
cover-letter. text >schnorr>distribution V: (1) 12/17/86 16:25:22 Page 1

SYMBOLICS, INC.

This document Is COMPANY CONFIDENTIAL. It contains extremely
sensitive and proprietary information. Reasonable and
appropriate care should be taken to protect this tnformation.
Copies of this document are Individually numbered with the
reCipient's name recorded. You are responsible for your copy of
this document. As newer versions of this document are created,
older versions will be collected for centralized destruction.
Under no cirCUmstances 15 this document to be copied. If you
need to have someone added to the distribution list or if more
copies 'of this document are needed. contact Linda Birch
(Birch or x7605).

"~-"I

Document Number ~ Recipient ,-,:;,:':::'~,2:,:

I

I

I-Machine Architecture Specification

I

Revision 2 Company Confidential

Symbolics, Inc.

ii

Symbolics, Inc.

Table of Contents

Page

1. Lisp-Machine Data Types 1

1.1 Introduction to Lisp-Machine Objects 2
1.1.1 Memory Words 2
1.1.2 Classes of Stored Object Representations 3
1.1.3 Components of Stored Representations 6
1.1.4 Operand-Reference Classification 12

1.2 Data-Type Descriptions 13
1.2.1 Representations of Symbols 13
1.2.2 Representations of Instances and Related Data Types 14
1.2.3 Representation of Characters 17
1.2.4 Representations of Numbers 19
1.2.5, Representations of Lists 24
1.2.6 Representations of Arrays and Strings 30
1.2.7 I-Machine Array Registers 36
1.2.8 Representations of Functions and Closures 40
1.2.9 Instruction Representation 43
1.2.10 Program-Counter Representations 46
1.2.11 Representation of Locatives 46
1.2.12 Representation of Physical Addresses 46

1.3 Data~Type Code Assignments 48
1,3.1 Headers, Special Markers, and Forwarding Pointers 48
1.3.2 Number Data Types 48
1.3.3 Instance Data Types 49
1.3.4 Primitive Data Types 49
1.3.5 Special Marker for Garbage Collector 50
1.3.6 Data Types for Program Counter Values 50
1.3.7 Full·Word Instruction Data Types 51
1.3.8 Half-Word Instruction Data Types 51

1.4 Appendix: Comparison of 3600-Family and I-Machine Data 52
Representations

1.4.1 Array Differences 54
1.4.2 Compiled Function Differences 56

2. Memory Layout and Addressing 57

2.1 Address Space, 57
12.1.1 Virtual Addresses 57

iii

Symbolics, Inc.

2.1.2 Ephemeral Addresses
2.1.3 Unmapped Addresses
2.1.4 Wired Addresses

58
.58
59

2.1.5 Pages 59
2.2 GC Support 59
2.3 Address Translation 60

2.3.1 Page Hash Table 60
2.3.2 PHT Lookup Algorithm 63
2.3.3 Translation Algorithm 66

2.4 Appendix: Comparison of 3600-family and I-machine Memory Layout 69
and Addressing

3_ Macroinstruction Set

3.1 Introduction
3.1.1 Instruction Sequencing
3.1.2 Internal Registers
3.1.3 Explanation of Instruction DefInitions

3.2 The Instructions
3.2.1 List-Function Operations
3.2.2 Predicate Instructions
3.2.3 Numeric Operations
3.2.4 Data-Movement Instructions
3.2.5 Field-Extraction Instructions
3.2.6 Array Operations
3~2. 7 Block Instructions
3.2 . .8 Function-Calling Instructions
3.2.9 Binding Instructions
3.2.10 Catch Instructions
3.2.11 Lexical Variable Accessors
3.2.12 Instance Variable Accessors
3.2.13 Subprimitive Instructions

4. Function Calling, Message Passing. Stack-Group Switching

4.1 Stacks
4.1.1 Control Stack
4.1.2 Binding Stack
4.1.3 Data Stack

4,2 Registers Important to Function Calling and Returning
4.3 Function Calling

4.3.1 Starting a Function Call
4,3.2 Pushing the Arguments
4.3.3 Finishing the Call

IV

73

73
73
75
75
91
92

102
113
141
149
154
169
175
188
192
198
201
213

241

241
241
244
245
245
249
249
253
253

Symbolics, Inc.

4.4 Function Entry 257
4.4.1 Push-apply-args 259
4 .. 4.2 Pull-apply-args 261
4.4.3 Trapping Out of Entry and Restarting 266

4.5 Function Returning 266
4.5.1 Function Return Instructions 266
4.5.2 Frame. Cleanup 270
4.5.3 Value. Matchup 271

4.6 Catch, Throw and Unwind-Protect 271
4.7 Generic Functions and Message Passing 275

4.7.1 Flavor 276
4.7.2 Handler Table 276
4.7.3 Calling a Generic Function 277
4.7.4 Sending a Message 278
4.7.5 Accessing Instance Variables 278

4.8 Stack-Group Switching 280
4.9 Appendix: Comparison of 3600-Family and I-Machine Function- 282

Calling

5. Exception Handling 283

5.1 Traps in General 283
5.2 The Extra Stack 285
5.3 Trap Modes 285
5.4 Trap Vector 286
5.5 Exceptions 286

5.5.1 Error Traps 286
5.5.2 Instruction Exceptions 287
5.5.3 Arithmetic Traps 287
5.5.4 Memory Exceptions 289
5.5.5 Stack Overflow 290
5.5.6 Sequence Breaks 290
5.5.7 Preemption 291
5.5.8 Trace Traps 292
5.5.9 PULL-APPLY-ARGS Exception 293
5.5.10 FEP-mode Traps 293
5.5.11 Processor Faults 293

5.6 Trap Vector Layout 294
5.7 Reset and Init 295
5.8 Appendix: Comparison of 3600-Family and I-Machine Exception 295

Handling .
APPENDIX A. Revision 0 ~plementation Features. 297

v

Symbolics, Inc.

AO.1 Revision 0 Implementation Memory Features 297
AO.2 Revision 0 Implementation Instruction Features 298
AO.3 Revision 0 Implementation Function-Calling Features 300
ADA Revision 0 Implementation Exception Handling Features 300

APPENDIX B. Summary of Omitted 3600 Instructions 303

APPENDIX C. Notes on ICMachine Architecture History 305

APPENDIX D. Hints for Software Developers 309

0.0.1 Stack Groups on the I Machine 310

APPENDIX E. Notes on Future Implementations of the Ivory Chip 315

APPENDIX F. Instruction Classifications for Packed Instructions 317

F.l Formats 317
F.2 Operand-from-stack Instructions 317
F.3 10-hit-immediate Instructions 319
FA Encodings 321

Index 325

vi

Symbolics, Inc.

List of Figures

Figure 1. Classes of stored object representations. 4
Figure 2. Three types of object references. 7
Figure 3. Use of forwarding pointers to move an array. 9
Figure 4. Use of forwarding pointers to expand a cons. 11
Figure 5. Structure of a symbol object. 15
Figure 6. The structure of an instance. 18
Figure 7. Structure of an object of type dtp-bignum 21
Figure 8. Representation of a big ratio. 23
Figure 9. Representation of a double-precision floating-point number. 25
Figure 10. Representation of a complex number. 26
Figure 11. Ordinary and compact list structures. 28
Figure 12. An object reference to thecddr of a list. 29
Figure 13. Short-prefix arrays with and without leaders. 33
Figure 14. A two-dimensional array. 35
Figure 15. A simple displaced array. 37.
Figure 16. A one-dimensional array indirected to a two-dimensional array. 38
Figure 17. The structure of a compiled function. 42
Figure 18. The structure of a lexical closure. 44
Figure 19. The structure of a dynamic closure. 45
Figure 20. Comparison of array preflx structures. 55
Figure 21. I-machine instruction formats. 80

. Figure 22. An I-machine control stack frame . 243
Figure 23. The stack at the end of a start-call instruction 252
Figure 24. The stack after completion of the flnish-call instruction 256
Figure 25. The argument matchup algorithm 260
Figure 26. The push-apply-args operation 262
Figure 27. The pull-apply-args operation 263
Figure 28. The effect of the locate-locals instruction 265

vii

Symbolics, Inc.

viii

SymboJics, Inc.

List of Tables

Table 1. Header Types 8
Table 2. Valid Array Types for Byte-Packing Values 40
Table 3. Headers, Special Markers, and Forwarding Pointers 48
Table 4. Number Data Types 49
Table 5. Instance Data Types 49
Table 6. Primitive Data Types 50
Table 7. Special Marker for Garbage Collector 50
Table 8. Data Types for Program Counter Values 51
Table 9. Full-Word Instruction Data Types 51

. Table 10. Half-Word Instruction Data Types 52
Table 11. I-Machine Internal Registers 76
Table 12. I-Machine Instruction Formats 78
Table 13. Memory Cycles 85

ix

SymboHcs, Inc.

Symbolics, Inc,

1. Lisp-Machine Data Types

~*********

This me is confidential. Don't show it to anybody, don't hand it out to people,
don't give it to customers, don't hardcopy and leave it lying around, don't talk
about it on airplanes, don't use it as sales material, !lon't give it as background to
TSSEs, don't show it off as an example of our (erodable) technical lead, and don't
let our competition, potential competition, or even friends learn all about it. Yes,
this means you. This notice is to be replaced by the real notice when someone
defines what the real notice is .

. **

The purpose of this chapter is to categorize and define all the objects that occur
in I-machine memory, both visible and invisible. The categorization of a storage
object is done according to its data type as specified by its type code. The
definitions are presented in order by Lisp-object type.

The essence of I·machine architecture is its support of the execution of the Lisp
language at the hardware level. This dictates the salient features of individual
archltectural components. In particular, I-machine data representations reflect the
fact that, in a Lisp machine, every datum is a Lisp object. Every word in memory
therefore contains either a Lisp object reference or part of the stored
representation of a Lisp object. (The only exceptions are forwarding pointers and
special markers. "Invisible" to ordinary Lisp code, these are used primarily for
system memory management, including garbage collection.)

I-machine architecture is fully type coded: every word in memory has a data-type
field. The function of the data-type encoding, to be described in this chapter, is to
allow I-machine hardware to discriminate between the types of data it is operating
on in order to handle each appropriately. More information in how I-machine
instructions use different types of data is contained in another chapter. See the
section "Macroinstruction Set."

The chapter f'rrst introduces the I-machine's basic storage unit. It then lists the
different ways that a Lisp object can be stored in memory and describes the
components of these representations. Note the interrelation between object
references and stored representations of objects: while a stored representation is
the target of an object reference, it can also contain object references as part of
its structure. This relationship reflects the nature of the Lisp language.

As part of its introduction to stored representations, the chapter discusses those
stored objects that are not object references, including those that are invisible.
This includes forwarding pointers, which are used when list or structure objects
are moved. These are discussed here, despite the fact that the structures they are

1

Symbolics, Inc.

used in have not yet been defined. The general overview of data types
encountered in I-machine memory makes forward references to some structures
necessary. The reader can make use of the cross references supplied to help
clarify these sections.

After the introduction, the body of the chapter describes and defines the structure
of each of the Lisp objects that the I-machine architecture accommodates with a
specifically assigned data type. The concluding section summarizes the data-type
information.

1.1 Introduction to Lisp-Machine Objects

1.1.1 Memory Words

1.1.1.1 Length and Format

Words are the ba&ic unit of storage on the I machine. Every item in memory,
including object references and object representations, is made up of one or more
words. Whenever we refer to an address, it is the address of some word. More
information on addresses is available elsewhere. See the section "Memory Layout
and Addressing."

A word contains 40 bits, which are assigned to the following fields:

Position Length

<39:38> 2 bits
<37:32> 6 bits
<31: B> 32 bits

Field Name

Cdr Code
Data Type
Address or Immediate Data

+---+--------+----------.... ---------------------+
ICDRI TYPE ADDRESS/DATA
+---+--------+-------------------------------+

31 B

1.1 .1.2 Fields

The data-type field indicates what kind of information is stored in a word. Each
Lisp object referenced by its own assigned data type is explained in detail in the
data-type section. See the section "Data-tYPe Defmitions." The functions of data
types that do not serve as Lisp object references are described in an introductory
section. See the section "Components of Stored Representations."

The address or immediate data field is interpreted according to the data type or
the word. This field contains either the address of the stored representation of an

2

Symbolic., Inc .

. used in have not yet been defmed. The general overview of data types
encountered in I-machine memory makes forward references to some structures
necessary. The reader can make use of the cross references supplied to help
clarify these sections.

After the introduction, the body of the chapter describes and defines the structure
of each of the Lisp objects that the I-machine architecture accommodates with a
specifically assigned data type. The concluding section summarizes the data-type
information.

1.1 Introduction to Lisp-Machine Objects

1.1.1 Memory Words

1.1.1.1 Length and Format

Words are the basic unit of storage on the I machine. Every item in memory,
including object references and object representations, is made up of one or more
words.' Whenever we refer to an address, it is the address of some word. More
information on addresses is available elsewhere. See the section "Memory Layout
and Addressing."

A word contains 40 bits, which are assigned to the following fields:

Position Length

<39:38> 2 bits
<37:32> 6 bits
<31:8> 32 bits

Field Name

Cdr Code
Data Type
Address or Immediate Data

+---+--------+-------------------------------+
ICDRI TYPE ADDRESS/DATA
+---+--------+-------------------------------+
39 37 31

Words in actual physical memory may be more than 40 bits wide to allow for
parity or ECC schemes. The architecture does not require the existence of parity
or ECC nor does it specify any specific ECC algorithm. Such information and its
implications are part of the documentation of each implementation and of the
system units that support the implementaticm.

1.1.1.2 Fields

The data-type field indicates what kind of information is stored in a word. Each
Lisp object referenced by its own assigned data type is explained in detail in the

2

,

I

I

Symbolics, Inc.

object, or the actual representation of an object. This is explained in the sections
covering the individual data types.

The cdr-code field is used for various purposes. For header data types, the cdr
code field is used as an extension of the data-type field. For stored
representations of lists, the contents of this field indicate how the data that
constitute the list are stored. Other uses of the cdr-code field are for instruction
sequencing. Use ot the cdr code is explained in the sections on lists, headers, and
compiled functions.

1_1.2 Classes of Stored Object Representations

Figure 1 illustrates the ways in which objects are represented .

. The storage structures for Lisp objects are introduced here so that the reader will
be able to see how the various data types function within them.

There are three fundamentally different ways that Lisp objects are stored in
memory. An object can be stored

• as a list,

• as immediate data,

• or as a structure.

A list object is an object built out of one or more conses. Refer to the Reference
Guide to Symbolics-Lisp for the' definition of a cons. The representation consists
of a block of memory words strung together by means of the cdr codes. Often the
block consists of only one or two words, so it is important to avoid the overhead of
having an extra header word: this is why list representation and structure
representation are different. The following types of objects have list
representations:

conses,
lists,
big ratios,
double-precision floating-point numbers,
complex numbers,
dynamic closures,
lexical closures, and
generic functions

Note that there is a difference between the concept of a list as a type of structure
and the concept of the data type dtp-list. All the above data types use list
structure, including cdr coding (described later). Only the object references to
lists and conses use the data type dtp-list. (There is no dtp-cons.)

3

>!>.

Conses

NIL

t

NEXT

list Objeels

Compact Usls

~

Object Representations

Immediate Objects

/1\~
Numbore: Physlc.1 Addronos Prlmhivo TypeS: Half-word instructions
AlCnums Characters
Small Ratios
Single_precision
Aoaling-point Nl,.!mbers

OTP-CHARACTER

1

Generio Functions

Closures
Big Ratios
Double-precision
Roaling-poinl,Numbers

Complex Numbers
/

(inCfeasillQ
addresses)

32·bil address of CADR

32-bit address of CAR

Structure Objects

Compiled Functions Instances Symbols Bignums

DTP'FIXNl~.r

CDR DATA I ···-J-~-- i·
CODE TYP_E_ _ BytejBytelBylelByte

1-CDR 1 DATA 1 Byte]BytelBytelByte --1
CODE TYPE

'

-cORT DATA I BytelBytelBytelByte -- J
CODEI TYPE

EI.lypeIPackingIPrfx-typeISiruc-l1a.gIArr-lypa

DTP-HEADER-I

Figure 1. Classes of stored object representations.

!!!
~ o g:
-~
:;
p

Symbolics, Inc.

An immediate object does not require any additional memory words for its
representation. Instead the entire object representation is contained right in the
object reference. To be an immediate object, an object type must not be subject to.
side-effects, must have a small representation, and must have a need for very
efficient allocation of new objects of that type. The following types of objects have
immediate representations:

small integers (fIxnums),
single-precision floating-point nunibers,
small ratios,
characters,
packed instructions, and
physical addresses

. A structure object is represented as a block of memory words. The first word
contains a header with a special data type code. U sualjy all words after the first
contain object references. The header contains enough information to determine
the size of the object's .representation in memory. Further, it contains enough
information about the type of the object so that a legal object reference
designating this object can be constructed. Structure representation is designed to
work for large objects. Some attention is also paid to minimizing overhead for
small objects, but there is always at least one word of overhead. The objects
represented as structures are:

symbols,
instances,
bignums,
arrays, and
compiled functions.

The stored representation of a list or structure object is contained in some number
of consecutive words of memory. Each memory word within the structure may
contain

an object reference,
a header,
a forwarding pointer, or
a speciczl marker.

The data-type code identifies the word type. For example, an array is represented
as a header word, which contains such information as the length of the array, and,
following the header, memory words that contain the elements of the array. An
object reference to an array without a leader contains the address of the first
memory word in the stored representation of the array.

5

Symbo/ics, Inc.

1.1.3 Components of Stored Representations

The components of the stored representations to be found in Lisp machine memory
are either object references, headers, forwarding (invisible) pointers, or special
markers.

1.1.3.1 Object References

Object references are the mechanism by which one refers to an object. The object
reference is the fundamental form of data in this and any Lisp system. Object
references are similar in function to the "pointers" of other languages. As noted
before, an object reference can both point to the representation of a Lisp object
and be a component part of such a representation.

There are three types of object references:

object references by address
irnmediate object references, and
pointers.

Figure 2 illustrates .the three types of object references.

Object references by address are implemented by a memory word whose address
field contains the virtual address of the stored representation of the object. Such
memory words are categorized as pointer data. Examples of this type of object
reference are symbols, lists, and arrays.

Immediate object references are implemented by memory words that directly
contain the entire representation of the object. These are implemented by memory
words. that contain the object in the 32-bit immediate data field. Examples of this
type of object reference are small integers (fIXnumS) and single-precision floating
point numbers.

Pointers are implemented in the same way as object references by address. The
difference between these two types is that pointers contain the virtual addresses of
locations that do not contain objects: they point instead to locations within objects
.. for example, to the value cell of a symbol. Pointers are also categorized as
pointer data.

1.1.3.2 Headers

A header is the fll'st word in the stored representation of structure objects. The
header marks the boundary between th~ stored representations of two objects and
contains information about the object that it heads. This information is either
immediate data, when the header type is dtp-header.i, or it is the address of some
descriptive data, when the header type is dtp-header-p. The header-i format
contains object-specific immediate data in bits <31:0>. The header-p format
>contains the address of an object-specific item in bits <31:0>. Object references
usually use the address of an object's header as the address of the object. (The
only exceptions are the object reference to a compiled function and the object

6

ObJect References

MEMORY WORD

I CDR I DATA I ADDRESSOR DATA -----,
. CODE. TYPI: .

r----------------~I ~' V
2 bils 6 blls 32 bils

I
Pointer Immediate Object Reference 32-bit data

'I iWl~fi£r::::\:: .'~~;'~~~;;_\ :.:':: .. :::':] t:::\"::':::~~;;:;;,;\ '. :"::':' ::J

~~
{

Locative Physical Address (E:x1emal-varue-call.. PC
EXAMPLES . visible for binding only)

Flxnum Single-precision Floating-point Number

)

FiglirJ 2. Three types of object references.

\
Object Reference by Address

; _11%~~ z ~;,~b~~~r:~) 11r,r, //; ;Yn;
~"''''';~~h~mi'dWh:''UMdd'l

/~~
Usl Symbol

~
§.

~~
S
p

Symbolics, Inc.

reference to an array with a leader, in which case the reference points to a
specified location inside the structure.

The cdr-code field of a header word is used as the header-type field: it
distinguishes what kind of object the structure represents. The four header types
for each type of header format are shown in Table 1.
Table 1. Header Types

DTP-HEADER-P
Header.
Type

G
1

2
3

Symbolic Name

%header-type-symbol
%header-type-instance
%header-type-leader

DTP-HEADER-I
Header Symb.olic Name
Type

Object Type

Symbol
Instance
Array leader
Reserved

Object Type

o %header-type-compiled·function

1
2
3

%header-type-array
%header-type-number

Compiled Function
Array
Number
Reserved

It is possible to change the memory location of an object represented by a
structure, In this case, the object's header is moved to a new location and the
object's old location is fIlled with a word of data type dtp-header-forward, an
invisible pointer that contains the address of the new location of the reference.
The object references in the locations of the old structure are all replaced with
pointers of the type dtp-element-forward, which contain the addresses of the new

. locations of the objects. This arrangement allows all existing references to the
object to continue to work. Refer to Figure 3. Forwarding pointers are described
more fully in the next section. See the section "Forwarding (Invisible) Pointers."

1_1.3.3 Forwarding (Invisible) Pointers

A forwarding pointer specifies that a reference to the location containing it should
be redirected to another memory location, just as in postal forwarding. These are
also called invisible pointers. They are used for a number of internal bookkeeping
purposes by the storage management software, including the implementation of
extendable arrays.

The data types of the forwarding pointers are:

8

<0

Address

DTP·FIXNUM

t
I CDR I DATA

CODE TYPE BytelBytelBytelByie

L~~ ~~~-'-,___ BytelBytelBylelBrte

'

CDR.' OATA , BytelByto]BytelByle
CODE TYPE

F~~j w~fl ARRAVlYPEFIELOS

t
DTP-HEADER-I

Array Structure before Moving

Use 01 Forwarding Pointers

DTPtlXNUM

rgg~EI ~;~ L __ BylelBylelBytelByie J ~

/
(increasing
addresses)

I gg~J ~;~ I BylelBytelBytelByte

! CDR , DATA ,
CODe TYpE

~RRA~ ~;~ I
t

OTP-HEADER-I

C
C,
CDR EI DATA
CODE TYPE

BytelBytelBylelByie

ARRAY TYPE FIELDS

Address ::::z..

~'-
, I COR DATAl ~ Address

CODE TYPE

COAd. DATA·
CODE TYPE

Address

I CDR
COD

DATA I
TYPE

Address

I CD~d DATAl COD .TYPE
Address

• t
DTP-HEADER-FORWARD

Array Structure after Moving

I
I

J

.

I

.J

-

~
~
~~
S-

"
Figure 3. Use of forwarding pointers to move an array.

Symbolics, Inc.

dtp-external-value-cell-pointer
dtp-one-q-forward
dtp-header-forward
dtp·element-forward

An external-value-cell pointer is used to link a symbol's,value cell to a closure or
instance value ceIl. It is not invisible to binding and unbinding. See the section
"Binding Stack."

A one-q-forward pointer forwards only the cell that contains it, that is, it indicates
that the cell is contained at the address specified in the address field of the
dtp-one-q-forward word and that the cdr-code of the required data is the cdr code
of the dtp-one-q-forward word. This pointer is used to link a symbol value or
function cell to a wired cell or a compiled-function's function cell, as well as for
many other applications.

A header-forward pointer is used when a whole structure is forwarded. This word
marks where the header used to be, and contains the address of where the header
is now. When an array with a leader is forwarded, dtp-header-forward pointers
replace both the preIlX header and the leader header. The other words of the
structure are forwarded with dtp-element-forward pointers. The address field of
an element-forward pointer contains the new address of the word that used to be
there. The cdr code of the required data is stored with the relocated data -- the
cdr code of the header-forward pointer is ignored. Every word of the structure
except the headers contains an element-forward pointer.

A header-forward pointer is also used in connection with list representation. List
representation is explained fully in another section. See the section
"Representation of Lists." When a one-word cons must be expanded to a two-word
cons by rplacd, a new two-word cons is allocated and the old one-word cons is
replaced by a header-forward pointer containing the address of the new cons. (The
cdr code of the header-forward pointer is required to be cdr-nil for garbage
collection purposes. It is ignored by cdr and rplacd operations.) The cdr code in
the location containing the forwarding pointer is ignored. This is one difference
between a header-forward pointer and a one-q-forward pointer: the cdr code in the
location containing a one-q-forward pointer is used rather than ignored. See
Figure 4. This figure illustrates how a cons whose car contains a reference to a
IlXUum and whose cdr is nil is changed when an rplacd instruction changes its
cdr to another IlXUum.

1 .1 .3.4 Special Markers

A special marker indicates that the memory location containing it does not
currently contain an object reference. An attempt to use the contents of that
location signals an error. The address field of a special marker is used by error
handling software to determine what kind of error should be reported. (The
hardware does not use the special-marker address field.)

10

Use of Forwarding Pointer with rplacd

NIL DTP-FIXNUM

{
t t

I gg~f! DATA
TYPE 32·bit immediate data

Two-word cons

I ggtig! DATA I
32·M immediate data TYPE

t t
NORMAL DTp·F1XNUM

Address of ~ Address
Original COfIS

NIL DTP-HEADER·FORWARD

Add

DTP·LlST

After rplacd

One·word cons
32·bij immediate data

Nfl DTP,FIXNUM

Address

DTP·UST

Sefore rplaed

Figure 4. Use of forwarding pointers to expand a cons.

11

SymboJics, Inc.

I
(inCreasing
addresses)

Symbolics, Inc.

The data types of the special markers are:

dtp-null
dtp-monitor-forward
dtp-gc-forward

A null special marker is placed in the value cell or function cell of a symbol or in
the instance-variable value cell in an instance, in those cases when no value has
been assigned. The address field of the null marker contains the address of the
name of the variable. This makes it possible for an error handler to report the
name of the offending variable when an attempt to use the value of an unbound
variable is detected.

A null special marker is also used to initialize a freshly-created virtual memory
page in case it is accidentally accessed before an object is created in it. The
address field contains the word's own address.

The encoding of the null-special-marker data type is zero. Memory that is
initialized to all bits zero thus contains all null words, which will cause a trap if
referenced.

The monitor special marker is intended for use with a debugging feature that will
allow modifications of a particular storage location to be intercepted. See the
section "Exception Handling."

A marker of type dtp-gc-forward is used by the garbage collector and may only
appear in oldspace. When an object is evacuated from oldspace, each word of the
object's former representation contains a dtp-ge-forward that points to the new
location of· that word. It is categorized here as a special marker, rather than as a
pointer, since it is visible only to the garbage-collecting system, never to Lisp
code.

1_1.4 Operand-Reference Classification

Immediate data dtp-f'IXD.um, dtp-small-ratio, dtp-singie-float, dtp-character,
dtp..physical-address, dtp-packed-instruction,
dtp.spare-immediate-l (22 type codes)

Pointer data dtp-double-float, dtp-bignum, dtp·big-ratio, dtp-complex,
dtp-spare-number, dtp-instance, dtp-Iist-instance,
dtp·array·instance, dtp·string.instance, dtp-nil, dtp-list,
dtp-array, dtp-string, dtp·symbol, dtp-Iocative,
dtp·leldcal-closure, dtp-dynamic-closure,
dtp-compiled-function, dtp-generie-function,
dtp-spare-pomter-l, dtp-spare-pointer. 2, dtp-spare-pointer-3,
dtp-spare.pointer·4, dtp·even-pc, dtp-odd-pc,
dtp-call-compiled·even, dtp-ca1I-compiled-odd,

12

Null

Symbolics, Inc.

dtp-call~indirect, dtp-call-generic,
dtp-call-compiled-everi-prefetch,
dtp-call-compiled-odd-prefetch, dtp-call-indirect-prefetch,
dtp-call-generic-prefetch (33 type codes)

dtp-null (1 type code)

Immediate Headerdtp-header-i (1 type code)

Pointer Header dtp-header-p (1 type code)

HFWD

EFWD

1FWD

EVCP

GC

Monitor

Data

Header

Immediate

Pointer

Numeric

Instance

dtp-header-forward (1 type code)

dtp-element-forward (1 type code)

dtp-one-q-forward (1 type code)

dtp-external-value-cell-pointer (1 type code)

dtp-gc-forward (1 type code)

dtp-monitor-forward (1 type code)

The union of immediate data and pointer data (55 type codes)

The union· of immediate header and pointer header (2 type
codes)

The union of immediate data and immediate header (23 type
codes)

The union of pointer data, null, pointer header, HFWD, EFWD,
1FWD, EVCP, and monitor (40 type codes)

dtp-f'lXIlum, dtp-small-ratio, dtp-single-float, dtp-dcuble-float,
dtp-bignum, dtp-big-ratio, dtp-complex, dtp-spare-number (8
type codes)

dtp-instance, dtp-list-instance, dtp-array-instance,
dtp-string-instance

1.2 Data-Type Descriptions

This section defmes how each type of object is represented in storage and explains
how the stored representations make use of type-coded objects.

1.2.1 Representations of Symbols

The object reference to a symbol is a word of data type dtp-symbol or dtp-nil.
The. address field of this word contains the address of a header of type

13

Symbolics, Inc.

dtp-header-p. The header is followed by four words. The header's header-type
field equals %header-type-symbol and the address field of the header contains the
address of the symbots name, a string. The five words that constitute a symbol
object, in order, are:

e SYMBOL-NAME-CELL
1 SYMBOL-VALUE-CELL
2 SYMBOL-FUNCTION-CELL
3 SYMBOL-PROPERTY-CELL
4 SYMBOL-PACKAGE-CELL

See Figure 5.

address of the symbol's name
the value, or an unbound marker
the definition, or an unbound marker
the property list
the home package, or NIL

The special symbols nil and t reside in IlXed memory locations: (vma=pma
1011000) and (vma=pma 101106~), respectivelY. See the section "Wired Addresses."
The Irxed address and separate data type for nil speed up operations such as
predicate functions.

1.2_2 Representations of Instances and Related Data Types

The data types described in this section are used by the flavor system, which deals
with flavors, instances, instance variables, generic functions, and message passing.
A flavor describes the behavior of a family of similar instances. An instance is an
object whose behavior is described by a flavor. An instance variable is a variable
that has a separate value associated with each instance. A generic function is a
function whose implementation dispatches on the flavor of its first argument and
selects a method that gets called as the body of the generic function. Generic
functions are described in the section on function data types. See the section
"Representation of Functions and Closures." In message pas~ag, an instance is
called as a function; the function's Irrst argument, known as the message name, is
a symbol that is dispatched upon to select a method that gets called.

See the Lisp documentation for more information about flavors, instances, instance
variables, and messages.

1.2.2_1 Flavor Instances

The object reference to an instance is a word of data type dtp-instance whose
address field points to the instance structure. The stored representation of an
instance consist of a header with type dtp-header-p, whose header-type field
equals %header-type-instance. The words following the header of the instance
are the value cells of the instance variables. They contain either object references
or an unbound marker. The cdr codes are not used. The address field of the
header contains the address of the hash-mask field of a flavor-description
structure. This description structure is called a flavor.

A flavor . contains information shared by all instances of that flavor. The
architecturally delmed fields of a flavor are:

. 14

symbol-packaga.cell

symbol-property-cell

symbol-tunc1ion-csll

symbol-value-cell

~ymbot-name-cen

Symbol Representation

I CDR I DATA
· CODE. TYPE

I CDR I DATA
· CQpf. TYPE

I ~DR I DATA
· cOPE. TYPE

Address or nil

Address

Address or null

I CDR I DATA I ~df9SS or irnrnediats data or null
· COPE. TYPE .

t t
SYMBOL DTp·HEADER-P

AddreSs

Figure 5. Structure of a symbol object.

15

Symbo/ics, Inc.

Symbolics, Inc.

• the array header, part of the packaging of the structure -(It must be a short
prefIx array format, but is not checked.)

• the named-structure symbol, part of the packaging of the structure

• the size of an instance, used by the garbage collector and by the instance
referencing instructions (%instance-ref and the like)

• the hash mask, used by the hardware for method lookup

• the handler hash table address, used by the hardware for method lookup

• the name of the flavor, used by the type-of function

-. additional fIelds kuown ouly to the flavor system

A handler table is a hash table that maps from a generic function or a message to
the function to be invoked and a parameter to that function. Typically, the
function is a method and the parameter is a mapping table used by that method to
access instance variables. The mapping table is a simple, short-prefIx ART-Q
array. For speed, the format of handler tables is architecturally defIned and
known by hardware. Handler hash tables are packaged inside arrays, but this is
software dependent, not hardware or architecture dependent.

A handler table consists of a sequence of three-word elements. The address of the
-fIrst word of the fIrst element is in the flavor. Each element consists of:

the key

the method

the parameter

This is a generic function (dtp-generic-function), a message
name (dtp-symbol), or nil, which is a default that matches
.verything (dtp-nil).

This is a program-counter value (dtp-even-pc or dtp-odd-pc)
addressing the instruction at which the compiled function
corresponding to the method is to be entered.

This is a parameter that gets passed from the function or
message to the method as an extra argument. If the parameter
in the handler table is nil, the generic function or message is
used as the parameter.

Method entries are normally of type dtp-even-pc or dtp-odd-pc. An interpreted
method invokes a special entry point to the Lisp interpreter; this is implemented
by storing the interpreter (a dtp-even-pc or dtp-odd-pc) as the method function
and storing the actual method as the parameter.

Each unused three-word slot in the handler hash table, plus a fence slot at the
end of the table, is f'illed with nil, a default method function, and nil. The default

16

Symbolics, Inc.

method function takes care of rehashing after a garbage collection, default
handling, and error signalling.

Figure 6 illustrates the structure of an instance object, a flavor, and a handler
table. Refer to the chapter on function calling to see how instances, methods, and
generic functions are applied. See the section "Handler Table."

1.2.2.2 List Instances

The object reference to a list instance is a word of data type dtp-list-instance
whose address field points to an instance structure. The instance structure for a
list instance is the same as that for an ordinary instance. Trap handlers written
in Lisp enable list-manipulation instructions to operate in a generic manner on
objects of the list-instance data type. See the section "Flavor Instances."

'1.2.2.3 Array Instances

The object reference to an array instance is a word of data type
dtp-array-instance whose address field points to an instance structure. The
instance structure for an array instance is the same as that for an ordinary
instance. Trap handlers written in Lisp enable array-manipulation instructions to
operate in a generic manner on ·objects of the array.instance data type. See the
section "Flavor Instances."

1.2.2.4 String Instances

The object reference to a string instance is a word of data type
dtp-string-instance whose address field points to an instance structure. The
instance structure for a string instance is the same as that for an ordinary
instance. Trap handlers written in Lisp enable string-manipulation instructions to
operate in a generic manner on objects of the string-instance data type. See the
section "Flavor Instances."

1.2.3 Representation of Characters

The object reference to a character is an immediate object of data type
dtp-character, which contains the following fields in its data field:

17

&;

Instance
value
celfs

Instance Representation

U I P-EVEN-PC or OTt-'-ODD·PC

DTP·GENERIC-FUNCTION, DTP-SYMBOL, or DTP-Nll

CDR DATA PARAMETER (MAPPING TABLE) CODE TYPE

CDR DATA METHOD CODE TYPE
CDR DATA KEY
CODE TYP

Handler CDR DATA PARAMETER (MAPPING TABLE)
labia CODE TYPE

CDR DATA METHOD CODE TYE
.CDR DATA KEY CODE TYP

i
(HOR I DATA ~ TYPE ~ TYPS ARRAY HEADER FIELDS

t t "/i--(inCreaSi~
ARRAY HEADER-I

addresses ~.DTP-LOCATIVE
(/_ DTP-FIXNUM

CD~E . DATA
COD TYPE

gg~ DATA
CDR DATA I V / %FlAVOR·TYPENAME .
CODE TYPE

C DE TYPE DATA' 1/
cg~E DATA

CDR %FLAVQR-HASH-ADORESS > CODE TYPE
CO E TYPE
HDR 32·bit address

COR' DATA %FLAVOR-HASH·MASK

D~Jf ~
CODE TYPE

TYPE TYE

t t
Flavor < COR DATA

CODE TYPE %FLAVOR-INSTANCE-SIZE (- 4 in this case)

rANeE OTP-HEADER-P
CDR DATA

%FlAVOR-NAMED-STRUCTURE-SYMBOL CODE TYPE

{
INS'

CDR DATA I HDR DATA %FlAVOR-HEADER
CODE TYPE 32-M address TYPE TYPE

t t t
OTP.INSTANCE, OTP-LiST-INSTANCE, DTP·A,RRAY.1NSTANCE, or DTp·STRING·INSTANCE ARRAY HEADER·I

Figure 6. The structure of an instance.

~

~
~
S
f>

· Symbolics, Inc,

Position Symbolic Name Description
<31 :28> (4 bits) %%CHAR-BITS Control,Meta, Super, Hyper bits
<27:16> (12 bits) UCHAR-STYLE Italic, 1 arge, bold, " ,

<15:8> (8 bits) %%CHAR-CHAR-SET Character set
<7:0> (8 bits) %%CHAR-SUBINDEX Index within this character set

+--+------+----+----------+---------+-------~+

ICCI TYPE IBITSI STYLE ICHAR-SET ISUBINDEXI
+--+------+----+----------+---------+--------+
39 37 31 27 15 7 o

Note that the fields in a character object are not used by the hardware; character
'format is invisible to it. The fields may change in future software,

1.2.4 Representations of Numbers

1.2.4.1 Fixnum Representation

A flXIlum is represented by an immediate object whose data field contains a 32·bit,
two's·complement integer. Its data type is dtp.fixnum.

1.2A2 Bignum Representation

The object reference to a bignum is a word of data type dtp-bignum, whose
address field points to a bignum structure. The header word of the structure
contains data type dtp·header-i, with the header-type field equal to
%header-type-number, and' %header-subtype-bignum. (Note that fifteen values
of the 4-bit header subtype field are available for expansion.) See Figure 7, The
following fields in the header word are specific to bignums:

Position
<31:28>
<27>

<26:0>

Symbolic Name
%%HEADER-SUBTYPE-FIELD
nBIGNUM-SIGN

%:.BIGNUM-LENGTH

Description
o for a bignum
B for a positive number, 1 for a
negative number
the number of fixnums that follow

Note that the hardware does not make use of these header-word fields, Following
the header is a sequence of flXIlums that make up the bignum, The least
significant part of the bignum is stored in the first flXllum, The flXIlums are
two's complement and use all 32 bits for each digit. The bignum sign bit is the
value of all the most significant bits not explicitly stored in the bignum.
Therefore, -1_32. wouldocc,upy 2 words: the header with sign 1 and length 1, and
a flXIlum of O. (The notation -C32 stands for a two's complement -1 that has been
multiplied by 2"32, that is, shifted left 32 places.)

19

Symbolics, Inc.

+--+
INMIHEADER-IIBIGN1100000000000000000000008001 I
+--+
39

+------------~-------------------------------+
ICCI FIXNUM 1880000000000000000000000000000001
+--+
39

1_31. would also occupy 2 words: the header with sign 0 and length 1, and a
IIXnum that happens to be -1_31. -

+------~-------------------------------------+
INMIHEADER-IIBIGNI0009aa0000BBB0B00B080080B01 I
+--+
39

+--~-------~----------------~----------~-----+
ICCI FIXNUM I 1B0BB0BB0BB0B0BBB0B9B00BS0S9BSBS I

+~------------------~------------------------+
39

1_2.4.3 Small-Ratio Representation

A small ratio is represented by an immediate object of data type dtp-small-ratio.
The data field is divided into two subfields as follows:

Position
<31: 16>

<15:9>

Description
form a twoJs-complement numerator. B is an
illegal value.
is an unsigned denominator. 0 and 1 are
illegal values.

+--+~---~-+--~~-~~-~~---~-~+-----------------+
ICCISM~RATI NUMERATOR DENOMINATOR

+=-+---~--+-~--------------+--~------~--~---~+
39 37 31 15 B

The illegal values are so because of either division by zero, or because the number
is an integer and should be represented as such. The ratio is reduced to lowest
terms. Note that the hardware does not make. use of the fields of the small ratio.

20

Representation of a Blgnum

DTPoFJ!UM

I CDR I DATA I
· CODE. TYPE .

I CDR I DATA I
· CODE. T'(PE .

I CDR I DATA I
· COQF, TYPE .

I HDRI DATA I SUB I ~'GNI LENGTH l.J:!:egJ TYPE . TyPE. .

t tLBIGNUM
NUMBER DTp·HEADER·j

32-M address

DTP·B1GNUM

{41

Figure 7. Structure of an object of type dtp·bignum

21

Symbolics, Inc.

/
Increasing
addresses

Symbolics, Inc.

1.2.4.4 Big-Ratio, Representation

The object reference to a big ratio' is a word of data type dtp·big-ratio, whose
address field points to a cons pair, The car of the cons contains the numerator of
the ratio, and the cdr contains the denominator, As with small ratios, a numerator
of 0, or a denominator of 0, 1, or a negative number, is illegaL The ratio is
reduced to lowest terms. See Figure 8.

1.2.4.5 Single-Precision Floating-Point Representation

A single-precision floating-point number is represented as an immediate object of
data type dtp-single-float whose data field contains a 32·bit IEEE single basic
floating· point number. The following fields are defined:

~08ition

<31>

<30:23>
<22:0>

Symbolic Name
%%S!NGLE-SIGN

%%SINGLE-EXPONENT
%%SINGLE-FRACTION

Description
o for positive numbers,
1 for negative numbers
excess-127 exponent
positive fraction, with
hidden 1 on the left

+-~+----~~+-+---~-----+----------------------+

ICCISNG-FLISI EXPONENT I FRACTION

+--+------+-+---~-----+----------------------+
39 37 31 22

1.2.4.6 Double-Precision Floating.Point Representation

The object reference to a double· precision floating-point number is a word of data
type dtp-double·float. The address field of the double· float word contains the
address of a cons pair, See Figure 9. The data, fields in the words of the cons
pair hold two Irxnums, containing the sign, exponent, and fraction as packed fields,
The most-significant word is stored first, violating normal byte-order conventions,
The second f'rxnum contains the low 32 bits of the fraction, The first IlXl1um
contains the following fields:

22

Symbolics, Inc.

Representation of a Big-ratio

NIL DTP-FJXNUM""

~ ~
! CDR I DATA
"CODE. TYPE

I COR I DATA
• CODE. TYPE

t t
NORMAL

DTP·BIG-RATIO

DTP.FtXNUM

32-bit address

DENOMINATOR

NUMERATOR

Figure 8. Representation of a big ratio.

23

"The nu1'nefator ~ denomil'lalor coUld also be a bignum.

Symbo/ics, Inc.

Position
<31>

<30:20>
<19:0>

Symbolic Name
%%OOUBLE-SIGN

%%D.OUBLE-EXPONENT
%%OOUBLE-FRACTION-HIGH

Description
o for a positive number,
1 for a negative number
excess-1023. exponent
top 20 bits of fraction
(excluding the hidden bit)

+--+------+-+----------+---------------------+
ICCI FXNM 151 EXPONENT I FRACTI ON-H I GH

+-~+------+-+----------+---------------------+
39 37 31 19

The' second flxnum contains one field:

Position
<31:0>

Symbolic Name
%%FRACTI ON-LOW

Description
bottom 32 bits of fraction

+--+------+----------------------------------+
ICCI FXNM I FRACTl ON-LOW

+-~+------+----------------------------------+
39 37 31 o

This conforms to the IEEE standard 64-bit representation. In non-generic code
double-precision floating-point numbers are often represented as a pair of fixnums.
Avoiding the normal in-memory object representation saves consing overhead.

1_2_4_7 Complex-Number Representation

The object reference to a complex number is a word of data type dtp-complex,
whose address points to a cons pair. The car of the cons contains the real part of
the number, and the cdr contains the imaginary part. See Figure 10.

1_2.4.8 The Spare-Number Type

An object reference using dtp-spare-number can be employed by software to
implement additional numeric data types. Functions that require numeric data
types as arguments will behave properly (usuany trapping out to user-defined
handlers) with dtp-spare-number operands.

1_2.5 Representations of Lists

The object reference to a list is a word of data typedtp-Iist, whose address field
contains the address of a word that contains the car of a cons. The storage
representation of a list is usually a linked conection of conses. Refer to the
Reference Guide to Symbolics Lisp for a complete description of conses and lists. In

24

Symbolics, Inc.

Representation of Double-precision Floating-point Number

FRACTION· LOW

~ L :DR I DA fA I SIGNI . I

NORMAL DTP·FIXNUM

. .

I CD§.I DATA J COD j lYPE 32·M address

t
DTP-DOUBLE·FLOAT

Figure 9. Representation of a double-precision floating-point number.

25

SymboJios, Inc.

Representation of a Complex Number

NIL ANY NUMERIC DAi"A TYPE

~ ~
I CDR , DATA
. CODE. TYPE

t t
NORMAL ANY NUMERIC !>ATA TYPE

32·blt address

OTP-COMPLEX

IMAGINARY-PART

Figure 10. Representation of a complex number.

26

Symbolics, Inc.

compact form, however,a list can be stored in a sequence of adjacent memory
words. See Figure 11.

The cdr-code tag ofa memory word that constitutes an element of a list specifies
how to get the cdr. of its associated cons according to whether the list is stored in
normal linked-list form or in compact form. The cdr-code tag works as follows:
Code Symbolic Name Description

o cdr-next

1 cdr-nil

2 cdr-normal

3

Increment the address to get a reference to the
cdr, itself a cons. This is used for compact lists.

The cdr is nil. This is used for both kinds of
list.

Fetch the next memory word; it contains a
reference to the cdr. This is used for
normal lists.

(illegal)

A typical, that is, not compact, two-word cons has cdr-normal in the cdr-code tag
of its flrst word and cdr-nil in that of its second. The car and cdr operations
ignore the cdr code in the second word, but it is helpful to the garbage collector.

In general, a compact list representation consists of a contiguous block of one or
more memory words. The cdr code of the last word is always cdr-nil. The cdr
code of the second·to-Iast word may be cdr-normal or cdr-next. The cdr code of
each of the remaining words is· c£l.r-next. Note that when a cons consists of
exactly two words, the cdr-normal form is used in its representation, and the cdr
code of the second word is always cdr-nil. In a two-element list consisting of two
words, the cdr code of the flrst word is cdr-next.

Note that a dtp-list pointer can point into the middle of a list representation.
This happens any time cdr-next is used; for instance, if a list of four elements is
fully cdr-coded .. that is, it is stored in compact form .. its representation consists
of four words. The contents of each word is an element of the list. The cdr
.codes of the flrst three words are cdr-next; the cdr code of the last word is
cdr-nil. An· object reference to the cddr of this list has data type dtp-list and the
address of the third word. The garbage collector protects the entire block of
storage if any word in it is referenced. See Figure 12.

The rplacd operation interacts with cdr coding. An illustration of this was
presented in an earlier section. See the section "Forwarding (Invisible) Pointers."
rplacd of a cons represented with cdr-normal simply stores into the second word.
But rplacd of a cons represented with cdr-next or cdr-nil must change the
representation so that the cdr is represented explicitly .before it can be changed.

27

~

Ordinary
Ust
Structure

Compact
U,'
StruclUra

List Representations of the list (a b)
OTP-Nll

NIL

NORMAL
Nil OTP-UST

~I :Ll Mt I ••. _ 'IJ
coo TYPE·

Cons I CDR J DATA f 32-bit address
cop TYPE

t -f

32-bit address of prinlname (bl

NORMAL OTP-SYMBOl

32·bit addrass

OTP·lIST

32-bit addmss

32-M adl;fress

NEXT OTP-SYMBOl

32-M address

DTP-L1ST Figure 11.

32-bil address of prirrtname (al

/
(increasing
addresses)

Ordinary and compact list structures.

Note: Ihe objects contained in the lisls in these
examples happen to be symbolS; they could be any lisp objects.

32·M address of prinlname (bl

32-bit address of printname lal

fR
~
~ .'"
$'
!">

!g
NEXT

OTP·LlST

t
OTP-llST

List Representations of the Lists (a bed) and cddr (a bed)

/
NIL DTP-SYMBOl

(increasing
addresses)

t t
Address

32-bit address

t
Reference to (a bed)

32-bil address >

t
Reference to cddr (a bed)

Figure 12.

32-bit address o(prinlname

32-bit address of prinlname

32-bit address of printname

Nole: the objects contained in the lists in these
examples happen 10 be symbols; they could be any lisp objects.

An object reference to the cddr of a list.

Idl

I')

la)

~

~

~
~~
?r

Symbolics, Inc.

There is one exception; if the cdr is being changed to nil, the cdr-nil cdr code is
used to represent it. Use of rplacd can split an object representation into two
independent object representations, one of which might then be garbage-collected.

dtp-header-forward is used to implement list forwarding. If the data-type tag (of
the car) is dtp-header-forward, the cdr code is ignored (except by the garbage

. collector, which expects it to be cdr-nil). The address in the forwarding pointer
points to a pair of words that contain the car and cdr.

1.2.6 Representations of Arrays and Strings

The object reference to an array or string is a word with data type dtp-array or
dtp-string. The representation of arrays described here does not apply to object
references with data type dtp-array-instance or dtp-string-instance.

Whether an array is referred to by dtp-array or dtp-string has no effect on its
stored representation: the data type of the object reference simply serves to make
the stringp predicate faster.

An array is a structure consisting of a preIIX followed by optional data. (Data does
not follow the preIIX of an array structure if, for example, the array is displaced.)
A preIIX is deImed to be a word whose data type is dtp-header-i and whose header
type is %header-type-array, followed by zero or more additional words. The prefix
defines the type and shape of the array. This is similar to the 3600. The detailed
format of the preIIX is different from the 3600, and simpler. The data is a
sequence of object references or of flxnums containing packed bytes.

The byte flelds in a preIIX header's 32-bit immediate field are:

30

. Position
<31: 26> 6.
<31 :30> 2

<29:27> 3

Symbolic N arne
ARRAY-TYPE-FIELD
ARRAY-ELEMENT-TYPE

ARRAY-BYTE-PACKIN.

<26> 1 ARRAY-LIST-BIT

Symbolics, Inc.

Description
Combination of fields below
Element type, one of: fixnum,
character, boolean, object-reference.
Byte packing. Base 2 logarithm (0 to
5) of the number of elements per word
6 or 7 in this field is undefined.
1 in ART-Q-LIST arrays, 0 otherwise

<25> 1 ARRAY-NAMED-STRUCTURE-BIT
1 in named-structures, 0 otherwise

<24> 1 ARRAY-SPARE-1 (spare for software use)
<23> 1
<22:15> 8

ARRAY-LONG-PREFIX-BIT 1 if prefix is multiple words
ARRAY-LEADER-LENGTH-FLELD

<14:0> 15 ARRAY-
Number of elements in the leader
Use of these bits depends on the
prefix type, as described below

+--+-----+--+---+-+-+-+-+-----+-----------------+

IARIHDR-IITYIBPBILISI-IPIL-LENI
+--+-----+--+---+-+-+-+-+-----+------~----------+

39 38 31 30 27 23 15

Bits <31:27> correspond to the same bits of the control word of an array register.
Array registers are discussed in the following section. See the section "I-Machine
Array Registers,". Bits <26:24> are not used by hardware. Bits <31:27,23> enable
various special pieces of hardware (or microcode dispatches). Bits <22:0> are used
by hardware under microcode control. Bits <31:26> are sometimes grouped
together as ARRAY-TYPE-FIELD.

Some arrays include packed data in their stored representation. For example,
character strings store each character in a single a-bit byte. This is more
efficient than general arrays, which require an entire word for each element,
Accessing the nth character of a string fetches the n/4th word of the string,
extracts the mod(n,4)th byte of that word, and constructs an object reference to
the character whose code is equal to the contents of the byte. Machine
instructions in compiled functions are stored in a similar packed form. For
uniformity, the stored representation of an object containing packed data remains
a sequence of object references. Each word in an array of element-type Iumum,
boolean, or character is an immediate object reference, data type dtp-fixnum,
whose thirty-two bits are broken down into packed fields as required, such as four
a-bit bytes in the case of some character . strings.

31

in the defin;

Symbolics, Inc.

An array can dptionally be preceded by a leader, a sequence of object references
that implements the array-leader feature. If there is a leader, the leader is
preceded by a header of its own, tagged dtp-header-p and %header-type-Ieader;
the .address field of this header contains the address of the array's main header
-- that is, the address of the header of the array preIIX. Note that if an array has
a leader, the address field of an object reference designating that array contains
the address of the main header, the one after the leader, not the address of the
header at the beginning of the array's storage, before the leader. Refer to the
diagram, Figure 13.

The address of leader element i of an array whose address is a,. regardless of
whether the preIIX is long or short, is given by (- ail).

The two array formats (%array-prefix-short and %array-prefix-Iong) are provided
to optimize speed and space for simple, small arrays, which are the most common.
Wherever possible fields have been made identical in both formats to simplify the
implementation.

Description of the two preIIX types:

%array-pref'lX-short:

Position Bits Symbolic Name Description
<14: II> 15 ARRAY-SHORT -LENGTH-FI ELD Length of the array.

+--+-----+~-+---+~+-+-+-+-----+-~---------+

IARIHDR~IITYIBPBILlsl-leIL-LENI AR-LENGTH I
+~-+-----+--+---+-+-+-+-+---~-+------~----+

39 38 31 39 27 23 14 e

The preIIX is one word. The array is one-dimensional and not displaced, but may
have a leader. Most common arrays including defstructs, editor lines and most
arrays with f'ill-pointers use this type. (You can find out about fill pointers by
using the Document Examiner, or refer to the Reference Guide to Symbolics Lisp.)
See Figure 13.

The address of data element i of a short-preIIX array whose address is a and
whose ARRAY-BYTE-PACKING field is b is given by (+ a (ash i (- b» 1). When
b is greater than zero, packed array elements are stored right-to·left within words,
thus the right shift to right-justify data element i is
(ash (Iogand i (1· (ash 1 b») (- 5 b».

32

Array

Array

Arrays with Prefix Type o/oarray-preflx-short

Last active
element

t

Symbolics, Inc.

Array data E29 E28 E27 E26 E25 E24 E23 E22 E21 E20 E19 E;8 E17 E1

Array prefix

Array leader

Fill pointer
_ldreiemO

Named-structure ~ CDR
symbol _ tdr e

32-bit addrus

DTp·ARRAY

/
(increasing
addresses)

With Leader

2 •.

32-bit address

32·bit address

30.

{

Array dala < E29 E28 E27 E26 E25 E24 E23 E22 E21 E20 1::19 E18 E17 E1

Array prof"
30.

t
2-bit element-type field

32-M address

DTP·AARAY
Generated by:

Without Leader (make-array 30 :element-type '(unsigned-byte 2»)

Figure 13. Short-preIIX arrays with and without leaders.

33

Symbolics, Inc.

%array-prefix-Iong:

Position Bits Symbolic Name Description
<14> 1 ARRAY-DISPLACED-BIT 0 for normal array, 1

for displaced array ..
-c<H~:'3>--'r2~llRAY~tflN(FSPARE-------Spare-:-- ~~'--;;

<2:0> 3 ARRAY-LONG-DIHENSIONS-FIELD ~

Number of dimensions.

+--+-----+~-+---+-+-+-+-+-----+-+~----+----+

IARIHDR-IITYIBPBILISI-11IL-LENIDISPAREIDIMSI
+--+-----+--+~--+-+-+-+-+-----+-+-----+----+

39 38 31 30 27 23 1413 2 o

The long prefix format is used for displaced arrays (including indirect arrays),
arrays that are too large to fit in the short-pref'1X format, and multidimensional
(including zero-dimensional) arrays. The first word of the pref'1X contains the
number of dimensions in place of the length of the data. The total length of the

. prefix is (+ 4 (* d 2» where d is the number of dimensions.

The second word of the pref'1X is the length of the array. For conformally
displaced arrays, this is the maximum legal linear subscript, not the number of
elements (which may be smaller).

The third word of the pref'1X is the index offset. This word is always present,
even for non-indirect arrays. Zero should be stored here in h09--displaced arrays,
since the this word is always added to the subscript .. Always having an index offset
keeps the format uniform and allows the feature that displaced arrays of packed
elements can be non-ward-aligned.

The fourth word of the prefix is the address of the data. This is a locative to the
first word after the pref'1X for normal arrays, except for normal arrays with no
elements, in which case it is a locative to the array itself to avoid pointing to
garbage. For displaced arrays, this is a locative or a f'lXnum. For indirect arrays,
this is an array.

The remaining words of the prerlX consist of two words for each dimension. The
rrrst word is the length of that dimension and the second word is the value to
mUltiply that SUbscript by. Note that this is different from the 3600. See
Figure 14.

A one-dimensional array with a subscript multiplier not equal to 1 cannot be
encached in an array register. Currently the software considers such arrays
illegal and will never create one.

34

I

Symbolic •• Inc.

%array-pref"lx-Iong:

Position Bits S;ymbolic Name
<14> . 1 ARRAY-DISPLACED-BIT

<13> 1 ARRAY-DISCONTIGUOUS-BIT

Description
B for normal array. 1
for displaced array.
B for normal array. 1
for conformal array.

<12:3>
<2:9>

12
3

ARRAY-LONG-SPARE Spare.
ARRAY-LONG-DIMENSIONS-FIELD

Number of dimensions.

+~-+-----+--+---+-+-+-+-+-----+-+-----+----+

IARIHDR-IITYIBPBILISI-11IL-LENIDISPAREIDIHSI
+--+-----+--+---+-+-+-+-+-----+-+-----+----+

39 38 31 39 27 23 1413 2

The long pref1x format is used for displaced arrays (including indirect arrays),
arrays that are too large to f1t in the short-pref1x format, and multidimensional
(including zero-dimensional) arrays. The f1rst word of the preflx contains the
number of dimensions in place of the length of the data. The total length of the
prefIx is (+ 4 (* d 2» where d is the number of dimensions ..

The second word of the prefIx is the length of the array. For conformally
displaced arrays, this is the maximum legal linear subscript, not the number of
elements (which may be smaller).

