed when a CPU 
is loaded. 

11-2 ~ 82507 AOO 3/85 



CREATION 

Allocation 

\j 

EXECUTION 

CPU 
Memory 

Tables 

RESOURCES 
PCB Table Entry - Resident Memory 

Virtual Disc Space 

THE PROCESS ENVIRONMENT 
System Process Creation 

Deallocation 

'-------------------------------
85001-133 

Figure 11-2. Process Creation, Execution, and Termination 

SYSTEM PROCESS CREATION 

Because of their permanent nature, system processes must be 
created in a slightly different way than application processes. 
The following discussion and Figures 11-3 and 11-4 show how this 
is done. 

The system processes for a new GUARDIAN operating system 
configuration are created by running the SYSGEN program (Figure 
11-3). SYSGEN executes as a user process and is run in the same 
way as any other process. SYSGEN reads information about the new 
configuration and builds a complete image of the new system, 
storing it in a file named OSIMAGE. 

After it has built the image of the system, SYSGEN writes a 
system image tape (SIT), containing the OSIMAGE and other files. 
This tape can be used in two different ways: 

~ 82507 AOO 3/85 11-3 



THE PROCESS ENVIRONMENT 
System Process Creation 

System 
Processes 

System 
Tables 

(PCB, etc.) 

85001-134 

Figure 11-3. System Configuration and Loading--Part 1 

1. On a new system, the tape can be "loaded" onto the system 
disc. The tape contains a bootstrap program which simply 
reads the rest of the tape and writes it to disc. This 
destroys any previous information on the disc, so this is 
usually done only once, when the system is delivered. 

2. On a running system, the SIT files can be "restored" to disc, 
using the RESTORE utility program. (Except for tape and disc 
bootstraps, the SIT has the same format as a backup tape.) 

11-4 ..., 82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
System Process Creation 

The OSIMAGE and many other files reside in some SYSnn subvolume 
(where nn is a 2-digit octal number). Once these files are on 
disc, the operator can cold-load the system by setting the nn 
value and a disc unit address in the processor switches. This 
may be done using the physical switches, but it is more 
convenient to use the OSP (Operations and Service Processor) if 
available. 

When the operator turns the key switch to LOAD (or performs the 
equivalent operation at the OSP), the CPU finds the image, copies 
it to memory, and then begins execution in the interrupt 
environment. Once the kernel has been initialized, the 
Dispatcher begins executing the system processes which were 
placed in the image by SYSGEN. 

The monitor process opens the OSIMAGE file, since this file also 
contains code and data which is nonresident and must be fetched 
by the memory manager when needed. The monitor starts a command 
interpreter process, which can be used by the operator to 
continue loading the system. 

In the normal case, the operator sets the time, reloads the 
remaining CPUs and starts additional command interpreters and 
application programs. 

Only one CPU is loaded from disc (cold-loaded). The remaining 
CPUs are loaded using the RELOAD program, which reads OSIMAGE and 
transfers the image across the interprocessor buses. This "bus 
load" can load all down CPUs in parallel. 

In Figure 11-4, the initial command interpreter reads input from 
a command (OBEY) file that creates all other command interpreter 
processes that run on the system. A production shop, however, 
might never start a command interpreter in another terminal, but 
instead might use the initial command interpreter to simply run 
application processes. (For reliable operation, however, it is 
recommended to have at least two command interpreters running; 
otherwise a simple terminal failure could necessitate a cold 
load.) 

Afj 82507 AOO 3/85 11-5 



THE PROCESS ENVIRONMENT 
System Process Creation 

11-6 

Microcode and 
Disc Resident 

§ 
_PR_oc_~s_s coMINT 4 .. I =::i 
Creation 

.._ ______ ... :OBEY Startci 

(Starts all Command 
\. lnterpreters--COMINT 

\ ' Processes) 

Figure 11-4. 

COM INT .......... - ...... l ____ :::: ___ _ 
. __J :Output 

• 
• 
• 
• 

Prompt 

-:=:i ,output 
Prompt 

85001-135 

System Configuration and Loading--Part 2 

~ 82507 AOO 3/85 



APPLICATION PROCESS CREATION 

THE PROCESS ENVIRONMENT 
Application Process Creation 

Once a command interpreter is started on a terminal, users may 
log onto the system to create and run their application 
processes. The following example shows how a user might 
construct an application process. This example is divided into 
twelve steps, a through l~ it illustrates source code entry, 
compilation, and object file execution. 

a. When the command interpreter is ready to accept input from a 
user, it displays a colon (:) as a prompt. When the user 
first sits down at his terminal, he must respond to this 
prompt with a LOGON command to gain access to the system 
(Figure 11-5). The command interpreter then displays: 

• Current version number and date of the GUARDIAN operating 
system 

• Its primary CPU and (if any) backup CPU 

• Present date and time 

• Prompt for the next command. 

e 
S5001-136 

Figure 11-5. Logging On to GUARDIAN Operating System 

b. Now the user enters an EDIT command to obtain the services 
of the text editor process. Since this process does not yet 
exist, the command interpreter sends a process-creation 
request to the monitor process. (From this point on, the 
command interpreter typically waits until the editor process 
terminates before resuming execution.) The monitor uses the 
code in the EDIT program file to create the editor process 
(Figure 11-6). Because the command interpreter is waiting, 
the user's terminal now appears to belong exclusively to the 
editor process. 

~ 82507 AOO 3/85 11-7 



THE PROCESS ENVIRONMENT 
Application Process Creation 

C:SER I 

85001-137 

Figure 11-6. Creating the Editor Process 

c. When the editor begins execution, it displays its name and 
current version number on the user's terminal, followed by an 
asterisk (*) as a prompt for an editor command. The user 
then enters commands to create a new, empty disc file and to 
place source statements in this file (Figure 11-7). Assume a 
program is being entered ("edited") in the TAL language. 

c::SER 

85001-138 

Figure 11-7. Producing an EDIT Text File 

d. Next, the user enters an EXIT command to terminate the 
editor. In response, the editor process sends a termination 
request to the monitor process. The Monitor terminates the 
editor and returns that process's resources to the system. 

11-8 ~ 82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
Application Process Creation 

The source file created by the editor, however, remains on 
disc as a permanent file (Figure 11-8)--its disc space is not 
returned by the operating system when the Edit process 
terminates. 

c:::ER l: •(OMIN) 
' ' ' ~---, 

I EDIT , __ -- -"' 

85001-139 

Figure 11-8. Terminating the Editor Process 

e. Now the command interpreter resumes control, issuing a 
prompt for another command. The user responds by entering 
the TAL command to request the services of the TAL compiler 
to translate his source file into object code. Again the 
command interpreter sends a message to the monitor, this time 
requesting creation of the TAL process (Figure 11-9). 

c:ER 

85001-140 

Figure 11-9. Requesting Access to the TAL Compiler 

~ 82507 AOO 3/85 11-9 



THE PROCESS ENVIRONMENT 
Application Process Creation 

f. Typically, the command interpreter waits during the 
initialization and execution of the newly created process. 
The monitor uses the code in the TAL program file to create 
the TAL process. Like the Edit process, TAL also appears to 
have sole access to the command interpreter's terminal, which 
is the default listing device for the compilation (Figure 
11-10). 

c:=R I 

85001-141 

Figure 11-10. Creating the TAL Compiler Process 

g. When the user entered the (RUN) TAL command in Step e, the 
command interpreter transmitted startup information to the 
TAL compiler. This information directed the compiler to read 
source images from the EDIT file produced in Step c, and 
place the compiled code into a specific program file. 
(Normally, the user supplies the names of both the source and 
program files as TAL command parameters. Furthermore, the 
user may specify a particular file to receive the compilation 
listing--or may, as in this case, omit this specification and 
receive the listing on his terminal.) Now the compilation 
takes place, with the resulting object code written to a 
program file on disc (Figure 11-11). 

11-10 ~ 82507 AOO 3/85 



L:·· 

THE PROCESS ENVIRONMENT 
Application Process Creation 

85001-142 

Figure 11-11. Compiling the Source Program into Object Code 

h. The termination of the TAL process causes a request to be 
sent to the monitor, which responds by returning the system 
resources held by TAL. If the compilation was successful, 
the program file for the user's application process now 
exists on disc (Figure 11-12). 

---
SOURCE 

85001-143 

Figure 11-12. Terminating the TAL Process 

Af' 82507 AOO 3/85 11-11 



THE PROCESS ENVIRONMENT 
Application Process Creation 

i. When the TAL process terminates, the command interpreter 
prompts the user for a new command. (If the compilation was 
not successful, of course, the user must reedit and recompile 
his program.) At this point, the user enters a RUN command 
to execute the application program residing in his program 
file (Figure 11-13). 

$5001-144 

Figure 11-13. Requesting Application Program Execution 

j. To run this program, the system creates a new ctpplication 
process in exactly the same way it created the EDIT and TAL 
processes-- in other words, the command interprE~ter sends a 
request to the monitor to create a process to run the program 
(Figure 11-14~. 

11-12 ~ 82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
Application Process Creation 

85001-145 

Figure 11-14. Creating the Application Process 

Because the user did not specify otherwise in the RUN 
command, the command interpreter will wait until the 
application process terminates. (A special RUN command 
option, however, permits the command interpreter to continue 
prompting the user while the requested process is running; 
this option is discussed later.) Because the command 
interpreter is waiting, the user's terminal is available for 
use by the application process. As far as the monitor is 
concerned, the only difference between EDIT, TAL, and the 
application process is that each of these processes is 
associated with a different program file. Essentially, they 
are ALL user processes that the monitor treats in the same 
way. 

k. When the user's application terminates, a request is sent to 
the monitor, which returns all system resources held by that 
process (Figure 11-15). 

~ 82507 AOO 3/85 11-13 



THE PROCESS ENVIRONMENT 
Application Process Creation 

85001-146 

Figure 11-15. Terminating the Application Process 

1. When the application process terminates, the command 
interpreter prompts the user for another command (Figure 
11-16). 

c:: .. ___ u_s_ER __ .. 1 ...... ------111• .... (0MIN) 

<;~A GRAM 
LE 

85001-147 

Figure 11-16. Returning Control to the Command Interpreter 

Now, the situation is exactly the same as it was before the 
user created the Edit process--except for the presence of the 
newly-created source and object files in the system. At this 
point, the user may request any other system operation he 
wishes (including logging off). 

11-14 ~ 82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
Multiple Application Processes 

MULTIPLE APPLICATION PROCESSES 

In the previous example, before it prompted for another command, 
the command interpreter always waited for the termination of the 
process which it created. It is also possible, however, to 
create multiple processes without causing the command interpreter 
to wait for the new process's completion. To do this, a user 
enters the nowait parameter in the RUN command (Figure 11-17). 
The command interpreter then creates the requested process and 
prompts the ~ser for another command. In actuality, the prompt is 
not issued until certain messages have been passed from the 
command interpreter to the newly created process. One of these 
messages is the Newprocess message; another is the Startup 
message, which contains the names of the input and output files 
that the new process may open and use. If the user does not 
specify such file names in the IN and OUT parameters of the RUN 
command, the command interpreter passes its default file names to 
the process. (Usually, these default values specify the command 
interpreter's home terminal.) The ability to tell a new process 
which files to use for input and output provides great 
flexibility and makes multiple process creation by the same 
command interpreter truly useful. Now all processes need not 
share the same terminal--instead, they can each be assigned a 
different one. 

RUN $system.system. COMINT/IN 

RUN $system.system. COMINT/IN 

\ 

$term I, OUT=_ $term I, NOWAIT, .. ./ } 

$term 2, OUT- $term 2, NOWAIT, .. ./ 

PROCESS 
CREATION 
REQUESTS 

PROCESS CREATIONS 

\ ' 

\ '-'--~M•N)· ·I 
\ 
\ 

\'----(oM•N) · ·I 

$TE::==i 

85001-148 

Figure 11-17. Command Interpreter File Assignments 

"'182507 AOO 3/85 11-15 



THE PROCESS ENVIRONMENT 
Multiple Application Processes 

A practical example of one process creating numerous others is 
the startup of a series of command interpreters. (See Figure 
11-17 again.) These are created when the original command 
interpreter reads and executes a series of commands in an OBEY 
file. Each RUN command in this file starts another command 
interpreter and assigns it a unique terminal to use for 
input-output. Of course, to create concurrent processes, each 
RUN command must include the nowait parameter. The command 
interpreters created in this way are treated by the GUARDIAN 
operating system as ordinary user processes. In fact, the 
operating system cannot distinguish them from such processes. 
Any operation done to create these command interpreters could as 
well be done in the creation of a user application process. Not 
only can users create application processes with the nowait 
option and run these processes concurrently--they can also 
specify which input-output files they should open and use. These 
files need not be limited to terminals, but may include disc 
files, other I/O devices, or even other processes (depending on 
restrictions imposed by the applications). 

PROCESS LIFE CYCLE 

As mentioned earlier (see Figure 11-2) a process's "life cycle" 
begins when the process is created from a program file and ends 
when the process terminates. 

The following example, illustrated in Figure 11-18, describes the 
life cycle of a simple (not necessarily typical) process. Assume 
that this process is created in a waited manner--that is, once 
the command interpreter creates the user process, it waits until 
the user process terminates. 

The individual life-cycle events are described in Steps a through 
h below, which are keyed to Figure 11-18. The sequence of 
life-cycle events begins at the top of this figure and proceeds 
to the bottom. Each column in this figure represents one of the 
five fundamental system processes involved in the user process 
life cycle, and summarizes the operations performed when that 
process executes. (Blank areas in a column indicate periods when 
the process is not running.) The broken-line boxes in the disc 
process column indicate that it may be executing in another CPU. 
And finally, each arrow in the figure represents a message used 
to communicate with, or pass requests between, cooperating 
processes. 

11-16 4J 82507 AOO 3/85 



0 

@ 

© 

@ 

0 

© 

@ 

COMINT 

II I 
" I 
" I 
" I 

Wait for stop 
or abend 
message 

Read stop, 
get and 
check next 
command 

MONITOR 

_. 

(Satisfy 
externals) 
Make OCT 
entry 

" .....,_ 

-OPEN 

USER PROC 

THE PROCESS ENVIRONMENT 
Process Life Cycle 

MEM. MGR. DISCPROC 

.- -X1i0ca'i8 ., 
----------------1 Virtual I 

L .Rl!S.- .J 

----···tt··· r- - - - ... 
Page Fault ~ - -, Page 

-----•·-tt-·· :: = = =:: Handle Data ~ _ -f Read Data 1 
\ 

Handle Code _. Rtad Code 1 

___ Page Fault ,_P~ __ _. 

..------------·-~·---~ -STARTUP 

-ASSIGN& 
-PARAMs 

-CLOSE 

eturn 
the ma s 

" 

(wait) 

Deal ocate 
user data map 

Deal ocate 
user code ma 

r iS'ialratiie., 
--------------i Virtual I 

LeiP'l..-.J 

85001-149 

Figure 11-18. Process Life Cycle 

-'f.' 82507 AOO 3/85 11-17 



THE PROCESS ENVIRONMENT 
Process Life Cycle 

a. When the command interpreter reads a valid RUN command to 
execute the user process, it calls the NEWPROCESS procedure 
to create the process. NEWPROCESS sends a message to the 
appropriate monitor (in the CPU where the process is to run) 
requesting the start of the new process. 

The command interpreter, now within the NEWPROCESS procedure, 
awaits a reply to its Newprocess message to determine if the 
request was successful. 

b. The monitor that receives the message initializes and starts 
a prototype process. This process opens the code and library 
files, and if fixup (linking the code and library external 
references to the system procedures) is necessary, this is 
also done at this time. Fixup consists of searching the 
System Entry Point Table to satisfy all such external 
references and changing the calls in the program file 
appropriately. Once the code from a program file has been 
run, it may be run repeatedly without satisfying the external 
references again. But if there is any possibility that the 
GUARDIAN operating system has been changed and the location 
of its externals affected, all external references in the 
program file must be resolved again when the program is next 
run. 

Once the prototype process has performed f ixup and other 
operations, its state is changed to begin executing the main 
procedure of the program. The monitor opens the code files 
as read-only swap files, and creates and opens the data 
segment swap file as a read/write file. If the process is 
named, it is allocated an entry in the Destination Control 
Table. 

When complete, with or without errors, the monitor replies to 
the originator of the new-process message (command 
interpreter, in this case) with an error code, or zeros for 
no error. 

c. The command interpreter determines that the user process is 
accepting messages, and sends an Open message to it. This 
message informs the user process that another process has 
opened it as a file. The incoming message is queued on the 
user process's PCB and the command interpreter suspends, 
awaiting a response. 

Now the Dispatcher selects the user process as the next 
process to execute. The Dispatcher sets the CPU registers to 
the values in the process's PCB and transfers control to the 
process by exiting the interrupt environment. 

11-18 Af' 82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
Process Life Cycle 

A program usually begins execution with none of its code or 
data pages in main memory. Each time it references an absent 
page, the program is suspended until the memory manager can 
fetch the page from disc. Initially, a program causes a 
flurry of page faults, but quickly obtains enough pages to 
execute, with only occasional faults caused by accessing 
seldom used procedures or data structures. 

d. The user process reads the open message queued on its PCB and 
sends a reply to the command interpreter. 

In response, the command interpreter awakens and sends a 
start-up message to the user process. This message contains 
the parameters and other information supplied in the RUN 
command. In this case, the user process replies to this 
message with a special return value which indicates that the 
user process's logic is prepared to receive any additional 
messages that the command interpreter might have to send. 

When requested by the user process, the command interpreter 
sends any information specified in ASSIGN or PARAM commands 
that were entered by the user. When all such messages have 
been exchanged and acknowledged, the command interpreter 
sends a close message to the user process. If the user 
process was not run with the nowait option, the command 
interpreter waits until it receives a message from the 
operating system that the user process has terminated before 
prompting for another command. 

e. The user process continues execution. This execution, 
however, might be interrupted by suspensions for input-output 
activity, or by execution of higher-priority processes. 
(Remember that the CPU is shared by all processes and 
interrupt handlers, and executes only one instruction at a 
time. Each time a new process executes, the state of the 
previous process is saved and the CPU is then reset to 
reflect the code and data environment of the process selected 
for execution.) 

f. When the user process has completed its operations, it calls 
the STOP procedure to terminate itself. This call may be one 
that the user has coded explicitly, or one that the compiler 
provided at the logical end of the program. The STOP 
procedure sends a message to the monitor requesting user 
process termination. 

g. In response to the message from the STOP procedure, the 
monitor now stops the process by breaking its communication 

~ 82507 AOO 3/85 11-19 



THE PROCESS ENVIRONMENT 
Process Life Cycle 

links and returning the resources it was using. The monitor 
also closes all files that were opened for this process, and 
removes the process's entry in the DCT. 

The monitor then requests the memory manager to deallocate 
all physical pages held by the process. The memory manager 
responds by deallocating the pages held by this process, 
making them available for other processes or the system to 
use. 

Then, the monitor sends a message to the disc process to 
close any swap files belonging to the user proce!;s, deletes 
any messages queued on the terminating process's PCB, and 
returns the PCB. When all the user process's resources have 
been returned to the system, the monitor sends a Stop message 
to the process's ancestor, which in this case is the command 
interpreter. The monitor then awaits another incoming 
request. 

h. The command interpreter is now able to resume execution and 
read the termination message sent to it by the monitor 
process. It checks this message and determines that the last 
user process that it created has terminated. Since this 
process was created in a waited manner, its termination 
permits the command interpreter to prompt for the next 
command. 

PROCESS PAIRS 

Fault-tolerant operation of the Nonstop system depends upon the 
concept of process pairs, where primary and backup processes form 
redundant sets that promote fault-tolerance. These process pairs 
may be employed by both the operating system and its users; 
however, they are implemented in different ways, depending upon 
which· entity creates them. 

Process pairs usually are named; the naming convention makes 
them easier to work with. The process name as well as the 
CPU's and PINs of the primary and backup processes are recorded 
in the Destination Control Table (DCT) (Figure 11-19). Thus, 
when a user wants to communicate with a named process pair, the 
operating system locates the process by looking up its name in 
the DCT and determining the associated PID ( <cpu>, <pi.n>) 
identifier. 

11·-20 -'f' 82507 AOO 3/85 



OCT 

r 
I 

LOCATE I 
$ALPHA 
PRIMARY I 

__.. $ALPHA 

PRIMARY 

BACKUP 

ANCESTOR 

............ OCT 
LOCATE 
$DISC 
PRIMARY 

............ 

~ $DISC 

PRIMARY 

BACKUP 

DEVICE 
INFORMATION 

~ 

r-

v 

t--

----
---

-- --

THE PROCESS ENVIRONMENT 
Process Pairs 

85001-150 

Figure 11-19. Named Process Pair Versus Named Device 

To provide fault-tolerance at the system level, each input-output 
device is controlled by a process pair. When an application 
program opens (or otherwise wishes to access) an I/O device, the 
file system first finds the device's entry in the Destination 
Control Table. This table (DCT) contains the CPU and process 
numbers for the device's primary and backup processes. The file 
system then transmits the user's request in a message to the 
device's primary process. 

Under normal circumstances, user processes communicate with both 
named and input-output process pairs through the file system. As 
far as the user is concerned, the process name or device 
identifier represents a single active process. In actuality, 
however, the name/identifier references both the primary and 
backup, with the backup member remaining dormant (except for 
processing Checkpoint messages) until the primary fails. The 
file system remains responsible for directing messages to the 
appropriate member of the pair. 

For instance, suppose a user opens and writes data to a process 
that he identifies as $ALPHA (Figure 11-20). To keep its backup 
informed of current requests, $ALPHA'S primary process sends 
checkpoints to the backup. Now suppose, at some later time, the 
CPU on which the primary is running fails. The file system once 

~ 82507 AOO 3/85 11-21 



THE "PROCESS ENVIRONMENT 
Process Pairs 

WRITE 

I 
I 
I 
I 
I 
I 
I 

' 

FILE 
SYSTEM 

OCT 

$ALPHA 

PRIMARY 

0,31 

BACKUP 
4,27 

$ALPHA 

PHI MARY 

CPU 0 

BACKUP 
CPU 4 

85001-151 

~----------------------~---------------~~--------~----·-----------------------------------~ 

Figure 11-20. Process Pair Backup 

again tries to reference $ALPHA's failed primary. The file 
system always routes data to the primary member of the process 
pair (Figure 11-21, Event A). When such a transfer fails, any 
outstanding messages to the process are cancelled and a "path 
error" to the device or process results. In this case, the 
backup process becomes the primary (Event B) and the operation 
may be retried to the new primary (Event C). 

Input/output processes operate in a parallel way. When a message 
request for the device occurs, the operating system sends the 
message to the first process (primary) in the DCT entry for the 
device. If the message cannot be delivered, the error indication 
causes the operating system to switch the primary and backup 
entries in the DCT. When the device is a disc, and the syncdepth 
is greater than zero, the system resends the request to the new 
primary process. The operating system handles this error 
recovery automatically, and the user remains unconcerned with 
what process actually handled the request. If the device is not 
a disc, such a failure results in an error without retry. 

11-22 ~ 82507 AOO 3/85 



OCT 

,- SALPHA 

I PRIMARY 

I 0,31 

I BACKUP 

I 4,27 

I 
I 
+ 

WRITE 

FILE 

SYSTEM 

THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

0 

RETRIED TO 

4,27 

I 
\ 

$ALPHA 

/ ', 
\ Primary 

/ 

failed 

CPU 0 

/ 
/ 

New PRIMARY 

mdy dttempt to 

create another 

BACKUP (1n 

CPU 0 or elsewhere) 

BACKUP 

becomes 
PRIMARY 

CPU 4 

85001-152 

Figure 11-21. Primary Process Failure 

REQUESTER/SERVER RELATIONSHIPS 

In the case of process pairs, described above, each process is 
the functional equivalent of the other. Beyond this, however, 
two processes can be designed to be responsible for entirely 
different functions. For instance, a user might easily divide an 
application into two processes so that: 

• One process handles the front-end terminal interface. 

• The other process manages all data base and other disc 
accesses. 

Then, if fault-tolerant performance is important, the user might 
create each of these processes as a process pair. 

The relationship between two such communicating processes (or 
pairs of processes) is defined by their functions, and is called 
a requester-server relationship. The requester initiates a 

.,,, 82507 AOO 3/85 11-23 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

request to access a res·ource that is logically "owned" by the 
server; the server performs the requested action and replies to 
the requester. 

In the above example, the requester process (terminal front-end 
handler, $REQ) opens the server process (data-base accessor, 
$SER) as a file. Incoming commands from the terminal cause the 
requester process to call a system library procedure named 
WRITEREAD (Figure 11-22). This procedure not only sends a 
request message to the server, but also expects a response from 
the server. The server, in turn, opens a file named $RECEIVE and 
calls the system library procedure READUPDATE. This procedure 
not only reads from $RECEIVE the message sent by thE! requester 
but also permits the server to send a response to the requester. 
After the server has read the request message, it performs the 
required operations. (These typically include data base 
accesses.) The server then sends its response, and completes the 
transaction by calling the system library procedure REPLY. This 
combination of WRITEREAD, READUPDATE, and REPLY procedures allows 
a two-way data transfer within the framework of a single message 
and illustrates the way in which requesters and servers are 
interlocked. That is, once a request has been madeff the 
requester typically cannot make further requests until the server 
replies. 

OPEN $SER 

£ 
WRITE READ 
~ 

SENDS MESSAGE 

OPEN $RECEIVE 

~ 
READUPDATE: 
~ 

[~::ass] l ( ... UPDATE 
: Allows Reply) 
I 

REPLY·"' 
RETURNS REPLY ~ _______ _______../ 

55001-153 

Figure 11-22. Requester-Server Pair 

11-24 ~ 82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

In this way, the requester always remains the controlling process 
in the relationship. The server, on the other hand, is mainly a 
passive process, awaiting messages from the requester and acting 
only when those requests arrive. Under typical circumstances, 
when a server finishes processing all incoming requests, it 
suspends and awaits further messages. 

A typical example of request handling appears below in Steps a 
through c: 

a. The requester opens the server process as a file and then 
sends messages to it. The requester identifies the server 
by: 

1. The server's process ID, if the server is an unnamed 
process. 

2. The server's process name, if the server is actually a 
named process or process pair. 

b. After the server completes any required initialization, it 
opens and reads the $RECEIVE file. (This file must be opened 
and read in order to pick up any incoming messages.) 
Multithreaded servers open $RECEIVE with a receive depth 
parameter greater than zero in the OPEN call: this permits 
the server to send replies to the requester. $RECEIVE acts 
as a funnel through which all incoming requests arrive. The 
server reads the requester's message from $RECEIVE, and if a 
backup server exists, may also checkpoint the request to it. 

By reading $RECEIVE, the server simply reads unsolicited 
messages already transmitted to that file by other processes. 
Thus, while the requester must know the identity of the 
server to send a message, the server need only pick up 
messages from $RECEIVE. The message and file systems keep 
track of the identity of the requester. For this reason, the 
server only needs to reply to such incoming messages and the 
file system automatically directs the replies back to the 
appropriate requester. 

c. The server reads the requester's message from $RECEIVE, 
interprets the action required, and performs the requested 
function. Typically, the function involves returning 
information to the requester by replying to that process's 
message. 

Some additional techniques are available to assist users in 
developing more sophisticated requester-server applications. 
These techniques are supported by the following file-open 
options: 

~ 82507 AOO 3/85 11-25 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

• nowait depth 

• sync depth 

• receive depth 

(Bits 12 through 15 of the <flags> parameter 
in the OPEN procedure call.) 

(Used by requester process) 

(Used by server process) 

To clarify how these options may be used, the following 
discussion illustrates their application in the requester and 
server environments. 

Requester Environment. The concept of nowait input-output 
transfers applies to files used by both requesters and servers. 
Simply stated, nowait input-output allows a process to begin a 
transfer and then continue execution in parallel with it. 

Under normal circumstances (wait input-output), the user process 
suspends until the input-output completes. ln such cases, the 
process is assured that the transfer has been completed before 
the process resumes execution. When a nowait input-output 
transfer is requested, on the other hand, the process remains in 
execution and must check for the completion of the input-output 
by calling the system library procedure AWAITIO. 

The nowait input-output facility is requested in the call to the 
OPEN procedure. The caller specifies a nowait depth when the 
requester process opens a server process as a file. If the 
requester specifies a non-zero value for nowait depth, this value 
limits the number of outstanding requests that may be queued 
against the server process at any one time. For instance, with a 
nowait depth of three, no more than three data transfers to the 
server could be outstanding at any instant--that is, one of the 
three requests must be completed before another can be 
successfully queued. This queueing can be used to permit the 
requester and server to operate asynchronously. The requester 
can fill the server's input queue as needs arise, and the server 
can respond to requests in the queue as time permits. 

Another facility available to both requester and server processes 
is controlled by the sync depth parameter in the requester's call 
to open a server process pair as a file. This facility enables 
the requester and server to coordinate their communications and 
is completely independent of the nowait depth value. A nonzero 
sync depth value has two effects: 

1. It causes the file system to automatically retry requests 
which were unsuccessfully sent to the server. (The retry is 
directed to the backup process of the server process pair.) 

11-26 "'1J 82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

2. It causes the sync depth value to be sent to the server in 
the OPEN message that notifies the server process that it has 
been opened by the requester. Once the server receives the 
sync depth value, it expects that all incoming messages will 
contain a sync ID value. This information should enable the 
server to associate status returns with sync ID values, and 
to use logic to detect and ignore duplicate requests. The 
number of messages sent to the server between checkpoints in 
the requester should not exceed the sync depth value. 

