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Abstract

Large scale cloud data analytics applications are often
CPU bound. Most of these cycles are wasted: bench-
marks written in C++ run 10-51 times faster than frame-
works such as Naiad and Spark. However, calling faster
implementations from those frameworks only sees mod-
erate (3-5x) speedups because their control planes cannot
schedule work fast enough.

This paper presents execution templates, a control
plane abstraction for CPU-bound cloud applications,
such as machine learning. Execution templates leverage
highly repetitive control flow to cache scheduling deci-
sions as templates. Rather than reschedule hundreds of
thousands of tasks on every loop execution, nodes in-
stantiate these templates. A controller’s template spec-
ifies the execution across all worker nodes, which it par-
titions into per-worker templates. To ensure that tem-
plates execute correctly, controllers dynamically patch
templates to match program control flow. We have im-
plemented execution templates in Nimbus, a C++ cloud
computing framework. Running in Nimbus, analytics
benchmarks can run 16-43 times faster than in Naiad and
Spark. Nimbus’s control plane can scale out to run these
faster benchmarks on up to 100 nodes (800 cores).

1 Introduction

The CPU has become the new bottleneck for analytics
benchmarks and applications. One recent study found
that the big data benchmark (BDBench), TCP decision
support benchmark (TCP-DS), and production work-
loads from Databricks were all CPU-bound. Improving
network I/O would reduce their median completion time
by at most 2% and improving disk I/O would reduce their
median completion time by at most 19% [30].

At the same time, systems such as DMLL [13] and
DimmWitted [26] have shown it is possible to achieve
orders-of-magnitude improvements in CPU performance
over frameworks such as Spark [38]. Comparing the
performance of C++ and Spark implementations of two
standard machine learning benchmarks, we find that the
C++ implementations run up to 517 times faster. Modern

analytics frameworks are CPU-bound, but most of these
cycles are wasted.

One straw man solution to improve performance is to
have a framework call into C++ implementations of com-
putational kernels, e.g., through the Java Native Interface
(JNID). In Section 2.2, we show that this only sees mod-
est speedups (5x rather than 50x): worker nodes spend
90% of their cycles idle. The central Spark controller,
which is responsible for telling to workers to execute
tasks, cannot schedule tasks quickly enough. The frame-
work’s control plane becomes a bottleneck and workers
fall idle. In Section 5 we show that Naiad [28], another
framework, has similar control plane bottlenecks.

Current frameworks do not scale to run optimized
tasks on many nodes. They can either run on many nodes
or run optimized tasks, but not both, because the control
plane cannot schedule tasks fast enough. Prior scalable
scheduling systems such as Sparrow [31], Omega [33],
Apollo [12], Mercury [25], Hawk [16] and Tarcil [17] all
propose ways to distribute the scheduling of many jobs
which together overwhelm a single controller. Schedul-
ing a job requires centralized state, and so for all these
systems, tasks from a single job still go through a single
scheduler. Optimized tasks, however, mean that a single
job can saturate a controller.

Section 3 presents execution templates a control plane
abstraction which scales to schedule optimized tasks on
many nodes. The key insight behind execution templates
is that long-running CPU-bound computations are repet-
itive: they run the same computation (e.g., a loop body)
many times. Rather than reschedule each repetition from
scratch, a runtime caches scheduling decisions as an ex-
ecution template of tasks. A program invokes a tem-
plate, potentially creating thousands of tasks, with a sin-
gle message. We call this abstraction a template because
it can cache some decisions (e.g., dependencies) but fully
instantiating it requires parameters (e.g., task identifiers).

Section 4 describes an implementation of execution
templates in Nimbus, a C++ analytics framework that in-
corporates execution templates. Compared to Spark and
Naiad, benchmarks in Nimbus run 16-43 times faster.
Rewriting benchmarks in Spark and Naiad to use opti-
mized tasks reduces their completion time by a factor of



3.7-5. However, Section 2.2 shows results that neither
can scale out past 20 worker nodes because the control
plane becomes a bottleneck: running on more than 20
nodes increases completion time. Using execution tem-
plates, implementations of these benchmarks in Nimbus
scale out to 100 nodes (800 cores), seeing nearly linear
speedups.