The third word of the prefIx is the index offset. This word is always present,
even for non-indirect arrays. Zero should be stored here in non-displaced arrays,
since the this word is always added to the subscript. Always having an index offset
keeps the format uniform and allows the feature that displaced arrays of packed
elements can be non-ward-aligned.

The fourth word of the pref1x is the address of the data. This is a locative to the
f1rst word after the preIlX for normal arrays, except for normal arrays with no
elements, in which case it is a locative to the array itself to avoid pointing to
garbage. For displaced arrays, this is a locative or a IlXntun. For indirect arrays,
this is an array.

The remainipg words of the preIlX consist of two words for each dimension. The
Ilrst word is the length of that dimension and the second word is the value to
multiply that subscript by. Note that this is different from the 3600. See
Figure 14.

A one~dimensional array with a subscript multiplier not equal to 1 cannot be
encached in an array register. Currently the software considers such arrays
illegal and will never. create one.

34

Array prefix

Symbolics, Inc.

Two-Dimensional Array

A63, A62 A61 AM

Array data ASO A43 A42 A41 A40

A33 A32 A3! A30 A23 A22 A21 A20

A13 A12 All Al0 A03 A02 AOl AOO

Second dimension

4

FilSt dimension
multiplier 4

7

32·M address

Array
longlh r....:..,lJ::t:""r.L:.r:::.L-rr,"----.:::::...,---,--,

32·bii address

Figure 14. A two-dimensional array.

35

/
(increasing
addresses)

Symbolics, Inc.

The way you tell a displaced/indirect array from a normal array is by checking the
array-displaced bit of the array header (assuming the array has its long prefh: bit
set). Indirect arrays can be can detected by the data type tag of the fourth word.
Figure 15 shows a simple displaced array, while the figure in Figure 16 shows a
one-dimensional array indirected to another two-dimensional array. The following
code generates two such arrays:

(setq a (make-array '(74) :element-type '(unsigned-byte 4»
b (make-array 4 :displaced-to a

:dispaced-index-offset 10.
:element-type '(unsigned-byte 4»)

Software defines the precise algorithm to be. used when accessing an indirect
array.

----~~--~---
~--- --

c-'- -~-- -- ----------- .------7
1.2.7 I-Machine Array Registers

An array register is four words on the stack that contain a decoded form of an
array, permitting faster access because no reference to the preIIX is required. I
machine array registers are essentially the same as those on the L-machine, with
the addition of an index-offset feature to allow non-wordealigned array registers
with reasonable speed (on theL-machine they are very slow).

The four array-register words on the stack are, in order:

Array

Control word

Position Bits

<31:30> 2

<29:27> 3

<26:22> 5

<21 :0> 22

Base address

Array length

Object reference

a fixnum containing the following packed fields:

Symbolic Name Description

%%ELEMENT-TYPE One of: fixnum, character,
boolean, or object-reference

%%BYTE-PIICKING Base 2 logarithm (0 to 5) of
the number of elements per word

%%BYTE-OFFSET Offset from word boundary in
units of array elements

%%EVENT-COUNT Used for validity checking

The address of the In-st element in the array

The number of elements in the array

The %%EVENT-COUNT field is a copy of the internal processor register array
event-count. This copy is set when the array register is created, and updated by
Lisp code whenever an exception is taken becaus.e the %%EVENT-COUNT field

36

/"

1

Symbolics, Inc.

The way you tell a displaced/indirect array from a normal array is by checking the
array-displaced bit of the array header (assuming the array has its long prefix bit
set). Indirect arrays can be can detected by the data type tag of the fourth word .

. Figure 15 shows a simple displaced array, while the figure in Figure 16 shows a
one-dimensional array indirected to another two-dimensional array. The following
code generates two such arrays:

(setq a (make-array '(74) :element-type '(unsigned-byte 4»
b (make-array 4 :displaced-to a

:dispaced-index-offset 10.
:element-type '(unsigned-byte 4»)

Software defmes the precise algorithm to be used when accessing an indirect
array.

Conformal arrays are detected ty testing ARRAY-DISCONTIGUOUS-BIT. Software
may be able to do certain optimizations with this knowledge. ARRAY- .
DISCONTIGUOUS-BIT and ARRAY-DISPLACED-BIT are not used by hardware.

1.2_7 I-Machine Array Registers

An array register is four words on the stack that contain a decoded form of an
array, permitting faster access because no reference to the prefix is required. 1-
machine array registers are essentially the same as those on the L-machine, with
the addition of an index-offset feature to allow non-word-aligned array registers
with reasonable speed (on the L-machine they are very slow).

The four array-register words on the stack are, in order:

Array

Control word

Position Bits

<31:30> 2

<29:27> 3

<26:22> 5

<21:0> 22

Base address

Array length

Object reference

a flXIlum containing the following packed fields:

Symbolic Name Description

%%ELEMENT-TYPE One of: fixnum, character,
boolean, or object-reference

UBYTE-PACKING Base 2 logarithm (0 to 5) of
the number of elements per word

%%BYTE-OFFSET Offset from word boundary in
units of array elements

UEVENT-COUNT Used for validity checking

The address of the first element in the array

The number of elements in the array

36

Displaced Array with Prefix
Type %array-preflx-long

Symbolics, Inc.

''''.'~"' ~~"'~ I CDR. I FXNM I E31 E30 E29 E28 E27 E26 E25 E24
Array data

I.COR, I FXNM I E23 E22 E21 E20 E19 E18 E17 El.

/ I CDR.I FXNM I E15 Eli E13 E12 E11 El0 E9 E8

COREl I CODE FXNM E1 E6 E5 E4 E3 E2 El EO
"- (increasing

addresses)

A

SUbscript
multip~er ~. I CDR I FXNM I 1

~ Dimensio~ 1 ~DA 1 . I 1 3 •• length FXNM
Oata L ~cation ~ I ~~~"I LOC I 32·blt address nay prefix

Index ~ ICDR.IFXNMI }F offset 0
Array ~ I?OR FXNMI 36. length

! ARRV! HDR·I FXI 3 \0\1\.\1\ 2 \ SPARE I 1
\ { . ~ Nam9Jfointer .1 ~~~I: I FXNMI 28. J Array leader structure ~ I fOR R! 1

32·brt atldress symbol 5MB W Nam,

I LOR I HOR-P 32 .. bit address

I CD~~ DATA
COD TYPE 32·bit address

t
DTP .. ARAAY

Figure 15. A simple displaced array.

37

Array data {
r

Array pref])r

Army leader {

Array ~7Sfix <

Array leader

Symbolics, Inc.

Indirected Array

~ FXNM I A63 A62 A61 A6}y
,CDR!:I FXNMI ASS A52 AS1 ASO A43 A42 A41 A40

.1 ~~J;_LFXNM I A33A32 A31 .. B3 A30~B2A23aB1 A22=BOA21 A20

I CDR.I FXNM I A13 A12 A11 Al0 A03 A02 AD1 AOO .~t.;~------;