NOTE 

With the exception of the automatic retry done by the 
file system, all the logic described above must be 
provided by either the application programmer or the 
high-level language (such as FORTRAN or COBOL) in which 
he is working. 

Server Environment. In order to receive messages from the 
requester, the server process must open the $RECEIVE file. 
Nowait depth has a very limited application in this 
environment--its maximum value is only one. The value of 
nowait depth has the following effect when no incoming requests 
are pending on $RECEIVE: 

• A nowait depth of zero causes the server process to wait for 
an incoming request on $RECEIVE. 

• A nowait depth of one allows the server to post one nowait 
READ operation against $RECEIVE to monitor this file for 
incoming requests while the server is otherwise occupied. As 
before, the completion of any nowait request must be 
determined by calling the system library procedure AWAITIO. 

Note, however, that since $RECEIVE is a single file, a single 
READ operation posted against this file is all that is needed to 
monitor it for input. 

Another facility available to the server is defined by the 
receive depth parameter specified in the OPEN call for the 
$RECEIVE file. Receive depth specifies the number of requests 
that may be read before any reply is returned to a requester. 
Receive depth must be greater than or equal to 1, to enable the 
server process to return a reply to the requester. In other 
words, receive depth specifies the number of READUPDATES that can 
be issued before performing a reply. For instance: 

/182507 AOO 3/85 11-27 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

receive depth 

0 

1 

2 

Number of READUPDATEs Allowed Before 
Performing REPLY Operation 

0 

1 

2 

(No READUPDATE allowed--f ile can 
only use READ.) 

The receive depth facility is completely independent of the 
nowait depth discussed earlier, and allows the server to examine 
its input queue, make decisions about the order in which to 
service requests, and respond to the requests in arbitrary order. 

The options discussed above may be used singly or in combination 
in the requester-server process environment. While their use was 
not required in the above example, they may be very helpful tools 
in implementing applications where more sophisticated queueing 
and error recovery is necessary. 

~ultiple Requester-Server Relationships. The previous ~xamples 
have covered single requester-server applications. But in more 
complex relationships, $RECEIVE can function as a universal 
two-way communication path among multiple requesters and servers. 
In fact, many servers, each with its own $RECEIVE file, can 
receive input from more than one requester and any requester can 
communicate with more than one server (Figure 11-23). 

The requester-server concept indicates a relationship between 
processes, not the exclusive duty of a process. In fact, some 
processes perform both functions in the course of their 
execution. This idea is the basis of "pass-through" 
arrangements, where a requester transmits a request to a server 
and this server, in turn, also functions as a requester, 
transmitting the request to another server (Figure 11-24). In 
these arrangements, each process is frequently a member of a 
process pair, with a primary and backup process involved at each 
point in the communication stream. 

11-28 ~ 82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

85001-154 

Figure 11-23. Multiple Requester-Server Relationships 

85001-155 

Figure 11-24. Pass-Through Arrangement 

~ 82507 AOO 3/85 11-29 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

Although system processes do not communicate with each other by 
using process files and $RECEIVE, many of the functional 
relationships that the operating system depends upon are 
essentially requester-server pairs. Communication between these 
processes takes place at the message system level--but is still 
functionally equivalent to the way that application requester/ 
servers communicate through the file system. 

As an example of system process intercommunication, consider the 
case where an ordinary user process calls file system procedures 
to read and write information to a terminal, sending requests to 
the terminal process that controls the device (Figure 11-25). In 
this case, the user process is the requester and the terminal 
process is the server. In a similar way, when the user process 
calls file system procedures to read or write data to a disc 
file, it sends messages to the disc process controlling the 
device. Again, the user process is the requester but the disc 
process is now the server. In this way, input-output processes 
(and other system processes such as the monitor and operator 
processes) depend on requester-server relationshipso 

SERVER 

85001-156 

Figure 11-25. Communication with System Processes 

11-30 "'82507 AOO 3/85 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

To illustrate requester-server relations within an application, 
consider a transaction processing system. In this system, 
requester components might handle terminal input-output, validate 
input fields for data consistency, convert this data to internal 
format, and control transaction flow. Server components, on the 
other hand, might perform such functions as: 

a. Reading messages from a requester 

b. Reacting to this request by reading, writing to, updating, or 
deleting information from the data base 

c. Building a reply containing data from the data base or 
control information describing an error that occurred 

d. Transmitting a reply message to the requester 

As another application example, suppose that a transaction 
processing system performs three main functions: checking 
credit, adding a new order, and updating an existing order. 
(Each of these functions is handled by a corresponding server 
process.) The requester process reads information from the 
user's terminal, constructs a message, and sends the message to 
an appropriate server process based on the request. The three 
servers are responsible for all activity on the data base (Figure 
11-26). 

ORDER 
ENTRY 

85001-157 

Figure 11-26. Communication with Application Processes 

~ 82507 AOO 3/85 11-31 



THE PROCESS ENVIRONMENT 
Requester/Server Relationships 

A more complex example appears in Figure 11-27. In this 
example, multiple requester processes share access to multiple 
server processes. In the case of the credit-check function, 
multiple copies of the same server were created in different 
CPUs to increase performance and throughput. 

A main advantage of requester-server relationships is 
modularity--the ability to implement a system in discrete modules 
or components that can work in parallel. Thus multiple 
requesters and multiple servers can work together to accomplish a 
single application. Modularity also permits smaller, more 
manageable components that are easy to define, write, debug, 
integrate into the system, and maintain. It makes a system more 
flexible by letting designers easily add new user functions that 
employ services already provided by existing application 
processes. And finally, it permits system expansion by allowing 
a flexible distribution of terminals, requesters, and servers 
among a system's CPU's--and perhaps even among systems in a 
network. All of these factors make it easier to optimize 
application throughput and performance. 

J 

l~igure 11-27. Application with Multiple Requesters and Servers 

11-32 AJ182507 AOO 3/85 



APPENDIX A 

HARDWARE INSTRUCTION LISTS 

This appendix provides a number of reference tables pertaining to 
the instruction sets of the Nonstop II and Nonstop TXP 
processors. 

The first two tables list all instructions in the instruction set 
with their mnemonics and opcodes, first in alphabetical order and 
then grouped by type of instruction. The remaining tables 
provide binary coding details for most of the instructions, 
grouped according to the coding patterns of the fields of the 
instruction words. (For example, all memory reference 
instructions are listed together.) These tables break down each 
instruction, bit by bit, into its component parts, indicate the 
operands, results, and ENV Register bit settings, and show 
relationships between similar instructions. 

The following tables are included in this appendix: 

A-1. 
A-2. 
A-3. 
A-4. 
A-5. 
A-6. 
A-7. 
A-8. 
A-9. 

Alphabetical List of Instructions 
Categorized List of Instructions 
Binary Coding, Memory Reference Instructions 
Binary Coding, Immediate Instructions 
Binary Coding, Move/Shift/Call/Extended Instructions 
Binary Coding, Branch Instructions 
Binary Coding, Stack Instructions 
Binary Coding, Decimal Arithmetic Instructions 
Binary Coding, Floating-Point Instructions 

A key at the end of each table explains the symbols used. 
For some instructions, the six-digit opcode notation used in 
Tables A-1 and A-2 cannot give complete information about the 
opcode. For instance, the distinctions between QUP and QDWN, 
ORRI and ORLI, and LWP and LBP cannot be clearly shown. For 
complete information, refer to the entries for these instructions 
in Tables A-3 through A-9. 

..-, 82507 AOO 3/85 A-1 



APPENDIX A 
Hardware Instruction Lists 

Table A-1. Alphabetical List of Instructions 

Mnemonic 

A-2 

ADAR 
ADDI 
ADDS 
ADM 
ADRA 
ADXI 
ALS 
ANG 
ANLI 
ANRI 
ANS 
ANX 
ARS 
ASPT 
BANZ 
BAZ 
BCLD 
BEQL 
BFI 
BGEQ 
BGTR 
BIC 
BIKE 
BLEQ 
BLSS 
BNDW 
BNEQ 
BNOC 
BNOV 
BOX 
BPT 
BSUB 
BTST 
BUN 
CAQ 
CAQV 
CCE 
CCG 
CCL 
CDE 
CDF 
CDFR 

Description 

Add A to Register .......... ~············· 
Add I mmed i ate ......•.•..•••.•.•.•••.••••• 
Add to S ................................. . 
Add to Memory ......•......• , ..•••.••.•.•.• 
Add Register to A .........••.......•..•.. 
Add to Index Immediate .................. . 
Arithmetic Left Shift .••......••.•••.•... 
AND to Memory .........•.....•..•.•••..•.. 
AND Left Immediate ............•.......... 
AND Right Immediate ...•..••........•..... 
AND to SG Memory ........•....•.••..•..•.. 
AND to Extended Memory .••••...•••..•••... 
Arithmetic Right Shift •.......•..••...... 
Address of Segment Page Table Header ..... 
Branch on A ...•.......•..••...••.••..••.. 
Branch on A Zero ......•.....•.••..•••••. ., 
Bus Cold Load .........••.......•.•.•..•• " 
B ran c h i f Eq u a 1 . . . . . . . • • • • • • • . • • • • • . • • . . ., 
Branch Forward Indirect •.•••••••••.•••••.. 
Branch if Greater or Equal •..•••..••.•.. ., 
Branch if Greater •...••••••...••••.••••• ., 
Branch if Carry •.•••.•.••••••••..••••••. " 
Bicycle While Idle •.•••..•••••••••••••.. " 
Branch if Less or Equal ••••••..•••••.••. " 
Branch if Less ........................... .. 
Bounds Test Words ....................... .. 
Branch if Not Equal ..................... .. 
Branch if No Carry ...................... .. 
Branch if No Overflow ................... .. 
Branch on X ...••.......••.....••.•.•.••... 
Instruction Breakpoint Trap •..••.••••••.. 
Branch to Subprocedure .••....•••...•.••• ,, 
Byte Test .•......•.•.....•.••.•..•••••••.. 
Branch . ............•...........••....... ,, 
Convert ASCII to Quad ..•...•..••..••••••• 
Convert ASCII to Quad with Initial Value. 
Condition Code Equal to •.•••..•.••••.••.• 
Condition Code Greater than ...•.••••••••• 
Condition Code Less than •.••••••.•••••••• 
Convert Doubleword to Extended Float ••••• 
Convert Doubleword to Float ..•••.•••..••• 
Convert Doubleword to Float (Round) .••••. 

Octal 
Code 

00016-
104---
002--­
-74---
00014-
104---
0302--
000044 
007---
006---
000034 
000046 
0303---
000470 * 
-154--
-144--
000452 * 
-12---
000030 
-13---
-11---
-10---
000464 * 
-16---
-14---
000450 * 
-15---
-17---
-164--
-1-4--
000451 
-174--
000007 
-104--
000262 $ 
000261 $ 
000016 
000017 
000015 
000334 # 
000306 # 
000326 # 

'1J 82507 AOO 3/85 



APPENDIX A 
Hardware Instruction Lists 

Table A-1. Alphabetical List of Instructions (Continued) 

Mnemonic 

COG 
CDI 
CDQ 
cox 
CED 
CEDR 
CEF 
CEFR 
CE! 
CEIR 
CEQ 
CEQR 
CFO 
CFDR 
CFE 
CF! 
CFIR 
CFQ 
CFQR 
CID 
CIE 
CIF 
CIQ 
CLQ 
CMBX 
CMPI 
CMRW 
COMB 
COMW 
CQA 
CQD 
CQE 
CQER 
CQF 
CQFR 
CQI 
CQL 
CRAX 
DADD 
DALS 
OARS 
DCMP 

Description 

Count Duplicate Words ..•••••.•••.••••.•.• 
Convert Doubleword to Integer •••..•...••• 
Convert Doubleword to Quad ••••••..•.••••• 
Count Duplicate Words Extended .•..•...•.• 
Extended Float to Doubleword ••.•.••.....• 
Extended Float to Doubleword (Round) ....• 
Extended Float to Float •..•..•.•.•..•...• 
Extended Float to Float (Round) ...•.....• 
Extended Float to Integer ....•..•........ 
Extended Float to Integer (Round) ...•.... 
Extended Float to Quadrupleword ......... . 
Extended Float to Quadrupleword (Round) .• 
Floating to Doubleword ..........•........ 
Floating to Doubleword (Round) .......... . 
Floating to Extended Float .............. . 
Floating to Integer .•........•.....•..... 
Floating to Integer (Round) ............. . 
Floating to Quadrupleword ......•.••.....• 
Floating to Quadrupleword (Round) ..••.... 
Convert Integer to Doubleword •.•.•....... 
Convert Integer to Extended Float •....... 
Convert Integer to Floating •••••••••.••.• 
Convert Integer to Quad •••••.•.••••••.•.. 
Convert Logical to Quad ••••••••.••••..... 
Compare Bytes Extended •.••••••.•••••••.•• 
Compare Immediate •.•••.•••••.••••••••••.• 
Correctable Memory Error Read/Write .•.•.• 
Compare Bytes •...•.•.•....•.•..••.•...... 
Compare Words ..........•..••..•.•........ 
Convert Quad to ASCII ...•.....••••.•..... 
Convert Quad to Doubleword ••.•.••••.•.... 
Convert Quad to Extended •..•.••.•..•..... 
Convert Quad to Extended (Round) .......•. 
Convert Quad to Floating •••..••.•.•.•.•.• 
Convert Quad to Floating (Round) ...••.... 
Convert Quad to Integer ..•............... 
Convert Quad to Logical ...•..•.••.•••.••. 
Convert Relative to Absolute Extended .•.• 
Double Add •........•...•..•..•.••.•..•... 
Double Arithmetic Left Shift ••...•..•...• 
Double Arithmetic Right Shift .•..••.•...• 
Double Compare .........••....••......•... 

~ 82507 AOO 3/85 

Octal 
Code 

000366 
000307 
000265 $ 
000356 
000314 # 
000315 # 
000276 # 
000277 # 
000337 # 
000316 # 
000322 # 
000323 # 
000312 # 
000313 # 
000325 # 
000311 # 
000310 # 
000320 # 
000321 # 
000327 
000332 # 
000331 # 
000266 $ 
000267 $ 
000422 
001---
000432 * 
1262--
0262--
000260 $ 
000247 $ 
000336 # 
000335 # 
000324 # 
000330 # 
000264 $ 
000246 $ 
000423 * 
000220 
1302--
1303--
000225 

A-3 



APPENDIX A 
Hardware Instruction Lists 

Table A-1. Alphabetical List of Instructions (Continued) 

Mnemonic 

DDIV 
DDTX 
DDUP 
DFG 
DFS 
DFX 
DISP 
DLEN 
DLLS 
DLRS 
DLTE 
DMPY 
DNEG 
DOFS 
DPCL 
DPF 
DSUB 
DTL 
DTST 
DXCH 
DXIT 
EADD 
ECMP 
EDIV 
EIO 
EMPY 
ENEG 
ESUB 
EXCH 
EXIT 
FADD 
FCMP 
FDIV 
FMPY 
FNEG 
FRST 
FSUB 
FTL 
HALT 
HI IO 
IADD 
ICMP 

Description 

Doub 1 e D i v i de . . . . . . . . . . . . . . . . • . . . • . . . . . . • 
DDT Request (Nonstop TXP processor only). 
Double Duplicate ........••••....••..•.••• 
Deposit Field in Memory ........••...•...• 
Deposit Field in System •....••.•.••••.... 
Deposit Field in Extended Memory .•.•..... 
Dispatch ..............•..........••••.... 
Disc Record Length •......... o•••••······· 
Double Logical Left Shift ......•.•...•..• 
Double Logical Right Shift. ............. . 
Delete Element from List .... o••·········· 
Double Multiply ...........•. o•••••••••••• 
Double Negate ............................ . 
Disc Record Offset ...............•....... 
Dynamic Procedure Call .................. . 
Deposit Field ....•....................... 
Double Subtract ......................... . 
Determine Time Left for Element ......... . 
Double Test ..............•............... 
Double Exchange ............. e••·········· 
DEBUG Exit ......•..••..••••. 18 •••••••••••• 

Extended Floating-Point Add.o•••••••••••• 
Extended Floating-Point Compare .••..•••.. 
Extended Floating-Point Divide ...•..•.•.• 
Execute I/0 ...•.•••......••..•.•.••..•..• 
Extended Floating-Point Multiply •••••...• 
Extended Floating-Point Negate •..••...... 
Extended Floating-Point Subtract .•....... 
Exe hang e .........................•....... 
Exit Procedure ............•......••.•.... 
Floating-Point Add ....•.............•.•.. 
Floating-Point Compare ....•......•••..•.• 
Floating-Point Divide .....•...••....•.••• 
Floating-Point Multiply ..••..••..•..••.•. 
Floating-Point Negate ......•.•.••••..•.•. 
Firmware Reset ..•••••...•.•..•••.••.••••• 
Floating-Point Subtract ......•...••.••.•• 
Find Position in Time List ....•..•....... 
Processor Halt ...••.•....••..•.•••..•.•.• 
High-Priority Interrogate I/O ••..•..••..• 
Integer Add .....•............•..••••••.•• 
Integer Compare .......................... . 

Octal 
Code 

000223 
000456 * 
000006 
000367 
000357 
000416 
000073 * 
000070 @ 
1300--
1301--
000054 * 
000222 
000224 
000057 @ 
000032 
000014 
000221 
000207 * 
000031 
000005 
000072 * 
000300 # 
000305 # 
000303 # 
000060 * 
000302 # 
000304 # 
000301 # 
000004 
125---
000270 # 
000275 # 
000273 # 
000272 # 
000274 # 
000405 * 
000271 # 
000206 * 
000074 * 
000062 * 
000210 
000215 

--------------------------~---------------~----~------------··-----------------------------------· 

A-4 ._, 82507 AOO 3/85 



APPENDIX A 
Hardware Instruction Lists 

Table A-1. Alphabetical List of Instructions (Continued) 

Mnemonic 

IDIV 
IDXl 
IDX2 
IDX3 
IDXD 
IDXP 
I IO 
IMPY 
!NEG 
INSR 
ISUB 
IXIT 
LADD 
LADI 
LADR 
LAND 
LBA 
LBAS 
LBP 
LBX 

LBXX 
LCKX 
LCMP 
LOA 
LDAS 
LDB 
LDD 
LDDX 
LOI 
LDIV 
LOLI 
LORA 
LOX 
LDXI 
LIOC 
LLS 
LMPY 
LNEG 
LOAD 
LOR 
LQAS 

Description 

Integer Divide ..•••..••••••.•.•.•••....•• 
Calculate Index, 1 Dimension •.••.•...•... 
Calculate Index, 2 Dimension •.•••..•••.•. 
Calculate Index, 3 Dimension •••..•....... 
Calculate Index, Bounds in Data Space .... 
Calculate Index, Bounds in Code Space ...• 
Interrogate I/O .•..•••.••••••.••••.••...• 
Integer Multiply ...•.••.•••••••.••.••...• 
Integer Negate ........•...••..•.•.......• 
Insert Element into List •••.•...•...•.... 
Integer Subtract .•...••..••....•.•......• 
Interrupt Exit .....•.•..••.••.••.•...•.•• 
Log i ca 1 Add •............•............•... 
Log i ca 1 Add I mmed i ate . . . • . • . . . . . . . . . . .... 
Load Address ..............•.........•.... 
Log i ca 1 AND ..............•..............• 
Load Byte via A ....•••...••.•........•... 
Load Byte via A from System ••....•.•••..• 
Load Byte from Program •..•..•.•..•...•.•. 
Load Byte Extended .•....••••.•••••••••..• 

Load Byte Extended, Indexed ••••••••.•.••• 
Lock Down Extended Memory ••••••.•••••••.• 
Logical Compare .•.••.•..•.•.••••...••••.. 
Load Double via A •••••••••••••••••.•••.•. 
Load Double via A from System •.•••.•..••• 
Load Byte •.•..•.•.•••••.•••••••.••...•... 
Load Double •....•...•••.•.•.•.•.......... 
Load Double Extended ....•••........•..... 
Load Immediate ..•..••••••.•..••.....•..•. 
Logic a 1 Divide .•••.••••••••.•..•••.••.••• 
Load Left Immediate .•••••••.•.••.•..•.••• 
Load Register to A ••••••••••••••••.•...•• 
Load X ••••••••••••••••••••••••••••••••••• 
Load X Immediate ••••••.•••.•..••....•..•• 
Load IOC •••••.•••••••.••••••••••••.•.•••• 
Logical Left Shift •••••••••.••.•.•...•••• 
Log i ca 1 Mu 1 t i p 1 y • • • • • • • • • • • • • • • • • • • • • • • • • 
Logical Negate •.•.••.•••••••.•.•.•.•.•••• 
Load . .................•............••.••. 
Log i ca 1 OR •....••.••..••.••••.••••.••.••• 
Load Quadrupleword via A from SG •..••..•• 

~ 82507 AOO 3/85 

Octal 
Code 

000213 
000344 # 
000345 # 
000346 # 
000317 # 
000347 # 
000061 * 
000212 
000214 
000055 * 
000211 
000071 * 
000200 
003--­
-7----
000010 
000364 
000354 
-2-4--
000406 
0266--
0256--, 
000430 * 
000205 
000362 
000352 
-5----
-6----
000412 
100---
00020 3 
005---
00013-
-3----
10----
000457 * 
0300--
000202 
000204 
-4----
000011 
000445 * 

A-5 



APPENDIX A 
Hardware Instruction Lists 

Table A-1. Alphabetical List of Instructions (Continued) 

Mnemonic 

LQX 
LRS 
LSUB 
LWA 
LWAS 
LWP 
LWUC 
LWX 
LWXX 

MAPS 
MBXR 
MBXX 
MNDX 
MNGG 
MONO 
MOVB 
MOVW 
MRL 
MVBX 
MXFF 
MXON 
NOP 
NOT 
NSAR 
NSTO 
ONED 
ORG 
ORLI 
ORRI 
ORS 
ORX 
PCAL 
POP 
PSEM 
PUSH 
QADD 
QCMP 
QDIV 
QDWN 
QLD 
QMPY 

Description 

Load Quadrupleword Extended •...•.••••..•. 
Logical Right Shift •........•••••.•.••.•• 
Logical Subtract ........•.••..••.•.••..•• 
Load Word via A •..••......•....•••••••.•• 
Load Word via A from System .........•.... 
Load Word from Program ..............•.... 
Load Word from User Code Space ......••••• 
Load Word Extended .•......•....••.••••••. 
Load Word Extended, Indexed •.......•...•. 

Map In a Segment ...•.•..••.••...••.••..•• 
Move Bytes Extended, Reverse ..•.•..•.•... 
Move Bytes Extended, and Checksum ...•.... 
Move Words while Not Duplicate, Extended. 
Move Words while Not Duplicate ••••••••... 
Minus One Double •...........•.•.••••••... 
Move Bytes .•.•.•...•........•..•.••••..•. 
Move Words .•.•.•..........•..••..••••..•• 
Merge onto Ready List .•....•••••••••••.•• 
Move Bytes Extended ..•...•..•••••.••••.•. 
Mutual Exclusion Off ....•...•.••••••••.•• 
Mutual Exclusion On •...•••••••••••••••.•• 
No Ope rat i on • • • . • . • . . • • . • • • • • • • • • • • • • • • • • 
Not ••..••.•••••...•..••.•••.•• • • • • • • · • · • · 
Nondestructive Store A in a Register ••.•• 
Nondestructive Store .•...•••.•.•••.••...• 
One Double ..••..........•.••••••••••••..• 
OR to Memo~ry ..................•.•.•...... 
OR Left Immediate .............•..•.....•• 
OR Right Immediate ................•••..•• 
OR to SG Memory ..•.•.....•..•..•••.•••.•• 
OR to Extended Memory ....•..•..••.•••..•• 
Procedure Cal 1 ..........•..••..••..•...•• 
Pop from Stack ...••••.•.••.••••.•••••..•• 
"P" a Semaphore .•••..•..•.....••••••••.•• 
Push to Stack ••••••.•...•••.•..•••.••..•• 
Quad Add •.••••.•.••......•....••••••••.•• 
Quad C'?m1?are .•...•••....••.••.••••••••••• 
Quad D1 v ide •.•.••.......••..••.••.••••.•• 
Quad Scale Down •........••..•..•••.•••.•• 
Quad Load ..••••......•..•..••.••••.•••.•• 
Quad Multiply ..•........•...•..•••••••.•• 

Octal 
Code 

000414 
0301--
000201 
000360 
000350 
-2----
000342 
000410 
0254--, 
0264--
000042 * 
000420 
000421 
000227 
000226 
000001 
126---
026---
000075 * 
000417 
000041 * 
000040 * 
000000 
000013 
00012-
-34---
000003 
000045 
0044--
004---
000035 
000047 
027---
124---
000076 * 
024---
000240 
000245 $ 
000243 $ 
00025-
00023-
000242 $ 

._ __________________________________ ~~-------··----------------------------------~ 

A·-6 ~ 82507 AOO 3/85 



APPENDIX A 
Hardware Instruction Lists 

Table A-1. Alphabetical List of Instructions (Continued) 

Mnemonic 

QNEG 
QRND 
QST 
QSUB 
QUP 
RCHN 
RCLK 
RCPU 
ROE 
RDP 
RIBA 
RIR 
RMAP 
RPT 
RPV 
RSMT 
RSPT 
RSUB 
RSW 
RUS 
RWCS 
RXBL 
SBA 
SBAR 
SBAS 
SBRA 
SBU 
SBW 
SBX 
SBXX 

SCMP 
SCPV 
scs 
SDA 
SDAS 
SDDX 
SEND 
SETE 
SETL 
SETP 
SETS 

Description 

Quad Negate ••...••.•••••••••••••••••••••• 
Quad Round •••••.•...•.••••••••••••••••••• 
Quad Store ••••.•••••••••••••••••••••••••• 
Quad Subtract ....••••••••••••••••••.••••• 
Quad Scale Up ••..•.•••••••••••••••••.•••• 
Reset I/O Channel •••.•••••.•••••••••••••• 
Read Clock ••••••••••••••••••••••••••••••• 
Read Processor Number •••••••••••••••••••• 
Read E Register .••••••••••••••••••••••••• 
Read P Register ••••••••••••••.••••••••••• 
Read INTA and INTB Registers ••••••••••••• 
Reset Interrupt •••••••••••••••••••••••••• 
Read Map (Nonstop II processor only) .•.•• 
Read Process Timer .......•••.•••••.••••.• 
Read PROM Version Numbers •••..•••••••••.• 
Read from Operations & Service Processor. 
Read Segment Page Table Entry .•••.••..... 
Return from Subprocedure •.••..•••••.••.•. 
Read Switches .•••....••.••••..•••..•.•••• 
Read Micro State •••••••...••••••••••••..• 
Read LCS .••.••.••.••.•.••••••••••••••.••• 
Read Extended Base and Limit ••••••.•••••• 
Store Byte via A •.••••••••••••••••••••••• 
Subtract A from a Register ••••••••••••••• 
Store Byte via A into System ••••••••••••• 
Subtract Register from A •.••••••••••.•••• 
Scan Bytes Until ••.••••.••••.••.••••••••• 
Scan Bytes While ••.••••...••.•••.••..•••• 
Store Byte Extended ....•..••••••••••••••• 
Store Byte Extended, Indexed .•••••••••••• 

Set Code Map •.••••••••••••••••••••••••••• 
Set Current Process Variables •••••••••••• 
Set Code Segment •••••••••.••••••••••••••• 
Store Double via A ••••••••••••••••••••••• 
Store Double via A into System ••••••••••• 
Store Double Extended ••••••••••••••••.••• 
Send . ................................... . 
Set ENV Register •.••.•••••••••••••••.•••• 
Set L Register •...••..••••••••••••••.•••• 
Set P Register •••.••.••••.•••.••••••••••• 
Set S Register .•••.•.••••....•••••••••••• 

~ 82507 AOO 3/85 

Octal 
Code 

000244 $ 
000263 $ 
00023-
000241 
00025-
000447 * 
000050 
000051 
000024 
000025 
000440 * 
000063 * 
000066 * 
000442 * 
000216 * 
000436 * 
000424 * 
025---
000026 
000461 * 
000402 * 
000426 * 
000365 
00017-
000355 
00015-
1266--
1264--
000407 
0257--, 
0267--
000454 
000463 * 
000444 
000363 
000353 
000413 
000065 * 
000022 
000020 
000023 
000021 

A-7 



APPENDIX A 
Hardware Instruction Lists 

Table A-1. Alphabetical List of Instructions (Continued) 

Mnemonic 

A-8 

SFRZ 
SIOC 
SMAP 
SMBP 
SNDQ 
SPT 
SQAS 
SQX 
SRST 
SSW 
STAR 
STB 
STD 
STOR 
STRP 
SVMP 
SWA 
SWAS 
swx 
swxx 

SXBL 
TOTQ 
TPEF 

TRCE 
ULKX 
UMPS 
VSEM 
vwcs 
WSMT 
WSPT 
wwcs 
XCAL 
XCTR 
XIOC 
XMSK 
XOR 
XSMG 
XSMX 
ZERD 

Description 

System Freeze ..........••.•••.•••••.•••.• 
S tor e I OC • • . . . . . • . . . . . . . . • • '° • • • • • • • • • • • • • 
Set Map • .•...•••..•......•• o ••••••••••••• 

Set Memory Breakpoint ....••.•..••...••••• 
Signal a Send Is Queued .................. . 
Set Process Timer ............•......•..•. 
Store Quadrupleword via A to SG ......•.•. 
Store Quadrupleword Extended ..•......•... 
Soft Reset (Nonstop TXP processor only) •. 
Set Switches ..........•.............•.•.. 
Store A in Register ...................... . 
Store Byte ............................... . 
Store Double ............................. . 
Store ...................... '° ••••••••••••• 

Set RP • •••.•..•.•........•• '8 ••••••••••••• 

Save Map Entries ......................... . 
Store Word via A ........... $ ••••••••••••• 

Store Word via A into System ....•.•..••.. 
Store Word Extended ...................... . 
Store Word Extended, Indexed ......•.•..•. 