Execution templates allow a centralized controller to
handle tasks shorter than 1ms, or 100 times shorter than
what prior systems support [31]. This makes whole
new applications possible. We have ported PhysBAM,
a graphical simulation library [18] used in many feature
films' to Nimbus. PhysBAM has tasks as short as 100yus,
yet execution templates can execute extremely large sim-
ulations within 15% of the speed of PhysBAM’s hand-
tuned MPI libraries.

This paper makes five contributions:

1. A detailed analysis of how Spark spends CPU cycles,
finding that C++ implementations run 51 times faster
and most of Spark’s cycles are wasted due to runtime
and programming language overheads (Section 2.1).

2. Results showing Spark and Naiad’s control planes
are a bottleneck when running optimized (C++) tasks
and so they can only provide modest speedups (Sec-
tion 2.2).

3. Execution templates, a novel control plane abstraction
that allows optimized tasks to run at scale (Section 3).

4. The design of Nimbus, an analytics framework that
incorporates execution templates and a data model
based on mutable data objects which permit in-place
modifications (Section 4).

5. An evaluation of execution templates, finding they
allow Nimbus to run optimized tasks with almost
no overhead, scaling out to 100 nodes (800 cores)
while running 30-43 times faster than Spark and 16-
23 times faster than Naiad. Execution templates also
allow Nimbus to support large, complex applications
with tasks as short as 100us (Section 5).

Section 4 provides details on the Nimbus implementa-
tion of execution templates, including the dynamic pro-
gram analysis that ensures they execute properly despite
variations in control and data flow. Section 6 presents
related work and Section 7 concludes.

2 Motivation

A recent study found that Spark analytics applications
are CPU-bound [30]. Increasing server RAM and easy

'PhysBAM is a cornerstone of special effects at Industrial Light and
Magic and is also used Pixar.
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Figure 1: Logistic regression execution time imple-

mented in Scala and C++. C++ is 51 times faster than
Scala. These results are averaged over 30 iterations and
discard the first iteration to allow Java Virtual Machine
(JVM) to warm up and just-in-time compile.

Code Nodes Task Length Completion Time
Scala 100 nodes 206ms 2.86s
C++ 100 nodes 4ms 1.00s
C++ 20 nodes 20ms 0.53s

Table 1: Effect of running optimized logistic regression
tasks in Spark. Although C++ tasks can run 51 times
faster, a job using C++ tasks on 100 nodes only runs 2.8x
faster. It run 5x faster when run on 20 nodes. Both are
much slower than the expected speedups and 20 nodes is
faster than 100 due to the control plane being unable to
schedule tasks fast enough.

parallelization means that many applications can keep
their entire working set in RAM and completion time is
limited by CPU performance.

This section motivates the need for a new control plane
in cloud data analytics frameworks. It starts by exam-
ining where Spark’s CPU cycles go: 98% of them are
wasted. Re-implementations in C++ run up to 51 times
faster. However, if a Spark job uses these faster re-
implementations, it only sees modest (5x) speedups be-
cause the control plane (messages to schedule and dis-
patch tasks) become the bottleneck. The section con-
cludes by observing an important property of CPU-
bound applications, that their control flow and execution
exhibits very regular patterns, which can be calculated,
cached and reused.

2.1 Where the Cycles Go

Frameworks such as Spark [38] and Naiad [28] focus
on applications whose data sets can fit in memory when
spread across many nodes. At the same time, a push for
greater programmer productivity has led them to support
higher-level languages: 70% of Spark applications are
written in Scala [37].

These two trends (in-memory datasets and higher-



level languages) conflict: for applications that operate
on in-memory data, higher-level language overheads be-
come significant. Figure 1 shows the execution time
of logistic regression, a common analytics benchmark,
implemented in Spark using Scala and implemented in
C++. The C++ implementation runs 5/ times faster than
the Spark one.

This poor performance has three major causes.” First,
since Scala’s generic methods cannot use primitive types
(e.g., they must use the Double class rather than a
double), every generic method call allocates a new ob-
ject for the value, boxes the value in it, un-boxes for
the operation, and deallocates the object. In addition to
cost of amalloc and free, this results in millions of
tiny objects for the garbage collector to process. 85%
of logistic regression’s CPU cycles are spent boxing/un-
boxing.

Second, Spark’s resilient distributed datasets (RDDs)
forces methods to allocate new arrays, write into them,
and discard the source array. For example, a map method
that increments a field in a dataset cannot perform the
increment in-place and must instead create a whole new
dataset. This data duplication adds an additional factor
of ~ 2x slowdown.