Second dimension FXNM
length ~ f CDR," I FXNMl 4
mUltiplier ~ ICDR::1 1 I 1 ~ I

mUltiplier ~ I COR, I FXNM I 4
First dimension

length ~ I C9,~, I FXNM I 7

::ion ~ I ~~~!: I Lac I 32~bil address

=~ ~ rCDR.1 FXNMI 0 ,-l
~~~rh ~ ,~~~" I FXNM t 28. }--l 

r ARR~ HDR.11 FXI 3 101, I· 1'1 2 I SPARE I 2 r:--' 

RII· ~ 
pointer ---;;>"" I CDR: I NIL I 

Named 
structure ~ J gg,!kl 5MBU 
.ymbol l • 1 ,1 

I LOR I HDRoP I 
32·bi\ address 

32-bit address 

4 

2 I SPARE I 

Name 

1 r-

I CD~J DATA r COD TYPE 32·M address 

DTP-ARRAY 

Figure 16. A one-dimensional array indirected to a two-dimensional array. 

38 



Symbolics, Inc. 

does not match the array-event-count register. The array-event-count register is 
incremented by Lisp code whenever the size of an array is changed, invalidating 
all array registers that have been created. Thearray-event-count register is by 
convention always nonzero, forcing the Lisp code to do an extra increment if the 
new contents would be zero. This convention permits the creation of array 
registers that always trap (by giving them a zero event count), which may be used 
for encaching objects of type dtp-array-instance and dtp-string-instance that do 
not have encacheable arrays. . 

To read an element of an array encached in a array register: 

1. If the event count is not equal to the contents of the internal processor 
. register array-register-event-count, take an instruction exception and re

decode the array into the array register. This exception need not be handled 
in hardware/firmware since it will not happen often, It is a post trap, which 
is responsible for either backing up the PC or for doing the read itself. 

2, Compare the subscript against the array length, take an instruction 
exception unless 

(%unsigned-lessp subscript length) 

is true. 

3. Add %%byte-offset to the subscript. 

4,Read the memory word at 

(+ base-address (lsh subscript (- %7.byte-packing») 

5, Use the low-order bits of the subscript, %%byte-packing, and %%element-type 
to extract the array element from the word read from memory. Take an 
instruction exception if the %%element-type requires a data type different 
from what was read. 

Much of the above happens in parallel, as it does on the L-machine. The 
comparison against the array length actually happens after the address is sent to 
memory, but if the subscript is out of bounds the memory read is cancelled and no 
page fault occurs. Large integers (dtp-bignum) are not truncated when stored into 
an art-nb array; rather, an instruction exception is taken which signals an error. 
Setting a character with nonzero high bits into an art-string also causes an 
instruction exception, 

Table 2 lists the valid array types for each array element type for all possible 
values of array byte packing. 

39 



SymboJics, Inc. 

Table 2. Valid Array Types for Byte-Packing Values 

fixnum character boolean object 
array-byte-packing 

0 art-IlXllum art-fat-string xxx art-q 
1 art-16b 16-bit-string xxx xxx 
2 art-8b art-string xxx xxx 
3 art-4b xxx xxx xxx 
4 art-2b xxx xxx xxx 
5 art-lb xxx art-boolean xxx 

1 _2.8 Representations of Functions and Closures 

1.2.8.1 Representation of Compiled Functions 

The object reference to a compiled function is a word of data type 
dtp-compiled-fUnction, whose address field points to a word inside a compiled
function structure. The compiled-function structure consists of three parts: the 
prefIx, the body, and the suffIX. The prefix is two words long and has ~ IlXed 
format. The body is a sequence of one or more instructions. The sum'!: is at 
least one word long and contains debugging information and constant ddta. The 
object reference to a compiled function contains the address of the IlXstt:0rd in 
the body, which is usually the first instruction executed when the funct n is 
called. The preIlX extends to lower addresses. The sufIlX is at higher ddresses 
than the body. The hardware, however, knows nothing about the format of the 
prefix or suffix. I 
I-Machine compiled functions differ from those of the 3600 by not havin~ a 
constants/external references table, since references to constants and to ,e'(ternal 
value and function cells are stored in-line in the body. In addition, the i"args-info" 
of an I-Machine compiled function is not stored explicitly, since it can easily be 
reconstructed from the entry instruction by software. ! 

, 

I 
The IlXst word in the prefix is a header word that identifies this object as a 

, 

compiled function and specifies its size and the sizes of its parts. The hits in this 
I 

word are: 

<39:38> 

<37: 32> 

<31:18> 

<17:B> 

%HEADER-TYPE-COMPILED-FUNCTION 

DTP-HEADER-I 

Size of the suffix (14 bits) 

Total size of the object (18 bits) 

The second word in the preIlX is available for use as the function cell that 
contains the current. definition of the function. Typically the function cell of the 
symbol that names a function contains a dtp-one-q-forward invisible pointer with 

40 



Symbolics, Inc. 

the address of the function cell of the compiled function, which contains a 
dtp-compiled-function reference to the beginning of its own body. This is the 
same as on the 3600. If the function is redefined, then the function cell will point 
someplace else and execution will be slower. If dtp-call-compiled-evenJodd is 

. used, inter-function· references bypass the function celL This is discussed in detail 
in the chapter on function calling. See the section "Function Entry." 

The even half of the first word in the body is the first instruction of the function, 
known as the entry instruction. This is the point at which execution usually 
begins. The entry instruction occupies both halves of the first word. The entry 
instruction checks the number of arguments. This is discussed in detail in the 
chapter on function calling. See the section "Function Entry." 

The first word in the suffix contains an object reference to a list containing 
·information not needed while executing the function. This information is used 
mainly by the debugger (also by the compiler and the interpreter). The car of this 
list is the name of the function and the cdr of the list is an a-list containing 
information such as names and stack locations of local variables. The cdr code of 
the fIrst word in the suffix is cdr-nil (encoded as 1), which is the illegal 
instruction sequencing code. This word, with this cdr code, serves as a "fence" 
that prevents instruction fetchahead from running past the end of the body of a 
function. 

If the body contains any full-word function-calling instructions, the suffix contains 
linkage information beginning at its second word. The linkage information is a 
sequence of fixnums joined together by cdr-next codes and terminated by a cdr-nil 
code. There isa 4-bit byte for each full-word function-calling instruction in the 
body, which contains the number of arguments to that call (0 to 13), or 14 if the 
number of arguments is larger than 13, in which case the· next two 4-bit bytes 
contain the number of arguments, ,Ir 15 if the compiler does not know the number 
of arguments or does not want the linker to bypass the entry instruction of the 
called function. If the linkage information terminates with cdr-nil before all of 
the full-word function-calling instructions have been accounted for, the missing 4-
bit bytes are assumed to contain 15. 

Succeeding words of the suffIx contain the stored representations of list-type 
constants used by the function (including double-floats, ratios, and complex 
numbers). Putting these constants in the suff"1X of the function that uses them 
minimizes paging. Structure-type constants are typically stored immediately after 
the function that uses them, again to minimize paging. 

See Figure 17 

Another section in this chapter discusses· the data types of the instructions. (See 
the section "Instruction Representation.") Refer to the chapter on the instruction 
set for a discussion of instruction sequencing. See the section "Instruction 
Sequencing. " 

41 



Symbolics, Inc. 

Compiled Function 

SUffix { CDR\ LIST 32 .. bi\ address > NIL []EG~~[====~~~~~=~=========j--il>"'" List of fUnction name 
:;;:>' and debug into a-list 

I 0 I 3 I Instruction 6 Instruction 5 

I 2 JFXNMJ Constant 
Body: 
Instructions 

J I 3 I Instruction 3 and constants 3 Instruction 4 

I 3 IFXNM I Constant 

0 3 Instruction 2 Instruction 1 IE"'lYi 

Prefix 
~::p I HDR-I SUFFIXSrZE TOTAL SIZE 

/ 
Increasing 
addresses 

28·M address 

Figure 17. The structure of a compiled function. 

42 



Symboiics, inc. 

1.2.8.2 Generic Functions 

An object reference to a 'generic function has data type dtp·generic·function: The 
address field points to a list·like structure whose content is not architecturally 
. deImed; it is. used internally by the flavor system. See the section "Generic 
Functions and Message Passing." 

1.2.8.3 Representation of Lexical Closures 

The object reference to a lexical closure is a word of data type dtp·lexical·closure, 
which points to a cons pair. The car of the cons is the lexical environment, and 
the cdr is the function. 

The lexical environment, in a typical software implementation, is a cdr-coded list 
of value cells associated with the· closure. In such an implementation, this list 

. must be compact, that is, cdr-coded using cdr-next, since instructions that access 
the lexical variables compute addresses of the variables simply as an offset past 
the address of the environment. See Figure 1S. 

When a lexical closure is called as a function, the environment will be made an 
argument to the function. For more information, refer to the chapter on function 
calling. See the section "Starting a Function Call." 

1.2.8;4 Representation of Dynamic Closures 

The object reference to a dynamic closure is a word of data type 
dtp-dynamic-closure, which points to a list structure. The format of a dynamic 
closure is not architecturally deImed, but is determined by software. (The 
hardware traps to Lisp to funcal! dynamic closures.) 

The list representation allows closures to be stored in the stack (a la 
with-stack-list); certain special forms such as error'restart exploit this. 

The list is always cdr-coded, but nothing actually depends on this. The first 
element of the list is the function. Succeeding elements are taken in pairs. The 
IITst element of each pair is a locative pointer to the value cell to be bound when 
the closure is called. The second element of each pair is a locative pointer to the 
closure value cell to which that cell is to be linked. See Figure 19. 

1.2.9 Instruction Representation 

The instructions in a compiled function are a sequence of words whose data-type 
field selects among three types of words: 

• Packed instructions -- data types with type codes 60-77 are used for words 
that contain two 1S-bit instructions. These are the usual stack-machine type 
instructions, similar to those of the 3600 . 

• Full-word instructions -- data types coded 50 through 57 are used for words 

43 



Symbolics, Inc. 

Incl'8aSing 
addresses 

DTP-LEXICAL-CLOSURE 

Lexical Closure 

I I 
I I I 

I I I 
I I I 

CMP I I FN HDR-I 

I CDR- I DATA I 
I CD!); I ~,ATA I 

I fOR- I~ATA I 
NEXT TYPE i' CDR,I DATA I 

. 
o Tp·COMP[LED·FUNCTION 

,j, 
CDR· ~~A 320bit address NIL PE 

.CDR~ DATA 320bit address CODE TYPE 

t 
DTp·LIST 

32abit address 

Figure 18. The structure of a lexica! closure. 

44 

I 

Instruction 2 I InstructiDn 1 

Value 

iY
J Value 

Value 

Val.., 

-

~Normal, by convention. 



DTP-DYNAMIe-CLOSURE 

Figure 19. 

Dynamic Closure 

1 I I 
I I I 

I 1 I Instruction 2 

I I I 

I ~~P I HDR-Ij 

I ~~R- I lOC I 32-bit address 

I CDR-_ I lOC I - 32-bit address 

I ~~~ I LOC I 32·btl add .. " 

I CDA-. I LOe I 32·btl add,." 
CDR-J DATA I 
NEXTJTYPE 

t 
DTP-COMPILED-FUNCTION 

32-bit address 

32-bit address 

The structure of a dynamic closure. 

45 

SymbolicsJ Inc. 

I Instruction 1 

Closure value cal! 

J . Value cell 
-,.....J .. to-be bound 

J 

J Closure value call 

Value call 
to be bound 



Symbolics, Inc. 

that contain a single instruction, with an address field. These are used for 
starting function calls. In addition, data type dtp-external-value-cell-pointer 
(type code 4) is used to fetch the contents of the value cell of a special 
variable or the function cell of a function and push it on the stack. This is 
actually an optimization to save space and time (one-half word and one 
cycle); the value cell address could be pushed as a constant locative and then 
a car instruction could be executed. Besides these, there is one other full
word instruction type, the entry instructions, which do not contain addresses, 
but instead look like pairs of half-word instructions. These are decoded by 
their opcode field, not by the data-type field . 

• Constants -- all other data types encountered among the instructions in a 
compiled function are constants. The word from the instruction stream is 
pushed on the stack with the cdr code set to cdr-next. The hardware will 
signal an error if the word is a header or an invisible pointer. 

The fields within the various types of instructions are described in the chapter on 
the instruction set. See the section "Macroinstruction Set." 

1.2.10 Program-Counter Representations 

The program counter (pc) is a register in the I machine that contains the virtual 
address of the currently executing instruction. Since most instructions are packed 
two-to-a-word, that address has to include information about which half-word 
instruction is executing. This information is included in the data-type code of the 
pc contents; thus there are two pc data types, dtp-even-pc and dtp-odd-pc. 
Words of these data types are not usually found in the stored representations of 
Lisp objects, but occur within stack frames or inside compiled functions for long 
branches. See the section "Function Calling, Message Passing, Stack Group 
Switching. " 

1.2.11 . Representation of Locatives 

A locative is a pointer to virtual memory implemented as an object with data type 
dtp.locative and an address field that is the address of the virtual memory word 
to which it points. It is classified as a pointer object reference (Seethe section 
"Object References. "). Locatives may point to locations within objects, such as the 
value cell of a symboL Other uses include the pointer to the start of data in long 
format arrays and the base address of array registers. 

1.2.12 Representation of Physical Addresses 

The data type dtp-physical-address allows unmapped access to the full (up to 32 
bits wide) physical address space. Since it is a separate data type it has restricted 

46 



Symbolics, Inc. 

usage. It cannot, for example, be used as a program counter, nor can it be used 
as the argument to car (as dtp-locative can) to get a datum from an arbitrary 
memory location. 

dtp,physical-address is used 

• By instructions that do not check the type of their argument. There are two 
categories of these: 

o Instructions that reference memory, including %p-Idb, %memory-read, 
%p-store-whole-contents, and their related instructions. 

o Instructions that do not reference memory, including %pointer-plus, 
%pointer-increment, and %pointer-difference. Note that 
%pointer-difference between a dtp-physical-address and a 
non-dtp-physical-address is not meaningful. 

• As the indirect pointer to an array or as the base address of an array 
register. The hardware will never directly see an indirect pointer to an 
array because indirect pointers imply long prefIx arrays, which the hardware 
does not directly support. Such arrays can be encached in array registers 
and it is here that a fast-aref/aset-l instruction will encounter a 
dtp-physical-address. 

• In block address registers (BARs). This allows optimized retrieval, copy 
and/or storing of data into I/O devices. BARs may be used in the 
implementation of copying fixnum arrays. Therefore, the usage of 
dtp-physical-address, as opposed to non-dtp-physical-address types, in 
BARs may be invisible to the high level application, copy-array-portion or 
bitblt. Reading a BAR that was loaded with a dtp-physical-address will 
return a dtp-physical-address. 

A dtp-physical-address typically points to "memory" that does not store all forty 
bits of a word and therefore cannot be used for paging. I/O devices (disk and 
network controllers), displays (B&W and color), array processors, floating point 
processors, and the like often implement buffer -memory and device registers that 
have this characteristic. They typically ignore the tag field when written and 
return data with a tag of dtp-xlX11U1n or dtp-single-float. A single I/O register 
may be referenced with %p-Idb of a dtp-physical-address. A group of I/O 
registers may be implemented as a art-XlX11U1n array that is indirected, with 
dtp-physical-address to the first I/O register. In this case a reference to one 
register would be with aref. Similarly, buffer memory would be implemented as 
an array, though not necessarily of type art-xlX11U1n, depending on the semantics 
of the buffer memory. 

dtp-physical-address always points to physical memory, not virtual memory, and 

47 



Symbo/ics, Inc. 

is therefore an immediate data type. It does not replace the need for the high 
part of virtual space mapping to a fIxed portion of the physical space, known as 
vma=pma virtual pointers. vma=pma is still needed for certain structures such as 
the paging system, which requires the PC to have a vma=pma pointer field. 

1.3 Data-Type Code Assignments 

This section summarizes all of the different data types defIned by the architecture. 
The data type of a word is stored in its tag field. 

It is important to note that not all data types are necessarily understood 
completely by a particular implementation. For example, the hardware 
understands that dtp-complex is a number, but it may not be capable of 
performing arithmetic operations on complex numbers. 

The following tables enumerate all sixty-four data types, along with a brief 
description of each. Note that the sixty-four types are grouped into several 
common classes. 

1.3.1 Headers, Special Markers, and Forwarding Pointers 

Eight data types, as shown in Table 3: 
Table 3. Headers, Special Markers, and Forwarding Pointers 

Type 
Code 

8 

1 

2 
3 
4 
5 

6 

7 

Symbolic Name 

DTP-NULL 

DTP-MON I TOR-FORWARD 

Description 

Unbound variable/function, 
uninitialized storage 
This cell being monitored 

DTP~HEADER-P Structure header, with pointer field 
DTP-HEADER-I Structure header, with immediate bits 
DTP-EXTERNAL-VALUE-CELL-POINTER Invisible except for binding 
DTP-ONE-q-FORWARD Invisible pointer (forwards 1 cell) 
DTP-HEADER-FDRWARD Invisible pointer 

(forwards whole structure) 
DTP-ELEMENT-FORWARD Invisible pointer in 

element of structure 

1.3.2 Number Data Types 

Eight types as shown in Table 4: 

48 



Table 4. Number Data Types 

Type Symbolic Name 
Code 

18 DTP-FIXNUM 
11 DTP-SMALL-RATI 0 

12 DTP-SINGLE-FLOAT 
13 DTP-DOUBLE-FLOAT 
14 DTP-BIGNUM 
15 DTP-BI G-RA TI 0 
16 DTP-COMPLEX 
17 DTP-SPARE-NUMBER 

1.3.3 Instance Data Types 

Four types as shown in Table 5: 
Table 5. Instance Data Types 

Type Symbolic Name 
Code 
28 DTP-INSTANCE 
21 DIP-LIST-INSTANCE 
22 DTP-ARRAY-INSTANCE 
23 DTP-STRING-INSTANCE 

1 .3.4 Primitive Data Types 

Eleven types as shown in Table 6: 

Symbolics, Inc. 

Description 

Small integer 
Rati 0 with small numerator and 
denominator 
Single-precision floating point 
Double-precision floating point 
Big integer 
Ratio with big numerator or denominator 
Complex number 
A number to the hardware trap 
mechanism 

Description 

Ordinary. instance 
Instance that masquerades as a cons 
Instance that masquerades as an array 
Instance that masquerades as a string 

49 



Symbolics, Inc. 

Table 6. Primitive Data Types 

Type 
Code 
24 
25 
26 
27 
30 

31 
32 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 

Symbolic Name 

DTP-NIL 
DTP-LIST 
DTP-ARRAY 
DTP-STRING 
DTP-SYMBOL 
DTP-LOCATIVE 
DTP-LEXICAL-CLOSURE 
DTP-DYNAMIC-CLOSURE 
DTP-COMPILED-FUNCTION 
DTP-GENERIC-FUNCTION 
DTP-SPARE-POINTER-1 
DTP-SPARE-POINTER-2 
DTP-PHYSICAL-ADDRESS 
DTP-SPARE-IMMEDIATE-1 
DTP-SPARE-POINTER-3 
DTP-CHARACTER 
DTP-SPARE-POINTER-4 

Description 

The symbol NIL 
A cons 
An array that is not a string 
A string 
A symbol other than NIL 
Locative pointer 
Lexical closure of a function 
Dynamic closure of a function 
Campi 1 ed code 
Generic function (see later section) 
Spare pointer 
Spare pointer 
Physical address 
Spare immediate 
Spare pointer 
Common Lisp character object 
Spare pointer 

Note that codes 36, 37, 42, and 44 are spare pointer data types and code 41 is a 
spare immediate data type. Object references with these data types can be used 
perfectly normally, but there are no built-in hardware operations that do anything 
with them. 

1.3.5 Special Marker for Garbage Collector 

One type as shown in Table 7: 
Table 7. Special Marker for Garbage Collector 

Type 
Code 
45 

Symbolic Name 

DTP-GC-FORWARD 

Description 

Object-moved flag for 
garbage collector 

1.3.6 Data Types for Program Counter Values 

Two types as shown in Table S: 

50 



SymboJ;cs, Inc. 

Table 8. Data Types for Program Counter Values 

Type Symbolic Name Description 
Code 
46 DTP-EVEN-PC PC at 

or of 
47 DTP-ODD-PC PC at 

1.3.7 Full-Word Instruction Data Types 

Eight types as shown in Table 9: 

first packed instruction in word, 
full-word instruction 
second instruction in word 

Table 9. Full-Word Instruction Data Types 

Type Symbolic Name Description 
Code 
50 DTP-CALL-COMPILED-EVEN Start call, address is 

compiled-function 
51 DTP-CALL-COMPILED-ODD Start call ,address is 

compiled-function 
52 DTP-CALL-INDIRECT Start call, address is 

function cell 
53 DTP-CALL-GENERIC Start call, address is 

generic-function 
54 DTP-CALL-COMPILED-EVEN-PREFETCH 

Same as DTP-CALL-COMPILED-EVEN 
but prefetch is desirable 

55 DTP-CALL-COMPILED-ODD-PREFETCH 

56 DTP-CALL-INDIRECT-PREFETCH 

57 DTP-CALL-GENERIC-PREFETCH 

1.3.8 Half-Word Instruction Data Types 

Sixteen types as shown in Table 10: 

Same as DTP-CALL-COMPILEO-ODD 
but prefetch is desirable 
Same as DTP-CALL-INDIRECT but 
prefetch is desirable 
Same as DTP-CALL-GENERIC 
but prefetch is desirable 

51 



Symboiics, Inc. 

Table 10. Half-Word Instruction Data Types 

Type Symbolic Name Description 
Code 
60-77 DTP-PACKED-INSTRUCTION Used for instructions in compiled 

code. 

Each word of this type contains two 18-bit instructions, which is why sixteen data 
types are used up. Bits <37-36> contain 3 to select the instruction data type. Bits 
<39-38>, the cdr code, contain sequencing information described in the chapter on 
the instruction set. The instruction in bits <17-0> is executed before the 
instruction in bits <35-18>. See the section "Instruction Sequencing." 

1.4 Appendix: Comparison of 3600-Family and I-Machine Data 
Representations 

The I machine and 3600-family machine data representations are similar in the 
following ways: 

1. They both use a two-hit cdr-code field. 

2. They both have sixty-four data types and use a six-bit data-type field, except 
as noted below. -

3. They have twenty-two data types in common (that is, data types with the 
same name), seventeen of which are alike in all respects except for the word 
size difference. These similar data types are: 

OTP-NIL 
DTP-LIST 

OTP-NULL 
DTP-MONITOR-FORWARD 

DTP-INSTANCE 
DTP-GC-FORWARD 

DTP-SYMBOL DTP-EXTERNAL-VALUE-CELL-POINTER DTP-EVEN-PC 
DTP-LOCATIVE DTP-ONE-Q-FDRWARD DTP-ODD-PC 
DTP-LEXICAL-CLOSURE DTP-HEADER-FORWARD 
DTP-GENERIC-FUNCTION DTP-ELEMENT-FORWARD 
DTP-CHARACTER 

4. Two data types are similar, except that 3600-family machines obtain an extra 
four bits in the immediate data fields at the expense of the data-type field. 
These types are: 

52 



Symbolics, Inc. 

dtp-fixnum -- uses sixteen data types on 3600-family machines, one 
on I machine 

dtp-float (3600-family) <-> dtp-single-float (1) -- uses sixteen 
data types on 3600-family machines, one on 1 machine. Both the 
3600-famiIy and the I machine use IEEE floating-point formats. 

5. The two header data types are similar, but they have slightly different 
values and possible fields. These are 

DTP-HEADER-I 
DTP-HEADER-P 

6. The structure of bignums on the two machines is essentially the same, 
though the I machine has an explicit data type for them, while 3600-family 
machines use iitp-extended-number with the bignum subtype. 

The differences between the data representations and types of 3600-family 
computers and I machines are: 

1. The I machine uses a wider memory word (40 bits) than 3600-family 
machines (36 bits). 

2. The I machine always uses the full six bits of the data type field; 3600-
family machines use four bits of this field to make thirty-two-bit immediates. 

3. The encodings of the data types are completely different: the only type that 
has the same encoding is dtp-nuIl. 

4. The I machine has the following data types which 3600-family machines do 
not have (not including dtp-single-float and dtp-dynamic-closure, which are 
simply named differently): 

DTP-SMALL-RATIO DTP-PHYSICAL-ADDRESS 
DIP-DOUBLE-FLOAT DTP-CALL-COMPILED-EVEN 
DTP-BIGNUM DTP-CALL-COMPILED~ODD 

DTP-BI G-RA TI 0 DTP-CALL~ I NDI RECT 
DTP-COMPLEX DTP-CALL-GENERIC 
DTP-SPARE-NUMBER DTP-CALL-COMPILED-EVEN-PREFETCH 
DTP-LIST-INSTANCE DTP-CALL-COMPILED-ODD-PREFETCH 
DIP-ARRAY -I NST ANCE DTP-CALL- I ND I REeT -PREFETCH 
DTP-STRING-INSTANCE DTP-CALL-GENERIC-PREFEfCH 
DTP-SPARE-POINTER-<1-4> DTP-PACKED-INSTRUCTION 
DTP-SPARE-IMMEDIAiE 

53 



Symbofics, Inc. 

5. 3600-family machines have the following data types which I machines do not 
have (not including dtp-float and dtp-closure): 

DTP-BODY-FORWARD (obsolete) 
DTP-EXTENDED-NUMBER 
DTP-LOGIC-VARIABLE 
DTP-<16-17,73-77> (spares) 

6. The following kind of objects are structure objects on the 3600-family and 
list objects on the I machine: 

• Rational numbers ("big-ratios" on the I machine. "small-ratios" are 
immediate on the I machine.) 

• Double-precision floating-point numbers 

• Complex numbers 

7. Array structures are quite different on the two families of computers. This 
is elaborated on in a later section. 

8. The data words in a fat string have dtp-f'IXnUIn on the I machine; they are 
dtp-character on 3600-family machines. 

9. Compiled functions are quite different on the two families of computers. 
This is elaborated on in a later section. 

1.4.1 Array Differences 

These are the main differences between 3600-family arrays and I.machine arrays: 

• The format of the I-machine pref'JX header is simpler and contains more 
explicit information about the array. 

• The optional array leader is stored before (at lower memory locations) the 
array's header on the I machine and after it on 3600-family machines. An I 
machine leader has its own header; a 3600-family leader does not. 

• The I machine has two kinds of array prefix, 3600-family machines six. 
Figure 20 is a detailed comparison of the corresponding array prefix 
structures, their fields, and the maximum values of the fields. 

54 



Comparison of Array Prefix Structures 

Short-prefix (LNCl.PREF:;O. LD-LEN=O) 

ARRAY-LENGTH 
MAX -.3276 

Short-prefix (LNG-PREF=O, LD-LEN not 0) 

ARRAY-LeNGTH 
MAX ",32767) 

Long-prefix _(LNG-PREF=1. LD-LEN :; 0) 

SUBSCRIPT-MUL TtPUER (MAX ... 2"27· 1) 

DIMENSION-LENGTH (MAX .. 2"27 - 1) 

Pointer 10 data 

(MAX .. 2"27-1) 

DIMENSION·LENGTH __ ARRAY·LENGTH SUBSCRIPT-MULTIPLIER .. , 

Long-pretlx (LNG-PREF=1, LD-LEN 0 to 255) 

-SUBSCRIPT-MULTIPLIER (MAX ... 21\27 - 1) 

DIMENSION-LENGTH (MAX _2"27 - 1) 

Pointer lodata 

(MAX_2"-27_1) 

DIMENSION·LENGTH .. ARRAY·LENGTH SUBSCRIPT -MULTIPLIER .. , 

Long-prefiX (LNG-PREF=1, LD-LEN = 0) 

Symbolic$, Inc. 

~~--,-----------------~------~ 
SUBSCRIPT ·MULTIPLIER (MAX .. 21\27 - 1) 

DIMENSION-LENGTH MAX_2A27_1 

SUBSCRIPT-MULTIPLIER (MAX .. 2A27 - 1l 

DIMENSION·LENGTH (MAX .. 21127 - 1) 

POinter to data 

Long.prefix (lNG.PREF~1, UJ..LEN: 0 to 255) 

SCRIPT_M TIP I R MAX", 2"27 - 1 

DIMENSION-LENGTH (MAX .. 2"27 - 1) 

DIMENSION-LENGTH 

SUBSCRIPT-MULTIPLIER 

DIMENSION-LENGTH (MAX _ 2"27 - 1 

Pointer to data 

55 



Symbolics, Inc. Comparison of Array Prefix Structures (continued) 

3GOG·Famlly 

Simple Array (1adlm~ no Idr, no Ind/dlsp) 

ARRAY·NORMAL·LENGTH 
MAX _2S21 

DISP one of {1·8IT, 2·8fT, 4-BIT, a·BIT, 16·BIT, WORD, FIXNUM. BOOLEAN, CHARACTER, FAT-CHARACTER} 

1~Dlmenslon Array wltn Leader (1-dlm. Idr, no Ind/dlsp) 

DISP - LEADER 

SHORT·ARRAY-LENGTH 
(MAX- 4095) 

Simple Indirect Array (1-dlm. no Idr, Ind/dlsp) 

DISP .. SHORT·INDIRECT 

INo-LENGTH 
(MAX_511) 

GenemI1-DlmenSrl~o~n~A~rrra~y~-r ________________________________ "-____ -' 

DrSP ... LONG 

OISP _SHORT·2D 

General Multidirnenaion Altay 

DI$P .. LONG-MULTIDIMENSIONAL 
56 

INDEX-OFFSET (MAX _ 2"27 -1) 

ARRAY·LENGTH (MAX .. 2"27 - 1) 

LD·LEN 
MAX -1023 

SUBSCRrPT·MUL TrPLIER 

SUBSCRIPT·MULTIPLIER 

DIMENSION-LENGTH 

DIMENSION·LENGTH MAX _ 21127. 1 

OIMENSION-LENGTH MAX .. 2"27. 1 

lD MAX ... "27.1 



Symbolics, Inc. 

1.4.2 Compiled Function Differences 

The major difference between the data representations of 3600·family machines 
and I machines is in the structure of compiled functions. 

• 3600·family machines have an external reference table, which is stored 
between the compiled function prefix and the body of instructions. I 
machines, which omit this table, store the contents of this table -- constants 
and locatives -- in line with the instructions, using the cdr-code field of the 
packed instruction to indicate sequencing. 

• 3600-family machines explicitly store information about the number and type 
of arguments supplied or required in a field of the compiled function prefix. 
I machines do not store this information in the prefix: it is supplied in the 
entry instruction . 

• 3600.family machines store in the compiled function's preIIX a pointer to 
debugging information and other information required by the compiler or 
interpreter. I machines store this pointer in a SufIIX that follows the body of 
instructions. They also store linkage information and additional data for the 
function in this SufIIX. 3600-family machines have no such sufIIX. 

• Format differences: 3600-family machines have a four-word compiled function 
preIIX; I machines have a two-word prefh and an at-Ieast-one-word SUfIIX. 
3600-family machines have seventeen-bit instructions and use the cdr-code 
field for the high-order bit of each of the two instructions packed in a 
dtp-IIXIlUln word. I machines have eighteen-bit instructions and use the 
low-order four bits of the data-type field for the high-order bits of the odd 
instruction. 

56 a 



Symbolics, Inc. 

56 b 



Symbolics, Inc. 

2. Memory Layout and Addressing 

*************:t::********************************************************* 
This file is confidential. Don't show it to anybody, don't hand it out 
to people, don't give it to customers, don't hardcopy and leave it lying 
around, don't talk about it on airplanes, don't use it as sales 
material, don't give it as background to TSSEs, don't show it off as an 
example of our (erodab1e) technical lead, and don't let our competition, 
potential competition, or even friends learn all about it. Yes, this 
means you. This notice is to be replaced by the real notice when 
someone defines what the real notice is. 
*********************************************************************** 

2.1 Address Space 

The architectUre provides a single address space which is shared by all processes. 
An address is thirty-two bits wide, and specifies the location of a word. 

The address space is divided into thirty-two zones, each containing 128 megawords. 
The thirty-two zones are variously assigned to several sections as shown in the 
table below. Note that ephemeral space is a subset of the virtual address space. 
#000000000000 .. 00777777777 

Ephemeral Address Space (zone 0, the low 128 megawords) 

#000000000000 .. 36777777777 
Virtual Address Space (zones (j - 30, the low 3968 megawords) 

#037000000000 .. 37777777777 
Unmapped Address Space (zone 31, the high 128 megawords) 

#000000000000 .• 37777777777 
Total Address Space (4 gigawords) 

2.1.1 Virtual Addresses 

The lower 31/32 of the address space is used for virtual addresses. These 
addresses are subject to page mapping and are used for all allocation of normal 
objects. 

A virtual address is divided into two fields for mapping purposes. These are the 
virtual page number and the offset within page fields. 

Virtual space occupies thirty-one zones. An internal processor register allows. each 
zone to be specified as either old or new space. 

57 



Symbolic., Inc. 

Position 
<31:27> 
<31:8> 
<7:0> 

Address Fields for Virtual Addresses 

Meaning 
Zone number (zones 0 through 30) 
Vutual Page Number CVPN -- 512K virtual pages per zone) 
Offset within Page (256 words per page) 

The virtual address space is partitioned by software into regions, areas, and 
quanta. These have no direct hardware impact. Note, however, that the hardware 
hash function for the Page Hash Table (See the section "Page Hash Table.") is 
optimized for a quantum size of 65536 words. 

2.1.2 Ephemeral Addresses 

The lowest zone of the v:'rtual address space is reserved for the storage of 
ephemeral objects. This space is provided to support a garbage collection strategy 
that takes advantage of recently created objects usually having a short lifetime. 

Ephemeral space is divided into thirty. two levels. Data within an ephemeral level 
is the same age. The relative ages of different levels is up to software to decide, 
and would nonnally change dynamically. Each level is further divided into two 
halves, old and new space. An internal processor register specifies which half is 
old and which is new. 

The thirty-two ephemeral levels are grouped into four groups of eight levels each. 
The ephemeral level groups referenced by a page are maintained in the PHT. 

Position 
<31:27> 
<26> 
<25:21> 
<25:24> 
<2B:8> 

Address Fields for Ephemeral Addresses 

Meaning 
BBBBB => ephemeral, otherwise non-ephemeral 
which half of the ephemeral level 
ephemeral level number 
ephemeral level group number 
word address within an ephemeral level 

Static and dynamic data are stored at virtual address 1_27 (2-27) and above. See 
the section "Revision 0 Implementation Memory Features." 

2.1.3 Unmapped Addresses 

The upper one-thirty-second of the virtual address space is used to directly address 
the low portion of the physical address space. The upper five bits of these 

58 



• 
I 

Symbolics, Inc. 

addresses are translated from all ones to all zeros. They are used primarily to 
access page tables and paging software, to avoid recursive translation faults. These 
addresses are sometimes called the virtual=physical or vrna=pma region. 

Note that there is an aliasing situation for some mapped pages. They have two 
addresses, one virtual and one vrna=pma. A virtual data cache would have to be 
careful to maintain coherence when writing via one of these addresses and reading 
via another. A VMA need not translate to a page also accessible by VMA=PMA. 
(VMA=PMA cannot reference the entire physical address space.) 

. 2.1.4 Wired Addresses 

A portion of the system needs to be wired down, that is, not subject to eviction of 
its pages from main memory. Most obviously, the software that handles page 
faults needs to be wired. 

There are a number of architecturally dermed data structures that reside at rIXed 
physical locations. A system implementation must provide memory that responds 
to these addresses. These locations are as follows (all addresses relative to the 
beginning of vrna=pma space): 

BBBBBBBBB .. BBB777777 
BB1BBBBBB .. BB1BB7777 
BB1B1BBBB .. BB1B1B377 
BB1B1B4BB .. BB1B1B777 
BB1B11BBB .. BB1B118B4 
BB1 B1181B .. BB1B11 B14 

7774999BB .. 777577777 
77769BBBB .. 777777777 

FEP code. data, and stacks (256K) 
Trap vectors (refer to chapter 5) 
FEP communication area 
System communication area 
NIL 
T 

Boot prom (64K) 
Reserved for Ibus configuration space (64K) 

Init sets the contents of the Program Counter (PC) to VMA=PMA 777400100 (that 
is,37777400100 or -377700) with data type dtp-even-pc. See the section "Revision 
o Implementation Memory Features." 

2.1.5 Pages 

The virtual address space is demand-paged with 256-word pages, just as on the 
3600. 

2.2 GC Support 

Two internal processor registers designate sections of the address space as 
oldspace. These rtlgisters can be written via the %write-internal-register 
instruction, allowing the designations to Eoange during execution. 



, I 

I 

I 



SymboJics, Inc. 

addresses are translated from all ones to all zeros. They ar~! used primarily to 
access" page table~!lnd" paging software, to avoid recursive rranslation faults. These 
addresses are someffll1es called the virtual=physical or vma=pma region. 

" !' 
Note that there is an aliasing situation for some mapped/pages. They have two 
addresses, one virtual ~d one vma=pma.A virtual datfi cache would have to be . 
careful to maintain coherence when writing via one of these addresses and reading 
via another. A VMA need '"not translate to a page also/accessible by VMA=PMA. 
(VMA=PMA cannot referetice the entire physical addr'ess space.) 

\ 

2.1.4 Wired Addresses 
\ 

A portion of the system needs tp be wired down, ~hat is, not subject to eviction of 
its pages from main memory. M;ost obviously, the software that handles page 
"faults needs to be wired. \ 

'\ 

" There are a number of architecnu:ally defined data structures that reside at I!Xed 
physical locations. A system implerhentation must provide memory that responds 
to these addresses. These locations ~re as follows (all addresses relative to the 
beginning of vma=pma space): 

000000000 .. 000777777 
001000000 .. 881007777 
801010000 .. 801018377 
001010400 .. 081010777 
081811 80B .. 801011884 
e81011005 .. 881011811 

777488088 .. 777577777 
777680088 .. 777777777 

FEP code, data, and stacks (256K) 
Trap vectors (refer to chapter 5) 
FEP communication area 
System cOl'!lffiuni"cation area 
NIL 
T 

Boot prom (64K) 
Reserved for Ibus configuration space (64K) 

Init sets the contents of the Program Counter (PC) to 777400100. See the section 
"Revision 0 Implementation Memory Features." 

2.1.5 Pages 

The virtual address space is demand-paged with 256-word pages, just as on the 
3600. 

2.2 GC Support 

Two internal processor registers designate sections of the address space as 
oldspace. These registers can be written via the %write'internal-register 

"instruction, allowing the designations to change during execution. 

59 



Symbolics, Inc. 

The zone-oldspace register contains a bit map that specifies for each zone of 
dynamic space (virtual space minus ephemeral space) whether the zone is 
newspace or oldspace. A set bit indicates its corresponding zone is oldspace. Bit 
0, specifying zone 0, is ignored since that zone is ephemeral space. Bit 31 
specifies zone 31, which is vrna=pma space. Since vrna=pma space cannot be 
condemned, bit 31 must always be 0 (the hardware mayor may not ignore it). 
The ephemeral-oldspace register contains a bit map that specifies for each 
ephemeral level which half of the level is newspace and which half is oldspace. A 
set bit indicates the upper half is oldspace . 

. This scheme never incurs false traps during ephemeral garbage collection, and 
incurs no false traps during dynamic garbage collection in the usual case where 
the software allocates addresses according to a certain convention. A false trap is 
a transport trap for reading a pointer to a zone marked as oldspace in the zone
oldspace register in which the pointer is not actually pointing at a region in 
oldspace, so the trap handler must recover using the pht.transport-trap bit. This 
only happens if the software uses a zone in a mixed way, where part of it is 
oldspace and part is newspace. The first zone of the virtual address space is 
always used for ephemeral space, while each of the remaining zones can be 
dedicated to static space, dynamic new/copyspace, or dynamic oldspace. Mter a 
garbage collection completes, zones dedicated to dynamic oldspace become free and 
can be reallocated either to static or to dynamic space, as desired. 

2.3 Address Translation 

Virtual addresses are mapped before being used to address physical memory. 
Mapping translates the virtual page nuw ber field of the virtual address into a 
physical page number. Mapping also checks for various exceptions that may result 
from attempting a memory reference and records information about the reference 
useful to software. 

2_3.1 Page Hash Table 

The VPN of a virtual address is translated using the Page Hash Table, or PHT. 
The PHT is the "backing store" for the hardware map cache: in the event of a 
map cache miss, the VPN of a virtual address is translated by looking up its entry 
in the PHT, checking the access attributes, and loading the map cache with the 
result. Unlike the 3600, the I-machine uses a translation algorithm that is 
implemented entirely in microcode, so map misses are guaranteed not to cause 
faults (pclsring) for resident pages. . 

There are a number of attributes associated with each page. These control access 
to data in the page, and also record various side effects on the page .. These 
attributes are stored in the PHT along with the translation information. Some of 
them are also stored in the map cache. 

60 



Symbolics, Inc. 

Each entry in the PHT consists of two words, a "key" and a "value" 
(approximately). Both words' data types are dtp-flX11um. The format of an entry 
is as follows: 

Word Position Field Name Comments 
PHTO <39> spare 

<38> end-col1ision-chain 
<37:32> data-type 
<31:8> vpn 
<7> fault-request 

<6> pending 

<5:4> spare 
<3:0> age 

PHT1 <39:38> spare 
<37:32> data-type 
<31:8> ppn 

<7> modified 

write-protect 

cache-inhibit 

<4> transport-trap 

<3:0> ephemeral~reference 

o keep searching, 1 stop 
dtp-fixnum 
-1 for deleted entries 
If 1, this page cannot be 

accessed in any way 
For software use only (see 

the notes section) 
For software. use only 
Set to 0 when this entry is 

loaded into the map 

dtp-flX11um 
(allows 32-bit physical 

addresses) 
If 1, this page has been 

written and probably 
differs from its 
on-disk representation 

If 1, this page cannot be 
written 

If 1, locations in this page 
are not cached 

If 1, transport-traps on this 
page are enabled 

Eph.emeral groups referenced by 
this page 

An invalid PHT entry has -1 in its VPN field; since that indicates a VPN=PPN 
address, it does not usurp any possibly useful page. 

The following attributes control access to data in the page, If an instruction 
attempts an access not allowed by one of these attributes, a fault will be 
generated. See the section "Translation Algorithm." Note that an implementation 
should be careful not to cause spurious faults· when accessing ahead of instruction 
execution. 

fault-request fault-request, when 1, indicates that any access to this page 
should cause a fault. When 0, accesses are allowed according to 
the write-protect bit, 

61 



Symbolics, Inc. 

WTite-protect 

transport-trap 

WTite-protect, when 1, indicates that any attempt to WTite data 
into the page should cause a fault. When 0, data can be WTitten 
into the page. Note: just because a page is WTite-protected does. 
not mean it is not modified; there are several mechanisms that 
circumvent this bit. See the modified bit, below. 

transport-trap, when 1, enables traps when reading a word from 
this page that is a potentially a pointer to oldspace. This is 
used by the garbage collector. 

Words are potentially pointers to oldspace if their data-type field 
contains a pointer type and their address field satisfies a 
condition based on the address space referenced. See the 
section "Lisp-Machine Data Types." The condition for a 
reference to ephemeral space is that the ephemeral-oldspace 
register indicates the half of the ephemeral level referenced is 
oldspace. The condition for a reference to dynamic space is that 
the zone-oldspace register indicates the zone referenced is 
oldspace. References to physical space never generate transport 
traps. 

If the pointer satisfies the above conditions and the transport
trap bit is set for the page, then a transport trap is taken. The 
garbage collector is responsible for deciding whether or not the 
pointer truly points to oldspace. 

See the section .. Revision 0 Implementation Memory Features." 

The following attributes record various side effects that have occurred to data in 
the page, The hardware maintains these attributes for use by the software. 

age<3:0> The age field is set to 0 when an instruction accesses data in 
this page, or an instruction is executed from this page. 

The paging software interprets this field as either a set of bits, 
all of which are cleared upon reference, or as a counter which is 
reset to zero upon reference. Either way, the intent is to assist 
a pseudo-LRU page replacement algorithm and perhaps allow 
experimentation with more sophisticated schemes. 

Because the age is in the PHT, instead of in the MMPT, as in 
the 3600, the page replacement algorithm will scan through 
main memory pages in the order they appear in the PHT rather 
than in order of increasing phy-sical addresses. Because of this, 
PHT insertion and deletion may not generally be allowed to 
relocate PHT entries. 

62 



modified 

Symbolics, Inc . 

. The age is stored only in the PHT. By definition, when an 
entry is in the map cache, the age is O. 

modified.is set to 1 whenever data is written into this page. 
Paging software clears this bit when it has saved the page. 

ephemeral-reference<3:0> 
The ephemeral-reference field records which ephemeral level 
groups are referenced by pointers in this page. Each bit in this 
field, when set, indicates that a reference to the corresponding 
ephemeral level group has been stored in this page. A 
discussion of ephemeral levels and groups occurs in an earlier 
section. See the section "Address Space." 

This information is used by the ephemeral garbage collector to 
know whether or not it has to scan this page and rescue objects 
it references, when a portion of ephemeral space is being 
garbage-collected. 

The PHT is a hash table with buckets of four entries of two words each. The 
number of buckets must be a power of two, and is chosen to yield between 38% 
and 70% density (PHT density is pages-of-physical-memory/entries-in-pht). Within 
each bucket, the four entries are simply laid out in order, alternatingPHTO and 
PHT1 words. The inner loop of the lookup algorithm searches all the PHTO words 
in a bucket for a given VPN, using block-mode memory cycles but skipping over 
the PHT1 words. 

The PHT is allocated in vma=pma space at boot time (any time before the first 
map cache miss). There are two processor registers describing the PHT: PHT
BASE and PHT-MASK. PHT-BASE is set to the physical address of the first word 
in the PHT, and PHT-MASK is set to (Ish (1- pht-number-of-buckets) 3). See the 
section "Revision 0 Implementation Memory Features." 

2.3.2 PHT Lookup Algorithm 

The PHT lookup algorithm is a rehash-on-collision hash lookup. The hash/rehash 
algorithm generates a sequence of buckets to be probed; each bucket is linearly 
scanned, at maximum memory bandwidth, for the desired VPN. The lookup 
terminates successfully when the desired entry is found, or unsuccessfully after 
scanning a bucket at the end of a collision chain. The lookup is guaranteed to 
terminate because the rehash algorithm guarantees that every bucket will be 
probed, and Lisp guarantees that at least one bucket in the PHT will have end
collision-chain=l. [when there are too many collisions in the PHT to satisfy this 
constraint, the PHT gets rebuilt -- a time-consuming operation that will probably 
never happen]. 

The collision-count mechanism is similar to that in the 3600; the PHT insertion 

63 



SymboJics, Inc. 

and deletion routines maintain a per-bucket count of the number of entries that 
hashed to a particular bucket, but could not be stored there because of collisions. 
However, the actual representation of the collision counts (either in a ,separate 
table or in some of the spare bits in PHTO) is not used by the hardware. Instead, 
the software distills the collision count for each bucket into a single bit, pht.end
collision-chain, which is 0 if the collision count is non-zero, otherwise 1. (In 
SYSDEF, this is called %%phto-end-collision-chain.l pht.end-collision-chain is only 
significant for the last entry of Ii. bucket. 

The hash function used for the initial probe of the PHT is computed by a bit
shuffle-and-xor hashbox, the exact description of which is given below. This 
hashbox maps 24-bit virtual page numbers into PHT bucket numbers, which span 
eleven bits in a minimal (lM main memory) configuration, thirteen bits in a 
typical (4M main memory) configuration, and twenty-three bits in the maximum 
configuration (4096M main memory). However, its output is actually left-shifted 
by three bits to convert it directly into a PHT offset, saving a cycle in the 
microcode. The field pht-mask is similarly left-shifted. 

This hash function was chosen presuming a page size of 2'8 words, a quantum 
size of 2'16 words, a half·ephemeral-level size of 2'21 words, and a zone size of 
2'27 words. All bit numbers are in decimal. 

PHT·OFFSET<O •• 25> 

HASH< 13> '" B 

HASH< 1> = B 
HASH« 2> '" e 
HASH< 3> '" VMA<12> D VMA<27> 
HASH< 4> = VMA<l1> D VMA<28> 
HASH< 5> '" VMA<lB> D VMA<29> 
HASH< 6> = VMA< 9> D VMA<3B> 
HASH< 7>= VMA< 8>D VMA<3", 
HASH< 8> '" VMA<13> D VMA<2B> 
HASH< 9> '" VMA<14> D VMA<22> 
HASH<lB> = VMA<15> D VMA<21> 
HASH<11> '" VMA<16> D VMA<26> 
HASH<12> = VMA<17> D VMA<25> 
HASH<13> = VMA<18> D VMA<24> 
HASH<14> '" VMA<19> D VMA<23> 
HASH<15> '" VMA<12> D VMA<16> 
HASH<16> = VMA<11> D VMA<17> 
HASH,,1?> = VMA"lB> D VMA<18> 
HASH<lS> '" VMA< 9> D VMA<19> 
HASH<l9> = VMA< 8> D VMA,,2B> 
HASH<2B> = VMA<13> D VMA<25> 

64 



Symbo/ics, Inc. 

HASH<21> = VMA<14> ® VMA<26> 
HASH<22> = VMA<15> ® VMA<27> 
HASH<23> = VMA<21> ® VMA<31> 
HASH<24> = VMA<22> ® VMA<3S> 
HASH<25> = VMA<23> ® VMA<29> 

This hashbox is accessIble by Lisp via an internal register. 

The first bucket probed is computed by the hashbox described above, modulo the 
table size. If that probe fails, a linear pseudo-random number generator, 
initialized to 17*vpn+l and advanced by 17x+1, defmes the rehash sequence. A 
Lisp expression of the lookup algorithm is given below: 
;; This is just 17x + 1, mod '2-32 . 

. (defmacro pht-next (state) 
'(sys:%32-bit-plus 

(sys:%32-bit-plus 
(sys:%logdpb ,state (byte 28. 4.) 8) 
,state) 

1) ) 

(defun pht-l dokup (vpn) 
(net «search-bucket (pht-offset) 

(loop repeat 4 
initially (setf (%block-address). (+ pht-base pht-offset» 
for entry = (%block-read) ;fetch next phtS word 
do (i f (= (1 db %%phtB-vpn entry) vpn) 

(if (= (ldb %%phtB-fault-request entry) 0) 
" This is the correct entry. return phtS and pht1 words. 

(return-from pht-lookup entry (%block-read» 
" This is the correct entry, but fault-request is set. 

(take-page-fault-request-trap» 
" VPN doesn't match, skip over the pht1 word for this entry. 

(%bl ock-read» 
finally 

;; If at end of coll i si on chai n, fai 1. 
(when (= (ldb %%phtB-coll ision-chain entry) 1) 

(take-page-not-resident-trap»») 
(search-bucket (logand (pht-hash vpn) pht-mask» 
(loop for state first (pht-next vpn) then (pht-next state) 

do (search-bucket (logand (lsh state 3) pht-mask»») 

See the section "Revision 0 Implementation Memory Features." A new entry is 
inserted into the PHT by hashinglrehashing the VPN into successive bucke~ 
numbers and searching each bucket for an invalid ~ntry to reuse. The collision 

65 



SymboJics, Inc. 

bucket for an invalid entry to reuse. The collision count of each full bucket in the 
hash sequence is incremented. When incrementing a bucket's collision count from 
o to 1, pht.end.collision-chain for that bucket must be set to O. 

An entry is deleted from the PHT by hashing/rehashing the VPN into successive 
bucket numbers and searching each bucket for the entry. The collision-count of 
each bucket in the hash sequence (excepting the one that actually contains the 
entry) is decremented. If a collision count is decremented below 0, you have tried 
to delete a nonexistent entry and have corrupted the table by inappropriately 
decrementing collision counts (the 3600 just crashes in this case). When 
decrementing a bucket's collision count from 1 to 0, pht.end-collision-chain for that 
bucket should be set to 1. Deleted entries are marked by setting their VPN field 
to -1. 

2.3.3 Translation Algorithm 

When the attributes of a resident virtual page are changed, either by Lisp doing 
something like agiI,g or replacing the page or by a memory reference causing the 
age, modified, andlor ephemeral-reference attributes to change, the PHT and the 
map cache must be synchronized so they both contain the same information. This 
is a cacheibacking-store sort of problem, and the same sort of solutions apply. We 
use a "write-through" strategy, so the map cache and the PHT are always 
consistent. 

When the storage system wants to change the attributes of a resident page, it 
updates the PHT entry for the page, and simply invalidates the map cache entry 
for that page (if one exists). See the section "Internal Registers." The next 
reference to the. page will reload the map. 

When a· memory reference needs to change the attribute; of a page that has an 
entry in the map cache (modified and ephemeral-reference are the only fields it 
can change), a microcode trap handler is invoked to update the corresponding 
fields in the PHT. Whether or not the PHT update occurs before or after the 
reference is implementation dependent. 

The translation/access-checking process for a memory read cycle is: 

66 



if VMA is of type dtp-physical-address 
access-bits := write-protect=8, 

transport-trap=0, modified=1, 
ephemeral-reference=17 

MO := contents of physical address VMA<31:0> 
else if VMA is in VMA=PMA space 

access-bits :=. write-protect=B, 
transport-trap=B, modifi ed=1 , 
ephemeral-reference=17 

if VMA is shadowed by the stack-cache 
MO := contents of stack-cache address VMA<7:0> 

else 
MO := contents of physical address VMA<26:0> 

else if VMA has an entry in the map cache 
PPN, access-bits come from map cache entry 
if VMA is shadowed by the stack-cache 

MO := contents of stack-cache address VMA<7:0> 
else 

MO := contents of physical address PPNIVMA<7:0> 
else if PHT contains an entry for VPN with fault-request=0 

if age90, rewrite PHT0 word clearing age 
load map cache with PPN, accessCbits from PHT entry 
retry memory cycle 

else 
takepage-not-resident pre-trap 

The translatiOn/access-checking process for a memory write cycle is: 

67 

Symbolics, Inc. 



Symbolics, Inc • 

. if VMA is of type dtp-physical-address 
access-bits := write-protect=B, 

transport-trap=B, modified;1, 
ephemeral-reference=1? 

write MO to physical address VMA<31:0> 
else if VMA is in VMA=PMA space 

access-bits := write-protect=B, 
transport-trap=B, modified=1, 
ephemeral-reference=1? 

if VMA is shadowed by the stack-cache 
write MO to stack cache address VMA<?:0> 

write MO to physical address VMA<26:B> 
else if VMA has an entry in the map cache 

PPN, access-bits come from map cache entry 
if write~protect=1, take page-write-fault pre-trap 
if (or (= modified B) 

(and (pointer-type? MD) 
(ephemeral-address? MO) 
(= (lagand (lsh 1 vma-ephemeral-level-group(MO» 

ephemeral-reference) 0») 
trap to microcode to update the pht 

if VMA is shadowed by the stack-cache 
write MO to stack cache address VMA<7:B> 

write 'MD to physical address PPNIVMA<7:B> 
else if PHT contains an entry for VPN with fault-request=0 

if write-protect:1, take page-write-fault pre-trap 
unless age=0, modified:1, 

and the appropriate ephemeral-reference 
bit is set, rewrite PHT entry with the updated values 

load map cache with PPN, updated access-bits 
retry memory cycle 

else 
take page-not-resident pre-trap 

The fake access-bits for VMA=PMA and dtp-physical-address addresses are chosen 
to prevent PHT update traps (those addresses are not in the PHT, so you could 

. not update them if you tried). There are two very important consequences of this: 
vma=pma or dtp-physieal-address write cycles do not update the ephemeral
reference bits, and vma=pma or dtp-physical-address read cycles do not take 
transport traps. Code that uses such addresses when using ephemeral references 
or references to oldspace must be very careful not to violate the conventions 
imposed by the garbage collector. 

Whether or not a· given address is shadowed by the stack cache is determined by 

68 



( 

Symbolics, Inc. 

examining the virtual address only. Memory operations using dtp-physical
addresses will always bypass .the stack cache. 

To work properly in a shared-memory multiprocessor, updating a PHTentry 
should be implemented by reading the entry, ORing in the changed attributes, and 
writing the entry, using interlocked bus cycles. See the section "Revision 0 

" Implementation Memory Features." A processor should not presume that its map 
cache entry is up to date, since other processors may have modified the PHT entry 
since it was encached. (When software modifies a mapping and adjusts the PHT, 
software must coordinate the change with all processors, which probably involves 
the invalidation of previous map-cache entries.) 

.2.4 Appendix: Comparison of 3600-family and I"machine Memory 
Layout and Addressing 

• 3600-family and I-machine memory layout and addressing are similar in the 
following ways: 

• Both architectures employ a single address space that is shared by all 
processes. 

• The upper portion of either memory space is used for physical address space, 
that is,! for unmapped addressing. On the I machine, the upper one-thirty
second ~s used; on 3600-family machines, the upper one-sixteenth. On3600-
family machines, physical address space size is 16 Mwords; on I machines, it 

, 

is 4 G~ords. 

• Both ar~hitectures employ the same page size: 256 words. 

• Both architectures call for a fixed portion of memory that is "wired," that is, 
not subject to being swapped from main memory out to secondary memory. 
The architectures have differing requirements for portions of memory that 
are not subject to address-translation faults. 

• Each architecture can designate portions of storage as containing temporary 
objects, and has hardware support for keeping track of references to those 
objects. 

• Both architectures perform address translation (mapping 01 virtual addresses 
to physical addresses) by means of tables that describe pages resident in 
mai,n memory. 

The differences between the memory layouts and addressing schemes of 3600-
family and I machines are:' 

69 



Symbolics, Inc. 

• The I-machine virtual address space is sixteen times bigger. 

• On the L machine, the hardware can dynamically designate attributes of 
portions of storage at the granularity of hardware quanta (16 Kwords). On 
the I machine, the attributes of portions of storage are designated by a much 
more rigid scheme. The primary division of storage in the I-machine, for 
GC purposes, is a zone (128 Mwords), of which there are 32. 

• Wired address spaces are different in the two families. On 360G-family 
machines, wired memory occupies virtual address space from virtual address 
o to %wired-virtual-address-high (contained in a control register), which is 
mapped to a contiguous set of physical memory addresses starting at %wired
physical-address-low (in another control register). On I machines, wired 
pages are stored at a predetermined set of physical addresses, starting at 
address O. 

• Ephemeral spaces are different in the two families. On the I machine, 
ephemeral space is architecturally defined to be a particular address space 
-- zone 0 (addresses 0 to 2-27). On 3600-family machines, the gc tag ram 
allows the ephemerality of each quantum to be specified. 

• GC support in general is different in the two families. On a 3600-family 
machine, ephemeral-reference attributes of a page are stored in a dedicated 
hardware memory. On the I-machine, these attributes are stored in the 
PHT. 

• The I machine never has to abort (pclsr) an instruction due to a translation 
for a resident page, while the L machine sometimes has to do so. 

• On a 3600-family, the hardware map cache is backed up by a PHTC (page 
hash table cache), which is referenced by microcode with some hardware 
assist. If both the map and the PHTC miss for a given address translation, 
Lisp is called to attempt the translation via the PHT. The I machine has no 
PHTC, the hardware map cache is backed up directly by the PHT, which is 
referenced by microcode . 

.• The 3600-family PHT is optimized for density (about 66%): each entry is 011e 
word, and table size is a prime number. The I-machine PHT (about 50% 
dense) is optimized for simplicity and performance: each entry is two words, 
and table size is a power of two. As a result of these differing designs, 
some attributes of resident pages are in the PHT on the I-machine, but in 
the MMPT on the 3600-family. 

• The stack on the L machine is mapped to virtual memory on a per-page 
basis. In the I machine, the stack cache size (128 words in the first 

70 



Symbotics, Inc. 

implementation) is less than the size of a page (256 words), so there are 
registers that indicate the upper and lower bounds of the stack cache. 
(Actually, any cache size less than twice the page size requires such 
registers;) 

71 



Symbolics, Inc. 

72 



Symbo/ics, Inc. 

3. Macroinstruction Set 

***************************************************************************** 

This file is confidential. Don't show it to anybody, don't hand it out to people, 
don't give it to customers, don't hardcopy and leave it lying around;" don't talk 
about it on airplanes, don't use it as sales material, don't give it as background to 
TSSEs, don't show it off as an example of our (erodable) technical lead, and don't 
let our competition, potential competition, or even friends learn all about it. Yes, 
this means you. This notice is to be replaced by the real notice when someone 
defines what the real notice is. 
***************************************************************************** 

3.1 Introduction 

This chapter deImes all the instructions executed by the I machine. The 
instructions are grouped according to their function. The index in the end matter 
of this manual lists the instructions alphabetically, and an appendix lists them by 
opcode and by instruction format. Another appendix contains a list of 3600 
instructions not implemented by the I-machine and, in some cases, descriptions of 
how to obtain their results with I-machine instructions. 

Before presenting the individual instructions, the chapter includes introductory 
sections applicable to all instructions: instruction sequencing, internal registers, 
and explanations of the various fields in the instruction definitions, including 
instruction formats and control stack addressing modes, argument descriptions, 
types of instruction exceptions, types of memory references, top-of-stack register 
effects, and the cdr codes of values returned. 

3.1.1 Instruction Sequencing 

Instructions are normally executed in the order in which they are stored in 
memory. Since full-word instructions cannot cross word boundaries, it would 
occasionally be necessary to insert a no-op instruction in places where a full-word 
instruction or constant followed a half-word instruction that did not fall on an odd 
halfword address. This costs address space, I Cache space, and possibly execution 
time to execute the no-op. 

The cdr code field of each word executed contains sequencing information to 
minimize this waste. The cdr code takes on one of four values, which specify how 
much the PC is incremented after executing an instruction from this word. Note 
that the PC contains a half-word address. 

73 



SymboJics, Inc. 

Cdr Code PC Increment Comment 

o 
1 

2 
3 

. +1 
illegal 
-1 
+2 PC 
+3 PC 

even 
odd 

Normal instruction sequencing 
Fence; marks end of compiled function 
On some constants 
aefore Some constants, on 50me constants 

When a constant follows an odd half-word instruction, the half-word instruction 
pair has cdr code 0 and the constant has cdr code 3. When a constant follows an 
even half-word instruction, the constant follows the odd half-word paired with the 
constant's predecessor. The half-word instruction pair has cdr code 3 and the 
constant has cdr code 2. 

For example, straightline execution of the following sequence of instructions: 

Word Address Cdr Code Instruction(s) 

1B0 e B A 
101 3 C 
192 3 F D 
183 2 E 
194 e H G 

proceeds as follows: 

Current PC Instruction Executed Cdr Code 

1B0 even A e 
1110 odd B B 
181 even C 3 
102 even 0 3 
183 even E 2 

102 odd F 3 
184 even G B 

104 odd H B 

Comment 

Packed instructions 
Constant 
Packed instructions 
Constant 
Packed instructions 

PC Increment 

+1 
+1 
+2 
+2 
-1 

+3 
+1 
+1 

A cdr-code value of 1 (cdr·nil) is used to mark the end of compiled functions. 
This value is placed in the word after the rmal instruction of the function. See the 
section "Representation of Compiled Functions." It is an error if the processor 
attempts to execute this word. The chapter on traps and handlers contains more 
information. See the section "Exception Handling." 

The cdr code sequencing described above only indicates the default next 

74 



Symbolics, Inc. 

instIuction. When an instruction specifically alters the flow of control (for 
example, branch) the cdr code has no effect. 

3.1.2 Internal Registers 

Table 11 lists I-machine internal registers. Within this table, an asterisk by an 
address entry means that the register may be defined by an implementation, and 
reserved means the register may be architecturally defined in the future. The 
information in this table is specific to Revision 0 of the Ivory chip. As the 
architecturally defined information in the table becomes determinate, 
implementation-specific details will be removed to an appendix. 

The %read-internal-register instruction always returns the object from the 
specified register with its cdr code set to cdr-next. If an internal register has cdr
code bits, they can not be read by this instIuction. 

The rotate-latch register does not have an internal address and can not be read or 
written with %read-internal-register or %write-internal'register. 

3.1.3 Memory Side Effects 

Reading memory may not cause side effects. The architecture permits an 
implementation to start a memory read that it will not use, perhaps because of 
instruction prefetching, perhaps while starting an array reference before an out of 
bounds check is performed, perhaps because of instruction pipelining (an 
instruction preceding a memory read takes a trap after the memory read 
instruction has started its read), or perhaps for something else. Writing memory 
using a dtp-physical'address is allowed to cause side effects; . 
dtp-physical-address is guaranteed not to be cached, and the write is guaranteed 
to happen exactly once. Also, both the %coprocessor-read and 
%coprocessor·write instructions may cause side effects; they are guaranteed to be 
performed exactly once. 

3.1.4 Explanation of Instruction Definitions 

3.1.4.1 Instruction Formats 

In the chapter on data representation, words in Lisp-machine memory were 
interpreted either as Lisp object references or as parts of the stored representation 
of these objects. This chapter reinterprets all memory words as instructions. The 
processor treats a memory word as an instIuction whenever it is encountered in 
the body of a compiled function -- or, more specifically, when the program counter 
points to the memory word and the word is fetched as an instruction. 

With the exception of the data types specifically designated as instructions, there 
is no one-to-one correspondence between data types and instIuction formats. 
Instead, the data types are subdivided into classes, and each class forms the basis 

75 





Symbolics, Inc. 

instruction. When an instruction specifically alters the flow of control (for 
example, branch) the cdr code has no effect. 

3.1.2 Internal Registers 

Table 11 lists I-machine internal registers. Within this table, an asterisk by an 
address entry means that the register may be defined by an implementation, and 
reserved means the register may be architecturally deImed in the future. The 
information in this table is specific to Revision 0 of the Ivory chip. As the 
architecturally defined information in the table becomes determinate, 
implementation-specific details will be removed to an appendix. 

The %read-internal-register instruction always returns the object from the 
. specified register with its cdr code set to cdr-next. If an internal register has cdr. 
code bits, they can not be read by this instruction. 

The rotate-latch register does not have an internal address and can not be read or 
written with %read-internal-register or %write-internaI-register. 

::s-~-.. --=---~,'=:':.:=:----=::-~~::;;,> 
~ 3.1.3 Explanatlonof Instruction Definitions 

3.1.3.1 Instruction Formats 

In the chapter on data representation, words in Lisp·machine memory were 
interpreted either as Lisp object references or as parts of the stored representation 
of these objects. This chapter reinterprets all memory words as instructions. The 
processor treats a memory word as an instruction whenever it is encountered in 
the body. of a compiled function -- or, more specifically, when the program counter 
points to the memory word and the word is fetched as an instruction. 

With the exception of the data types specifically designated as instructions, there 
is no one-to-one correspondence between data types and instruction formats. 
Instead, the data types are subdivided into classes, and each class forms the basis 
of an instruction type. The packed half-word instruction data type uses two 
instruction formats. See the section "Half-Word Instruction Data Types." 