Set Extended Base and Limit ••.•..••..•..• 
Test OUTQ .•..••••..•..•••••••••••••..•••• 
Test Parity Error Freeze Circuits 

Nonstop II processor only •••.•••••.••••. 
Add Entry to Trace Table ...••.••.•••.•••• 
Unlock Extended Memory ................... . 
Unmap a Segment (Nonstop II processor) ••. 
"V" a Semaphore ................•..•....•. 
Verify LCS ................. I& ••••••••••••• 

Write to Operations and Service Processor 
Write Segment Page Table Entry •...••.•.•• 
Write to LCS ............................. . 
External Call ............................ . 
XRAY Counter Bump ........................ . 
Exchange IOCs ............................ . 
Exchange Mask ............................ . 
Exclusive OR ............................. . 
Compute Checksum in Current Data ...•••••• 
Checksum Extended Block ..•.•..•••...••••. 
Zero Double .............................. . 

Octal 
Code 

000053 * 
000460 * 
000067 * 
000404 * 
000052 * 
000443 * 
000446 * 
000415 
000455 
000027 
00011-
-54---
-64---
-44---
00010-
000441 * 
000361 
000351 
000411 
0255--, 
0265--
000427 * 
000056 @ 

000453 * 
000217 * 
000431 * 
000043 * 
000077 * 
000401 * 
000437 * 
000425 * 
000400 * 
127---
000033 * 
000462 * 
000064 * 
000012 
000343 
000333 
000002 

~ 82507 AOO 3/85 



APPENDIX A 
Hardware Instruction Lists 

Table A-1. Alphabetical List of Instructions (Continued) 

The one-character symbols immediately to the right of 
the instruction opcodes have the following meanings: 

* indicates a privileged instruction. 
indicates an instruction designated for 

operating system use only. 
@ 

$ 
# 

indicates a decimal arithmetic optional instruction. 
indicates a floating-point arithmetic optional 

instruction. 

Table A-2. Categorized List of Instructions 

16-Bit Arithmetic (Top of Register Stack) 
IADD Integer Add .......•....•••....•......... 
LADD Log i ca 1 Add .......•....••••..•••.•.•.... 
!SUB Integer Subtract ....•........ , ....•.•.... 
LSUB Logical Subtract .•.•.•.••.•••••.•••••.•• 
IMPY Integer Multiply ••••.•...••....•.•.••.•. 
LMPY Logical M~l~iply ..•...••...•.....•.•..•• 
!DIV Integer D1v1de •..•••.•..••..••••••.•..•• 
LDIV Logical Divide •....••.•••..•.••••.•...•. 
!NEG Integer Negate •.•.••••...•...••..•••..•. 
LNEG Logical Negate ...•......•......•...•.... 
ICMP Integer Compare ...............•....•.... 
LCMP Logical Compare •.....•..•..••....•.•..•. 
CMPI Integer Compare Immediate ••.••••••••.... 
ADDI Integer Add Immediate ••••.••.•••...•.... 
LAD I Log i ca 1 Add I mmed i ate ••.•.••••••.•••.... 

32-Bit Signed Arithmetic 
CDI 
CID 
DADD 
DSUB 
DMPY 
DDIV 
DNEG 

Convert Double to Integer ••••••••••.•.•. 
Convert Integer to Double •••..•••••••.•. 
Double Add •....•.•.•.•.•.••.•••.••.•.... 
Double Subtract •.•.••••••.••.••.••.••... 
Double M~l~iply ..•.•.•..•..•..••••....•. 
Double D1v1de .••....••••..••••••.•••..•. 
Double Negate .•..•.••....•..••.•..••.... 

~ 82507 AOO 3/85 

000210 
000200 
000211 
000201 
000212 
000202 
000213 
000203 
000214 
000204 
000215 
000205 
001---
104---
003---

000307 
000327 
000220 
000221 
000222 
000223 
000224 

A-9 



APPENDIX A 
Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

32-Bit Signed Arithmetic (continued) 
DCMP Double Compare .•..•.••.••.••••••.••••••• 
DTST Double Test •••. a•••••••••••••••••••••••• 
MONO (Load) Minus One Double ••.....•••••••••• 
ZERO (Load) Zero Double •••••••••.••.••••••••• 
ONED (Load) One Double ....••••.•.••••.•.••.•• 

16-Bit Signed Arithmetic (Register Stack Element) 
ADRA Add Register to A .............••...•.•.• 
SBRA Subtract Register from A ..•....•.•.••.•. 
ADAR Add A to Register .•...•.•.......•••••.•• 
SBAR Subtract A from Register .........••.••.. 
ADXI Add to Index Immediate .............•.•.. 

Decimal Arithmetic Load and Store 
QLD Quadruple Load .........................• 
QST Quadruple Store ........................ . 

Decimal 
QADD 
QSUB 
QMPY 
QDIV 
QNEG 
QCMP 

Integer Arithmetic 
Quadrup 1 e Add ..•..•.•..............•.... 
Quadruple Subtract ........•.....•..••..• 
Quadruple M~l~iply •.•...•.•.••...•.••••• 
Quadruple D1v1de ..•..•....•....•...•••.. 
Quadruple Negate •..•.•......•......•••.• 
Quadruple Compare ••••••.•..••••••.••••.• 

Decimal Arithmetic Scaling and Rounding 
QUP Quadruple Scale Up •••••.•.•••••••••••••• 
QDWN Quadruple Scale Down ••.••.••••••.••••••• 
QRND Quadruple Round •......••••••..•.•••••••• 

Decimal 
CQI 
CQL 
CQD 
CQA 
CIQ 
CLQ 
CDQ 
CAQ 
CAQV 

Arithmetic Conversions 
Convert Quad to Integer .•••.•.••..•••••• 
Convert Quad to Logical ....••••••..••.•• 
Convert Quad to Double .....•.•.....•••.• 
Convert Quad to ASCII •..•...•..•..•••••• 
Convert Integer to Quad .......•.•.•••••. 
Convert Logical to Quad .......••••.••••• 
Convert Double to Quad .•...••.•.•.••••.• 
Convert ASCII to Quad ...•..••.•••••••••• 
Convert ASCII to Quad with Initial Value 

Floating-Point Arithmetic 

A--10 

FADD Floating-Point Add ...•.••..••••....••.•• 
FSUB Floating-Point Subtract .••...•....•.•..• 

000225 
000031 
000001 
000002 
000003 

00014-
00015-
00016-
00017-
104---

00023-
00023-

000240 
000241 
000242 $ 
000243 $ 
000244 $ 
000245 $ 

00025-
00025-
000263 $ 

000264 $ 
000246 $ 
000247 $ 
000260 $ 
000266 $ 
000267 $ 
000265 $ 
000262 $ 
000261 $ 

000270 # 
000271 # 

~ 82507 AOO 3/85 



APPENDIX A 
Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

FMPY 
FDIV 
FNEG 
FCMP 

Extended 
EADD 
ESUB 
EMPY 
EDIV 
ENEG 
ECMP 

Floating-Point M1:11 ~ iply .•••.••••••.•.••. 
Floating-Point D1v1de ••..•..••••.••••... 
Floating-Point Negate .••.••...••••.••••• 
Floating-Point Compare •..•••••••••••.••• 

Floating-Point Arithmetic 
Extended Floating-Point Add .•.••...••••• 
Extended Floating-Point Subtract •••.•.•. 
Extended Floating-Point Multiply ....•.•• 
Extended Floating-Point Divide ...•....•. 
Extended Floating-Point Negate ••.••••... 
Extended Floating-Point Compare ....•.... 

Floating-Point Conversions 
CEF 
CEFR 
CF! 
CFIR 
CFD 
CFDR 
CED 
CEDR 
CE! 
CEIR 
CFQ 
CFQR 
CEQ 
CEQR 
CFE 
CIF 
CDF 
CDFR 
CQF 
CQFR 
CIE 
CDE 
CQE 
CQER 

Convert Extended to Floating •••...•••..• 
Convert Extended to Floating, Rounded .. . 
Convert Floating to Integer ............ . 
Convert Floating to Integer, Rounded ... . 
Convert Floating to Double •.•..•.••.•.•. 
Convert Floating to Double, Rounded .•.•• 
Convert Extended to Double ....•...•..... 
Convert Extended to Double, Rounded ••... 
Convert Extended to Integer .•.••••.••..• 
Convert Extended to Integer, Rounded ••.• 
Convert Floating to Quad •••.•••••••••.•• 
Convert Floating to Quad, Rounded ••••.•• 
Convert Extended to Quad ••••••••.••••••• 
Convert Extended to Quad, Rounded ••••..• 
Convert Floating to Extended ••••.••••••• 
Convert Integer to Floating •••••.••••.•• 
Convert Double to Floating ............. . 
Convert Double to Floating, Rounded .... . 
Convert Quad to Floating ..•••.......•.•• 
Convert Quad to Floating, Rounded •..•... 
Convert Integer to Extended ...•..•....•. 
Convert Double to Extended •.•••.....•.•• 
Convert Quad to Extended .•••••••..•••.•• 
Convert Quad to Extended, Rounded •.••••• 

Floating-Point Functionals 
IDXl Calculate Index, 1 Dimension •..••••••••• 
IDX2 Calculate Index, 2 Dimensions .•••••••.•• 
IDX3 Calculate Index, 3 Dimensions ..•.••••... 
IDXP Calculate Index, Bounds in Code Space ..• 
IDXD Calculate Index, Bounds in Data Space ... 

AJJ 82507 AOO 3/85 

000272 # 
000273 # 
000274 # 
000275 # 

000300 
000301 
000302 
000303 
000304 
000305 

# 
# 
# 
# 
# 
# 

000276 # 
000277 # 
000311 # 
000310 # 
000312 # 
000313 # 
000314 # 
000315 # 
000337 # 
000316 # 
000320 # 
000321 # 
000322 # 
000323 # 
000325 # 
000331 # 
000306 # 
000326 # 
000324 # 
000330 # 
000332 # 
000334 # 
000336 # 
000335 # 

000344 # 
000345 # 
000346 # 
000347 # 
000317 # 

A-11 



APPENDIX A 
Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Register 
EXCH 
DXCH 
DDUP 
STAR 
NSAR 
LDRA 
LDI 
LDXI 
LDLI 

Stack Manipulation 
Exchange A with B ...•.....•..•.••.•..••. 
Double Exchange ...•.....•.•..••..••••••• 
Double Duplicate ..••....•.•..••.••••..•. 
Store A in a Register ...•.••....••••.••. 
Nondestructive Store A in a Register •••• 
Load A from a Register .....•.•••....•••. 
Load Immediate •.............••....•.•... 
Load Index Immediate •...•.••.••.•.••.••. 
Load Left Immediate ...•••....••.•.••..•• 

Boolean 
LAND 
LOR 
XOR 
NOT 
ORR! 
ORLI 
ANRI 
ANLI 

Operations 

Bit Shift 
DPF 
LLS 
DLLS 
LRS 
DLRS 
ALS 
DALS 
ARS 
OARS 

Byte Test 
BTST 

Log i ca 1 AND .•...••.........•.••..•••.••. 
Log i ca 1 OR •...•............••••.•••••••. 
Exclusive OR ..•.............•.•.••••.••• 
NOT . .....•................•.••..•••••••. 
OR Right Immediate ..............•.••.... 
OR Left Immediate ............•..•.•••... 
AND Right I mmed i ate ................•..•. 
AND Le f t I mm e d i at e . . . . . . . . . . . . . . . . • • . . • . 

and Deposit 
Deposit Field ...•.....••.....•••••.•.••. 
Logic al Left Shi ft .........•.••...••..•. 
Double Logical Left Shift •••.••.•.•••••. 
Logical Right Shift .......•..••.•••••.•• 
Double Logical Right Shift •.••••••...••• 
Arithmetic Left Shift ...•....•..••••.••.. 
Double Arithmetic Left Shift .•..••••••• ~ 
Arithmetic Right Shift. .....•...••••..•.. 
Double Arithmetic Right Shift .•..•..••• ~ 

Byte Test ....•...........•.•.•....•...•. , 

Memory Stack to/from Register Stack 

A-12 

LWP Load Word from Program ••.....•••••••••• 11 

LBP Load Byte from Program •.••.•.••.•..•.•• 11 

PUSH Push Registers to Memory ............... .. 
POP Pop Memory to Registers ...•..••.••.•.•• 11 

LWXX Load Word Extended, Indexed ••.•.•.•••.. 11 

swxx Store Word Extended, Indexed .•..•.•••.• 11 

000004 
000005 
000006 
00011-
00012-
00013-
100---
10----
00 5---

000010 
000011 
000012 
000013 
004---
0044--
006---
007---

000014 
0300--
1300--
0301--
1301--
0302--
1302--
0303--
1303--

000007 

-2----
-2-4--
024---
124---
0254--, 
0264--
0255--, 
0265--

.., 82507 AOO 3/85 



APPENDIX A 
Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Memory Stack to/from Register Stack (continued) 
LBXX Load Byte Extended, Indexed ..•....•..... 

SBXX 

LDX 
NSTO 
LOAD 
STOR 
LDB 
STB 
LDD 
STD 
LADR 
ADM 

Load and 
ANS 
ORS 
ANG 
ORG 
ANX 
ORX 
LWUC 
LWAS 
LWA 
SWAS 
SWA 
LDAS 
LDA 
SDAS 
SDA 
LBAS 
LBA 
SBAS 
SBA 
DFS 
DFG 
LBX 
SBX 
LWX 
swx 
LDDX 
SDDX 
LQX 

Store Byte Extended, Indexed .••...••••.• 

Load Index •...•.....•....••..••..•..•••• 
Nondestructive Store •........••....•••.• 
Load Word ...............•...•.•........• 
Store Word ......••.•...•.....•.......... 
Load Byte ....•...•...•.••••..•••.••.•..• 
Store Byte ....•....•••.••.........•••••• 
Load Double ..............••.••.••....... 
St o re Doub 1 e . • . . . . . . . • . • . • • . . • . . . . . . • . . . 
Load Address of Variable .••••.........•. 
Add to Memory ......••••••.•.•.....•...•. 

Store via Address on Register Stack 
AND to SG Memory .•..•.....•.......•..... 
OR to SG Memory ..•...•.••.........••.... 
AND to Current Data ..•.•..........•..••• 
OR to Current Data ..•..•................ 
AND to Extended Memory .....••........... 
OR to Extended Memory •••.••..••...•...•. 
Load Word from User Code Segment ..•....• 
Load Word via A from System •...•..•...•• 
Load Word via A .•..•••••••••••••...•.•.• 
Store Word via A into System •••.•.•••..• 
Store Word via A .••.••••••••••••••••.••• 
Load Double via A from System •••.••••••• 
Load Double via A ••.• ~·················· 
Store Double via A into System ••....•... 
Store Double via A .....••.•...........•. 
Load Byte via A from System ..••.•.•...•. 
Load Byte via A ....•.•....•..••••••..••. 
Store Byte via A into System ••.•••••..•• 
Store Byte via A ••.••••.•.••..••.••.•••• 
Deposit Field into System Data ••.••.••.• 
Deposit Field in Current Data •.••.•.•.•. 
Load Byte Extended .•••.••••...••.••.•••• 
Store Byte Extended .••••••..•..•..•.•••. 
Load Word Extended •.•••••••..•••..•.•••• 
Store Word Extended .•.....•••..•..•.•••• 
Load Doubleword Extended .••..•.•..•.•••• 
Store Doubleword Extended .••.••..••.•••• 
Load Quadrupleword Extended •.••••••.•..• 

~ 82507 AOO 3/85 

0256--, 
0266--
0257--, 
0267-­
-3----
-34---
-4----
-44---
-5----
-54---
-6----
-64---
-7----
-74---

000034 
000035 
000044 
000045 
000046 
000047 
000342 
000350 
000360 
000351 
000361 
000352 
000362 
000353 
000363 
000354 
000364 
000355 
000365 
000357 
000367 
000406 
000407 
000410 
000411 
000412 
000413 
000414 

A-13 



APPENDIX A 
Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Load and 
SQX 
DFX 
scs 
LQAS 
SQAS 

Store via Address on Register Stack (continued) 
Store Quadrupleword Extended •.•...•.•.•• 000415 
Deposit Field Extended ...••...•.••..•••. 000416 
Set Code Segment •...••.•.•..•••.••••.•.• 000444 
Load Quadrupleword via A from SG ••.••... 000445 
Store Quadrupleword via A to SG •••.•.••. 000446 

Branching 
BIC 
BUN 
BOX 
BGTR 
BEQL 
BGEQ 
BLSS 
BAZ 
BNEQ 
BANZ 
BLEQ 
BNOV 
BNOC 
BF! 

Branch if Carry .•..........•..•..•...... 
Branch Unconditionally ......••.....••••. 
Branch on Index ........... o••··········· 
Branch if CC Greater ..........•..•.••... 
Branch if CC Equal ...........••.••..•.•. 
Branch if CC Greater or Equal ••.......•. 
Branch if CC Less ....•.......•..•••••••. 
Branch if A Zero .....•.............•••.. 
Branch if CC Not Equal .....•..•......... 
Branch if A Not Zero ....•••...•.•••.•.•. 
Branch if CC Less or Equal~············· 
Branch if no Overflow ..... ~············· 
Branch if no Carry ......•. ~············· 
Branch Forward Indirect ..• ~············· 

Moves, Compares, Scans, and Checksum Computations 
MNGG Move Words While Not Duplicate •••••••••• 
CDG Count Duplicate Words ••••• ,. ••••••••••.•. 
MOVW Move Words •.•••••••.•••••• ,. ••.••••••.... 
MOVB Move Bytes •..•••••.•.•.••• , .•.•..••••••.. 
COMW Comp a re Words .•.•.•.•...•• ,. •••••.••••••• 
COMB Compare Bytes ••••......••••.•••...••..•. 
SBW Scan Bytes While .....•.••••.•••..•...... 
SBU Scan Bytes Until ........•..•.....•....•. 
MNDX Move Words While Not Duplicate, Extended 
XSMX Checksum Extended Block .•••••••.•••••.•. 
XSMG Compute Checksum in Current Data •.•••.•. 
CDX Count Duplicate Words Extended •.••••••.. 
MVBX Move Bytes Extended ••••••.•••••.•••••••. 
MBXR Move Bytes Extended Reverse ••••••••••••. 
MBXX Move Bytes Extended, and Checksum ••••.•. 
CMBX Compare Bytes Extended .••..•.••.•••••... 

Program Register Control 
SETL Set L Register ......•....••.••..•••••.• ~ 
SETS Sets Register .•....•..••••.•••.••••••• ~ 
SETE Set ENV Register .•..•...•...•.•.••.•..• ~ 

-10---
-104--
-1-4--
-11---
-12---
-13---
-14---
-144--
-15---
-154--
-16---
-164--
-17---
000030 

000226 
000366 
026---
126---
0262--
1262--
1264--
1266--
000227 
000333 
000343 
000356 
000417 
000420 
000421 
000422 

000020 
000021 
000022 

* 
* 

A-14 ..-, 82507 AOO 3/8:i 



Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Program 
SETP 
RDE 
RDP 
STRP 
ADDS 
CCL 
CCE 
CCG 

Register Control (continued) 
Set P Reg is t er .........••....•.......... 
Re ad E Reg is t er ....•.....•...•.......... 
Read P Register .........••...•.......... 
Set Register Pointer ....•....•...•...... 
Add to S Register .......•....••.•.••.... 
Set CC Less .....•..•...•••......•....... 
Set CC Equal ........................... . 
Set CC Greater.· .......•.•............... 

Routine 
PCAL 
XCAL 
SCMP 
DPCL 
EXIT 
DXIT 
BSUB 
RSUB 

Calls/Returns 

Interrupt 
RIR 
XMSK 
IXIT 
DISP 
RIBA 

Procedure Call ......................... . 
External Procedure Call ................ . 
Set Code Map ....................•....... 
Dynamic Procedure Call ................. . 
Exit from Procedure .................... . 
DEBUG Exit ............................. . 
Branch to Subprocedure ................. . 
Return from Subprocedure ............... . 

System 
Reset INT Register ..................... . 
Exchange MASK Register ................. . 
Exit from Interrupt Handler ............ . 
Dispatch ............................... . 
Read INTA and INTB Registers ........... . 

Bus Communication 
TOTQ Test Out Queues ..............•..•....... 
SEND Send Packet ............................ . 

Input/Output 
RSW Read Switch Register ................... . 
SSW Set Switch Register .................... . 
EIO Execute I/0 ............................ . 
IIO Interrogate I/O ........................ . 
HIIO High-Priority Interrogate I/O .......... . 
RCHN Reset I/0 Channel ...................... . 
L I oc Lo ad I oc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
S I OC S t o r e I OC . . . . . . . • . . . . . . . . . . . . . . . . . . . . . . . 
XIOC Exchange IOCs .......................... . 

Miscellaneous 
NOP No Ope rat ion ........................... . 
RCLK Read Clock ............................. . 

~ 82507 AOO 3/85 

000023 
000024 
000025 
00010-
002---
000015 
000016 
000017 

027---
127---
000454 
000032 
125---
000072 
-174--
025---

000063 
000064 
000071 
000073 
000440 

000056 
000065 

000026 
000027 
000060 
000061 
000062 
000447 
000457 
000460 
000462 

000000 
000050 

* 

* 
* 
* 
* 
* 

@ 

* 

* 
* 
* 
* 
* 
* 
* 

' . -.'"\. - _;_ 'J 



APPENDIX A 
Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Miscellaneous (continued) 
RCPU Read Processor Number ...............•..• 
BPT Instruction Breakpoint Trap .•.....•.•..• 
RUS Read Micro State .........•.............• 
BIKE Bicycle While Idle .........•...•....•..• 

Resource 
XCTR 
MXON 
MXFF 
SNDQ 
SFRZ 
DOFS 
DLEN 
HALT 
PSEM 
VSEM 
RPV 
wwcs 
vwcs 
RWCS 
FRST 
RSMT 
WSMT 
RPT 
SPT 
BCLD 
TPEF 

SRST 
DDTX 

Management 
XRAY Counter Bump ...........•........... 
Mutual Exclusion On .....•............... 
Mutual Exclusion Off .....•.............. 
Signal a Send Is Queued .....•.•........• 
System Freeze ...................•....... 
Disc Record Offset .....•....••.......... 
Disc Record Length •....••..••••.•....... 
Processor Halt ...........•..•.•••.••.... 
"P" a Semaph~ore ........................ . 
''V" a Semaphore ........................ . 
Read PROM Version Numbers (Nonstop II) .• 
Write LCS ......••••..••••.•••.•••..•...• 
Verify LCS •..............•••••.....•..•• 
Read LCS • .......•...••...•..••.•.....••• 
Firmware Reset ................•......... 
Read from Operations & Service Processor 
Write to Operations & Service Processor. 
Read Process Timer .....•.....••• ~······· 
Set Process Timer ....••.......•.....•..• 
Bus Cold Load •.........•••..........••.. 
Test Parity Error Freeze Circuits 
(Nonstop I I processor only) .•••......•.. 
Soft Reset (Nonstop TXP processor only). 
DDT Request (Nonstop TXP processor only) 

Memory Management 

A-16 

MAPS 
UMPS 
RMAP 
SMAP 
CRAX 
RSPT 
WSPT 
RXBL 
SXBL 
LCKX 
ULKX 
CMRW 

Map In a Segment ....................... . 
Unmap a Segment (Nonstop II processor) .. 
Read Map (Nonstop II processor only) .... 
Set Map •••...............••.••.••..•••.• 
Convert Relative to Absolute Extended ••. 
Read Segment Page Table Entry •..•....••. 
Write Segment Page Table Entry .••....... 
Read Extended Base and Limit •...••...... 
Set Extended Base and Limit ••.....•..... 
Lock Down Extended Memory.o•••·········· 
Unlock Extended Memory ......••..•...•..• 
Correctable Memory Error Read/Write ..... 

000051 
000451 
000461 * 
000464 * 

000033 
000040 
000041 
000052 
000053 
000057 
000070 
000074 
000076 
000077 
000216 
000400 
000401 
000402 
000405 
000436 
000437 
000442 
000443 
000452 

000453 
000455 
000456 

* 
* 
* 
* 
* 
@ 
@ 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

* 

* 

000042 * 
000043 * 
000066 * 
000067 * 
000423 * 
000424 * 
000425 * 
000426 * 
000427 * 
000430 * 
000431 * 
000432 * 

~ 82507 AOO 3/85 



APPENDIX A 
Hardware Instruction Lists 

Table A-2. Categorized List of Instructions (Continued) 

Memory Management (continued) 
SVMP Save Map Entries ..•••.•.•••••••••.•••••• 
BNDW Bounds Test Words ..•.....•.•••••..•••••• 
SCPV Set Current Process Variables ••••••••••. 
ASPT Address of Segment Page Table Header •.•• 

List Management 
DLTE Delete Element from List ........•••..••• 
INSR Insert Element into List ..•...•.•.•••••. 
MRL Merge onto Ready List ....•••.•..•••••••. 
FTL Find Position in Time List ..••..•••..••• 
DTL Determine Time Left for Element •.•..•••. 

Trace and Breakpoints 
TRCE Add Entry to Trace Table .•...•••..•••••• 
SMBP Set Memory Breakpoint ......•.......•.••. 

000441 
000450 
000463 
000470 

000054 
000055 
000075 
000206 
000207 

000217 
000404 

The one-character symbols immediately to the right of 
the instruction opcodes have the following meanings: 

* 
@ 

$ 
# 

indicates a privileged instruction. 
indicates an instruction designated for 

operating system use only. 
indicates a decimal arithmetic optional instruction. 
indicates a floating-point arithmetic optional 

instruction. 

* 
* 
* 
* 

* 
* 
* 
* 
* 

* 
* 

~ 82507 AOO 3/85 A-17 



APPENDIX A 
Hardware Instruction Lists 

Table A-3. Binary Coding, Memory Reference Instructions 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 vkcc 

I 2 0 x x 0 +/- -- P- LWP a ~ -.. 

I 2 0 x x 1 +/- ..... p -- LBP b 
I 3 0 x x -- G,L,SG,S ..... LOX a -.. 

I 3 1 x x -- G,L,SG,S -.. NSTO 
I 4 0 x x ..... G,L,SG,S LOAD a 
I 4 1 x x - G,L,SG,S STOR 
I 5 0 x x - G,L,SG,S ..... LOB b 
I 5 1 x x -- G,L,SG,S STB ~ 

I 6 0 x x -- G,L,SG,S LOO a -
I 6 1 x x ...._ G,L,SG,S STD ~ 

I 7 0 x x ...._ G,L,SG,S LADR 
I 7 1 x x .... G,L,SG,S ..... ADM vk a - ~ 

P+ 0 . . . . . . . 0: 177 
P- 1 . . . . . . . 0:177 

G+ 0 . . . . . . . . 0: 377 
L+ 1 0 . . . . . . . 0:177 
SG 1 1 0 . . . . . . 0: 77 
L- 1 1 1 0 . . . . . 0:37 
s- 1 1 1 1 . . . . . 0:37 

+/- ( 0/1) implies two's-complement notation; the sign is extended 
through bit 0 at execution. 

I (0/1) indicates direct or indirect address. 

v = Overflow 

k = Carry 

cc = Condition Codes: 

L (result < 0) or (oprl < opr2) Note: oprl is first 
a E (result = 0) or (oprl = opr2) item pushed on 

G (result > 0) or (oprl > opr2) stack; opr2 is 
second. 

L (ASCII numeric) 
b E (ASCII alpha) 

G (ASCII special) 

L (channel error or timeout) 
c E (no error) 

G (unusual condition) 

A-18 -'182507 AOO 3/85 



Table A-4. 

0 1 2 3 4 5 

1 0 0 
1 0 0 x 
0 0 1 
0 0 2 
0 0 3 
0 0 4 
0 0 4 
1 0 4 
1 0 1 x 
0 0 5 
0 0 6 
0 0 7 

+/- (0/1) implies 
through bit 0 

I (0/1) indicates 

APPENDIX A 
Hardware Instruction Lists 

Binary Coding, Immediate Instructions 

6 7 8 9 10 11 12 13 14 15 vkcc 

+/- ...,.__ OPERAND LOI a 
x +/- ~ OPERAND ...... LDXI a 

+/- ...,.__ OPERAND -- CMPI a 
+/- ~ OPERAND ADDS a 
+/- ~ OPERAND -- LADI k a 

0 ...,._. OPERAND -- ORRI a 
1 ~ OPERAND ORLI a 

+/- ...,._. OPERAND ADDI vk a 
x +/- ~ OPERAND -.. ADXI vk a 

+/- ~ OPERAND ..... LOLI a r 

+/- ~ OPERAND r ANRI a 
+/- ....._ OPERAND ANLI a 

two's-complement notation; the sign is extended 
at execution. 

direct or indirect address. 

vkcc: see Table A-3 footnote. 