Third, using the Java Virtual Machine has an addi-
tional factor of ~ 3x slowdown over C++. This result
is in line with prior studies, which have reported 1.9x-
3.7x for computationally dense codes [22, 21]. In total,
this results in Spark code running 51 times slower than
C++.

2.2 Implications of Optimized Tasks

To determine how much tasks running at C++ speeds
could improve performance, we replaced the logistic re-
gression benchmark’s Spark Scala code with loops that
take as long as the C++ implementations. This repre-
sents the best-case performance of Spark calling into a
native method (there is no overhead).

Table 1 shows the results. While the computational
tasks run 51 times faster, on 100 nodes the overall com-
putation only runs 2.8 times faster. Worker nodes spend
most of the time idle because the central Spark controller
cannot schedule tasks fast enough. Each core can execute
250 tasks per second (each task is 4ms), and 100 nodes
(800 cores) can execute 200,000 tasks per second. We

2To determine the cause of this slowdown, we configured the JVM
to output the JIT assembly and inspected it. We inserted performance
counters in the Scala code re-inspected the assembly to verify they cap-
tured the correct operations. To separate the cost of Scala from JVM
bytecode interpretation, we decompiled the JVM bytecodes Scala gen-
erated into Java, rewrote this code to remove its overheads, recompiled
it, and verified that the bytecodes for the computational operations re-
mained unchanged.

measured Spark’s controller to be able to issue ~=8,000
tasks per second.

This control plane bottleneck is not unique to Spark.
Naiad [28] is the best available distributed cloud frame-
work. In Naiad, worker nodes directly coordinate with
one another rather than acting through a central con-
troller. While Naiad code is in C# rather than Scala and
so sees overall better performance than Spark, its all-to-
all synchronization also becomes a bottleneck above 20
nodes. We defer detailed experimental results on Naiad
to Section 5.1.

Scheduling techniques such as Sparrow [31],
Omega [33], Apollo [12], Mercury [25], Hawk [16] and
Tarcil [17], address the scheduling bottleneck that occurs
when there are many concurrent jobs. In aggregate,
many jobs can execute more tasks per second than a
single controller can schedule. But since these jobs
share underlying computing resources, they need to be
scheduled cooperatively to prevent overloading workers
or contention. Each of these systems propose ways for
many separate, per-job controllers to coordinate their
resource allocation and scheduling decisions. These
systems all solve the problem of when the aggregate
task rate of many jobs is greater than what one controller
can handle. Optimized tasks, however, mean that single
job can saturate a controller. None of these systems can
distribute a single job’s scheduling.

2.3 Observation: Repetition

Cloud computing applications are increasingly advanced
data analytics including machine learning, graph pro-
cessing, natural language processing, speech/image
recognition, and deep learning. These applications are
usually implemented on top of frameworks such as
Spark [38] or Naiad [28], for seamless parallelization and
elastic scalability. A recent survey [6] of Spark users,
for example, shows 59% of them use the Spark machine
learning library [5]. Efforts such as Apache Mahout [4]
and Oryx [9] provide machine learning libraries on top
of Spark. Cloud providers, in response to this need, now
offer special services for machine learning models [8, 1].

One important property of analytics jobs is their com-
putations have repetitive patterns: they execute a loop
(or set of nested loops) until a convergence condition.
The Ernest system [35], for example, leveraged this ob-
servation for predicting the performance and managing
resources. Logistic regression, for example, often exe-
cutes until parameters have converged and are no longer
changing or a large fixed number of iterations (whichever
happens first).

For example, Figure 2 shows the execution graph of
the hold-out cross validation method, a common ma-
chine learning method used for training regression algo-
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Figure 2: Execution graph of training a regression al-
gorithm. It is iterative with an outer loop for updating
model parameters based on the estimation error, and an
inner loop for optimizing the feature coefficients.
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Figure 3: Architecture of a canonical cloud framework:
a driver program specifies the application logic for a cen-
tralized controller, which drives the worker nodes to ex-
ecute tasks.

rithms [20]. It has two stages, training and estimation,
which form a nested loop. The training stage uses an
iterative algorithm, such as gradient descent, to tune co-
efficients. The estimation stage calculates the error of the
coefficients and feeds this back into the next iteration of
the training phase.