Table 12 summarizes I-machine instruction formats and lists the data types in 
each class. 

The following paragraphs describe these formats and their interpretations. 

Full-Word Instruction Formats 

Function.Caliing Instruction Formats 

A word of data type dtp-call-xxx contains a single instruction. The instruction 
contains a data-type field, which is used as the opcode, and an address field· as 
shown in Figure 21. This kind of instruction starts a function call. 

75 



Symbolics, Inc. 

Table 11. I-Machine Internal Registers 

Address Read Data Register Name 
!Write Type 

0", For use by microcode only 
1 RW 1 DC Frame Pointer (FP) 
2 RW lac Local Pointer (LP) 
3 RW loc Stack Pointer (SP) 
4", For use by microcode only 
5 RW lac Stack Cache Lower Bound 
6 RW loc/pa BAR0 Contents 
206 RW loc/pa BARl Contents 
406 RW loc/pa BAR2 Contents 
606 RW loc/pa BAR3 Contents 
7 R fix BAR0 Hashed 
2137 R fix BARl Hashed 
407 R fix BAR2 Hashed 
607 R fix BAR3 Hashed 
10", For use by microcode only 
lh For use by microcode only 
12 RW pc Continuation 
13 RW fix DP Op 
14 RW fix Control Register 
15* For use by microcode only 
16 RW fix Ephemeral Oldspace Register 
17 RW fix Zone Oldspace Register 
2B R fix Implementation Revision 
21>0< RW fix FP coprocessor present 
22* For use by microcode only 
23 RW fix Preempt Register 
24", RW fix I cache Control 
25", RW fix Prefetcher Control 
26* RW fix Map Cache Control 
27* . RW fix Memory Control 
3B* R fix ECC Log 
3h R fix ECC Log Address 
32* W Invalidate Matching Map Entry for VMA in BAR0 
232" W Invalidate Hatching Map Entry for VNA in BARl 
432" W Invalidate Matching Map Entry for VHA in BAR2 
632" W Invalidate Matching Map Entry for VMA in BIIR3 

*Implementation Specific 

76 



Table 11, continued 

Register Name 

For use by microcode only 
Stack. cache overfl ow 1 i mit 
For use by mi'crocode only 
For use by microcode only 

For use by microcode only 
For use by microcode only 
For use by microcode only 
Load Matching Map Word 1 
Load Matching Map Word 
Load Matching Map Word 
Load Matching Map Word 

Top of Stack (TOS) 
Array Event Count 

1 
1 

Bi ndi ng Stack Poi nter . 
Catch Block Pointer 
Control Stack Limit 
Control Stack Extra Limit 
Binding Stack Limit 
PHT Base 
PHT Mask 
Count Map Reloads 
List Cache Area 
List Cache Address 
List Cache Length 
Structure Cache Area 
Structure Cache Address 
Structure Cache Length 
Maximum Frame Size 
Stack Cache Dump Quantum 

77 

for 
for 
for 
for 

Symbolics, Inc. 

VMA in BAR0 
VMA in BAR1 
VMA in BAR2 
VMA in BAR3 



Symbolics, -'nc. 

Table 12. I-Machin.e In.struction. Formats 

Class of Packed Half-Word Instructions 

Instruction Type Data Types Included Data-Type Code 

Operand from stack format DTP-PACKED-INSTRUCTION 60-77 
1 8-bi t i mmed. operand format DTP-PACKED-I NSTRUCTION 60-77 

Class of Full-Word Instructions (all full-word format) 

Instruction Type 

'Entry instruction 

Function-calling instructions 

Constants 

Data Types Included Data-Type Code 

DTP-PACKED-INSTRUCTION 60-77 

DTP-CALL-COMPILEO-EVEN 
DTP-CALL-COMPILED-ODD 

50 
51 

DTP~CALL-I NDI RECT 52 
DTP-CALL-GENERIC 53 
DTP-CALL-COMPIL,ED-EVEN-PREFETCH 54 
DTP-CALL-COMPILED-ODD-PREFETCH 55 
DTP-CALL-INDIRECT-PREFETCH 56 
DTP-CALL-GENERIC-PREFETCH 57 

DTP-FIXNUM 10 
DTP-SMALL-RA TI 0 11 
DTP-SINGLE-FLOAT 12 
DTP-DOUBLE-FLOAT 13 
DTP-SIGNUM _14 
DTP-B! G-RA TI 0 15 
DTP-COMPLEX 16 
DTP-SPARE-NUMBER 17 
DTP-INSTANCE 20 
DTP-LIST-INSTANCE 21 
DTP-ARRAY-INSTANCE 22 
DTP-STRING-INSTANCE 23 
DTP-NIL 24 
DTP-UST 25 
DTP-ARRAY 26 
DTP-STRING 27 
DTP-SYMBOL 38 
DTP-LOCATIVE 31 

78 



Instruction Type 

Constants 

Value Cell Contents 

Illegal Instructions 

Table 12, continued 

Data Types Included 

DTP-LEXICAL-CLOSURE 
DTP-DYNAMIC-CLOSURE 
DTP-COMPILED-FUNCTION 
DTP-GENERIC-FUNCTION 
DTP-SPARE-POINTER-1 
DTP-SPARE-POINTER-2 
DTP-PHYSICAL-ADDRESS 
DTP-SPARE-IMMEDIATE-1 
DTP-SPARE-POINTER-3 
DTP-CHARACTER 
DTP-SPARE-POINTER-4 
DTP-EVEN-PC 
DTP-ODD~PC 

Symbolics, Inc. 

Data-Type Code 

32 
33 
34 
35 
36 

37 
40 

41 
42 
43 
44 
46 
47 

DTP-EXTERNAL-VALUE-CELL-POINTER 4 

DTP-NULL B 
DTP-MDNITDR-FORWARD 1 
DTP-HEADER-P 2 
DTP-HEADER-I 3 
DTP-ONE-Q-FORWARD 5 
DTP-HEADER-FORWARD 6 
DTP-ELEMENT-FORWARD 7 

DTP-GC-FORWARD 45 

79 



Symbolics, Inc. 

Figure 21. 

I-Machine Instruction Formats 

Full-Word Instructions 

Data Types 50.·57 

393837 34 31 

(Call Instructions) 

N ... Ieast--significant digit of data type. 

EntJY Instruction 

32·bit..address 

No. req'd + opt'l 
ar s biased b +2 

25 

Packed Hatf-Wotd Instructions 

(Each word bebwcontains two instructions.) 

8-bit unsigned 
offset 

No. req'd args 
biased b +2 

BRANCH OFFSET 

Bits within 393837 -35 28 25 17 10 98 7 

o 

o 

o 
instruction ----~;.~,p 10 9 a 7 0 

'----------\I-----------'/'~--------,,,-----------'/ 

Bits within 393837 35 
instructfon -c----:)~,i7 

Opeicmds lrum stack 

17 
10. 9 5 4- 0 

/'\ 
V~----' 

Reid extraction instfYdion 

1 a.-bit immediate branch instrootion 

IMMEDIATE 
ARGUMENT 

10 0 

, 
V 

Ordinary immadiate-argument Instruction 

'~~----~--------~vr--------------~---------J/ 
Examples of subflelds of 10·bit immediate instrucliol'ls 

I-machine instruction formats. 

80 



Symbolfcs, Inc. 

Entry-Instruction Format 

An entry instruction is a word of type dtp-packed-instruction that actually 
contains one full-word instruction. Its format, shown in Figure 21, is 

Bits 
<39:38> 
<37:36> 
<35:28> 
<27:26> 
<25:18> 
<17:19> 

<9:8> 
<7:9> 

Meaning 
"Sequencing code = "add 2 to PC" 

dtp-packed-instruction 
Opcode of second half word, unused 
Addressing mode of second half word, unused 
Number of required+optional args, biased by +2 
entry instruction opcode. 1 bit says 
whether &<rest is accepted. 
Immediate addressing mode 
Number of required args, biased by +2 

The hardware will dispatch to one of two microcode starting addresses according 
to the value of the &<rest-accepted bit. 

Constant Formats 

The processor treats any word whose data tYPe is that of an object reference as a 
constant. The processor pushes the object reference itself onto the control stack 
and sets its cdr code to cdr-next for any object that is pushed onto the control 
stack, unless otherwise specified. 

Value Cell Contents 

A word of data tYPe dtp-external-value-cell-pointer contains the address of a 
me'mory cell. Using a data-read operation, the processor pushes the word 
contained in the addressed cell onto the control stack, following invisible pointers 
if necessary. Typically this pointer addresses a symbol's value or function cell. 

Illegal Instruction Formats 

A word of any data tYPe other than those listed above cannot be executed as an 
instruction. The processor will trap out if it encounters such a word. A later 
chapter contains further information on trapping. See the section "Exception 
Handling." 

Packed Half-Word Instruction Formats 

This is the most common instruction format. The word with data type 
dtp-packed-instruction contains two lS-bit instructions, which are packed into the 
word as shown: 

81 



Symbolics, Inc. 

------~--------~-------------------------
ISQI111SECND INSTRUCTIONIFIRST INSTRUCTIONI 

35 17 

The first instruction executed is called the "even half word" instruction, and is 
found in bits 0 through 17. The "odd halfword" instruction is executed later, and 
is found in bits 18 through 35. Since the data portion of the word is normally only 
32 bits, 4 bits are "borrowed" from the data type field. (The ones in bit positions 
<36-37> are the upper two binary digits of any dtp-packed-instruction opcode, a 
number between 60 and 77 octal.) 

Each of the two instructions in this format can be further decomposed. See 
FigjITe 21. As the figure shows, there are two basic 18-bit formats. 

Format for 10-Bit Immediate Operand 

The lO-bit-immediate-operand format is for those instructions that include an 
immediate operand in their low-order ten bits. The immediate operand can be 
interpreted as a constant or as an offset -- signed or unsigned, depending on the 
instruction. There are two special subcases of this instruction format: field 
extraction instructions and branch and loop instructions. 

Format for Field Extraction 

The field-extraction format is for instructions used to extract and deposit fields 
from words of different data types. The field is specified in the instruction by the 
bottom 10 bits. Bits 0 through 4 specify the location of the bottom bit of the field, 
-- that is, the rotate count -- and 1:-lts 5 through 9 specifY (field size - 1). For load
byte instructions, ldb, char-Idb, and the like, the rotate-count that the instruction 
should specifY is (mod (- 32 bottom-bit-Iocation) 32), and for deposit-byte 
instructions, dpb and the like, the rotate-count should specifY the bottom-bit 
location. 

The extraction instructions take a single argument. The deposit instructions take 
two arguments. The first is the new value of the field to deposit into the second 
argument. It is illegal, though not checked, to specify a field with bits outside the 
bottom 32 bits. 

Format for Branch Instructions 

Branch instructions are a subclass of lO-bit-immediate-format instructions. They 
use the immediate argument as a signed half-word offset. 

82 



Symbolics, Inc. 

Format for Operand From Stack 

Packed half-word instructions that address the control stack use the operand-from
stack format. They have a lO-bit field that .specifies an address into the stack. If 
one of these. instructions takes more than one operand, the addressed operand is 
the last operand of the instruction and the other operands are popped off the top 
of the ··stack. If the instruction produces a value, then the value is pushed·on top 
of the stack. 

Control Stack Addressing Modes 

Operand-from-stack instructions reference operands on the control stack relative to 
one of three pointers to various regions of the current stack frame. The lower 

. ten-bit field of one of these constitutes the operand specifier, whose bits are 
interpreted as follows. Bits 8 and 9 of the instruction are used to select the 
pointer, while bits 0 through 7 are used as an unsigned offset. The processor 
interprets bits 8 and 9 as: 

00 Frame Pointer - The' address of the operand is the Frame Pointer plus 
the offset. 

01 Local Pointer - The address of th~ operand is the Local Pointer plus the 
offset. 

10 Stack Pointer - The address of the operand is the Stack Pointer (prior to 
popping any other operands) plus the offset minus 255, unless the offset is O. 

For example, if the offset is 255, then the operand is the top of stack. Note 
that this operand will not be popped. If the offset is 1, then the operand is 
the contents of the word pointed to by (Stack Pointer minus 254), This 
mode is used for the management of arguments for pop instructions, as 
described in the next paragraphs. 

In the special case when the offset is 0, the operand is popped off the top of 
stack, before any other operands have been popped off (this operand is still 
the last argument of the function, though). This special case is called the 
"sp-pop addressing mode." For example, the following sequence could be 
used to add two numbers, neither of which is to be saved on the stack for 
later use, and to leave the result of the addition on the stack. 

push LPIB 
push LPll 
add sp-pop 

;push argl on the stack 
;push arg2 on the stack 
; pops arg2 then argl off stack, 
;adds, then pushes the result 

11 Immediate -The last operand is not on the stack at all, but is a IlXllum 
whose value is the offset possibly sign-extended to 32 'bits, depending on the 

83 



Symbolics, Inc. 

instruction. This case is called the "immediate addressing mode," not to be 
confused with lO-bit immediate format instructions, which have no operand 
specifier since they are always immediate. 

In some cases, the stack location address specified is the operand used as an 
object of the instruction in some way. This case is called "address-operand 
addressing mode." For instructions that employ the address-operand mode, the 
immediate and sp-pop modes are illegal. 

Note that it is always the last argument of an instruction that is specified by the 
operand specifier of the operand-from-stack format: the others, if there are any, 
are not explicitly specified by the instruction and are always popped off the stack 
in order. 

Refer to the chapter on function calling for a description of the contro1 stack and 
the 'processor's stack pointers. See the section "Control Stack." 

3.t~3.2 Arguments: the Data Types Accepted 

In the instruction def'mitions in this document, the Arguments field lists the 
arguments that the instruction requires and the valid data types for these 
arguments. The data types listed are those that the instruction accepts without 
taking an error pre-trap. See the section "Operand-Reference Classification." 

All numeric instructions, including those listed in the section "Numeric 
Instructions" as well as equal-number, greaterp, lessp, plusp, minusp, zerop, 
and logtest, accept all numeric data types. The only spare data type that numeric 
instructions accept is dtp-spare-number, which will cause an instruction 
exception. 

The Exception field of an instruction definition lists those data types that the 
instruction accepts as valid (that is, that do not cause an error pre-trap) but that 
are not supported in hardware. 

3.1.3.3 Types of Instruction Exceptions 

An instruction exception occurs when an instruction needs to perform some 
operation that is not an error, but is not directly supported by the hardware. 
Instruction exceptions are post-traps, called (usually) with whatever arguments the 
instruction takes. The contract of the trap handler is to emulate the behavior of 
the particular instruction. See the section "Exception Handling." 

The instruction definitions document any instruction exceptions that may occur 
during execution of the instruction. The description includes the conditions under 
which an exception will occur, the arguments passed to the exception handler 
(excluding the trap-vector-index and fault-pc supplied with all traps), and the 
number of values returned by the exception handler. Exception handlers always 
return values with return-kludge, and TOS is always valid afterwards. 

84 



Symbolics, Inc. 

3.1.3.4 Types of Memory References 

There is· a . class of instructions that address main memory (as opposed to stack 
memory). The operands for these instructions are memory addresses. Different 
instructions make conceptually different kinds of read and write requests to the 
memory system .. The different types of memory cycles for these different types of 
memory requests are summarized here and described later in this section. The 
classification of Lisp data types according to type of operand reference _. data, 
header, header-forward, and so on -- is made in the chapter on data representation. 
See the section "Operand·Reference Classification." 

Table 13 shows the action taken for each category of data when read from memory 
in a given type of memory cycle. This table refers only to memory reads and to 
memory cycles that consist of a read followed byawrite. (An instruction that 

. writes memory without reading first is called a "raw write." The table omits 
these.) Note that the categories overlap. 
Table 13. . Memory Cycles 

Cycle 
Type 
data-read 
data-write 
cdr-read 
bind-read 
bind-r-mon 
bind-write 
bind-w-mon 
header-rd 
struc-offset 
scavenge 
gc-copy 
raw-read 

Legend: 

ind 

trap 

mtrp 

Code Data Null Header HFWD EFWD lFWD EVCP GC Mon- Point-

B 
1 
9 
4 

2 

5 
3 
6 
7 
8 

1B 
11 

itor er 
trap trap ind ind i nd. ind trap mtrp trnspt 

trap ind ind ind i nd trap mtrp -
trap ind ind trap .-
trap ind ind ind trap mtrp trnspt 
trap ind ind ind trap ind trnspt 
trap ind ind ind trap mtrp -
trap ind ind i nd trap ind 

trap trap - ind trap trap trap trap trap trnspt 
ind trap -

trap - trnspt 
trap -

Normal action 

Indirect through forwarding pointer. This also enables transport 
trap if word addresses oldspace, and transport trap takes 
precedence if it occurs. 

Error trap. Takes precedence over transport. 

Monitor trap (different trap vector entry than error trap). This 
also enables transport trap if word addresses oldspace, and 
transport trap takes precedence if it occurs. 

85 



Symbolics, Inc. 

trnspt Enable transport trap if word addresses oldspace. 

Note that the operations described apply only to objects addressed as though they 
were located in main memory, not those already on the control stack. 

If an error occurs during a memory operation, the processor aborts the instruction 
~d invokes a Lisp error handler. The arguments to the error handler are the 
microstate, and the virtual memory address (VMA). From the microstate, the Lisp 
handler will look up the type of error in an error table. See the section "Exception 
Handling." 

Data-Read Operations 

Cycle 
Type 
data-read 

Code Data NuU Header HFWD EFWD lFWD EVCP GC Mon- Point
itor er 

trap trap ind ind i nd i nd trap mtrp trnspt 

Most operands are fetched with a data-read operation. This reads the word 
located at the requested memory address. If the word obtained is a forwarding, 
that is, invisible, pointer (dtp.header.forward, dtp·element-forward, 
dtp·one-q-forward, or dtp·external.value-cell-pointer), then the pointer's address 
field is used as the new address of the cell. The content of this new address is 
then read and checked to see if it is an invisible pointer. The process is repeated 
until a non-invisible-pointer data type is encountered. The word rmally obtained is 
returned as the result of the data-read operation. During this pointer following, 
sequence breaks are allowed so that loops can be aborted. If at any point· 
dtp·null, a header (dtp.header.p, dtp-header-i), or a special marker (non-invisible 
pointer •. dtp·gc.forward) is encountered, the error causes the instruction 
performing the data read to take an error trap. If a dtp-mon'lor-forward is 
encountered, the instruction takes a monitor trap. If a data location that is read 
contains an address in oldspace and transport traps are enabled for the page 
containing the word read , a transport trap handler is invoked to evacuate. the 
object and then the data·read is resumed. See the section "I-machine Garbage 
Collection. " 

Data-Write Operations 

Cycle 
Type 
data-write 

Code Data Null Header HFWD EFWD lFWD EVCP GC Mon,- Point
itor er 

1 trap ind ind i nd i nd trap mtrp -

When most operands are written to memory, a data-write memory read operation 
is flrst performed. This checks the requested location to determine whether an 
invisible pointer is present. If so, the address of the pointer is used as the new 
address of the cell. The contents of the new address is read and checked to see if 

-86 



Symbolics, Inc. 

it is an invisible pointer. If a header or special marker (dtp-gc-forward but not 
dtp-null) is encountered in any location, the error causes the instruction doing the 
data write to take an error trap. If a dtp-monitor-forward is encountered, the 
instruction takes a monitor trap. If the contents of a location is a forwarding 
pointer, a check for oldspace is made before indirection. When the process 
terminates, the contents of the final location, which are being replaced, are not 
transported. The process is repeated until a non-invisible-pointer data type is 
found, at which point a write normally follows and the data is stc~red in the last 
location, preserving the cdr code of the location into which it stores. 

CDR-Read Operations 

Cycle 
,Type 
cdr-read 

Code Data Null Header HFWD EFWD IFWD EVCP GC Mon- Point
itor er 

9 trap ind ind trap -

Memory references made only to determine the cdr-code of a location use a cdr
read operation. This kind of reference follows pointers of the type 
dtp-header-forward or dtp-e,l.ement-forward, which forward the entire memory 
word, including the cdr code. (Recall that a dtp-header-forward pointer is used by 
the system to replace an element when it is necessary to change the cdr code of a . 
cell in the middle of a cdr-coded list. See the section "Forwarding (Invisible) 
Pointers. ") The cdr-read operation returns the contents of the cdr-code field of the 
imally found word. 

Forwarding pointers (dtp-one-q-forward and dtp-external-value-cell-pointer) that 
forward only the contents (that is, the data-type and pointer fields) of the cell are 

. not followed. Instead, the cdr code of the word containing such a pointer is 
returned. 

Having extracted the relevant cdr code, the instruction doing the cdr read takes 
action according to the value returned, as explained in the section on lists. See the 
section "Representations of Lists ... 

If a header or dtp-gc-forward data type is encountered, the error causes the 
instruction making the reference to take an error trap, 

Bind-Read Operations 

Cycle Code Data Null Header HFWD EFWD IFWD EVCP GC Mon- Point-
Type itor er 
bind-read 4 trap ind ind ind trap mtrp trnspt 
bind-r-mon 2 trap ind ind ind trap ind trnspt 

The binding instructions, unbind-n, %restore-binding-stack, and 
bind-locative-to-vaIue, change the value cell, not the contents of the value cell, of 

87 



Symbolics, Inc. 

a variable. dtp-external-value-cell-pointer is an invisible pointer -that points to 
the value cell in memory. Since binding should create a new value cell, the system 
does not follow dtp-external-value-cell-pointer when doing bindings. In all other 
respects this operation is the same as a data-read memory operation, except that 
encountering dtp-null does not cause a trap. 

A subcategory of this type of operation is the bind-read-no-monitor operation. This 
operation, as opposed to the normal binding read, does not trap out if a 
dtp-monitor-forward pointer is encountered. Instead, it just follows the pointer. 

Bind-Write Operations 

Cycle 
Type 
bind-write 
bind-w-mon 

Code Data Null Header HFWD EFWD IFWD EVCP GC Mon- Point
itor er 

5 
3 

trap 
trap 

ind 
ind 

ind 
ind 

ind 
i nd 

trap mtrp -
trap ind 

A bind-write operation is like a data-write memory operation except that it does 
not follow external-value-cell pointers. See the section "Bind-Read Operations" in 
NS Users Manual. A subcategory of this type of operation is the bind-write-no
monitor operation. This operation, as opposed to the normal binding write, does 
not trap out if a dtp-monitor-forward pointer is encountered. Instead, it just 
follows the pointer. 

Header-Read Operations 

Cycle 
Type 
header-rd 

Code Data Null Header HFWD EFWD lFWD EVCP GC Mon- Point
itor er 

6 trap trap ind trap trap trap trap trap trnspt 

Instructions that reference objects represented in memory as structure objects use 
a header-read operation to access the header. This reads the word at the 
requested address. If the word is a header, the header is retUrned. If the word is 
a header-forward pointer, the address field of this invisible pointer is used as the 
new address of the header. The word at this new address is checked, and the 
process repeated until a header is found. If at any point something other than a 
header or header-forward pointer is found, the error causes, the instruction 
performing the header-read operation to take an error trap. If the data location 
that is read (without a trap) contains an address in oldspace, a transport trap 
handler is invoked to evacuate the object and then the header-read is resumed. 

88 



Symbolics, Inc. 

Structure-Offset Operations 

Cycle 
Type 

Code Data Null Header HFWD EFWD lFWD EVCP GC Man: Point
itor er 

struc-offset 7 ind trap -

The Lisp operation %p-structure-offset uses the struc-offset type of reference to 
return the structure header. This type of reference follows header-forwarding 
pointers as necessary and traps out if ,a dtp-gc-forward is encountered, A 
structure-offset reference is enabled only by bits in a %memory-read or block-read 
type of instruction. 

Garbage-Collection Operations 

Cycle 
. Type 
scavenge 
gc-copy 

Code Data Null Header HFWD EFWD lFWD EVCP GC Mon- Point
itor er 

8 
19 

trap -
trap -

trnspt 

Memory references of the types scavenge and gc-copy are used internally by the 
garbage collector. References of these types trap out when a dtp-gc-forward is 
encountered. Scavenge references perform transports; gc-copy references do not. 
Either type of reference is enabled only by bits in a %memory-read or block-read 
type of instruction. 

Unchecked Operands 

Cycle 
Type 

Code Data Null Header HFWDEFWD lFWD EVCP GC Mon- Point
itor er 

raw-read 11 

A raw memory reference has all the indirection (pointer following), trapping,and 
transporting possibilities disabled. During stack encaching and decaching, transfers 
of data between main memory and the stack cache use raw-read and raw-write 
operations. %p-Idb and %p-dpb are among the users of raw references. Note that 
raw-write operations maintain the modified and ephemeral-reference bits in the 
PHT just as other write operations do. 

3.1.3.5 Top-ot-Stack Register Effects 

The top-of-stack (TOS) register is a scratchpad location that contains a copy of the 
contents of the top of the control stack. The possible effects of an instruction on 
this register affect the code the compiler is allowed to generate. Sometimes the 
compiler must insert extra movem SPIO instructions to restore the correct value to 
the TOS register, The TOS register is valid if its contents are known to be 
identical to the contents of the location indicated by the stack pointer (SPIO); 
otherwise, the TOS is invalid, 

89 



Symbollcs, Inc. 

In the instruction descriptions that follow, the possible effects that an instruction 
can have on the TOS register are indicated by the following phrases: 

Valid before 

Valid after 

Invalid after 

Unchanged 

The register must be valid before the instruction. 

The register will be made valid by the instruction. 

The register can be made invalid by the instruction. 

Status after the instruction same as status before, except if an 
sp-pop operand is used or if the instruction modifies its operand 
and the operand happens to be the top word in the stack, in 
which case TOS is invalid after. 

3.1.3.6 Cdr Codes of Values Returned 

Every operation that returns a value -- this includes all true Lisp operations 
-- pushes that value on the stack. Thus, after an instruction has executed, the 
stack no longer contains the instruction's arguments but instead contains the 
result of the operation. Instructions that do not return a value -- for example, 
rplacd, aset, pop -- pop off all of their arguments. Every instruction that 
produces a value and pushes it on the stack sets the cdr code of the pushed word 
to 0 (cdr-next). The only exceptions are as follows: 

• The start-call instructions produce 3 (illegal in lists) in the cdr-code fields of 
the frame header on the stack. 

• A memory read or block read instruction _. one of %memory-read, 
%memory-read-addresse, %block-n·read, or %block-n-read-shift .. can copy 
the cdr code of the word from memory into the word on the stack. 

• The push-apply.args operation can produce 1 (cdr-nil) or 2 (cdr-normal) in 
. the cdr-code field of words on the stack. 

• The catch-open instruction can produce any value in the cdr-code field of 
certain words in the catch block. 

• The catch-close instruction produces 2 or 3 in the cdr code of the PC it 
saves before jumping to an unwind-protect cleanup handler. 

• %p-tag-dpb can be used to store into the stack. 

• %set-tag can be used to produce any cdr code but is usually programmed to 
produce cdr-next. 

• The instructions increment, decrement, set-to-car, set-to-cdr, 
set-to-cdr-push-car (car pushed with cdr-next), %block-n-read-alu, and 

90 



Symbolics, Inc, 

%pointer-increment store into their stack operands, preserving the cdr code 
that was in the stack location . 

• movem, pop, set-sp-to-address-save-tos, stack-blt, stack-bIt-address, 
return-kludge, %merge-cdr-no-pop, and %set-cdr-code-n store into their 
stack operands and set the cdr code to some value other than that of the 
stack location (that is, these instructions do' not preserve the original cdr 
code). See the section "Revision 0 Stack-bIt." See the section "Revision 0 
Stack-bIt-address." See the section "Revision 0 Return-kludge." 

3.2 The Instructions 

The I-machine implements 210 instructions in 14 categories. There are: 

10 list-function 
24 predicate 
29 numeric 
10 data-movement 
8 field-extraction 

10 array-operation 
19 branch·and-Ioop 
20 block 
12 function-calling 
4 binding 
2 catch 

24 lexical-variable·accessing 
11 instance·variable-accessing, and 
27 subprimitive . 

instructions. 

91 



Symbolics, Inc. 

3.2.1 List-Function Operations 

car, cdr,set·to·car, set·to-cdr, set-to-cdr-push-car, rplaca, rplacd, rgetf, 
member, assoc 

The Lisp predicate instructions eq, eql, and endp are documented elsewhere. The 
Lisp functions cons and ncons are implemented in macrocode. Refer also to the 
following topics: 

car 

%allocate-list-block 
%allocate-structure-block 

Format Operand from stack 

Argument(s) 1: 

Valuers) Returned 1 

Opcode 0 

arg dtp-list, dtp-Iocative, dtp-list-instance, or 
dtp-nil 

Immediate Argument Type Signed 

Description 
If the type of arg is dtp-list, pushes the car of arg on the stack. 

Instruction 

If the type of arg is dtp-locative, pushes the contents of the location arg 
references on the stack. 

If the type of arg is dtp.nil, pushes nil on the stack. 

Exception 
Conditions: Type of arg is dtp-list-instance. 
Arguments: arg 
Values: 1 

Memory Reference Data-reali 

Register Effects TOS: Valid after 

92 



cdr 

Format Operand from stack 

Argument(s) 1: 
. arg dtp-Iist, dtp.locative, 
dtp-list-instance, or 
dtp-nil 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Value(s) Returned 1 

Opcode 1 

If the type of arg is dtp-list, pushes the cdr of al'g on the stack 

If the type of arg is dtp-iocative, pushes the contents of the location arg 
references on the stack . 

If the type of arg is dtp-nii, pushes nil on the stack. 

Exception 
Conditions: Type of arg is dtp-list-inStance. 
Arguments: arg 
Values: 1 

Memory Reference Cdr-read, then data-read if cdr-normal 

Register Effects TOS: Valid after 

93 



Symbolics, Inc, 

set-to-car 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop operand modes undefined) 

Argument(s) 1: 
arg, the address operand, dtp-list, 
dtp-locative, dtp-list-instance, 
or dtp-nil 

Immediate Argument Type Not applicable 

Description 

Instruction 

Valuers) Returned 0 

Opcode 140 

Replaces arg with the car of arg, Does not change the cdr code of the 
operand, See the instruction car, page 92, 

Exception 
Conditions: Type of arg 'is dtp-list·instance. 
Arguments: arg (address of operand as locative) 
Values: 0 

Memory Reference Data-read 

Register Effects TOS: Unchanged 

94 



set-to-cdr 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop operand modes undefined) 

Argument(s) 1: 
arg, the address operand, dtp-list, 
dtp-Iocative, dtp-list-instance 
or dtp-nil 

Immediate Argument Type Not applicable 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 0 

Opcode 141 

Replaces arg with the cdr of argo Does not change the cdr code of the 
operand. See the instruction cdr, page 93. 

Exception 
Conditions: Type of arg is dtp-list-instance. 
Arguments: arg (address of operand as locative) 
Vaiues: 0 

Memory Reference Cdr-read, data-read 

Register Effects TOS: Unchanged 

95 



Symbolics, Inc. 

set-to-cdr-push,car 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop operand modes undefmed) 

Argument(s) 1: 
arg, the address operand, dtp-Iist, 
dtp-Iocative, dtp-list-instance, 
or dtp-nil 

Immediate Argument Type Not applicable 

Description 

Instruction 

Valuers) Returned 1 

Opcode 142 

Computes the car and the cdr of argo Pushes the car onto the stack with a 
cdr code of cdr-next and stores the cdr back into arg leaving the cdr code 
of the operand unchanged. 

Exception 
Conditions: Type of arg is dtp-Iist-instance. 
Arguments: arg (address operand as locative) 
Values: 1 

Memory Reference Data-read, cdr-read, data-read 

Register Effects T08: Valid after 

96 



rplaca 

Format Operand from stack Valuers) Returned 0 

Argument(s) 2: 
argl,dtp-list, dtp-Iocative or 
dtp-list-instance; 
arg2 any data type 

Immediate Argument Type Signed 

Opcode 200 

Description 
Replaces the car of argl with arg2, 'jJocc2'; 

" Exception ,:' ':CCo,,,,,'C,7_, 

Conditions: Type of argl is dtp-list-instance. 
Arguments: argl, arg2 
Values: 0 

Memory Reference Data-write 

Register Effects TOS: Valid before, invalid after 

97 

Symbolics, Inc. 

Instruction 



Symbolics, Inc, 

rplacd 

Format Operand from stack 

Argument(s) 2: 
arg1 dtp-list, dtp-Iocative 
or dtp-list-instance; 
arg2 any data type 

Immediate Argument Type Signed 

Description 
Replaces the cdr of argl with arg2. 

Exception 

Valuers) Returned 0 

Opcode 201 

Conditions: Type of argl is dtp.list·instance. 
Type of argl is dtp-list and the cdr code 
of the referenced cell is not cdr-normal 
See the section "Revision 0 Rplacd." 

Arguments: argl, arg2 
Values: 0 

Memory Reference Cdr-read, then data-write 

Register Effects TOS: Valid before, invalid after 

3.2.1.1 Interruptible Instructions 

Instruction 

. The next three instructions are interruptible. If a sequence break request arrives 
while one of these instructions is executing, the instruction is aborted and control 
passes to the sequence break handler. When the handler returns, the instruction 
is restarted from the beginning. Similarly, if a page fault or transport trap 
occurs, the instruction is aborted and restarted from the beginning. None of these 
instructions store into their arguments. It is possible when processing an 
-extremely long list for the instruction never to complete because sequence breaks 
occur more often than the time it takes the instruction to complete, or because not 
all of the pages referenced by the instruction will fit in main memory 
simUltaneously. This condition is detected by software, by comparing the PC on 
two successive sequence breaks, and causes control to be diverted to a macrocode 
subroutine that performs the equivalent function of the instruction. This will not 
happen often. 

98 



Symbolics, Inc. 

rgetf Instruction 

Format Operand from stack Valuers) Returned 2 

Argument(s) 2: Opcode 225 
argl any data type; 
arg2 dtp-list, dtp-nil, or dtp-list-instance 

Immediate Argument Type Signed 

Description 
Searches the list arg2 two elements at a time, succeeding if the first 
element of a pair is eql to argl, failing if the end of the list is reached 
without fmding a match. Upon failure, both values returned are nil. Upon 
success, the fIrst value returned is the second element of the matching 
pair, and the second value returned is the tail of arg2 whose car is that 
second element. The second value serves as a success/failure indicator and 

. also can be used with rplaca to change the property value. The length of 
the list is supposed to be a multiple of two; if the list is of odd length and 
a match occurs at the end of the list, an instruction exception occurs so 
software can decide whether this is an error. If no match occurs, no 
exception is taken, whether or not the list length is odd. Note that each 
sublist is subject to the type-checking errors and exceptions that the initial 
list is subject to. See the section "Interruptible Instructions," page 98. 

Exception 
Conditions: Type of argl is dtp-double-float, dtp-bignum, 

dtp-big-ratio, dtp-complex, or dtp-spare-number 
Ceq test not sufficient). 
A match occurs at the end of an odd -length list. 
Any sublist of arg2 is of type dtp-list-instance. 

Arguments: argl, arg2 
Values: 2 

Memory reference data-read, cdr-read 

Register Effects TOS: Valid before, valid after 

99 



Symbolics, Inc. 

member Instruction' 

Format Operand from stack Valuers) Returned 1 

Argument(s) 2: Opcode 226 
argl any data type; 
arg2 dtp-list, dtp.nil, or dtp-list-instance 

Immediate Argument Type Signed 

Description 
Returns nil or a tail of arg2 whose car is eql to argl. This implements 
the cl:member function and approximates the zl:memq function. Note that 
each sublist is subject to the type-checking errors and exceptions that the 
initial list is subject to. See the section "Interruptible Instructions," page 
98. 

Exception 
Conditions: Type of argl is dtp-double-float, dtp-bignum, 

dtp-big-ratio, dtp-complex, or dtp-sPllre-number 
(eq test not sufficient). 
Any sublist of arg2 is of type 
dtp-list-instance. 

Arguments: argl, arg2 
Values; 1 

Memory Reference Cdr-read, data-read 

Register Effects TOS: Valid before, valid after 

100 



Symbolics, Inc. 

assoe Instruction 

Format Operand from stack Valuers) Returned 1 

Argument(s) 2; Opcode 227 
argl any data type; 
arg2 dtp-list, dtp-nil, or dtp-list-instance 

Immediate Argument Type Signed 

Description 
Returns nil or an element of arg2 whose car is eql to arg1. This 
implements the el:assoe function and approximates the z1:assq function. 
Note that each sublist is subject to the type-checking errors and exceptions 
that the initial list is subject to. See the section "Interruptible 
Instructions," page 98. 

Exception 
Conditions; Type of argl is dtj>-double-float, dtp-bignum, 

dtp-big-ratio, dtp-complex, or dtp-spare-number 
(eq test not sufficient). 
Any sublist or element of arg2 is of type 
dtp-list-instance. 

Arguments; arg1, arg2 
Values: 1 

Memory Reference Cdr-read, data-read 

Register Effects TOS: Valid before, valid after 
BAR-! modified 

101 



Symbolics~ Inc. 

3.2.2 Predicate Instructions 

Binary predicates: eq, eq-no·pop, eql, eql-no.pop, equal-number, 
equal·number-no-pop, greaterp, greaterp·no-pop, lessp, lessp·no·pop, logtest, 
logtest.no·pop, type-member-n (four instructions), type·member-n-no-pop (four 
instructions). Unary predicates: endp, plusp, minusp, zerop. 

Refer also to the subprimitive instructions %unsigned-Iessp and %ephemeralp. 

eq Instruction 

eq-no-pop 

Format Operand from stack 

Argument(s) 2: 
argl any data type 
arg2 any data type 

Immediate Argument Type Signed 

Description 

Valuers) Returned 1 (2 for no-pop) 

Opcode 270 (274 for no-pop) 

Pushes t on the stack if the operands reference the same Lisp object; 
otherwise, pushes nil on the stack The no-pop version of this instruction 
leaves the first argument argl on the stack. (Note that, in the presence of 
forwarding pointers, two references may refer to the same object but not be 
eq or eql.) 

Exception None 

Memory Reference None 

Register Effects TOS, Valid before, valid after 

102 



Symbolics, Inc. 

eql Instruction 

eql-no-pop 

Format Operand from stack 

Argument(s) 2: 
argl any data type 
arg2 any data type 

Immediate Argument Type Signed 

Description 

Valuers) Returned 1 (2 for no-pop) 

Opcode 263 (267 for no-pop) 

Returns t if the two arguments are eq or if they are numbers of the same 
type with the same value; otherwise returns nil. Note that for 
dtp-single-fioat, -+{l and -0 are not eql. Also, (eql 0 0.0) is false. The no
pop version of this instruction leaves the frrst argument on the stack. eql 
returns nil without trapping any time the data types of the arguments are 
different. (Note that, in the presence of forwarding pointers, two references 
may refer to the same object but not be eq or eql.) 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are equal and one of 

dtp-double-fioat, dtp-bignum, dtp-big-ratio, 
dtp-complex, or dtp-spare-number (but arg1 and 
arg2 are not eq). 

Arguments: arg1, arg2 
Values: 1 for normal version 

2 for no-pop version (returns arg1 to become the 
non-popped argument). 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

103 



Symbolics, Inc. 

equal-number Instruction 

equal-number-no-pop 

Format Operand from stack Valuers) Returned 1 (2 for no-pop) 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Opcode 260 (264 for no-pop) 

Tests the two arguments for numerical equality and pushes t or nil on the 
stack according to the result. Note that (equal-number 0 0.0), which is 
also written (= 0 0.0), is true, in contrast to (eql 0 0.0), which is false. The 
no-pop version of this instruction leaves the first argument on the stack. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2. are numeric, but not both 

dtp-IlXllum or dtp-single-float. 
Floating point exceptions. 

Arguments: argl, arg2 
Values: 1 for normal version 

2 for no-pop version (returns argl to become the 
non-popped argument). 

Note that equal-number or equal-number-no-pop will take an 
exception even if the arguments are eq but are not dtp-fixnum or 
dtp-single-float. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

104 



Symbolics, Inc. 

. greaterp Instruction 

greaterp-no-pop 

Format Operand from stack Value(s) Returned 1 (2 for no-pop) 

Argument(s) 2: 
argl any numeric data type 
arg2 anY numeric data type 

Immediate Argument Type Signed 

Description 

Opcode 262 (266 for no-pop) 

Tests ifarg1 > arg2, and pushes t or nil on the stack according to the 
result. The no-pop version of this instruction leaves the first argument on 
the stack. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of arg1 and arg2 are numeric, but not both 

dtp-IIXI1UID or dtp-single-fioat. 
Floating point exceptions. 

Arguments: arg1, arg2 
Values: 1 for normal version 

2 for no-pop version (returns arg 1 to become the 
non-popped argument). 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

105 



Symbolics, Inc. 

lessp Instruction 

lessp-no-pop 

Format Operand from stack 

Argument(s) 2 
arg1 any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Valuers) Returned 1 (2 for no-pop) 

Opcode 261 (265 for no-pop) 

Tests if argl < arg2, and pushes t or nil on the stack according to the 
result. The no-pop version of this instruction leaves the first argument on 
the stack. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not both 

dtp-flxnum or dtp-single-float. 
Floating point exceptions. 

Arguments: arg1, arg2 
Values: 1 for normal version 

2 for no-pop version (returns argl to become the 
non-popped argument). 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

106 



Symbolics, Inc. 

logtest Instruction 

logtest-no-pop 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Valuers) Returned 1 (2 for no-pop) 

Opcode 273 (277 for no-pop) 

Pushes t on the stack if any of the bits designated by Is in the first 
argument are Is in the second argument: otherwise, pushes nil. The no-pop 
version of this instruction leaves the fIrst argument on the stack. The 
effect of this instruction is 

(not (zerap (lagand arg1 arg2»). 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, 

but not both dtp-ilXl1um. 
Arguments: argl, arg2 
Values: 1 for normal version 

2 for no-pop version (returns argl to become 
the non-popped argument). 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

107 



SymboJics, Inc. 

type-member-n I 

type-member-n-no-pop I 

Format lO-bit immediate 

Argument(s) 2: 
argl any data type 
I dtp-f"lXI1um (the immediate) 

Immediate Argument Type lO-bit mask 

Description 

Instruction 

Valuers) Returned 1 (2 for no-pop) 

Opcode 40-43 (44-47 for no-pop) 

n is a number between 0 and 15 inclusive. Two bits of n are part of the 
opcode and two bits are taken from the immediate argument. n specifies 
which 8-bit field, aligned on a 4-bit boundary, of a 64-bit vector the 
immediate is specifYing. The 8 least-significant bits of the immediate field I 
are then insetted into a background of 64 zero bits. The data type of argl, 
the argument on top of the stack, is then used to create a bit vector of 
zeros, except with a one in the slot for the data type. The two vectors are 
then ANDed together. If the result is nonzero, then t is returned, otherwise 
nil is returned. The no-pop version of this instruction leaves the argument 
on the stack. 

The fields specified by typ&member-n are shown below. 

n=15 n=13 n=11 0=9 n=7 n=5 n=3 n=1 n=15 
---\/------\/-- ---\/------\/------\/------\/------\/-----\/---

-----~-------~~---~~---~----------------------------------------
IXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXIXXXI 

63 55 47 39 31 23 15 7 
\~-----/\------/\------I\------/\------/\------/\------/\-------/ 

n=14 n=12 n=19 n=8 n=6 n=4 n=2 n=B 

Exception None' 

Memory Reference None 

Register Effects TOS: Valid after 

108 



endp 

Format Operand from stack 

Argument(s) 1: 

arg dtp.list, dtp·list·instance, or 
dtp·nil 

Immediate Argument Type Signed 

Description 

Valuers) Returned 1 

Opcode 2 

Pushes t on the stack if arg is nil; otherwise pushes nil. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

109 

Symbolics, Inc. 

Instruction 



Symbolics, Inc, 

plusp Instruction 

Format Operand from stack Valuers) Returned 1 

Argument(s) 1: Opcode 36 
arg any numeric data type 

Immediate Argument Type Signed 

Description 
Pushes t on the stack if the argument is a positive. number strictly greater 
than zero; otherwise pushes nil on the stack, This is an optimization of (> 
arg 0), 

Exception 
Type: Arithmetic dispatch 
Conditions: Type of arg is numeric, but not dtp-IIXnUDl 

or dtp-single-float, 
Floating-point exceptions, 

Arguments: arg 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid after 

110 



Symbolics, Inc. 

minusp Instruction 

Format Operand from stack Valuers) Returned 1 

Argument(s) 1: Opcode 35 
arg any numeric data type 

Immediate Argument Type Signed 

Description 
Pushes t on the stack if the argument is a negative number strictly less 
than zero; otherwise pushes nil on the stack. This is an optimization of « 
qOO. . 

Exception 
Type: Arithmetic dispatch 
Conditions: Type of arg is numeric, but not dtp-fixnum 

or dtp-single-float. 
Floating-point exceptions. 

Arguments: arg 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid after 

111 



Symbolics, Inc. 

zerop Instruction 

Format Operand from stack Valuers) Returned 1 

Argument(s) 1: Opcode 34 
arg any numeric data type 

Immediate Argument Type Signed 

Description 
Pushes t on the stack if the argument is zero; otherwise pushes nil on the 
stack. This is an optimization of (= arg 0). 

Exception 
Type: Arithmetic dispatch 
Conditions: Type of arg is numeric, but not dtp-fixnum 

or dtp-single-float. 
Floating-point exceptions. 

Arguments: arg 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid after 

112 



SymboJics, Inc. 

3,2.3 Numeric Operations 

add, sub, unary-minus, increment, decrement, multiply, quotient, ceiling, floor, 
truncate, round, remainder, rational-quotient, max, min, logand, logior, logxor, 
ash,. rot, Ish, %32-bit-plus, %32-bit-difference, %multiply-double, 
%add-bignum-step, %sub-bignum-step, %divide-bignum-step, %Ishc-bignum-step, 
%multiply-bignum-step 

Refer also to the following; 

equal-number 
greaterp 
lessp 
%unsigned-Iessp 
plusp 
minusp 
zerop 

If either argument to a numeric instruction is a non-number, then the instruction 
will take an error pre-trap. Otherwise, if both arguments are hardware supported 
for the instruction, and no exceptions occur, then the 4>struction will perform the 
specified operation. If the arguments are numeric, but the data types of the 
arguments are not hard ware supported or an exception occurs, then the instruction 
will take an instruction exception and let Lisp code decide whether the arguments, 
although numeric, are illegal for this instruction. 

Note that, if there is no floating-point coprocessor, all the numeric operations will 
take an instruction exception on encountering operands of type dtp-single-float. 
This instruction exception is in addition to any mentioned in the instruction 
definitions. See the section "Revision 0 Numeric Operations," page 299. 

113 



Symbolics~ Inc. 

add 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Unsigned 

Description 

Valuers) Returned 1 

Opcode 300 

Pushes the sum of the two arguments on the stack. 

See the section "Revision 0 Numeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not both 

dtp.i1xnum or dtp·single-fioat. 

Instruction· 

argl and arg2 are both dtp·f"lXllum, but result overflows. 
Floating point exceptions. 

Arguments: argl, arg2 
Values: 1 

Memory Reference None 

. Register Effects TOS: Valid before, valid after 

114 



sub 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Unsigned 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 301 

Subtracts arg2 from arg1, and pushes the result on the stack. See the 
section "Revision 0 Numeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of arg1 and arg2 are numeric, but not both 

dtp-f"lXl1um or dtp-single-float. 
arg1 and arg2 are both dtp-fixnum, but result overflows. 
Floating point exceptions. 

Arguments: arg1, arg2 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

115 



Symbolics, Inc. 

unary-minus Instruction 

Format Operand from stack Valuers) Returned 1 

Argument(s) 1: Opcode 114 
arg any numeric data type 

Immediate Argument Type Unsigned 

Description 
Pushes the negation of arg on the stack: if the data type of arg is 
dtp-f"lXllum, subtracts arg from zero, and pushes the result, the two's 
complement of arg, on the stack. If arg is of dtp-single-float, complements 
the sign bit and pushes the result on the stack. See the section "Revision 
o Numeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Type of arg is numeric, but not dtp-fixnum 

or dtp-single-float. 
Type of arg is dtp-f"lXllum, but result overflows. 
Floating point exceptions. 

Arguments: arg 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid after 

116 



increment 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Valuers) Returned 0 

Argument(s) 1: Opcode 143 
arg, the address operand, any numeric data type 

Immediate Argument Type Not applicable 

Description 
Adds 1 to arg and stores the result back into the operand. 

See the section "Revision 0 Numeric Operations," page 299. 

Exception 
Conditions: Type of arg is numeric, but not dtp-nxnum 

or dtp-single-float. 
Type of arg is dtp-IlXI1um, but result overflows. 
Floating point exceptions. 

Arguments: arg (address operand as locative) 
Values: 0 

Memory Reference None 

Register Effects TOS: Unchanged 

117 

Symbolics, Inc. 

Instruction 



Symbolics, Inc. 

decrement 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 1: 
arg can be any numeric data type 

Description 

Instruction 

Valuers) Returned 0 

Opcode 144 

Subtracts 1 from arg and stores the result back into the operand. See the 
section "Revision 0 Numeric Operations," page 299. 

Exception 
Conditions: Type of arg is numeric, but not dtp-f"rxnum 

or dtp-single-float. 
Type of arg is dtp-irxnum, but result overflows. 
Floating point exceptions. 

Arguments: arg (address operand as locative) 
Values: 0 

Memory Reference None 

Register Effects TOS: Unchanged 

118 



multiply 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 202 

Computes arg1*arg2 and pushes the result on the stack. See the section 
"Revision 0 Numeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-IlXIlum or dtp-single-float. 
argl and arg2 are both dtp-IlXIlum, but result overflows. 
Floating point exceptions. 

Arguments:argl, arg2 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

119 



Symbolics, Inc. 

quotient 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type; 

if dtp-IIXnum, must not be zero 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcode 203 

Divides argl by arg2, and pushes the quotient on the stack. If both 
operands are integers, the result is the integer obtained by truncating the 
quotient toward 0; otherwise, the result is a single-precision floating-point 
number. quotient implements the function zl:! of two arguments. See the 
section "Revision 0 Numeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of arg1 and arg2 are numeric, but not 

both dtp-fixnum or dtp-singJe-fioat. 
argl and arg2 are both dtp-IIXnum, but result overflows. 
Floating point exceptions. 

Arguments: argl, arg2 
Values: 1 

Note: the only possible fixnum-fixnum overflow is -1_31. / -1 = 1_31. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

3,2.3,1 Division Operations That Return Two Values 

Note that, if only one of the two results is desired, the division instruction can be 
followed by an instruction to discard the unwanted result: to discard the first 
result (quotient), use set-sp-to-address-save-tos BPI-I; to discard the second result 
(remainder), use set-sp-to-address SPI-!, Trap handlers for division operations, on 
encountering these particular instructions, can avoid computing results that are 
going to be discarded, 

120 



Symbolics, Inc. 

ceiling Instruction 

Format Operand from stack Valuers) Returned 2 

Argument(s) 2: Opcode 204 
'arg1 any numeric data type (an integer) 
arg2 any numeric data type; 

if dtp-XIXnum, must not be zero 

Immediate Argument Type Signed 

Description 
Divides argl by arg2, pushes the quotient on the stack, then pushes the 
remainder on the stack. If the remainder is not zero, the resulting 
quotient (NOS) is truncated toward positive infinity, and the remainder 
(TOS) is such that argl = arg2 * NOS + TOS. See the section "Division 
Operations That Return Two Values," page 120. See the section "Revision 
o Numeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-xIXnum. 
argl and arg2 are both dtp-fixnum, but result overflows. 

Arguments: argl, arg2 
Values: 2 

Note: the only possible flXIlum-fIXnum overflow is -1_31. / -1 = 1_31. 

Memory Reference None 

Register Effects TOS: Valid before, valid after , 

121 



Symbolics, Inc. 

floor Instruction 

Format Operand from stack Valuers) Returned 2 

Argument(s) 2: Opcode 205 
arg1 any numeric data type (an integer) 
arg2 any numeric data type; 

if dtp-fixnum, must not be zero 

Immediate Argument Type Signed 

Description 
Divides arg1 by arg2, pushes the quotient on the stack, then pushes the 
remainder on the stack. If the remainder is not zero, the resulting 
quotient (NOS) is truncated toward negative infmity, and the remainder 
(TOS) is such that argl = arg2 • NOS + TaB. See the section "Division 
Operations That Return Two Values," page 120. See the section "Revision 
o Numeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp·fixnum. 
argl and arg2 are both dtp-IJXl1.um, but result overflows. 

Arguments: arg1, arg2 
Values: 2 

Note: the only possible fumum-flXIlum overflow is -1_31. f ·1 = 1_31. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

122 



Symbo#cs, Inc . 

. truncate Instruction 

Format Operand from stack Valuers) Returned 2 

Argument(s) 2: Opcode 206 
arg1 any numeric data type (an integer) 
arg2 any numeric data type; 

if dtp-:flXllum, must not be zero 

Immediate Argument Type Signed 

Description 
Dividesargl by arg2, pushes the quotient on the stack, then pushes the 
remainder on the stack. If the remainder is not zero, the resulting 
quotient (NOS)' is truncated toward zero, and the remainder (TOS) is such 
that argl = arg2 * NOS + TOS. See the section "Division Operations That 
Return Two Values," page 120. See the section "Revision 0 Numeric 
Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-fixnum. 
argl and arg2 are both dtp-fixnum, but result overflows. 

Arguments: argl, arg2 
Values: 2 

Note: the only possible fumum-flxnum overflow is -1_31. / -I = 1_31. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

.123 



Symbolics, Inc. 

round Instruction 

Format Operand from stack Valuers) Returned 2 

Argument(s) 2: Opcode 207 
arg1 any numeric data type (an integer) 
arg2 any numeric data type; 

if dtp-f"lxnum, must not be zero 

Immediate Argument Type Signed 

Description 
Divides arg1 by arg2, pushes the quotient on the stack, then pushes the 
remainder on the stack. If the remainder is not zero, the resulting 
quotient (NOS) is rounded toward the nearest integer, and the remainder 
(TOS) is such that arg1 = arg2 * NOS + TOS. If the resulting quotient 
(NOS) is exactly halfway between two integers, it is rounded to the one 
that is even. See the section "Division Operations That Return Two 
Values," page 120. See the section "Revision 0 Numeric Operations," page 
299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-IlXl1um. 
argl and arg2 are both dtp-IlXl1U1n, but result overflows. 

Arguments: argl, arg2 
Values: 2 

Note: the only possible fixnum-flxnum overflow is -1_31. ! -1 = 1_31. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

124 



remainder 

Format Operand from stack 

Argument(s) 2: 
arg1 any numeric data type 
arg2 any numeric data type; 

if dtp-IlXllum, must not be zero 

Immediate Argument Type Signed 

Description 

Symbolias, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 210 

Divides argl by arg2, adjusts the remainder to have the same sign as the 
dividend, and pushes the remainder on the stack. See the section "Revision 
o 1'<umeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-fixnum. 
argl and arg2 are both dtp-IlXllum, 
but result overflows. 

Arguments: argl, arg2 
Values: 1 

Note: the only possible fIxnum-flXllum overflow is -1_31. / -1 = 1_31. 
This overflow is only in an intermediate result, some 
implementations may in fact return 0 without trapping. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

125 



Symbolics, Inc. 

rational-quotient 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type; 

if dtp-IlXllum, must not be zero 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcode 211 

Divides argl by arg2, and pushes the quotient on the stack. If both 
operands are integers and the remainder is not zero, the instruction traps 
to a routine that returns the ratio (dtp-smaIl-ratio or dtp-big-ratio) of 
arg1/arg2 reduced to lowest terms. If the remainder is zero, the result is an 
integer if both arguments are integers, or the result type is 
dtp-single-float if either or both arguments are dtp-single-float types. See 
the section "Revision 0 Numeric Operations," page 299. 

Exceptions 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-I1Xllum or dtp-single-float. 
argl and arg2 are both dtp-fixnum, but result overflows. 

argl and arg2 are both dtp-IlXllum, but remainder is 
non-zero. 
Floating point exceptions. 

Arguments: arg1, arg2 
Values: 1 

Note: the only possible fixnum-flXllum overflow is -1...31. / -1 = 1_31. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

126 



max 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Valuers) Returned 1 

Opcode 213· 

Pushes the greater of the two arguments on the stack. 

Symbolics, Inc. 

Instruction 

If the arguments are a mixture of rationals and floating-point numbers, and 
the largest argument is a rational, then the implementation is free to 
produce either that rational or its floating-point approximation; if the 
largest argument is a floating-point number of a smaller format than the 
largest format of any floating-point argument, then the implementation is 
free to return the argument in its given format or expanded to the larger 
format. (Note that all of these cases are implemented by trap-handlers, 
since they all involve data types that cause instruction exceptions.) 

The implementation has a choice of returning the largest argument as is or 
applying the rules of floating-PClint contagion. If the arguments are equal, 
then either one of them may be returned. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-fixnum or· dtp-single-float. 
Floating point exceptions. 

Arguments: argl, arg2 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

127 



Symbolics, Inc. 

min 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Valuers) Returned 1 

Opcode 212 

Pushes the lesser of the two arguments on the stack. 

Instruction 

If the arguments are a mixture of rationals and floating-point numbers, and 
the smallest argument is a rational, then the implementation is free to 
produce either that rational or its floating-point approximation; if the 
smallest argument is a floating-point number of a smaller format than the 
largest format of any floating-point argument, then the implementation i~ 
free to return the argument in its given format or expanded to the larger 
format. (Note that all of these cases are implemented by trap-handlers, 
since they all involve data types that cause instruction exceptions.) 

The implementation has a choice of returning the smallest argument as is 
or applying the rules of floating-point contagion. If the arguments are 
equal, then either one of them may be returned. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp·f1xnum or dtp-single-fioat. 
Floating point exceptions. 

Arguments: argl, arg2 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

128 



logand 

Format Operand from stack 

Argument(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 215 

Forms the bit-by-bit logical AND of argl and arg2, and pushes the result on 
the stack. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, 

but not both dtp-IlXIlUln. 
Arguments: argl, arg2 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

129 



Symbolics, Inc, 

logior 

Format Operand from stack 

Argument(s) 2: 
arg1 any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcode 217 

Forms the bit-by-bit inclusive OR of argl and arg2, and pushes the result 
on the stack. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, 

but. not both dtp.fixnum. 
Arguments: argl, arg2 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

130 



logxor 

Format Operand from stack 

Argument(s) 2: 
arg1 any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 216 

Forms the bit-by-bit exclusive OR of arg1 and arg2, and pushes the result 
on the stack. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of arg1 and arg2 are numeric, 

but not both dtp-IlX11um. 
Arguments: arg1, arg2 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

131 



Symbolics, Inc. 

ash 

Format Operand from stack 

Argum.ent(s) 2: 
argl any numeric data type 
arg2 any numeric data type 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcode 232 

Shifts argl left arg2 places when arg2 is positive, or right larg21 places 
when arg2 is negative, and pushes the result on the stack. Unused positions 
are filled by zeroes from the right or by copies of the sign bit from the 
left. This is Common Lisp ash. 

Exception 
Type: Arithmetic dispatch 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-fixnum. 
argl and arg2 are both dtp-fixnum, 
but result overflows. 

Arguments: argl, arg2 
Values: 1 

Memory Reference None 

Register Effects TOS: Valid before, valid after 
DP Op register modified 

132 



rot 

Ish 

Format Operand from stack 

Argument(s) 2: 
argl dtp-ilXl1um 
arg2 dtp-ioolUm 

Immediate Argument Type Signed 

Description 

Symbolics, inc, 

Instruction 

Valuers) Returned 1 

Opcode 220 

Rotates arg1 left arg2 bit positions when arg2 is positive, or rotates arg1 
right larg21 bit positions when arg2 is negative, then pushes the result on 
the stack. Bits that are shifted out one side are shifted in. the other side, 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 
DP Opregister modified 

Format Operand from stack 

Argument(s) 2: 
arg1 dtp-ilXl1um 
arg2 dtp-f"lXI1um 

Immediate Argument Type Signed 

Description 

Valuers) Returned 1 

Opcode 221 

Instruction 

Shifts arg1 left arg2 places when arg2 is positive, or shifts arg1 right larg21 
places when arg2 is negative. Unused positions are filled by zeroes. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 
DP Op register modified 

133 



Symbolics, Inc. 

%32-bit-plus 

Format Operand from stack 

Argument(s) 2: 
argl dtp-f"lXllum 
arg2 dtp-f"lXIlUffi 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned 1 

Opcode 302 

Pushes argl + arg2 on the stack, ignoring overflow (addition uses signed 
32-bit arithmetic). 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

Format Operand from stack 

Argument(s) 2: 
argl dtp-fba1um 
arg2 dtp-f"lXIlUin 

Immediate Argument Type Unsigned 

Description 

Valuers) Returned 1 

Opcode 303 

Pushes argl - arg2 on the stack, ignoring overflow. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

134 

Instruction 



%multiply-double 

Format Operand from stack 

Argument(s) 2: 
argl dtp-fixnum 
arg2 dtp-lU01um 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 2 

Opcode 222 

Multiplies arg1 * arg2, and pushes the two-word result on the stack, low
order word first. Note that, unlike %multiply-bignum-step, this is a 
signed multiplication. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

135 



Symbolics, inc. 

%add-bignum-step 

Format Operand from stack 

Argument(s) 3: 
arg1 dtp-IlXIlum 
arg2 dtp-IlXIlum 
arg3 dtp-fixnum 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned 2 

Opcode 304 

Adds all three arguments, pushes the result on the stack, then pushes the 
carry (2, 1, or 0) on the stack. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

136 



%sub-bignum-step 

Format Operand from stack 

Argument(s) 3: 
argl dtp-fbo1um 
arg2 dtp-f"lXllum 
arg3 dtp-f"lXllum 

Immediate Argument Type Unsigned 

Description 

Symbolics. Inc. 

Instruction 

Valuers) Returned 2 

Opcode 305 

Computes «arg1 - arg2) - arg3), pushes this value on the stack, then pushes 
the value 1 on the stack if a "borrow" was necessary or 2 if a double 
borrow was necessary; otherwises pushes a O. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

137 



Symbolics, Inc. 

%multiply-bignum-step 

Format Operand from stack 

Argument(s) 2: 
argl dtp-fixnum 
arg2 dtp-f"lXllum 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned 2 

Opcode 306 

Pushes the 2-word result of multiplying 32-bit unsigned argl by 32-bit 
unsigned arg2 on the stack: fIrst the least-significant word, then the most
significant word. 

Exception None 

Memory. Reference None 

Register Effects TOS: Valid before, valid after 

138 



%divide·bignum·step . 

Fonnat Operand from stack 

Argument(s) 3: 
argl dtp·fixnum 
arg2 dtp.f'lXflum 
arg3 dtp-f'lXflum, must not be 0 

Immediate Argument Type Unsigned 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 2 

Opcode 307 

Performs an unsigned divide of the 64·bit number (+ arg1 (ash arg2 32.)) 
by arg3, pushes the quotient on the stack, then pushes the remainder on 
the stack. Only the low 32 bits of the quotient and remainder are pushed 
(implying that arg3 is expected to be greater than or equal to arg2 using 
an unsigned compare). If arg3 is 0, the instruction takes a divide·by.zero 
error pre-trap. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

139 



Symbolics, Inc. 

%lshc-bignum-step 

Format Operand from stack 

Argument(s) 3: 
argl dtP-IlXllum 
arg2 dtp-fixnum 
arg3 dtP-IlXllum (Values not between 

o and 32. inclusive will cause 
undefined results.) 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcode 223 

argl and arg2 are unsigned digits. Has the effect of pushing (Idb (byte 32. 
32.) (ash (+ argl (ash arg2 32.» arg3» on the stack as a fixnum. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid ifter 
DP Op register modified 
Rotate-latch modified 

140 



Symbolics, Inc. 

3.2.4 Data-Movement Instructions 

push, pop, movem, push·n-nils, push-address, set-sp-to.address, 
set-sp-to-address-save-tos, push-address-sp-relative, stack-bit, stack-blt·address 

push 

Format Operand from stack 

Argument(s) 1: 
arg any data type 

Immediate Argument Type Unsigned 

Description 
Pushes arg on stack. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

141 

Instruction 

Valuers) Returned 1 

Opcode 100 



Symbolics, Inc. 

pop 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegaD 

Argument(s) 2: 
argl any data type 
arg2 address-operand 

Immediate Argument Type Not applicable 

Description 

Instruction 

Value(s) Returned 0 

Opcode 340 

Pops argl off the top of stack and stores it in the stack location addressed 
by arg2. Note that all 40 bits of the top of stack are stored into the 
operand. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

142 



movem 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 2: 
argl any data type 
arg2 address operand 

Immediate Argument Type Not applicable 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 341 

Writes the contents of argl, the top of stack, without popping, into the 
stack location addressed by arg2. Note that all 40 bits of the top of stack 
are stored into. the operand. This instruction restores the top of stack. The 
way to flx up the top of stack that is equivalent to executing the 3600 
fixup-tos instruction is to execute movem SPIO. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

143 



Symbolics, Inc. 

push-n-nils I Instruction 

. Format Operand from stack, Valuers) Returned I 
immediate (sp-pop addressing mode illegal) 

Argument(s) 1: Opcode 101 
I dtp-f'lXllum 

Immediate Argument Type Unsigned-

Description 
Pushes I nils on the stack. I is the immediate argument, which must be 
greater than 1. (Pushing one nil can be done with plusp 0.) 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

push-address 

Format Operand from st/ick, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 1: 
arg address operand 

Immediate Argument Type Not applicable 

Description 

Valuers) Returned 1 

Opcode 150 

Pushes a locative that points to arg onto the top of the stack. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

144 

Instruction 



set-sp-to-address 

Format Operand. from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 1: 
arg is address operand 

Immediate Argument Type Not applicable 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 0 

Opcode 151 

Sets the stack pointer to the address of argo This can be used to pop a 
constant number of values with set-sp-to-address SPI-n. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

set-sp-to-address-save-tos 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 1: 
arg is address operand 

Immediate Argument Type Not applicable 

Description 

Instruction 

Valuers) Returned 0 

Opcode 152 

Sets the stack pointer to the address of argo All forty bits of the new top of 
stack are set to the value that was previously on the top of stack. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

145 



Symbolics, (nco 

push-address-sp-relative 