4182507 AOO 3/85 A-19 



APPENDIX A 
Hardware Instruction Lists 

Table A-5. Binary Coding, Move/Shift/Call/Extended Instructions 

0 

0 
1 
0 
1 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
1 
0 
1 
0 
1 
0 
1 
0 
1 

1 2 3 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 

4 5 6 

4 
4 
5 
5 

5/6 
5/6 
5/6 
5/6 

6 
6 
6 
6 
6 
6 
7 
7 
0 
0 
0 
0 
0 
0 
0 
0 

7 8 9 

N 
N 

0 ..._.. 
0 ..._.. 

4 
5 
6 
7 

0 0 RL 
0 1 RL 
0 0 RL 
0 1 RL 
1 0 RL 
1 1 RL 

0 
0 
1 
1 
2 
2 
3 
3 

10 11 12 

LAST 
LAST 
SDEC 

13 14 15 

COUNT-1 
COUNT-! 

SDEC 
DISPLACEMENT 
DISPLACEMENT 
DISPLACEMENT 
DISPLACEMENT 

-.. 
..... 

S S D RP 
S S D RP 
S S D RP 
S S D RP 
S S D RP 
S S D RP 

PEP 
PEP 

~SHIFT 

~SHIFT 

~SHIFT 

~SHIFT 

~SHIFT 

~SHIFT 

~SHIFT 
~SHIFT 

..... 

--
COUNT---... 
COUNT-.. 
COUNT-.. 
COUNT-.. 
COUNT __.. 
COUNT--.. 
COUNT--... 
COUNT--... 

RL (right-left indicator) 
0 left-to-right (increasing addresses) 
1 right-to-left (decreasing addresses) 

SS (source map): 
00 Current Data 
01 System Data (Current Data if nonprivileged user) 
10 Current Code 
11 User Code 

D = (destination map) , data only 
O current Data 
1 System Data (Current Data if Nonprivileged User) 

PEP = Procedure Entry Point Table 

SDEC = stack S decrement 

vkcc: see Table A-3 footnote. 

PUSH 
POP 
RSUB 
EXIT 

vkcc 

LWXX a 
swxx 
LBXX b 
SBXX 
MOVW 
COMW a 
MOVB 
COMB a 
SBW k 
SBU k 
PCAL 
XCAL 
LLS a 
DLLS a 
LRS a 
DLRS a 
ALS a 
DALS a 
ARS a 
OARS a 

A-·20 ~ 82507 AOO 3/85 



0 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 2 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

APPENDIX A 
Hardware Instruction Lists 

Table A-6. Binary Coding, Branch Instructions 

3 4 5 6 7 8 9 10 11 12 13 14 15 vkcc 

0 0 +/- p ...... BIC ~ 

0 4 +/- p ....... BUN r 

0 x x 4 +/- p ...... BOX ~ 

1 0 +/- p -.. BGTR 
2 0 +/- p --.. BEQL 
3 0 +/- p BGEQ 
4 0 +/- p ....... BLSS 
4 4 +/- p ..... BAZ -.. 

5 0 +/- p ..... BNEQ -r 

5 4 +/- p ..... BANZ ... 
6 0 +/- p ..... BLEQ -.. 

6 4 +/- p ...... BNOV 
7 0 +/- p BNOC 
7 4 +/- p ...... BSUB ~ 

+/- (0/1) implies two's-complement notation; the sign is extended 
through bit 0 at execution. 

I (0/1) indicates direct or indirect address. 

Note: since the Program Counter register holds the address of the 
next instruction, a branch-self instruction (Branch *) 
would be coded: BUN P-1. 

vkcc: see Table A-3 footnote. 

~ 82507 AOO 3/85 A-21 



APPENDIX A 
Hardware Instruction Lists 

Table A-7. Binary Coding, Stack Instructions 

0 1 2 3 4 5 6 7 8 ~10 11 12 I 13 

0 0 0 ..__. STACK OPERAND CODE 

l -1 
7:15> vkcc <7:15> 

0 0 0 NOP 0 5 1 *RCPU 
0 0 1 MONO a 0 5 2 *SNDQ 
0 0 2 ZERO a 0 5 3 *SFRZ 
0 0 3 ONED a 0 5 4 *DLTE 
0 0 4 EXCH a 0 5 5 *INSR 
0 0 5 DXCH a 0 5 6 @TOTQ 
0 0 6 DDUP a 0 5 7 @DOFS 
0 0 7 BTST b 0 6 0 *EIO 
0 1 0 LAND a 0 6 1 *IIO 
0 1 1 LOR a 0 6 2 *HIIO 
0 1 2 XOR a 0 6 3 *RIR 
0 1 3 NOT a 0 6 4 *XMSK 
0 1 4 DPF a 0 6 5 *SEND 
0 1 5 CCL a 0 6 6 *RMAP 
0 1 6 CCE a 0 6 7 *SMAP 
0 1 7 CCG a 0 7 0 @OLEN 
0 2 0 SETL 0 7 1 *IXIT 
0 2 1 SETS 0 7 2 *DXIT 
0 2 2 SETE ! ! ! 0 7 3 *DISP 
0 2 3 SETP 0 7 4 *HALT 
0 2 4 RDE 0 7 5 *MRL 
0 2 5 RDP 0 7 6 *PSEM 
0 2 6 RSW a 0 7 7 *VSEM 
0 2 7 SSW 1 0 reg STRP 
0 3 0 BFI 1 1 reg STAR 
0 3 1 DTST a 1 2 reg NSAR 
0 3 2 DPCL 1 3 reg LORA 
0 3 3 *XCTR 1 4 reg ADRA 
0 3 4 ANS a 1 5 reg SBRA 
0 3 5 ORS a 1 6 reg ADAR 
0 4 0 *MXON 1 7 reg SBAR 
0 4 1 *MXFF 2 0 0 LADD 
0 4 2 *MAPS 2 0 1 LSUB 
0 4 3 *UMPS 2 0 2 LMPY 
0 4 4 ANG a 2 0 3 LDIV 
0 4 5 ORG a 2 0 4 LNEG 
0 4 6 ANX a 2 0 5 LCMP 
0 4 7 ORX a 2 0 6 *FTL 
0 5 0 RCLK 2 0 7 *DTL 

A--22 

14 15 

vkcc 

c 
c 
c 

a 
vk a 
vk 
vk 
vk a 

k a 
k a 

v=Oa 
v a 

k a 
a 

..., 82507 AOO 3/85 



APPENDIX A 
Hardware Instruction Lists 

Table A-7. Binary Coding, Stack Instructions (Continued) 

0 1 2 3 4 5 6 7 8 9 t 10 11 12 I 13 14 15 

0 0 0 ...._. STACK OPERAND CODE ___... 

l I 
<7:15> vkcc <7:15> vkcc 

2 1 0 !ADD vk a 4 0 5 *FRST 
2 1 1 !SUB vk a 4 0 6 LBX b 
2 1 2 IMPY v a 4 0 7 SBX 
2 1 3 !DIV v a 4 1 0 LWX a 
2 1 4 !NEG vk a 4 1 1 SWX 
2 1 5 ICMP a 4 1 2 LDDX a 
2 1 6 *RPV 4 1 3 SDDX 
2 1 7 *TRCE 4 1 4 LQX a 
2 2 0 DADD vk a 4 1 5 SQX 
2 2 1 DSUB vk a 4 1 6 DFX a 
2 2 2 DMPY vk a 4 1 7 MVBX 
2 2 3 DDIV vk a 4 2 0 MBXR 
2 2 4 DNEG vk a 4 2 1 MBXX 
2 2 5 DCMP a 4 2 2 CMBX ! 
2 2 6 MNGG ! 4 2 3 *CRAX 
2 2 7 MNDX ! 4 2 4 *RSPT ! 
3 3 3 XSMX 4 2 5 *WSPT 
3 4 2 LWUC a 4 2 6 *RXBL 
3 4 3 XSMG 4 2 7 *SXBL 
3 5 0 LWAS a 4 3 0 *LCKX ! 
3 5 1 SWAS 4 3 1 *ULKX ! 
3 5 2 LDAS a 4 3 2 *CMRW ! 
3 5 3 SDAS 4 3 4 *RMEM a 
3 5 4 LBAS b 4 3 5 *WMEM 
3 5 5 SBAS 4 3 6 *RSMT 
3 5 6 cox 4 3 7 *WSMT 
3 5 7 DFS a 4 4 0 *RIBA 
3 6 0 LWA a 4 4 1 *SVMP 
3 6 1 SWA 4 4 4 scs 
3 6 2 LDA a 4 4 5 *LQAS a 
3 6 3 SDA 4 4 6 *SQAS 
3 6 4 LBA b 4 4 7 *RCHN ! 
3 6 5 SBA 4 5 0 *BNDW ! 
3 6 6 CDG 4 5 1 BPT 
3 6 7 DFG a 4 5 2 *BCLD 
4 0 0 *WWCS ! 4 5 3 *TPEF 
4 0 1 *VWCS ! 4 5 4 SCMP 
4 0 2 *RWCS 4 7 0 *ASPT ! 
4 0 4 *SMBP 

~ 82507 AOO 3/85 A-23 



APPENDIX A 
Hardware Instruction Lists 

•rable A-7. Binary Coding, Stack Instructions (Continued) 

* indicates a privileged instruction. 
@ indicates an instruction designated for operating 

system use only. 

vkcc: see Table A-3 footnote. 

= special vkcc meanings: see instruction definitions 
in Table B-1. 

Table A-8. Binary Coding, Decimal Arithmetic Instructions 

0 

I 
1 2 3 

I 
4 5 6 ~ . a !::I 10 11 12 I 13 

0 0 0 ~--~-~ACK OPERAND CODE 

l l 
<7:15> vkcc <7:15> 

2 3 0 +QST 2 5 0 +QUP 
2 3 1 +QST x5 2 5 1 +QDWN 
2 3 2 +QST x6 2 5 2 +QUP (2) 
2 3 3 +QST x7 2 5 3 +QDWN(2 
2 3 4 +QLD a 2 5 4 +QUP(3) 
2 3 5 +QLD x5 a 2 5 5 +QDWN(3 
2 3 6 +QLD x6 a 2 5 6 +QUP(4) 
2 3 7 +QLD x7 a 2 5 7 +QDWN(4 
2 4 0 +QADD vk a 2 6 0 CQA 
2 4 1 +QSUB vk a 2 6 1 CAQV 
2 4 2 QMPY v a 2 6 2 CAQ 
2 4 3 QDIV v a 2 6 3 QRND 
2 4 4 QNEG vk a 2 6 4 CQI 
2 4 5 QCMP a 2 6 5 CDQ 
2 4 6 CQL v 2 6 6 CIQ 
2 4 7 CQD v 2 6 7 CLQ 

+ indicates an instruction that is standard in 
processors (not part of decimal option). 

! CCE if entire string is ASCII digits, CCG if 

vkcc: see Table A-3 footnote. 

A·-24 

14 15 

vkcc 

v a 
v=O 
v a 
v=Oa 
v a 
v=Oa 
v a 
v=Oa 
v a 
v 
v ! 
v=Oa 
v 

all 

not. 

~ 82507 AOO 3/85 



0 

0 

APPENDIX A 
Hardware Instruction Lists 

Table A-9. Binary Coding, Floating-Point Instructions 

1 2 3 4 5 6 7 8 9 1 10 11 12 1 13 14 15 

0 0 ~ STACK OPERAND CODE __.. 

l I 
<7:15> vkcc <7:15> vkcc 

2 7 0 FADD v a 3 1 6 CEIR a 
2 7 1 FSUB v a 3 1 7 IDXD a 
2 7 2 FMPY v a 3 2 0 CFQ a 
2 7 3 FDIV v a 3 2 1 CFQR a 
2 7 4 FNEG a 3 2 2 CEQ a 
2 7 5 FCMP a 3 2 3 CEQR a 
2 7 6 CEF a 3 2 4 CQF a 
2 7 7 CEFR a 3 2 5 CFE a 
3 0 0 EADD v a 3 2 6 CDFR a 
3 0 1 ESUB v a 3 2 7 +CID a 
3 0 2 EMPY v a 3 3 0 CQFR a 
3 0 3 EDIV v a 3 3 1 CIF a 
3 0 4 ENEG a 3 3 2 CIE a 
3 0 5 ECMP a 3 3 4 COE a 
3 0 6 CDF a 3 3 5 CQER a 
3 0 7 +CDI a 3 3 6 CQE a 
3 1 0 CFIR a 3 3 7 CE! a 
3 1 1 CF! a 3 4 4 IDXl a 
3 1 2 CFO a 3 4 5 IDX2 a 
3 1 3 CFDR a 3 4 6 IDX3 a 
3 1 4 CED a 3 4 7 IDXP a 
3 1 5 CEDR a 

+ indicates an instruction that is standard in all 
processors (not part of floating-point option). 

vkcc: see Table A-3 footnote. 

'1J 82507 AOO 3/85 A-25 





APPENDIX B 

INSTRUCTION SET DEFINITION 

This appendix consists of two tables. Table B-1 is a key to the 
symbols used in the instruction definitions. Table (B-2) gives 
brief definitions of all the instructions in the Nonstop II and 
Nonstop TXP processors' instruction set, in numeric opcode order. 
A TAL-like notation is used for the definitions. This table is a 
specification of the instruction microcode, and is provided for 
those interested in microcode details such as the use of the 
Register Stack. 

Table B-1. Definitions of Symbols 

x&y= 
xly= 
x xor y= 
x mod y= 
- x= 
x<<n= 
x>>n= 
x'<<'n= 
x'>>'n= 
x rotate n= 
x:y= 
x'<'y= 
x': 'y= 
x max y= 
x:=:y= 
x"y= 

A= 
address= 

address= 

.-, 82507 AOO 3/85 

bitwise "and" of x and y 
bitwise "or" of x and y 
bitwise "exclusive or" of x and y 
x modulo y 
bitwise "complement" of x 
x arithmetically shifted left n bits 
x arithmetically shifted right n bits 
x logically shifted left n bits 
x logically shifted right n bits 
x'<<'n + x.<O:n-1> 
if x<y then -1 else if x=y then 0 else 1 
comparison of x and y as 16-bit unsigned numbers 
if x'<'y then -1 else if x=y then 0 else 1 
if x>y then x else y 
exchange x and y 
concatenate x and y 

R[RP] 
if indirect then mem[ mernrnap, dir.adr. ] else dir.adr. 
(*** Nonstop II processor ***) 
if indirect then mem[ dseg, dir.adr. else dir.adr. 
(*** Nonstop TXP processor ***) 

B-1 



APPENDIX B 
Instruction Set Definition 

B-2 

Table B-1. Definitions of Symbols (Continued) 

B= R[RP-1] 
BA.<0:31>= B.<0:15>AA.<0:15> 
binq[ bus,la ]= INQ[ bus, la.<0:14> ].byteflag 
BKPT= ENV.<l> 
boq[ bus,la ]= OUTQ[ bus, la.<0:14> ].byteflag 

(*** Nonstop II processor ***) 
boq[ la ] = OUTQ[ la.<0:14> ].byteflag 

(*** Nonstop TXP processor ***) 
BPADDR= sysstack[ %115:%116 ] 
BPADDRX= sysstack[ %137 ] 
BPBASE= sysstack[ %123 ] 
BPLIM= sysstack[ %125 ] 
BPSIZE= sysstack[ %124 ] 
branch= P:=branch address 
branch address= if indirect then code(dba] + dba else dba 
BRT= sysstack[ %1400:%1777 ] 
bxmem[ xaddr ]= the byte at xaddr 
byteaddress= if indirect then mem(memmap,dir.adr.]+X 

else 2*dir.adr.+X 
(*** Nonstop II processor ***) 

byteaddress= if indirect then mem[dseg,dir.adr.]+X 
else 2*dir.adr.+X 
(*** Nonstop TXP processor ***) 

bytedest[ la ]= mem[ destmap,la.<0:14> ].byteflag 
(*** Nonstop II processor ***) 

bytedest[ la]= mem( destseg,la.<0:14> ].byteflag 
(*** Nonstop TXP processor ***) 

byteflag= <8*la.<15>:8*la.<15>+7> 
bytesource[ la ]= mem[ srcmap, la.<0:14>+ 

(I.<10:11>=2)*P.<0>*%100000 ].byteflag 
(*** Nonstop II processor ***) 

bytesource[ la ]= mem[ srcseg, la.<0:14>+ 

bytex= 

bytex= 

C= 
CACHE= 

CACHET AG= 

mem[ 
(*** 
mem[ 
(*** 

(I.<10:11>=2)*P.<0>*%100000 ].byteflag 
(*** Nonstop TXP processor ***) 
memmap, byteaddress.<0:14> ].byteflag 
Nonstop II processor ***) 
dseg, byteaddress.<0:14> ].byteflag 
Nonstop TXP processor ***) 

R[RP-2] 
data/instruction cache 
(*** Nonstop TXP processor ***) 
tags for CACHE entries 
(*** Nonstop TXP processor ***) 
C.<0:15>AB.<0:15> 
Z:=(x=O); N:=(x<O) 

CB.<0:31>= 
cc(x)= 
ccb(x)= 
CCE= 

Z:=("A"<=x<="Z") or ("a"<=x<="z"); N:=("O"<=x<="9") 
N:=O; Z:=l 

CCG= 
CCL= 
ccl(x)= 
ccn(x)= 
ccz(x)= 
chkp(x)= 
CLOCK= 
cmap= 

CMSEG= 
code[ la ]= 

code[ la ] = 

N:=O; Z:=O 
N:'=l; Z: =O 
cc(x); K:=adder carry 
ccl(x); V:=adder overflow 
Z:=(x=O); N:=O; 
if memory location "x" is absent then Page Fault 
sysstack[ %103:%106 
LS*2+CS+2 
(*** Nonstop II processor ***) 
(discontinued term; see CSSEG) 
mem[ cmap, la ] 
(*** Nonstop II processor ***) 
mem[ cseg, la ] 
(*** Nonstop TXP processor ***) 

~ 82507 AOO 3/8~i 



APPENDIX B 
Instruction Set Definition 

Table B-1. Definitions of Symbols (Continued) 

computeshiftcount= if I.<10:15>=0 then {shiftcount:=A.<8:15>; 
RP:=RP-1} else shiftcount:=I.<10:15> 

CPCB= sysstack[ %3 ] 
CS= ENV.<7> 
cseg= LS*2+CS+2 

(*** Nonstop TXP processor ***) 
CSPACEID current space ID register 
CSSEG= sysstack[ %1340:%1357 ] 

D= 
dba= 
DC.<0:31>= 
DCBA.<0:63>= 
dest[ la ] = 

dest[ la ]= 

destmap= 

destseg= 

dir.adr.= 

DS= 
dseg= 

dwordx= 

dwordx= 

a software copy of the SST register contents 

R[RP-3] 
P+I.<9:15>-128*I.<8> 
D.<0:15>AC.<0:15> 
D.<0:15>AC.<0:15>AB.<0:15>AA.<0:15> 
mem[ destmap, la ] 
(*** Nonstop II processor ***) 
mem[ destseg, la ] 
(*** Nonstop TXP processor ***) 
if I.<12>&PRIV then 1 else DS 
(*** Nonstop II processor ***) 
if I.<12>&PRIV then 1 else DS 
(*** Nonstop TXP processor ***) 
if I.<7>=0 then I.<8:15> 'global variable' 
else (0:255) 
if I.<8>=0 then L+I.<9:15> 'local variable' 
else (0:127) 
if I.<9>=0 then I.<10:15> 'system global' 
else (0:63) 
if I.<10>=0 then L-I.<11:15> 'procedure parameter' 
else (0:31) 

S-I.<11:15>; 'subroutine parameter' 
(0:31) 

ENV.<6> 
if I.<7:9>=6 and PRIV then 1 else DS 
(*** Nonstop TXP processor ***) 
mem[ memmap, address+2*X:address+2*X+l 
(*** Nonstop II processor ***) 
mem[ dseg, address+2*X:address+2*X+l 
(*** Nonstop II processor ***) 

E= R[RP-4] 
ECS= entry control store, first vertical control store 

word for each instruction 
(*** Nonstop TXP processor ***) 

ED.<0:31>= E.<0:15>AD.<0:15> 
ENV.<0:15>= environment register 

EPT= entry point table for instruction decoding 
extended address= segment A page A word A byte 

F= 
FE.<0:31>= 

G= 

R[RP-5] 
F.<0:15>AE.<0:15> 

R(RP-6] 

H= R[RP-7] 
HCS= horizontal control store 

(*** Nonstop TXP processor ***) 
HGFE.<0:63>= H.<0:15>AG.<0:15>AF.<0:15>AE.<0:15> 
hit(xa)= if block of memory starting at "xa" is in CACHE 

(and valid) then true else false 
(*** Nonstop TXP processor ***) 

.;rp 82507 AOO 3/85 B-3 



APPENDIX B 
Instruction Set Definition 

B--4 

Table B-1. Definitions of Symbols (Continued) 

I.<0:15>= instruction register 
imm= I.<8:15>-256*I.<7> 
indirect= I.<O> 
INQ[O:l,0:15].<0:15>= interprocessor bus in queues 
INTA.<0:15>= interrupt register A 
INTB.<0:15>= interrupt register B 
IOC= sysstack[ %2000:%3777 ] 
IOCSPAD= roe scratchpad registers (IOC cache) 

(*** Nonstop TXP processor ***) 

K= ENV.<9> 

L.<0:15>= local data pointer=location of current stack marker 
LIGHTS.<0:15>= switch register output 
LS= ENV.<4> 

MAP[0:15,0:63].<0:15>= memory map 
(*** Nonstop II processor ***) 

MASK.<0:15>= interrupt mask register 
mem[ m,a ]= MEMORY[ MAP[ m,a.<0:5> ].<0:12>, a.<6:15> 

(*** Nonstop II processor ***) 
mem[ sas,la ]= xmem[ axaddr( SST[ sas ], la, 0 ) 

(*** Nonstop TXP processor ***) 
memmap= if I.<7:9>=6 and PRIV then 1 else DS 

(*** Nonstop II processor ***) 
MEMORY[0:8191,0:1023].<0:15>= physical memory 
movestep= if I.<9> then -1 else 1 
MYEXTCPU= sysstack[ %154 ] 

N= 

.<8:11>= cluster number 

.<12:15>= processor number 

ENV. <11> 

OUTQ[O:l,0:15].<0:15>= interprocessor bus out queues 
(*** Nonstop II processor ***) 

OUTQ[0:15].<0:15>= interprocessor bus out queue 
(*** Nonstop II processor ***) 

P.<0:15>= 
PCACHE= 

program counter=l+location of current instruction 
page table cache 

PCACHETAG= 

PHYPAGE= 
PHYSEG= 
PRIV= 
PRIV TRAP= 
ptchit(xa)= 

pt f i 11 ( xa) = 

PT I ME= 

(*** Nonstop TXP processor ***) 
tags for PCACHE entries 
(*** Nonstop TXP processor ***) 
mem[ %16, %150000:%167777 ] 
mem[ %16, %130000:%147777 ] 
ENV.<5> 
cause an instruction failure interrupt 
if page table entry for "xa" is in PCACHE 
(and valid) then true else false 
(*** Nonstop TXP processor ***) 
{x := mem[ SEG[ xa.<2:14>*2 ].<5:8>, 

SEG[ xa.<2:14>*2+1 ]+xa.<15:20> ]; 
if -x.<15> then ! entry is valid, set "Referenced" 

mem[ SEG[ xa.<2:14>*2 ].<5:8>, 
SEG[ xa.<2:14>*2+1 J+xa.<15:20> ]:= 

x : = x I %4; 
PCACHE[ xa.<2:14>, xa.<15:20> ] := x; 

PCACHETAG[ xa.<2:14>, xa.<15:20> ] := 
(x & %174003) I (xa.<2:10> << 2) }} 

(*** Nonstop TXP processor ***) 
svsstack[%126:%127] 

.., 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-1. Definitions of Symbols (Continued) 

ptmiss(xa)= --ptchit(xa) 
(*** Nonstop TXP processor ***) 

RLIST= sysstack[ %100:%101 ] 
roma= program counter for instruction microprocessor 

(*** Nonstop II processor ***) 
RP= ENV.<13:15> 

S.<0:15>= 
sas= 
SD= 

SEG= 

stack pointer=location of last word of stack 
short address space (range 0-15) 
scratch register. When the processor is in the idle 
loop, it will indicate the reason: 

%000000 interrupt occurred before LCS loaded 
%000001 LCS opcode used before LCS loaded 
%000003 tape dump attempted 
%000014 bus cold load sequence error 
%000040 manual reset 
%000053 SFRZ instruction 
%000074 HALT instruction 
%000100 DDT halt interrupt 
%000115 OSP memory access breakpoint 
%000200 halt interrupt 
%000377 bus cold load checksum error 
%001000 i/o channel timeout on a cold load 
%001154 memory dump completed 
%002000 power-on interrupt with invalid memory 
%100000 an UCME occurred when masked off 
%100001 a DABS occurred when masked off 
%100002 an IABS occurred when masked off 
%100003 a microcode or hardware failure occurred 
%100004 an error (CCG or CCL) occurred during 

%100010 

%100011 

%100012 
%100013 
%100014 
%100015 
%100016 
%100017 
%100020 
%177771 

%177772 
%177773 
%177774 
%177775 

%177776 

the coldload EIO 
an instruction failure occurred before 
LCS was loaded 
a stack overflow occurred before 
LCS was loaded 
Hardware failure <type> 
Hardware failure <type> 
Hardware failure <type> 
Hardware failure: IPU parity checker 
Hardware failure: MCB parity checker 
Hardware failure: CCD parity checker 
Hardware failure: suspect IPU board 
Model 3206 tape controller firmware 
not loaded 
illegal cold load switch setting 
i/o channel timeout on a tape dump 
error during memory dump to tape 
interrupt during memory dump to 
interprocessor bus 
uncorrectable memory error during map 
recovery following a power-on 

%177777 spurious interrupt 
mem[ 14, %70000:%127777 ] 

segment base= MAP[ 14, 60:61 ] 
(*** Nonstop II processor ***) 

segment limit= MAP[ 14, 62:63 ] 
(*** Nonstop II processor ***) 

SEGTABSIZE= sysstack[ %65 ] 
SIV= sysstack[ %1200:%1337 ] 
source[ la ]= mem[ srcmap, la ] 

(*** Nonstop II processor ***) 

~ 82507 AOO 3/85 B-5 



APPENDIX B 
Instruction Set Definition 

B·-6 

Table B-1. Definitions of Symbols (Continued) 

source[ la 

srcmap= 

srcseg= 

]= mem[ srcseg, la ] 
(*** Nonstop TXP processor ***) 

if I.<10> then {if I.<11> then 2 else 
else if I.<ll>&PRIV then 1 else OS 
(*** Nonstop II processor ***) 
case I.<10:11> of 

cmap} 

begin 
OS; current data 
if PRIV then 1 else DS; 
cseg; 
2: 

system data if PRIV 
current code 
user code 

end; 

SST= 
(*** Nonstop TXP processor ***) 
hardware Short Segment Table registers 
(*** Nonstop TXP processor ***) 

stack[ la ]= mem[ OS, la ] 
SWITCHES.<0:15>= switch register input 
sysstack [ la ] = mem[ 1, la ] 

T= ENV.<8> 
TL I ST= sysstack[ %107:%110 
TRACE= sysstack[ %121 ] 
TRBASE= sysstack[ %117 ] 

TRLIM= sysstack[ %120 ] 

UC= ENV.<O> 
UCOPTIONFLAG= sysstack[ %130 ] 
UCABASE= user code segment base register 
UCASIZE= user code space size register 
ULABASE= user library segment base register 
ULASIZE= user library space size register 

V= 
VCS= 

WCS= 
word= 

word= 

wordx= 

wordx= 

ENV.<10> 
vertical control store 
(*** Nonstop TXP processor ***) 

writable control store 
mem[ rnemrnap, address ] 
(*** Nonstop II processor ***) 
mem[ dseg, address ] 
(***Nonstop TXP processor ***) 
mem[ memrnap, address+X ] 
(*** Nonstop II processor ***) 
mem[ dseg, address+X ] 
(*** Nonstop TXP processor ***) 

X= if I.<5:6>=0 then 0 else R[I.<5:6>+4] 
xaddr.<0:31>= a 32-bit extended address 
XB= extended address base address register 
xbase= stack[ L*I.<5>+I.<10:15> : L*I.<5>+I.<10:15>+1 
XL= extended address limit register 

~ 82507 AOO 3/85 



Table B-1. 

xmap= 

APPENDIX B 
Instruction Set Definition 

Definitions of Symbols (Continued) 

cross code space map 
!parameter=new space ID 

CSPACEID:=parameter; 
m:=CSPACEID.<4>*2+CSPACEID.<7>+2; 
case m-2 of 

{ 
!O!usercode! 

{if CSPACEID.<11:15> >=UCASIZE then 
{instruction failure}; 

seg:=UCABASE+CSPACEID.<11:15> 
} : 

!l!system code! 
{if CSPACEID.<11:15> <>O then 

(instruction failure}; 
seg:=3; 

} : 
! 2 ! user library! 