Each iteration generates the same tasks and schedules
them to the same nodes (those that have the data resident
in memory). Re-scheduling each iteration repeats this
work. This suggests that a control plane cached these
decisions and reused would schedule tasks much faster
and scale to support fast tasks running on more nodes.
The next section describes execution templates, a control
plane abstraction that achieves this goal.

3 Execution Templates

We describe execution templates, a control plane abstrac-
tion for cloud computing. Execution templates make it
possible for workers to inexpensively generate and exe-
cute large batches of tasks. If a program has a loop in
it, rather than resend all of the tasks for that loop to the
controller on every iteration, it should instead send them
once. For subsequent iterations, it can tell the controller
“execute those tasks again.” The same is true for the con-

while (error > threshold_e) {
while (gradient > threshold_g) {
// Start 1
gradient = Gradient (tdata, coeff, param)
coeff += gradient
// End 1
}
// Start 2
error = Estimate (edata, coeff, param)
param = update_model (param, error)
// End 2

Figure 4: Driver program pseudocode for the iterative
application in Figure 2. There are two basic blocks.
Gradient and Estimate are both parallel operations
that execute many tasks on partitions of data.

Execution template JIT compiler

Function

Bytecode instruction
Native instruction
Register

Template

Task (Driver—Controller)
Task (Controller— Worker)
Data object

Table 2: Execution templates are analogous to a just-in-
time compiler for a data analytics control plane.

troller; rather than resend all of the tasks to the workers,
it can tell each worker to “execute those tasks again.”

The execution and control structure of cloud frame-
works places requirements on how templates operate.
Figure 3 shows the architecture of a cloud computing
framework. A driver program generates tasks, which it
sends to a centralized controller. The driver and con-
troller may or may not reside on the same node. The
controller processes these tasks and dispatches them to a
cluster of workers. The controller balances load across
workers and recovers execution when one fails.

Templates optimize repeated control decisions. In this
way, they are similar to a just-in-time (JIT) compiler for
the control plane. A JIT compiler transforms blocks of
bytecodes into native instructions; execution templates
transform blocks of tasks into dependency graphs and
other runtime scheduling structures. Table 2 shows the
correspondences in this an analogy: an execution tem-
plate is a function (the granularity JIT compilers typi-
cally operate on), a task from the driver to the controller
is a bytecode instruction, and a task executing on the
worker is a native instruction.

The rest of this section describes six requirements for
how templates operate. While the analogy to JIT compi-
lation fits well and many of these requirements follow
from it, the driver-controller-worker execution model
adds an additional requirement, the need to validate and



patch templates before executing them.

1. Templates must be dynamically generated. Con-
trollers and workers do not have the driver program.
They receive a stream of tasks, which they dynamically
schedule and execute. They therefore need to generate
templates in response to this dynamic stream of informa-
tion. Furthermore, because a controller can dynamically
shift how it schedules tasks to workers (e.g., in response
to load imbalance or changing resources), it needs to
be able to correspondingly dynamically create new tem-
plates. Put another way, templates cannot be statically
compiled: they must instead be created just-in-time.

2. Templates must be parameterizable. Similarly to
how a program must be able to pass parameters to just-in-
time compiled functions, a driver must be able to pass pa-
rameters to execution templates. Analytics jobs involve
many repetitions of the same loop or computation, but
the repetitions are not identical. The cross-validation job
in Figure 2, for example, updates parameters, which
are then passed to the optimizer block. Each instantiation
of the optimizer block must fill in parameters to the
find_gradient tasks. In addition to data parameters,
templates also require control parameters, such as which
task identifiers to use, to ensure that two workers do not
use the same globally unique identifier.

3. Workers must locally resolve dependencies. Large
blocks of tasks often have data dependencies between
them. For example, the line coeff += gradient
in Figure 4 cannot run until the previous line comput-
ing gradient completes. For a worker to be able to
execute the tasks for both lines of code locally, without
coordinating with the controller, it must know this de-
pendency and correctly determine when that line of code
can run. This is similar to how a CPU uses data flow to
know when it can execute an instruction that depends on
the output of other instructions.

4. Workers must directly exchange data. Optimized
tasks read and write in-memory data objects on workers.
Often, within a single template, the output of a task on
one worker is needed as the input for a task on another.
As part of executing the template, the two workers need
to directly exchange this data. This is similar to how
two cores accessing the same memory need to be able
to to update each other’s caches rather than always write
through to main memory.