Format Operand from stack 

Argument(s) 1: 
arg dtp-IIXllUm 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned 1 

Opcode 102 

Computes (stack-pointer minus arg minus 1) and pushes it on the stack 
with data type dtp-locative. If sp-pop addressing mode is used, the value 
of the stack-pointer used in calculating the result is the original value of 
the stack-pointer before the pop. 

Exception None 

Memory Reference None 

Register Effects TOB: Valid after 

146 



stack-bit 

Format Operand from stack 

Argument(s) 2: 
argl dtp-Iocative pointing to a 
location in the current stack frame; 
arg2 dtp-Iocative pointing to a 
location in the current stack frame 

Immediate Argument Type Signed 

Description 

Symbolios, Ino. 

Instruction 

Valuers) Returned 0 

Opcode 224 

With the value of arglbeing TO and the value of arg2 being FROM, moves 
all forty bits of the contents of successive locations starting at FROM into 
successive locations starting at TO until the top of the stack is moved, and 
then changes the stack-pointer to point to the last location written. The 
last word moved is the stack location just below argl. This instruction is 
not interruptible. Note that this instruction only works if it moves at least 
one word. Results are undefmed if argl is greater than arg2 (unsigned). 
See the section "Revision 0 Stack-bIt," page 300. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

147 



Symbolics, Inc. 

stack-bIt-address 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegaD 

Argument(s) 2: 
argl dtp-Iocanve, pointing to a 
location in the current stack frame 
arg2 is an address operand 

Immediate Argument Type Not applicable 

Description 

Instruction 

Valuers) Returned 0 

Opcode 352 

With the value of argl being TO and arg2 being FROM-ADDR, moves all 
forty bits of the contents of succesJive locations starting at the address in 
the location pointed to by FROM-ADDR into successive locations starting at 
TO until the top of the stack is moved, and then changes the stack-pointer 
to point at the last location written. Note that stack-bIt-address is the 
same as stack-bIt except that arg2 of stack-bIt-address is the address of 
the operand, whereas arg2 for stack-bIt is the contents of the operand. 
This instruction is not interruptible. Note that this instruction only works 
if it moves at least one word. Results are undefined if argl is less than or 

_ equal to the address of arg2. FROM-ADDR is less than or equal to SP after 
the arguments have been removed. See the section "Revision 0 Stack-bit
address," page 300. 

The instruction sequence 

push arg1 
stack-blt-address arg2 

is equivalent to the instruction sequence 

push arg1 
push-address arg2 
stack-blt sp-pop 

Where arg2 is a stack-frame address such as, for example, FPI2. 

Exception None 

Memory Reference None 

Eegister Effects TOS: Valid before, valid after 

148 



Symbolics, Inc. 

3 .. 2.5 Field-Extraction Instructions 

ldb, dpb, char·ldb, char·dpb, %p-Idb, %p-dpb, %p·tag.ldb, %p·tag·dpb 

The following instructions are used to extract and deposit fields from different 
data types, The extraction instructions take one argument from the stack. The 
deposit instructions take two arguments from the stack; the first is the new value 
of the field to deposit into the second argument. Both kinds of instructions take an 
immediate argument as well. It is illegal, though not checked, to specify a field 
with bits outside the bottom 32 bits. See the section "Format for Field 
Extraction," page 82. 

ldb BB FS 

Format Field-Extraction 

Argument(s) 2: 
arg1 any numeric data type 
BB and FS lO-bit immediate 

Description 

Instruction 

Valuers) Returned 1 

Opcode 170 

Extracts the field specified by BB and FS from argl, then pushes the result 
on the stack. See the section "Format for Field Extraction, "page 82. 

Exception 
Conditions: Type of argl is numeric, but not dtp-f"IXnUnt 
Arguments: argl 
Values: 1 

Note: The trap handler is responsible for manually 
extracting the byte specifier from the trapped instruction. 

Memory Reference None 

Register Effects TOS: Valid after 

149 



Symbolics, Inc. 

dpb BB FS 

Format Field-Extraction 

Argument(s) 3: 
argl any numeric data type 
arg2 any numeric data type 
BB and FS lO-bit immediate 

Description 

Instruction 

Valuers) Returned 1 

Opcode 370 

Deposits the value arg1 into the field in arg2 specified by BB and FS, then 
pushes the result on the stack. 

See the section "Format for Field Extraction," page 82. 

Exception 
Conditions: Types of argl and arg2 are numeric, but not 

both dtp-IlXllUIn. 
Arguments: argl, ar,g2 
Values: 1 

Note: The trap handler is responsible for manually 
extracting the byte specifler from the trapped instruction. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

150 



Symbolics, Inc. 

char-Idb BB FS Instruction 

Format Field-Extraction . Valuers) Returned 1 

Argument(s) 2: Opcode 171 
argl dtp-character 
EE and FSlO-bit immediate 

Description 
Extracts the field specified by BB and FS from argl, then pushes the 
result, a dtp-fixnum object, on the stack. See the section "Format for 
Field Extraction," page 82. 

Exceptions None 

Memory Reference None 

Register Effects TOS: Valid after 

char-dpb BB FS 

Format Field-Extraction 

Argument(s) 3: 
argl dtp-f'lXIlum 
arg2 dtp-character 
BE and FS lO-bit immediate 

Description 

Instruction 

Valuers) Returned 1 

Opcode 371 

Deposits the value arg1 into field in arg2 specified by BB and FS, then 
pushes the result, a dtp-charaeter object, on the stack. See the section 
"Format for Field Extraction," page 82. 

Exceptions None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

151 



Symbolics, Inc. 

%p-Idb BB FS 

Format Field-Extraction 

Argument(s) 2: 
argl any data .type 
BB and FS lO-bit immediate 

Description 

Instruction 

Valuers) Returned 1 

Opcode 172 

Extracts the field specified by BB and FS from the bottom 32 bits of the 
word at the address contained in argl, then pushes the extracted field on 
the stack. The data type of the result is dtp-f'J.xnum. See the section 
"Format for Field Extraction," page 82. 

Exceptions None 

Memory Reference Raw-read 

Register Effects TOS: Valid after 

%p-dpb BB FS 

Format Field-Extraction 

Argument(s) 3: 
argl dtp-tlxnum 
arg2 any Lisp data type 
BE and FS lO-bit immediate 

Description 

Instruction 

Valuers) Returned 0 

Opcode 372 

Deposits the value argl into the fIeld in the contents of the location 
addressed by arg2 specified by BB and FS. See the section "Format for 
Field Extraction," page 82_ 

Exceptions None 

Memory Reference Raw-read followed by raw-write 

Register Effects TOS: Valid before, invalid after 

152 



Symi)oJics, Inc. 

%p-tag-ldb BB FS Instruction 

Format Field-Extraction Valuers) Returned 1 

Argument(s) 2: Opcode 173 
argl any Lisp data type 
BB and FS lO-bit immediate 

Description 
Extracts the field specified by BB and FS from the top 8 bits of the word 
at the address contained in argl and pushes it on the stack. The data type 
of the result is dtp-f1xnum. See the section "Format for Field Extraction," 
page 82. 

Exceptions None 

Memory Reference Raw-read 

Register Effects TOS: Valid after 

%p-tag-dpb BE FS 

Format Field-Extraction 

Argument(s) 3: 
argl dtp-fixnum 
arg2 any Lisp data type 
BB and FS lO-bitimmediate 

Description 

Instruction 

Valuers} Returned 0 

Opcode 373 

Deposits the value arg1 into the field specified by BB and FS in the top 8 
bits of the word at the address contained in arg2. It is illegal, though not 
checked, to specify a field with bits outside the top 8 bits. See the section 
"Format for Field Extraction," page 82. 

Exceptions None 

Memory Reference Raw-read followed by raw-write 

Register Effects TOS: Valid before, invalid after 

153 



SymboHcs, Inc, 

3.2.6 Array Operations 

aref-I, aset-I, aloe-I, setup-Id-array, setup.force·ld·array, fast-aref·l, fast·aset·l, 
array-leader, store-array-Ieader, aloe-leader 

See the section "I-Machine Array Registers," page 36. 

3.2:6.1 Instructions for Accessing One-Dimensional Arrays 

Each of the next three instructions accesses a one-dimensional array. 

aref.! 

Format Operand from stack 

Argument(s) 2: 
argl dtp·array, dtp·array·instance, 
dtp.string, or dtp·string· instance 
arg2 dtp·rU01um 

Immediate Argument Type Unsigned 

Description 

Valuers) Returned 1 

Opcode 312 

Pushes the element of argl specified by arg2 on the stack. 

Instruction 

Checks the array argl to insure it is a one-dimensional array, and also 
checks to insure that the index arg2 is a fixnum and falls within the 
bounds of the array. 

Exception 
Conditions: Type of argl is dtp·array·instance or 

dtp·string. instance. 
argl is an array with array·long·prefIx = L 

Arguments: argl, arg2 
Values: 1 

Memory Reference Header-read, data-read 

Register Effects TOS: Valid before, valid after 
DP Op register modified 

154 



Symbolics, Inc. 

aset-1 Instruction 

Format Operand from stack Valuers) Returned 0 

Argument(s) 3: Opcode 310 
arg1 any Lisp data type (See description) 
arg2 dtp-array, dtp-array-instance, 
dtp-string, or dtp-string-instance 
arg3 dtp-iIxnum 

Immediate Argument Type Unsigned 
I 

Description . )\;~, .<23 
/" 

; 
t < •• 0'· ,-,,'~-'.;J I 

Stores argl into the element of array arg2 specified by index arg3/cc/i. ... Ii 
Checks the array to insure it is a one-dimensional array, and als~/ c~~~~~-~~"F .... " .-' .«. 

insure that the index is a flXIlum and falls within the bounds of the array. 

When the array-element-type isdtp-iIxnum or dtp-character, takes an 
error trap unless the data type of argl matches the array element type. 
When the array element-type is dtp-character and the array byte-packing 
is 8-bit bytes, the instruction takes an error trap if bits <31:8> of argl are 
nonzero. Similarly, the instruction takes an error trap if bits <31:16> are 
nonzero in the case of 16-bit characters. It does not check that flXIlums are 
within range when storing into a iIxnum array. See the section "Revision 
o Aset-I," page 298. 

Exception 
Conditions: Type of arg2 is dtp-array-instance or 

dtp-string-instance. 
arg2 is an array with array-lang-prefIX = 1. 

Arguments: argl, arg2, arg3 
Values: 0 

Memory Reference Header-read, data-write 

Register Effects TOS: Valid before, invalid after 
DP Op register modified 

155 



SymboJics, Inc. 

aloc-l 

Format Operand from stack Valuers) Returned 1 

Argument(s) 2: Opcode 313 
argl dtp-array, dtp-array-instance, 
dtp-string, or dtp-string-instance 
(array must contain full-word Lisp references); 
arg2 dtp-ilXllUIn 

Immediate Argument Type Unsigned 

Description 

Instruction 

Pushes a locative to the element of argl addressed by arg2 on the stack. 

Checks the array argl ta insure it is a one-dimensional array containing 
object references (that is, checks that the array-element-type- field of the 
array header is object reference), and also checks to insure that the index 
arg2 is a fixnum and falls within the bounds of the array, 

Exception 
Conditions: Type of argl is dtp-array-instance or 

dtp-string-instance. 
argl is an array with array-long-preflX = 1. 

Arguments: argl, arg2 
Values: 1 

Memory Reference Header-reaj 

Register Effects TOS: Valid before, valid after 

3.2.6.2 Instructions for Creating Array Registers 

Each of the next two instructions creates an array register describing a one· 
dimensional array. 

156 



setup-ld-array 

Format Operand from stack 

Argument(s) 1: 
arg dtp-array, dtp-array-instance, 
dtp-string, or dtp-string-instance 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 4 

Opcode 3 

Creates an array register describing array arg. The array register will be 
four words pushed on top of the stack.' arg must be a one-dimensional 
array. See the section "I-Machine Array Registers," page 36 . 

. Exception 
Conditions: Type of arg is dtp-array-instance or 

dtp-string-instance. 
arg is an array with array-long-prefIx =1. 

Arguments: arg 
Values: 4 (array register) 

Memory Reference Header-read 

Register Effects TOS: Valid after 

157 



Symbolics, Inc. 

setup.force-ld-array 

Format Operand from stack 

Argument(s) 1: 
arg dtp-array, dtp-array.instance, 
dtp-string, or dtp-string-instance 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 4 

Opcode 4 

Creates an array register describing a unidimensional array. arg can be any 
array. The array register will be four words pushed on top of the stack. See 
the section "I-Machine Array Registers," page 36. 

Causes multi.dimensional arrays to be accessed as if they were 
unidimensional arrays, with the order of elements depending on row-major 
or column-major ordering. 

Exception 
Conditions: Type of arg is dtp-array-instance or 

dtp-string·instance. 
arg is an array with array-lang-prefIx = 1. 

Arguments: arg 
Values: 4 (array register) 

Memory Reference Header-read 

Register Effects TOS: Valid after 

3.2.6.3 Instructions for Fast Access of Arrays 

The next two instructions access single dimensional arrays stored in array register 
variables. 

158 



fast-aref-! . 

Format Operand from stack, 
address-operand mode (immediate anli 
sp-pop addressing modes illegal) 

Valuers) Returned 1 

Argument(s) 2: Opcode 350 
argl dtp-IlXIlum 

Symbolics, Inc. 

Instruction 

arg2 the address operand (address of control word of array register) 

Immediate Argument Type Not applicable 

Description 
Pushes on the stack the element of arg2 specified by index argl. 

Checks to insure that the index is a flXIlum and falls within the bounds of 
the array; if the check fails, ·the instruction takes an error trap. 

This instruction takes an instruction exception if the current event count 
does not equa! the array-register event count. See the section "I-Machine 
Array Registers," page 36. 

Exception 
Conditions: Array register is obsolete (current 

array-register-event-count does not equal that 
encached in the array register). 

Arguments: arg1, arg2 (address operand as locative) 
Values: 1 

Memory Reference Data-read 

Register Effects TOS: Valid before, valid after 
DP Op register modified 

159 



Symbolics, Inc. 

fast-aset-1 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Falue(s) Returned 0 

Argument(s) 3: Opcode 351 
arg1 any Lisp data type (See description.) 
arg2 dtp-f"lXIlum. 

Instruction 

arg3 the address operand (address of control word of array register) 

Immediate Argument Type Not applicable c. >,_c y /'J !;~ 
r '/,e fil). 

Description \Ui> :2c £;, () /' '0" ",L., __ 
. Stores argl into the element of arg3 indexed by arg2. urI,,;>' ;...?'~ 

Checks to insure that the index is a flxnum and falls withfu the bounds of 
the array. When the array-element-type is dtp-f"lXIlum. or dtp-character, 
checks the data type of the argument. Does not check that a frxnum is in 
range when the array-element-type is dtp-f"lXIlUIn and the array·byte
packing field is nonzero. When the array element-type is dtp·character and 
the array byte-packing is 8-bit bytes, the instruction takes an error trap if 
bits <31:8> of the character are nonzero. Similarly, the instruction takes 
an error trap if bits <31:16> are nonzero in the case of 16-bit characters. 
See the section "Revision 0 Fast-aset-I," page 299. 

This instruction takes an instruction exception if the current event count 
does not equal the array-register event count. See the section "I-Machine 
Array Registers," page 36. 

Exception 
Conditions: Array register is obsolete (current 

array·register-event-count does not equal that 
encached in the array register). 

Arguments: argl, arg2, arg3 (address operand as locative) 
Values: 0 

Memory Reference Data-write 

Register Effects TOS: Valid before, invalid after 
DP Op register modified 

160 



Symbolics, Inc. 

3.2.6.4 Instructions for Accessing Array Leaders 

Each of the next three instructions accesses the array leader of any type of array. 
array-leader Instruction 

Format Operand from stack 

Argument(s) 2: 
argl dtp-array, dtp-array-instance, 
dtp-string, or dtp-string-instance 
arg2 dtp-ilXD.um (See description.) 

Immediate Argument Type Unsigned 

Description 

Valuers) Returned 1 

Opcode 316 

Pushes on the stack the leader element of arg1 that is specified by arg2. 

Checks the array arg1 to insure it has a leader, and checks the index arg2 
to insure it is a f"IXnum and falls within the ·bounds of the array leader; if 
the checks fail, the instruction takes an error trap. 

Exception 
Post Trap 

Conditions: Type of arg1 is dtp-array-instance or 
dtp-string-instance. 

Arguments: arg1, arg2 
Values: 1 

Memory Reference Header-read, data-read 

Register Effects TOS: Valid before, valid after 

161 



Symbolics, Inc, 

store-array-leader 

Format Operand from stack 

Argument(s) 3: 
argl any Lisp data type 
arg2 dtp-array, dtp-array-instance, 
dtp-string, or dtp-string-instance 
arg3 dtp-frxnUIn (See description.) 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned 0 

Opcode 314 

Stores argl into the element specified by arg3 of the leader ofarg2. .' 
.;..... (}.. 'i. , /' ,:\ ',') :; 

Returns no values~ ~,)@qJ? "\~.:.:,'-'-' U'v~""'-'2i}- ,~..- \./2- '~i':>"->.T ,~~/~~.~. 

Checks the array arg2 to insure it has a leader, and checks the index arg3 
to insure it is a f'lXnum and falls within the bounds of the array leader; if 
the tests fail, the instruction takes an error trap. 

Exception 
Conditions: Type of arg2 is dtp-array-instance or 

dtp-string-instance. 
Arguments: argl, arg2, arg3 
Values: 0 

Memory Reference Header-read, data-write 

Register Effects TOS: Valid before, invalid after 

162 



aloe-leader 

Format Operand from stack 

Argument(s) 2: 
argl dtp-array, dtp-array-instanee, 
dtp-string, or dtp-string-instanee 
arg2 dtp-IIxnum (See description.) 

Immediate Argument Type Unsigned 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 . 

Opcode 317 

Pushes on the stack a locative to the leader element of argl indexed by 
arg2. Checks the array argl to insure it has a leader, and checks the index 
arg2 to insure it is a iIxnum and falls within the bounds of the array 
leader; if the checks fail, the instruction takes an error trap. 

Exception 
Conditions: Type of argl is dtp-array-instance or 

dtp-string-instanee. 
Argnments: argl, arg2 
Values: 1 

Memory Reference Header-read 

Register Effects TOS: Valid before, valid after 

163 



Symbolics, Inc. 

3.2.6.5 Branch and Loop Instructions 

branch, . branch-true{ -else}{ -and}{ -no· pop }{ -extra-pop}, 
Branch-false{ -else}{ -and}{ -no-pop}{ -extra-pop}, loop-decrement-tos, 
loop-increment-tos-Iess-than 

The branch and loop instructions contain a lO-bit signed offset. This offset is in 
half words from the address of the branch or loop instruction. When a conditional 
branch instruction with an offset of zero. is executed and the branch would be 
taken, the instruction takes an error trap instead. See the section "Revision 0 
Branch and Loop Instructions," page 299. This does not apply to the unconditional 
branch or loop instructions with an offset of zero. If the branch distance is too 
large to be expressed as a lO-bit signed number, then the compiler must generate 
the code to compute the target pc and follow this with a %jump instruction. 

branch I Instruction 

Format lO-bit immediate Valuers) Returned 0 

Argument(s) 1: Opcode 174 
I is dtp-fixnum 

Immediate Argument Type Not applicable 

Description 
Continues execution at the location offset I halfwords from the current 
program counter (PC). Note that instruction tracing may ignore this 
instruction. 

Exception None 

Memory Reference None 

Register Effects TOS: Unchanged 

branch-true{-elseH-andH-no-pop}{-extra-pop} I Instruction 

branch-false{ -else}{ -andH -no-pop}{ -extra-pop} I 

Format lO-bit immediate Valuers) Returned 0 

Argument(s) 2: 
argl any data type 
I is dtp-IlXI1um 

Opcodes 60-77 (see below) 

164 



Symbolics, Inc. 

Immediate Argument Type Not applicable 

Description 
branch-false branches if the top of stack is nil. branch-true branches if 
the top of stack is not nil. A branch instruction always pops the argument 
off the top of stack whether or not the branch is .taken unless. otherwise 
specified by one of the no-pop conditions. 

If the branch is taken, and -and-no-pop is specified, the stack is not 
popped. If -eIse-no-pop is specified, and the branch is not taken, the stack 
is not popped. 

If extra-pop is specified then the stack is popped one time in addition to 
any pop performed as specified by the rest of the instruction. For 
clarification, see the list below. 

If the branch is taken, execution continues at the location offset I 
halfwords from the current program counter (PC). The instruction takes 
an error trap if the branch condition is met but the offset is zero. 

The sixteen combinations of options for the conditional branch instructions 
are listed here. Note that there are some combinations that the compiler 
never generates. 

Instruction Opcode 

branch-true 

branch-false 

branch-true· no-pop 

branch-false-no-pop 

branch·true-eIse.no-pop 

branch-false-else-no.pop 

branch-true-and.no·pop 

Description 

60 Always pop once, whether or not branch 
taken. 

70 Alway.spop once, whether or not branch 
taken. 

64 Do not· pop, whether or not branch taken. 

74 Do not pop, whether or not branch taken. 

66 No pop if no branch, pop once if branch. 

76 No pop if no branch, pop once if branch. 

65 No pop if branch taken, pop if no branch. 

165 



Symbolics, Inc." 

branch-false-and-no-pop 
75 No pop· if branch taken, pop if no branch. 

branch-true-and-extra-pop 
62 Pop twice if branch, pop once if no branch. 

branch-false-and-extra-pop 
72 Pop twice if branch, pop once if no branch. 

branch-true-else-extra-pop 
61 Pop once if branch, pop twice if no branch. 

branch-false-else-extra-pop 

branch-true·extra-pop 

branch-false-extra-pop 

71 Pop once if branch, pop twice if no branch. 

63 Always pop twice, whether or not branch 
taken. 

73 Always pop twice, whether or not branch 
taken. 

Not generated: 
braneh-true-and-no-pop-else-no-pop-extra-pop 

67 Same as branch-true 
branch-false-and-no-pop-else-no-pop-extra'pop 

77 Same as branch-false 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

166 



loop-decrement-tos I 

Format lO-bit immediate 

Argument(s) 2: 
arg1 any numeric data type 
I dtp-iIxnum 

Immediate Argument Type Not applicable 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 175 

Decrements arg1, the top of stack. If the result is greater than zero, then 
branches to the location offset from the current program counter (PC) by I 
halfworcl's. Changes the cdr code of TOS to cdr-next. Does not pop the 
stack, whether or not the branch is taken. 

Exception 
Conditions: Type of arg1 is not dtp-fh::num. 

Decrementing arg1 overflows (should turn into an 
error). 
See the section "Revision 0 Loop-decrement-tos," page 299. 

Arguments: arg1 
Values: 1 (decremented value; may return to a different PC) 

Note: when an instruction exception is~en, the continuation is the 
PC of the top of the loop, not the successor to the loop instruction. 
The exception handler may have to alter the contents of the 
Continuation register. The net effect of taking and returning from 
an exception is such that the stack is not popped. 

Memory Reference None 

Register Effects TOS: Valid after 

167 



Symbo/ics, Inc. 

loop-increment-tos-less-than I 

Format lO-bit immediate 

Argument(s) 3: 
argl any numeric data type 
arg2 any numeric data type 
I dtp-f"Ixnum 

Immediate Argument Type Not applicable 

Description 

Instruction 

Valuers) Returned 2 

Opcode 375 

If arg2, the top of stack, is less than argl, the next on· stack, then branches 
by the number of halfwords from the current program counter (PC) 

. specified by I. In any case, increments the top of stack. Changes the cdr 
code of TOS to cdr-next. Does not pop the stack, whether or not the 
branch is taken. 

Exception 
Conditions: Type of argl or arg2 is other than dtp-f"Ixnum 

or dtp-single-float. 
argl and arg2 are both dtp-f"lXllum, but result 
overflows. 
See the section "Revision 0 Loop-increment-tos-less-than," 
page 299. 
Floating point exceptions. 

Arguments: argl, arg2 
Values: 2 (bound, incremented value) and may return to different pc. 

Note: when an instruction exception is taken, the continuation is the 
PC of the top of the loop, not the successor to the loop instruction. 
The exception handler may have to alter the contents of the 
Continuation register. The net effect of taking and returning from 
an exception is such that the stack is not popped. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

168 



Symbolics, Inc. 

3.2.7 Block Instructions 

%block·n-read (four instructions), %block-n-read-shift (four instructions), 
%block-n-read-alu (four instructions), %block-n-read-test (four instructions), 
%block-n-write(four instructions). 

A block instruction uses part of its opcode to select the desired Block Address 
Register (BAR). A BAR is an internal register that must be loaded by means of a 
%write-internal-register instruction before any of the block instructions are 
executed. For the instructions that use the lO-bit immediate format, the argument 
is the following mask of bits: -

cycle-type <9:6> (4 bits) Select one of the twelve memory-cycle types. See the 
section "Types of Memory References." 

fIxnum-only <5> (1 bit) If set, the instruction will take an error trap if the 
memory data type is not dtp-fixnum. 

set-cdr-next <4> (1 bit) For %block-n-read and %block-n-read-shift: if set, the 
cdr code of the result is 0; otherwise, the cdr code of the result 
is the cdr code of memory. 

last-word <3> (1 bit) If set, do not prefetchwords after this one. 

no-increment <2> (1 bit) If set, do not increment the Block Address Register 
(BAR) after executing this instruction. 

If an invisible pointer is fetched from memory, and the memory-cycle type specifies 
that the inVisible pointer should be followed, the BAR is always changed to point 
to the new location. If the BAR is incremented, that happens afterwards. 

The %block-n-read-shift instruction uses the rotate-latch register and the byte-r 
and byte-s fields of the DP Op register. DP Op is an internal register that must 
be loaded by means of a %write-internal-register instruction before the 
%block-n-read-shift, %block-n-read-alu, or %block-n-read-test instruction is 
executed. 

169 



Symbolics, Inc. 

%block.n-read I Instruction 

Format lO-bit immediate Valuers) Returned 1 

. Argument(s) 1: Opcodes 120-123 
I lO-bit immediate 

Immediate Argument Type Not applicable 

Description 
In accordance with the setting of the bits in the immediate control mask, 
reads the word addressed by the contents of the Block Address Register 
(BAR) specified by n, and pushes it on the stack. n is a number between 0 
and 3 inclusive that is part of the opcode. The specified BAR is 
incremented according to the bit in the mask as a side effect. 

Exception None 

Memory Reference Cycle-type specified by instruction 

Register Effects TOS: Valid after 

170 



Symbolics, Inc. 

%block-n-read-shift I Instruction 

Format 1O-bit immediate Valuers) Returned 1 

Argument(s) 1: Opcodes 124-127 
I 10-bit immediate 

Immediate Argument Type Not applicable 

Description 
Reads the word addressed by the contents of the Block Address Register 
(BAR) specified by n and rotates it left by the amount specified in the byte
r field of the DP Op register. The top (byte-s + 1) bits come from this 
rotated word, and the bottom bits come from the rotate-latch register, and 
this value is pushed onto the stack. The rotate-latch register is then loaded 
from rotated memory word. The effect of this operation is to perform a dpb 
(deposit-byte) of the word from memory into the rotate-latch register. n is 
a number between o and 3 inclusive that is part of the opcode. The 
specified BAR is incremented according to the bit in the immediate-operand 
mask as a side effect. Seethe section "Revision 0 %Block-n-read-shift," 
page 298. 

Exception None 

Memory Reference Cycle-type specified 

Register Effects TOS: Valid after 

171 



Symbolics, Inc. 

%block-n-read-alu 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 1: 
arg is any numeric data type 

Immediate Argument Type Not applicable 

Description 

Instruction 

Valuers) Returned 0 

Opcodes 160·163 

Performs the ALU operation specified in the alu-op field of the DP Op 
register using arg and the word addressed by the contents of the Block 
Address Register (BAR) specified by n as operands. n is a number between 
o and 3 inclusive that is part of the opcode. Writes the result of the ALU 
operation back into the addressed operand, argo The cdr code of the 
operand is set to the cdr code from memory. The specified BAR is 
incremented as a side effect. 

The values used for the block instruction mask bits are 

CYCLE TYPE -- data read 
FIXNUM-ONLY -- the usual generic-arithmetic post traps apply 
SET-COR-NEXT -- not applicable 
LAST-WORD -- false 
NO-INCREMENT -- false 

Exception 
Conditions: Traps according to the generic-arithmetic traps associated 

with the specified ALU operation. 
Arguments: arg (address operand as locative) 
Values: 0 (increments the BAR) 

Note: The operation to be performed is indicated by the DP Op register. 
The trap handler must save this away before it can get clobbered 
by other processes, interrupt handlers, or complex instructions. 
See the section "Revision 0 %Block-n-read-alu," page 2980 

Memory Reference Data-read 

Register Effects TOS: Unchanged 

172 



%block-n-read-test I 

Format lO-bit immediate 

Argument(s) 2: 
arg(s) can be any Lisp data type, 
except for when a test that 
requires dtp-fixnum is selected 

Immediate Argument Type Not applicable 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcodes 130-133 

Performs the test selected by the contents of the condition field and alu-op 
fields of the DP Op register. See the section "Revision 0 %Block-n-read
test," page 299. Some of the tests that could be performed are: 

ephemeralp(memory (BAR» 
oldspacep(memory (BAR» 
eq(memory(BAR), top-of-stack) 
logtest(memory(BAR),top-of-stack) 

where memory(BAR) specifies the object reference addressed by the nth 
BAR. (n is it number between 0 and 3 inclusive that is part of the opcode.) 
Does not pop arguments off the stack. 

If the test succeeds,- transfers control to the program counter next on the 
stack. If the test fails, increments the BAR _ contents. Execution then 
proceeds with the next instruction. 

This instruction is typically used for searching tables and bitmaps, and by 
the garbage collector. Note that the logtest option produces meaningful 
results only for dtp-:fIxnum operands; in particular, it does not work for 
dtp-bignum operands. (Actually, the logtest test ignores the data type of 
its operand.) Typically, the programmer would set the fixnum-only bit in 
the lO-bit immediate field when using this test. See the section .. Block 
Instructions," page 169. The oldspacep test is true exactly when a transport 
trap would occur if the cycle type allowed it. For this to be useful, the 
cycle type selected for %block-n-read-test oldspacep test must disallow 
transport traps. See the section "Revision 0 %Block-n-read-test," page 299. 

Exception None 

Memory Reference Cycle-type specified. 

Register Effects TOS: Valid before for 2-operand tests, valid after 

173 



Symbo/ics, inc. 

%block-n-write Instruction 

Format Operand from stack Valuers) Returned 0 

Argument(s) 1: Opcodes 30-33 
arg can be any Lisp data type 

Immediate Argument Type Signed 

Description 
Writes arg into the word addressed by the contents of the Block Address 
Register (BAR) specified by n. n is a number between 0 and 3 inclusive 
that is part of the opcode. All 40 bits, including cdr code, of this word are 
written into memory. The specified BAR is incremented as a side effect. If 
arg is immediate, the tag bits will specifY dtp-f'IXl1UDl and cdr-next. 

Exception None 

Memory Reference Raw-write 

Register Effects TOS: Unchanged 

174 



Symbolics, Inc. 

3.2.8 Function-Calling Instructions 

dtp·call·compiled·even, dtp·call·compiled·odd, dtp.call.indirect, dtp·call·generic, 
and the .prefetch versions of these last four, start·call, finish·call·n, 
finish.call·apply·n, f"mish·call·tos,. finish·call·apply·tos,entry·rest.accepted, 
entry·rest-not·accepted, locate-locals, return.single, return·multiple, 
return·kludge, take-values 

3.2.8.1 Function-Calling Data Types 

Each of the following data types when executed as an instruction starts a function 
call. Only very brief descriptions of these instructions are presented in this 
chapter. Complete information is contained in a separate chapter. See the section 
"Function CaIling, Message Passing, Stack·Group Switching," page 241. 

dtp.call-compiled-even 

dtp-call-compiled-even.prefetch 

Format Full·word instruction 

Argument(s) 1: 
Included in the instruction is addr, 
the address of the first 
instrucJion to be executed 
in the target function. 

Immediate Argument Type Not applicable 

Description 

Instruction 

Instruction 

Valuers) Returned Not applicable 

Starts a function call that will commence execution at the even instruction 
of the word addressed by addr. The prefetch version of this instruction 
indicates that the hardware should initiate an instruction-prefetch 
operation. See the section "Starting a Function Call," page 249. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

175 



Symbolics, Inc. 

dtp-call-compiled-odd 

dtp-call-compiled-odd-prefetch 

Format Full-word instruction 

Argument(s) 1: 
Included in the instruction is addr, 
the address of the first 
instruction to be executed 
in the target function 

Immediate Argument Type Not applicable 

Description 

Instruction 

Instruction 

Valuers) Returned Not applicable 

Starts a function call that will commence execution at the odd instruction 
of the word addressed by addr. The prefetch version of this instruction 
indicates that the hardware should initiate an instruction-prefetch 
operation. See the section "Starting a Function Call," page 249. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

176 



Symbolics, Inc. 

dtp-call-indirect Instruction 

dtp-call-indirect-prefetch Instruction 

Format Full-word instruction Valuers) Returned Not applicable 

Argument(s) 1 
Included in the instruction is addr, the address of a word, whose 
contents can be of any data type. The contents of the word is the 
function to call. 

Immediate Argument Type Not applicable 

Description 
Starts a call of the function addressed by addr or by a forwarding pointer 
addressed by addr. Use of the prefetch version suggests to the hardware 
that an instruction-prefetch operation is desirable. See the section 
"Starting a Function Call," page 249 .. 

Exception None 

Memory Reference Data-read 

Register Effects TOS: Valid after 

177 



Symbolics, Inc. 

dtp-call-generic Instruction 

dtp-call-generic-prefetch Instruction 

Format· Full-word instruction Valuers) Returned Not applicable 

Argument(s) 1: 
Included in the function is addr, the address of a generic function 

Immediate Argument Type Not applicable 

Description 
Starts a call of the generic function addressed by addr. Use of the 
prefetch version suggests to the hardware that an instruction-prefetch 
operation is desirable. See the section "Calling a Generic Function," page 
277. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

3.2.8.2 Instructions for Starting and Finishing Calls 

The following instructions are used to implement function calling. Only brief 
descriptions of these are presented here. See the section "Function Calling, 
Message Passing, Stack-Group Switching," page 241. 

start-call Instruction 

Format Operand from stack Valuers) Returned Not applicable 

Argument(s) 1: Opcode 10 
arg is any data type 

Immediate Argument Type Signed 

Description 
Starts a function call of the function specified by argo See the section 
"Starting a Function Call," page 249. 

Exception None 

178 



Memory Reference Data-read (sometimes) 

Register Effects TOS: Valid after 

179 

Symbolics, Inc. 



Symbolics, Inc. 

finish-calIon I Instruction 

finish-calI-n-apply I 

Format lO-bit immediate Valuers) Returned Not applicable 

Argument(s) 1: Opcode 134 (135 for apply) 
I dtp·Dxnum 

Immediate Argument Type Unsigned 

Description 
Finishes a function-calling sequence: builds the new stack frame, checks for 
control stack overflow, and enters the called function at the appropriate 
starting instruction. The low-order eight bits of the immediate argument I 
specify a number that is equal to one more than the number of arguments 
explicitly supplied with the call, including the apply argument but not 
including the extra argument if any. For example, if one argument is 
supplied with imish·call.n,. then 1<7:0> = 2. 

The two high.order hits of I are the value-disposition, which specifies what 
should be done with the result of the called function. The possible values 
of value-disposition are: 

• Effect 

• Value 

• Return 

• Multiple 

The function·calling chapter explains the meaning of this field. See the 
section "Finishing the Call," page 253. 

finish·call-n-apply is the same as finish-calI.n, except that its use 
indicates that the top word of the stack is a list of arguments. 

Exception None 

Memory Reference None 

Register Effects TOS: Unchanged 

180 



finish-call-tos I 

finish-caIl-tos-apply I 

Format lO-bit immediate 

Argument(s) 2: 
I dtp-ilXllum 
arg dtp-fixnum 

Immediate Argument Type Unsigned 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned Not applicable 

Opcode 136 (137 for apply) 

Finishes a function-calling sequence: builds the new stack frame, checks for 
control stack overflow, and enters the called function at the appropriate 
starting instruction. arg, which is popped off the top of stack, specifies the 
number of arguments explicitly supplied with the call,including the apply 
argument in the case of finish-call-tos-apply. Note that arg diffe,s from 
the immediate argument count in imish-call-n by not including the bias of 
+1. 

The two high-order bits of the immediate argument I are the 
value-disposition, which specifies what should be done with the result of the 
called function. The possible values of value-disposition are: 

• Effect 

• Value 

• Return 

• Multiple 

The function-calling chapter explains the meaning of this field. The low
order eight bits of I are ignored by this instruction. See the section 
"Finishing the Call," page 253. 

finish-call-tos-apply is the same as finish-call-tos, except that its use 
indicates that the top word of the stack is a list of arguments. 

Exception None 

Memory Reference None 

Register Effects. TOS: Unchanged 

181 



Symbolics, Inc. 

entry-rest-accepted 

entry-rest-not-accepted 

Format Entry instruction 

Argument(s) 2: 
arg1 8-bit immediate 
arg2 8-bit immediate 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned Not applicable 

Opcode 176 (177 for not-accepted) 

Performs an argument match-up process that either takes an eITor trap, if 
the wrong number of arguments has been supplied, or adjusts the control 
stack and branches to the appropriate instruction of the entry vector or to 
the instruction after the entry vector_ 

argl is two greater than the number of arguments that the function 
requires, and arg2 is two greater than the number of required arguments 
plus the number of optional arguments that the fnnction will accept. See 
the section "Entry-Instruction Format," page 81. 

The difference between entry-rest-accepted and entry-rest-not-accepted is 
in how the argument matchup and stack-adjustment process are controlled 
as explained in the chapter on function calling. See the section "Function 
Entry," page 257. See the section "Revision 0 Entry-rest-accepted," page 
299. 

Exception See the section "Trapping Out of Entry and Restarting," page 
266. 

Memory Reference See the section "Pull-apply-args," page 261. 

Register Effects TOS: Invalid after 

182 



Symbolics, Inc. 

locate-locals Instruction 

Format Operand from stack Valuers) Returned Not applicable 

Argument(s) 0 Opcode 50 

Immediate Argument Type Not applicable 

Description 
Pushes (control-register.arg_size - 2) onto the stack, as a fIxnum. This is 
the number of spread arguments that were supplied (this is less than the 
number of spread arguments now in the stack if some &optional 
arguments were defaulted); sets LP to (new-SP - 1) so that LPIO is now the 
&rest argument and LPl1 is the argument count; and sets control
register.arg_size to (LP - FP). Note that (new-SP - 1) here refers to the SP 
after the incrementation caused by this instruction pushing its result. 
Thus the value of LP after the instruction is equal to the value in the SP 
before the instruction. See the section "Pull-apply-args," page 261. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

183 



Symbolics, Inc. 

return-single I 

Format lO-bit immediate 

Argument(s) 1: 
I (should be 1000(octaD, 
1040(octal), or 1041(octaI), 
but not checked) 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned Not applicable 

Opcode 115 

Specifies the value to be returned on the top of stack according to the 
immediate operand: 1000(octal), the current top of stack; 1040(octal),nil; 
1041(octal), t. When the value disposition is "for value" or "for multiple," 
the cdr code of the top of stack is set to cdr-next. See the section 
"Revision 0 Return-single," page 299. Removes the returning function's 
frames from the control and binding stacks; unthreads catch blocks and 
executes unwind-protects; restores the state of the caller; and resumes 

. execution of the caller with the returned values on the stack in the form 
specified by the caller. May do a check-preempt-request operation. See the 
section "Function Returning," page 266. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before if TOS is the source of the 
operand. Status afterwards is determined by value disposition and seen 
as status after finish-call in the caller. If the value disposition 
is for-effect, then the TOS register is invalid; otherwise, it is valid. 

184 



Symbolics, Inc. 

return-multiple Instruction 

Format Operand from stack, Valuers) Returned Not applicable 
immediate or sp-pop addressing modes only 

Argument(s) 1: Opcode 104 
arg is dtp-XlXIlum, non-negative 

Immediate Argument Type Unsigned 

Description 
Returns, in accordance with the value disposition specified by the contents 
of the Control register, the number of values specified by arg in a lIiultiple 
group, which includes as the top entry the number of values returned, on 
top of the stack. Removes the returning function's frames from the control 
and binding stacks, unthreads catch blocks, restores the state of the caller, 
and resumes execution of the caller with the returned values on the stack 
in the form specified by the caller. May perform a check-preempt-request 
operation. See the section "Function Returning," page 266. 

Exception None 

Memory Reference None 

Register Effects TOS: Status afterwards is determined by value 
disposition and seen as status after xmish-call in caller 

185 



Symbolics, Inc. 

return-kludge Instruction 

Format Operand from stack, Valuers) Returned Not applicable 
immediate or sp-pop addressing modes amy 

Argument(s) 1: Opcode 105 
arg dtp-fIXllUDl, non-negative 

Immediate Argument Type Unsigned 

Description 

Returns the number of values specified by arg on top of the stack, ignoring 
the value-disposition. Removes the returning function's frames from the 
control and binding stacks, unthreads catch blocks, restores the state of the 
caller, and resumes-execution of the caller. May perform a check-preempt
request operation. Used for certain internal stack-manipulating subroutines 
and for all trap handlers. See the section "Function Returning," page 266. 

Exception None 

Memory Reference None 

Register Effects TOS; Valid after 

186 



take-values I 

Format Operand from stack, 
inlr.nediate addressing mode only 
Argument(s) 1: 
I 

Immediate Argument Type Unsigned 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned arg 

Opcode 106 

Pops a multiple group of values off the top of stack, using the first value 
as the number of additional words to pop. Pushes the number of words 
specified by arg back on the stack, discarding extras if too many values are 
in the multiple group, or pushing enough nils to equal the number desired 
if too few values are in the multiple group. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

187 



Symbolics, Inc. 

3.2.9 Binding Instructions 

bind-Iocative-to-value, bind-locative, unbind-n, %restore-binding-stack 

Instructions that perform binding operations check for stack overflow using thy 
contents of the Binding-Stack-Limit register as the limit. See the section "Bin'ding 
Stack," page 244. Those that perform unbinding operations check for stack ". t 
underflow. See the section "Revision 0 Binding Instructions," page 298. Thes 
take an error trap if an unbinding instruction tries to undo a binding and co~ rol
register. cleanup-binding = o. There is no fence-post error in the case of a· i 

%restore-binding-stack that is a no-op because the two pointers are equal; tile 
instruction never traps in this case. 

bind-Iocative-to-value 

Format Operand from stack 

Argument(s) 2: 
argl dtp-locative 
arg2 any data type 

Immediate Argument Type Signed 

Instruction 

Valuers) Returned 0 

Opcode 236 

J 
1'1""::;'2." 

Description ')'\"-/" 
Pushes argl onto the binding stack, along with the contents of the cell i!./j 
points to, then stores arg2 into the location pointed to by argl/ Copies'the 
Control register binding-cleanup bit into bit 38 of argl on the binding stack 
and sets this Control register bit to 1. Does not follow external-value-cdl 
pointers as invisible pointers when reading and writing the cell. Takes an 
error trap if the binding-stack pointer would be greater than the contents 
of the Binding-Stack-Limit register. See the section "Binding Stack," page 
244. 

Exception None 

Memory Reference Bind-read, followed by two raw-writes, followed 
by bind-write 

Register Effects TOS: Valid before, invalid after 
BAR-I is modified 

188 



bind-locative 

. Format Operand from stack 

Argument(s) 1: 
arg dtp-Iocative 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 0 

Opcode 5 

Pushes arg onto the binding stack, along with the contents of the cell it 
points to. Copies the Control register binding-cleanup bit into bit 38 of arg 
on the binding stack and sets this Control register bit to 1. Does not follow 
external-value-cell pointers as invisible pointers when reading the cell. 
Takes an error trap if the binding-stack poirlter would be greater than the 
contents of the Binding-Stack-Limit register. See the section "Binding 
Stack," page 244. 

Exception None 

Memory Reference Bind-read, followed by two raw-writes 

Register Effects TOS: Invalid after 
BAR-l is modified 

189 



Symbolics, Inc. 

unbind-n 

Format Operand from stack 
(only sp-pop operands and the 
immediate constant 1 are legal) 

Argument(s) 1: 
arg dtp-f'1Xl1Utn 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned 0 

Opcode 107 

Unbinds the top arg variables on the binding stack. It unbinds a variable 
by popping the variable's old value and the locative to that variable off the 
binding stack and storing the old value back into the location pointed to by 
the lo~ Copies bit 38 of each locative word on the binding stack into 

, :,J.,.;2/ /~-t11e-Con~ro~ register binding-clean~p bit as it pops the locative. After all 
,\1) J'.,~,'" I : the unbmdmgs have been accomplished, does a check-preempt-request 

Vi' ' !f operation. See the section "Binding Stack," page 244. See the section 
C;'''-;iv~j.,v''16 "Revision 0 Unbind-n," page 300. 

"i Y ' Exception None 

Memory Reference Two bind-reads, followed by bind-write 

Register Effects TOS: Unchanged 

190 



%restore-binding-stack 

Format Operand from stack 

Argument(s) 1: 
arg dtp-locative 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 0 

Opcode 6 

Unbinds special variables until the binding-stack pointer equals arg, that is, 
until all variables up to the one pointed to by arg have been unbound. It 
unbinds a variable by popping the variable's old value and the locative to 
that variable off the binding stack and storing th~ ole! value_~l!.ck into the v",

location pointed to by the locatiVVCopTes bitliS of each locativ;-worcro~,J._"_ 
the binding stack into the Control register binding-cleanup bit as it pops 
the locative. Mter all the unbindings have been accomplished, does a 

. check-preempt-request operation. It is legal for arg to equal the binding
stack pointer at the beginning of the instruction; in this case, the 
instruction does nothing. See the section "Binding Stack," page 244. 

Exception None 

Memory Reference Two bind-reads, followed by bind-write 

Register Effects TOS: Valid after 

191 



Symbolics, Inc. 

3.2.10 Catch Instructions 

catch-open, catch-close 

Catch Blocks 

A catch block is a sequence of words in the control stack that describes an active 
catch or unwind-protect operation. All catch blocks in any given stack are linked 
together, each block containing the address of the next outer block. They are 
linked in decreasing order of addresses. An internal register (scratchpad location) 
named catch-block-pointer contains the address of the innermost catch block, as a 
dtp-Iocative word, or contains nil if there are no active catch blocks. The address 
of a catch block is the address of its catch-block-pc word. 

The' format of a catch block for the catch operation is: 

Word Name 
catch-black-tag 

Bit 39 
8 

catch-black-pc 0 
catch-black-binding-stack-po;nter 

B 

extra-arg 

Bit 38 
invalid flag 
8 

B 
cleanup-catch catch-black-previous 

catch-black-continuation value-disposition 

Content!! 
any object reference 
catch exit address 

binding stack level 
previous catch block 
continuation 

The format of a catch block for the unwind-protect operation is: 

Word Name 
catch-black-pc 

Bit 39 
B 

catch-block-binding-stack-pointer 
B 

Bit 38 
B 

1 

Contents 
cl eanup handl er 

binding stack level 
catch-black-previous extra-arg cleanup-catch previous catch block 

The catch-block-tag word refers to an object that identifies the particular catch 
operation, that is, the frrst argument of catch-open or catch-close. The catch
block-invalid-flag bit in this word is initialized to 0, and is set to '1 by the throw 
function when it is no longer valid to throw to this catch block; this addresses a 
problem with aborting out of the middle of a throw and throwing again. This 
word is not used by the unwind-protect operation and is only known about by the 
throw function, not by hardware. 

The catch.-block-pc word has data type dtp-even-pc or dtp-odd-pc. For a catch 
operation, it contains the address to which throw function should transfer control. 
For an unwind-protect operation, it contains the address of the first instruction of 

192 



Symbolics, Inc. 

the cleanup handler. The cdr code of this word is set to zero (cdr-next) and not 
used. For a catch operation with a value disposition of Return, the catch-black-pc 
word contains nil. 

The catch-block-binding-stack-pointer word contains the value of the binding-stack
pointer hardware register at the time the catch or unwind-protect operation 
started. An operation that undoes the catch or unwind-protect will undo special
variable bindings until the binding-stack-pointer again has this value. The cdr
code field of this word uses bit 38 to distinguish between catch and unwind
protect; bit 39 is set to zero and not used. 

The catch-block-previous word contains a dtp.locative pointer to the catch-block-pc 
word of the previous catch block, or else contains nil. The cdr-code field of this 
word saves two bits of the Control register that need to be restored . 

. The catch-black-continuation word saves the Continuation hardware register so that 
a throw function can restore it. The cdr-code field of this word saves the value 
disposition of a catch; this tells the throw function where to put the values 
thrown. This word is not used by the unwind-protect operation. 

The compilation of the catch special fOrIn is approximately as 
follows: 

Code to push the catch tag on the stack. 
Push a constant PC, the address of the first instruction 
after the catch. 
A catch-open .instruction. 
The body of the catch. 
A catch-close instruction. 
Code to move the values of the body to where they are wanted; 
this usually includes removing the 5 words of the catch block 
from the stack. 

The compilation of the unwind-protect special form is approximately as follows: 

Push a constant PC, the address of the cleanup handler. 
A catch-open instruction. 
The body of the unwind-protect. 
A catch-close instruction. 
Code to move the values of the body to where they are wanted; 
this usually includes removing the 3 words of the catch block 
from the stack. 

193 



Symbolics, Inc. 

Somewhere later in the compiled function: 

The body of the cleanup handler. 
A %jump instruction. 

Catch blocks are created in the stack by executing the catch-openlunwind_protect 
instruction, and they are removed from the stack by executing the catch-close 
instruction. 

An unwind-protect cleanup handler terminates with a %jump instruction. This 
instruction checks that the data type of the top word on the stack is dtp-even-pc 
or dtp-odd-pc, jumps to that address, and pops the stack. In addition, if bit 39 of 
the top word on the stack is 1, it stores bit 38 of that word into control
register.cleanup-in-progress. If bit 39 is 0, it leaves the control register alone. 

194 



Symbolics, Inc. 

catch-openN Instruction 

Format lO-bit immediate Valuer s) Returned 2 or 3 

Argument(s) 1: Opcode 376 
N dtp-fixnum 

Description 
This instruction has two versions, catch and unwind-protect, which· are 
specified by bit 0 of the immediate argument, n, Bit 0 is for catch, bit 1 for 
unwind-protect. Bits 6 and 7 of n contain the value disposition. Bits 1-5 
and 8-9 must be O. This instruction,when 'Qit 0 is 1 (unwind-protect), must 
be preceded by instructions that push the catch-block-pc on the stack. When 
bit 0 is 0 (catch), preceding instructions must push the catch-black-tag and 
the catch-block-pc as well. See the section "Catch Blocks," page 192. The 
catch version operates as follows: 

1. Push the binding-stack-pointer, with 0 in the cdr code. 

2. Push the catch-block-pointer, with control-register.extra-arg and 
control-register.cleanup-catch bits in the cdr code. 

3. Push the Continuation register, with bits 6 and 7 of the catch-open 
instruction in the cdr code. 

4. Set catch-block-pointer to the value stack-pointer had at the beginning 
of the instruction, and set control-register.cleanup-catch to 1. 

The unwind-protect version operates as follows: 

1. Push the binding-stack-pointer, with 1 in the cdr code. 

2. Push the catch-block-pointer, with control-register.extra-arg and 
control-register. cleanup-catch bits in the cdr code. 

3. Set catch.block-pointer to the value stack-pointer had at the beginning 
of the instruction, and set control.register.cleanup-catch to 1. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

195 



SymboJics, Inc. 

catch-close Instruction 

Format Operand from stack Valuers) Returned 0 

Argument(s) 0 Opcode 51 

Description 
The compiler emits this instruction at the end of a catch or unwind-protect 
operation. It is used internally to the throw function and is called as a 
subroutine by the return instructions when they find the 
control-register.cleanup-catch bit set. Instruction operation is: 

1. Set the virtual memory address to the contents of the catch-block
pointer register and fetch three words: catch-black-pc, catch-block
binding-stack-pointer, and catch.block-previous. These words will 
always come from the stack cache, but the instruction may not need 
to rely on that. 

2. If catch-block-binding-stack-pointer does not equal binding-stack
pointer, undo some bindings. This can be done by calling the 
%restore·binding-stack-Ievel instruction as a subroutine. The 
instruction can be aborted (for example, by a page fault) and retried. 

3. Restore the catch-black-pointer register, control-register. cleanup-catch 
bit, and control-register. extra-argument bit that were saved in the 
catch-black-previous word. 

4. Check the unwind-protect flag which is bit 38 of the catch-block
binding-stack-pointer word. If this bit is 0, the instruction is done. 
Note that stack-pointer is not changed~ If this bit is 1, push the next 
PC (or the current PC if catch·close was called as a subroutine by 
return) onto the stack, with the current value of control
register.cleanup-in-progress in bit 38 and 1 in bit 39; then jump to 
the address that was saved in the catch-black-pc word and turn on 
the control-register.cleanup-in-progress bit. 

196 



SymboJics, Inc. 

When the next instruction after catch-close is reached, the value of SP is 
the same as it was before catch-close. The catch block is still in the 
stack, but is no longer linked into the catch-block pointer list. See the 
section "Catch Blocks," page 192. 

Exception None 

Memory Reference None 

Register Effects TOS: Unchanged 

197 



Symbolics, Inc. 

3.2.11 Lexical Variable Accessors. 

push-lexical-varon (eight instructions), pop-lexical-varon (eight instructions), 
movem-Iexical-var-n (eight instructions). 

The three instructions described in this section allow the fIrst eight lexical 
variables in a lexical environment to be accessed. 

push-lexical-varon 

Format Operand from stack 

Argument(s) 1: 
arg dtp-list 
or dtp-locative 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcodes 20-27 

Pushes on the stack the lexical variable of environment arg indexed by n. 
arg must be a cdr-coded lexical environment, but this is not checked. n is a 
number between 0 and 7 that is stored in the bottom three bits of the 
opcode. 

Exception None 

Memory Reference Data-read 

Register Effects TOS: Valid after 

198 



pop-lexical-varon 

Format Operand from stack 

Argument(s) 2: 
argl any data type 
arg2 dtp-list 
or dtp-Iocative 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 0 

Opcodes 240-247 

Pops argl off the stack and stores the result into the lexical variable of 
environment arg2 indexed by n, arg2 must be a cdr-coded lexical 
environment, but this is not checked. nis a number between 0 and 7 that 
is stored in the bottom three bits of the opcode. Note that only 38 bits are 
stored: the cdr-code bits of memory are unchanged. 

Exception None 

Memory Reference Data-write 

Register Effects TOS: Valid before, invalid after 

199 



Symbolics, Inc, 

movetn-Iexical-var-n 

Format Operand from stack 

Argument(s) 2: 
argl any data type 
arg2 dtp-list 
or dtp-locative 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcodes 250-257 

Stores argl, without popping, into the lexical variable of environment arg2 
indexed by n. arg2 must be a cdr-coded lexical environment, but this is not 
checked.n is a number between 0 and 7 that is stored in the bottom three 
bits of the opcode. Note that only 38 bits are stored: the cdr-code bits of 
memory are unchanged. 

Exception None 

Memory Reference Data-write 

Register Effects TOS: Valid before, valid after 

200 



, 
• • 
• 

, 
• • 

I 

Symbolics, Inc, 

3.2.12 Instance Variable Accessors 

push·instance-variable, pop·instance·variable, movem·instance.variable, 
push·address·instance-variable, push-instance-variable-ordered, 
pop-instance-variable-ordered, movem-instance·variable-ordered, 
push-address.instance-variable-ordered, %instance-ref, %instance.set, 
%instance-loc 

3.2.12.1 Mapped Accesses to Self 

The next four instructions are called within methods or defun-in-flavors. Each of 
these instructions is an access to self, mapped. 

With the instance in FPl3 and the mapping table in FPI2, the instruction uses the 
immediate argument, I, as the index into the mapping table to get the offset to an 
instance variable. The type of the value in the mapping table must be 
dtp-f"IXIlUJn; reference to a deleted variable results in nil being found in the 
mapping table, which causes an error trap. 

These instructions check that the argument I is within the bounds of the mapping 
table. If it is not, an error trap occurs. The bounds check is performed by 
fetching the array header of the mapping table, assuming it is a short· prefix 
array, and comparing I against the array-short. length field. These instructions do 
check that the data type of the mapping table (FPI2) is dtp-array, but do not 
check to make sure that the mapping table is a short-prefix array, though this is 
required for correct operation. 

Each of these instructions checks the offset to insure that it is a IlXllum, but does 
not check whether it is within bounds. Note that this check is of the element of 
the mapping table, not of the index into the mapping table. This type of 
instruction does not check to make sure that the mapping table is a short-prefIx 
array, though this is required for correct operation. That is, the instruction checks 
that the data type of the mapping table (FPI2) is dtp-array and then proceeds 
with the assumption that the array is a non-forwarded, short-prefix array. 

Each of these instructions checks the offset obtained rrom the mapping table to 
insure that it is a IlXllum. They do not check whether the offset is within bounds 
of the instance; the flavor system software guarantees that all offsets are within 
bounds. 

These instructions use the following forwarding procedures: 

If the cdr code of self (FPI3) is 1, accesses the location in the instance that is 
selected by the mapping table. 

If the cdr code of self (FPI3) is 0, does a structure-offset memory reference to the 
header of the instance to check forwarding. If there is no forwarding pointer, sets 
the cdr code of FPI3 to 1 and proceeds. Otherwise, uses the forwarded address in 
place of FPI3 (does not change FPI3). 

201 





Symbolics, Inc. 

3.2.12 Instance Variable Accessors 

push-instance-variable, pop-instance-variable, movem-instance-variable, 
push-address-instance-variable, push-instance-variable-ordered, 
pop-instance-variable-ordered, movem-instance-variable-ordered, 
push-address-instance-variable-ordered, %instance-ref, %instance-set, 
%instance-Ioc 

3.2.12.1 Mapped Accesses to Self 

The next four instructions are called within methods or defun-in-flavors. Each of 
these instructions is an access to self, mapped. 

With the instance in FPl3 and the mapping table in FPI2, the instruction uses the 
immediate argument, I, as the index into the mapping table to @Lthe offset to an 

_ 'instance variabler-:&;fetencoo,- 1:0- a'deleteclvlifia'Ol.e results in nil bei-;';g'~llFthe-'
" mappingtabl"~hich causes an error trap; the type of the value_in-i:ne mapping 

/ table inu~t be dtp-f"IXIlUln. - //' ! 
Each qf th~-~~ in~tructions checks the offset to ins9I"e/th;;- it is a rtxnum, but does 
not check whether Ris within bounds. Note that this check is of the element of 

J ", I ,_~ , 

the m,llpping j;able, not of itlle index ,intotw mapping table. This type of 
instruction dges not check to make _sure that the mapping table is a short, prefIx 
array/, though this is required !or-8orr~ct operation. That is, ,the instruction checks 
that ithe data type of the maPPing' table (FPI2) is dtp-arrayimd then proceeds 
with! the a~~umption tlJat"~he arr~y is a non:forwarded,sh()rt..prefIx array. 

i i // \, / ". 

The~e instructions-check that the argument I is witbin. tlie bounds of the mapping 
tabl~. If jit is,n6t, a trap ocettls. The bounds check is performed by fetching the 
array hef'.gerof the mapping ,able, assUDJ.ing it is a short-prerlX'liI'ray, and 
complu;Vrg I against the array-short-Iength field. Implementation riot~; it is useful 
to c~ehe the array header to avoid making a memory' reference to get it-every 
tirrle. 'For an example of how to do this using two scratchpad locations and one 
(licle of o"eriJead,see.the3600 microcode. 

< - -'-'~-'.--j 

These instructions use the following forwarding procedures: 

If the cdr code of self (FPI3) is 1, accesses the location in the instance that is 
selected by the mapping table. 

If the cdr code of self (FPI3) is 0, does a structure-offset memory reference to the 
header of the instance to check forwarding. If there is no forwarding pointer, sets 
the cdr code of FPI3 to 1 and proceeds. Otherwise,uses the forwarded address in 
place of FPI3 (does not change FPI3). 

201 



Symbolics, Inc. 

push-instance-variable I Instruction 

Format Operand from stack, immediate Valuers) Returned 1 

Argument(s) 1: Opcode 110 
I dtp-ilXllUDl (Note that the 
implicit argument self must be an 
instance data type and the mapping 
table must be a one-dimensional array.) 

Immediate Argument Type Unsigned 

Description 
Pushes the instance variable indexed by I on the stack See the section 
"Mapped Accesses to Self," page 201. 

Exception None 

Memory Reference Header-read (to header of mapping table), data-read 
(to mapping table), data-read 

Register Effects TOS: Valid after 

202 



Symbolics, Inc. 

pop-instance-variable I Instruction 

Format Operand from stack, immediate Valuers) Returned 0 

Argument(s) 2: Opcode 320 
argl any Lisp data type 
I dtp-fixnum 
(Note that the implicit argument 
self must be an instance data type 
and the mapping table must be a 
one-dimensional array.) 

Immediate Argument Type Unsigned 

Description 
Pops argl off of the top of stack and stores it into the instance variable. 
See the section "Mapped Accesses to Self," page 201. Note that only 38 
bits are stored: the cdr-code bits of memory are :unchanged. 

Exception None 

Memory Reference Header-read (to header of mapping table), data-read 
(to mapping table), data-write 

Register Effects TOS: Invalid after 

203 



Symbolics, Inc. 

movem-instance-variable I Instruction 

Format Operand from stack, immediate Valuers) Returned 1 

Argument(s) 2: Opcode 321 
arg1 any Lisp data type 
I dtp-f"lXIlum 
(Note that the implicit argument 
self must be an instance data type 
and the mapping table must be a 
one-dimensiopa} array.) 

Immediate Argument Type Unsigned 

Description 
Stores argl, the contents of the top of stack, into the instance variable 
indexed by the immediate argument I. Does not pop the stack. See the 
section "Mapped Accesses to Self," page 201. Note that only 38 bits are 
stored: the cdr-code bits of memory are unchanged. 

Exception None 

Memory Reference Header-read (to header of mapping table), data-read 
(to mapping table), data-write 

Register Effects TOS, Valid after 

204 



Symbolics, Inc, 

push-address-instance-variable I Instruction 

Format Operand from stack, immediate Valuers) Returned 1 

Argument(s) 1: Opcode III 
I dtp-IlXl1wn 
(Note that the implicit argument 
self must be an instance data type 
and the mapping table must be a 
one-dimensional array.) 

Immediate Argument Type Unsigned 

Description 
Pushes the address of the instance variable indexed by I on the stack. See 
the section .. Mapped Accesses to Self," page 201. 

Exception None 

Memory Reference Header-read (to header 
of mapping table), data-read (to mapping table) 

Register Effects TOS: Valid after 

3_2_12_2 Unmapped Accesses to Self 

The next four instructions are called within methods or defun-in-flavor. Each of 
these instructions is an access to self, unmapped. 

With the instance in FPI3, such an instruction uses the operand-from-stack 
immediate-mode argument I as the offset to an instance variable. These 
instructions do not check whether the offset is within bounds. 

205 



Symbolics, Inc. 

push-instance-variable-ordered I Instruction 

Format Operand from stack, immediate Valuers) Returned 1 

Argument(s) 1: Opcode 322 
I dtp-f'lXIlUln· Must not be O. 
(Note that the implicit argument 
self must be an instance data type.) 

Immediate Argument Type Unsigned 

Description 
Pushes the variable indexed by I on the stack. See the section "Unmapped 
Accesses to Self," page 205. 

E.7cception None 

Memory Reference Data-read 

Register Effects TOS: Valid after 

206 



Symbolics, inc. 

pop-instance-variable-ordered I Instruction 

Format Operand from stack, immediate Valuers) Returned 0 

Argument(s) 2: Opcode 322 
argl any Lisp data type 
Iarg2 dtp-IIXIlUDl, must not be 0 
(Note that the implicit argument 
self must be an instance data type,) 

Immediate Argument Type Unsigned 

Description 
Pops argl off the top of stack and stores it into the instance variable 
indexed by I. Note that only 38 bits are stored: the cdr-code bits of memory 
are unchanged. See the section "Unmapped Accesses to Self," page 205. 

Exception None 

Memory Reference Data-write 

Register Effects TOS: Invalid after 

207 



Symbolics, Inc. 

movem-instance-variable-ordered I Instruction 

Format Operand from stack, immediate Valuers) Returned 1 

Argument(s) 2: Opcode 323 
argl any Lisp data type 
arg2 dtp-IlXD.Uln Must not be o. 
(Note that the implicit argument self must be an instance data type.) 

Immediate Argument Type Unsigned 

Description 
Stores argl, the contents of the top of stack, into the instance variable 
indexed by 1. Does not pop the stack. Note that only 38 bits are stored: the 
cdr-code bits of memory are unchanged. See the section "Unmapped 
Accesses to Self," page 205. 

Exception None 

Memory Reference Data-write 

Register Effects TOS: Valid after 

208 



SymboJics, Inc. 

push-address-instance-variable-ordered I Instruction 

Format Operand from stack, immediate Valuers) Returned 1 

Argument(s) 1: Opcode 113 
r dtp-f"IXI1U1n, must not be 0 
(Note that the implicit argument 
self must be an instance data type.) 

Immediate Argument Type·Unsigned 

Description 
Pushes the address of the instance variable indexed by I on the stack. See 
the section "Unmapped Accesses to Self," page 205. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

3_2.12_3 Accesses to Arbitrary Instances 

As a side effect of the bounds checking, each of these instructions makes a 
structure-offset reference to the header of the instance and, if the instance has 