{if CSPACEID.<11:15> >=ULASIZE then 
{instruction failure}; 

seg:=ULABASE+CSPACEID.<11:15> 
} : 

!3!system library! 
%34+CSPACEID.<11:15> 

} : 
if CSSEG[m]<>seg then 
call MAPS(seg,m). 

xmem[ xaddr ]= the word located at xaddr 

Z= ENV.<12> 

-1' 82507 AOO 3/85 B-7 



APPENDIX B 
Instruction Set Definition 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 
0 0 
0 0 

0 0 

0 0 
0 0 

B-8 

Table B-2. Instruction Definitions 

Note: The one-character symbols immediately to the 
right of the instruction opcodes have the following 
meanings: 

* 
@ 

$ 
# 

% 
& 

indicates a privileged instruction. 
indicates an instruction designated for 

operating system use only. 
indicates a decimal arithmetic optional instruction. 
indicates a floating-point arithmetic optional 

instruction. 
indicates an instruction for Nonstop II processors only. 
indicates an instruction for Nonstop TXP processors only. 

op(x) indicates that an operation similar to that 
performed by the instruction 'op' should be 
done using the value(s) 'x'. 

I I 
0 0 0 0 INOP lno operation I 
0 0 0 1 IMONDlminus one double IRP:=RP+2; cc(B:=A:=-1) 
0 0 0 2 IZERDlzero double IRP:=RP+2; cc(B:=A:=O) 
0 0 0 3 IONED one double IRP:=RP+2; B:=O; cc(A:=l) 
0 0 0 4 IEXCH exchange IA:=:B; cc(A) 
0 0 0 5 IDXCH double exchange IBA:=:CD; cc(BA) 
0 0 0 6 IDDUP double duplicate IRP:=RP+2; cc(BA:=DC) 
0 0 0 7 IBTST byte test lccb(A.<8:15>); RP:=RP-1 
0 0 1 0 ILAND logical AND icc(B:=B&A); RP:=RP-1 
0 0 1 1 ILOR logical OR cc(B:=BIA); RP:=RP-1 
0 0 1 2 IXOR exclusive OR cc(B:=B xor A); RP:=RP-1 
0 0 1 3 INOT logical NOT cc(A:= - A) 
0 0 1 4 IDPF deposit field cc(C:=(C&B I A&-8)); 

I RP:=RP-2 
0 0 1 5 CCL cond. code less Z:=O; N:=l 
0 0 1 6 CCE lcond. code equal Z:=l; N:=O 
0 0 1 7 CCG cond. code greater Z:=N:=O 
0 0 2 0 SETL set L register L:=A; RP:=RP-1 
0 0 2 1 SETS set s register S:=A; RP:=RP-1 
0 0 2 2 SETE set ENV register ENV.<0:7>:=ENV.<0:7>&A.<0:7>; 

ENV.<8:15>:=A.<8:15> 
0 0 2 3 SETP set P register P:=A; RP:=RP-1 
0 0 2 4 RDE read ENV register RP:=RP+l; A: =ENV 
0 0 2 5 RDP read P register IRP:=RP+l; A:=P 
0 0 2 6 RSW read switches RP: =RP+l; cc(A:=SWITCHES) 
0 0 2 7 SSW set switches sysstack[%122]:=LIGHTS:=A; 

RP:=RP-1 
0 0 3 0 BFI branch forward P:=P+A+code[P+A]; 

indirect RP:=RP-1 
0 0 3 1 DTST double test cc(BA) 
0 0 3 2 DPCL dynamic procedure t:=(ENV&%177740) ICSPACEID; 

I call stack[S+l:S+3]:=(P,t,L); 
I t.<7>:=A.<0>; !CS 
I A.<0:6>=spaceid t.<4>:=A.<l>; !LS 
I IA.<7:15>=pep index t.<11:15>:=A.<2:6>;!space 
I I ! index 
I I call xmap(t); 
I I Im: A.<0>+2*A.<1>+2; 
I I It: A.<7:15>; 

~ 82507 AOO 3/8:1 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 0 3 

~ 82507 AOO 3/85 

3* XCTRIXRAY counter bump 
E=parameter 
(if A.<10:13>=1) 
DC=ext addr 
(if A.<4:6>=3) 
C=cntr blk addr 
(if A.<4:6> <> 3) 
B=cntr off set 
A=action 

<4:6> addr mode 
<10:13> action 

I if -PRIV then 
I {if t>=mem[m,0] then 
I {if t>=mem[m,1] then 
I priv trap; 
I PRIV:l; 
I } 
I } ; 
IL:=S:=S+3; 
ICS:=A.<0>; 
ILS:=A.<l>; 
IP:=code[t]; 
RP:=7. 
if (t:=(if A.<4:6>=0 then 

sysstack[B] 
else 
if A.<4:6>=1 then stack[B] 
else 
if A.<4:6>=2 then 

sysstack[B] 
else 
if A.<4:6>=3 then 

xmem[CB])) <> 0 then 
{if A.<4:6> = 0 then 

! system data space 
a:=%4000fA(t+D)A0 

else 
! absolute segment zero 
a:=%40000A(t+D)A0; 

if A.<10:13>=0 then 
! increment 
{xmem[a:a+3]:=xmem[a:a+3]+1} 
else if A.<10:13>=1 then 

! add parameter 
{xmem[a:a+3]:=xmem[a:a+3] 

+E; 
if E<O and xmem[a:a+l]<O 
then xmem[a:a+3]:=0} 

else 
{clock:=sysstack[%103:%106] 

+microsecond counter; 
if A.<10:13>=2 then 

! set state 
{if xmem[a:a+l]=O then 
{xmem[a:a+l]:=l; 
a:=a+2; 
xmem[a:a+7]:=xmem[a:a+7] 

-clock}} 
else if A.<10:13>=3 then 

! reset state 
{if xmem[a:a+l]=l then 

{xmem[a:a+l]:=O; 
a:=a+2; 
xmem[a:a+7]:=xmem[a:a+7] 

+clock}} 

B-9 



APPENDIX B 
Instruction Set Definition 

8--10 

Table B-2. 

I 
I 
I 
I 
I 
I 

0 0 0 0 3 4 IANS 
I 

0 0 0 0 3 5 IORS 
I 

0 0 0 0 3 6 I 
0 0 0 0 3 7 I 
0 0 0 0 4 O* MXON 

Instruction Definitions (Continued) 

else if A.<10:13>=4 then 
! increment state 

{if xmem[a:a+l]<l6384 then 
{t:=xmem[a:a+l]:= 

xmem[a:a+l]+l; 
a:=a+2; 
if xmem[a-2:a-l]<t then 
xmem [ a - 2 : a - 1 ] : = t ; 

a:=a+2; 
xmem[a:a+7]:=xmem[a:a+7] 
-clock}} 

else if A.<10:13>=5 then 
! decrement state 
{if xmem[a:a+l]>O then 

{xmem[a:a+l] 
:= xmem[a:a+l]-1; 

a:=a+4; 
xmem[a:a+7]:=xmem[a:a+7] 

+clock}} 
I }} ; 
IRP:=RP-3; 
I if A.<4:6>=3 then RP:=RP-1; 
I if A.<10:13>=1 then RP:=RP-1; 
I** NOTE: All counters must be 
I present. 
I** NOTE: Counters may not 
I cross page boundaries. 

AND to SG memory icc(dest(A):=dest(A) & B); 
IRP:=RP-2 

OR to SG memory lcc(dest(A):=dest(A) I B); 
IRP:=RP-2 
I *** undefined *** 
I *** undefined *** 

mutual exclusion lchkp(stack[(L-20) max O]); 
on lchkp(stack[S+A.<8:15>]); 
A=<0:7> code size I if A.<0:7> 

<8:15>stack sizelthen chkp(code[P+A.<0:7>]); 
lstack[L+l]:=MASK; 
IMASK:=MASK & %177640; 
IRP:=RP-1 

0 0 0 0 4 l* MXFF mutual exclusion IMASK:=stack[L+l] 
off I 

0 0 0 0 4 2* MAPS map in a segment 
% 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

A=map number 
B=segment number 

I ! Only unmap data segments 
I if CMSEG[A]<>B and CMSEG[A] 
I <>-1 then 
I {if A<=l or A>=6 then 
I UMPS(A) 
I else 
I SEG[CMSEG[A]*2].<0:4>:=-l 
I } ; 
lj:=B*2; 
li:=O; 
lif B<>-1 then 
I {if SEG[j].<0:4> <=15 then 
I instruction failure; 
I if A<=l or A>=6 then 
I for i:=32 to Smin(64,32+ 
I SEG[j].<9:15>) do 
I { i f MAP [ 1 5 , i ] . < 0 : 14 > = b 
I then 

~ 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 0 4 

0 0 0 0 4 

0 0 0 0 4 

0 0 0 0 4 

0 0 0 0 4 

0 0 0 0 4 

0 0 0 0 5 

0 0 0 0 5 
0 0 0 0 5 

0 0 0 0 5 

~ 82507 AOO 3/85 

2* MAPS 
& 

3* UMPS 
% 

4 

5 

6 

7 

ANG 
I 
ORG 

ANX 

ORX 

"map" a segment 
into SST 
B=segment number 
A=SST entry # 
unmap a segment 
A=map number 

AND to memory 

OR to memory 

AND to extended 
memory 
OR to extended 

0 
memory 

RCLK read clock 

{t:=MAP[l5,i-32]; 
mem[SEG[j].<5:8>, 

SEG[j+l]+i-32+ 
MAP[15,i).<15>*32] 
. =t. 

MAP[i5,iJ:=-1; 
} 

} ; 
while i<SEG[j].<9:15> do 

{MAP[A,i]: mem[SEG[j) 
.<5:8>,SEG[j+l]+i]; 

i:=i+l 
} ; 

SEG[j].<0:4>:=A; 
} ; 

while i<=63 do 
{MAP[A,i]:=l; i:=i+l}; 

ICMSEG[A]:=B; 
RP:=RP-2. 
!Note!the page table must be 

! in memory 
SST[A]:=CSSEG[A]:=B 
RP:=RP-2 

j:= SEG[CMSEG[A]*2].<9:15>; 
m:= SEG[CMSEG[A]*2].<5:8> 
p:= SEG[CMSEG[A]*2+1]; 
for i := 0 to j-1 do 

{mem[m,p+i]:=t:=MAP[A,i]; 
SEG[CMSEG[A]*2].<0:4>:=%37; 
CMSEG[A] := -1; 
RP:=RP-1 
!Note!the page table must be 

! in memory 
cc(stack[AJ:=stack[A] & B); 

B); 
RP:=RP-2 
cc(stack[A]:=stack[A] 
RP:=RP-2 
cc(xmem[BA]:=xmem[BA] & C); 
RP:=RP-3 
cc(xmem[BA]:=xmem[BA] 
RP: =RP-3 

C); 

RP:=RP+4; 
DCBA:=sysstack[%103:%106]+ 

microsecond counter 
1 RCPU read processor # IRP:=RP+l; A:=processor # 
2* SNDQ signal that a SEND!set dispatcher interrupt; 

is queued lsysstack[%1277].<14>:=1 
3* SFRZ system freeze !assert system freeze; halt 

B-11 



APPENDIX B 
Instruction Set Definition 

B·-12 

Table B-2. Instruction Definitions (Continued) 

0 0 0 0 5 4*1DLTE delete an element I if sysstack[A] <> 0 then 
I from a doubly {if sysstack[sysstack[A]+l] 
I linked, circular <> A or 

list sysstack[sysstack[A+l]] 
<> A 

then Instruction Failure; 
I f:=sysstack[A]; 
IA=element address b:=sysstack[A+l]; 
I sysstack[b]:=f; 
I sysstack[f+l]:=b; 
I sysstack[A]:=O; 
I sysstack[A+l]:=O; 
I I } ; 
I IRP:=RP-1 
I I!!! Note ! ! ! 
I lall memory locations accessed 

lmust be present 
0 0 0 0 5 5* INSR insert an element I if A=O or 

into a doubly I sysstack[sysstack[B]+l] 
linked, circular I <> B or 
list I sysstack[sysstack[B+l]] 

I <> B 
B=list header lthen Instruction Failure; 
A=list element lf:=sysstack[B]; 

lsysstack[B]:=A; 
sysstack[A]:=f; 
sysstack[A+l]:=B; 
sysstack[f+l]:=A; 

I RP:=RP-2 
I ! ! ! Note ! ! ! 
I all memory locations accessed 
I lmust be present 

0 0 0 0 5 6@ TOTQ test out queues IN:=O; Z:=l; 
% I if either OUTQ full then Z:=O 

0 0 0 0 5 6@ TOTQ test OUTQ IN:=O; Z:=l; 
& I if -OUTQ empty then Z:=O 

0 0 0 0 5 7@ DOFS disc record offset I if A'>='512 or 
A=record number I (A:=xmem[stack[L+2:3]-A*2]) 
on return, A holds I '>='stack[ L+4] 
offset into then {P:=stack[L+5]; RP:=7}; 
buffer of record 

0 0 0 0 6 O*IEIO execute i/o ioselect(A.subchannel); 
iocontrol(A.command,B); 
B:='device status'; 
cc(A:='channel status') 

0 0 0 0 6 1* IIO interrogate i/o RP:=RP+3; 
C:='interrupt cause'; 
B:='interrupt status'; 
cc(A:='channel status'); 

0 0 0 0 6 2* HIIO high-priority RP:=RP+3; 
interrogate i/o C:='high-priority interrupt 

cause' ; 
I B:='high-priority interrupt 
I status'; 

I I cc(A:='channel status'); 
0 0 0 0 6 3*IRIR lreset interrupt 'clear interrupt' A.<12:15> 

I I register RP:=RP-1 
0 0 0 0 6 4*IXMSKlexchange mask MASK:=:A 

~ 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 0 6 5*ISENDlsend ldo 
%1 I {do until OUTQEMPTY or 

G=<15> bus I .8(32768-D) microsec; 
F=sequence # I if OUTQEMPTY then 
E=<0:7> sender I {if A<>O then 

cpu # {bus:=G.<15> 
<8:15> receiver receiver:=E.<8:15>; 

cpu # OUTQ[bus,O]:=E: 
D=OUTQ full timer OUTQ[bus,l]:=F; 
CB=buf fer address for i:=4 to 29 do 
A= byte count {if A <> 0 then 

{boq[bus,i]:=bxmem[CB]; 
A:=A-1; CB:=CB+l} 

else boq[bus,i]:=O}: 
OUTQ[bus,15]:=(-1) xor 

OUTQ[bus,O] 
... OUTQ[bus,14]; 

if E.<8:11> then 
OUTQ[bus,15]:= 

OUTQ[bus,15] xor 
(E&%170000) xor 
(MYEXTCPU.<8:11>'<<'8): 

D:=O; 
if (F:=F+l)=O then 
{done:=true: N:=O: Z:=l}; 

} else 
{done:=true; N:=O; Z:=l 
} 

} else 
{done:=true; N:=l; Z:=O; 
OUTQEMPTY:=true 

} ; 
} until done: 

IRP:=RP-7 
I!!! Note ! ! ! 
lxmem[CB:CB+A*2-l] must be 
I in memory 

0 0 0 0 6 5*ISEND send ldo 
&I I I {do until OUTQEMPTY or 

I IG=<l5> bus I .833(32768-D) microsec: 
I IF=sequence # if OUTQEMPTY then 
I IE=<0:7> sender {if A<>O then 
I I cpu # {bus:=G.<15> 
I I <8:15> receiver receiver:=E.<8:15>; 
I I cpu # OUTQ[O]:=E; 
I ID=OUTQ full timer OUTQ[l]:=F: 
I CB=buf fer address for i:=4 to 29 do 
I A=byte count {if A <> 0 then 
I {boq[i]:=bxmem[CB]; 
I A:=A-1; CB:=CB+l} 
I else boq[i]:=O}; 
I OUTQ[l5]:=(-1) xor 
I OUTQ(O] xor OUTQ[l] 
I ... xor OUTQ[l4]; 
I if E.<8:11> then 
I OUTQ[15]:=0UTQ[l5] xor 
I (E&%170000) xor 
I (MYEXTCPU.<8:11>'<<'8); 
I D:=O; 

~ 82507 AOO 3/85 B-13 



APPENDIX B 
Instruction Set Definition 

B-14 

Table B-2. Instruction Definitions (Continued) 

I if (F:=F+l)=O then 
I {done:=true; N:=O; Z:=l}; 
I } else 
I {done:=true; N:=O; Z:=l 
I } 
I } else 
I {done:=true; N:=l; Z:=O; 
I OUTQEMPTY:=true 
I } : 
I} until done; 
IRP:=RP-7 
I!!! Note ! ! ! 
lxmem[CB:CB+A*2-1] must be 
I in memory 

0 0 0 0 6 6* RMAP read map IA:=,MAP[A.<12:15>,A.<0:5>] 
% I I 

0 0 0 0 6 7* SMAPiset map IMAP[A.<12:15>,A,<0:5>]:=B; 
% I I RP : =RP- 2 

0 0 0 0 6 7* SMAP!set map ls:=SST[A.<12:15>]; 
& IB=entry lp:~A.<0:5>; 

IA.<0:5>=logical PCACHE[s,p]:=B; 
I page PCACHETAG[s,p]:= 
IA.<12:15>=SST (PCACHE[s,p]&l74003} 
I index I {s.<3:11><<2); 
I xa:=OD; xa.<O>:=l; 
I xa.<1:14>:=s; 
I xa.<15:20>:=p; 
I for i:=O to 127 do 
I {if hit(xa) then 
I invalidate entry; 
I I xa:=xa+%20}; 
I IRP~=RP-2 
I I!!! Note ! ! ! 
I IWSPT must be used once the 
I !page tables are set up 

0 0 0 0 7 0@ DLENldisc record lengthlif (A:=DOFS(A+l)-DOFS(A)) < 0 
IA=record number lthen {P:=stack[L+5]; RP:=7} 

0 0 0 0 7 1* IXITlinterrupt exit ICSPACEID:=sysstack[L-5]& 
I I %4437; 
I I (MASK,S,P,ENV,L):= 
I sysstack [ L-4: L]; 

call xmap(CSPACEID); 
R[0:7]:=sysstack[L+l:L+8]; 
if not OS then 

{PTIME:=PTIME-TIMER-(10000* 
INTA. <13>)}. 

I !Note!sysstack[L-5:L+8] must 
I !be present 

0 0 0 0 7 2*IDXIT DEBUG exit S:=L-6; 
I (P,ENV,L): sysstack[L-2:L]; 
I ICSPACEID:=sysstack[L-5]& 
I I %4437; 
I !call xmap(CSPACEID); 
I lif ENV.<0> then 
I I instruction breakpoint. 

~ 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 0 7 3*1DISPldispatch set dispatcher interrupt; 
sysstack[%1277].<15>:=1 
halt 

I I 
0 0 0 0 7 4*IHALTlprocessor halt 
0 0 0 0 7 5* MRL lmerge onto ready 

I list 
t := sysstack[ %101 ]; 
while sysstack[t+2].<8:15> < 

sysstack[A+2].<8:15> 
do t:=sysstack[t+l]; 

IA=PCB address 
I 
I 
I 
I 
I 

if sysstack[CPCB+2].<8:15> < 
sysstack[A+2].<8:15> 

then DISP; 
insert A after t; RP:=RP-1 

0 0 0 0 7 6* PSEMl"P" a semaphore 
I 

sysstack[A+2]:=sysstack(A+2] 
-1; 

if < then ICB=wait time 
IA=semaphore addr 
I 
I 
I 

{set dispatcher interrupt; 
sysstack[%1277]:= 

sysstack[%1277] I 5} 
else {C:=l; 

sysstack[A+3]:=CPCB}; 
RP:=RP-2 

! ! ! Note ! ! ! 

0 0 0 0 7 7* VSEM "V" a semaphore 
sysstack must be resident 

sysstack[A+2]:=sysstack[A+2] 
+1; 

0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 
0 0 0 

0 0 0 

0 0 0 

0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 0 0 
0 0 0 

~ 82507 AOO 3/85 

A=semaphore addr if <= then 
{set dispatcher interrupt; 
sysstack[%1277].<12>:=1} 

else sysstack[A+3]:=0; 
RP:=RP-1 

! ! ! Note ! ! ! 
sysstack must be resident 

1 0 reg STRP set RP RP:=reg 
1 1 reg STAR store A in reg R[reg]:=A; RP:=RP-1 
1 2 reg NSARlnon-destructive R[reg]:=A 

lstore A in reg 
1 3 reg LDRAlload register to AIRP:=RP+l; cc(A:=R[reg]) 
1 4 reg ADRAladd register to A lccn(A:=A+R[reg]) 
1 5 reg SBRA subtract register lccn(A:=A-R[reg]) 

from A I 
1 6 reg ADAR add A to register lccn(R[reg]:=R[reg]+A); 

IRP:=RP-1 
1 7 reg SBAR subtract A from lccn(R[reg]:=R(reg]-A); 

register IRP:=RP-1 
2 0 0 LADD logical add lccl(B:=B+A); RP:=RP-1 
2 0 1 LSUB logical subtract lccl(B:=B-A); RP:=RP-1 
2 0 2 LMPY logical multiply lcc(BA:=B'*'A); V:=O 
2 0 3 LDIVllogical divide IV:=(C'>='A); 

I (C,B) =(CB 'mod' A,CB'/'A); 
I cc ( B ) RP : =RP- 1 

2 0 4 LNEG logical negate lccl(A =-A) 
2 0 5 LCMP logical compare lcc(B' 'A); RP:=RP-2 

B-15 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

B·-16 

0 0 

0 0 

0 0 
0 0 
0 0 

0 0 

0 0 
0 0 
0 0 

0 0 

0 0 
0 0 
0 0 
0 0 

0 0 
0 0 
0 0 

0 0 

0 

0 

0 
0 
0 

0 

0 
0 
0 

0 

0 
0 
0 
0 

0 
0 
0 

0 

2 

2 

2 
2 
2 

2 

2 
2 
2 

2 

2 
2 
2 
2 

2 
2 
2 

2 

0 

0 

1 
1 
1 

1 

1 
1 
1 

1 

2 
2 
2 
2 

2 
2 
2 

2 

6* FTL I find position in 
!time list 
I 
BA=time value 

7* DTL !delete from time 
I list 
IA=element address 
I 
I 
I 
I 

I I 
0 IIADD!integer add 
1 IISUBlinteger subtract 
2 IIMPY!integer multiply 

I I 
3 IIDIV integer divide 

I 
4 I INEG 
5 I ICMP 
G*IRPV 

%1 
I 
I 
I 
I 

integer negate 
integer compare 
read PROM version 
numbers 

7*ITRCE add an entry to 
I the trace table 
I EDCBA=entry 
I 

O DADD double add 
1 DSUB double subtract 
2 DMPY double multiply 
3 DDIV double divide 

4 DNEG double negate 
5 DCMP!double compare 
6 MNGGlmove words while 

lnot duplicate 
I 
ID=destination 
IC=source 
IB=count 
IA=value<>to value 
I of source 

7 MNDXlmove words while 
lnot duplicate 
I 
IFE=destination 
IDC=source 
IB=count 
IA=value<>to value 
I of source 

IRP:=RP+l; BA:=CB; 
C:=sysstack[%107]; 
while C<>%107 do 

{BA:=BA-sysstack[C+2:C+3]; 
if < then done; 
C:=sysstack[C]} 

! ! ! Note ! ! ! 
I sysstack must be resident 
la:=A; t:=sysstack[%107]; 
IRP:=RP+l; 
IBA:=sysstack[t+2:t+3]; 
lwhile a <> t do 
I {t:=sysstack[t]; 
I BA:=BA+sysstack[t+2:t+3]} 
I ! ! ! Note ! ! ! 
I sysstack must be resident 
lccn(B:=B+A); RP:=RP-1 
lccn(B:=B-A); RP:=RP-1 
IV:=-(-32768<=B*A<=32767); 
cc(B:=B*A); RP:=RP-1 
V:=-(-32768<=B/A<=32767); 
cc(B:=B/A); RP:=RP-1 
ccn(A:=-A) 
cc(B:A); RP:=RP-2 
RP:=RP+5; N:=O; Z:=l; 
CBA:=cs prom numbers 
D:=ept prom numbers 
E:=i/o channel prom number 
if i/o channel not available 
then {N:=l; Z:=O} 
if TRBASE'<'TRLIM then 

{sysstack[TRACE:TRACE:+4]:= 
EDCBA; 

TRACE:=TRACE+5; 
if TRACE'>'TRLIM 
then TRACE:=TRBASE}; 

RP:=RP-5 
ccn(DC:=DC+BA); RP:=RP-2 
ccn(DC:=DC-BA); RP:=RP-2 
ccn(DC:=DC*BA); RP:=RP-2 
ccn(DC:=DC/BA); V:= BA=O; 
RP:=RP-2 
ccn(BA:=-BA) 
cc(DC:BA); RP:=RP-4 

while cc(B)<>"=" and 
stack[C]<>A do 

{A:=stack[D]:=stack[C]; 
D:=D+l; 
C:=C+l; 

I B:=B-1}; 
I RP: =RP-1 
I 
!while cc(B)<>"=" and 
I xmem[DC]<>A do 
I {A:=xmem[FE]:=xmem[DC]; 
I FE:=FE+2; 
I DC:=DC+2; 
I B:=B-1}; 
IRP:=RP-1 

..,, 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued} 

0 0 0 2 3 Oxx QST lquad store 
I 
I 
I 

0 0 0 2 3 4xx QLD lquad load 
I 
I 
I 

0 0 0 2 4 0 QADDlquad add 
I 

0 0 0 2 4 1 QSUBlquad subtract 
I 

0 0 0 2 4 2$ QMPYlquad multiply 
I 
I 
I 
I 

I I 
0 0 0 2 4 3$IQDIVlquad divide 

I I 
I I 
I I 

0 0 0 2 4 4$ QNEG quad negate 

0 0 0 2 4 5$ QCMP quad compare 
0 0 0 2 4 6$ CQL convert quad to 

logical 

0 0 0 2 4 7$ CQD convert quad to 
double 

I I 
0 0 0 2 5 nnOIQUP lquad scale up 

I I 
I I 
I I 
I I 

0 0 0 2 5 nnllQDWNlquad scale down 
I I 
I I 

0 0 0 2 6 0$ICQA !convert quad to 
I ASCII 
I 

~ 82507 AOO 3/85 

ladr:=(if !=%230 then 0 
I else R[I.<14:15>+4])*4+A; 
lstack[adr:adr+3]:=EDCB; 
IRP:=RP-5 
ladr:=(if !=%234 then O 
I else R[I.<14:15>+4])*4+A; 
IRP:=RP+3; 
lcc(DCBA:=stack[adr:adr+3]) 
ccn(HGFE:=HGFE + DCBA); 
RP:=RP-4 
ccn(HGFE:=HGFE - DCBA); 
RP:=RP-4 
V:=if 

I -2**63<=HGFE*DCBA<=2**63-1 
then 0 else 1; 

HGFE:=HGFE * DCBA; 
cc(HGFE); 
RP:=RP-4 
V:=if DCBA=O then 1 else 0; 
HGFE:=HGFE I DCBA; 
cc(HGFE); 
RP:=RP-4 
DCBA:=-DCBA; 
ccn(DCBA) 
cc(HGFE:DCBA) 
V:=if 0 <= DCBA <=2**16-1 

then 0 else l; 
D:=A; 
RP:=RP-3 
V:=if -2**31 <=DCBA<= 2**31-1 

I then 0 else 1; 
IDC:=BA; 
IRP:=RP-2 
IDCBA:=DBCA* 
I lO**(I.<13:14>+1); 
IV:=if -2**63<=DCBA<=2**63-l 
I then O else l; 
lcc(DCBA) 
DCBA:=DBCA/ 

lO**(I.<13:14>+1); 
V:=O; cc(DCBA); 
cc(FEDC); 
B:=B+A; 

lwhile A<>O do 
I {B:=B-1; 
I bytedest(B):= 
I %60+abs(FEDC) mod 10; 
I FEDC:=FEDC/10; 
I A:=A-1} 
IV:=if FEDC=O then 0 else l; 
IRP:=RP-6 

B-17 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued} 

0 0 0 2 6 1$ICAQV convert ASCII to V:=O; 
I quad with initial N:=l; 

value while E<>O and V=O and N=l do 
{ccb(t:=bytedest(F)); 
if N=l then 

{DCBA:=DCBA*lO + t&%17; 
V:=if DCBA<=2**63-1 

then 0 else 1; 
F:=F+l; 
E:=E-1}} 

cc(E) !cce if entire string 
! is ASCII digits. 
!ccg if not. 

!Note: initial value (DCBA) 
should be positive. 

0 0 0 2 6 convert ASCII to RP:=RP+4; 
quad DCBA: =O; 

V: =0: 
N: =l: 
while E<>O and V=O and N=l do 

{ccb(t:=bytedest(F)): 
if N=l then 

{DCBA:=DCBA*lO + t&%17: 
V:=if DCBA<=2**63-1 

then 0 else 1; 
F:=F+l; 
E:=E-1}} 

cc(E) !cce if entire string 
! is ASCII digits. 
!ccg if not. 