5. Controllers must be able to quickly validate and
patch templates. The driver-controller-worker execu-
tion model adds additional complexities that JIT com-
pilers do not need to handle. Just as function calls as-
sume that arguments are in certain registers or stack po-
sitions, when a controller generates execution templates
for workers, it must assume certain preconditions on

where data is located. However, a driver can insert new
tasks at any time, which might violate these precondi-
tions. For example, it might insert instructions that in-
crement a variable and store it in a different register.
When a controller instantiates a template, it must vali-
date whether a template’s preconditions hold, and if not,
insert tasks to patch it. In the above example, the con-
troller needs to detect the variable is now in a new reg-
ister and issue a move instruction to put it back in the
register the function call expects.

6. Templates must be fast. Finally, as the overall goal
of templates is to allow the control plane to support opti-
mized tasks at scale, the performance gains of instantiat-
ing them must be greater than their cost to generate and
instantiate.

Execution templates are tightly entwined with a
framework’s data model and execution. The next sec-
tion describes a concrete implementation of them in the
context of an analytics framework designed to execute
optimized tasks at scale.

4 Implementation

This section describes the design and implementation of
execution templates in a C++ analytics framework we
have implemented, called Nimbus. We chose to imple-
ment execution templates in a new framework in order to
explore their tradeoffs when not limited by prior design
decisions that might conflict with their goals. There is
also discussion on how execution templates can be intro-
duced into existing frameworks.

4.1 Nimbus

Because execution templates are tightly entwined with a
framework’s data and execution model, we first explain
the relevant details of Nimbus. The core Nimbus imple-
mentation is 15,000 semicolons of C++ code.

4.1.1 Data Model

Nimbus has a data flow model similar to
DryadLINQ [36], Naiad [28], and Spark [38]. A
job is decomposed into stages. Each stage is a computa-
tion over a set of input data and produces a set of output
data. Each data set is partitioned into many data objects
so that stages can be parallelized. Each stage typically
executes as many tasks, one per object, that operate in
parallel. In addition to the identifiers specifying the data
objects it accesses, each task can be passed parameters,
such as a time-step value or constants.

Unlike Spark’s RDDs, and to avoid the cost of data
copying noted in Section 2.1, Nimbus allows tasks to mu-
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(a) Simple task graph example with three tasks and three
data objects. The data flow among tasks forms a DAG. For

example, task C reads the updated data objects 2, and 3 after
execution of task A, and B.

Figure 5: Simple task graph example (a) and how it

tate data in place. Mutable data has the additional benefit
that multiple iterations of a loop can access the same ob-
jects and reuse their identifiers. This makes templates
more efficient to parameterize, as the object identifiers
can be cached rather than recomputed on each iteration.
There can be multiple copies of a data object. However,
since objects are mutable they are not always consistent.
If one worker writes to its copy of an object, other work-
ers who later read it will need to receive the latest update.

Data flow between tasks forms a directed acyclic
graph (DAG), called task graph, whose vertices are tasks
and edges are data dependencies. Figure 5(a) shows a
simple task graph with three tasks that operate over three
data objects. The rest of this section uses this example
task graph to explain how templates are generated and
instantiated.

4.1.2 Dependencies and Data Exchange

The goal of execution templates is to allow workers to
generate and correctly schedule large batches of tasks.
Not all of these tasks are immediately runnable. For ex-
ample, when a worker instantiates the template in Fig-
ure 5(a), it cannot run task C until both A and B have
completed. The ability to locally determine when it is
safe to run a task is critical for reducing load on a con-
troller; otherwise, the controller would need to publish
when every task has completed. Workers need to be able
to know this both when the dependent tasks are local as
well as when they run on another node.

To enforce the correct execution order, each task in-
cludes a set of dependencies. These dependencies are
identifiers for tasks that must complete before the worker
schedules the task. As shown in Figure 5(b), these depen-
dencies can also be across workers: task B on worker 2
must complete before task C can run on worker 1. Nim-
bus represents this dependency by introducing a pair of
control tasks, a send task on worker 2 and a receive task
on worker 1, and inserting the receive task as a depen-

Worker 2

Worker 1

(b) Mapping of the task graph in Figure 5(a) over two work-
ers. Each task graph embeds per worker task dependencies
and data copy among workers. Task graph dependencies al-
low workers to proceed without controller’s middling.

maps into per worker task graph in Nimbus (b).

dency in C. These explicit dependencies allow workers
to know when a task is ready to run without involving
the controller.