been forwarded, uses the forwarded address as the base to which arg2 is added. 

209 



Symbolics, Inc. 

%instance-ref 

Format Operand from stack Valuers) Returned 1 

Argument(s) 2: Opcode 324 
argl dtp-instance, dtp-list-instance, 
dtp-array-instance, or dtp-string-instance 
arg2 dtp-fixnum 

Immediate Argument Type Unsigned 

Description 

Instruction 

Pl.lshes on the stack the instance variable of instance argl at the offset 
specifIed by arg2. Takes an error pre-trap if arg2 is greater than or equal 
to the size field of the flavor, using unsigned comparison. See the section 
"Accesses to Arbitrary Instances," page 209. 

Exception None 

Memory Reference Header.read, data-read (to flavor descriptor), 
data-read (to instance-variable slot) 

Register Effects TOS: Valid before, valid after 

210 



%instance-set 

Format Operand from stack Valuers) Returned 0 

Argument(s) 3: Opcode 325 
argl any Lisp data type; 
arg2 dtp-instance, dtp-list-instance, 
dtp-array-instance, or dtp-string-instance; 
arg3 dtp-f"lXllum 

Immediate Argument Type Unsigned 

Symbolics, Inc. 

Instruction 

, 
Z/~,;::::'C~ S 1-''-c:'~}'" 

Description ./ ' 
Pops arg1 off of the stack and stores it into the instanC!El variable-of-~ =,v's- v_,& "'-_ 
instance arg2 at the offset 'Specified by arg3'/~iikes an error pre-trap if ~ _y,_ 
arg2 is greater than aT equal to the size field of the flavor, using unsigned c~ , Cy,'j~ 
comparison. See the section "Accesses to Arbitrary Instances," page 209, 

Exception None 

Memory Reference Header-read, data-read, data-write 

Register Effects TOS: Valid before, invalid after 

211 



Symbolics, Inc, 

%instance-loc 

Format' Operand from stack Valuers) Returned f 

Argument(s) 2: Opcode. 326 
argl dtp-instance, dtp-list-instance, 
dtp-array-instance, or dtp-string-instance; 
arg2 dtp-ilXllUJn 

Immediate Argument Type Unsigned 

Description 

Instruction 

Pushes on the stack the address of the instance variable of instance argl at 
the offset specified by arg2. Takes an error pre-trap if arg2 is greater than 
or equal to the size field of the flavor, using unsigned comparison. See the 
section "Accesses to Arbitrary Instances," page 209. 

Exception None 

Memory Reference Header-read, data-read 

Register Effects TOS: Valid before, valid after 

212 



SymboJics, Inc. 

3.2.13 Sub primitive Instructions 

%ephemeralp, %unsigned.lessp, %unsigned-Iessp-no-pop, %allocate-list·block, 
%allocate-structure-block, %pointer-plus, %pointer-difference, 
%pointer-increment, %read-internal-register, %write-internal-register, no-op, 
%coprocessor-read, %coprocessor-write, %mem.ory-read, 
%memory-read-address, %memory-write, %tag, %set-tag, store-conditional, 
%p-store-contents, %set-cdr-code-n· (two instructions), %merge-cdr-no-pop, 
%generic-dispatch, %message-dispatch, %jump, %check-preempt-request, %halt 

%ephemeralp 

Format Operand from stack 

Argument(s) b 
arg any data type 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcode 7 

Pushes t on the stack if the data type of the argument is a pointer data 
. type and the address lies in ephemeral space (bits <31:27> are 0); otherwise 
pushes nil on the stack. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

213 



Symbolics, Inc, 

%unsigned-Iessp 

%unsigned-Iessp-no-pop 

Format Operand from stack 

Argument(s) 2; 
argl dtp-IIXll.UJn 
arg2 dtp-IIXll.UJn 

Immediate Argument Type Unsigned 

Description 

Instruction 

Valuers) Returned 1 (2 for no-pop) 

Opcode 331 (335 for no-pop) 

Tests if, as 32-bit unsigned numbers, argl < arg2, and pushes t or nil on 
the stack according to the result. The no-pop version of this instruction 
leaves the first argument on the stack. 

Exception None 

Memory Reference None 

Register Effects TOS; Valid before, valid after 

214 



%allocate-Iist-block 

Format Operand from stack 

Argument(s) 2: 
arg1 any type 
arg2 dtp-f"lxnum 

Immediate Argument Type Unsigned 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 311 

Using three internal registers, named list-cache-area, list-cache-length, and 
list-cache-address, this instruction: 

1. Takes an instruction exception (post trap) unless (eq argl list-cache
area). 

2. Computes list-cache-Iength minus arg2. Takes an instruction 
exception if the result is negative. Stores the result into list-cache
length unless an exception is taken. 

3. Pops the arguments and pushes the list-cache-address. Writes the 
list-cache-address into BAR-1 (Block-Address-Register-1). Sets the 
control-register trap-mode field to (max 1 current-trap-mode) so that 
there can be no interrupts until storage is initialized. 

4. Stores (list-cache-address + arg2) into list-cache-address (arg2 must be 
latched since the third step may overwrite its original location in the 
stack). 

215 



Symbo/ics, Inc. 

Example: 

Exceptions 

(defun cons (car cdr) 
(7.set"cdr-code-normal car) 
(%set-cdr-code-nil cdr) 
(%make-pointer dtp-list 

(prog1 (%allocate-list-block default-cans-area 2) 
(%block-1-write car) 
(%block-1-write cdr»» 

Conditions: argl is not eq to list-cache-area. 
arg2 is greater than list-cache-length. 
See the section "Revision 0 %Allocate-list-block," page 298. 

Arguments: argl, arg2 
Values: 1 
Note: Trap handler must insure that control-register. trap-mode 

will be at least 1 after it returns. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 
BAR-l is modified 

216 



%aIlocate-struc1ure-block 

Format Operand from stack 

Immediate Argument Type Unsigned 

Argument(s) 2: 
arg1 any type 
arg2 dtp-f'lXIlUDl 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 315 

Using three internal registers, named structure-cache-area, 
structure-cache-length, and structure-cache-address, this instruction: 

1. Takes an instruction exception unless (eq argl structure-cache-area). 

2. Computes structure-cache-length minus arg2. Takes an instruction 
exception if the result is negative. Stores the result into structure
cache-length unless an exception is taken. 

3. Pops the arguments and pushes the structure-cache-address. Writes 
. thestructure-cache-address into BAR-l (Block-Address-Register-1). Sets 
the control-register trap-mode field to (max 1 current-trap-mode) so 
that there can be no interrupts until storage is initialized. 

4. Stores (structure-cache-address + arg2) into structure-cache-address 
(arg2 must be latched since the third step may overwrite its original 
location in the stack). 

Exception 
Conditions: argl is not eq to structure-cache-area. 

arg2 is greater than structure-cache'length. 
See section "Revision 0 %AIlocate-structure-block," page 298. 

Arguments: argl, arg2 
Values: l' 
Note: Trap handler must insure that control-register,trap-mode 
will be at least 1 after it returns. 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

217 



Symbolics, Inc. 

%pointer-plus 

Format Operand from stack 

Argument(s) 2: 
argl can be any data type, 
but dtp-Iocative is expected; 
arg2 any data type, but 
dtp-f'lXIlum expected 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 1 

Opcode 230 

Pushes the result of adding arg2 to the pointer field of argl. The data type 
of the result is the type of argl. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

218 



%pointer-difference 

Format Operand from stack 

Argument(s) 2: 

arg1 any data type, but a 
pointer type is expected; 
arg2 any data type, but a 
pointer type is expected 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 1 

Opcode 231 

Pushes the result of subtracting the pointer field of arg2 from the pointer 
field of arg1. The data type of the result is dtp-IlXI1um. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

219 



Symbolics, Inc. 

%pointer-increment 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 1: 
arg any data type 

Immediate Argument Type Not applicable 

Description 

Instruction 

Valuers) Returned 0 

Opcode 145 

Adds 1 to the pointer field of arg and stores the result back into the 
operand. The data-type and cdr-code fields of the operand are not changed. 

Exception None 

Memory Reference None 

Register Effects TOS: Unchanged 

%read-internal-register I Instruction 

Format lO-bit immediate Valuers) Returned 1 

Argument(s) 1: Opcode 154 
I lO-bit immediate 

Immediate Argument Type Unsigned 

Description 
Pushes the contents of the internal register specified by arg on top of the 
stack, with the cdr code set to .cdr-next. See the section "Internal 
Registers," page 75. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

220 



Symbotics, Inc, 

%write-internal-register I Instruction 

no-op 

Format lO-bit immediate 

Argument(s) 2: 
arg1 any data type 
I lO-bit immediate 

Immediate Argument Type Unsigned 

Description 

Valuers) Returned 0 

Opcode 155 

Pops argl off the top of the stack and writes it into the internal register 
specified by 1. See the section ,"Internal Registers," page 75. 

Exception None 

Memory Reference None 

Register Effects TOS: Invalid after 

Instruction 

Format Operand from stack Valuers) Returned 0 

Argument(s) 0 Opcode 56 

Immediate Argument Type Not applicable 

Description 
Does nothing. Used when the implementation requires a delay. 

Exception None 

Memory Reference None 

Register Effects TOS: Unchanged 

221 



Symbolics, Inc. 

%coprocessor-read I Instruction 

Format lO·bit immediate Valuers) Returned 1 

Argument(s) 1: Opcode 156 
I dtp-ilXl1um 

Description 
Reads the coprocessor register specified by the immediate field I and 
pushes the result on the stack, with the cdr code set to cdr-next. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

%coprocessor-write I 

Format lO·bit immediate 

Argument(s) 2: 
argl any data type 
I 10· bit immediate 

Description 

Instruction 

Valuers) Returned 0' 

Opcode 157 

Writes argl into the coprocessor register spechied by the immediate field l. 

Exception None 

Memory Reference None 

Register Effects TOS: Invalid after 

222 



Symbolics, Inc. 

%memory-read I Instruction 

Format lO-bit immediate Valuers) Returned 1 

Argument(s) 2: Opcode 116 
arg1 any Lisp data type 
I lO-bit immediate (mask) 

Immediate Argument Type Not applicable 

Description 
Reads the memory location addressed by argl and pushes its contents on 
the stack in accordance with the operation specifiers in the immediate, I: 

cycle-type <9:6> (4 bits) Select one of the 12 memory-cycle types 

flxnum-only <5> (1 bit) If set, the -instruction will trap if the memory data 
type is not dtp-f"IXl1UD1. 

set-cdr-next <4> (1 bit) If set, the cdr code of the result is 0; otherwise, the 
cdr code of the result is the cdr code of memory. 

See the section "Types of Memory References," page 85. 

Exception None 

Memory Reference Controlled by the immediate field. 

Register Effects TOS: Vi!lid after 

223 



SymboJics, Inc. 

%memory-read-address I Instruction 

Format lO-bit immediate Valuers) Returned 1 

Argument(s) 2: Opcode 117 
argl any Lisp data type 
I lO-bit immediate (mask) 

Immediate Argument Type Not applicable 

Description 
Reads the memory location addressed by argl, according to the specified 
cycle type, and returns the updated argument (the address field is changed 
to be the final address the access arrives at, while the data-type field 
remains the same) in accordance with the operation specifiers in the 
immediate, I: 

cycle-type <9:6> (4 bits)Select one of the 12 memory-cycle types See the 
section "Memory References." 

f1Xl1um-only <5> (1 bit) If set, the instruction will trap if the memory data 
type is not dtp-t1xnum. 

set-cdr.next <4> (1 bit) If set, the cdr code of the result is 0; otherwise, the 
cdr code of the result is the cdr code of memory. 

Exception None 

Memory Reference Controlled by the immediate field. 

Register Effects TOS: Valid after 

224 



%tag 

Format Operand from stack 

Argument(s) 1: 
arg any data type 

Immediate Argument Type Signed 

Description 
Returns the tag of arg as a flxnum. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid after 

Symbo/ics, Inc. 

IJistruction 

Valuers) Returned 1 

Opcode 12 

%set-tag Instruction 

Format Operand from stack 

Argument(s) 2: 
argl any data type 
arg2 dtp.fixnum 

Immediate Argument Type Unsigned 

Description 

Valuers) Returned 1 

Opcode 327 

Sets the 8 tag bits of argl to be the bottom eight bits of arg2. This is 
%make-pointer, with the arguments reversed so that immediates can be 
used. 

Exception None 

Memory Reference None 

Register Effects TOS: Valid before, valid after 

225 



Symbolics, Inc. 

store-conditional 

Format Operand from stack 

Immediate Argument Type Signed 

Argument(s) 3: 
argl dtp-locative 
arg2 any type 
arg3 any type 

Description 

Instruction 

Valuers) Returned 1 

Opcode 233 

If the content of the location specified by argl is eq to arg2, then stores 
arg3 into that location and returns t; otherwise, leaves the location 
unchanged and returns nil. Note that store-conditional does not write to 
memory when it returns nil. The cdr code of the specified location is not· 
changed. Other processes (and other hardware processors, to the extent 
made possible by the system architecture) are prevented from modifying the 
location between the read and the write. 

Exception None 

Memory Reference Data-read, followed by raw-write (using the 
possibly followed pointer) with interlock 

Register Effects TOS: Valid before, w.valid after 
. .:----~ 

226 



%p-store-contents 

Format Operand from stack 

Argument(s) 2: 
argl any data type 
arg2 any data type 

Immediate Argument Type Signed 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 0 

Opcode 235 

Stores arg2 into memory location addressed by argl, preserving the cdr 
code but not following invisible pointers. 

Exception None 

Memory Reference Raw-read followed by raw-write 

Register Effects TOS: Valid before, invalid after 

227 



Symbolics, Inc. 

%memory-write 

Format Operand-from-stack 

Argument(s) 2: 
argl any data type 
arg2 any data type 

Immediate Argument Type Signed 

Description 

Instruction 

Valuers) Returned 0 

Opcode 234 

Stores arg2 into the memory location addressed by argl, storing all 40 bits 
including the cdr code, and not following invisible pointers. This replaces 
the 3600's %p-store-cdr-and-contents and %p-store-tag-and-pointer 
instructions. The second argument is typically constructed with the 
%set-tag instruction; in the I-Machine it is legal to have invisible pointers 
and special markers in the stack temporarily for this purpose. 

Exception None 

Memory Reference Raw-write 

Register Effects TOS, Valid before, invalid after 

228 



%set-cdr-code-n 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 1: 
arg any data type 

Description 

Symbolics, Inc. 

Instruction 

Valuers) Returned 0 

Opcodes 146 (n=1), 147 (n=2) 

N, which is part of the opcode, is either 1 or 2. Sets the cdr code field of 
arg to N. 

Exception None 

Memory Reference None 

Register Effects TOS: Unchanged 

%merge-cdr-no-pop 

Format Operand from stack, 
address-operand mode (immediate and 
sp-pop addressing modes illegal) 

Argument(s) 2: 
arg1 any data type 
arg2 (address operand) any data type 

Description 

Instruction 

Valuers) Returned 1 

Opcode 342 

Sets the cdr-code field of arg2 to the cdr-code field of argl. argl is not 
popped off the stack. 

Exception None 

Memory Reference None 

Reuister Effects TOS: Valid before, valid after 
B \ . 

229 



Symbolics, Inc. 

%generic-j1.ispatch Instruction 

Format Operand from stack Valuers) Returned 0 

Argument(s) 0 Opcode 52 

Immediate Argument Type Not applicable 

Description 
This is used in calling a generic function. The details of its operation are 
completely described in the function-calling chapter. In brief, it performs 
the following operations: 

Makes sure that the number of spread arguments is at least 2, doing a 
pull-lexpr-args operation if necessary. 

Gets the address of the interesting part of the flavor, which specifies the 
size and address of the handler hash table. Checks whether the data type 
of FPI3 is one of the instance data types and performs the appropriate 
operations in any case. See the section "Calling a Generic Function," page 
277. Fetches two words from the flavor and performs a handler hash table 
search using the (usually) generic function in FPI2 as the key. Takes an 
error trap if the method found is not dtp-even-pc or dtp-odd-pc. 
Continues execution at the PC. 

Exception None 

Memory Reference Several data-reads 

Register Effects TOS: Invalid after 

230 



Symbolics, Inc. 

%message-dispatch Instruction 

Format Operand from stack Valuers) Returned 0 

Argument(s) 0 Opcode 53 

Immediate Argument Type Not applicable 

Description 
This is used in sending a message. The details of its operation are 
completely described in the function-calling chapter. See the section 
"Sending a Message," page 278. In brief, it performs the following 
operations: 

Makes sure that the number of spread arguments is at least 2. Performs a 
pull-lexpr-args operation if necessary. 

Gets the address of the interesting part of the flavor, which specifies the 
size and address of the handler hash table. Checks whether the data type 
of FPI2 is one of the instance data types and performs the appropriate 
operations in any case. 

Fetches two words from the flavor and performs a handler hash table 
search using the message in FPI3 as the key. Takes an error trap if the 
method found is not dtp-even-pc or dtp-odd-pc. Puts the instance (from 
FPI2) in FPI3 and the parameter in FP12, then continues execution at the 
fetched PC. 

Exception None 

Memory Reference Several data-reads 

Register Effects TOS: Invalid after 

231 



Symbolics, Inc. 

%jump Instruction 

Format Operand from stack Value(s) Returned 0 

Argument(s) 1: Opcode 11 
arg dtp-even-pe or dtp-odd-pc 

Immediate Argument Type Signed 

Description 
Causes the processor to start executing macroinstructions at the specified 
PC. This instruction checks that the data type of arg is dtp-even-pc or 
dtp-odd-pc and jumps to the address. In addition, if bit 39 of arg is 1, this 
instruction stores hit 38 of that word into control-register.cleanup-in
progress. If bit 39 is 0, it leaves the Control register alone. An unwind
protect cleanup handler terminates with a %jump instruction. 

Exception None 

Memory Reference. None 

Register Effects TOS: Valid after 

232 



Symbolics, Inc. 

%check-preempt-request Instruction 

%halt 

Format ()perand from stack Valuers) Returned 0 

Argument(s) 0 Opcode 54 

Immediate Argument Type Not applicable 

Description 
Performs a check-preempt-request operation, that is, sets the preempt
pending flag if the preempt-request flag is set. This causes a trap at the 
end of the current instruction if the processor is in emulator mode, or 
when control returns to emulator mode if the processor is in extra-stack 
mode, See the section "Preemption," page 291, 

Exception None 

Memory Reference None 

Register Effects TOS: Unchanged 

Instruction 

Format Operand from stack Valuers) Returned 0 

Argument(s) 0 Opcode 377 

Immediate Argument Type Not applicable 

Description 
Always takes an exception. 

Exception Always 

Memory Reference None 

Register Effects TOS: Unchanged 

L Machine: 438 instructions Machine: 218 instructions 

15 list-function 
8 symbol 

10 list-function 

233 



Symbolics, Inc. 

25 predicate 24 predicate 
57 numeric 29 numeric 
24 data-movement 1B data-movement 

7 field-extraction 8 field-extraction 
33 array-operation 18 array-operation 
15 branch-and-loop 19 branch-and-loop 
6 miscellaneous special-purpose 

75 function-calling 12 function-calling (+8 dtps) 
18 binding and function-entry 4 binding 

7 catch 2 catch 
27 lexical-variable-accessing 24 lexical-variable-accessing 
11 instance-variable-accessing 11 instance-variable-acc8ss;ng 
34 subprimitive 27 subprimitive 
36 hardware subprimitive 

8 graphics 
26 Prolog 

Note: instructions that are listed as being the same in both 
architectures are those that have identical names. This does not 
necessarily imply that those instructions perform exactly the same 
operations. 

List-Function Operations 
Instructions common to I and LIG: 
car, cdr, rplaca, rplacd, member, aSSDC 

Similar instructions: 
L/G: gatf-internal I: rgetf 

set-cdr-local set-to-cdr 
Only on L: cons, ncons, get, memq, assq, 
last, length-internal 
Only on I: set-te-car, set-to-cdr-push-car 

Symbol Operations 
Only on L: al1 8 symbol instructions --
set, symeval, fsymeval, get-pname, value-cell-location, 
function-cell-location, property-cell-location, 
package-cell-location 

Predicate Instructions 
Instructions common to I and LIG: eq, eql, equal-number, greaterp, lessp, 
endp, plusp, minusp, zerop, %ephemeralp 

Similar instructions: 

234 



L/G: not, atom, fixp, numberp, I: 
symbolp, single-float-p, array-p,> type-member-n 
cl-listp, double-float-p, floatp I 

Only on L: char-equal, char=, boundp, fboundp, location-boundp 
Only on I: 1 ogtest, %uns i gned-1 essp 

Numeric Operations 
Instructions common to I and L/G: 
unary-minus, %32-bit-plus, %32-bit-difference, 7.add-bignum-step, 
%sub-bignum-step, %multiply-bignum-step, 7.divide-bignum-step, 
%lshc-bignum-step, %multiply-double 
Similar instructions: 
L/G: add-stack, add-local, add-immed I: add 
sub-stack, sub-local, sub-immed 
i ncrement-l ocal 
decrement-local 
multiply-stack, mul~iply-immed 
quotient-stack 
ceil i ng-stack 
fl oor-stack 
truncate-stack 
round-stack 
remainder~stack 

rational-quotient-stack 
legand-stack 
logior-stack 
1 ogxor-stack 
ash-stack 
rot-stack 
1 sh-stack 

sub 
increment 
decrement 
multiply 
quotient 
ceil i ng 
floor 
truncate 
round 
remainder 
rational-quotient 
logand 
logior 
logxor 
ash 
rot 
1 sh 

Only on L: mOd-stack, %numeric-dispatch-index, 
%convert-single-to-double, %convert-double-to-single, 
%convert-double-to-fixnum, %convert-fixnum-to-double, 
%convert-single-to-fixnum, float, %double-floating-compare, 

'Symbo/ics, Inc. 

%doubl e-fl Dating-add, %doubl e-fl Dating-subtract, 
%double-floating-multiply, %double-floating-divide, 
%double-floating-abs, %double-floating-minus, %double-floating-scale, 

.set-float-operating-mode, float-operation-status, 
set-float-operation-status 

Only on I: max, mi n 

235 



Symbolics, Inc. 

Data-Movement Instructions 
Instructions common to I and LIG: 
push-n-nils 

Similar instructions: 
LtG: push-local, push-immed 
pop-local 
movem-local 
push-address-local 

1: push 
pop 
movem 
push-address 

Only on L: push-indirect, push-constant, push-nil, push-2-nils, 
push-t, push-character, push-from-beyond~multiple, push-car-local, 
push·-cdr-local, pop-i ndi rect, pop-n, pop-n-save-1, pop-n-save-m, 
pop-n-save-multiple, pop-multiple-save-n, pop-multiple-save-multiple, 
movem-indirect, fixup-tos 

Only on I: set-sp-to-address. set-sp-to-address-save-tos, 
push-address-sp-relative, stack-blt, stack-blt-address 

Field-Extraction Instructions 
Instructions common to I and LIG: 
Similar instructions: 
L/G: 1 db-immed 
dpb-immed 
char-ldb-immed 
%p-ldb-immed 
%p-dpb-immed 
%p-tag-ldb-immed 
%p-tag-dpb-immed 
Only on L: 
Only on I: char-dpb 

Array Operations 

I: ldb 
dpb 
char-ldb 
%p-ldb 
%p-ldb 
%p-tag-ldb 
%p-tag-dpb 

Instructions common to I and LIG: setup-1d-array, setup-force-1d-array, 
array-leader, store-array-leader 

Similar instructions: 
L/G: ar-l, ar-l-immed, ar-1-1ocal 
as-1, as-1-immed, as-1-10ca1 
ap-l 
fast-aref 
fast-aset 

I: aref-l 
aset-1 
a10c-1 
fast-aref-l 
fast-aset-l· 

236 



ap-1eader a1 oc-1 eader 

Only on L: ar-2, as-2, ap-2, setup-1d-array-sequentia1, 
setup-force-1d-array-sequentia1, array-register-event, 
array-1eader-immed, store-array-1eader-immed, %ld-aref, %ld-aset, 
%1 d-"a1 oc, array~l ength, array-act i ve-l ength, ftn-ar-l, ftn-as-1, 
ftn-ap-1, ftn-10ad-array-register, ftn-doub1e-ar-1, ftn-double-ar-1 

Branch Instructions 
Instructions common to I and LIG: branch 

Similar instructions: 
L/G: branch-true 
branch-fal se 
branch-true-else-pop 
branch-fa1se-e1se-pop 
branch-true-and-pop 
branch-fa1se-and-pop 

I: branch-true-no-pop 
branch-false-no-pop 
branch-true-and-no-pop 
branch-false-and-no-pop 
branch-true-e1se-no-pop 
branch-false-else-no-pop 

Only on L: branch-eq, branch-not-eq, branch-atom, branch-not-atom, 
branch-endp, branch-not-endp, long-branch, long-branch-immed 

Only on I: branch-true, branch-fal se, 
branch-true-and-extra-pop, branch-false-and-extra-pop, 
branch-true-else-extra-pop, branch-false-else-extra-pop, 
branch-true-extra-pop, branch-fa1se-extra-pop, 
(branch-true-no-pop-extra-pop, branch-false-no-pop-extra-pop), 
loop-decrement-tos, loop-increment-tos-less-than 

Miscellaneous Special-Purpose Instructions 
Similar instructions: 
L/G: error-if-true I: branch-true (3 offset) 

error-if-false branch-false (9 offset) 
Only on L: all 6 special-purpose instructions -
push-microcode-escape-constant, 
funcall-microcode-escape-constant, instruction, 
%funcall-in-auxiliary-stack-buffer 

Function-Calling Instructions 
Instructions common to I and LIG: return-multiple, take-values 

Similar instructions: 
L/G: return-stack/return-nil I: return-single 

237 

SymboUcs, Inc. 



Symbolics, Inc. 

Only on L: call-{0/1/2/3}-{ignore/stack/return/multip1e}, 
ca11-n-{ignore/stack/return/mu1tip1e}, 
funca11-n-{ignore/stack/return/mu1tip1e}, 
funca11-ni-{ignore/stack/return/mu1tiple}, 
1expr-funca11-{ignore/stack/return/mu1tiple}, 
lexpr-funcall-n-{ignore/stack/return/multiple}, return-n, popj, popj-n, 
popj-multiple, restart-trapped-ca11, un-lexpr-funcall, stack-dump, 
stack-load, %assure-pdl-room 

Only on L' dtp-call-compi 1 ed-even, dtp-call-compi 1 ed-odd, 
dtp-call-indirect, dtp-call-generic, dtp-call-compi1ed-even-prefetch, 
dtp_ca11_compiled_odd_prefetch, dtp-call-indirect-prefetch, 
dtp-'call-generic-prefetch, start-call, fi ni sh-call-n, 
fi nish-call-app1 y-n, fini sh-call-tos, 1 ocate-locals, 
return-kludge 

Binding and Function-Entry Instructions 
Instructions common to I and LIG: unbind-n, %restore-binding-stack, 
take-values 

Similar instructions: 
L/G: %restore-binding-stack-1evel 

bind-locative 
I: %restore-binding-stack 

bind-1ocative-to-value 

Only on L: bind-speevar, %save~binding-stack-1evel, 
optional-arg-supplied-p, append-multiple-groups, take-arg, require-args, 
take-keyword-argument, take-n-args, take-n-args~rest, take-rest-arg, 
take-n-optional-args, take-n-optiona1-args-rest, 
take-m-required-n-optiona1-args, take-m-required-n-optional-args-rest 

Only on I: bind-l Deati ve, entry-rest-accepted, 
entry-rest~not-accepted 

Catch Instructions 
Instructions common to I and LIG: none 

Similar instructions: 
L/G: catch-open-{ignore/stack/return/mult.iple}1 

unw;nd-protect-open 
catch-close, catch-close-multiple 

Lexical Variable Accessors 

238 

I: catch-open 
catch-close 



Instructions common to I and L/G: none 
Similar instructions: 
L/G: I: 

Symbolics, Inc. 

fetch-freevar-n, fetch-freevar-{0/1/Z/3/4/5/6/7} push-lexical-var-n 
%pop-freevar-n, %pop-freevar-{0/1/Z/3/4/5/617} pop-lexical-var-n 
7.movem-freevar-n, %movem-freevar-{B/1/Z/3/4/5/6/7} movem-lexical-var-n 

Instance Variable Accessors 
Instructions common to I and L/G: all 11 instructions -
push-instance-variable, pop-instance-variable, movem-instance-variable, 
push-address-instance-variable, push-instance-variable-ordered, 
pop-instance-variable-ordered, movem-instance-variable-ordered, 
push-address-instance-variable-ordered J %instance-ref, %instance-set J 

%instance-loc 

SUbprimitive Instructions 
Instructions common to I and LlG: %allocate-list-block, 
%allocate-structure-block, %pointer-difference, store-conditional, 
%p-store-contents, %halt 

Similar instructions: 
L/G: %set-cdr-code-1, %set-cdr-code-2 
popj 
%check-preempt-pending 

I: %set-cdr-code-n 
%jump 
%check-preempt-request 

Only on L: %frame-consi ng-done, %a11 ocate-l i st-transport-bl ock, 
%allocate-structure-transport-block, %pointer, %make-pointer, 
%make-pointer-immed, %make-pointer-immed-offset, 
%p-store-contents-increment-pointer J 

%p-store-contents-pointer-decrement, %p-store-tag-and-pointer, 
%p-store-cdr-and-contents, %p-contents-as-locative, 
%p-contents-increment-pointer, %p-contents-pointer .. decrement, 
%p-structure-offset, %set-preempt-pending, %data-type, %fixnum, %flonum, 
%stack-group-switch, follow-structure-forwarding, 
follow-cell-forwarding, %block-store-cdr-and-contents, 
%block-store-tag-and-pointer, %block-search-eq-internal, 
%trap-on-instance 

Only on I: ·%unsigned-lessp, %pointer-plus, %pointer-increment, 
%read-internal-register J 'Zwrite-internal-register, %coprocessor-read J 

%coprocessor-write J %memory-read, %memory-read-address, %memory-write J 

%tag, %set-tag, %merge-cdr-no-pop, %generic-dispatch, %message-dispatch, 
no-op· 

239 



Symbolics, Inc, 

Hardware SUbprimitives 
, Instructions common to I and LIG: %ephemeral p 

Only on L: 35 remaining hardware subprimitives -- %map-cache-write, 
%phtc-read, %phtc-write, %phtc~setup, 7.reference-tag-read, 
%reference-tag-write, %scan-reference-tags, %gc-tag-read, %gc-tag-write, 
%scan-gc-tags, %gc-map-write, %meter-on, %meter-off, %block-gc-copy, 
%block-transport, %scan-for-oldspace, %elear-caches, 
%physical-address-cache, %scan-for-ephemeral-space, 
%clear-instruction-cache, %scan-for-ecc-error, %io-read-until-bit-test, 
%io-read-while-bit-test, %io-read, kiD-write, 
7.unsynchronized'-device-read, %microsecond-clock, %block-checksum-copy, 
%bl o'ck-32-36-checksum-copy, %bl ock-36-32-checksum-copy, %audi o-start, 
%fep-doorbell, %disk-start, %net-wakeup, %tape-wakeup 

Graphics Instructions 
Instructions common to I andLIG: none 

Only on L: all the graphics instructions -- %bitblt-short-row, 
%bitblt-long-row, %bitblt-long-row-backwards, %bitblt-decode-arrays, 
%draw-line-loop, %draw-string-step,%draw-triangle-segment, 
%bitblt-short, %bitblt-long, %draw-string-loop, 
soft-matte-decode-arrays, soft-matte-internal 

Prolog Instructions 
Instructions common to I and L/G: none 

Only on L: an 261 Prolog instructions -- proceed, 
assure-pr010g-frar.e-room, push-choice-pointer, cut, neck-cut, fail, 
fail-if-false, far'l-if-true, push-goal, execute-goal, execute-stack, 
dereference-local, dereference-stack, globalize-var, 
g10balize-var-fOrtneCk-cut, push-var, push-void, push-list, push-list*, 
unify-nil, UnifY-fonstant, unify-immediate, unify-local, unify-list, 
unify-list*, unif -list*-1 

240 



Symbolics, Inc. 

4. Function Calling, Message Passing, Stack-Group 
SWitching 

******************************************************************************** 

This file is confidential. Don't show it to anybody, don't hand it out to people, 
don't give it to customers, don't hardcopy and leave it lying around, don't talk 
about it on airplanes, don't use it as sales material, don't give it as background to 
TSSEs, don't show it off as an example of our (erodable) technical lead, and don't 
let our competition, potential competition, or even friends learn all about it. Yes, 
this means you. This notice is to be replaced by the real notice when someone 

. 'defines what the real notice is . 
. ********************************************************************~***********J 

4.1 Stacks 

The architecture derIDes three stacks: 

• control stack, 

• binding stack, and 

• data stack. 

Each type of stack is described in the sections that follow. All the stacks grow in 
the direction of increasing memory addresses. A stack pointer addresses the top 
word on a stack. A stack limit is the address of the highest location that can be 
used. A stack base register addresses the lowest entry in the stack. 

4.1.1 Control Stack 

The control stack holds control information necessary on a per function invocation 
basis. It also holds the arguments and local and temporary variables of a 
function. 

4.1 .1.1 Control Stack Frames 

The environment of an executing function is stored in a frame on the control 
stack. A control stack frame consists of a two-word header, the arguments, and 
then the local variables and temporaries. Note that there arena separate copies 
of the arguments for caller and callee; in this respect the I Machine architecture 
is like the LM-2 and unlike the 3600. 

241 



Symbolics, Inc. 

See Figure 22. 

The first word in a control stack frame header contains a saved copy of the 
caller's Continuation register. This is either the caller's caller's PC or the 
address of a function the caller is going to call later. The second word in a frame 
header contains a saved copy of the caller's Control register. 

When a function returns, the saved values are restored into the Continuation and 
Control registers. At the same time, the caller's PC is restored from the previous 
contents of the Continuation register. When a function is first entered, the 
contents of the Continuation register normally points at the next instruction after 
a finish·call instruction, except in a trap handler, where it points either at the 
instruction that trapped or at the following instruction, depending on the type of 
trap. 

Note that the Continuation and Control registers stored in a frame header belong 
to the caller's frame, not to the frame where they are stored. The values for the 
current frame are kept in live (hardware) registers instead of the stack because 
special hardware uses them. 

The maximum size of a control stack frame is 

(- stack-cache-size 

4.1.1.2 Base Registers 

2 ;For trap-out stack frame 
2 ;For pushing the vector and PC 
3 ;Increment in PHT-SEARCH code 
2 ;Used in PHT-SEARCH code 
) ) 

There are three base registers that point to the current control stack frame. 
These can be used to calculate instruction operand addresses. See the section 
"Macroinstruction Set." 

The frame pointer (FP) points to the first word of the frame header. This 
register is used to locate the function's arguments, which start at a fIXed offset 
past FP. The local pointer (LP) points after the spread arguments. (Spread 
arguments are arguments that are not part of a &rest parameter.) It is used to 
locate local variables to the function. The stack pointer (SP) points to the highest 
word in the frame. SP is incremented or decremented as execution proceeds and 
pushes or pops the stack. These registers are discussed further in another 
section. See the section "Registers Important to Function Calling and Returning." 

See the section "Revision 0 Implementation Function-Calling Features." 

242 



Control Slack Frame for Function with .No &rest Arguments 

Increasing addresses 

~I Stack Pointer 

Note that the local pointer 
does not point to anything meaningful 
It there-are no &rest arguments. 

, 
I 

Top gf s,",ck 

Temporaries 

Locaf variable n 

'v , 

; am"","", 
Last supplied argument 

i 

Figure 22. An I-machine control stack frame. 

243 

I 

I 
:> 

"> 

Current 
workina 
area 

Passed from 
previous 
function 

Symbolics, Inc. 

Conlrol 
stack 
frame 



Symbolics, Inc. 

4.1.2 Binding Stack 

Binding is the temporary replacement of a memory cell's contents. The Binding 
Stack saves the address and contents of memory cells that have been bound so the 
original contents can later be restored. Note that binding affects only the 
contents of a cell, not its cdr code. 

Entries on the binding stack are two words long. The fields of an entry are as 
follows: 

Word Position Field Comments 
0 <39> Must be zero. 
0 <38> Binding-stack-chain-bit =1 if the previous entry is 
0 for the same frame. 
0 <37:0> Binding-stack-cell Locative to the memory cell 
0 that is bound. 
1 <39:38> DonJt care. (Stack-group 
B switch may alter them.) 
1 <37:0> Binding-stack-contents Saved contents of bound cell. 

The binding-stack-cell field contains a dtp-Iocative pointer to the memory cell that 
is bound. This indicates which location has had its contents temporarily replaced. 
In the case of a dynamic closure, however, a new memory cell is created, and the 
old value cell is loaded with a dtp-external-value-cell-pointer to this new cell. 
The new cell is referenced by the closure. 

The binding-stack-contents field contains the contents of the bound cell. Bindings 
do not persist across stack groups, and must be undone when control is 
transferred to another group. Binding-stack-contents contains the "former" 
contents of the cell when the binding stack belongs to the currently executing 
stack group; otherwise it contains the "current" contents of the cell. See the 
section "Stack-Group Switching." 

The binding-stack-chain-bit is 1 if the previous entry on the binding stack is 
associated with the same function invocation as this entry. This bit is set by the 
bind instruction, and groups entries on the binding stack into frames associated 
with a function. Binding stack frames are removed at function return time. 

The Binding Stack Pointer points to the top of the binding stack (word 1 of the 
topmost entry]) There is also a Binding Stack Limit register. 

Bindings are performed by the bind-locative or bind-locative· to-value instruction. 
A bind instruction checks the Control register binding cleanup bit. If this bit is 0, 
then this binding is the f'rrst associated With the current frame. The instruction 
will set the binding cleanup bit in the Control register, and set the chain bit for 
the entry on the binding stack too. If the cleanup bit is 1, then there are already 
bindings associated with the current frame. The instruction will set the chain bit 
for the entry to 1. 

244 



Symbolics, Inc. 

Note that an unbind instruction (unbind-n or %restore-binding-stack) will clear 
the Control register cleanup bit if it removes an entry from the binding stack with 
the chain bit o. 

4.1.3 Data Stack 

The p)lrJJose of the data stack is to provide an allocation area for temporary data 
whose lifetime is associated with a function's lifetime. This allows less expensive 
allocationldeallocation than the general mechanism. 

This is implemented in software in the same manner as on the 3600 . 

. 4.2 Registers Important to Function Calling and Returning 

The following processor registers are relevant to function calling and returning: 

Program Counter (PC) 
Address of the current instruction. 
dtp-even-pc or dtp·odd-pc 

Frame Pointer (FP) 
Address of the current stack frame. 
dtp-Iocative 

Local Pointer (LP) 
Address of the local-variable part of the current stack frame. 
dtp-Iocative 

Stack Pointer (SP) 
Address of the highest in-use word in the stack. 
dtp-Iocative 

Continuation register (CaNT) 
Address of the first instruction to be executed after the next 
function call or return. 
dtp·even-pc or dtp-odd-pc 

Control register (CR) 
A bunch of bits and fields to be described below. 
dtp-IlXI1Utn 

The program counter contains the address of the current instruction. 

The frame pointer points to the first word of the control stack frame header. This 
register is used to locate the function'S arguments, which start at a fIxed offset 
(2) past FP. It can also be used to locate the function's locals if the function does 

245 



Symbolics, Inc. 

not accept a &rest argument. When a function returns, the SP is set to FP-l to 
remove the function's frame. 

After a finish-call instruction, the local pointer points to the word after the spread 
arguments. Thus it points to the rest argument if there is one; otherwise it 
points to the first local variable. When there are optional arguments and no rest 
argument, LP points at the first optional argument not supplied by the caller, if 
there is one. 

LP is used to locate local variables of the functions. FP cannot always be used 
for this since in general the number of arguments the function accepts is variable. 
LP may be adjusted by the entry and locate-locals instructions. 

The stack pointer points to the highest word in the control stack. SP is 
incremented or decremented as execution proceeds and pushes or pops the stack. 

The Continuation register contains the address of the instruction to be executed 
after the next fInish-call or return instruction. Whether this is the return address 
in the caller, or the fIrst instruction in a function about to be called, depends on 
context. It is the address of the function to call between the start-call and f'mish
call instructions, and. the return address in the caller between the finish-call and 
return instructions . 

. The Control register contains a fixnum with several packed fields: 

Position 
<31:30> 

<29> 
<28> 
<27> 

<26:24> 
<26> 
<25> 
<24> 
<23> 
<22> 

<21: 211> 
<19: 18> 

<17> 
<16:9> 

<8> 
<7:8> 

Size 
2 bits 
1 bit 
1 bit 
1 bit 
3 bits 

1 bit 
1 bit 
2 bits 
2 bits 
1 bit 
8 bits 
1 bit 
B bits 

Name 
Trap-mode 
Instruction-trace 
Call-trace 
Trace-pending 
Cleanup-bits 

cleanup-catch 
cleanup-bindings 
trap-en-exit 

Cleanup-in-progress 
Call-started 
Reserved 
Value-disposition 
Apply 
Frame-size-of-caller 
Extra-argument 
Arg-size 

Trap-mode cont,ols the handling of exception traps. The four modes, explained 
elsewhere (See the $e.ction "Trap Modes. "), are: 

246 



Symbolics, Inc. 

o Emulator 

1 Extra Stack 

2 High-Speed I/O 

3 FEP 

The trap-mode field is adjusted when a trap is taken. It is set to (max 1 current
trap-mode) by the %allocate-list-block or %allocate-structure-block instruction. 

Instruction-trace when 1 at the beginning of an instruction, causes completion of 
the instruction to set trace-pending and causes a trap before the next instruction 
executes. If a post-trap occurs when instruction-trace is 1, trace-pending is set in 
the control register saved as part of taking the trap. This is not true of a pre
trap. If a return instruction restores a control register value with the instruction
trace bit set, the instruction returned to is executed before the trap occurs. 

Call-trace when 1, causes the finish-call instructions to set trace-pending, which 
causes a trap before the first instruction of the called function executes. If stack 
overflow occurs simultaneously, trace-pending is set in the saved control register 
in the frame header of the stack overflow trap handler's frame. When the stack 
overflow handler returns, the trace trap occurs. Call-trace does not affect the 
implicit finish-call performed when a trap occurs, because call-trace gets cleared 
first. See the section "Revision 0 Implementation Function-Calling Features." 

Trace-pending when 1, causes a trap to occur before the next instruction executes. 
Note that a sequence break can intervene before the trap actually goes off. There 
is only one trap vector location for trace-pending, regardless of the semantic 
significance of the trap to the software. See the section "Revision 0 
Implementation Function-Calling Features." The interaction of trace-pending with 
the repeated returns caused by Value-disposition Return is not architecturally 
dermed. See the section "Trace Traps." 

Cleanup-bits specifies what actions need to be performed prior to removing the 
function's frame from the control stack. The actions are normally performed by a 
return instruction. In the case of abnormal termination, these actions are 
performed by the throw function (which useS a return instruction internally). All 
three bits are cleared by a finish-call instruction. The bits are: 

Cleanup-catch This bit indicates there are catch/unwind-protect blocks in the 
frame. The catch cleanup bit is set whenever a catch or 
unwind-protect block is created. The bit is cleared when the 
outermost catchiunwirid-protect block in a frame is destroyed. 
See the section "Catch Instructions." 

Cleanup-bindings This bit indicates there is a non-empty binding-stack frame 

247 



Symbolics, Inc. 

Trap-an-exit 

associated with this control-stack frame, in other words that this 
function has bound some special variables. This bit is set by 
the binding instructions (bind-locative and 
bind-Iocative-to-value) and. can be cleared by the unbinding 
instructions (unbind-n and %restore-binding-stachl. See the 
section "Binding Instructions." 

This bit causes a trap to software when the frame is exited. 
Used for bottom frame in stack, debugger coX E command, 
phantom stacks, metering, and so forth. The software can use 
the cdr-code bits of the two header words in the frame, which 
are initially set to 11 by the hardware, to distinguish these 
cases. The trap-on-exit bit is set and cleared only by software, 
and only in copies of the Control register saved in memory, not 
in the live register. 

For details: See the section "Frame Cleanup." 

Cleanup-in-progress is set by an unwind-protect cleanup handler in accordance with 
the contents of the catch-block-previous word in the catch block to indicate that 
execution is occurring inside of an unwind-protect handler. 

Call-started is set by start-call instructions and cleared by the flnish-call 
instructions. 

Reserved bits not allocated yet. 

Value-disposition specifIes what the caller wants done with the result(s) produced 
by the function. It is set by the flnish-call instructions. The interpretation of 
value-disposition is: 

o Effect The function has been called for effect. Discard any values the 
function may produce. 

1 Value Only a single value is desired by the caller. Push this orr the 
control stack, discarding any extra values . 

. 2 Return The value(s) returned by the function are also the value(s) 
returned by the caller. Pass the value(s) along to this frame's 
caller. 

3 Multiple The caller wants multiple values returned. Push any number 
of values on the stack, followed by a IlXllum specifYing the 
number of values. 

The requested disposition is performed by a return instruction. Returned results 
are pushed onto the stack after the function's frame has been removed from the 
stack. If a function terminates abnormally, it does not return a value so Value
disposition is iguored. 

248. 



Symbolics, Inc. 

G~~~/" '-~-_-(;;:.c; i ,.. 

Apply, if 1, indicates thata=rest argi,ment -liSt has been supplied following the 
spread arguments and is stored in· LPIO. This bit is set by the finish-call 
instructions, and is used to implement the Common Lisp apply function. This can 
be reset by the entry instruction doing a pull-apply-args operation. 

Frame-size-of-caller contains the size of the caller's stack frame (callee's FP minus 
caller's FP). It is used by return instructions to locate the start of the caller's 
frame when the function returns. This field is set by the finish-call instructions. 

Extra-argument is set to 1 to indicate an extra argument has been supplied to the 
function by a start-call instruction. This happens when calling a lexical closure, a 
generic function, an instance, or any interpreted function or illegal data type. See 
the section "Starting a Function Call." This bit is just used to transmit 
information from a start-call instruction to the corresponding finish-call instruction 
and then is no longer needed. It is cleared by a finish-call instruction. 

Arg-size is the offset of LP from FP in the frame. It is used to restore the LP 
when the function resumes execution after calling another function. It is also 
used by the entry instruction to determine how many explicit arguments were 
supplied with the call. This field is set by the finish-call instructions (for the new 
frame). It is also adjusted by the locate-locals instruction. 

4.3 Function Calling 

A function call requires three different actions: specifying the function to call, 
pushing the arguments to the function, and fmishing the call by building the new 
stack frame and entering the target function. The instructions that accomplish 
these actions are de.scribed below. 

4.3_1 Starting a Function Call 

A function call is begun by executing one of the start-call types of instructions, 
whose single argument is the function to be called. These instructions create the 
header of the callee's stack frame, possibly push an extra argument onto the stack, 
and set the continuation according to the type of function being called. 

The most general start-call instruction, start-call itself, takes its argument from 
the top of stack or from a local variable. Several full-word instructions are also 
supplied; these contain an address that specifies the function and possibly its data 
type. In summary: 

start-call Takes a general stack operand. 

dtp-call-compiled-even and dtp-call-compiled-odd 
Address a compiled-function directly, specifying whether to start 

249 



Symbolics, Inc. 

with the even or odd halfword instruction in the addressed 
location. 

dtp-call-indirect Addresses a function cell and fetches its contents. 

dtp-call-generic Addresses a generic function directly. 

Each full-word start-call type of instruction comes in prefetching and 
nonprefetching versions. Semantically these are identical, but the prefetching 
version is a hint to the hardware that. a finish-call instruction appears soon 
enough after the start-call instruction that it would be worthwhile to prefetch the 
first few instructions of the called function rather than continuing to fetch ahead 
instructions from the calling function. The decision of when to use the 
prefetching version is up to the compiler; it is probably appropriate when there 
are no nested function calls in the arguments and the number of instructions in 
the arguments is less than a certain constant (around half a dozen). Prefetching 
makes the ensuing finish-call operation run faster. The hardware does not 
necessarily actually prefetch when the prefetching version is executed; it depends 
on the particular instruction, on the data type of the function, and on how complex 
the hardware turns out to be. The prefetching versions of the indirect and 
generic calls are almost certainly not treated any differently from the normal 
versions by the hardware: they exist entirely for software reasons. 

The start;..call instructions push the Continuation and Control registers (in that 
order) onto the control stack with their cdr codes both set to 3; they will become 
the header of the callee's control stack frame. After the Control register is 
pushed, the control-register.call-started bit is set to 1. 

Depending on the data type of the function being called, a start..call instruction 
may push a third word which is called the "extra argument." Its cdr code is set 
to O. All data types other than dtp-c"mpiled-function receive an extra argument. 
In the case of instance or generic function, the word pushed on the stack is just a 
placeholder for the real extra argument the function will be called with, since this 
cannot be computed until the first argument is known.' If the -start-call 
instructions push an extra argument, they set the extra-argument bit in the 
Control register to 1; otherwise they clear the bit to o. This information is saved 
for the finish-call instruction. The setting or clearing of this bit takes place after 
the Control register is saved on the stack. 

After Continuation and Control registers are saved, the Continu~tion register is 

1This extra argument mechanism is neoessary because in general the data type of the function being called 
is not known until run time. Note that if a method is called directly, as from a combined method, or if a lexically 
tnternai function is called directly. as from its parent, the extra argument is passed instead as a normal 
argument. Any given function always receives its arguments in the same format, and does not need to know 
whether the first argument was supplied normally by the caller or was an "extra" argument. 

250 



Symbolics, Inc. 

set to a PC value pointing at the beginning of the function to be called (the 
argument of the start-call). Depending on the data type of the function, this 
continuation can be computed from the function itself or can be fetched from one 
of 64 trap-vector locations, indexed by the data-type of the function. The effect of 
the function's data type on a start-call is as follows: 

compiled-function There is no extra argument. The continuation is set to 
dtp-even-pc with the address of the function. 

symbol 

instance 

generic 

lexical closure 

anything else 

Fetch the contents of the symbol's function cell and try again. 
Take an eITor trap if the function cell contains dtp-null. 

Push the instance as the extra argument. The continuation 
comeS from the trap vector. 

Push the generic function as the extra argument. The 
continuation comes from the trap vector. 

Fetch the enclosed function and the environment from memory. 
If the enclosed function is compiled, push the environment as 
the extra argument and set the continuation to dtp-even-pc and 
the function's address, producing a call to the enclosed function 
with the environment as its extra argument. If the ertclosed 
function is not compiled, then push the lexical closure as the 
extra argument and take the continuation from the trap vector 
location for dtp-Iexical-closure. 

Push the original function as the extra argument. Use the data 
type of the function as an index into the trap vector to fetch the 
appropriate interpreter function and set the contirtuation to that. 

After a start-call instruction the continuation is guaranteed to be a PC pointing 
into a compiled function, assuming the trap-vector has been initialized correctly. 

For the instance and generic function cases, the real function (the method) and 
the real extra argument (the mapping table) cannot be computed until the value of 
the fIrst argument is known, so these have to be deferred until a fInish-call 
instruction is executed and execution proceeds at the PC now in the Continuation 
Register. 

Note that after doing a start-call, a program does not know the exact depth of the 
stack, because it does not know whether an extra argument was pushed. The 
compiler avoids using SP-relative addressing to access variables deeper in the 
stack than the incipient frame header. 

Figure 23 shows how the stack looks at this point. 

251 



Symbolics, Inc. 

Figure 23, 

Control Stack and Registers at the End of Start-Call 

Case I: data type of function being 
called is dtp-.compiled-function 

L. __ -,SI~a"'k,-Po"",,int".""' __ -1I--;. 
Control Register 

E·A 
_0 

nf atia e isler 

PC of fUnction to be called I 
.----F-,.-m-.-'-'"'"in-'.-,----.I ~ 

, 

Case. II: data type of function being 
called is not dtp.compiled-function 

~_-:-::!:s"""::k",Po",,-,,nt,,,", __ -,1 ....;;.. 
Conlrol RegfStrtr 

Conlinuation Register 

I PC of 1unction to be caliaQ , 

.----fJ-,.-m-.-,-o-'n-.. -'----.I....;;..1 

~·RI Caller's Control ~gisler 

~_ Caller's Continuation register 

t 
Increasing addresses 

,,," 

Mn Extra Araument 

(!:~ Caller's Control register 

~·S Caller's Continuation repister 

The stack at the end of a start-call instruction 

252 

I-

New Frame header 

, >- Caller's frame 

:"-New Frame header 

, ~ Caller's tram • 

I 



Symbolics, Inc. 

4.3.2 Pushing the Arguments 

After starting a function call, the caller computes the arguments and pushes them 
onto the stack, in order. Results of instructions normally are cdr. next, to 
facilitate the linking of the arguments into a list to birR~~.e!i;to""an &rest 
argument. The resetting of the final cdr code is performed by the entry 
instruction. 

4.3.3 Finishing the Call 

After starting a function call and pushing the arguments, the caller executes a 
finish·call instruction. This instruction builds the new stack frame, checks for 
control stack overflow, and enters the callee at the appropriate starting 
instruction . 

. Instructions at the beginning of the callee are in charge of checking the number 
of arguments and rearranging them to suit its needs, or signalling an error if the 
wrong number of arguments were supplied. Every compiled function should 
contain code to do this, but the linker (which places dtp-call-compiled-even or 
dtp-caIJ..compiled-odd instructions into compiled callers) can optimize calls by 
bypassing those instructions and arranging for the called function to be entered 
directly at the right place. 

There are two finish-call instructions, finish-call-n, and finish-call-tos which differ 
only in how they obtain their argument. finish-calion takes its argument as an 8-
bit field of a lO-bit immediate, and finish-call-tos pops its argument from the top 
of stack. 

The operand, called N-Args, indicates the number of arguments explicitly supplied 
with the call, including the apply argument, if present. It does not include the 
extra-argument, if any. The finish-call-n instructions include an extra bias of +1 
in the immediate argument count, to simplify the hardware. This bias is not in the 
operand to the finish-call-tos instructions. 

There area number of applications for calling a function with the number of 
arguments not known at compile time, where the arguments do not come from a 
list, including the %finish-function-call and mnltipie-value·call special forms and 
things built on them. These are handled by using the finish-call-tos instruction. 

Three additional bits supplied with the instruction, 1<9:8> of the lO-bit immediate 
field and one bit of the opcode, are used as follows. 

Value·disposition A 2-bit field taken from the operand field that specifies what to 
do with the result(s) produced by the function being called: 

o Effect The function is being called for effect. 
Discard any values it may produce. 

253 



Symbolics, Inc. 

Apply 

1 Value Only a single return value is desired. 
Discard any additional values the function 
may produce. 

2 Return The value(s) returned by the function being 
called are also the value(s) returned by this 
function. Pass the value(s) along to this 
frame's caller. This is illegal in nested calls. 

3 Multiple Multiple values are desired. These should be 
returned along with a IlXnum specifying the 
number of values returned. 

A l-bit field taken from the opcode, which is a 1 if the top word 
in the stack is a list of arguments. The list may be spread or 
packed by the entry instruction. This implements the Common 
Lisp apply function. 

The operations of finish-call are described sequentially below, although in the 
actual hardware many of them happen in parallel. 

The finish-call instruction next builds the new steck frame with the following 
procedure: 

FP For finish·calI-n, finish-call-n.apply: 
<= SP - N-Args - control-register. extra-argument 

FP For finish-calI-tos, finish.call-tos-apply: 
<= SP - N-Args - control-register. extra-argument - 1 

LP <= SP + 1 - Apply ;this could be past SP 

Continuation <= the address of the next instruction after the 
finish-call. 

SP, Binding-stack-pointer, and Data-stack-pointer are unchanged. 

Save the old contents of Continuation temporarily (see below). 

The control register is adjusted as follows: 

254 



Arg-Size 

Apply 

Value-Disposition 

Cleanup-Bits 

Extra-Argument 

Symbolics, Inc. 

<= (new LP minus new FP) 

For f'mish-call-n, finish-call-n-apply: 
<= N-Args + control-register. extra-argument 

- apply + 1 

For finish-call-tos, finish-call-tos-apply: 
<= N-Args + control-register.extra-argument 

- apply + 2 

<= Apply bit in the instruction 

<= Value Disposition bits in the instruction 

<= a 

<= a ;actually this doesn't matter 

Frame-size-of-caller <= new FP minus old FP 

Call-started <= B 

After building the new frame, finish-call checks for control stack overflow by 
calculating whether SP is greater than the stack limit. If the stack overflows in 
normal mode, a stack-overflow trap will be taken after the end of the fmish-call 
instruction before executing the first instruction of the target function. If the 
stack overflows in extra stack mode, the machine halts with a fatal error. See the 
section "Processor Faults." 

The finish-call instruction ORs control-register. call-trace into control-register. trace
pending, forcing a trace pre-trap upon execution of the next instruction if call
trace was 1. 

Finally execution proceeds with the instruction at the halfword address specified in 
the Continuation register before it was set to the return address. 

Figure 24 shows how the stack looks after completion of the finish-call instruction. 

255 



Symbolics, Inc. 

Figure 24. 

Control stack and Registers after Finishing Call 

Case A: Instruction was finish-call 

?=====~Lgoc~a~lfPgo;~n~~~r======~I~ 
~~!m~s~la~'~k~p=o=;n:":r:::::::;I~ Od~1 Last supplied argument. TOp of stackl -
f! 0 ram Counter 

Old contents of Continuation Reg. 
Continuation Re ister 

PC of instruction to return toO; 

o trol Rister 
Arg-Size C. 
_n e-a+ 

Frame pointer I ~ 

t 
Increasing addresses 

1 

cdr-

cdr-
nel(t 

~'R 
~ .• 

Case B: Instruction was finish..call-apply 

Supplied argument 

First supplied argument 
Caller's Control register 

Caller's Continuation register 

r-----C-Lo-""---po-;n-�-.r----~l~ h:.;:';=;=:;========:;====::~ 
~i.W~~~SIa~'k~p:o;:nl:.:r=:=l~ o~· Supplied &rest argumem.. Top of stack 
~ r u-;;ter 
Old contents of Continuation Regl 
~onlinuat!on Bggister 
L PC of Instruction to retum to 

Control ~ister 
~'lI~." + I ~ Al'p,ly :'~l 

Frame poi'nler -1 ~ 

"". SUpplied argument M" .," Rrs! supplied argument 
"" C:~ Caller's Control register 

~'f Caller's Continuation register 

~ This is the address of ·the next instruction afterlinish-call. 

Note: e-a is the. Original value of controloregister.extra-argument. 

1::-
Number of 
arguments 
suppUed .. n 
_ N-Args for ''tos'' 
E N-Args·' for ~·n" 

~ 

} 

Frame header 

Caller's frame 

~ 

} 

Frame header 

Caller'S frame 

The stack after completion of the finish-call instruction 

256 



Symbolics, Inc. 

4.3.3,.1 Trapping Out of Finish-call and Restarting 

Traps in the finish-call instructions always occur after building the new frame and 
setting the Control register, the Continuation register, and the Program Counter 
to their new values. Thus any trap occurring in a fmish-callinstruction looks like 
a pre-trap in the first instruction of the called function. No special action is 
required to restart after, such a trap. 

4.3.3.2 Aborting Calls 

It is sometimes necessary to abort a call that has been started, instead of finishing 
it with a fmish-call instruction. Aborting a call consists of popping the stack back 
to the level before the call was started and restoring some of the Continuation and 
Control register values saved by the start-call instruction. This is performed by 
.Lisp code. 

4.4 Function Entry 

A compiled function starts with a sequence of'instructions that are involved in 
receiving the arguments. The fIrst instruction is known as the entry instruction. 
It is followed by a possibly-empty sequence of instructions known as the entry 
vector. The function can be entered at the entry instruction, which will check the 
number of arguments and select the fIrst instruction to be executed, either an 
element of the entry vector or the first instruction after the entry vector. 
Alternatively, this selection can be made by the linker when the number of 
arguments is known statically, and the function can be entered directly at an 
element of the entry vector or at the first instruction after the entry vector. In 
either case, execution proceeds from the selected instruction according to normal 
instruction sequencing, possibly executing additional instructions from the entry 
vector. After completing the entry vector, some additional argument-taking 
instructions may be executed, depending on the particular function. Thus a 
compiled function consists of: 

Object header (2 words) 
Entry instruction 
Entry-vector instructions 
Other argument-taking instructions 
Body instructions 

See the section .. Representation of Compiled Functions." 

Each entry-vector element is two half-word instructions long. For each &optional, 
there is an element of the entry vector and there is one for the &rest argument, 
if supplied. (This includes an automatically-generated &rest argument in a . 
function with &key arguments.) The element of the entry vector corresponding to' 
an argument contains instructions that are executed if that argument is not 

257 



Symbolics, Inc, 

supplied by the caller. These instructions compute the default value (nil for a 
&rest argument) and push it on the stack. If this computation will not fit in an 
entry-vector element, the compiler inserts a branch to the rest of the code, which 
ends in a branch back. If the computation is smaller than the size of an entry
vector element, it ends with cdr-code sequencing that skips an instruction. 

The entry instruction contains the following information: 

Number of required arguments 
Number of optional arguments 
Number of rest arguments (zero or one) 

An entry instruction performs an argument match-up process that either traps (for 
wrong number of arguments) or adjusts the stack and then branches to the 
appropriate instruction of the entry vector, or to the instruction after the entry 
vector. See the section "Entry-rest-accepted." The first entry-vector element 
follows immediately after the entry instruction. Adjusting the stack is done by 
performing one of two operations described later: pull-apply-args or 
push'apply-args. 

The following conditions are computed by an entry instruction: 

• Too few spread arguments (N-Args+2 < min-args+2) 

• Too many spread arguments (N-Args+2 > max-args+2) 

• Maximum spread arguments CN-Args+2 = max-args+2) 

• Rest argument wanted (rest-arg = 1) 

.--·--:-Re;-;~rgu~~t;,pplled(cont:;;~I-register.applY=D----~-- -------
.. ~ 

Note tliat.the argument comparisons are all biased by plus 2 .. Tile value of control
register.arg;siz.e is two greater than the actual number of. arguments in the frame 
because it includes the two frame header words (this/makes return faster). To 
simplify these entrY comparisons, the arguments ;ni-;'-args and max-args in the 
entry instructions are (:o1,"respondingly biased/by' two. 

If "rest argument wanted>iinli "rest ~rgU~ent supplied" are both false, this is the 
simple case. If there are too few or/too' many arguments, take a Wrong-Number
of-Arguments (WNA) trap. Otj:letWise, enter the function at entry-vector element 
(N-Args - min-args); this sltips over the. default-initialization instructions for those 
optional arguments that uad values supplied. 

If "rest argument wan~d" is false and "rest argument supplied" is true, then if 
there are less thah the maximum number of arguments, do a pull-apply-args 
operation. OJ;h~rwise, take a wrong number of arirument~ trap because there are 
too many arguments. 

/// 

258 



I 
• 
• 
• 

• 
• 
ID 

Symbolics, Inc. 

The entry instruction contains the following information: 

Number of required arguments 
Number of optional arguments 
Number of rest arguments (zero or one) 

An entry instruction performs an argument match-up process that either traps (for 
wrong number of arguments) or adjusts the stack and then branches to the 
appropriate instruction of the entry vector, or to the instruction after the entry 
vector. See the section "Entry-rest-accepted." The fIrst entry-vectqr element 
follows immediately after the entry instruction. Adjusting the stack is done by 
performing one of two operations described later: pull-apply-args or 
push-apply-args. 

The following conditions are computed by an entry instruction: 

• Too few spread arguments (N-ArgS+2 < min-args+2) 

• Too many spread arguments (N-Args+2 > max-args+2) 

• Maximum spread arguments (N-Args+2 = max-args+2) 

• Rest argument wanted (rest-arg = 1) 

• Apply argument supplied (control-register. apply = 1) 

Note that the argument comparisons are all biased by plus 2. The value of control
register.arg-size is two greater than the actual number of arguments in the frame 
because it includes the two frame header words (this makes return faster). To 
simplify these entry comparisons, the arguments min-args and max-args in the 
entry instructions are correspondingly biased by two. 

• If "rest argument wanted" and "apply argument supplied" are both false, 
this is the common and simple case. 

o If the number of arguments is in range (min-args <= N-Args <= 
max-args) then enter the function at entry-vector element (N-Args 
- min-args); this skips over the default initialization instructions for 
those optional arguments that had values supplied. 

o Otherwise there are too few or too many arguments; take a Wrong 
Number of Argument trap. 

• If "rest argument wanted" is false and "apply argument supplied" is true, 
then the apply argument must be converted into spread arguments . 

o If there are less than the maximum number of arguments supplied 

258 



I 

I 

I 
I 

I 

I 

I 
I 

I 

I 

I 
I 

I 

I 

I 
I 

I 
I 

I 

I 

I 
I 

I 

I 



• • • 

• • , 

Symbolics, Inc. 

(N-Args < max-args) then do a pull-apply-args operation to pull 
(max-args - N-Args) arguments, which will normally turn off "apply 
argument supplied," and retry the argument matchup process. .. 

o If the maximum number of arguments is supplied (N-Args = max-args) 
and the apply argument is nil, pop the apply argument, clear control
register. apply, and enter at vector (N-Args - min-args). Note: this is an 
optimization of the pull-apply-args operation pulling 0 arguments out of 
nil and retrying the argument matchup process. 

o Otherwise there are too many arguments; take a Wrong Number of 
Arguments trap . 

• If "rest argument wanted" is true and "apply argument supplied" is false, 
. then a rest argument may need to be made from some of the spread 
arguments. 

o If there are too few arguments (N-Args < min-args) then take a Wrong 
Number of Arguments trap. 

o If the number of spread args is in range (min-args <= N-Args <= 
max-args) then enter at entry-vector element (N-Args - min-args); this 
skips over the default initialization for those optional arguments that 
had values supplied and the last element of the entry vector will push. 
nil to default rest argument. 

o Otherwise (N-Args > max-args) some spread args must be made into 
the rest argument; do a push-apply-args operation of (N-Args 
- max-args) arguments and enter at entry vector (max-args - min-args + 
1) . 

• If "rest argument wanted" and "apply argument supplied" are both true, 
then the apply argument may be pushed, pulled or used as is. 

o If less than the maximum spread arguments were supplied (N-Args < 
max-args), then convert some of the apply argument to spread 
arguments by doing apull-apply-args operation to pull (max-args 
- N-Args) arguments, which may turn off "apply argument supplied," 