0 0 0 2 6 3$ QRND quad round DCBA: = (if DCBA<O then DCBA-5 
else DCBA+5) I 10; 

V: ::Q; 

cc(DCBA) 
0 0 0 2 6 4$ CQI convert quad to V: =:if -2**15 <=DCBA<= 2**15-1 

integer then 0 else 1: 
D:=A; RP:=RP-3; 

0 0 0 2 6 5$ CDQ convert double to ( t, u): =BA; 
quad s::: if B<O 

then %177777 else 0. , 
RP:=RP+2; 
DCBA:=(s,s,t,u) 

0 0 0 2 6 6$ CIQ convert integer to t: ==A; 
quad s:::: if A<O 

then %177777 else O; 
RP:=RP+3; 
DCBA:=(s,s,s,t) 

0 0 0 2 6 7$ CLQ convert logical to t : =:A; RP : =RP+ 3 ; 
quad DCBA:=(0,0,0,t) 

B-18 ._, 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 2 7 O#IFADDlfloating add tl:=exponent(C); 
I IDC:=DC+BA t2:=exponent(A); 
I if BA<>O and DC<>O 
I and abs(tl-t2)<24 then 
I {signl:=D.<0>; 

sign2:=B.<0>; 
D.<O>:=B.<0>:=1; 
exponent(C):=O; 
exponent(A):=O; 
s:=tl-t2; 
if s>=O then 

BA:=BA'>>'s; 
else 

{DC:=DC'>>'-s; 
DC:=:BA; 
tl:=t2} 

if signl=sign2 then 
{DC:=DC'+'BA; 
if carry then 

{DC:=DC'>>'l; 
tl:=tl+l; 
D.<O>:=l}} 

else 
{DC:=DC'-'BA; 
if not carry then 

{DC:=-DC; 
signl:=-signl} 

if DC=O then 
tl:=signl:=O 

I else 
I while D.<0>=0 do 
I {DC:=DC'<<'l; 
I tl:=tl-1}} 
I DC:=DC'+'%400; 
I if carry then 
I tl:=tl+l; 

I I if t1. <6>=1 then 
I I call overflow; 
I I D.<O>:=signl; 
I I exponent(C) :=tl} 
I I else 
I I if DC=O or tl-t2<=-24 then 
I I DC: =BA; 
I I I cc(DC); RP:=RP-2 

0 0 0 2 7 l#IFSUBlfloating subtract lif BA<>O then 
I IDC:=DC-BA I B.<O>:=-B.<0>; 
I I I goto FADD 

.., 82507 AOO 3/85 B-19 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 2 7 2#IFMPYlfloating multiply if DC=O or BA=O then 
I IDC:=DC*BA DC:=O 
I I else 
I I {tl:=exponent(C); 
I I t2:=exponent(A); 
I I exp:=tl+t2-255; 
I I sign:=D.<0> xor B.<O>; 
I I D.<O>:=B.<0>:=1; 
I I exponent(C):=O: 

I exponent(A):=O: 
I DCBA:=DC'*'BA; 
I norm( DC): 
I DC:=DC'+'%400; 
I if carry then 

exp:=exp+l; 
if exp.<6>=1 then 

call overflow; 
D.<O>:=sign; 
exponent(C)!=expf 

I cc (DC): RP:=RP-2 
0 0 0 2 7 3# FDIV floating divide I i :f BA=O then 

DC:=DC/BA I call overflow; 
I i :f DC<>O then 
I {tl:=exponent(C); 
I t2:=exponent(A); 
I exp:=tl-t2+256; 
I sign:=D.<0> xor B.<O>; 

D.<O>:=B.<0>:=1; 
exponent(C):=O: 
exponent(A):=O: 
DC:=DC'/'BA; 

I norm(DC): 
I DC:=DC'+'%400; 
I if carry then 
I exp:=exp+l; 
I if exp.<6>=1 then 
I call overflow: 
I D.<O>:=sign; 
I I exponent(C):=exp} 

I I I cc(DC): RP:=RP-2 
0 0 0 2 7 4#IFNEGlfloating negate I if BA<>O then 

I IBA:=-BA I B.<O>:=-B.<O>: 
I I lcc(BA) 

0 0 0 2 7 5#IFCMP floating compare lif D.<O> <> B.<O> then 
I DC:BA I cc(D:B) 
I else 

{sign:=D.<O>: 
D.<O>:=B.<0>:=0; 
tl:=exponent(C); 
t2: =exponent (A): 
if tl<>t2 then 

if sign=O then 
cc(tl:t2) 

else cc(t2:tl) 
else 

if sign=O then 
cc(DC:BA) 

I I else cc(BA:DC)} 
I IRP:=RP-4 

0 0 0 2 7 6# CEF I convert extended lexponent(C):=exponent(A); 
Ito f loatinq IRP:=RP-2 

B--20 .., 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 2 7 

0 0 0 3 0 

0 0 0 3 0 

~ 82507 AOO 3/85 

7# CEFR convert extended 
to floating with 
rounding 

I 
I 
I 
I 
I 

O#IEADD extended add 
I HGFE:=HGFE+DCBA 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1# ESUB!extended subtract 
IHGFE:=HGFE-DCBA 
I 

isign:=D.<0>; D.<O>:=l; 
lexp:=exponent(A); 
I DC : =DC I + ' %4 0 0 ; 
I if carry then 
I {exp:=exp+l; 
I if exp.<6> then V:=l} 
ID.<O>:=sign; 
lexponent(C):=exp; 
IRP:=RP-2 
ltl:=exponent(E); 
lt2:=exponent(A); 
lif DCBA<>O and HGFE<>O 
I and abs(tl-t2)<56 then 
I {signl:=H.<0>; 
I sign2:=D.<0>; 
I H.<O>:=D.<O>:=l; 
I exponent(E):=O; 
I exponent(A):=O; 
I s:=t1-t2; 
I if s>=O then 
I DCBA:=DCBA'>>'s; 
I else 
I {HGFE:=HGFE'>>'-s; 

HGFE:=:DCBA; 
tl:=t2} 

if signl=sign2 then 
{HGFE:=HGFE'+'DCBA; 
if carry then 

{HGFE:=HGFE'>>'l; 
tl:=tl+l; 
H.<O>:=l}} 

else 
{HGFE:=HGFE'-'DCBA; 
if not carry then 

{HGFE:=-HGFE; 
signl:=-signl} 

if HGFE=O then 
tl:=signl:=O 

else 
while H.<O>=O do 

{HGFE:=HGFE'<<'l; 
tl:=tl-1}} 

HGFE:=HGFE'+'%400; 
if carry then 

tl:=tl+l; 
if tl.<6>=1 then 

call overflow; 
H.<O>:=signl; 

I exponent(E):=tl} 
!else 
I if HGFE=O or tl-t2<=-56 
I then HGFE:=DCBA; 
lcc(HGFE); RP:=RP-4 
I if DCBA<>O then 
I D.<O>:=-D.<O>: 
!goto EADD 

B-21 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 3 0 2# EMPYlextended multiply if HGFE=O or DCBA=O then 
IHGFE:=HGFE*DCBA HGFE:=O 
I else 
I {tl:=exponent(E); 
I t2:=exponent(A); 
I exp: =tl+t2-255; 

sign:=H.<O> xor D.<O>; 
H.<O>:=D.<O>:=l; 
exponent(E):=O; 
exponent(A):=O; 
HGFE:=HGFE'*'DCBA; 
norm(HGFE); 
HGFE:=HGFE'+'%400; 
if carry then 

exp:=exp+l; 
if exp.<6>=1 then 

call overflow;: 
H.<O>:=sign; 

I exponent(E):=exp} 
I cc:( HGFE); RP:=RP-4 

0 0 0 3 0 3# EDIV extended divide if DCBA=O then 
HGFE:=HGFE/DCBA call overflow; 

if HGFE<>O then 
[tl:=exponent(E); 
t2:=exponent(A); 
exp: =tl-t 2+2 56; 
sign:=H.<O> xor D.<0>; 
H.<O>:=D.<0>:=1; 
exponent(E):=O; 
exponent(A):=O; 
HGFE:=HGFE'/'DCBA; 
norm(HGFE); 
HGFE:=HGFE'+'%400; 
if carry then 

exp:=exp+l; 
if exp.<6>=1 then 

call overflow; 
I H.<O>:=sign; 
I I exponent(E):=exp} 
I lcc(HGFE); RP:=RP-4 

0 0 0 3 0 4# ENEGlextended negate I if DCBA<>O then 
IDCBA:=-DCBA I D.<O>:=-D.<0>; 
I lcc(DCBA) 

0 0 0 3 0 5# ECMPlextended compare I if H.<O> <> D.<O> then 
HGFE:DCBA I cc(H:D) 

I else 
I {sign:=H.<O>; 
I H.<O>:=D.<O>:=O; 

t1: =exponent ( E); 
t2:=exponent(A); 
if tl<>t2 then 

if sign=O then 
I cc(tl:t2) 
I else cc(t2:tl) 
I else 
I if sign=O then 
I cc(HGFE:DCBA) 
I else cc(DCBA:HGFE)} 

B·-22 -'182507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 3 0 6#ICDF convert double sign:=B.<0>; exp:=31+256; 
to floating if sign=l then BA:=-BA; 

if BA<>O then 
{norm( BA); 

I 
exponent(A):=exp; 
B.<O>:=sign} 

0 0 0 3 0 7 CDI I convert double to if B+A.<0> <> 0 then V:=l 
I integer I else V:=O; 
I IB:=A; RP:=RP-1 

0 0 0 3 1 0# CFIR convert floating lt:=l5+256-exponent(A); 
to integer with lsign:=B.<O>; 
rounding if -2**15 <= BA <= 2**15-1 

then {B.<0>:=1; 
BA:=BA'>>'t; 
BA:=BA'+'%100000; 
if sign=l then B:=-B 
else if B.<O>=l then 

V:=l} 
else V: =l;. 

cc(B); RP:=RP-1 
0 0 0 3 1 1# CF! convert floating t:=l5+256-exponent(A); 

to integer sign:=B.<O>; 
if -2**15 <= BA <= 2**15-1 
then {B.<0>:=1; 

BA:=BA'>>'t; 
if sign=l then B:=-B} 

else V:=l; 
cc(B); RP:=RP-1 

0 0 0 3 1 2# CFD convert floating t:=31+256-exponent(A); 
to double sign:=B.<0>; 

if -2**31 <= BA <= 2**31-1 
then {B.<0>:=1; 

exponent(A):=O; 
BA:=BA'>>'t; 
if sign=l then 

BA:=-BA} 
else V:=l; 

cc(BA) 
0 0 0 3 1 3# CFDRlconvert floating t:=31+256-exponent(A); 

Ito double with sign:=B.<0>; 
I rounding if -2**31 <= BA <= 2**31-1 
I then {B.<0>:=1; 

exponent(A) :=O; 
BAs:=BAs'>>'t; 
BAs:=BAs'+'%100000; 

I if sign=l then 
I BA:=-BA 
I else if B.<O>=l then 
I V:=l} 
I else V:=l; 
I cc(BA) 

0 0 0 3 1 4#ICED convert extended t:=31+256-exponent(A); 
I to double sign:=D.<0>; 
I !if -2**31 <= DCBA <= 2**31-1 
I I then {D.<0>:=1; 
I I DC:=DC'>>'t; 
I I if sign=l then 
I I DC:=-DC} 
I I else V:=l; 
I lcc(DC); RP:=RP-2 

4'f 82507 AOO 3/85 B-23 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 3 1 5# CEDRiconvert extended lt:=31+256-exponent(A); 
Ito double with lsign:=D.<0>; 
I rounding I if -2**31 <= DCBA <= 2**31-1 
I I then {D.<0>:=1; 
I I DCB:=(DCB'>>'t) 
I I '+'%100000; 
I I if sign=l then 
I I DC:=-DC 
I I else if D.<O>=l then 
I I V:=l} 
I I else V:=l; 
I I cc(DC); RP:=RP-2 

0 0 0 3 1 6# CEIRlconvert extended lt:=15+256-exponent(A); 
to integer with lsign:=D.<0>; 
rounding I if -2**15 <= DCBA <= 2**15-1 

then {D.<0>:=1; 
DC:=(DC'>>'t) 

'+'%100000; 
if sign=l then D:=-D 
else if D.<0>=1 then 

V:=l} 
I else V:=l; 
I cc(D); RP:=RP-3 

0 0 0 3 1 7# IDXD calculate index lt:=stack(A]; 
offset and test lbc:=t.<O>; t.<O>:=O; 
indices for indv:=O; psize:=l; 
bounds violation s:=A; 

while t>O do 
(bounds table {lower:=stack[s:=s+l]; 
in data space) upper:=stack[s:=s+l]; 

if B<lower and bc=O then 
{V: =1; t =O; 
cc(-1); R[7]:=B} 

if B>upper and bc=O then 
{V: =1; t =O; 
cc ( 1); R(7]:=B} 

size:=upper-lower+l; 
B:=B-lower; 
indv:=indv+psize*B; 
psize:=psize*size; 
RP:=RP-1; t:=t-1} 

if V=O then 
{R[7]:=indv; 
cc(R[7])} 

RP:=RP-1 
() 0 0 3 2 I convert floating t:~63+256-exponent(A); 

Ito quad sign:=B.<0>; RP:=RP+2; 
I if -2**63 <= DC <= 2"''*63-1 

then {D.<0>:=1; 
exponent(C):=O; 
B:=A:=O; 
DCBA:=DCBA'>>'t; 
if sign=l then 

DCBA:=-DCBA} 
else V:=l; 

cc(DCBA) 

B-24 ~ 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 3 2 l#ICFQRlconvert floating t:=63+256-exponent(A): 
I Ito quad with sign:=B.<O>; RP:=RP+2; 
I I rounding if -2**63 <= DC <= 2**63-1 
I I then {D.<0>:=1; 
I I exponent(C) :=0; 
I B:=A:=s:=O; 
I DCBAs:=(DCBAs'>>'t) 
I '+'%100000; 
I if sign=l then 
I DCBA:=-DCBA} 
I else V:=l; 
I cc(DCBA) 

0 0 0 3 2 2#iCEQ convert extended t:=63+256-exponent(A); 
I to quad sign:=D.<0>; 
I if -2**63 <= DCBA <= 2**63-1 
I then {D.<O>:=l; 
I exponent(A):=O; 
I DCBA:=DCBA'>>'t; 
I if sign=l then 
I DCBA:=-DCBA} 
I else V:=l; 
I cc(DCBA) 

0 0 0 3 2 3# CEQR convert extended lt:=63+256-exponent(A); 
to quad with sign:=D.<0>; 
rounding if -2**63 <= DCBA <= 2**63-1 

I then {D.<O>:=l; 
exponent(A):=O; 
s:=O; 
DCBAs:=(DCBAs'>>'t) 

'+'%100000; 
if sign=l then 

DCBA:=-DCBA} 
else V:=l; 

cc(DCBA) 
0 0 0 3 2 4# CQF convert quad sign:=D.<O>; exp:=63+256; 

to floating if sign=l then 
DCBA:=-DCBA; 

I if DCBA<>O then 
I {norm( DCBA); 

exponent(C):=exp; 
I D.<O>:=sign} 
I RP:=RP-2 

0 0 0 3 2 5# CFE I convert floating G:=exponent(A); 
Ito extended exponent(A):=O; 
I H:=O; 
I RP:=RP+2 

0 0 0 3 2 6# CDFR!convert double sign:=B.<0>; exp:=31+256; 
Ito floating with if sign=l then 
!rounding BA:=-BA; 
I lif BA<>O then 
I I {norm( BA); 
I I BA:=BA'+'%400; 
I I if carry then 
I I exp:=exp+l; 
I I exponent(A):=exp; 
I I B.<O>:=sign} 

0 0 0 3 2 7 CID !convert integer IH:=A; A := A>>l5; V:=O; 
Ito double IRP:=RP+l 

..-,. 82507 AOO 3/85 B-25 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 3 3 O#ICQFR convert quad lsign:=D.<0>; exp:=63+256; 
I to floating with I if sign=l then 
I rounding I DCBA:=-DCBA; 

I if DCBA<>O then 
I {norm( DCBA): 
I DC:=DC'+'%400; 
I if carry then 

exp:=exp+l; 
exponent(C):=exp; 
D.<O>:=sign} 

RP:=RP-2 
0 0 0 3 3 1# CIF convert integer sign:=A.<0>; exp:=l5+256; 

to floating if sign=l then A:=-A; 
!if A<>O then 
I {norm(A); 
I H:=exp; 
I A.<O>:=sign} 
!else H:=O; 
IRP:=RP+l 

0 0 0 3 3 2# CIE convert integer lsign:=A.<0>; exp:=l5+256; 
to extended I if sign=l then A:=-A; 

IH:=G:=O; 
I if A<>O then 
I {norm(A); 
I F:=exp; 
I A.<O>:=sign} 
!else F:=O; 
IRP:=RP+3 

0 0 0 3 3 3 XSMX checksum extended while A<>O do 
block {D:=D xor xmem(CB]; 
D=initial checksum A:=A-1; 
CB=block address CB:=CB+2}; 

I A= count RP:=RP-3 
0 0 0 3 3 4# CDE convert double sign:=B.<0>; exp:=31+256; 

to extended if sign=l then BA:=-BA; 
H:=O; 
if BA<>O then 

{norm( BA); 
G:=exp; 
B.<O>:=sign} 

else G:=O; 
RP:=RP+2 

0 0 0 3 3 5# CQER convert quad sign:=D.<O>; exp:=63+256; 
to extended with if sign=l then 
rounding DCBA:=-DCBA; 

if DCBA<>O then 
I {norm(DCBA); 
I DCBA:=DCBA'+'%400; 
I if carry then 
I exp:=exp+l; 
I exponent(A):=exp; 

I I D.<O>:=sign} 
0 0 0 3 3 6#ICQE I convert quad lsign:=D.<0>; exp:=63+256; 

I Ito extended lif sign=l then 
I I I DCBA:=-DCBA; 
I I lif DCBA<>O then 
I I I {norm(DCBA); 
I I I exponent(A):=exp; 
I I I D.<O>:=sign} 

B-·26 Af' 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 3 3 

0 0 0 3 4 
0 0 0 3 4 
0 0 0 3 4 

0 0 0 3 4 

0 0 0 3 4 

0 0 0 3 4 

~ 82507 AOO 3/85 

7# CE! !convert extended 
Ito integer 
I 
I 
I 
I 
I 
I 

0 I 
1 I 
2 LWUC I load word from 

luser code space 
3 XSMGlchecksum block 

I 
IC=initial checksum 
IB=block address 
IA=count 

4# IDXllcalculate index 

5# I IDX2 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

!offset and test 
index bounds 
for 1 dimension 

(bounds table 
in code space) 

calculate index 
offset and test 
index bounds 
for 2 dimensions 

(bounds table 
in code space) 

lt:=l5+256-exponent(A); 
lsign:=D.<0>; 
I if -2**15 <= DCBA <= 2**15-1 
I then {D.<0>:=1; 
I D:=D'>>'t; 
I if sign=l then D:=-D} 
I else V:=l; 
lcc(D); RP:=RP-3 

*** undefined *** 
*** undefined *** 

cc(A:=mem[2,A]) 

while A<>O do 
{C:=C xor stack[B]; 
A:=A-1; 
B:=B+l}; 

RP:=RP-2 
lower:=code[A]; 
upper:=code[A+l]; 
if B<lower then 

{V:=l; cc(-1); 
R[7]:=B} 

if B>upper then 
{V:=l; cc(l); 
R[7]:=B} 

if V=O then 
{R[7]:=B-lower; 
cc(R[7])} 

RP!=RP-2 
lower:=codeLA]; 
upper:=code[A+l]; 
if B<lower then 

{V:=l; cc(-1); 
R[7] :=B} 

if B>upper then 
{V:=l; cc(l); 

I R[7]:=B} 
ls:=upper-lower+l; 
IB:=B-lower; 
llower:=code[A+2]; 
lupper:=code[A+3]; 
I if C<lower then 
I {V:=l; cc(-1); 
I R[7] :=C} 
I if C>upper then 
I {V:=l; cc(l); 
I R[7]:=C} 
I if V=O then 
I {R[7]:=(C-lower)*s+B; 
I cc(R[7])} 
IRP:=RP-3 

B-27 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

B-28 

0 0 

0 0 

0 0 
0 0 
0 0 

0 0 

0 0 
0 0 

0 0 

0 0 

0 0 
0 0 

0 

0 

0 
0 
0 

0 

0 
0 

0 

0 

0 
0 

3 

3 

3 
3 
3 

3 

3 
3 

3 

3 

3 
3 

4 

4 

5 
5 
5 

5 

5 
5 

5 

5 

6 
6 

6# IDX3 calculate index 
off set and test 
index bounds 

I 
I 
I 
I 
I 
I 

for 3 dimensions 

(bounds table 
in code space) 

7# IDXP calculate index 
offset and test 
indices for 
bounds violation 

~ 
I 
I 
I 
I 
I 
I 
I 
I 

I I 

(bounds table 
in code space) 

0 ILWASlload SG word via 
1 ISWASlstor SG word via 
2 LDASlload SG double 

!via A 
3 SDASlstore SG double 

lvia A 
4 LBASlload SG byte via 
5 SBASlstore SG byte 

!via A 
6 CDX lcount duplicate 

I lwords extended 
I IDC=buffer address 
I IB=buffer size 
I IA=duplicate count 

7 IDFS !deposit field in 
I ISG memory 
I I 

0 ILWA I load word via A 
1 ISWA I store word via A 

indv:=O; psize:=l; 
for i=l to 3 by 1 do 

{lower:=code[A]; 
upper:=code[A:=A+l]; 
if B<lower then 

{V:=l; 
cc(-1); R[7]:=B} 

if B>upper then 
{V:=l; 
cc(l); R[7]:=B} 

size:=upper-lower+l; 
B:=B-lower; 
indv:=indv+psize*B; 
psize:=psize*size; 
B:=A+l; 
RP:=RP-1} 

if V=O then 
{R[7]:=indv; 
cc(R[7])} 

RP:=RP-1 
t: =code[ A]; 
bc:=t.<0>; t.<O>:=O; 
indv:=O; psize:=l; 
s:=A; 
while t>O do 

I {lower:=code[s:=s+l]; 
upper:=code[s:=s+l]; 
if B<lower and bc=O then 

{V:=l; t:=O; 
cc(-1); R[7]:=B} 

if B>upper and bc=O then 
{V:=l; t:=O; 
cc(l); R[7]:=B} 

size:=upper-lower+l; 
B:=B-lower; 
indv:=indv+psize*B; 
psize:=psize*size; 

I RP:=RP-1; t:=t-1} 
I if V=O then 
I {R[7]:=indv; 
I cc(R[7])} 
IRP:=RP-1 

A cc(A:=dest(A)) 
A dest(A):=B; RP:=RP-2 

RP:=RP+l; 
cc(BA:=dest(B:B+l)) 

ldest(A:A+l):=CB; 
IRP:=RP-3; 

Alccb(A:=bytedest(A)) 
lbytedest(A):=B; 
IRP:=RP-2 
lwhile B<>O and 
I xmem[DC]=xmem[DC-2] do 
I {A:=A+l; 
I B:=B-1; 
I DC:=DC+2} 
lcc(dest(A):=(dest(A) & -B) 
I I (C & B)); 
IRP:=RP-3 
lcc(A:=stack[A]) 
lstack[A]:=B; RP:=RP-2 

~ 82507 AOO 3/85 



Table B-2. 

0 0 0 3 6 2 

0 0 0 3 6 3 

0 0 0 3 6 4 
0 0 0 3 6 5 

0 0 0 3 6 6 

0 0 0 3 6 7 

0 0 0 3 7 0 

0 0 0 3 7 7 
0 0 0 4 0 O* 

% 

I 
I 
I 
I 
I 
I 
I 
I 
I 

APPENDIX B 
Instruction Set Definition 

Instruction Definitions (Continued) 

LDA load double via A RP: =RP+l; 
cc(BA:=stack[B:B+l]) 

SDA store double via A stack[A:A+l]:=CB; 
RP: =RP-3; 

LBA load byte via A ccb(A:=bytedest(A)) 
SBA store byte via A bytedest(A):=B; 

RP:=RP-2 
CDG count duplicate while B<>O and 

words stack[C]=stack[C-1] do 
C=buf fer address {A:=A+l; 
B=buf fer size B:=B-1; 
A=duplicate count C:=C+l} 

DFG deposit field in cc(stack(A]:=(stack(A] & -B) 
memory I (C & B)); 

RP:=RP-3 
I 
I *** undefined *** 
I 
I 

wwcs write LCS lwhile A>O do 
D=LCS address I {LCS[D]:=mem[C,B]"'mem[C,B+l] 
C=buf fer map I "'mem[C,B+2].<0:3>; 
B=buffer address I if (A:=A-1)=0 

I then goto done; 
A=ucode word count I D:=D+l;B:=B+2; 

I LCS[D]:=mem[C,B].<8:15> 
I "'mem[C,B+l] 
I "'mem(C,B+2].<0:11>; 
I D:=D+l; B:=B+3; A:=A-1; 
I } ; 
done: N:=O; Z:=l; RP:=RP-4 

! ! ! Note ! ! ! 
all memory referenced must be 
present 

0 0 0 4 0 O*IWWCSlwrite HCS/VCS/EPT if UCOPTIONFLAG=-1 then 
&I I {N: =O; Z:=O; goto done2}; 

I I y:=l; x:=case C.<0:1> of 
I ID=HCS/VCS/EPT {12;6:8;0}; 
I I address while A > 0 do 
I IC.<O:l>=control {case C.<0:1> of 

I store type: {{HCS[D]:=xmem[CB:CB+5]}; 
I OO=HCS {VCS[D]:=xmem[CB:CB+2]}; 
I Ol=VCS {EPT[D]"'ECS[D]:= 
I lO=EPT/ECS xmem[CB:CB+3]; 
I ll=reserved if D.<0:6><>0 then y:=64}; 
IC.<2:15>"'B=abs. { } ; 
I extended buff er } ; 
I address if (A:=A-1)=0 
IA=ucode count then goto done; 
I I D:=D+y; CB:=CB+x; 
I I } ; 
I I done: N:=O;- Z:=l; 
I ldone2: RP:=RP-4 
I l***Note*** 
I I VCS/HCS addresses should not 
I I exceed 2**13-1 

...,, 82507 AOO 3/85 B-29 



APPENDIX B 
Instruction Set Definition 

B-30 

Table B-2. Instruction Definitions (Continued) 

0 0 0 4 0 1* VWCSlverify LCS N:=O;Z:=l; 
% D=LCS address while z and A>O do 

C=buffer map {if LCS[D]<>mem[C,B] 
B=buffer address Amem[C,B+l] 
A=ucode word count Amem[C,B+2].<Q:3> 

then {N:=l;Z:=O}; 
if Nor (A:=A-1)=0 
then goto done; 
D:=D+l;B:=B+2; 
if LCS[D]<>mem[C,B].<8:15> 

"mem[C,B+l] 
"mem[C,8+2].<0:11> 

then {N:=l;Z:=O} 
I else {D:=D+l;B:=B+3;A:=A-l}; 
I , } : 
I done: RP:=RP-4 
I ! ! ! Note ! ! ! 
I all memory referenced must be 
I present 
I bus packets may not be 
I received correctly while a 
I IVWCS is executing 

0 0 0 4 0 1* VWCSlverify HCS/VCS/EPT if UCOPTIONFLAG=-1 then 
& I {N:=O; Z:=O; goto done}; 

I N:::O; Z:=l; y:=l; x:== 
I ID=HCS/VCS/EPT case C.<0:1> of {12;6;8;0}; 
I address while Z and A > 0 do 
I C.<O:l>=control {case C.<0:1> of 
I store type: {{if HCS[D]<> 
I OO=HCS xmem[CB:CB+S] then 
I Ol=VCS {N:=l; Z:=O; goto done}}; 
I lO=EPT/ECS {if VCS[D]<> 
I ll=reserved xmem[CB:CB+2] then 
I C.<2:15>AB=abs. {N:=l; Z:=O; goto done}}; 
I extended buffer {if EPT[D]AECS[D]<> 
I address xmem[CB:CB+3] then 
I A=ucode count {N:=l; Z:=O; goto done}; 
I if 0<0:6><>0 then y:=64}; 
I { } ; 
I } ; 
I if N or (A:=A-1)=0 
I then goto done; 
I I D:=D+y; CB:=CB+x; 
I I l ; 
I !done: RP:=RP-4 
I l***Note*** 
I I VCS/HCS addresses should not 
I I I exceed 2**13-1 

0 0 0 4 0 2*1RWCSiread LCS lwhile A>O do 
%1 ID=LCS address {mem[C,B]Amem[C,B+l] 

I IC=buffer map Amem[C,B+2].<0:3>:=LCS[D]; 
I IB=buffer address if (A:=A-1)=0 then 

IA=ucode word count then goto done; 
I I D:=D+l;B:=B+2; 
I I mem[C,B].<8:15>Amem[C,B+l]A 
I I mem[C,B+2].<0:ll>:=LCS[D]; 
I I D:=D+l;B:=B+3;A:=A-l}; 
I ldone: RP:=RP-4 
I I ! ! ! Note ! ! ! 
I lall memory referenced must be 
I I present 

.., 82507 AOO 3/85 



Table B-2. 