4.2 Dynamic Template Generation

Nimbus generates execution templates on the granularity
of basic blocks. A basic block is a code sequence in the
driver program with only one entry point and no branches
except at the exit. For example, in Figure 4, there are
two basic blocks, the optimizer and the estimator. Each
iteration of the algorithm executes the optimizer block
(inner loop) multiple times and the estimator block (outer
loop) once.

There are two types of execution templates. Con-
troller templates are installed on a controller by the driver
program; they encode the task graph of a basic block
across all of the workers. Controller templates reduce
the control overhead between the driver and the con-
troller. Worker templates are installed on workers by the
controller; they encode the task graph of a basic block
for that worker. Once a template is installed, it can be
invoked with a single message. When the driver pro-
gram invokes a controller template, the controller typi-
cally invokes the corresponding worker template on each
worker.

The two types of templates are decoupled to enable dy-
namic scheduling decisions. If a worker fails or the con-
troller re-balances load across worker, two invocations of
the same controller template can result in two different
partitioning of tasks among workers. For every partition-
ing strategy a separate worker template is installed on the
workers.

4.2.1 Controller Templates

Controller template stores control dependencies between
tasks as well as which data tasks access. To create a con-
troller template, the driver program sends a start message
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(b) Each worker template stores the common structure of a
task graph for execution including the data copies among
workers. It is invoked by passing the task identifiers, and
parameters to each task.

Figure 6: Controller template (a) and worker templates (b) for the task graph in Figure 5(a).

to the controller, which instructs to start building a tem-
plate. As the controller receives each subsequent task, it
both schedules it normally and adds it to the template.
At the end of the basic block, the driver sends a finish
message to the controller. At this point the controller
processes the template it has built and generates worker
templates from it. For the successive instance of the same
basic block, driver only invokes the installed template by
passing the task identifiers and parameters to each task.
Figure 6(a) shows how the controller templates for the
graph in Figure 5(a) are installed and invoked.

4.2.2 Worker Templates

A worker template has two halves. The first half exists
at the controller and represents the entire computation
across all of the workers. This centralized half allows
the controller to cache how the template’s tasks are dis-
tributed across workers and which data objects the tasks
access. The second half is distributed among the workers
and caches the per-worker local task graph with depen-
dencies and data exchange directives.

As with controller templates, to generate a worker
template the controller sends all tasks to workers ex-
plicitly. Workers execute these tasks and simultaneously
build a template. The next time the driver program in-
vokes the controller template, the controller invokes the
templates at each worker by passing new task ids, and
parameters. Figure 6(b) shows how the controller tem-
plates for the scheduling strategy in Figure 5(b) are in-
stalled and invoked.

4.3 Patching Worker Templates

Templates, when generated, assume that the latest up-
dates to data objects are distributed in a certain way. For

example, in Figure 5(b), the template on worker 2 as-
sumes that data objects 1 and 3 contain the latest up-
date. Since templates are installed dynamically, the run-
time does not know the complete control structure of the
program. It can be that there are code paths which do
not leave the latest update in every object. Put in other
words, the driver may have issued tasks which invalidate
the template’s assumptions. At the same time, the driver
program does not know where data objects are placed or
tasks execute, so cannot correct for these cases.

Because this problem is subtle, we provide an analogy
based on JIT compilers. JIT generated blocks of native
instructions assume that variables are in particular reg-
isters. If the registers do not hold the correct variables
when the block of native instructions is invoked, then
move, store, and load instructions must be added so the
registers do hold the correct variables.’

Whenever a template is invoked, the controller needs
to first validate whether the corresponding worker tem-
plates will operate on the latest updates. If validation
fails, the controller patches the template by inserting con-
trol tasks that copy the latest updates to the objects. For
example, if immediately after the template in Figure 6(b)
the same template is invoked, then controller needs to
transfer the latest update of first object (updated by task
t3) to worker 2 to satisfy the preconditions. Only after
patching it is safe to invoke the template again.

Validating and patching must be fast, specially when
there are many workers, data objects, and nodes. For
example, the complex graphics application in Section 5.5
has almost one million data objects. Nimbus uses two
optimizations to make validation and patching fast.

First, for the common case of a template executing

3This is one reason why JITs often operate on function boundaries,
since function calling conventions specify how variables must be laid
out in registers.



twice back to back, the controller ensures that the in-
put objects to a template hold the latest updates when
the template completes. This is especially important for
when there are small, tight loops: the controller can by-
pass both validation and patching. Second, for basic
blocks that can be entered from multiple places in the
program (e.g., the block after an if/else clause), the con-
troller generates a separate template for each possible
control flow.