and retry the argument matchup process. 

o If exactly the maximum nlLnber of spread arguments was supplied 
(N-Args = max-args) then use the apply argument as the rest argument. 
Set the cdr-code of the top word of stack to cdr-nil and enter the 
function at entry-vector element (max-args - min-args + 1). This skips 
over the default initialization for the optional arguments and for the 
rest argument. 259 





• 
• 
• 

Symbolics, Inc. 

function at entry-ve,ctor element (max-args - min-args + 1). This skips 
over the default initialization for the optional arguments and for the 
rest argument. 

o Otherwise more than the maximum number of spread arguments were 
supplied (N-Args > max-args). Push some of the spread arguments into 
the apply argument by doing push-apply-args operation of (N-Args , - max-args) arguments and enter at entry vector (max-args - min-args + 
1). 

Figure 25 summarizes how the argument matchup operation is performed. 

4.4.1 Push-apply-args 

The push-apply-args operation is invoked when there are too many spread 
arguments and a rest argument is wanted. It pushes some spread arguments back 

• into the apply argument, after 'which the function is started at its all-arguments
supplied entry point. This operation does not involve any memory references nor 
. any possibility of trapping. 

In detail, push-appIy-args does 'the following: 

• Set the cdr code of the last word in the stack to cdr-nil 

• If an apply argument was supplied, set the cdr code of the second to last 
word in the stack (the lakt spread argument) to cdr-normal. . 

Since arguments are pushed with cdr-next, the stack now contains a list of 
all of the arguments. 

i ".i 

• Make a rest argument oqt of the arguments afte~ the max number of spread 
arguments wanted by th.! function by creating a dtp-list pointer to (frame
pointer + max-args + 2). Push this rest argmhent onto the stack. 

\. ' ~ 
.' 1; '.. , ~', 

• If apply=O, leave control-register.arg-size ahd controJ.register.apply alone. 
, ' :.. it 1 ' 1 

They describe the arguments precedmg the re~t argilment that was just 
pushed, which is regarde~ as a local variaq'Ie of the callee rather than an 
argument supplied by thd caller. 

i 
j 

• If apply=1, increment LP.and control-regisfer.arg-rize, and leave control
register. apply alone. LP inow points at th~ reVised rest argument that was 
~ust pushed, instead of t~e original fest arrunent, which has been turned 
mto the cdr word of a two-word cons. . , 

The function is entered at ent& vector element (m:k-ai-gs - min-args + 1) [past 
. • I 





Symbolics, Inc. 

Argument Match-Up Done by Entry Instruction 

&rest'argument 
wanted 

rgument apply a 
supplied 

False True 

False 

True 

If: MIN <= NARGS <= MAX If: NARGS"< MIN take WNA trap 

enter at vector (NARGS • MIN) If: MIN <= NARGS <== MAX 

Else: take WNA trap enter at vector (NARGS - MIN) 

If: NARGS > MAX 

do a push-apply-args 
enter at vector (MAX - MIN + 1) 

. 

If: NARGS < MAX If: NARGS < MAX 

do a pull-apply-args do a pull-apply-args 

If NARGS-", MAX and apply-arg = NIL If: NARGS = MAX 

pop stack set TOO cdr code to cdr-nil 
clear control·register .apply enter at vecto~ (MAX - MIN + 1) 
enter at vector (MAX - MIN) 

It NARGS > MAX 
If NARGS '" MAX and apply-arg not nil 
or NARGS > MAX 

t,'. ,WNA ",n 
do a push-app/y-args 
enter at vector (MAX - MIN + 1) 

In this figure, the variables used are 

NARGS = cr.argument-size = N-Args + 2 + (cr.extra-argument - or.apply) 
-- that Is the actual number of arguments supplied biased by 2, 

but not including the apply argument. 
MIN = mln-args + 2 -- that is, the number in the required-arguments field 

of the entry instruction, which is the actual number of required 
arguments biased by 2. 

MAX = max -args + 2 -- that is, the number in the required-plus-optional-arguments 
field of the entry instruction, which is the actual maximum number of 
arguments biased by 2. 

Figure 25_ The argument matchup algorithm 

260 





Symbolics, Inc. 

the &rest argument default]. Figure 26 illustrates the effect of the push-apply
args operation. 

4.4.2 Pull-apply-args 

The pull-apply-args operation is invoked when there are fewer than the maximum 
number of spread arguments and an apply argument was supplied. It pulls some 
additional spread arguments out of the apply argument. 

In detall, pull-apply-args 

• pops the list of arguments off the stack, 

• extracts an argument from the list, 

• pushes it onto the stack, 

• pushes the tall of the list onto the stack, 

• adjusts control-register.arg-size and the LP, and 

• retries the argument match-up process. 

Figure 27 illustrates the pull-apply-args operation. 

If the apply argument is too short, the control-register. apply bit is turned off; the 
retry may then signal too few arguments or may simply default some optional 
arguments. The pull-apply-args operation occurs even if the callee did not want a 
&rest argument; if the desired number of arguments are pulled out of the apply· 
argument and more arguments remain, a wrong number of arguments trap will 
occur when the argument match-up process is retried. 

Following the entry vector, other instructions may appear that perform the 
operations described next. 

In a function with both &optional and &rest arguments, it is necessary to adjust 
the LP register to make sure that the &rest argument is in LPIO. (If there is a 
&rest argument but not &optional arguments, LP will already contain the correct 
value.) Any function that takes a &rest argument may be called with an arbitrary 
number of spread arguments; push-apply-args will generate the correct &rest 
argument, but there remains an arbitrary distance between FP and SP at the time 
the function is entered and starts creating its local variables. This is the reason 
why the local pointer exists; it permits such"functions to address their local 
variables. Functions without &rest arguments do not normally use the . local 
pointer. The first instruction after the entry vector, when there are both 
&optional and &rest arguments, is a locate-locals instruction, which does the 
following: 

261 





Symbolics1 Inc, 

"""_""-C "" -""---- -"-----) " _--: 

"'--<regt!lter;applyalone. LP now points at the revised restJ!rg:illfiefit-that-'Was 
c~ jusf-puSlied,ins~ead of the original rest apgument, which has beenJurried " 

into the cdr" word _o-(a~t:wo~w<>rd~oons;_-==\ "~:~_. 

The_functfo~;;~~_aLenJ;l'y-y"ctQLelemenL(m~rg§::::::--mi~:~-;';;~-tpas( 
the'&resrargumeO"i default]. Figure 26 illustrates the effect oTth~ push~":pply:
args operation. 

4.4.2 Pull-apply-args 

The pull-apply-args operation is invoked when there are fewer than the maximum 
number of spread arguments and a &rest argument was supplied. It pulls some 
additional spread arguments out of the &rest argument. 

'In detail, pUll-apply-args 

• pops the list of arguments off the stack, 

• extracts an argument from the list, 

• pushes it onto the stack, 

• pushes the tail of the list onto the stack, 

• adjusts control-register.arg-size and the LP, and 

• retries the argument match-up process. 

Figure 27 illustrates the pull-apply-args operation. 

If the &rest argument is too short, the control-register. apply bit is turned off; the 
retry may then signal too few arguments or may simply default some optional 
arguments. The pull-apply-args operation occurs even if the callee did not want a 
&rest argument; if the desired number of arguments are pulled out of the&rest 
argument and more arguments remain, a wrong number of arguments trap will 
occur when the argument match-up process is retried. 

Following the entry vector, other instructions may appear that perfo;:m the 
operations described next. 

In a function with both &optional and &rest arguments, it is necessary to adjust 
the LP register to make sure that the &rest argument is in LPIO. (If there is a 
&rest argument but not &optional arguments, LP will already contain the correct 
value.) Any function that takes a &rest argument may be called with an arbitrary 
number of spread arguments; push-apply-args will generate the correct &rest 
argument, but there remains an arbitrary distance between FP and SP at the time 
the function is entered and starts creating its local variables. This is the reason 

261 



"" Rl 

~~ 

Effect of push-apply-args Operation 
~ 

Before push-apply-args AHer push-apply·args ~ 
Case A: Apply = 0 
Example: (delun faa (x y z &ras! z) .,;) 

(100 a b cd e f) 

local Pointer :J -3>-
Stack Pointer 1--;;. 

Control Reaister 

I Aig-Sfie--- -A~phi 
=8 =0 

Frame pointer I ~ 

Case B: Apply = 1 

~:~t last supplied argument.: Top of stack 1 
cdr- arg4 

cdr- ara3 

cdr- arg2 r 
cdr- arg1 

cdr- argO J 
C- Caller's Control register 

~. Caller's Continuation register 

Example: (delun faa (x y z &res! z) 00') 
(apply #'100 abc del) 

looal Pointer I~ 

Slack Pointer -::;? 
cdr- Appty argumenl=Top of slack 

cdr- ar94 
cdr-

arg3 next 
cdr· arg2 
next 
cdr- arg1 

, 

Control Recdsler 
cdr- argO I Arg~stz. Ap~y I <2:"1( Calter's Control register 

1 Frame pojnter J ~ C:'~ CaUer's Continuation register 

Number of 
arguments 
supplied = 6 

t 

local Pointer -- --- --I --s. 
Stack Pointer 1.--'=7 

FP + max-args + 2 ~ 

Conlrol Realster I Ar~~~jle ~ry I 
I Frame pointer 1 ~ 

Increasing addresses 

local Pointer 1 ~ 
Slack Pointer ~ 

FP + max-args + 2 ~ 

"". 
"" I~~~ 
cdr· 

cdr· 

I~~ 
"'" • 
~'R 
S'¥ 

cdr-
I 

cdr-
nrml 
cdr-

cdr· 
.. xl 
cdr· 

I ~~xt 
Control Reaister Cdr· 

IAr!?;lize App,ly I C:'~ 
I Frame pointer I ~ c-¥ 

Figurp '.l6. The push-apply-args operation 

dtn·list 

if 
!'> 
:;-
9 

Last supplied argument- Top of slack 

arg4 

arrr3 I-E-
arn2 

arg1 

argO 

Caller's Control register 

CaUer's Continuation register 

dill-list 

Apply argument 

arg4 

arg3 ]-E-
arg2 

arg1 . 

argO 

Caller'S Control register 

CaUer's Continuation register 



Effect of pull-apply-arguments Operation 

Example: (defun foo (x y) ... ) 
(apply #'100 a b) 

Before pull-.apply-args 
Control Register 

1==="L;:;:og;oa;:,';;PO~i~III;;"::'===i --;: 
Stack Pointer --/ 

t 
Increasing addreqses 

After pull-apply-args 

Ap~ly 
.0 

1===~L::oc~a~l!:p~Oi~III~'!::r ==~I ~ 
L-____ ~S~la~'~k~p~o~im~'~r ____ __J~~ 

L. __ .!F",ra"m~,,,pesO~ill,,,,,,,r __ --,1 ~ 

od" 

.:dr-
"HI 

9-.9 
~'¥ 

-c 

I 
cdr-I 

"" 

Cdt-

cdr-
"m 
".,9 
S:R 

din-list -c;; 

argumeniO (required) 

Caller's Control register 

Caller's Continuation register 

argument1 

argument1 

argumentO (required) 

CaUer's Control register 

Caller's Continuation register 

argument' 

Figure 27. The pull-apply-args operation 

263 

Symbolics, Inc, 

I 
j-E-

, I 



Symbolics, Inc. 

why the local pointer exists; it permits such functions to address their local 
variables. Functions without &rest arguments do not normally use the local 
pointer. The first instruction after the entry vector, when there are both 
&optional and &rest arguments, is a locate-locals instruction, which does the 
following: 

• Push (control-register.arg-size - 2) onto the stack, as a fIxnum. This is the 
number of spread arguments that were supplied, which is less than the 
number of spread arguments now in the stack if some &optional arguments 
were defaulted. If the rest arg is not nil, this IlXIlum can be larger than the 
maximum number of spread arguments accepted. 

• Set LP to (new-SP - 1). Thus LPIO is the &rest argument and LPl1 is the 
argument count. new-SP here refers to the SP after the incrementation 
caused by the locate-locals instruction. 

• Set control-register.arg-size to (LP - FP) as always. 

Figure 28 shows how locate-locals works. 

The next step is to create the auxiliary supplied.p variables for optional 
arguments. Each of these variables is stored as a local variable (after all the 
arguments) whose initial value is created by arithmetic comparison between the 
number of argumeuts supplied and an appropriate constant. The number of 
arguments supplied is control-register.arg-size - 2 except in functions with both 
&optional and &rest arguments, where it is LPll. The computation can be 
performed with a sequence of existing instructions. The initialization of 
supplied-p variables recomputes information that was available while exectuting 
the entry vector, but there was no space in the stack to store that informatkn 
then. 

The next step takes care of any arguments that were declared special by binding 
the special variables to the values using the normal instructions for that purpose. 
If there are any non-special arguments after the special arguments, orphan words 
will be left in the stack since the values of the special arguments cannot be 
popped off. 

If there are problematic ·dependencies among optional-argument default-value 
computations, special care is required. A problematic dependency occurs if the 
default value for an optional argument depends on a supplied.p variable of a 
previous optional argument or can be affected by a previous argument that is 
declared SPECIAL. The 3600 handles this with an alternate function .entry 
sequence that the compiler generates if necessary. The I Machine will handle it 
by using nil as the default value in the entry vector and then generating code 
after the entry vector that tests whether the argument was supplied Gust as if 
initializing a suppIied.p variable) and if not computes the default value and pops 

264 



Before locate·locals 

Case 1: the apply (&rest) argument is nil 

Example: (delun faa (W &optional x y &rest z) ... ) 
(faa a b) 

Control Reaisler 

fAr9.:~iW AE~Y 

Stack Pointer ~ &rest = nil (defatAted) 

local Pointer ~ cdr· argument2 (defaulted) 
cd,· . argument1 (optional) 
cdr· argumentO (required) .. " 
~'R Caller's Control register 

[ F,ame .pointe, I ~ ~.~ Caller's Continuation register 

* 
Case 2: &rest argument not nil, push·apply·args has been performed 

Example: (defun faa (w &optional x y &rest z) ... ) 
(apply #'100 abc d e) 

Control Realsler 

r Arg-Size Apply 
-7 -1 

C local Pointer I ~ 
I Stack Pointe, I -"? dip-list 

"",. Apply (&rest) argument ,II 
cdr· 
orm argument3 (optiona! 
«I,. 
,,,' argument2 (optional) 
"". argument1 (optional) .. '" «I,. 

argumento (required) 
"''' %' Caller's Control register 

[ F,ame pointer I ~ ~-~ Caller's Continuation register 

Figure 28. 

Effect of locate-locals Instruction 
AHer locale-locals 

t 
Increasing addresses 

<E-

Control Realster 
.Arg-~ize Apply 

o 

Stack Pointer - -~ ~ 

local Pointer , ~ 

Frame pointer } ~ 

Conlrol Reaisler I Arg-Size Apply 
-7 -1 

Stack Pointer ~ ---;;:.. 
local Pointer I ~ 

Frame pointer I ~ 

The effect of the locate-locals instruction 

. 

"',-
"''' "',-
cdr· .. " 
%' 
~-ii' 

cd,-
,It 

cdr· 
nrml 
od,-

'''' cd,· 

"''' cd,-
.next 

Cf 
Sf 

2 

&rest - n~ (defaulted) 

argument2 (defaulted) 

argument1 (optional) 

argumentO (required) 
Caller's Control register 

Caller's Continuation register 

4 (locals) 

dlp·list 

Apply (&rest) argument 

argument3 (optional) 

argument2 (optional) 

argument1 (optional) 

argumento (required) 
Caller's Control register 

Caller's Continuation register 

-E-

~ 
il-
i 
S-
f' 



Symbolics, Inc. 

it into the argument's slot in the stack. This code is interleaved with the binding 
of special variables so that everything happens in the right order. 

Note that if a supplied-p variable is used in a read-only way, the value can simply 
be computed where it is needed, rather than waiting until a stack slot is allocated 
for the variable, and the problematic case need not occur. 

The next step is to compute the values of &key arguments and push them on the 
stack as local variables. This is done with code that looks at the rest argument, 
just as on the 3600. 

This completes the function entry sequence. If the body of the function creates 
local variables (or &aux variables) pushing the initial value of the variable on the 
stack allocates a stack slot, just as on the 3600. These stack slots can be 
addressed from the top of the stack frame (relative to SP) or can be addressed 
from the bottom of the stack frame (relative to FP if the function does not take a 
&rest argument or relative to LP if it does). 

4.4.3 Trapping Out of Entry and Restarting 

Traps can occur in an entry instruction. Error traps such as "Tong number of 
arguments are handled in the ordinary way. 

The pull-apply-args operation r!,ferences memory, so it is possible for it to trap. 
Usually, however, the 'il¥i-eSt'j~gttment will be a cdr-coded list in the stack and no 
trap will occur; these cases are handled quickly by microcode. It is 
implementation-dependent whether the puU.apply-args microcode handles the full 
generality of car and cdr, including non-cdr-coded lists and invisible pointers. 
Cases it does not handle make the stack frame self-consistent and then call a 
special trap handler that performs the rest of the pull-apply-args operation and 
then returns to the entry instruction, which will not need a pull-apply-args this 
time. See the section "Pull-apply-args Exception." If the pull-apply-args microcode 
handles apply arguments in memory, the usual memory traps such as page faults 
can occur, and are handled by making the state of the stack frame consistent and 
then calling the usual trap handler. After the reason for the trap has been 
rectified, the trap handler returns to the entry instruction, which will go back 
into pull-apply.args and should make further progress this time. 

4.5 Function Returning 

4.5.1 Function Return Instructions 

A function returns to its caller by executing one of the return instructions. These 
instructions specify the value(s) to be returned, remove the returning function's 
frames from the various stacks, restore the state of the caller, and resume 

266 



Symbolics, Inc. 

execution of the caller with the returned values on the stack in the form· desired 
by the caner. 

The value(s) to be returned can be constant or can be some number of words at 
the top of the stack; the number of words can be either IlXed or variable. 

The form of values desired by the caner can be to throw aU the values away, to 
push the fIrst value on the stack, or to push on the stack all the values and a 
fIxnum which is the number of values excluding itself. The caller uses the value
disposition fIeld of the Control register to specify the desired form of values. Note 
that any form of values supplied to the return instruction can be converted to any 
form of values desired by the caUer. In addition to this format conversion, the 
return instruction must move the values from one place in the stack to another, 
from the caUee's frame to the caner's frame. 

The return instructions are: 

return-single Return a single value. 

return-multiple Return multiple values (zero or more). 

return-kludge Return multiple values in a non-standard form. 

return-single has an immediate operand that addresses an internal register that 
supplies the value to be returned. The values that can be returned include nil, t, 
and the top-of-stack. return-single does not do anything that cannot be done with 
return-multiple (accompanied by a push in some cases), but it is likely that 
return-single can be implemented to be much faster than the corresponding 
return-multiple, which will speed up important common cases. 

return-multiple has a standard operand that specifIes the number of values to be 
returned. The values themselves are on the top of the stack. The operand must 
be a non-negative Iumum. If there is an implementation dependent upper limit on 
the number of values, it must be at least 16. Although return-multiple takes a 
standard operand, only immediate and sp-pop operands are legal. (The reason for 
this is discussed below.) 

return-kludge takes the same argument as return-multiple, but it returns the 
values in a different way. return-kludge ignores the value disposition and simply 
places the values at the top of the caller's stack, without pushing the number of 
values. return-kludge is used for certain internal stack-manipulating subroutines 
and all trap handlers. Note that because return.kludge does not return values 
according to the standard calling sequence, it can only be used in subroutines that 
are specially known by the compiler, and in certain trap handlers. 

Note that the description of return values in the instructions above is from the 
canee's perspective. In other words, this represents what the function would 
normally return upon completion. The value-disposition fIeld in the Control 
register, set by the caller, specifIes what should actuaUy be done with the return 
value(s) (that is, they could be discarded). 

267 



Symbolics, Inc. 

Before return can remove the frame from the stack, it may have to perform other 
cleanup actions. These are specified by the Cleanup Bits in the Control register 
being nonzero. The actions include popping the binding stack, popping the catch 
stack (a list threaded through the control stack), executing unwind-protect 
instructions (which may pop the data stack), and escaping to arbitrary software. 
See the section "Frame Cleanup." 

Once these cleanups have been taken care of, the return instruction restores the 
state of the caller using the information saved in the frame header of the frame 
being abandoned, according to this procedure: 

PC <= Continuation register (unless vd is return) 
Continuation register <= FPI0 
temp <= FPI1 
SP <= FP - 1 
FP <= FP - control-register.frame-size-of~caller 

Control Register 
LP 

<= temp 

<= FP + control-register.arg-size 

At this point the function's frame has been removed from the control stack. The 
stack cache now is either empty or contains part or all of the caller's frame. 
Since the frame that was just removed from the stack was entirely in the stack 
cache, the lowest word in the stack cache is less than or equal to SP+l; if equal, 
the stack cache is empty. The return instruction does not worry about rexilling 
the stack cache at this stage. 

The return instruction now places the values being returned at the top of the 
control stack, according to the value disposition field in the old Control Register 
and the particular type of return instruction being executed. The return-single 
instruction can simply push its argument, but the return-multiple and 
return-kludge instructions msy have to transfer a block of values. The source 
and destination locations of this block can overlap, both in virtual memory and in 
stack-cache memory, so care must be taken when copying the block of values to its 
new location. 

The specific handling of the value disposition is as follows: 

Effect 

Value 

Multiple 

Return 

Leave the stack alone. This leaves the TOS register invalid. 

Push the first value being returned onto the stack. If no values 
were being returned, use nil as the first value. 

Copy the values down from the old top of the stack to the new 
top of the stack, and forlIl them into a multiple group by 
appending a count. 

Copy the arguments to the Return instruction down to the new 

268 



Symbolics, Inc. 

top of the stack and then re-execute the instruction. If the 
instruction was return-multiple and its operand was sp-pop, the 
count of values must be pushed back on the stack. 

The fmal thing the return instruction does is to make sure that the frame being 
returned to is contained in the stack cache. If necessary, words in the frame are 
fetched from main memory. If a trap or interrupt occurs during this process, PC 
points at the instruction in the caller being returned to, not at the return 
instruction, so that the return instruction is not retried (which would return from 
an extra level of call). When the trap/interrupt handler returns, its return 
instruction will continue loading the frame into the stack cache. Note that the 
stack cache must be refilled in decreasing order of addresses, so that if a trap 
occurs the range of addresses validly contained in the stack cache will be 

. contiguous. See the section "Revision 0 Implementation Function-Calling 
Features." 

When the value disposition is Return, the stack cache is refilled if necessary and 
then the return· instruction is re-executed, causing the value(s) to be returned 
from the caller. This process can be repeated any number of times. 

If the callee returns more values than will fit in the caller's frame, the hardware 
takes an error trap out of the callee's return instruction, before the stack becomes 
illegal. 

In order to allow smooth trapping out of the middle of a return, it is required 
that all return instructions keep their state, if any, at the top of the stack. This 
means that we cannot have a return-local instruction that returns the value of a 
local variable; you have to flI'st push the value on the stack and then return it 
from there with return·single. Similarly, the number-of-values operand of a 
return-multiple instruction cannot be addressed with FP-relative addressing; only 
immediate and sp-pop operands are allowed. This restriction eliminates any need 
to play around with special macro-PCs; any trap out of a return leaves the PC 
pointing at the original return instruction and the stack set up so that the 
instruction can be retried. 

Returning from a call that had Value-disposition equal to Effect does not restore 
the TOS register from the top of the stack. This is because there is no time to do 
it: three reads from the stack cache would be required in this case, whereas when 
the Value-disposition equals Value, two reads from the stack cache plus one write 
are required and the return-single instruction executes in only two cycles. This 
is normally not a problem, since the compiler can compensate, just as it does on 
the 3600 for other instructions that leave TOS invalid. The compiler simply 
knows that a finish-call instruction with a value disposition of Effect has the 
smashes-stack attribute. 

269 



Symbolics, Inc. 

4.5.2 Frame Cleanup 

The Cleanup Bits in the Control register specify actions necessary before the 
frame can be exited. Traps, such as page faults, can occur while cleaning up. 
Mter handling the trap, the return instruction is retried. The state of the stack 
while cleaning up is always self·consistent. 

The bits and the cleanup actions they cause areas follows, listed in the order that 
they are processed: 

Catch This bit indicates there are catch/unwind-protect blocks to be 
unthreaded. Unthreading a block examines the words in the 
stack addressed by the catch-block-pointer register. If the catch 
block is for an unwind-protect (that is, if bit 38 = 1 in the 
binding-stack-pointer word of the catch block), the following 
actions are performed: 

• Restore stack-pointer to its original value, if it was popped 
by an sp-pop operand. 

• If the catch-block-binding-stack-pointer is less than the 
binding-stack-pointer, unbind special variables until the 
two pointers are equal. Note that this can clear the 
Bindings cleanup bit. 

• Push the current PC with the current value of control
register.cleanup-in-progress in bit 38 and 1 in bit 39 onto 
the stack. 

• Set the PC to the catch-block-PC, which is the address of 
the cleanup handler. 

• Set the cleanup-in-progressbit in the Control register. 

• Set control-register.cleanup-catch in accordance with the 
cdr code of catch-block-previous imd at the same time 
restore the control-register. extra-argument bit. 

• Set the catch-block-pointer register to the catch-block
previous, which is the address of the previous catch block 
or nil if there is none. 

• Transfer control to the first instruction of the cleanup 
handler. When the cleanup handler exits the return 
instruction will be retried. 

270 



Bindings 

Trap-on-Exit 

Symbolics, Inc. 

If the catch block is for a catch (that is, bit 38 = 0 in the 
binding-stack-pointer word of the catch block), only the catch 
block need be removed (bindings will be undone by cleanup 
because the bindings cleanup bit will be set for the frame). The 
following actions are taken: 

• Set control-register. cleanup-catch in accordance with the 
cdr code of catch-block-previous. The hardware is 
permitted, but not required, to restore control-
register. extra-argument. 

• Set the catch-block-pointer register to the catch-block
previous, which is the address of the previous catch block 
or nil if there is none. 

• Check the cleanup bits again. 

This bit indicates there is a non-empty binding-stack frame 
associated with this control-stack frame, in other words that this 
function has bound some special variables. Pop the binding 
stack and undo bindings until a binding stack entry whose 
binding-stack-chain-bit is zero is encountered. Then clear 
control-register.cleanup-bindings and check the cleanup bits 
again. 

Take a trap. If the trap handler clears the Trap-on-Exit bit and 
returns, the return instruction can proceed. 

4_5.3 Value Matchup 

When Value-disposition is Multiple, the instruction after a fmish-call instruction 
will'usually be a take-values instruction. As on the 3600, this converts the 
multiple group left on the stack by return into the desired number of values, 
popping extra values or pushing nil as a default for missing values. 

4.6 Catch, Throw and Unwind-Protect 

A catch block is a sequence of words in the control stack that describes an active 
catch or unwind-protect operation. All catch blocks in any given stack are linked 
together, each block containing the address of the next outer block They are 
linked in decreasing order of addresses. An internal register named catch-block
pointer contains the address of the innermost catch block, as a dtp-Iocative, or 
contains nil if there are no active catch blocks. The address of a catch block is 
the address of its catch-block-pc word. 

271 



Symbolics, Incr 

The format of a catch block for a catch operation is as follows: 

Word Name 
catch-black-tag 
catch-black-pc 

Bit 39 
e 
e 

catch-block-binding-stack-pointer 
e 
extra-arg 

Bit 38 Contents 
invalid flag any object reference 
e catch exi t address 

e 
cleanup-catch catch-block-previous 

catch~block-continuation va1ue-disposition 

binding stack level 
previous catch block 
continuation 

The format of a catch block for the unwind-protect operation is: 

Word Name 
catch-block-pc 

Bit 39 
B 

catch-block-binding-stack-pointer 
8 

catch-bl. ock-pcevi ous extra-arg 

Bit 38 
e 

1 
cleanup-catch 

Contents 
cleanup handler 

binding stack level 
previous catch block 

The catch-block-tag word refers to an object that identifies the particular catch 
operation, that is, the first argument of catch-open or catch-close. The catch
block-invalid-flag bit in this word is initialized to 0, and is set to 1 by the throw 
function when it is no longer valid to throw to this catch block; this addresses a 
problem with aborting out of the middle of a throw and throwing again. This 
word is not used by an unwind-protect operation and is only known about by the 
throw function, not. by hardware. 

The catch-block-pc word has data type dtp-even-pc ur dtp-odd-pc. For a catch 
operation, it contains the address to which throw should transfer control. For an 
unwind-protect operation, it contains the address of the first instruction of the 
cleanup handler. The cdr code of this word is set to zero (cdr-next) and not used. 
For a catch operation with a value disposition of Return, the catch-black-pc word 
contains nil. 

The catch-block.binding-stack-pointer word contains the value of the binding-stack
pointer hardware register at the time the catch or unwind-protect was established. 
When undoing the catch or unwind· protect, special-variable bindings are undone 
until the binding-stack-P9inter again has this value. The cdr-code field of this 
word uses bit 38 to distinguish between catch and unwind-protect; bit 39 is set to 
zero and not used. 

The catch-blockoprevious word contains a dtp-Iocative pointer to the catch-black-pc 
word of the previous catch block, or else contains nil. The cdr-code field of this 
word saves two bits of the control register that need to be restored. 

272 



Symbolics, Inc. 

The catch-block-continuation word saves the Continuation hardware register so that 
throw can restore it. The cdr-code field of this word saves the value disposition 
of a catch; this tells the throw function where to put. the values thrown. This 
word is not used by unwind-protect. 

An unwind-protect cleanup handler terminates with a %jump instruction. This 
instruction checks that the data type of the top word on the stack is-dtp-even-pc 
or dtp-odd-pc, jumps to that address, and pops the stack. In addition, if the bit 
39 of the top word on the stack is 1, it stores bit 38 of that word into control
register.cleanup-in-progress. If bit 39 is 0, it leaves the control register alone. 

The compilation of the catch special form is approximately as follows: 

Code to push the catch tag on the stack. 
Push a constant PC, the address of the first instruction after the catch. 
A catch-open instruction. 
The body of the catch. 
A catch-close instruction. 
Code to move the values of the body to where they are wanted; 

this usually includes removing the 5 words of the catch block 
from the stack. 

The compilation of the unwind-protect special form is approximately as follows: 

Push a constant PC, the address of the cleanup handler. 
A catch-open instruction. 
The body of the unwind-protect. 
A catch-close instruction. 
Code to move the values of the body to where they are wanted; this 

usually includes removing the 3 Words of the catch block from 
the stack. 

Somewhere later in the compiled function: 

The body of the cleanup handler. 
A %jump instruction. 

Each active catch or unwind-protect operation has an associated catch-block stored 
in the control stack and linked onto a list Whose root is a processor register, 
named %catch-block~list, that is saved in the stack group by context switch. 

All the frames between the current frame and the destination of the throw are 
"unwound" individually, and the data stack is taken care of by this. Each fraIlle 
that uses the data-stack has an unwind-protect to clean it up. The binding stack 
is also taken care of by this; the only reason for the binding SP in the catch block 
is because bindings can happen at any point in the function, and only those that 

273 



Symbolics, Inc. 

happened after the catch should be undone (the binding stack itself only says with 
which frame the bindings are associated, not where in the frame). 

The implementation of throw is somewhat similar to the way it is done on the 
3600, but simpler and with less special kludgery. A throw special form 

(throw <tag> <values» 

is compiled as 

(multiple-value-call #'7.THROW (VALUES <tag» <values» 

which calls %throw with the value of <tag> as its first argument and the values 
of <values> as its remaining arguments. %throw starts by searching the list of 
catch blocks for one with the correct tag. If it doesn't find one, or if the catch
block-invalid bit is set in the block it finds, it signals an error. Baving located 
the destination catch block, %throw prepares to discard all intervening stack 
frames and catch blocks; this requires invoking any unwind-protect cleanup 
handlers that are present, each in its proper stack frame and special-variable 
binding enviromnent. %throw changes the value disposition of each intervening 
stack frame to Return, and sets the catch-block-invalid bit in each intervening 
catch block. Next, %throw examines the restart PC and value disposition of the 
destination catch block, and modifies the return PC and value .disposition of the 
next frame lin the stack, the one that was called by the frame containing the catch 
block. There are two cases: 

If the catch value disposition is Return, %throw sets the frame value disposition 
to Return and returns the values to be thrown. These values are passed back 
through all the intervening frames, since their value dispositions are Return, and 
eventually arrive at the desired destination. 

Otherwise, %throw r.Jts the frame value disposition to Multiple, sets the frame 
return PC to the address of a hand-crafted helping routine, pushes the following 
values on the stack, and executes a return-multiple instruction that returns these 
values through all of the intervening frames. The values pushed are: 

• the words to be left in the stack when control reaches the catch's restart 
PC. This depends on the catch's value disposition and could be nothing, one 
word, or a multiple group. These are derived from the values to be thrown 
passed to %THROW as its arguments. 

• The catch's restart PC. 

• The number of catch blocks to be closed in the destination frame. This is at 
least 1, and will be more if there are other catches inside the destination 
catch in the same frame .. 

• The number of special variable bindings to be undone. This is always zero 
in this context, but the same helping routine is used for other purposes. 

274 



Symbol/cs, Inc. 

• A count of the total number of values, to make this a valid mUltiple group. 

The hand-crafted helping routine proceeds as follows: 

• Loop executing catch-close instructions the specified number of times. 

• Loop executing unbind instructions the specified number of times. 

• Pop the top three words off the stack. 
, 

• Do a %jump instruction, which jumps to the catch's restart PC and leaves 
the values thrown in the stack. 

Note that the return PC and value disposition that need to be modified are 
'actuallY stored in the frame header of the frame two frames up in the stack from 

. the frame containing the destination catch block. The frame containing the 
destination catch block could be the same one that called %throw_ In order to 
avoid having to modify the internal processor registers (Return PC and Control 
register), %throw calls itself recursively in this case. 

The purpose of the catch-block-invalid bit is to detect the case where a throw 
begins, is interrupted part way through, and the interrupt handler does another 
throw to a catch that is inside the original catch. This can also happen if an 
unwind-protect cleanup handler gets an error and a throw occurs from the 
Debugger. Since the stack has already been clobbered by changing the value 
disposition of the frame containing this new catch, the program wQuldoperate 
incorrectly if the second throw was permitted to occur. The 3600 deals with this 
differently; it. doesn't modify the value disposition of each frame until it is just 
about to return from it. This still has a possibility of the same bug, since there 
could be a catch in the frame being returned from, but the timing window is open 
for a much smaller time. The 3600's method is more difficult to do on the IMach 
because of the Control register. 

catch-block-invalid catches nonlocal, but lexical, gos and returns too, since they 
are compiled as throw to a special tag. It does not catch local gos and returns 
out of unwind-protect cleanup handlers, but those are thoroughly illegal! 

4.7 Generic Functions and Message Passing 

The flavor system deals with flavors, instances, instance variables, generic 
functions, and message passing. A flavor describes the behavior of a family of 
similar instances. An instance is an object whose behavior is described by 'a 
flavor. An instance variable is a variable that has a separate value associated 
with each instance. A generic function is a function whose implementation 
dispatches on the flavor of its first argument and selects a method that gets called· 

275' 



Symbolics, Inc. 

as the body of the generic function. In message passing, an instance is called as 
a function; its first argument, known as the message name, is a symbol that is 
dispatched upon to select a method that gets called. Message passing is the pre
Release-7 reason for generic functions; we plan to phase it out eventually (over 
several years). 

4'.7.1 Ravor 

A flavor is a structure that contains information shared by all its instances. The 
header of each instance points into the middle of the structure, at three words 
known by hardware. Other portions of the flavor are architecturally defined, but 
not known by hardware. Still other portions of the flavor are known only by the 
internals of the flavor system. 

The'data-representation chapter lists the architecturally defined fields of a flavor. 
See the section "Flavor Instances." 

4.7.2 Handler Table 

A handler table is a hash table that maps from a generic function or a message to 
the method to be invoked and a parameter used by that method to access instance 
variables. The details concerning the contents of a handler table are presented 
elsewhere. See the section "Flavor Instances." 

The hashing function used to search the handler table is designed to maximize . 
speed and simpli.fY hardware implementation, not to maximize density. It is 
optimized assuming that the search succeeds on the first or second pro be of the 
hash table. It operates as follows: 

• logand the generic function or message name with the hash mask from the 
flavor. 

• Multiply the result by 3 (this is just a shift and an add). 

• Add the product to the handler hash table address from the flavor and 
initiate a block read of sequential locations starting at that address. 

• For each block of three words, if the first word does not match the generic 
function or message name, and is not nil, skip the next two words and go on 
to the next block. 

• When a block is found whose key matches or is nil, accept the method and 
the parameter and terminate the search. 

Note that when a mismatch occurs, the' hash search proceeds through consecutive 
addresses; it does not rehash. It also does not wrap around when it gets to the 

276 



Symbolics, Inc. 

end of the table. Consequently the software must allocate sufficient room at the 
end of the table, after the highest address defmed by the hash mask, to 
ac.comodate overflow from the end of the table and a final entry with a key of nil 
that is guaranteed to terminate the search. 

The hash mask is normally a power of 2 minus l. 

Methods are dtp-even-pc or dtp-odd-pc. An interpreted method invokes a special 
entry point to the Lisp interpreter; this is implemented by storing the interpreter 
(the PC that points to its first instruction) as the method and storing the actual 
method as the parameter. 

4.7.3 Calling a Generic Function 

.A call to a generic function can be started by dtp-call-generic, 
dtp-call-generic-prefetch, dtp-call-indirect, dtp-call-indirect-prefetch that finds a 

. dtp-generic-function, or a start-call instruction whose operand is a 
dtp-generic-functiolL In any case, the generic function is pushed as the extra
argument to the call and the continuation is set to the trap-vector element for 
calling a dtp-generic-functiolL When the call is finished, control transfers to the 
continuation, which is always a function that consists of nothing but a 
%generic-dispatch instruction (there is no entry vector). 

The %generic-dispatch instruction sees the following on the stack: 

FPIB,1 the usual funct ion-call save area 

FPI2 the generic function 
FPI3 the instance 
FPI4,5, ... additional arguments, if any 

%generic-dispatch operates as follows: 

• Make sure that the number of "spread arguments" is at least 2. This 
ensures that FPI2 and FPI3 are valid. If necessary, perform a pull-Iexpr-args 
operation. If that fails to produce two arguments, signal a "too few 
arguments" error. 

• Get the address of the interesting part of the flavor, which specifies the size 
and address of the handler hash table. This is done by checking whether 
the data type of FPI3 is one of the instance data types. If it is, fetch its 
header following forwarding pointers (header-read). If it is not, use the data 
type to index a 64-element table in the trap vector that points to the hash
mask fields of the flavor descriptions. 

• Fetch two words from the flavor, the hash mask and hash-table address, and 
perform the handler hash table search described above. If the parameter is 

277 



Symbolics, Inc. 

not nil, store it into FPI2, otherwise leave the generic function in FPI2 (the 
default handler needs it). If the method is dtp-even pc or dtp-odd-pc, jump 
to its entry instruction. If the method is anything else, trap (this is an 
error). 

4~7.4 Sending a Message 

Sending a message occurs when dtp-call-indirect, dtp-call-indirect-prefetch or a 
start-call instruction finds an instance data type as the function. It pushes the 
instance as the extra-argument to the call and sets the continuation to the trap
vector element for calling that data type. When the call is finished, control 
transfers to the continuation, which is a function that dispatches to the 
appropriate method. 

At this point, the stack contains the following: 

FPIB,1 
FPI2 
FPl3 
FPI4,5, ... 

the usual function-call save area 
the instance 
the message 
additional arguments, if any 

This is almost like the generic function case except that FPI2 and FPI3 have been 
exchanged. The distinction between a message and a generic function is 
unimportant at this level; they are both used only as keys for searching the 
handler hash table. 

The %message-dispatch instruction, whose description is similar to that of 
%generic.dispatch except that the arguments are interchanged, accomplishes the 
dispatch by effecting results equivalent to the following sequence of instructions: 

ENTRY MIN ARGS = 2, MAX ARGS = ~ 
PUSH FPl2 
PUSH FPI3 
POP FPl2 
POP FPI3 
%GENERIC-DiSPATCH 

Note that an entry instruction cannot actually be used in this manner, so the 
%message-dispatch instruction must exist. 

4.7.5 Accessing Instance Variables 

Instructions !lxist to read, write, and locate instance variables . 

• Read: fetch the value of the variable, trapping if it is dtp.nuIl, and push the 
value on the stack 

278 



Symbolics, Inc, 

• Write: pop a value off the stack and store it into the instance variable, 
preserving the cdr code of the location and checking for invisible pointers 
and dtp-monitor-forward (the same as when writing a special variable). 

• Locate: compute the address of the instance variable's value cell and push it 
on the stack with dtp-locative. If the value cell contains an invisible pointer, 
dtp-null, or dtp-monitor-forward, that has no effect on the result of this 
instruction. 

These instructions are parameterized by the instance in question and the offset 
within that instance of the instance-variable slot. There are three groups of 
instructions: 

• Access an arbitrary instance, typified by %instance·ref: The instruction 
receives the instance and the offset as ordinary arguments. 

• Access self unmapped, typified by push-instance-variable-ordered: The 
instruction rmds the instance in FPl3 (the first argument in the current 
stack frame, after the extra-argument) and receives the offset as an 
immediate operand. 

• Access self mapped, typified by push-instance-variable: The instruction 
finds the instance in FPl3 (the first argument in the current stack frame, 
after the extra-argument), receives an instance variable number as an 
immediate operand, and finds a mapping table in FPI2 (the extra-argument 
or "environment"). The mapping table is always a simple, short-prefix ART
Q array. The instance variable number is used as a subscript into the 
mapping table to get the offset. [Note to those who understand the format 
of mapping tables used in Release 6 on the 3600: some slots in mapping 
tables are used for instance variable offsets as described here; other slots are 
used for other purposes such as subsidiary mapping tables for combined 
methods. The slots are allocated dynamically by the flavor system as they 
are required and in general the two types of slots will be interspersed. This 
eliminates the complexity and slowness of using array-leaders and art-16b 
arrays.] 

If an instance has been structure-forwarded to another instance, the value of self 
(FPI3) in a method is the original instance. This means that the instructions to 
access instance variables must check the header of the instance for a 
dtp-header-forward, just as the array referencing instructions do, before adding 
the offset to the address of the header to get the. address of the instance variable. 

279 



Symbolics, Inc. 

4.8 Stack-Group Switching 

The major steps of a stack-group switch are: 

1. Inhibit preemption 

2. Check the state of the new stack group for resumability 

3. Set argument, resumer of new stack group 

4. Save internal processor and coprocessor registers 

5. Swap out special-variable bindings of the current stack group 

6. Make sure the new stack group is prepared for execution 

7. Dump the stack cache 

8. Switch to the new stack and load the stack cache 

9. Restore internal processor and coprocessor registers 

10. Swap in special-variable bindings of the new stack group 

11. Enable preemption and return 

Saving internal processor and coprocessor registers is done by using 
%read-internal-register instructions to read the registers into local variables in 
the stack. When the switch to the new stack group is done, the new current stack 
frame will be one whose local variables contain the register values for the new 
stack group. 

To restore internal processor and coprocessor registers, use 
%write-internal-register instructions to pop the local variables off the stack and 
put them back in the registers. 

Swapping special-variable bindings in and out is the same except that swapping in 
traverses the binding stack in ascending address order and swapping out traverses 
it in descending address order. All memory reads are done with block-read or 
%memory-read instructions, since those contain magic bits to select special 
memory operand reference types. 

The basic procedure to swap one binding, assuming tbat P points to a pair of 
words in the binding stack, is: 

280 



10c +-data_read(P) 
old +- bind_read_no_monitor(P+1) 

rnern(loc) +- merge_cdr(old,new) 

rnern(P+1) +- new 

;Get address of bound cell 
;Get old contents of 
;that cell 
;Get new contents of 
;.that cell 
;If an invisible pOinter is 
;fo110wed, update 10c 
;Store back old contents 
; preserve cdr 
;Store new contents into 
;binding stack 

SymboJics, Inc. 

P and Zoe are block-address registers (BARs), old and new are locations in the 
. stack, dataJead and bind_read_no_monitor are memory read operations described 
in section "Operand References."· 

In assembly language, the procedure is as follows. Assume P is BAR-I, lac is 
BAR-2, and these BARs can be used for both reading and writing. (The order of 
these instructions might be rearranged to cut down on memory interference and to 
put the two block-I-reads adjacent, but that is a secondary consideration.) 

b10ck-1-read 
write-interna1-register bar-2 
b1ock-1-read last_word, 

bi nd_read_no_moni tor, no_increment 
block-2-read last_word, 

data_read(P) 
10c +-
old +- bind_read_no_monitor(P+1) 

bind_read_no_manitar,preserve_cdr,no_increment 
merge-cdr-nopop spl-1 cdr(old) +- cdr (new) 
block-1-write sp-pop rnem(P+1) +- new 
b10ck-2-write sp-pop mern(loc) +- old 

To make sure the new stack group is prepared for execution, it is necessary to call 
a subroutine in the paging system to wire down appropriate pages of the stack, 
and to run the GC scavenger over those pages if necessary: This also determines 
the appropriate values for the stack limit registers. The paging system maintains 
enough state so that this operation is very fast if the stack group has been run 
recently. Doing this before actually switching to that stack ensures that no traps 
(page faults or transport traps) can occur during the actual act of switching, when 
things are inconsistent, and ensures that the new stack group has enough space 
for the extra-stack. 

To dump the stack cache, use a loop that does block-read and block-write at 
identical addresses. The architecture requires that writes to memory locations in 
the stack cache write through to main memory. 

281 



Symbolics, Inc. 

To switch to the new stack and load the stack cache, initialize the registers that 
control the stack cache to suitable values and then do block-reads to fill it. In 
detail: 

1. Save the SP into the current stack group. 

2. Get the SP value of the new stack group. The FP value is at a known offset 
from this. These bracket a stack frame which is in the same format as the 
current stack frame, but contains the register values of the other stack 
group. 

3. Go into extra-stack mode so no traps/interrupts can occur. 

4, Store the FP value into the hardware FP and into a BAR. 

5. Set the stack cache lower bound register to the SP value +1, so that the 
following block-reads will neither read from the stack cache nor cause it to 
overflow. 

6·. Store the FP value minus 1 into the hardware SP. Do this last, since it 
renders the old stack frame inaccessible. 

7. Execute a sequence of block reads that fetch the new stack frame into the 
stack cache and increment the SP to its appropriate value. 

8. Set the stack cache lower bound register to FP. The stack cache is now 
consistent. 

9. Set the stack limit registers to the values for the new stack group. 

Restoring the internal processor registers will turn off extra-stack mode by 
restoring the control register. return will restore extra-stack-mode. 

4.9 Appendix: Comparison of 3600-Family and I-Machine Function
Calling 

To be supplied in the next revision of this specification . 

. 282 



SymboJics, Inc. 

5. Exception Handling 

************************************************************************ 
This file is confidential. Don't show it to anybody, don't hand it out 
to"people, don't give it to customers, don't hardcopy and leave it lying 
around, don't talk about it on airplanes, don't use it as sales 
material, don't give it as background to TSSEs, don't show it off as an 
example of our (erodable) technical lead, and don't let our competition, 
potential competition, or even friends learn all about it. Yes, this 
means you. This notice is to be replaced by the real notice when 

, someone defines what the real notice is. 
************************************************************************ 

5.1 Traps in General 

!tis occasionally necessary to escape from a situation that the hardware/microcode 
cannot handle and give control to some Lisp code. This escape action is known as 
a trap, and the Lisp code invoked is known as the trap handler. The trap handler 
rectifies the situation and returns to the interrupted program, which never knows 
that the trap occurred. Applications for traps include page faults, stack overflows, 
arithmetic overflows, arithmetic Instructions applied to types of numbers that are 
not built into the hardware, I/O interrupts, execution of instructions that are not 
implemented by the hardware, and several others. 

All trap handlers are functions called in the ordinary way; when an exception 
occurs the hardware forces a function call to a function found in a "trap vector," 
with arguments describing the exception and a return PC pointing to the 
appropriate instruction. Trap handlers written directly as instructions that 
execute in the stack frame of the function that trapped, as on the 3600, are never 
used. All trap handlers are Lisp functions. 

There are two major categories of traps: pre·traps and post· traps. A pre-trap is 
used when the trap handler will rectifY some condition, such as a non-resident 
page, and then the trapped instruction is to be retried. A post-trap is used when 
the trap handler will emulate the desired effect of the trapped instruction and 
then return to the next instruction in sequence. Most out-and-out errors are pre
traps, simply for the convenience of the hardware and the debugger; in this case 
the trap handler will never return. 

The value disposition for the values produced by a trap handler is undefined. All 
traps must return their values via return-kludge. 

Trap handlers are stored in the trap vector. See the section "Trap Vector", page 

283 



Symbolics, Inc. 

286. The trap vector is wired to avoid recursive page faults. All trap handlers 
receive the trap vector index and the PC of the trapped instruction as the first 
two arguments. 

The sequence of events for a pre-trap is as follows: 

1. Restore the stack to its condition at the start of the instruction. 

2. Push the continuation and control registers onto the stack with cdr code set 
to 3, set continuation to the contents of the trap vector entry, clear the 
control-register. extra-argument bit, set the control-register. trace-bits to 0, 
and set the control-register. trap-mode field to the maximum of the cdr code 
of the trap vector entry and the current trap mode. 

3'. Push the trap vector index. 

4. Push the PC of the trapped instruction. 

5. Push the trap arguments. 

6. Do a finish-call operation to invoke the trap handler, using the current PC 
as the return address. The value disposition is undefined. 

The sequence of events for a post-trap is as follows: 

1. Save the arguments to the trapped instruction and pop them off the stack. 

2. Push the continuation and control registers onto the stack setting the cdr 
code to 3, set continuation to the contents of the trap vector entry, clear the 
control-register.extra-argument bit and control-register. trace-bits, and set the 
control-register. trap-mode field to the maximum of the cdr code of the trap 
vector entry and the current trap-mode. 

3. Push the trap vector index. 

4. Push the PC of the trapped instruction. 

5. Push the arguments to the trapped instruction. 

6. Do a fmish-call operation to invoke the trap handler, using the incremented 
PC as the return address. The value disposition is undefined. 

284 



Symbolics, Inc. 

5.2 The Extra Stack 

Certain traps, such as page faults and disk-wakeup sequence breaks, have to be 
handled on a stack that is guaranteed to be in main memory and guaranteed to be 
large enough. These traps cannot tolerate another trap, such as a page fault on 
the stack, occurring during their handling. Such traps are handled on the user 
stack and the architecture and storage system are designed to treat stack pages 
specially so that no fault can occur while a trap is being handled. This has the 
advantage that there is no need for special hardware to deal with multiple stacks 
and context switching. 

Two stack-limit registers are provided, one for normal execution and the other for 
trap handlers. When the second stack-limit register is being used, the machine is 
said to be "executing on the extra stack." This is not a different stack from the 
normal control stack, but just extra space reserved at the end of the normal stack 
for use only by trap handlers. Only the control stack needs extra space; the 
binding and data stacks are not used by page-fault processing. 

The extra space is not actUally used by a trap handler unless the stack happened 
to be close to overflowing at the time of the trap. The trap handler just uses the 
space starting at the current top of the stack in the user program. If a normal 
program attempts to use the extra space, it takes a stack overflow trap and 
software grows the stack before allowing the program to proceed. (The initial 
handling of the stack overflow trap occurs on the extra stack.) If a trap handler 
overflows the extra, stack, the machine halts. This fatal error indicates either a 
bug in the trap handler or failure to allocate enough extra space when building 
the stack-group. 

The stack-limit register in use is specified by the processor trap mode. 

5.3 Trap Modes 

There are four interrupt levels or modes the processor can be in. The mode the 
processor is in specifies what can interrupt it, what control stack limit to use, and 
in one case, how traps work. The current mode is specified by the trap-mode field 
in the control register. 

Level 0, EmulatorThis is where most code gets run. Low-priority sequence break 
requests, high-priority sequence break requests, and preempt 
pending will interrupt the processor. 

Levell, Extra-Stack 
This is where the paging system runs, clock sequence breaks, 
other low-speed I/O, anc! certain critical routines (such as just 

286 



Symbolics; Inc. 

after a %allocate-xyz-block). Only high-priority sequence break 
requests can interrupt this. 

Level 2, High-Speed If 0 
This is where time-critical device service is done. Nothing can 
interrupt it. 

Level 3, FEP mode 
FEP code runs in here. Nothing can interrupt it. Additionally, 
when a trap occurs, it goes through a single trap vector. See the 
section "FEP-mode Traps", page 293. 

Unless the processor is in the emulator mode (the trap mode is nonzero), the 
machine is allowed to use the extra stack. (Level 1 is called "extra-stack," but 
levels 2 and 3 also imply the use of the extra stack.) 

The trap mode is set to the maximum of the current trap mode and the cdr-code 
field of the trap-vector entry when a trap is taken. This allows the processor to 
change mode atomically when entering trap handlers. Restoration of the control 
register on completion of the trap handler will restore the trap mode to its pre
exception state. 

The trap mode is set to 3 by INIT. The trap vector entry for RESET should 
specify level 3. Note that RESET is not inhibited by the trap] mode, in that 
respect it could be called Non-Maskable-Interrupt. i, 

5.4 Trap Vector 

The trap vector is a table whose elements specify the functions to be called when 
various exceptional conditions occur. Each entry is a PC (dtp-even-pcfdtp-odd-pc) 
that points to the rrrst instruction of the trap handling function. Byte <39:38> 
(the cdr-code) of the entry is the minimum initial trap mode for the handler. This 
table is stored at physical addresses 1000000 through 1007777; the trap vector 
index always supplied as the first argument to a trap handler is relative to the 
base of this table. 

See the section "Trap Vector Layout", page 294. 

5_5 Exceptions 

5_5.1 Error Traps 

When an instruction receives illegal operands, references memory and receives a 
bad data type, or encounters an instruction-specific error condition, it takes an 

286 



, 

Symbolics, Inc. 

error pre-trap. The· error trap handler takes two arguments (in addition to the 
trap index and PC): a micro-state, and a VMA. The micro-state is a unique 
identifier that is looked up in a table to determine the cause of the error. If 
appropriate, the second argument is the contents of the BAR that caused the 
error, otherwise it is ignored. 

5.5.2 Instruction Exceptions 

An instruction exception occurs when an instruction needs to perform some 
operation that is not an error, but is not directly supported by the hardware 
(taking the car of a list instance, for example). Instruction exceptions are post· 
traps, called with whatever arguments the instruction takes. The contract of the 
trap handler is to emulate the behavior of the particular instruction. Occasionally 
exceptional conditions will arise during emulation, such as the need to redecode an 
array register or refill a cons cache. 

The instruction exception trap handlers are contained in the instruction exception 
vector, which is indexed by the opcode of the faulting instruction. Note, though, 
that some instructions are emulated by dispatching through the arithmetic 
dispatch vector. See the section "Arithmetic Traps", page 287. 

A special case of instruction exception occurs when the processor attempts to 
execute an undefined instruction. In this case, a post-trap is taken, using the trap 
handler obtained by indexing into the instruction exception vector with the opcode. 
However, since the number of arguments is not known, the trap microcode 
presumes that the instruction takes zero arguments, and the trap handler must 
compensate. 

%halt (opcode 377) is guaranteed to be an undefined instruction and will always 
take an exception. 

5,5.3 Arithmetic Traps 

To improve the efficiency of simple arithmetic on non-fIxnum numbers, instruction 
exceptions for a number of instructions fetch the trap handler from the arithmetic 
dispatch vector instead of from the instruction-exception vector. The particular 
handler fetched depends on the types of the arguments. This reduces the 
overhead of dispatching on the types of the arguments by moving it into 
microcode. 

All of the instructions that use the arithmetic dispatch vector accept numeric 
arguments only; if any argument is non-numeric, an error trap will occur. (eq! is 
a slight exception to this rule .- it accepts nonnumeric arguments, but will only 
trap out for numeric arguments). The normal instruction exception vector for 
these instructions is not used in any circumstances. 

There are two different categories of arithmetic traps. Traps in the fIrst category 

287 



Symbolics, Inc. 

occur when an arithmetic instruction is applied to operands that are numeric types 
which the hardware does not support for the particular instruction. (Hardware 
support for certain types may depend on the presence of a coprocessor.) Traps in 
the second category occur when an exceptional condition (such as arithmetic 
overflow) results from attempting to perform the arithmetic operation. 

In general, information about why a particular arithmetic trap was taken is not 
available -- the trap handler is expected to check the operands, emulate the 
operation, check the results for exceptional conditions, and return. In certain 
circumstances more specific processing is allowed. For example, the only possible 
exception that can occur while adding two fbmums is an integer overflow, and the 
trap handler for add of flXllum arguments may take advantage of this. 

The arithmetic dispatch vector contains sixty-fQur trap handlers (eight numeric 
types for up to two arguments) for each instruction that uses it. These trap 
handlers are invoked via post-traps, in the same manner as normal instruction 
exceptions. The dispatching trap computes a trap-vector index from bits out of 
the opcode field of the instruction and bits out of the data types of the arguments. 
Specifically, for a binary arithmetic trap, the index into the arithmetic dispatch . 
vector is 

OPCODE<4:B> I ARG1<34:32> I ARG2<34:32> 

For a unary instruction, the dispatch acts as though arg2 were a flXl1um; that is, 
the low three bits of the index will always be zero. 

When the two operands are not of the same type, the trap handler may be a 
shared "coercion function" that simply coerces one of the operands to be 
compatible with the other, then jumps into the correct trap handler to perform the 
desired operation for the given type of (coerced) operands. The coercion "unction 
does not have to know what the operation is; the appropriate trap handler is 
fetched from the trap vector indexed by the original trap vector index plus a 
constant that accounts for the coercion that was performed. It is also possible to 
have a special-case function for a mixed-type operation (flXllum times bignum is 
always popular) just by fIlling in the trap vector asymmetrically. 

The following instructions post trap through the arithmetic dispatch vector: 

eql (263), eql-no·pop (267) 
equal.number (260), equal·numb.er-no-pop (264) 
greaterp (262), greaterp-no-pop(266) 
lessp (261), lessp-no-pop (265) 
plusp (36), minusp (35), zerop (34) 
add (300), sub (301), unary-minus (1l4) 
multiply (202), quotient (203), remainder (210), rational·quotient (211) 
ceiling (204), floor (205), truncate (206), round (207) 
max (213), min (212) 

288 



logand (215), logi~r (217), logxor (216), 
logtest (273), logtest-no-pop (277) 

ash (232) 

5_5_4 Memory Exceptions 

Symbolics, Inc. 

Memory exceptions occur when referencing the contents of a given location in 
memory. There are three classes of memory exceptions: 

• The memory operation could not be performed due to some property of the 
location. For example, the page might not be resident in main memory. 

• The memory operation was performed, but further processing is required due 
to some property of the contents of the location. For example, the contents 
might be a pointer to a condemned object. 

• A hardware error occurred during the memory operation. 

Correctable memory errors are not fatal. They are corrected by the memory 
interface. The occurrence of a correctable error will be recorded by a flag, and 
the address and .syndrome of the cell in error will be stored in a register. 
Software should periodically poll this register and log any errors. 

Anuncorrectable memory error is more serious. It causes an uncorrectable 
memory error page fault. The trap handler can do whatever is appropriate after 
the error. It is possible to recover from some uncorrectable errors, and others are 
fatal. 

Memory exceptions are pre-traps that take one argument, the address of the 
referenced location, in addition to the usual trap-vector-index and fault-pc 
arguments. The argument type can be either locative (a virtual address), or 
dtp-physical-address (a physical address, not always meaningful). The memory 
exceptions are: 

• Page not resident -- PlIT search failed. 

• Page fault request -- PlIT search succeeded but pht.fault-request is set. See 
the section "Revision 0 Implementation Memory Features", page 297. 

• Write protect violation -- attempted to write into a page with pht. write
protect set. 

• Transport trap· -- read pointer to oldspace from a page with pht. transport
trap set. 

• Uncorrectable ECC error -- location contains an uncorrectable error. See the 
section "Revision 0 Memory Exceptions", page 300. 

289 



Symbolics, Inc . 

• Bus error -- processor received a negative acknowledgement of a read. See 
the section "Revision 0 Memory Exceptions", page 300 . 

• Monitor trap -- read a reference of type dtp-monitor-forward. 

5.5.5 Stack Overflow 

Control stack overflow occurs when the finish-call instruction (or the equivalent 
operation when a trap is taken) detects the frame pointer is greater than stack 
limit. The limit register used depends on the trap mode of the processor. The 
stack limit is set lower than the real limit by the maximum size of a stack frame 
plus the amount of extra space needed to process the stack-overflow trap. 

Control stack overflow invokes a special trap handler found in a dedicated trap 