0 0 0 4 0 2* RWCS 
& 

0 0 0 4 0 3 
0 0 0 4 0 4* SMBP 

% 

0 0 0 4 0 4*ISMBP 
&I 

I 

0 0 0 4 0 5* FRST 

0 0 0 4 0 6 LBX 
0 0 0 4 0 7 SBX 
0 0 0 4 1 0 LWX 
0 0 0 4 1 1 swx 
0 0 0 4 1 2 LDDX 
0 0 0 4 1 3 SDDX 
0 0 0 4 1 4 ILQX 

I 
0 0 0 4 1 5 ISQX 

I 
0 0 0 4 1 6 IDFX 

I 
I 

~ 82507 AOO 3/85 

APPENDIX B 
Instruction Set Definition 

Instruction Definitions (Continued) 

read WCS or EPT lif UCOPTIONALFLAG=-1 then 
I {N:=O; Z:=O; goto done}; 
N:=O; Z:=l; y:=l; x:= 

case C.<0:1> of 
D=HCS/VCS/EPT {12;6;8;0}; 

address while A > 0 do 
C.<O:l>=control {case C.<0:1> of 

store type: {{xmem[CB:CB+5]:=HCS[D]}; 
OO=HCS {xmem[CB:CB+2]:=VCS[D]}; 
Ol=VCS {xmem[CB:CB+3]:= 
lO=EPT/ECS EPT[D]"ECS[D]; 
ll=reserved if D.<0:6><>0 then x:=64}; 

C.<2:15>"B=abs. {} ; 
extended buff er } ; 
address if (A:=A-1)=0 

A=ucode count then goto done; 
D:=D+y; CB:=CB+x; 

} ; 
done: RP:=RP-4 
***Note*** 

VCS/HCS addresses should not 
exceed 2**13-1 
*** undefined *** 

set memory brkpt breakpointmode:=B.<0:2>; 
B.<O>=read flag breakpointaddress:= 

.<l>=execute flag B.<9:15>"'A; 

.<2>=write flag BPADDR:=BA; RP:=RP-2; 

.<9:15>=high- ! ! ! Note ! ! ! 
order addr the address is a physical 

A= low-order addr memory address 
any and all combinations of 
access flags may be set 
BA=OD will disable the trap 

set memory brkpt lbreakpointmode:=C.<0:2>; 
C.<O>=read flag lbreakpointaddress:=BA; 
C.<l>=execute flagiBPADDR:=CA; 
C.<2>=write flag IBPADDRX:=B; 
C.<3:8>=mab type IRP:=RP-3 
BA=extended addr I ! ! ! Note ! ! ! 

(absolute) I any and all combinations of 
I access flags may be set 
C=O will disable the trap 
all memory referenced must 
be present 

firmware reset reset and stop instruction 
execution 

load byte extended ccb(B:=bxmem[BA]);RP:=RP-1 
store byte extnd. bxmem[BA] :=C; RP:=RP-3 
load word extended cc(B:=xmem[BA]);RP:=RP-1 
store word extnd. xmem [BA] : =C; RP:=RP-3 
load double extnd. cc(BA:=xmem[BA:BA+3]) 
store dbl. extnd. xmem[BA:BA+3]:=DC;RP:=RP-4 

I load quad extended RP:=RP+2; 
I cc(DCBA:=xmem[DC:DC+7]) 
I store quad xmem[BA:BA+7]:=FEDC; 
I extended RP:=RP-6 
I deposit field cc(xmem[BA]:=(xmem[BA] & 
I extended ~c I (D & C))); 

I RP:=RP-4; 

B-31 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 4 1 

0 0 0 4 2 

0 0 0 4 2 

0 0 0 4 2 

0 0 0 4 2 

0 0 0 4 2 

B-32 

7 IMVBXlmove bytes 
I I extended 
I IED=destination 
I I address 
I ICB=source address 
I IA=byte count 

0 IMBXR move bytes 
I extended reverse 
I ED=destination 
I address 
I CB=source address 
I A=byte count 

1 MBXX move bytes extnd. 
and checksum 
F=initial xsum 
ED=destination 

address 
CB=source address 
A=byte count 

2 CMBX compare bytes 
extended 
ED=destination 

address 
CB=source address 

IA=byte count 
I 

3* CRAXlconvert rel. to 
labs. ext. address 
I 

I 
I 
I 

I 

4* RSPT read segment page 
% table entry 

BA=ext. address 

while A<>O do 
{bxmem[ED]:=bxmem[CB]; 
ED:=ED+l; 
CB:=CB+l; 
A:=A-1;}; 

IRP:=RP-5; 
lwhile A<>O do 
I {bxmem[ED]:=bxmem[CB]; 
I ED:=ED-1; 
I CB:=CB-1; 
I A:=A-1;}; 
IRP:=RP-5; 
while A<>O do 

{bxmem[ED]:=t:=bxmem[CB]; 
F:=F xor t; 
ED:=ED+l; 
CB:=CB+l; 
A:=A-1;}; 

RP:=RP-5 
N:=O; Z:=l; 
while z and A<>O do 

{cc(bxmem[ED]:bxmem[CB]); 
if z then 

{A:=A-l;ED:=ED+l; 
CB:=CB+l;}}; 

RP:=RP-5 
if B.<0:14>=0 then 

{B.<0:14>:=CSSEG[DS]} 
else if B.<0:14>=1 then 

{B.<0:14>:=CSSEG[l]} 
else if B.<0:14>=2 then 

{B.<0:14>:=CSSEG[cmap]} 
else if B.<0:14>=3 then 

{B.<0:14>:=CSSEG[2]} 
else if B.<O>=O then 
{if (BA+XL)->alu carry then 

{ instruction failure }; 
BA:=BA+XB }; 

B.<O>:=l; 
xa:=CRAX(BA); 
p:=xa.<15:20>; 
s:=xa.<2:14>; 
K:=O; 
if s >= SEGTABSIZE then 

{ B ·= 1; K := 1 } 
else 
if MAP[l5,p mod 32+32] 

= s"p.<10> then 
{B:=MAP[15,p mod 32]} 

else 
{if p>=SEG[s*2].<9:15> then 

{B := l; K ·= l} 
else 

{if SEG[s*2].<0>=0 then 
B:=MAP[SEG[s*2].<0:4>,p] 

else 
B:=mem[SEG[s*2].<5:8> 

I ,SEG[s*2+l]+p] } 
I } ; 
IRP:=RP-1 

..,, 82507 AOO 3/S:i 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 4 2 

0 0 0 4 2 

0 0 0 4 2 

~ 82507 AOO 3/85 

4* RSPTlread segment page 
& I table entry 

IBA=ext. address 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

5*1WSPT write segment page 
% table entry 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I I 

C=new spt entry 
BA=extended adrs. 

5*IWSPTlwrite segment page 
& I I table entry 

I IC=entry 
I BA=ext. address 
I (invalid on exit) 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

lxa:=CRAX(BA); 
lp:=xa.<15:20>; 
ls:=xa.<1:14>; 
K:=O; 
if s >= SEGTABSIZE or 

{ptmiss(xa) and 
p>=SEG[s*2].<9:15>} then 

{B:=l; K:=l;} 
else 
{if ptmiss(xa) then 

B:=mem[SEG[s*2].<5:8>, 
SEG[s*2+l]+p] 

else B:=PCACHE[s,p]}; 
RP:=RP-1 
xa: =CRAX( BA); 
p:=xa.<15:20>; 
s:=xa.<2:14>; 
if s>=SEGTABLESIZE then 
{instruction failure}; 

I !Update cached entries 
lif MAP[15,p mod 32+32]= 
I sAp.<10> then 
I {if C.<15> then 
I MAP[15,p mod 32+32]:=-1 
I else 
I MAP[15,p mod 32]:=C 
I } ; 
I if p>=SEG[s*2].<9:15> then 
I {instruction failure}; 
I !update mapped entries 
I if SEG[s*2].<0>=0 then 
I MAP[SEG[s*2].<0:4>,p]:=C; 
I !unconditionally update 
I !the page table 
mem[SEG[s*2].<5:8>, 

SEG[s*2+1]+p]:=C; 
RP:=RP-3. 
xa: =CRAX( BA); 
p:=xa.<15:20>; 
s:=xa.<1:14>; 
if s >= SEGTABSIZE then 
Instruction Failure; 

PCACHE[s,p]:=C; 
if -C.<13> then 
PCACHE.<15>:=1; 

PCACHETAG[s,p]:= 
(PCACHE[s,p]&%174003) I 
(xa.<2:10><<2); 

if p>=SEG[s*2].<9:15> then 
Instruction Failure; 

lmem[SEG[s*2].<5:8>, 
I SEG[s*2+l]+p]:=C; 
lif C=l then 
I {xa.<16:31>:= 
I xa.<16:31>&%174000; 
I for i=O to 127 do 
I {if hit ( xa) then 
I invalidate entry; 
I xa:xa+%20}}; 
IRP:=RP-3 

B-33 



APPENDIX B 
Instruction Set Definition 

B-34 

Table B-2. Instruction Definitions (Continued) 

0 0 0 4 2 

0 0 0 4 2 

0 0 0 4 3 

0 0 0 4 3 

0 0 0 4 3 

0 0 0 4 3 

0 0 0 4 3 
0 0 0 4 3 
0 0 0 4 3 
0 0 0 4 3 
0 0 0 4 3 

I ! ! ! Note ! ! ! 
I 
I if R is not set in C, 
I invalidate the entry; 
IWSPT must not be used until 
ISEG and the page tables are 
iset up and SEGTABSIZE is 
I present 

6* RXBLiread extended 
I and limit 

7* SXBLlset extended 
I and limit 
DC= base 

baseiRP:=RP+4; 
IDCBA:=MAP[l4,60:63] 

base if (DC.<31> then 

BA= limit 
I 

O*ILCKX lock down extended 
I memory 
I D.<O>=lock only if 

I 

already locked 
C=lock count 
BA=ext. address 

1* ULKXlunlock extended 
I memory 
ID=map entry mask 
IC=unlock count 
IBA=ext. address 
I 
I 
I 
I 
I 
I 

2* CMRWICME read/write 
% IB.<0:3>=map 

IA=word address 
I 
I 
I 
I 
I 

2* CMRWICME read/write 
& IBA=ext. address 

I 
I 
I 
I 
I 
I 

3 I 
4 I 
5 I I 
G*IRSMTlread from OSP 
7*IWSMTlwrite to OSP 

{ instruction failure }; 
XB := DC; 
XL := BA; 
RP:=RP-4 
m:=RSPT(BA); 
p:=m.<0:12>; 
if m.<15>=0 and (D.<0>=0 

or PHYSEG[p]<O) then 
{if PHYSEG[p] < 0 
then 

{PHYSEG[p]:=PHYSEG[p]-C; 
K : = 0} 

else 
{PHYSEG[p]:=-C; 
K : = 1} 

Z:=l; N:=O} 
else {Z:=O; N:=l}; 
RP:=RP-4 
m:=RSPT(xa:=CRAX(BA)); 
p:=m.<0:12>; 
if m.<15>=0 and 

(x:=PHYSEG[p]+C)<=O then 
{if x<>O then PHYSEG[p]:=x 
else 

{PHYSEG(p]:=xa.<2:14>; 
WSPT( BA, m&D )}; 

ccz(x)} 
else {Z:=O; N:=l}; 
RP:=RP-4 
N:=O;Z:=l; 
if I/O locked out then 

{mem[B.<0:3>,A] 
:=mem[B.<0:3>,A]; 

free I/O channel; 
if CME interrupt then Z:=O 

else {N:=l; Z:=O}; 
RP:=RP-2 
N:=O; Z:=l; x:=INTA; 
xmem[BA]:=xmem[BA]; 
if CME interrupt then Z:=O; 
INTA:=x; 
RP:=RP-2 
! ! ! Note ! ! ! 
Should read xmem[BA] 
physical memory, not 

*** undefined *** 
*** undefined *** 
*** undefined *** 

enable read from OSP 
write first character 

from 
CACHE. 

to OSP 

4J 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 4 4 0* RIBAlread INTB and INTAIRP:=RP+2; 
!registers IB:=INTB; A:=INTA 

O 0 0 4 4 1* SVMP save map entries m:=word:=O; 
% while word<%2000 do 

{memory(2,word]:= 
MAP[m.<12:15>,m,<0:5>] 

m:=m+%2000; 
if alu carry then m:=m+l; 
word:=word+l} 

0 0 0 4 4 1* SVMP save "map" entries m:=O; 
& do 

{memory[2,m]:= 
PCACHE[m.<6:9>,m.<10:15>]; 

I m:=m+l} 
I until m=%2000 

0 0 0 4 4 2* RPT I read process time RP:=RP+2; 
BA:={if not DS then 

PTIME+(TIMER)+(lOOOO* 
INTA. < 13>) 

else 
PT I ME}. 

0 0 0 4 4 3* SPT set process timer PTIME:= 
{if not DS then BA-TIMER­

(INTA.<13>*10000) 
I else 
I BA 
I } ; 
IRP:=RP-2. 

0 0 0 4 4 4 SCS I set code segment I if ENV.CS=l or ENV.LS=l 
IBA=byte address inlthen B.<0:14>:=2 

I I current code I else B. <O: 14>: =3; 
0 0 0 4 4 5*ILQASlload SG quad via AIRP:=RP+3; 

I I cc(DCBA:=sysstack[A:A+3]) 
0 0 0 4 4 6*ISQAS!store SG quad via sysstack[A:A+3]:=EDCB; 

I IA RP:=RP-5 
0 0 0 4 4 7*IRCHN reset I/0 channel if i/o channel available then 

%1 {if A>=O 
I then channel ioreset 
I else channel lockup 
I at %0777; 
I N:=O; Z:=l} 
I else {N:=l; Z:=O}; 
I RP:=RP-1 

0 0 0 4 4 7* RCHN reset I/0 channel if A>O 
& then channel ioreset 

else channel lockup 
with RPSA=%40; 

N:=O; Z:=l; 
RP:=RP-1 

0 0 0 4 5 O* BNDW bounds test words I if A '>' L then 
I cc(C:=l) 

~ 82507 AOO 3/85 

else 
if B=O or (C'<='L-A and 

C=word address in C+B-l'<='L-A and C'<='C+B-1) 
I stack or (C'>'L+350 and 
IB=buffer size in I C'<='C+B-1 and 
I words I (C+B-1) .<0:5> < 
IA=number of words I SEG[CSSEG[0]*2].<9:15>) 
I of parameters lthen cc(C:=O) 
I and stack markerlelse cc(C:=l); 
I IRP:=RP-2 

B-35 



APPENDIX B 
Instruction Set Definition 

Table B-2 . Instruction Definitions (Continued) 

.--·----------------------------------·~~-----------·---------------~ 

B·-36 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

0 

4 

4 

4 

4 

4 

4 

4 

5 

5 

5 

5 

5 

5 

5 

1% BPT I instruction 
!breakpoint trap 
I 

1& BPT instruction 
breakpoint trap 

I 
I 
I 
I 
I 
I 
I 

I I 
2*IBCLD bus cold load 

I 
3*ITPEF test parity error 

%1 freeze circuits 
I 
I 
I 

4 ISCMP set code map 
I 
I 
I 
I 
I 
I 
I 

5* SRST software reset 
& I 

I 
I 
I 
I 
I 

6* DDTXIDDT request 
& I 

IA.<8:15>=DDT 
I function request 

if BKPT = 0 
then interrupt via SIV #19 
BKPT := O; 
i:=BPBASE; 
do 

I {if sysstack[i]=CMSEG[cmap] 
I and sysstack[i+l]=P-1 

then {I:=sysstack[i+2]; 
roma:=EPT[I]}; 

i:=i+BPSIZE} 
until i '>' BPLIM; 
Instruction failure 
if BKPT = 0 

I then interrupt via SIV #19 
IBKPT := O; 
I i:=BPBASE; 
ldo 
I {if sysstack[i]=SST[cseg] 
I and sysstack[i+l]=P-1 
I then {NI:=sysstack[i+2]; 
I NEXT INST}; 
I i:=i+BPSIZE} 
!until i '>' BPLIM; 
!Instruction failure 
simulate a bus cold load 
from the panel 
'Test parity circuits'; 
if error then 

{SD:=halt loop error code; 
I halt 
I } • 
I if A.<0:6>=0 then 
I {A.<O>:=CS; 

A.<l>:=LS; 
A.<2:6>:=CSPACEID 

} 
else 
if A.<0:6>=%133 then 

! external call 
{i:=SEG[CSSEG[cseg]*2] 

.<9:15>*%2000-1; 
A:=code[i-A.<7:15>] 

I }. 
I if cpuAtype=TXP then 
I {reload LCS from prom; 
I if successful then 
I cce 
I else 
I ccg 
I } • 
I if cpuAtype=TXP then 
I {if UREQ or -TCBE then 
I eel 
I else 
I {issue function request(A) 
I to DDT; 
I cce 
I } ; 
I } ; 
IRP:=RP-1. 

~ 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 0 4 5 7& LIOC!load IOC entry IIOCSPAD[A]' :='IOC[A] for 4. , 
IA=subchannel # IRP:=RP-1 

0 0 0 4 6 O& SIOClstore IOC entry IIOC[A]' :='IOCSPAD[A] for 4. , 
IA=subchannel # IRP:=RP-1 

0 0 0 4 6 2* XIOClexchange IOC entrylif i/o not locked out then 
I I cc(-1) 
IA=subchannel # I else 
I EDCB=IOC entry I {temp ': =' IOC[A] for 4; 
I IOC[A] ': =' EDCB for 4. , 
I if TNSI I then 
I {temp I:= I IOSPAD[A] for4; 
I IOSPAD[A] I:= I EDCB for4; 

} ; 
free i/o channel; 
EDCB I:: I temp for 4; 
cc(O); 

} ; 
RP:=RP-1. 

0 0 0 4 6 3*ISCPV set current UC"' BASE: =C; 
I process variables UL"' BASE: =B: 
I A.<0:7>=ULseg size UCASIZE:=A.<8:15>; 
I A.<8:15>=UC size ULASIZE:=A.<0:7>; 
I B=UL seg base RP:=RP-3. 
I C=UC seg base 

0 0 0 4 6 4*IBIKE bicycle while idle tests:='number of tests' ; 
while tests>=O do 

I {'perform cpu self test'; 
I if error then 
I {SD:=error code; 
I halt 
I } 
I tests:=tests-1; 
I } . 

0 0 0 4 6 5 I *** undefined *** 
0 0 0 4 6 6 I *** undefined *** 
0 0 0 4 6 7 I I I *** undefined *** 
0 0 0 4 7 O*IASPTIAddress of Segment xa: =CRAX ( B, A) ; 

I !Page Table header s:=xa.<2:14>; 
I !BA= extended addr. K:=O; 
I I to convert if s>=SEGTABSIZE or 
I IC= byte off set SEG[t*2].<9:15> = 0 then 
I I {K:=l} 
I else 
I {xa.<0:14>:=SEG[t*2].<5:8>; 
I xa.<15:31>:=SEG[t*2+1]*2; 
I xa.<0>:=1; 

CB:=xa-$UDBL(C); 
} ; 

RP: =RP-1. 
0 0 0 4 7 1 ESE extensible stack if (stack[L-3]+A)=O then 

expansion RP:=7 
else 

I {cc (RP-1); 
I call DPCL(sysstack[%171]); 
I } . 

0 0 0 4 7 2 I 
I *** undefined *** 
I 

0 0 0 7 7 7 I 

~ 82507 AOO 3/85 B-37 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 0 1 - ICMPI compare immediate lcc(A:imm); RP: =RP-1; 
0 0 2 - !ADDS add to s IS:=S+imm 
0 0 3 - ILADI logical add ccl(A:=A'+'imm) 

I immediate 
0 0 4 0-- - - IORRI OR right immediate cc(A:=AI I.<8:15>) 
0 0 4 4-- - - IORLI OR left immediate cc(A:=AI (I.<8:15>'«'8)) 
0 0 5 - ILDLI load left RP:=RP+l; 

I immediate cc(A:=imm rotate 8) 
0 0 6 - IANRI AND right cc(A.:=A&imm) 

I immediate 
0 0 7 - IANLI AND left immediate cc (A.: =A& ( imm rotate 8)) 
1 0 0 - ILDI load immediate RP:=RP+l; cc(A:=imm) 
1 0 Oxx - LDXI load x immediate cc(X:=imm) 
1 0 4 ADDI add immediate lccn(A:=A+imm) 
1 0 4xx - ADXI I add x immediate lccn(X:=X+imm) 
I 1 0 0-- - BIC branch if carry I if K then branch 
I 1 1 0-- - BGTR branch if greater I if -(NIZ) then branch 
I 1 2 0-- - BEQL branch if equal if z then branch 
I 1 3 0-- - BGEQ branch if greater if - N then branch 

or equal 
I 1 4 0-- - BLSS branch if less if N then branch 
I 1 5 0-- - BNEQ branch if not if - z then branch 

equal 
1 6 0-- - BLEQ branch if less or if NIZ then branch 

equal 
1 7 0-- - BNOC branch no carry I if - K then branch 
1 0 4-- - BUN branch I branch 

unconditional I 
1 Oxx4-- - BOX I branch on x I if X<A then (X:=X+l; branch} 

I I else RP:=RP-1 
1 4 4-- - BAZ !branch on A zero I if A=O then branch; RP:=RP-1 

I l 5 4-- - BANZlbranch on A I if A<>O then branch; 
I nonzero RP:=RP-1 

1 6 4-- - BNOV branch if no if - v then branch 
overflow 

1 7 4-- - BSUB branch to stack[S:=S+l]:=P; branch 
subroutine 

2 OxxO-- - LWP load word from RP:=RP+l; 
program cc(A:=code[branchadr+X]) 

2 Oxx4-- - LBP load byte from RP:=RP+l; 
program adr:=(if indirect then 

code[dba] else 0) 
+dba'<<'l+X; 

A:=code[adr.<0:14> 
+ (dba&%100000)]. 

<8*adr.<15>:8*adr.<15>+7>; 
I ccb(A) 

0 2 4 n r c PUSH I push to stack lstack[S+l:S+c+l] 
I I :=R[(r-c)mod 8: r]; 
I IRP:=n; S:=S+c+l 

1 2 4 n r c POP I pop from stack IR[ ( r-c )mod 8: r] 
I I :=stack[S-c:S]; 
I IRP:=n; S:=S-c-1 

0 2 5 0-- - RSUBlreturn from IP:=~stack[S]; 
I subroutine IS::::S-I.<8:15> 

B-38 "'f' 82507 AOO 3/85 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

1 2 5 EXIT I procedure exit I if CSPACEID<>(stack[L-1]& 
I %4437) then 
I call xmap(stack[L-1]&%4437); 
S:=L-I.<8:15>; 
P:=stack[L-2]; 
t:=ENV; 
ENV:={stack[L-l]&ENV&%173000} 

I I {stack[L-1) & %4740} 
I I { ENV & % 3 7} ; 
IL:=stack[L]; 
I if t.<O> then 
I instruction breakpoint. 

0 2 5 4 LWXX load word extendedlcc(A:=xmem[A<<l+xbase]) 
0 2 6 4 indexed I 
0 2 5 5 SWXX store word extnded xmem[A<<l+xbase]:=B; 
0 2 6 5 indexed RP:=RP-2 
0 2 5 6 - ILBXX load byte extended ccb(A:=bxmem[A+xbase]) 
0 2 6 6 - I indexed 
0 2 5 7 - ISBXX store byte extnded bxmem[A+xbase]:=B; 
0 2 6 7 - I indexed RP:=RP-2 
1 2 5 4-- - - I *** undefined *** 
0 2 6 OOmssd n MOVW move words while A>O do 

O 2 b U2mssd n COMWlcompare words 
I 
I 
I 
I 
I 
I 

1 2 6 OOmssd n MOVB move bytes 

1 2 6 02mssd n COMB compare bytes 

1 2 6 40mssd n SBW scan bytes while 

1 2 6 42mssd n SBU scan bytes until 

~ 82507 AOO 3/85 

{dest(C):=source(B); 
A:=A-1; B:=B+movestep; 
C: =C+movestep}; 

RP:=n 
N:=O; Z:=l; 
while z and A>O do 

{cc(dest(C)' :'source(B)); 
if z then 
{A:=A-1; B:=B+movestep; 

I C:=C+movestep}}; 
IRP:=n 
lwhile A>O do 
I {bytedest(C):=bytesource(B); 
I A:=A-1; B:=B+movestep; 
I C:=C+movestep}; 
IRP:=n 
IN:=O; Z:=l; 
while Z and A>O do 

{cc(bytedest(C): 
bytesource(B)); 

if z then 
{A:=A-1; B:=B+movestep; 

I C:=C+movestep}}; 
IRP:=n 
!while bytesource(B)<>O and 
I bytesource(B)=A do 
I B:=B+movestep 
IK:=bytesource(B)=O; RP:=n 
!while bytesource(B)<>O and 
I bytesource(B)<>A do 
I B:=B+movestep 
IK:=bytesource(B)=O; RP:=n 

B-39 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

0 2 7 - IPCALlprocedure call lstack[S+l:S+3]:=(P 
I I I , (ENV & %177740) ICSPACEID 
I I I , L); 
I I lt:=I.<7:15>; 
I I lif -PRIV then 
I I I {if t>=code[O] then 
I I I {if t>=code[l] then 
I I I pr iv trap; 
I I PRIV:=l; 
I I } ; 

I } ; 
IL:=S:=S+3; 
IP:=code[t]; 
IRP:=7. 

1 2 7 XCAL external procedurelt:=(ENV&%177740) ICSPACEID; 
call lstack[S+l:S+3]:=(P,t,L); 

li:=SEG[CSSEG(cseg]*2].<9:15> 
I *%2000-1; 
lc:=code(i-I.<7:15>]; 
ls.<7>:=c.<O>; cs 
ls.<4>:=c.<1>; LS 
ls.<11:15>:=c.<2:6>; space 
I index 
Ii f s<>CSPACEID then 
I call xmap(s); 
lm:=2*t.<l>+t.<0>+2; 
lt:=c.<7:15>; 
I if - PRIV then 
I {if t>=mem(m,O] then 
I {if t>=mem(m,1] then 

pr iv trap; 
PRIV:=l; 

} ; 
} ; 

L:=S:=S+3; 
LS:=c.<l>; 
CS:=c.<O>; 
P:=code(t]; 
RP:=7. 

0 3 0 0 LLS logical left shift computeshiftcount; 
cc(A:=A'<<'shiftcount) 

0 3 0 1 LRS logical right computeshiftcount; 
shift cc(A:=A'>>'shiftcount) 

0 3 0 2 ALS arithmetic left computeshiftcount; 
shift cc(A:=A<<shiftcount) 

0 3 0 3 ARS arithmetic right computeshiftcount; 
shift cc(A:=A>>shiftcount) 

0 3 0 4-- - *** undefined *** 
1 3 0 0 DLLS double logical computeshiftcount; 

left shift cc(BA:=BA'<<'shiftcount) 
1 3 0 1 DLRS double logical lcomputeshiftcount; 

right shift lcc(BA:=BA'>>'shiftcount) 
1 3 0 2 DALS double arithmetic lcomputeshiftcount; 

left shift lcc(BA:=BA<<shiftcount) 
1 3 0 3 OARS double arithmetic lcomputeshiftcount; 

right shift icc(BA:=BA>>shiftcount) 
1 3 0 4-- - I *** undefined *** 
I 3 Oxx - LDX load X lcc(X:=word) 

B-40 '1J 82507 AOO 3/8~) 



APPENDIX B 
Instruction Set Definition 

Table B-2. Instruction Definitions (Continued) 

3 4xx -

4 Oxx -
4 4xx -
5 Oxx -
5 4xx -
6 Oxx -
6 4xx -
7 Oxx -
7 4xx -

"'82507 AOO 3/85 

- INSTOlnondestructive 
I I store 

- ILOADlload 
- ISTORlstore 
- ILDB I load byte 
- ISTB lstore byte 
- ILDD I load double 
- ISTD lstore double 
- ILADRlload address 
- IADM ladd to memory 

lwordx:=A 
I 
IRP:=RP+l; cc(A:=wordx) 
lwordx:=A; RP:=RP-1 
IRP:=RP+l; ccb(A:=bytex) 
lbytex:=A.<8:15>; RP:=RP-1 
IRP:=RP+2; cc(BA:=dwordx) 
ldwordx:=BA; RP:=RP-2 
IRP:=RP+l; A:=address+X 
lccn(wordx:=wordx+A); RP:=RP-1 

B-41 





APPENDIX C 

HIGH-LEVEL PROCESSOR COMPARISON 

This appendix provides a high-level comparison of three 
processors manufactured by Tandem: Nonstop 1+, Nonstop II, and 
Nonstop TXP. 