4.4 Load Balancing and Fault Tolerance

Nimbus balances load across workers by periodically
collecting performance statistics at the controller. When
the controller detects that certain workers are busier than
others, it redistributes tasks across the workers, regener-
ating templates for any workers whose load has changed.

To recover from worker failures, the Nimbus con-
troller periodically checkpoints system state. To create a
checkpoint, the controller inserts tasks that commit data
objects to durable storage as well as metadata on where
in program execution this checkpoint is. If a worker fails
and the system loses the latest update to an object, the
controller halts all tasks on the workers. It restores the
lost objects to their last checkpoint as well as any other
objects which have been modified since that checkpoint.
It then restarts execution, regenerating any worker tem-
plates as needed. If the controller fails, it can restart and
restore the entire system from the checkpoint.

4.5 Templates in Other Frameworks

Templates are a general abstraction that can be applied
to many frameworks. However, the requirements in Sec-
tion 3 can be simpler to incorporate in some systems
than others. For example, incorporating execution tem-
plates into Spark would require three significant changes
to its data model and execution model, particularly its
lazy evaluation and scheduling. First, it would need to
support mutable data objects. When data is immutable,
each execution of a template is on new data object iden-
tifiers. Second, the Spark controller needs to be able to
proactively push updates to each worker’s block man-
ager. Otherwise, every access of a new data object re-
quires a lookup at the controller. Third, in Spark the con-
troller is completely responsible for ensuring tasks run
in the correct order, and so tasks sent to workers do not
contain any dependency information. Adding execution
templates would require adding this metadata to tasks as
well as worker control logic. While these changes are all
quite tractable, together they involve a significant change
to Spark’s core execution model and so we are beginning
to discuss this with its developers.

We are have not yet considered adding templates to
Naiad since it is no longer actively supported (the last
code commit was Nov 9, 2014).

5 Evaluation

This section evaluates how execution templates can sup-
port fast, optimized data analytics jobs at scale. It com-
pares the performance of k-means and logistic regres-
sion benchmarks implemented in Nimbus with imple-
mentations in Spark and Naiad. It measures the costs of
computing and installing templates as well as the perfor-
mance effect of needing to recompute worker templates
due to load re-balancing. Finally, it evaluates how far
execution templates can scale by measuring their effect
on a distributed graphics workload whose median task
length is 13ms and 10th percentile task length is 3ms.
In summary, our findings show:

 Execution templates support orders of magnitude more
tasks per second than existing centralized (Spark) and
decentralized (Naiad) designs. Task throughput scales
almost linearly with the number of workers.

» Using execution templates, Nimbus is able to run lo-
gistic regression and k-means benchmarks 16-43 times
faster than Spark and Naiad implementations.

» Half of this performance benefit is from optimized
tasks, the other half is from execution templates
scheduling optimized tasks at scale. If Spark and Na-
iad use optimized tasks, they cannot scale out past 20
nodes; execution templates allow Nimbus to scale out
to at least 100 nodes and cut completion times by a
factor of 4-8.

» Using execution templates, Nimbus is able to run a
complex graphical simulation with tasks as short as
100ps within 15% of the performance of a hand-tuned
MPI implementation. Without templates, completion
time increases by 520% as the controller cannot sched-
ule tasks quickly enough.

All experiments use Amazon EC2 compute-optimized
instances since they are the most cost effective
for compute-bound workloads. = Worker nodes are
c3.2xlarge instances, which have 8 virtual cores and
15GB of RAM. Because we wish to evaluate how the
controller can become a bottleneck, we run it on a more
powerful instance than the workers, a ¢3.4xlarge in-
stances, with 16 cores and 30GB of RAM. This shows
the performance of the controller even when it has more
resources than the workers. We measure completion time
of different jobs on 20—100 worker nodes. Nodes are al-
located within a placement group and so have full bisec-
tion bandwidth.
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Figure 7: Iteration time of logistic regression and k-means for a data set of size 100GB. Spark, Naiad and Nimbus, run
Scala, C# and C++ respectively. Spark-opt and Naiad-opt show the performance when the computations are replaced
with spin-wait as fast as tasks in C++. Execution templates helps Nimbus scale out almost linearly.