vector. The trap handler takes no arguments other than the trap-vector index and 
the fault PC. 

Binding stack overflow occurs when a bind-locative instruction tries to advance 
the binding-stack-pointer beyond the binding-stack-limit. Binding stack overflow 
signals an error trap. The error trap handler must be careful not to bind 
anything until it has considered the possibility that the error is a binding stack 
overflow. 

The return instructions that return multiple values check for stack frame 
overflow. If (+ cr.frame-size-of-caller values-being-returned) is greater than stack
frame-maximum-size (an internal register), an error trap is taken. 

5.5.6 Sequence Breaks 

A sequence break is an asynchronous interruption of the currently executing 
program. A sequence break causes control to be transferred to one of two PCs 
found in the trap vector. (Most other computers call this an interrupt, but we 
cannot use that word without confusion because of the without-interrupts special 
form in Zetalisp, which only prevents preemption, not sequence breaks.) Sequence 
breaks are requested by the high-priority and low-priority sequence break request 
pins on the processor. 

A high-priority sequence break trap will be taken at the completion of any 
macroinstruction where the high-priority sequence break request pin is asserted 
and the trap mode is either 0 or 1. A low-priority sequence break trap will be 
taken at the completion of any macroinstruction where the low-priority sequence 
break request pin is asserted and the trap mode is O. See the section "Revision 0 
Sequence Breaks", page 301. 

Like other traps, the sequence-break handling functions execute in the context of 
the interrupted process. They are essentially pre-traps, called with no arguments 
(other than the standard ones). These interruptions are intended to be 

290 



Symbolics, Inc. 

transparent to normal Lisp programs, and. therefore the handling functions. must 
be careful what they do. 

There are two .sources of external sequence. breaks: low-speed I/O (for example, 
disk completion) and high'speed I/O (for example, 56Kb serial line). Low-speed I/O 
routines may spend a moderately long time executing, if needed. High-speed I/O 
must by programmer design spend a very small amount of time executing, 
especially if there is more than one device that needs service. 

Programs may synchronize with sequence-break handling functions either by 
raising the trap mode, or using the store-conditional instruction. 

All indefinite-duration microcode loops are interruptible by sequence breaks, 
causing the instruction to be aborted. This includes invisible pointer following, 
method table searching, indirection through symbols in start-call, and 
'rgetf/member/assoc. An indefmite-duration microcode loop will of course only be 
interrupted by a sequence break if the current trap mode permits sequence breaks. 

5.5.7 Preemption 

Preemption is switching from the current process to the scheduler. This is a 
software operation, which has hardware support for its initiation. 

Preempt-request and preempt·pending are bits in a global register, not in the 
Control register. These bits are set at the same time by software, such as a clock 
sequence break handler, . that wants to preempt the current process. If preempt
pending is set, and the processor is in emulator mode, then a preempt·request trap 
occurs after the current instruction completes. The trap handler clears the 
preempt-pending bit and then checks whether the process can be preempted. If so, 
it clears preempt-request and passes control to the scheduler. If not, it leaves 
preempt-request set and returns. 

The priority of preempt-pending relative to other traps is: 

High reset 
stack-overflow (in finish-call) 
high-priority-sequence-break 
low-priority-sequence-break and emulator-mode 
preempt-pending and emulator-mode 

Low trace-pending 

The check-preempt-request operation sets the preempt-pending flag if the preempt
request flag is set. This causes a trap at the end of the current instruction if the 
processor is in emulator mode, otherwise the trap is taken as soon as the 
processor returns to emulator mode. 

Anything that unbinds a special variable (whether the unbind instruction or an 
implicit unbind caused by the return instruction encountering a cleanup bit) does 
a check-preempt-request operation. This is the reason why preempt-request is a 

291 



SymboJics, {nco 

hardware fiaginstead of just being a software variable. See the section "Revision 
o Unbinding", page 301. 

The %check-preempt-request instruction (called %check-preempt-pending on the 
3600) does a check-preempt-request operation. Those extra-stack trap handlers 
that wish to check for a pending preempt when they return to the user must do a 
%check-preempt-request instruction; if this sets preempt-pending the trap will go 
off when the trap handler returns. The %check-preempt-request instruction is 
also used in a couple of places in the garbage collector. This could be open-coded 
using %read-internal-register and %write-internal-register, rather than being a 
real instruction, but is probably easy to implement as an instruction since the 
logic has to be present already for unbind. 

Note that function return does not do a check-preempt-request operation unless it 
unb~nds special variables, and instructions that change the processor trap mode do 
not do a check-preempt-request operation, but may provoke a trap if preempt
pending is already set. 

Details on stack-group switching can be found in the function calling chapter. See 
the section "Stack-Group Switching", page 280. 

5.5_8 Trace Traps 

Instruction-trace, call~trace, and trace-pending are three bits in the Control 
register, set and cleared by software in saved copies of the Control register in 
memory. Trace-pending can also be set by hardware.' Reset and Init clear all 
three of these bits. The hardware clears all three of :these bits whenever a trap 
occurs, after saving the Control register on the stack. 

If trace'pending is 1, a trap occurs before eXecuting the next instruction. Note 
that a sequence break can intervene before the trap actually goes off. There is 
only one trap vector location for trace-pending, regardless of the semantic 
significance of the trap to the software. If a return instruction restores a Control· 
register value with the trace-pending bit set, the trap occurs after completion of 
the return instruction and before execution of the instruction returned to. 

When a return instruction is executed repeatedly because of Value-disposition 
Return, and trace-pending is set by restoring a Control-register value, the trap 
either occurs immediately or after the repeated Return operations finish; the 
architecture doesn't specify which. The trace-pending values in the several 
Control register values that are restored are effectively ORed together, so. the trap 
is not lost. 

If instruction-trace is 1 at the beginning of an instruction, completion of the 
instruction sets trace-pending and causes a trap before the next instruction 
executes. If a post-trap occurs when instruction-trace is 1, trace-pending is set in 
the Control register saved as part of taking the trap. This is not true of a pre
trap. If a return instruction restores a Control register value with the instruction· 
trace bit set, the instruction returned t02~'2 executed before the trap occurs. 



Symbolics, Inc. 

If call-trace is 1, the finish-call instruction sets trace-pending and causes a trap 
before the first instruction of the called function executes. If stack overflow 
occurs simultaneously, trace-pending is set but the stack overflow trap occurs first. 
When the stack overflow handler returns, the trace trap occurs. Call-trace does 
not effect the implicit finish-call performed when a trap occurs, because call-trace 
gets cleared first. 

5_5_9 PULL·APPL Y·ARGS Exception 

See the section "Pull-apply-args", page 261. 

A pull-apply-args pre-trap is taken from a function entry instruction to extract 
additional arguments from an apply argument that the microcode is not capable of 
doing. The trap handler takes two arguments, the number of arguments to pull, 
'and the apply argument, which is popped off the stack before the trap is taken. 
The trap handler extracts the arguments, updates the saved Control register to 
reflect the new state of the previous frame, and return-kludges the extracted 
arguments and the remaining apply argument, if any, directly into the correct 
place in the previous frame. 

5_5.10 FEP·mode Traps 

With few exceptions, traps are not supposed to happen while the FEP code is 
running. To give the FEP a chance to examine each trap and decide whether or 
not it is meaningful, all traps while in FEP mode go through a single trap vector. 
Any given trap will be taken in.exactly the same manner, with the same 
arguments and the same continuation, whether or not the processor is in FEP 
mode; the only difference is where the trap handler PC comes from. 

5.5_11 Processor Faults 

A processor fault occurs when the processor encounters a situation from which it 
cannot proceed. The occurrence of a processor fault halts the processor and 
indicates the error on an external pin. The causes of a processor fault are: 

• Stack overflow while using extra stack. 

• Other than dtp-even-pc/dtp-odd.pc in the trap vector. 

• Uncorrectable ECC error when reading trap vector. 

• Recursive uncorrectable ECC error. 

• Page fault while dumping stack cache. 

The processor will not respond to anything other than reset and init when halted. 
See the section "Revision 0 Traps for P3Bl3'ssor Faults", page 301. 



Symbolics, Inc. 

5.6 Trap Vector Layout 

The trap vector is stored at physical addresses 1000000 through 1007777, and is 
basically partitioned as follows: 

0000 .. 3777 
4000..4377 
4400 .. 4477 
4500 . .4777 
5000 .. 5077 
5100 .. 5177 
5200 .. 7777 

Arithmetic dispatch vector 
Instruction exception vector 
Interpreter function table 
Reserved 
Generic dispatch table 
Miscellaneous exceptions 
(Reserved for future expansion) 

The' arithmetic dispatch vector contains the exception handlers for those 
instructions defined to use the arithmetic dispatch. See the section "Arithmetic 
Traps", page 287. 

The instruction exception vector contains the exception handlers for instructions 
that do not use the arithmetic dispatch vector. See the section "Instruction 
Exceptions", page 287. 

The interpreter function table contains one entry per data type. When a start·call 
is given a data type not directly understood by the hardware, the contents of this 
table, indexed by the data type, are placed in the continuation register. See the 
section "Starting a Function Call", page 249. 

The generic dispatch table contains one entry per data type. When the " instance " 
argument to %message-dispatch or %generic·dispatch is not an instance, the 
address of the flavor hash mask needed to do the method search is found by 
indexing into this tabL. See the section "Calling a Generic Function", page 277. 

The miscellaneous exceptions are assigned as follows: 

5100 Error trap 
5101 Reset 
5102 pull-apply-args 
5103 Stack overflow 
5104 Trace trap 
5105 Preempt request 
5106 Transport trap 
5107 FEP·mode trap 

5110 Low priority sequence break 
5111 High priority sequence break 
5112 Monitor trap 
5113 Reserved for future use 

294 



5114 
5115 
5116 
5117 

5120 
5121 
5122 
5123 
5124 

5125-5177 

Generic-dispatch instruction 
Reserved for a fence word 
Message-dispatch instruction 
Reserved for a fence word 

Page not resident 
Page fault request 
Page write fault 
l1ncorrectable memory error 
Bus error 
Reserved for future use 

'5.7 Reset and Init 

SymboJics, Inc. 

. Reset and lnit are exceptions invoked by pins of the same names on the processor 
chip. Reset is similar to a sequence break, and is used to return the processor to 
the FEP. lnit is a no-holds-barred initialization of the machine, usually performed 
after power on. 

Reset forces the processor to take an exception to fetch a new PC from the trap 
vector. It is up to software to save the machine state if it is desired to resume 
execution at the point the reset occurred. 

Init initializes the processor hardware, and may abort outstanding memory 
accesses without completion, and so on. The PC is set to a flxed vma=pma 
address, 77400100, from which execution proceeds. See the section "Revision 0 
lnit PC", page 301. 

5.8 Appendix: Comparison of 3600-Family and I-Machine Exception 
Handling 

To be supplied with the next revision of this document. 

295 



Symbolics, Inc. 

296 



Symbolics, Inc. 

Appendix A 
Revision 0 Implementation Features 

A.O.1 Revision 0 Implementation Memory Features 

Revision 0 of the Ivory chip implements the following fields for ephemeral address: 

Position 
<31:27> 
<26:22> 
<26:25> 
<21> 
<20:0> 

Meaning 
00000 => ephemeral, otherwise non-ephemeral 
ephemeral level number 
ephemeral level group number 
which half of the ephemeral level 
word address within an ephemeral level 

The comparison used Revision 0 in the inner loop of the PHT search is 

(and (= (ldb %%phtO-vpn entry) vpn) 
(= (ldb %%phtO-fault-request entry) 0)) 

A page· fault-request trap will not be taken if the %%phtO·fault·request bit is 1; 
this simply causes the entry not to match, eventually resulting in a page-not
resident trap instead. 

The Revision 0 implementation always traps when executing an instruction from a 
page with transport-trap=l. Later implementations may be able to do an actual 
oldspace check in this case. 

The Revision 0 implementation of Ivory does update a PHT entry by ORing the 
new bits in, but it does not use an interlocked bus read/write cycle. . 

Revision 0 of the Ivory chip sets the PC to VMA=PMA address 0 on receiving 
INIT. 

The actual pht lookup algorithm for Revision 0 of the Ivory chip is: 

(defun pht-lookup (vpn) 
(flet «search-bucket (pht-offset) 

(loop repeat 4 
i ni ti all y (setf (7.block-address) (+ pht-base pht-offset)) 
for entry = (%block-read) 
dO (if (and (= (ldb %%pht0-vpn entry) vpn) 

(= (ldb %%phtO-fault-request entry) 0)) 
(return-from pht-lookup 

(values entry (%block-read))) 

297 



Symbolics, Inc. 

(%block-read» 
finally 

;; If at end of coll ;s;on cha;n, fail. 
(when (= (ldb %%pht0-coll;s;on-cha;n entry) 1) 

(return-from pht-lookup (»»» 
(search-bucket (logand (pht-hash vpn) pht-mask» 
(1oop for state = (pht-next vpn) then (pht-next state) 

do (search-bucket (logand (lsh state 3) pht-mask»») 

A.O.2 Revision 0 Implementation Instruction Features 

The following text describes characteristics of the Revision 0 implementation of 
the I·machine architecture. 

Revision 0 %Allocate-list-block 

Takes an instruction exception if argl is nil. 

Revision 0 %Allocate-structure-block 

Takes an instruction exception if argl· is nil. 

Revision 0 Aset·1 

-- does not check for the high-order 24 (16) bits of dtp-character arguments being 
o when storing such arguments into 8(16)-bit arrays. 

Revision 0 Binding Instructions 

%restore-binding-stack, unbind-n, and the return instructions performing 
unbindings when the cleanup bit is set do not check for binding-stack underflow in 
Revision O. 

Revision 0 %Block-n-reacJ..alu 

-- performs overflow detection for exceptions but does not allow the memory 
operand to be in the stack cache. User programs must be sure that that the 
operands are not in the stack cache to insure proper operation. Does not take the 
shift mask specification from the DP OP register. 

Revision 0 %Block-n-read-shlft 

-- will not work with ECC errors. 

298 



Symbolics, Inc. 

Revision 0 %Block-n-read-test 

-- only implements the eq condition. and the true sense. The alu-op field of the 
DP Op register must be loaded with "subtract" in order to use the instruction. 
Needs to have the oldspace condition added. 

Revision 0 Branch and Loop Instructions 

Revision 0 conditional branch instructions take an exception if the bottom eight 
bits of the offset are all 0 (as opposed to all 10 bits being 0). This effectively 
limits the branch distance to plus or minus 128, but the compiler could be smart 
about this. branch to the next instruction is the fastest no-op, except for skipping 
an instructic}U entirely via cdr-code sequencing. 

Revision 0 Entry-rest-accepted 

-- and entry-rest-not-accepted do not perform correctly when doing a 
pull-apply-args operation when the rest argument (or tail) is an item of type 
dtp-list-instance in the stack cache. 

Revision 0 Fast-aset-' 

-- does not check for the high-order 24 (16) bits of dtp-character arguments being 
o when storing such arguments into 8(16)-bit arrays. 

Revision 0 Loop-decrement-tos 

-- does not check overflow conditions. Uses zerop for the check rather than piusp. 

Revision 0 Loop-increment-tos-Iess-than 

-- does not check overflow conditions. 

Revision 0 Opcode 57 

-- jumps to a totally random address after pushing D.pe on the stack. 

Revision 0 Numeric Operations 

There will be no floating-point support in the Revision 0 chip. 

Revision 0 Return-single 

When the value disposition is "for value," the cdr code is the cdr code of the top 
of stack or it is cdr-next for t or nil. 

299 



Symbolics, Inc. 

Revision 0 Return-kludge 

Sets the cdr codes of all values to cdr-next. 

Revision 0 Stack.blt 

--. sets the cdr code of the operand to cdr-next. 

Revision 0 Stack-blt-address 

-- sets the cdr code of the operand to cdr-next. 

Revision 0 Unbind-n 

Revision 0 of the Ivory chip, when unbinding, only checks the preempt-request bit 
when the trap mode is zero. 

A.O.3 Revision 0 implementation Function-Calling Features 

The Ivory· chip uses a scratchpad register to hold the value of %stack-frame
maximum size, which, with stack-cache-size being 128, is currently 119. 

In Revision 0, if control-register. trace-pending would be set upon normal 
completion of an instruction, but the instruction pre-traps instead, control
register. trace-pending will incorrectly be set in the saved control-register image of 
the pre-trap handler. 

In Revision 0, if control-register. instruction-trace is 1 at the beginning of a return 
instruction, and the return instruction restores a control-register with the trace
pending bit 0, control-register. trace-pending (and the correspontl'ng trace-trap) may 
or may not be set at the completion of the return instruction. 

In Revision 0, when a return instruction with value disposition return restores a 
control-register with trace-pending set, the trace-trap will be lost. Only the trace
pending bit of the last control-register restored is significant. 

Revision 0 of the Ivory chip cannot handle faults during stack cache remI. 

A.O.4 Revision 0 Implementation Exception Handling Featutes 

The following text describes characteristics of the Revision 0 implementation of 
the I-machine architecture. 

Revision 0 Memory Exceptions 

The revision 0 implementation of the Ivory chip takes an uneorrectable-memory
error trap when it should take a bus-error trap. 

300 



Symbolics, Inc. 

Revision 0 Sequence Breaks 

Sequence breaks vector through only one place in microcode. That microcode then 
examines a register to decide whether the sequence break is high-priority or low
priority. This is only visible to the user if a high-priority sequence break is 
requested and, before the microcode can execute the start of the sequence break 
microcode, the high-priority sequence break goes away. In this case, because of the 
order of polling in the microcode, the chip will take a low-priority sequence break 
(although the low-priority bit might not be set in the preempt register). 

Revision 0 Traps for Processor Faults 

The Revision 0 chip only halts for a stack overflow while using extra-stack mode. 
lt does not halt for any of the other reasons listed in the Processor Faults section 
in the Exceptions chapter. The architectural issues of processor-fault handling 
have not yet been resolved. 

The Revision 0 chip does not respond to reset when halted. 

Page faults currently do not work, since it is not possible for an instruction to 
look like it has finished without actually transferring control to the next 
instruction's microcode. This means that either the entire control stack must be 
wired down and scavenged, or that the trap-on-exit bit must be used to cause a 
trap when more stack must be wired down. At the same time. that the stack is 
wired down, it must be transported for proper operation. 

Revision 0 Unbinding 

See the section "Revision 0 Unbind-n". 

Revision 0 In it PC 

Revision 0 Init sets the PC to vma=pma O. 

301 



Symbolic •• Inc. 

302 



Symbolics, Inc. 

Appendix B 
Summary of Omitted 3600 Instructions 

;;; These are supported only if the floating point chip supports them 
%CONVERT-SINGLE-TO-FIXNUM 
%DOUBLE-FLOATING-ABS, %DOUBLE-FLOATING-ADD, %DOUBLE-FLOATING-COMPARE, 
%DOUBLE-FLOATING-DIVIDE, %DOUBLE-FLOATING-MINUS, 
%DOUBLE-FLOA TI NG-MUL TI PL Y, %DOUBLE-FLOA TI NG-SCALE, %OOUBLE -FLOA TI NG-SUB 
FLOAT-OPERATING-MODE, FLOAT-OPERATION-STATUS, 
.sET-FLOAT~OPERATING-MODE, SET-FLOAT-OPERATION-STATUS 

. Will not be implemented: 

FOLLOW-CELL-FORWARDING %memory-read-address data-read or bind-read 
FOLLOW-STRUCTURE-FORWARDING %memory-read-address struct-offset 
LOCATION-BOUNDP (/= (%data-type (%memory-read bind-read) dtp-null) 
%P-STRUCTURE-DFFSET %memory-read-address followed by %pointer-plus 
%P-CONTENTS-AS-LOCA TI VE%memory-read-address fa 11 owed by %set-tag 
%P-CONTENTS-OFFSET (cdr (%p-structure-offset ... ) 

Unclassified: 
NOT - Imp1 emented by type-member 
LONG-BRANCH-IMMED 
PUSH-MICROCODE-ESCAPE-CONSTANT 
%DRAW-STRING-STEP, %BITBLT-DECODE-ARRAYS, %BITBLT-LONG, 
%BITBLT -LONG-ROW, %BITBLT -LONG-ROW-BACKWARDS, %BITBL T -SHORT, 
%BITBLT-SHDRT-ROW, %DRAW-LINE-LOOP, %DRAW-STRING-LOOP, 
%DRAW-TRIANGLE-SEGMENT, SOFT-MATTE-DECODE-ARRAYS, SOFT-MATTE-INTERNAL 

Lisp Instructions: 
%SAVE-BINDING-STACK-LEVEL 

- Implemented as an internal register 
CONS 
NCONS 

Function-Calling instructions: 
TAKE-ARC, TAKE-H-REQUIRED-N-OPTIONAL-ARGS, 
TAKE-M-REQUIRED-N-OPTIONAL-ARGS-REST, TAKE-N-ARGS, TAKE-N-ARGS-REST, 
TAKE-N-OPTIONAL-ARGS, TAKE-N-OPTIONAL-ARGS-REST, TAKE-REST-ARG, 

303 



Symbolics, Inc. 

Fortran Array Instructions: (This might make it in, but I think we will 
be too tight on "B" memory locations and microcode) 
FTN-ALOC-1, FTN-AREF-1, FTN-ASET-1 
FTN-DOUBLE-ALOC-1, FTN-DOUBLE-AREF-1, FTN-OOUBLE-ASET-1 
FTN-LOAO-ARRAY-REGISTER 

Law-Level Hardware: 
%AUDl O-ST ART, %CHECK-PREEI1PT -PENDl NG, %CLEAR-CACHES, 
%CLEAR-INSTRUCTION-CACHE, %OISK-START, 
1.RESUME-MAIN-STACK-BUFFER, %FUNCALL-IN-AUXILIARY-STACK-BUFFER, 
%FEP-OOORBELL, 
7FIXNUI1, %FLONUM 
%GC-MAP-WRlTE, %GC-TAG-REAO, %GC-TAG-WRITE, 
%I1AP'-CACHE-WRITE 
%METER-OFF, %METER-ON 
%I1ICROSECONO-CLOCK 
%NET-WAKEUP 
%NUMERIC-DISPATCH-INDEX 
%PHTC-READ, i:PHTC-SETUP, %PHTC-WRlTE 
%PHYSICAL-ADDRESS-CACHE, 
%REFERENCE-TAG-READ, i:REFERENCE-TAG-WRITE 
%SCAN-FOR-ECC-ERROR, %SCAN-FOR-EPHEMERAL-SPACE, %SCAN-FOR-OLDSPACE 
%SCAN-GC-TAGS, %SCAN-REFERENCE-TAGS, %SET-PREEMPT-PENDlNG, 
%TAPE-WAKEUP, %UNSYNCHRONIZED-OEVICE-READ 

;;; Replaced by Bars 
%BLOCK-GC-COPY, %BLOCK-TRANSPORT 
%BLOCK-STORE-CDR-AND-CONTENTS, %BLOCK-STORE-TAG-AND-POINTER 

i i; Open coded 
POP-MULTIPLE, POP-MULTIPLE-SAVE-1, POP-MULT1PLE-SAVE-N,' 
POP-MULTIPLE-SAVE-MULTIPLE 
POP-N-SAVE-MULTIPLE, APPEND-MULTI PLE-GROUPS , PUSH-FROM-BEYO~D-MULTIPLE 
FIXUP-TOS (MOVEM SPIS) 
%MAKE-POINTER-IMMED-OFFSET 

304 



Symbolics, Inc. 

Appendix C 
Notes on I-Machine Architecture History 

Data-Types Chapter -- Representations of Arrays 

A prototype of the precise algorithm to be used when accessing an indirect array, 
using the 3600 array format instead of this array format, can be found in the file 
V:>Moon>IMach>3600>array.lisp. This was translated from the existing, working 
3600 microcode. 

Some static analysis of arrays, in a system 311 world that been used for a week: 

99.65% of all arrays are one-dimensional. 
2-dimensional and 3-dimensional arrays exist; no higher-dimensional or 

O-dim arrays. 
The average size of an array is 38 words. 
There is no category of arrays whose average size is larger than will 
fit in 15 bits; unfortunately I didn't measure the size distribution 
of arrays directly, so I don't know the percentage of arrays whose 
size will not fit in 15 bits, but it must be very smalL 
All array types are used at least once. 
The maximum leader length seen is 38 elements. 
Unfortunately I didn't measure what fraction of arrays are displaced. 

--Moon 

The longest array-leader observed was 38 elements, so a maximum limit of 255 
elements should not be restrictive. The maximum on the 3600 is 1023. 

The leader header uses dtp-header-p rather than dtp-header-i because there were 
more spare header-type codes avallable for that type of header. 

More information from ReI 6.1 

99.54% of the arrays are one-dimensional, of which 99.54 are direct (not 
displaced). Totals: 453049 arrays, 450961 one-dim, 448900 direct one-dim, 2061 
indirect one-dim. The distribution of the LOG2(LENGTH) is as follows: 

0: 12493; 
1 : 16181; 
2: 35701 ; 
3: 130120; 
4: 93601; 
5: 85789; 
6·: 44053; 

305 



Symbolics, Inc, 

7 : 26594; 
8: 2447; 
9: 873; 

10 : 615; 
11 : 324; 
12 : 48; 
13 : 25; 
14: 20; 
15 : 12; 
16: 6' , 
17 : 3' , 
19 : 1 . , 
20: 3. 

20.33% of those arrays have a leader 
The distribution of the LOG2(LEADER-LENGTH) is as follows: 

8: 2; 

1: 7962; 
2: 5878; 
3: 3428; 
4: 73835, 
5: 181; 
6: 1. 

Data-Types Chapter -- Representations of Compiled Functions 

Not only does this (using the cdr code 1 as a fence) avoid loading the instruction 
cache with extraneous words from functions other than the one being 'executed, 
but more importantly it avoids a subtle bug involving fetchahead past the free
pointer for allocation of compiled code, after a sequence of timing coincidences has 
left words there containing valid data types for instructions, The bug is that 
obsolete data could get into the instruction cache and not get cleared out when a 
new function was created at the same address. ' 

Note that the design is intended to put the function cell and the entry instruction 
both on the same page and in the same cache line, minimizing the cost of 
indirecting through a function cell. The loader may want to insert extra words to 
keep compiled functions aligned on appropriate boundaries so that the function cell 
and entry instruction always fall into the same cache line, if we have a cache. 

Data-Types Chapter .- Instruction Representation 

This scheme, different from the 3600, is, designed to eliminate the 
constants/external-reference table in a compiled function and thereby to enable 
prefetching of such data through the normal instruction pipeline. This saves time 
and simplifies the hardware by eliminating an addressing mode. H says the 

306 

! 



\ 

Symbolics, Inc. 

average number of references per constant is small enough that this actually saves 
space, compared to the 3600. In cases where there are many calls to the same 
function or references to the same constant, the compiler can attempt to encache 
it in a local variable. 

Data-Types Chapter -- Representation of Physical Addresses: 

BARs need to store 33 bits, the 33rd bit being the dtp-physical-address'ness of the 
pointer field. 

The BAR incrementer only increments the pointer field; it leaves the dtp-physical
address'ness alone. 

The FAST'AREF/ASET-l ucodelhardware adds the offset to the pointer field of the 
array register base address slot and preserves the dtp-physical-address'ness on the 
way to the BAR. 

The input to the map cache now has three possibilities instead of two: 

mapped virtual address 
vrna=pma virtual address 
dtp-physical-address physical address 

The possibilities for cache-control output lines/signals/meanings for each of the 
above should be discussed separately. The thing I think we all agree on is that 
data referenced with dtp-physical-addresses are never cached. 

Memory Chapter --Wired Addresses: 

The 3600-family feature where some portion of virtual address space defined by a 
control register (%wired-virtual-address-high) is mapped to a contiguous portion of 
unmapped address space defined by another control register(%wired-physical
address-low) is eliminated, to simplify the hardware. This reduces configuration 
flexibility by requiring that some portion of unmapped address space starting at a 
fixed physical address, presumably 0, must always contain working memory; this is 
not a problem if that memory is packaged right on the CPU board. The 
permanently-wired programs and data that on the 3600 are stored in virtual 
address space below %wired-virtual-address-high will instead be stored at physical 
addresses. 

Memory Chapter -- Pages: 

There has been a lot of discussion about increasing the page size. There are a lot 
of variables involved, including: 

• Page tables (PHT and MMPT, not SMPT or ESRT) can be smaller for larger 
page sizes. This isn't that large an effect -- 256 word pages yield about 
1.9% overhead, 512 yields 1.0%, and 1024 yields 0.4%. All of these figures 
are tolerable, and well below a number of comparable (sic) systems. 

307 



Symbolics, Inc. 

• Overhead of managing page .tables is lower with larger page sizes. The only 
place where this is significant is in creating new pages. However, 
reorganization of the code and algorithms can compensate. In fact, there is 
very significant progress to be made here before the effect of page size gets 
out of the noise. 

• Larger page sizes mean there are more untranslated bits available 
(presumably the processor can spit these out 1/2 cycle earlier) for data 
caches and clever dynamic ram organizations to take advantage of. 

• A given size map cache describes more storage if the page size is larger. 
However, according to the literature, the primary contributors to map cache 
performance are number of entries, associativity, and replacement algorithm 
(in roughly that order), with page size a distant fourth. 

• The instruction prefetcher faults crossing page boundaries. 

That's about it for the pros. On the con side are: 

• Larger page sizes reduce primary memory utilization. 

• Larger page sizes reduce the ability of the EGC to isolate ephemeral 
references. The EGC keeps track of ephemeral references on a 'per-page 
basis -- any page thought to contain such references needs to be scanned. If 
there is poor locality of such references, the amount of scanning required 
per garbage collection will increase proportional to the page size. This is an 
important effect, since as main memory sizes increase the amount of EGC 
scanning increases, but the memory bandwidth and processor speed will stay 
relativelyconst .,nt. 

Some perfunctory analysis indicated that the reduced primary memory utilization 
of larger page sizes was a very significant effect, and on that evidence (and 
conservatism in general) the page size was left at 256 words. 

In Release 6.0, the function with the largest number of required+optional 
arguments is TV;DRAW-TRIANGLE-SETUP, which takes 15 argnments. 

308 

J 



Symbolics. Inc. 

Appendix D 
Hints for Software Developers 

Data-Types Chapter 

Double-precision Floating-point Representation: Similar to the 3600, except that a 
cons is used instead of a structure to eliminate the overhead of a header word. 

Note that the two halves of the number are being stored in arguably the wrong 
order, since the least-significant bits of the fraction should be first. This is 
consistent with the 3600. The real basis for deciding should be the order that 
data are fed into the double-precision floating-point processor chip, if there is one. 

Memory Chapter 

The system must ensure, or arrange, that there are never any safeguarded objects 
in about-to-be oldspace. The 3600 solves this by simply not flipping that region, 
but that might not be easy on this machine, especially ephemeral space. 

Memory Chapter 

The fields in an MMPT entry are: (these fields aren't known to hardware) 

- bits 31:8 -- VPN -- the virtual page number now in this physical 
page, -1 if invalid. 

- bit 7 -- FLUSHING -- 1 => VPN will change when disk write completes. 
- bit 6 -- WRITE LOCK -- 1 => don't reassign the page (being written 

to disk?). 
- bit 5 -- STACK -- 1 => this page is held in main memory because 

b · 1 

- lt 4 

- bits 3:0 

it's a stack. 
spare 
-- status code, defined by software (3600 uses 10 codes) 

Explanation of PHT.PENDING: Hardware does not look at the PHT.PENDING 
bit. If it is set, PHT.FAULT-REQUEST is also set, by software convention. 
PENDING is set when a page is being read in from disk, but first another page 
has to be written out from the memory page frame the new page is going to 
occupy. In this situation, there are two PHT entries pointing to the same physical 
page. Each of them has FAULT REQUEST set, and one of them also has 
PE:NDING set. The MMPT entry for that physical page contains the information 
needed by the page-fault trap-handling software to figure out what is going on. 

Compromises: AGE: bits would really rather be in the MMPT. Setting of 
EPHEMERAL REFERENCE bits would really rather be in parallel with memory 
access. I don't think either of these will have a significant effect on performance, 
in practice. 

309 



Symbolics, Inc. 

""~ "-'- ; 

-----~--
-~-----,--- -" 

--------- ---- '"--~- --~--------/:;1";:z? 

/ 

Instruction Chapter.·· rgetf 

Additional instructions can be used together with rgetf to implement the zI:get, 
zl:putprop, cl<get, and cl:getf functions and to implement &key arguments. rgetf 
is often followed by either an instruction· to pop the second value or a branch 
instruction that tests the second value and if it is nil pops both values and goes to 
code to substitute a default value. 

(get loc arg2) 

should be 

(getf (location-contents 
... ) arg2) 

cl:get is 

push arg2 
push symbol 
type-member-n-no-pop 
branch-false. 
%pointer-plus 4 
%memory-read data-read 
rgetf sp-pop 
set-sp-to~address SPI-1 

;symbolp 

rgetf stands for "reverse getf' because the argument order is reversed from 
cl:getf. 

Instruction Chapter •• logtest 

logtest is commutative, so that if there is a small integer, logtest should commute 
it to the second argument. .. DCP The hardware has no idea about commutativity. 
Software probably has to do this. -- BEE 

Instruction Chapter •. pop 

The file V:>moon>imach>pop.text has more information about stack'popping 
instructions, including stack·blt. 

D.0.1 Stack Groups on the I Machine 

A stack group is the object of computation. It contains the memory image of a 
process. This includes many things, all of which eventually need to be 
enumerated. For now, the list includes the following: 

• Control Stack 

310 



_ Symbolic •• Inc. 

Instruction Chapter -- Mapped Access to Self 

The instructions for mapped accesses to self check that the argument I is within 
the bounds of the mapping table. If it is not, a trap occurs. The bounds check is 
performed by fetching the array header of the mapping table, assuming it is a 
short-pref"1X array, and comparing I against the array-short-Iength field. 

Implementation note: it is useful to cache the array header to avoid making a 
memory reference to get it every time. For an example of how to do this using 
two scratchpad locations and one cycle of overhead, see the 3600 microcode. 

Instruction Chapter -- rgetf 

Additional instructions can be used together with rgetf to implement the zl:get, 
zl:putprop, cl:get, and cl:getf functions and to implement &key arguments. rgetf 
is often followed by either an instruction to pop the second value or a branch 
instruction that tests the second value and if it is nil pops both values and goes to 
code to substitute a default value. 

(get loc arg2) 

should be 

(getf (location-contents 
... ) arg2) 

cl:get is 

push arg2 
push symbol 
type-member-n-no-pop 
branch-false. 
%pointer-plus 4 
%memory-read data-read 
rgetf sp-pop 
set-sp-to-address SPI-1 

; symbol p 

rgetf stands for "reverse getf' because the argument order is reversed from 
cl:getf. 

Instruction Chapter -- logtest 

logtest is commutative, so that if there is a small integer, logtest should commute 
it to the second argument. -- DCP The hardware has no idea about commutativity. 
Software probably has to do this. -- BEE 

Instruction Chapter -- pop 

The me V:>moon>imach>pop.text has more information about stack-popping 
instructions, including stack-bIt. 

310 





Symbolics, Inc. 

o Control Stack Base 

o Control Stack Pointer 

o Control Stack Limit 

o Control Stack Extra Limit 

o Control Stack Wired Low 

• Frame Pointer 

• Local Pointer 

• Binding Stack 

o Binding Stack Base 

o Binding Stack Pointer 

o Binding Stack Limit 

• Data Stack 

o Data Stack Base 

o Data Stack Pointer 

o Data Stack Limit 

• Catch Block Pointer 

• PC 

• Control Register 

• Continuation Register 

• Floating Point State 

o Mode - rounding, underflow-to-O, ... 

o Status _ sticky-over/underflow, ... 

Several of the stack group registers are not hardware registers, just software slots 
in the stack group . 

. Function-Calling Chapter 

311 



Symbolics, Inc. 

BecausEl the handling of Multiple and Return value dispositions is similar, the 
return-single and return-multiple instructions can be implemented by starting 
with a four-way dispatch to these cases: 

1. Cleanup Bits non-zero - Perform the cleanup and then retry the instruction. 

2. Value Disposition = Effect - Just return without worrying about the values. 

3. Value Disposition = Value - Just return the first value. 

4. Value Disposition = Multiple or Return - Take complex actions. 

(But KHS doesn't believe it is actually implemented that way.) 

Function.Calling Chapter -- Stack-Group Switching 

Existing instructions have the following capabilities: 

• ability to do appropriate special memory references, using block-readfwrite 

• ability to do necessary cdr-code hacking 

• ability to dump the entire stack cache into memory 

• ability to load a new stack into an empty stack cache 

• ability to read and write all internal processor and coprocessor registers 

• that are part of the stack group context 

• ability to inhibit all traps and interrupts while the stack cache control 
registers are in an inconsistent state 

• ability to inhibit process preemption during the whole operation this is done 
. by setting a software flag respected by the preempt 

Other instruction assumptions: 

• bind]ead_no_monitor bit in block-read in~truction 

• no_increment bit in block.read instruction prevents incrementing BAR 

.. preservesdr bit in block-read instruction inhibits setting cdr of result to 0 
(this is already in the rev -2 spec) 

• when block-read follows an invisible pointer, it updates the BAR 

• merge-cdr-nopop instruction: cdr(operand) f- cdr(top-of-stack), no change to 

312 



Symbolics, Inc. 

SP this could be done with %p-tag-Idb and %p-tag-dpb but it would be 
much slower. 

Note that it is possible for the cdr code of the bound location to change while it is 
bound, which is why the merge-cdr-nopop instruction is required instead of simply 
rewriting all 40 bits with the value saved in the binding stack. 

Alternatively, to the assumption that memory locations in the stack write through 
to main memory, a specific instruction could be provided to dump the entire stack 
cache, since the processor already knows how to dump parts of the stack cache 
when it fills up. 

Exceptions Chapter 

Floating exceptions need to be covered as well. Floating overflow and underflow 
always trap. Floating inexact needs a software writable enable to stop it from 
trapping, since it occurs so frequently. Floating divide by 0 always traps. 
Floating invalid operation always traps. The trap handlers can maintain sticky 
bits for all these exceptions. 

Be especially careful about non-commutative instructions with pop-stack address 
mode [for traps]. 

Exceptions Chapter 

There are four kinds of recursive traps to fear: 

Page fault on a stack page.. This is avoided by requiring that all pages of the 
control stack of a stack group, up to the extra-stack limit, be resident in main 
memory before control can enter the stack group. The Revision 0 chip does not do 
this, so stack get completely wired. Other implementations do this, so page faults 
on running stacks cause the pages to get wired, but are otherwise pretty normal. 
(Just the structure defining the stack group would be stored, not the actual 
stacks). The paging system has to be careful about evicting stack pages or 
clearing their write-permission bits. It may not do this to the current stack 
group, and if it does it to another stack group it must set a bit in the SG that 
will cause a trap if control attempts to enter it. Note that the stack-limit register 
values in a stack group can be set to less than their maximum values, to save on 
main memory. Then if the limited stack available overflows the stack overflow 
handler can wire down additional pages and increase the stack limits. 

Virtual address translation failure on a resident stack page. On the 3600 if a 
virtual reference is satisfied by neither the map cache nor the PHTC, it traps to 
macrocode. Occasionally a trap to macrocode will occur for a resident page, 
merely to translate its virtual address. This cannot be tolerated on the IMach, so 
the page translation tables must be designed so that the hardware and microcode 
can always find the physical address of a resident page. This has the additional 
advantage that spilling of a cache into main memory can never cause a page fault 
(assuming of course that when a page is evicted its contents are fIrst removed 
from any caches that may still contain them.) 

313 



Symbolics, Inc. 

Page fault while dumping the contents of a cache to make room for new 
data. This cannot happen as explained just above. 

If uncorrectable ECC error is a trap, then this can also be recursive. 

It is not actually necessary to wire down an entire stack, just the top part of the 
stack that is being used. When control unwinds to earlier frames in the stack, a 
page fault will occur while trying to reload the stack cache from virtual memory. 
It should be easy to arrange for this page fault to be handled in the part of the 
stack that is still resident. The control-register. trap-on-exit bit could also be set 
in the bottommost frame in the resident portion of the stack, so that the trap 
would occur before the page fault. In this way main memory would be used in the 
same way that A-memory is used for a stack buffer in the 3600. 

314 



Symbolics, Inc. 

Appendix E 
Notes on Future Implementations of the Ivory Chip 

Data-Types Chapter -- Array Representations 

Non-word-aligned array registers can be optimized by an additional 5-bit adder and 
a special carry input to the main adder. 

Instruction Chapter -- minusp 

Small ratios might also be handled by microcode since they can be compared on
the same basis as f"umums -- if ratios are canonicalized to have the sign bit in the 
Jlumerator. Same test for all of them, bitwise? except for floating point, not-a
numbers. -0.0 is not minusp, so bit test fails. 

Instruction Chapter -- Instance Variable Accessors 

All of the instance-variable accessing instructions could take an sp-pop argument 
as an alternative to an immediate. This issue needs to be reviewed when the 
microcode is written. %iDstance-Ioc, %instance-ref, %instance-set could be 
flushed. Removing them would slow the specific kinds of instance-variable 
accesses that use these instructions by a factor of 2 or 3. Most instance-variable 
accesses use the mapped or ordered instruction described earlier. 

Function-Calling Chapter 

This is not done in Revision 0 of the chip, but might ought to be: 

"The first thing finish-call does is to check for Apply = 1 but the top word on the 
stack is nil (an empty list). In this case it pops the stack and clears its copy of 
the Apply bit, turning into a normal call. This canonicalization simplifies the 
argument match-Up procedure described later." 

Function-Calling Chapter -- Calling a Generic Function 

A reasonable optimization would be to avoid the memory references to fetch the 
trap-vector element and to fetch the %generic-dispatch instruction, since calling 
of generic functions is so common. (It would save 2 memory references out of 5, 
and avoid perturbing the I cache.) The %generic-dispatch instruction could be 
fed magically into the instruction .pipeline, and the PC could be set to a constant 
value that is architecturally required to be the address of a memory location 
containing a %generic-dispatch instruction; this location will be referenced if the 
%generic-dispatch traps (for example, for a page fault) and has to be retried. 

Future hardware might contain a special-purpose cache used by the generic
dispatch instruction to speed repeated lookups with the. same generic functi~n and 
instance. . 

315 



Symbolics, Inc. 

316 



Symbolics, Inc. 

Appendix F 
Instruction Classifications for Packed Instructions 

F.1 Formats 

The two major classifications of packed instructions are operand-from-stack format 
and lO-bit-immediate format. These are further broken down into various 
subclasses. Additional information in the opcode field is indicated with a"". 
Instructions in the operand-from-stack format always have an operand-specifier in 
their lower 10 bits. Instructions in the lO-bit-immediate format have different 
uses for their lower 10 bits. Fields in the lO-bit immediate are indicated by a "-". 

F.2 Operand-tram-stack Instructions 

* Unary Instruction (otherwise:1:2 args) 
* Signed Immediate (otherwise unsigned) 

unary/signed (14 opcodes) 
car, cdr, endp, plusp2, minusp" zerop" setup-1d-array, setup
force-1d-array, start-call, bind-locative,%restore-binding-stack, 
%ephemeralp, %tag, %jump 

unary/unsigned (12 opcodes) 
unary-minus', push, push-n-nils, push-address-sp-relative, return
multiple, return-kludge, take-values3, unbind-n2, 
push-instance-variable2, push-address-instance-variable2, 
push-instance-variable-ordered2, 
push-address-instance-variable.ordered2 

unary/address (11 opcodes) 
set-to-car, set-to-cdr, set-to-cdr-push-car, increment, decrement, 
push-address4, set-sp-to-address3, set-sp-to-address-save-tos3, 

%pointer-increment, %set-cdr-code-1, %set-cdr-code-2 

2Arithmetic dispatching. 

31nstructions which are only defined for an immediate argument CQuld be in either operand-fram-stack or 
1 O-bit-immediate format. 

4Not all address-operand instructions mOdify their argument. 

317 



Symbolics, Inc. 

not-unary/signed (31 opcodes) 
rplaca, rplacd, rgetf, member, assoc, multiply \ quotient \ 
ceiling1, floor1, truncate 1, round1

, remainder1, rational-quotient1, 

max\ min1, logand1, logior\ logxor\ ash\ rot, Ish, %multiply
double, %lshc-bignum-step, stack-bIt, bind-Iocative-to-value, 
%pointer-plus, %pointer-difference, store-conditional, %memory
write, %p-store-contents 

not-unary/unsigned (24 opcodes) 
add\ sub \ %32-bit-plus, %32-bit-difference, %add-bignum-step, 
%sub-bignum-step, %multiply-bignum-step, %divide-bignum-step, 
aref-l, aset-l, aloc-I, array-leader, store-array-Ieader, aloc-Ieader, 
pop-instance-variableg, movem-instance-variable 2, 

pop-instance-variable-ordered2, movem-instance-variable-ordered2, 

%instance-ref, %instance-set, %instance-loc, %allocate-list-block, 
%allocate-structure-block, %set-tag 

not-unary/address (6 opcodes) 
pop, movem, stack-blt-address3, fast-aref-13, fast-aset-13,%merge
cdr-no-pop 

Binary-Predicate Subformat 
* no-pop argi 

not-unary/signed (12 opcodes) 
eq, eq-no-pop, eql\ eql-no-pop\ equal-number\ 
equal-number-no-pop \ greaterp \ greaterp-no-pop" lessp \ 
lessp-no-pop \ logtest \ logtest-no-pop 1 

not-unary/unsigned (2 opcodes) 
%unsigned-lessp, %unsigned-Iessp-no-pop 

BAR Subformat 
* BAR number 

unary/signed (4 opcodes) 
%block-n-write 

unary/address (4 opcodes) 
%block-n-read-alu 

Lexical Subformat 
* variable number 

unary/signed (8 opcodes) 
push-Iexical-var-n 

318 



not-unary/signed (16 opcodes) 
pop-lexical-varon, movem-Iexical-var-n 

F.3 10-bit-immediate Instructions 

Type-member Subformat 
• pop arg 
* field number (2 bits) 
- field number (2 bits) <9:8> 
- type set <7:0> 

unary (8 opcodes) 

Branch Subformat 
* condition false 

type-member-n, type-member-n-no-pop 

• no-pop condition 
* and extra pop 
• else extra pop 
- branch offset <9:0> 

Symbolics, Inc. 

(16 opcodes) branch-true, branch-false, branch-true-no-pop, branch-false-no
pop, branch-true-else-no-pop, branch-false-else-no-pop, branch
true-and-no-pop, branch-false-and-no-pop, branch-true-and-extra
pop, branch-false-and-extra-pop, branch-true-else-extra-pop, 
branch-false-else-extra-pop, branch-true-and-no-pop-else-nopop, 
branch-false-and-no-pop-else-nopop, branch-true-extra-pop, branch
false-extra-pop 

Loop Subformat 
- branch offset <9:0> 

(3 opcodes) branch, loop-decrement-tos, loop.increment-tos-Iess-than 

Byte-field Subformat 
- field width <9:5> 
- field starting position <4:0> 

unary (4 opcodes) 
Idb, char.ldb, %p-Idb, %p-tag-Idb 

not-unary (4 opcodes) 
dpb, char-djJb, %p-dpb, %p-tag-dpb 

319 



Symbolics, Inc. 

BAR Subformat 
* BAR number 
- memory cycle type <9:6> 
- flXIlum only <5> 
- set cdr-next or invert test <4> 
- last word <3> 
- no increment <2> 
- test select <1:0> 

(12 opcodes) %block-n-read, %block-n-read-shift, %block-n-read-test 

Finish-call Subformat 
* apply 
-' value disposition <9:8> 
.- number of arguments <7:0> 

(4 opcodes) fmish-call-n, finish-call-n-apply, finish-call-tos,finish-call-tos
apply 

Entry Subformat 
* rest accepted 
. min args <7 :0> 
- max args <25:18> 

(2 opcodes) entry-rest-not-accepted, entry-rest-accepted 

Return Subformat 
- return value select <1:0> 

(1 opcode) return-single 

Catch-open Subformat 
- value disposition <7 :6> 
- catch/unwind-protect <0> 

(1 opcode) catch-open 

Memory-read Subformat 
- memory cycle type <9:6> 
- flXIlum only <5> 
- set cdr-next <4> 

(2 opcodes) %memory-read, %memory-read-address 

Internal-Register Subformat 

320 



- internal register address <9:0> 

(2 opcodes) %read-internal-register, %write-internal-register 

Coprocessor Subformat (2 opcodes) 
- coprocessor address <9:0> 

(2 opcodes) %coprocessor-read, %coprocessor-write 

Unused-Immediate Subformat (6 opcodes) 

SymboJics, Inc. 

locate-locals, catch-close, %generic-dispatch, %message-dispatch, 
%check-preempt-request, no-op, %halt 

'F.4 Encodings 

unary 00 0 - 00 car 10 start-call 
signed 01 cdr 11 7.jump 

02 endp 12 %tag 
03 setup-1d-array 13 
84 setup-force-1d-array 14 
05 bind-locative 15 
06 %restore-binding-stack 16 
07 %ephemeral-p 17 

20 push-lexical-var-0 30 %block-0-write 
21 push-lexical-var-1 31 7.block-l-write 
22 push-lexical-var-2 32 %block-2-write 
23 push-lexical-var-3 33 7.block-3-write 
24 push-lexical-var-4 34 zerop* 
25 push-lexical-var-5 35 minusp* 
26 push-l exi. cal-var-6 36 pl'usp* 
27 push-lexical-var-7 37 

081_ 08 type-member-8 10 1 ocate-local s 
01 type-member-1 11 catch-close 
02 type-member-2 12 7.generic-dispatch 
83 type-member-3 13 %message-dispatch 
84 type-member-8-no-pop 14 %check-preempt-request 
85 type-member-1-no-pop 15 
06 type~member-2-no-pop 16 no-op 
87 type-member-3-no-pop 17 %hal t 

28 branch-true 38 branch-false 

321 



Symbolicsr Inc. 

unary 01 8_ 
unsigned 

unary 81 1_ 
address 

21 branch-true-else-extra-pop 
22 branch-true-and~extra-pop 
23 branch-true-extra-pop 
24 branch-true-no-pop 
25 branch-true-and-no-pop 
26 branch-true-else-no-pop 
27 branch-true-no-pop-extra-pop 

88 push 
81 push-n-nil s 
82 push-address-sp-relative 
83 
84 return-multiple 
85 return-kludge 
86 take-values 
87 unbind-n 

28 %block-B-read 
21 %block-1-read 
22 %block-2-read 
23 %block-3~read 
24 %block-B-read-shift 
25 %block-1-read-shift 
26 %block-2-read-shift 
27 %bleck-3-read-shift 

8e set-te-car 
81 set-t~-cdr 
02 set-te-cdr~push-car 
83 increment 
84 decrement 
85 %pointer-increment 
86 %set-cdr-code-1 
07 %set-cdr-code-2 

28 %block-0-read-alu 
21 %block-1-read-alu 
22 %block-Z-read-alu 
23 %block-3-read-alu 
24 
25 
26 
27 

322 

31 branch-false-else-extra-pop 
32 branch-false-and-extra-pop 
33 branch-false-extra-pop 
34 branch-falSe-no-pop 
35 branch-false-and-no-pop 
36 branch-false-else-no-pop 
37 branch-false-no-pop-extra-pop 

18 push-instance-variable 
11 push-address-instance-var 
12 push-instance-var-ordered 
13 push-addres5-i nstance-var-or 
14 unary-m i nus* 
15 return-single 
16 %memory-read 
17 %memory-read-address 

38 %block-B-read-test 
31 7.block-1-read-test 
32 %block-2-read-test 
33 %block-3-read-test 
34 fi n i sh-ca 11-n 
35 finish-call-n-apply 
36 fi ni sh-call-tos 
37 finish-call-tos-apply 

19 push-address 
11 set-sp-to-address 
12 set-sp-to-address-save-tos 
13 
14 %read-internal-register 
15 %write-internal-register 
16 %coprocessor-read 
17 %coprocessor-write 

30 ldb 
31 char-lob 
32 %p-ldb 
33 %p-tag-ldb 
34 branch 
35 loop-decrement-tos 
36 entry-rest-accepted 
37 entry-rest-not-accepted 



Symbolics, Inc. 

not- 10 e - 00 rplaca 10 remainder:t:: 
unary signed 01 rplacd 11 rational-quotienh 

02 multiply" 12 m;n* 
B3 quotienh 13 max* 
04 ceiling* 14 
05 fl oar" 15 logand" 
06 truncate" 16 logxor" 
07 round* 17 1 ogi or" 

20 rot 30 %poi nter-pl us 
21 lsh 31 %pointer-difference 
22 %multiply-double 32 ash" 
23 %lshc-bignum-step 33 store-conditional 
24 stack-blt 34 %memory-write 
25 rgetf 35 %p-store-contents 
26 member 36 bind-locative-to-value 
27 assoc 37 

10 1 BO pop-lexical-var-O 10 movem-lexical-var-O 
01 pop-lexical-var-1 11 movem-lexical-var-1 
02 pop-lexical-var-2 12 movem-lexical-var-2 
03 pop-lexical-var-3 13 movem-lexical-var-3 
04 pop-lexical-var-4 14 movem-lexical-var-4 
B5 pop-lexical-var-5 15 movem-lexical-var-5 
B6 pop-lexical-var-6 16 movem-lexical-var-6 
B7 pop-lexical-var-7 17 movem-lexical-var-7 

20 equal-number" 30 eq 
21 1 essp" 31 
22 greaterp" 32 
23 eql" 33 logtesb 
24 equal-number-no-pop* 34 eq-no-pop 
25 lessp-no-pop* 35 
26 greaterp-no-pop* 36 
27 eql-no-pop* 37 logtest-no-pop* 

not- 11 8 - Be add" 1e aset-1 
unary unsigned B1 sub* 11 %allocate-list-block 

82 %32-bit-plus 12 aref-1 
83 %32-bit-difference 13 a10c-1 
94 %add-bignum-step 14 store-array-leader 
B5 %sub-bignum-step 15 %a11ocate-structure-block 

323 



SymboJics, Inc. 

06 %multiply-bignum-step 16 array-leader 
07 %divide-bignum-step 17 aloe-leader 

20 pop-instance-variable 30 
21 movem-instance-variable 31 %unsigned-lessp 
22 pop-instance-var-ordered 32 
23 movem-instance-var-ordered 33 
24 %instance-ref 34 
25 %instance-set 35 7.unsigned-lessp-no-pop 
26 %instance-loc 36 
27 7.set-tag 37 

not- 11 1 00 pop 10 fast-aref-1 
unary address 01 movem 11 fast-aset-1 

02 %merge-cdr-no-pop 12 stack-blt-address 
03 13 
94 14 
05 15 
06 16 
07 17 

20 30 dpb 
21 31 char-dpb 
22 32 %p-dpb 
23 33 %p-tag-dpb 
24 34 
25 35 loop-increment-tos-< 
26 36 catch-open 
27 37 

324 



%%bignum-Iength 19 
%%bignum~sign 19 
%%BYTE-OFFSET field 36 
%%BYTE-PACKING field 36 
%%CHAR-BITS 17 
%%CHAR-CHAR-SET 17 
%%CHAR'STYLE 17 
%%CHAR-SUBINDEX 17 
%%DOUBLE-EXPONENT 22 
%%DOUBLE-FRACTION-HIGH 22 
%%DOUBLE-SIGN 22 
%%ELEMENT-TYPE field 36 
%%EVENT-COUNT field 36 
%%SINGLE-EXPONENT 22 
%%SINGLE-FRACTION 22 
%%SINGLE-5IGN 22 
%arraY'preflx-long 30 
%array-prefix .. short 30 
%header-type-array 30 
%header-type-bignum 19 
%header-Iype-Ieader 30 
%wired-physical-address-Iow 59 
%wired-virtual-address-high 59 

10-bit-immediate Instructions 319 

%32·blt-dIHerence instruction 134 
%32.blt-plus instruction 133 
%add·blgnum-step instruction 135 
%allocate-list·block instruction 214 
%allocate-structure-block instruction 216 
%block .. n·read instruction 1-69 
%block-n-read .. alu instruction 171 
%block·n·read·shlft instruction 170 
%block·n·read·test instruction 172 
%block·n·wrlte instruction 174 
'Iocheck.preempt.request· instruction 232 
%coprocessor .. read instruction 221 
'Iocoprocessor.write instruction 222 
'Iodlvlde-blgnum·step Instruction 138 
%aphemeralp instruction 213 
'Iogeneric-dlspatch instruction 229 
'Iohalt instruction 233 
'Ioheader-type-Instance 
%instanc&-Ioc- instruction 
%Instance..ref instruction 
'Iolnstance-set instruction 

14 
211 
209 
210 

'Iojump instruction 231 
'Iolshc.blgnum-step instruction 139 
'Iomemory·read instruction 222 
'Iomemory·read-address instruction 223 
'Iomemory·wrlte instruction 227 
'Iomerge.cdr.no--pop. instruction 229 
'Iomessage-dlspatch instruction 230 
'Iomultlpty·blgnum-step instruction 137 
'Iomultiply-double instruction 134 
'Iop-dpb instruction 152 
'Iop.ldb instruction 151 

Index 

%p-store-contents instruction 226 
%p.tag-dpb instruction 153 
'Iop.tag·ldb instruction 152 
%pointer .. difference instruction 218 
%poinler"lncrement instruction 219 
'Iopolnter·plus instruction 217 

Symbolics, Inc. 

%read .. intemal .. register - instruction 220 
%restore-blnding-stack instru"ction 190 
%set-cdr-code-n instruction 228 
%set-tag instruction 225 
'Iosub-blgnum-step instruction 136 
%tag instruction 224 
'Iounslgned.lessp instruction 213 
%wrlte-Internal"register instruction 220 
add instruction 113 
aloOol instruction 155 
aloc·leader instruction 162 
arel·l instruction 154 
array-leader instruclion 161 
aset .. 1 instruction 154 
ash instruction 131 
8SSOC instruction 100 
blnd·locative instruction 188 
bind·locative·to·value instruclion 188 
branch instruction 164 
branch-Ialse {-alse}! -and}! ·no.pop) I -exira· POP) 164 
branch-true {-eloe) {.andl {·no·pop) {·extra-pop) 

instruction 164 
car instruction 92 
catch-close instruction 196 
catch·open instruction 195 
cdr instruction 92 
ceiling instruction 120 
char-dpb Instruction 151 
char·ldb instruction 150 
decrement instruclion 117 
dpb instruction 149 
dtp.array 30 
dtp.array.lnotance 17 
dlp-blg·ratio 22 
dtp.blgnum 19 
dtp.call-complled-even instruction 175 
dtp.call-complled-even-preletch 175 
dtp.call-complled-odd instruction 175 
dtp.call-complled-odd.preletch 175 
dtp.call-generlc instruction 177 
dtp-call.lndlrect instruction 176 
dtp-call·lndlrect·preletch 176 
dtp-character 17 
dtp-compUed-lunction 40 
dtp-complex 24 
dtp-double-float 22 
dtp-dynamlc-closur. 43 
dlp.element·lorward 6, 8 
dlp.even.pc 46 
dtp.axtemal.value-ceJl.polnter 8 
dtp.flxnum 19 
dtp.-generlOoIunctlon 43 
dtp.header·lorward 6, 8 

325 



dlp-header-I 6 
dlp-header-p 6 
dlp-inslance 14 
dtp-Iexical-closure 43 
dlp-lIsl 24 
dlp-lisi-instance 17 
dlp-Iocalive 46 
dtp-monllor-forward 10 
dip-null 10 
dip-add-pc 46 
dlp-on .. q-forward 8 
dlp-physlcal-address 47 
dlp-slngl .. floal 22 
dlp-small-ralio 20 

. dlp-spare-number 24 
dip-string 30 
dlp-strlng-Instance 17 
endp instruction 108 
entry-rest-accepled instruction 181 
entry-resl-nol-accepted 181 
eq instruction 102 
eq-no-pop 102 
eql instruction 102 
eql-no-pop 102 
equal-number Instruction 103 
equal-number-no-pap 103 
fast-aref.1 instruction 158 
fasl-aset-1 instruction 159 
flnish-call-n instruction 179 
finish-call-tos instruction 180 
floor instruction 121 
greaterp instruction 104 
greaterp-no-pop to4 
Increment instruction 116 
Idb instruction 149 
lessp instruction 105 
lessp-no-pop 105 
locat .. lOcals instruction 182 
Iogand instruction 128 
Ioglor instruction 129 
logiest instruction 106 
logtest-no-pop 106 
logxor instruction 130 
loop-decrement-tos instruction 166 
loop-Increment.ta ... le .... than inslruction 167 
Ish instruction 133 
max instAlCtion 126 
member instruction 99 
min instruction 127 
mlnusp instruction 110 
movem instruction 142 

326 

movem-Instance-varlable instruction 203 
movem-Instance-varlable-ordered instruction 207 
mDvem-lexlcal"var .. n instruction 199 
multiply instruction 118 
nooOp instruction 221 
plusp inslruction 109 
pop instruction 141 
pop-Inslance-varlable instruction 202 
pop-Instanc .. varlable-ordered instruction 206 
pop-Iexlcal-var-n instruction 198 
push instruction 141 

push-address instruction 144 
push-address-instance-variable instruction 204 
push .. address-Instance .. variable-ordered instruction 208 
push-address-sp-relalive instruction 145 
push-Instanc&ovariable instruction 201 
push-Instance-variable-ordered instruction 205 
push-Iexical-var-n instruction 198 
push·n-nlls instruction 143 
quotient instruction 11 9 
rational-quollent instruction 125 
remainder instruction 124 
retum.kludge instruction 185 
return-multiple instruction 184 
return-single instruction 183 
rgatf instruction 98 
rot instruction 132 
round instruction 123 
rplaca Instruction 96 
rplacd instruction 97 
sel-sp-to-address instruction 144 
set .. sp.to-address.save-tos ~nstruction 145 
set-toooCar instruction 93 
set-to-cdr instruction 94 
sel-to-cdr-push-car instruction 95 
setup-ld-array instruction 156 
setup-forc .. 1d-array instruction 157 
stack-bit instruction 146 
stack-blt-address instruction 147 
start-call instruction 178 
store-array-Ieader instruction 161 
slore-condltlonal instruction 225 
sub instruction 114 
tak .. values instruction 186 
truncate instruction 122 
type-member-n instruction 107 
type-member-n-no-pop 107 
unary-minus instruction 115 
unblnd-n instruction 189 
unslgned-Iesspono-pop 213 
zerop instruction 111 

Aborting Calls 257 
Accesses to Arbitrary Instances 209 
Accessing Instance Variables 278 
Address or immediate data 2 
Address Space 57 
Address Translation 60 
Address width 57 
Appsndix: Comparison ef3600-Family and I-Machine Data 

Rep ... sentations 52 
Appsndix: Comparison of 3600-Family and I-Machine 

Exception Handling, 295 
Appsndix: Comparison of 3600-Family and I-Machine 

Function-Calling 282 
Appsndix: Comparison of 3600-Family and I-Machine 

Instruction Sets 233 
Appsndix: Comparison of 3600-family and I-machine 

Memory Layout and Addressing 69 . 
Architecturally defined fields of a flavor 14 
Areas 57 
Argu!"ents: the Data Typss Accepted 84 
Arithmetic Traps 287 

} 



Array Differences 54 
Array Instances 17 
Array Operations 154 
Array register 30 
Array register: array length 36 
Array register: base address 36 
Array register: control word 36 

Sase Registers 242 
Sig-Ratio Representation 22 
Signum Representation 19 
Bind-Read Operations 87 
Bind-Write Operations 88 
Binding Instructions 168 

- Binding Stack 244 
Block Instructions 169 
Branch and Loop Instructions 164 

Calling a Generic Function 277 
Catch Blocks 192 
Catch Instructions 192 
Catch. Throw and Unwind-Protect 271 
Catch-block-binding-stack-pointer 192 
Catch-block-continuation 192 
Catch-block-po 192 
Catch-block-pointer 192 
CatCh-block-previous 192 
CatCh-block-tag 192 
Cdr code 24 
Cdr code tag 2 
Cdr Codes of Values Returned 90 
CDR-Read Operations 87 
Classes of Stored Object Representations 3 
Collision-count mechanism 63 
Compiled Function Differences 56 
Complex-Number Representation 24 
Components of Stored Representations 6 
Constant Formats 80 
Constants 43 
Continuation register 245 
Control register 245 
Control register Apply field 245 
Conlrol register Arg-size field 245 
Control register Call-started field 245 
Control register Cleanup-bits field 245 
Control regist.r Extra-argument field 245 
Control register Frame-size"'f-caller field 245 
Control register Instruction-state field 245 
Control register Trap-mode field 245 
Control register Value-disposition field 245 
Control Stack 241 
Control Stack Addressing Modes 83 
Control Stack Frames 241 

Data Stack 245 
Data type tag 2 
Data Types for Program Counter Values 50 
Data-Movement Instructions 141 
Data-Read Operations 86 
Data-Type Code Assignments 48 
Data-Type Descriptions 13 
Data-Write Operations 86 

327 

Division Operations That Return Two Values 120 
Double-Precision Floating-Point Representation 22 
Dip-nil 13 
Dip-symbol 13 

Emulator trap mode 285 
Encodings 321 
End·collision-chain bit 63 
Entry instruction 40 
Entry-Instruction Format 80 
Entry-rest-not-accepted 181 
Ephemeral Addresses 58 
Ephemeral level number 58 
Ephemeral-oldspace register 59, 60 
Error Traps 286 
Event count 36 
Exception Handling 283 
Exceptions 286 
Explanation of Instruction Definitions 75 
Extra-stack trap mode 285 

Fep trap mode 285 
FEP-mode Traps 293 
Field-Extraction Instructions 149 
Fields 2 
Finish-call--tos-app!y 180 
Finish-call-n-apply 179 
Finishing the call 253 
Fixnum Representation 19 
Flavor 276 
Flavor Instances 14 
Flavor-description structure 14 
Flavors 14 
Format for 10-Bit Immediate Operand 82 
Format for Branch Instructions 82 
Format for Field Extraction 82 
Format for Operand From Stack 83 

-Formats 317 
Forwarding (Invisible) Pointers 8 
Frame Cleanup 270 
Frame pointer 245 
Full-Word Instruction Data Types 51 
Full-Word Instruction Formats 75 
Full-word instructions 43 
Function Calling 249 
Function calling. Message PaSSing. Stack-Group Switching 

241 
Functionoell 40 
Function Entry 257 
Function' Return Instructions 266 
Function Returning 266 
Function-Calling Data Types 175 
Function-calling Instruction Formats 75 
Function-Calling Instructions 175 

Garbage-Collection Operations 89 
GC Support 59 
Generic function 14 
Generic FUnctions 43 
Generic Functions and Message PaSSing 275 

Half-Word Instruction Data Types 51 



328 

Handler table 14,276 
Handler table key 14 Packed data 30 
Handler table parameter 14 Packed Half-Word Instruction Formats 80 
Header-Read Oparations 88 Packed instructions 43 
Headers 6 Page access attributes 60 
Headers, Special Markers, and Forwarding Pointers 48 Page Hash Table 60 
High-speed 110 trap mode 285 Page size 59 
Hints for SOftware Developers 309 Pages 59 

PHT age field 60 
I-Machine Array Registers 36 PHT ephemeral-reference field 60 
Illegal Instruction Formats 80 PHT fault-request bit 60 
Immediate Object 3 PHT hash function 63 
Immediate object ",ferenoes 6 PHT Lookup Algorithm 63 
Instance Data Types 49 PHT modified field 60 

, Instane. deSCriptor 14 PHT Iransport-trap bit 60 
Instance Variable Accessors 201 PHT write-protect bit 60 
Instance variables 14 PHT -BASE register 60 
Instanoes 14 PHT-MASK register 60 
Instruction Classifications for Packed Instructions 317 Pname 13 
instruction Exceptions 287 Pointers 6 
Instruction Formats 75 Predicate Instructions 102 
Instruction Representation 43 Preempt-pending bit 291 
Instruction Sequencing 73 Preempt-request bit 291 
Instructions for Accessing Array Leaders 161 Preemption 291 
Instructions for Accessing One-Dimensional Arrays 154 Primitive Data Types 49 
Instructions for Creating Array Registers 156 Processor Faults 293 
Instructions for Fast Access of Arrays 158 Program-Counter Representations 46 
Instructions for Starting and Rnishing Calls 178 Pull-apply-args 261 
Internal Registers 75 PULL-APPLY-ARGS Exoeption 293 
Interrupt levels 285 Push-apply-args 259 
Interruptible Instructions 98 Pushing the Arguments 253 
Introduction 73 
Introduction to Lisp-Machine Objects 2 Quanta 57 

Length and Format 2 
Lexical Variable Accessors 198 
Lisp-Machine Data Types 1 
List Instances 17 
List object 3 
List-Function Oparations 92 
Local painter 245 

Macroinstruction Set 73 
Mapped Accesses to Self 201 
Memory cycle types 85 
Memory Exceptions 289 
Memory Layout and Addressing 57 
Memory Words 2 
Message name 14 
Message passing 14 
Method 14 

Noles on Future Implementations of the Ivory Chip 
Notes on I-Machine Architecture History 305 
Number Data Types 49 
Numeric Operations 113 

Object References 6 
Object refe,ences by address 6 
Operand specifier 83 
Operand-from-stack Instructions 317 
Operand-Reference Classification 12 

Regions 57 
Registers Important to Function Calling and Returning 

245 
Representation of Characters 17 
Representation of CompUed Functions 40 
Representation of DynamiC· Closures 43 
Representation of Lexical Closures 43 
Representation of Locatives 46 
Representation of Physical Addresses 47 
Representations of Arrays and Strings 30 
Representations of Functions and Closures 40 
Representations of Instanoes and Related Data Types 14 
Representations of Wsts 24 
Representations of Numbers 19 
Representations of Symbols 13 
Reset and Inlt 295 
RestOring stack 141 
Revision 0 ,%Allocate-list-block 298 

315 Revision 0 %Allocate~structure-block 298 
Revision 0 %Blockcn-read-alu 298 
Revision 0 tVoBlockan~read-shift 298 
Revision 0 %Block~n-read-test 299 
Revision 0 Aset-l 298 
Revision 0 Binding Instructions 298 
Revision 0 Branch and Loop Instructions 299 
Revision 0 Entry-rest-accepted 299 
Revision 0 Fast-aset-l 299 
Revision 0 Implementation Exception Handling Features 

) 



300 
Revision 0 Implementation Features 297 
Revision 0 Implementation Function-Calling Features 
Revision 0 Implementation Instruction Features 298 
Revision 0 Implementation Memory Features 297 
Revision 0 Init PC 301 
Revision 0 Loop..clecrement-tos 299 
Revision 0 Loop:'increment-tos-Iess-than 299 
Revision 0 Memory Exceptions 300 
Revision 0 Numeric Operations 299 
Revision 0 Opcode 57 299 
Revision 0 Return-kludge 300 
Revision 0 Return-single 299 
Revision 0 Sequence Breaks 301 

" Revision 0 Stack-bit 300 
Revision 0 Stack-blt-address 300 
Revision 0 Traps for Processor Faults 301 
Revision 0 Unbind-n 300 
Revision 0 Unbinding 301 

Sending a Message 278 
Sequence Breaks 290 
Single-Precision Floating-Point Representation 22 
Small-Ratio Representation 20 
Special Marker for Garbage Collector 50 
Special Markers 10 
Spread arguments 242 
Stack Groups on the I Machine 310 
Stack Overflow 290 
Stack pointer 245 
Stack-Group Switching 280 
Stacks 241 
Starting a Function Call 249 
String Instances 17 
Structure object 3 
Structure-offset Operations 88 
Subprimitive Instructions 213 
Summary of Omitted 3600 Instructions 303 
SYMBOL-FUNCTION-CELL 13 
SYMBOL-PACKAGE-CELL 13 
SYMBOL-PROPERTY-CELL 13 
SYMBOL-VALUE-CELL 13 

The Extra Stack 285 
The Instructions 91 
The Spare-Number Type 24 
Top-<>f-Stack Register Effects 89 
Trace Traps 292 
Translation Algorithm 66 
Trap Modes 285 
Trap Vector 286 
Trap Vector Layout 294 
Trapping Out of Entry and Restarting 266 
Trapping Out of Finish-call and Restarting 257 
Traps in General 283 
Types of Inslruction Exceptions 84 
Types of Memory References 85 

Unchecked Operands 89 
Unmapped Accesses to Self 205 
Unmapped Addresses 58 

329 

Valid array types 36 
Value Cell Contents 80 

300 Value Matchup 271 
Virtual Addresses 57 
Virtualz physical region 58 

Wired Addresses 59 

Zone-oldspace register 59, 60 
Zones 57 