Nonstop 1+ 

Two-board CPU 

Memory board 
384K bytes 

32 I/O slots 

4J 82507 AOO 3/85 

Table C-1. Processor Comparison 

CONFIGURATION 

Nonstop II 

Three-board CPU 

Memory board 
512K bytes 
or 2M bytes 

24 I/0 slots; 
controllers and 
peripherals same 
as Nonstop l+ except 
lOMB and 50MB disc 
are not supported; 
6100 Communications 
Subsystem supported; 
3207 Tape Controller 
supported 

Nonstop TXP 

Four-board CPU 

Memory board 
2M bytes 

24 I/O slots; 
controllers and 
peripherals same 
as Nonstop II 

C-1 



APPENDIX C 
High-Level Processor Comparison 

Table C-1. Processor Comparison (Continued) 

Nonstop 1+ 

Service via 
Diag-Link 
interface 

Nonstop l+ 

2MB physical 

2MB physical 
address 
capability 

500-nanosecond 
cycle time 

Nonstop l+ 

System Code: 
one map, 
second 64K map 
accessed by 
"LIBRARYX" 

Four maps 

C-2 

CONFIGURATION (Continued) 

Nonstop II 

Service via 
OSP, PMI, and DDT 
interface 

FOX network links a 
maximum of fourteen 
systems 

PHYSICAL MEMORY 

Nonstop II 

8MB physical 

16MB physical address 
capability 

400-nanosecond 
cycle time 

LOGICAL MEMORY 

Nonstop II 

System Code: 
one segment 
permanently mapped: 
up to 32 library 
segments--one 
mapped on call 

Sixteeen maps 
including 
Extended 
Address Cache 
(32 entries) 

Nonstop TXP 

Service via 
OSP, PMI, and DDT 
interface 

FOX network links a 
maximum of fourteen 
systems 

Nonstop TXP 

8MB physical 

16MB physical 
address capability 

116-nanosecond 
access time 
through cache 

Nonstop TXP 

System Code: 
one segment 
permanently mapped: 
up to 32 library 
segments--one 
mapped on call 

Page Table cache 
(1024 entries for 
segments 0-15) 

(1024 entries for 
segments other 
than 0-15) 

..-, 82507 AOO 3/85 



APPENDIX C 
High-Level Processor Comparison 

Table C-1. Processor Comparison (Continued) 

Nonstop 1+ 

No data cache 

16-bit address 

Logical address 
limited to 
512K bytes 
(6 segments) 

User data 
128K bytes 

User code 
128K bytes 

No user library 

System data 
SHORT POOL 

System data 
IOPOOL 

CB space for 
additional 
system data 

'1' 82507 AOO 3/85 

LOGICAL MEMORY (Continued) 

Nonstop II 

No data cache 

16-bit and 32-bit 
address capability 

Virtual address 
capability one 
gigabyte (8192 
segments) 

User data 128K 
bytes; multiple 
extended data 
segments, each 
up to 128M bytes 

User code 
2 megabytes 

User library 
2 megabytes 

Process file 
segment; up to 
128K bytes for 
each process 

Each system process 
manages its own 
data space: up to 
lMB I/O buffer 
space 

Segmented memory: 
CB space mechanism 
no longer required 

Nonstop TXP 

Data cache 
(64K bytes) 

16-bit and 32-bit 
address capability 
(cache accessed 
directly by 32-bit 
extended address) 

Virtual address 
capability one 
gigabyte (8192 
segments) 

User data 128K 
bytes; multiple 
extended data 
segments, each 
up to 128M bytes 

User code 
2 megabytes 

User library 
2 megabytes 

Process file 
segment; up to 
128K bytes for 
each process 

Each system process 
manages its own 
data space: up to 
lMB I/0 buffer 
space 

Segmented memory: 
CB space mechanism 
no longer required 

C-3 



APPENDIX C 
High-Level Processor Comparison 

Table C-1. Processor Comparison (Continued) 

I/0 TRANSFER 

Nonstop 1+ Nonstop II Nonstop TXP 
~-----~------------.,_ _______________ ~~-·------i--~--~~ 

4KB maximum I/O 

4KB maximum 
disc I/O 

4MB channel 
transfer rate 

Nonstop 1+ 

2K words ROM 

Nonstop l+ 

64KB maximum I/0 

4KB maximum disc I/0 

5MB channel 
transfer rate 

INSTRUCTION MICROCODE 

Nonstop II 

ROM 4K words 
RAM control store 

8K words 
ROM entry point 
table lK words 

ERROR DETECTION 

Nonstop II 

64KB maximum I/0 

4KB maximum 
disc I/O 

5MB channel 
transf E!r rate 

Nonstop TXP 

ROM bootstrap 
approxo 1200 words 

RAM control store 
8K words vertical 
4K words horizontal 

RAM entry control 
store l.5K words 

Nonstop TXP 
i------------------~+--------------------------..-----------,--------------~ 

Memory contents 
parity checked; 
double-bit 
detection, 
single-bit 
correction 

Map parity 
(software) 

Data paths 
protection: 
software 

checksum 

C-4 

Memory address and 
contents parity 
checked; double-bit 
detection, single­
bi t correction 

Map parity 
(hardware) 

Data paths 
protection: 
hardware parity 

Memory address and 
contents parity 
checked; double-bit 
detection, single­
bi t correction 

Register parity 
(hardware) 

Data paths 
protection: 
hardware parity 

~ 82507 AOO 3/85 



16-bit addressing 5-8 

Absent page 5-38 
Absolute bit 5-9 
Absolute extended address 5-9 
Absolute segment 5-3, 5-10 

INDEX 

Absolute segment, allocation of 10-1 
Address 

byte 3-5 
doubleword 3-6 
logical 2-6 
physical 2-6 
quadrupleword 3-7 
short 2-6 
word 3-3 

Address range 2-6, 5-1 
Address spaces 2-6, 5-5 
Address translation 2-7 
Addressing code 4-4 
Addressing data 4-10 
ALLOCATESEGMENT procedure 5-12 
Application process creation 11-7 
Arithmetic overflow 3-12 
Attributes of procedures 4-36 

Backup process 11-20, 2-1 
Base address, extended data segment 5-11 
Block diagram, CPU 2-12 
BSUB instruction 4-58 
Bus cold load 8-5 
Bus Receive Table (BRT) 2-11, 5-42, 7-3 
Bus Receive Table Long (BRTLONG) 5-44, 7-3 
Bus transfer sequence 7-6 
Buses, interprocessor 7-1 
Byte addressing 3-4 

-''182507 AOO 3/85 Index-1 



INDEX 

CACHE 5-33 
Cache tag 5-24 
Callability attribute, of procedure 4-32 
Callable library procedures 1-15 
Carry (K) bit 4-28 
Carry indicator 3-12 
CC field, of ENV Register 4-28 
CCE code 4-29 
CCG code 4-29 
CCL code 4-29 
Channel status, following EIO 7-21 
Checkpoint message 2-1 
Clean page 5-38 
Clock generator 2-11 
Cluster, FOX 7-2 
CMD bits, for EIO 7-19 
CMD MOD bits, for EIO 7-20 
CMSEG (discontinued term: see CSSEG) 
Code segment 4-3 
Code space 4-1 
Code space (CS) bit 4-27 
Cold load 8-1 
Cold load, bus 8-5 
Cold load, disc 8-1 
Condition code (CC) 3-12, 4-28 
Condition Code, following EIO 7-20 
Configuration and loading of system 11-4 
Control panel 2-13 
Cooling system 1-9 
Creating a process 11-7 
Creation of system process 11-3 
cs bit 4-27 
CSSEG table 5-7, 5-18, 5-27, 5-36 
Current code segment 5-10, 5-19 
Current code space 4-27 
Current data segment 4-27, 5-10, 5-19 
Current short address spaces 

buffers and tables 5-29 
memory management 5-29 
system code segment 5-28 
system data segment 5-28 
system library segment 5-28 
user code segment 5-28 
user library segment 5-28 

Current Short-address Segments table 5-7, 5-18, 5-27, 5-36 
Currently mapped user code segment 5-19 
Currently selected code space 4-46 
Currently selected segment 4-1, 5-7 
Cycle time, clock 2-11 
Cycle time, microinstruction 2-5 

Index-2 -'182507 AOO 3/85 



Data cache (CACHE) 5-33 
Data formats 3-1 

bit 3-4 
byte 3-4 
doubleword 3-6 
quadrupleword 3-7 
word 3-3 

Data segment 4-8 
Data Space (DS) bit 4-27 
Design goals 1-1 
Destination Control Table (DCT) 11-20 
Device status, following EIO 7-20 
Diagnostic Data Transceiver (DDT) 2-13 
Direct addressing 

code 4-4 
data 4-14 

Dirty (D) bit 5-20 
Dirty page 5-38 
Disable port bits 7-27 
Disc cold load 8-1 
Displacement 

data reference 4-11 
P-relative 4-4 

Doubleword addressing 3-6 
DS bit 4-27 
Dual-port controller 7-25 

Effective memory address 4-6 
EIO instruction 7-19 
ENV format in stack marker 4-39 
Environment Register (ENV) 4-23 
Error correction bits 1-10, 2-7 
EXIT instruction 4-40 
Extended address 5-9 
Extended address cache 5-23 
Extended address format 5-9 
Extended address space 5-10 
Extended address translation, 

Nonstop II processor 5-24 
Extended data segment 5-10 
Extended data segment, allocation of 10-4 
Extended floating point number 3-11 
External Entry Point (XEP) table 4-33, 4-43 
External procedure call 4-43 

Fault tolerance 
for data base 1-1 
for processes 1-1 

Fiber optic link 7-2 
Fixup 11-18 
Floating point number 3-11 
Formats, data 3-1 

INDEX 

~ 82507 AOO 3/85 Index-3 



INDEX 

FOX network 7-2 

G-relative addressing mode 4-12 
Global area, of memory stack 4-10 

High-priority I/0 7-28 

I Register 4-3 
I'm alive message 1-13 
I/O addressing 5-37 
I/0 buffer 7-15 
I/O channel addressing 7-15 
I/O channel interrupts 7-27 
I/O Control (IOC) table 2-9, 5-38, 5-44, 7-15 
I/O controller ownership 7-26 
I/O subchannel 7-15 
!IO instruction 7-21 
Indexed addressing 

code 4-6 
data 4-17 

Indirect addressing 
code 4-6 
data 4-15 

Input-output channel 2-7, 7-15 
Input-output process 1-21 
Input-output sequence 7-22 
Input-output, high-priority 7-28 
INQ buffer 2-11, 7-10 
Instruction categories 

16-bit arithmetic (top of Reg. stack) 9-2 
16-bit signed arithmetic (stack element) 9-7 
32-bit signed arithmetic 9-4 
bit deposit and shift 9-23 
boolean operations 9-20 
branching 9-40 
bus communication 9-55 
byte test 9-26 
decimal arithmetic conversions 9-10 
decimal arithmetic scaling and rounding 9-9 
decimal arithmetic store and load 9-8 
decimal integer arithmetic 9-8 
extended floating point arithmetic 9-13 
floating point arithmetic 9-12 
floating point conversions 9-14 
floating point functionals 9-18 
input-output 9-56 
interrupt system 9-54 
load and store via address on reg. stack 9-34 
memory to or from register stack 9-26 
miscellaneous 9-58 
moves, compares, scans, checksum 
operating system functions 9-59 

Index-4 

9-43 

"'82507 AOO 3/85 



program register control 9-50 
register stack manipulation 9-19 
routine calls and returns 9-52 

Instruction processing unit (IPU) 2-4 
Instructions 

ADAR 
ADDI 
ADDS 
ADM 
ADRA 
ADXI 
ALS 
ANG 
ANLI 
ANRI 
ANS 
ANX 
ARS 
ASPT 
BANZ 
BAZ 
BCLD 
BEQL 
BFI 
BGEQ 
BGTR 
BIC 
BIKE 
BLEQ 
BLSS 
BNDW 
BNEQ 
BNOC 
BNOV 
BOX 
BPT 
BSUB 
BUN 
CAQ 
CAQV 
CCE 
CCG 
CCL 
CDE 
CDF 
CDFR 
CDG 
CDI 
CDQ 
CDX 
CED 
CEDR 

(00016-) 
(104---) 
(002---) 
(-74---) 
(00014-) 
(104---) 
(0302--) 
(000044) 
(007---) 
(006---) 
(000034) 
(000046) 
(0303--) 
(000470) 
(-154--) 
(-144--) 
(000452) 
(-12---) 
(000030) 
(-13---) 
(-11---) 
(-100--) 
(000464) 
(-16---) 
(-14---) 
(000450) 
(-15---) 
(-17---) 
(-164--) 
(-1-4--) 
(000451) 
(-174--) 
(-104--) 
(000262) 
(000261) 
(000016) 
(000017) 
(000015) 
(000334) 
(000306) 
(000326) 
(000366) 
(000307) 
(000265) 
(000356) 
(000314) 
(000315) 

-'182507 AOO 3/85 

9-7 
9-4 
9-51 
9-30 
9-7 
9-7 
9-24 
9-35 
9-23 
9-23 
9-34 
9-35 
9-25 
9-60 
9-42 
9-42 
9-60 
9-40 
9-43 
9-40 
9-40 
9-40 
9-60 
9-42 
9-42 
9-60 
9-42 
9-42 
9-42 
9-40 
9-59 
9-54 
9-40 
9-11 
9-11 
9-51 
9-52 
9-51 
9-17 
9-16 
9-17 
9-43 
9-6 
9-11 
9-48 
9-15 
9-15 

INDEX 

Index-5 



INDEX 

CEF 
CEFR 
CEI 
CEIR 
CEQ 
CEQR 
CFD 
CFDR 
CFE 
CFI 
CFIR 
CFQ 
CFQR 
CID 
CIE 
CIF 
CIQ 
CLQ 
CMBX 
CMPI 
CMRW 
COMB 
COMW 
CQA 
CQD 
CQE 
CQER 
CQF 
CQFR 
CQI 
CQL 
CRAX 
DADD 
DALS 
DARS 
DCMP 
DDIV 
DDTX 
DDUP 
DFG 
DFS 
DFX 
DISP 
OLEN 
DLLS 
DLRS 
DLTE 
DMPY 
DNEG 
DOFS 
DPCL 
DPF 

Index-6 

(000276) 
(000277) 
(000337) 
(000316) 
(000322) 
(000323) 
(000312) 
(000313) 
(000325) 
(000311) 
(000310) 
(000320) 
(000321) 
(000327) 
(000332) 
(000331) 
(000266) 
(000267) 
(000422) 
(001---) 
(000432) 
(1262--) 
(0262--) 
(000260) 
(000247) 
(000336) 
(000335) 
(000324) 
(000330) 
(000264) 
(000246) 
(000423) 
(000220) 
(1302--) 
(1303--) 
(000225) 
(000223) 
(000456) 
(000006) 
(000367) 
(000357) 
(000416) 
(000073) 
(000070) 
(1300--) 
(1301--) 
(000054) 
(000222) 
(000224) 
(000057) 
(000032) 
(000014) 

9-14 
9-14 
9-15 
9-15 
9-16 
9-16 
9-14 
9-15 
9-16 
9-14 
9-14 
9-16 
9-16 
9-6 
9-17 
9-16 
9-11 
9-11 
9-49 
9-4 
9-60 
9-47 
9-46 
9-10 
9-10 
9-17 
9-17 
9-17 
9-17 
9-10 
9-10 
9-60 
9-4 
9-24 
9-26 
9-6 
9-6 
9-60 
9-19 
9-38 
9-37 
9-39 
9-55 
9-59 
9-23 
9-24 
9-60 
9-5 
9-6 
9-59 
9-53 
9-23 

"182507 AOO 3/85 



INDEX 

DSUB (000221) 9-4 
DTL (000207) 9-60 
DTST (000031) 9-6 
DXCH (000005) 9-19 
DXIT (000072) 9-54 
EADD (000300) 9-13 
ECMP (000305) 9-14 
EDIV (000303) 9-13 
EIO (000060) 9-56 
EMPY (000302) 9-13 
ENEG (000304) 9-14 
ESUB (000301) 9-13 
EXCH (000004) 9-19 
EXIT (125---) 9-53 
FADD (000270) 9-12 
FCMP (000275) 9-13 
FDIV (000273) 9-12 
FMPY (000272) 9-12 
FNEG (000274) 9-12 
FRST (000405) 9-60 
FSUB (000271) 9-12 
FTL (000206) 9-60 
HALT (000074) 9-59 
HIIO (000062) 9-57 
!ADD (000210) 9-2 
ICMP (000215) 9-4 
!DIV (000213) 9-3 
IDXl (000344) 9-18 
IDX2 (000345) 9-18 
IDX3 (000346) 9-18 
IDXD (000317) 9-18 
IDXP (000347) 9-18 
I IO (000061) 9-57 
IMPY (000212) 9-3 
!NEG (000214) 9-3 
INSR (000055) 9-60 
!SUB (000211) 9-2 
IXIT (000071) 9-55 
LADD (000200) 9-2 
LAD! (003---) 9-4 
LADR (-7----) 9-30 
LAND (000010) 9-20 
LBA (000364) 9-37 
LBAS (000354) 9-37 
LBP (-2-4--) 9-26 
LBX (000406) 9-38 
LBXX (0256 ... -, 0266--) 9-34 
LCKX (000430) 9-60 
LCMP (000205) 9-4 
LOA (000362) 9-36 
LDAS (000352) 9-36 
LDB (-5----) 9-30 

~ 82507 AOO 3/85 Index-7 



INDEX 

LOD (-6----) 9-30 
LOOX (000412) 9-38 
LOI (100---) 9-20 
LDIV (000203) 9-3 
LOLI (005---) 9-20 
LORA (00013-) 9-19 
LDX (-3----) 9-29 
LOXI (10----) 9-20 
LIOC (000457) 9-58 
LLS (0300--) 9-23 
LMPY (000202) 9-3 
LNEG (000204) 9-3 
LOAD (-40---) 9-29 
LOR (000011) 9-20 
LQAS (000445) 9-39 
LQX (000414) 9-39 
LRS (0301--) 9-23 
LSUB ( 000201) 9-3 
LWA (000360) 9-35 
LWAS (000350) 9-35 
LWP (-2----) 9-26 
LWUC (000342) 9-35 
LWX (000410) 9-38 
LWXX (0254--, 0264--) 9-32 
MAPS (000042) 9-60 
MBXR (000420) 9-49 
MBXX (000421) 9-49 
MNDX (000227) 9-48 
MNGG (000226) 9-43 
MONO (000001) 9-6 
MOVB (126---) 9-46 
MOVW (026---) 9-46 
MRL (000075) 9-60 
MVBX (000417) 9-49 
MXFF (000041) 9-59 
MXON (000040) 9-59 
NOP (000000) 9-58 
NOT (000013) 9-21 
NSAR (00012-) 9-19 
NSTO (-34---) 9-29 
ONED (000003) 9-7 
ORG (000045) 9-35 
ORLI (004---) 9-22 
ORR! (004---) 9-21 
ORS (000035) 9-34 
ORX (000047) 9-35 
PCAL (027---) 9-52 
POP (124nrc) 9-32 
PSEM (000076) 9-59 
PUSH (024nrc) 9-31 
QADO (000240) 9-8 
QCMP (000245) 9-9 

Index-a ""82507 AOO 3/8~) 



INDEX 

QDIV (000243} 9-9 
QDWN (00025-} 9-10 
QLD (00023-} 9-8 
QMPY (000242} 9-9 
QNEG (000244} 9-9 
QRND (000263} 9-10 
QST (00023-} 9-8 
QSUB (000241} 9-8 
QUP (00025-} 9-9 
RCHN (000447} 9-57 
RCLK (000050} 9-58 
RCPU (000051} 9-58 
RDE (000024} 9-51 
RDP (000025} 9-51 
RIBA (000440} 9-60 
RIR (000063} 9-54 
RMAP (000066} 9-60 
RPT (000442} 9-60 
RPV (000216} 9-59 
RSMT (000436} 9-60 
RSPT (000424} 9-60 
RSUB (025---} 9-54 
RSW (000026) 9-56 
RUS (000461} 9-60 
RWCS (000402} 9-60 
RXBL (000426} 9-60 
SBA (000365} 9-37 
SBAR (00017-) 9-7 
SBAS (000355} 9-37 
SBRA (00015-) 9-7 
SBU (1266--} 9-48 
SBW (1264--} 9-47 
SBX (000407} 9-38 
SBXX (0257--, 0267--} 9-34 
SCMP (000454} 9-52 
SCPV (000463} 9-60 
scs (000444) 9-39 
SDA (000363} 9-36 
SDAS (000353) 9-36 
SDDX (000413} 9-38 
SEND (000065} 9-55 
SETE (000022) 9-51 
SETL (000020) 9-50 
SETP (000023) 9-51 
SETS (000021} 9-50 
SFRZ (000053) 9-59 
SIOC (000460} 9-58 
SMAP (000067} 9-60 
SMBP (000404) 9-60 
SNDQ (000052} 9-59 
SPT (000443} 9-60 
SQAS (000446) 9-39 

-'182507 AOO 3/85 Index-9 



INDEX 

SQX ( 000415) 9-39 
SRST (000455) 9-60 
SSW (000027) 9-56 
STAR (00011-) 9-19 
STB (-54---) 9-30 
STD (-64---) 9-30 
STOR (-44---) 9-29 
STRP (00010-) 9-51 
SVMP (000441) 9-60 
SWA (000361) 9-36 
swx (000411) 9-38 
swxx (0255--, 0265--) 9-32 
SXBL (000427) 9-60 
TOTQ (000056) 9-55 
TPEF (000453) 9-60 
TRCE (000217) 9-60 
ULKX (000431) 9-60 
UMPS ( 000043) 9-60 
VSEM (000077) 9-59 
vwcs (000401) 9-60 
WSMT (000437) 9-60 
WSPT (000425) 9-60 
wwcs (000400) 9-59 
XCAL (127---) 9-52 
XCTR (000033) 9-59 
XMSK (000064) 9-54 
XOR (000012) 9-20 
XSMG (000343) 9-50 
XSMX (000333) 9-50 
ZERO (000002) 9-6 

Interprocessor buses 2-9, 7-1 
Interrupt handler procedure 1-24 
Interrupt registers (INTA, INTB) 6-2 
Interrupt sequence 6-8 
Interrupt stack marker 6-7 
Interrupt system 6-1 
Interrupt types 

arithmetic overflow 6-16 
correctable memory error 6-14 
dispatcher 6-15 
high-priority I/0 completion 6-14 
instruction breakpoint 6-16 
instruction failure 6-13 
interprocessor bus receive completion 6-14 
memory access breakpoint 6-13 
OSP I/0 completion 6-13 
page fault 6-13 
power fail 6-14 
power on 6-15 
special channel error 6-12 
stack overflow 6-15 
standard I/0 completion 6-15 

Index-10 i' 82507 AOO 3/85 



time list 6-15 
uncorrectable memory error 6-12 
XRAY sampler 6-16 

Interrupt, preemptive 6-4 
roe cache 7-19 
roe table 2-9, 5-38, 5-44, 7-15 
IPU (instruction processing unit) 2-4 
IXIT instruction 6-10 

K bit 4-28 
Kernel 1-22 

L Register 4-10 
L-minus-relative addressing mode 4-13 
L-plus-relative addressing mode 4-13 
Library procedures, callable 1-15 
Loadable Control Store (Les) 2-13 
Local area, of procedure data 4-50 
Local data, of procedure 2-16, 4-10 
Logical address 2-6 
Logical address format, 16-bit 5-8 
Logical memory 2-6, 5-5 
LS bit 4-26 

Map entry cache 5-24 
Map entry format 5-19 
Map registers 5-15 
Mapping 2-7, 5-15 
MAPPOOL 5-23, 5-37 
Maps 

extended address cache 5-18 
I/O buffers and Segment Page Tables 5-17 
special-purpose area 5-17 
system code 5-17 
system data 5-16 
system library 5-17 
user code 5-17 
user data 5-15 
user library 5-17 

Mask register 6-2 
Memory 

board 2-6 
logical 2-6, 5-5 
physical 2-6, 5-1 
size 2-6, 5-1 
virtual 5-3 

Memory Control Unit (MCU) 2-13 
Memory errors 5-42 
Memory manager process 1-18 
Me'mory stack 2-16 
Memory stack operation 4-46 
Microinstruction length 2-5 

-'1J 82507 AOO 3/85 

INDEX 

Index-11 



INDEX 

Monitor process 1-19 
Mutual exclusion 1-26 

NEWPROCESS procedure 11-18 
Nonprivileged mode 2-5 
Nowait depth parameter 11-26 
Number representations 

byte 3-9 
doubleword 3-9 
extended floating point 3-11 
floating point 3-11 
quadrupleword 3-10 
single word 3-8 

Operating system 
components 1-14 
distribution of system processes 1-17 
overview 1-11 

Operations and Service Processor (OSP) 2-14 
Operator process 1-20 
OSIMAGE file 10-6 
OUTQ buffer 7-5, 7-10 
Overflow (V) bit 4-28 
Overflow indicator 3-12 
Ownership error bit 7-27 
Ownership of I/O controller 7-26 

P Register 4-3 
Packet timeout 7-6 
Packet, bus 2-9, 7-10 
Page 5-1 
Page fault 5-38 
Page Table Cache (PCACHE) 5-30 
Page Table. See Segment Page Table (SPT) 
Parameter access 4-54 
Parameter passing, in procedure call 4-52 
PCACHE 5-30 
PCACHETAG 5-30 
PHYPAGE table 5-36 
PHYSEG table 5-36 
Physical address 2-6, 5-1 
Physical address format 5-2 
Physical memory 2-6, 5-1 
Physical page 5-1 
Physical page Page (PHYPAGE) table 5-36 
Physical page Segment (PHYSEG) table 5-36 
PIO identifier 11-20 
Port disable bits 7-27 
Power distribution 

Nonstop II processor 1-5 
Nonstop TXP processor 1-7 

Power failure recovery 1-8 

Index-12 "'182507 AOO 3/85 



Primary process 2-1 
PRIV bit 4-26 
Privileged mode 2-5 
Privileged mode (PRIV) bit 4-26 
Procedure 2-15, 4-32 
Procedure call 4-33, 4-46 
Procedure Call (PCAL) instruction 4-37 
Procedure calls, nested 4-57 
Procedure Entry Point (PEP) table 4-33 
Process 

backup 2-1 
input-output 1-21 
memory manager 1-18 
monitor 1-19 
operator 1-20 
primary 2-1 

Process creation 11-7 
Process environment 11-1 
Process File Segment 10-4, 10-9 
Process life cycle 11-16 
Process pair 11-20 
Processes, requester-server 11-23 
Processor Maintenance Interface (PM!) 2-13 

Quadrupleword addressing 3-7 

Receive depth parameter 11-27 
Receiver module 2-9 
Reference (R) bit 5-20 
Reference parameter 4-52 
Register stack 2-18, 4-21 
Register stack pointer (RP) 4-22 
Relative extended address 5-9 
Relative segment 5-10 
Replacement of modules, on-line 1-9 
Requester-server processes 11-23 
Returning a value to caller 4-54 
RP field, of ENV Register 4-31 

S Register 4-10 
S-minus-relative addressing mode 4-13, 4-62 
Segment 5-3 
Segment allocation 5-3 
Segment Page Table (SPT) 5-21 
Segment table 5-21 
Segment, absolute, allocation of 10-1 
Semaphore 1-25 
SEND instruction 2-9, 7-5 
Sender module 2-9 
SETE instruction 4-31 
Short address 2-6 
Short address space 2-6, 5-5 

INDEX 

"'82507 AOO 3/85 Index-13 



INDEX 

Short Segment Table (SST) 5-7, 5-27, 5-36 
SIT (System image tape) 11-3 
Space ID 10-6 
Space ID index 4-1, 4-39 
Space, extended address 5-10 
Spaces, address 2-6, 5-5 
Stack 

memory 2-16 
register 2-18 

Stack marker 4-37 
Stack marker chain 4-57 
Stack marker, interrupt 6-7 
Subchannel, I/O 7-15 
Sublocal area, of procedure data 4-10 
Subprocedure 4-32, 4-58 
Swap file 10-1 
Sync depth parameter 11-26 
Sync ID 11-27 
SYSGEN program 11-3 
SYSnn subvolume 11-5 
System code space 5-7 
System configuration and loading 11-4 
System data segment 1-29, 5-10, 5-19 
System Entry-Point table 11-18 
System global (SG) addressing 4-62 
System image tape (SIT) 11-3 
System Interrupt Vector (SIV) 5-42, 6-4 
System library 5-7 
System process creation 11-3 
System subvolume 1-11 

T bit 4-27 
Top of memory stack 4-33, 4-51 
Top of register stack 4-23 
Top-of-stack area 4-10 
Trap enable (T) bit 4-27 

User code segment 5-10 
User code space (UC) 4-1, 5-7 
User library space (UL) 4-1, 5-7 
User-callable library procedures 1-15 
USESEGMENT procedure 5-12 

v bit 4-28 
Value parameter 
Virtual memory 

Word 3-3 

4-52 
10-1, 5-3 

XCAL instruction 4-43 
XEP (External Entry Point) table 

Index-14 

4-33, 4-43 

~ 82507 AOO 3/8~) 



READER COMMENT CARD 

Tandem welcomes your comments on the quality and usefulness of its 
software documentation. Does this manual serve your needs? If not, how 
could we improve it? Your comments will be forwarded to the writer for review 
and action, as appropriate. 

If your answer to any of the questions below is "no," please supply detailed 
information, including page numbers, under Comments. Use additional 
sheets if necessary. 

~ Is this manual technically accurate? Yes D No D 

~ Is information missing? Yes D No D 

~ Are the organization and content clear? Yes D No D 

~ Are the format and packaging convenient? Yes D No [] 

Comments 

Name Date 

Company 

Address 

City/State Zip 

System Description Manual 
NonStopTM Systems 

82507 AOO 



111111 

BUSINESS R E P LY MA IL 

FIRST CLASS PERMIT NO. 482 CUPEl~TINO, CA, U.S.A. 

POSTAGE WILL BE PAID BY ADDRESSEE 

Tandem Computers Incorporated 
Attn: Manager-Software Publications 
Location 01, Department 6350 
19333 Val lco Parkway 
Cupertino CA 95014-9990 

TAPE 

NO POSTAGE 
NECESSARY 
IF MAILED 

INTHE 
UNITED STATES 

TAPE 



Tandem Computers Incorporated 
19333 Vallco Parkway 
Cupertino, CA 95014-2599 