Iteration time is averaged over 30 iterations and ex-
cludes the first iteration due to its overhead of data load-
ing and JIT compilation. We observed negligible vari-
ance in iteration times. For Nimbus, the first iteration
includes the cost of template installation. We therefore
quantify this cost separately from overall performance.

5.1 Data Analytics Benchmarks

Figure 7 shows the completion time for logistic regres-
sion and k-means when run in Spark, Naiad and Nimbus.
In addition to a Scala implementation in Spark and a C#
implementation in Naiad, we also measure performance
if these frameworks could execute tasks as quickly as
Nimbus. We consider the best case performance of no
overhead for invoking native code by having them run a
busy loop.

For logistic regression, Naiad’s C# runs 6 times faster
than Spark’s Scala. The fastest Spark configuration is
100 nodes, while for Naiad it is 50 nodes. This is be-
cause Naiad’s faster task execution means its control
plane overhead overwhelms the benefits of running on
more workers. Naiad’s control overhead grows quickly
because it requires O(n?) communication among Naiad
nodes, where n is the number of nodes.

C++ tasks run 51 times faster than Scala and 9 times
faster than C#. When Spark and Naiad’s tasks are re-
placed by tasks running as quickly as C++ code, neither
scale out past 20 nodes. We ran them on fewer than 20
nodes: 20 is the fastest configuration. For example, run-
ning on 100 nodes, Naiad-opt runs almost 3 times slower
than on 50 nodes, as its n? coordination overhead gSrows.

Nimbus runs 43 times faster than Spark and almost 16
times faster than Naiad. Its control overhead is almost
negligible, even when scaled out to 100 nodes. This al-
lows it to come very close to the expected performance
benefits of C++. Even if Spark and Naiad were to run
optimized tasks, execution templates lead Nimbus to run
4-8 times faster.
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Figure 8: Task throughput of cloud frameworks as the
number of workers increases. Spark and Naiad saturate
at about 8,000 tasks per second, while Nimbus grows al-
most linearly as the number of workers increases.

K-means shows similar results to logistic regression:
Nimbus runs almost 30 times faster than Spark with
Scala and 23 times faster than Naiad with C#. It runs
5 times faster than Spark or Naiad even when they use
optimized tasks.

5.2 Task Throughput

The results in Figure 7 show that neither Naiad nor Spark
can scale out to handle optimized tasks at scale. Since
progress bottlenecks at the controller, workers spend a
larger fraction of time idle. Figure 8 shows the rask
throughput (the number of tasks per second that work-
ers execute) each system sustains for logistic regres-
sion. Both Spark and Naiad saturate at about 8,000
tasks per second. Using execution templates, Nimbus is
able to scale almost linearly, supporting almost 200,000
tasks/second for 100 nodes.

Execution templates scale slightly sub-linearly be-
cause the scheduling cost at the controller increases lin-
early with the number of workers. If these benchmarks
were run on 800 workers with 1 core each (rather than
100 workers with 8 cores each), each worker template
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Per-task cost Iter. overhead

Controller Template 25us 20%
Worker Template @cntrl 15us 12%
Worker Template @work 9us 7%

Table 3: Costs of installing templates on the first iter-
ation of logistic regression running on 100 nodes. The
cost is predominantly at the controller. Nonetheless, the
one-time cost of installing templates on the first iteration
causes the iteration to run 39% slower.

Completion time

No templates 1.07s
Controller template only 0.49s
Worker & controller template 0.07s

Table 4: Execution time of logistic regression iterations
(100 nodes) with and without templates.

would be 1/8th the size and the controller would have to
process 8 times as many template instantiation messages.
If T is the number of tasks to execute in a block and W is
the number of workers, Spark’s controller cost is O(T),
Naiad’s is O(W?) and execution templates are O(W).

5.3 Template Overhead and Gains

To filter out the startup cost of the JVM and CLR loading
object files and just-in-time compilation, the results in
Figure 7 do not include the first iteration of either compu-
tation. This also excludes out the cost of generating and
installing templates. Table 3 shows the costs of installing
templates in logistic regression with 100 workers.
Installing templates increases the execution time of the
first iteration by 39%. This cost is predominantly at the
controller, as it must generate both the controller tem-
plate as well as the controller half of the worker template.

10

Processing each task at the controller takes 40us. A con-
troller is therefore limited to processing at most 25,000
tasks/second on the first iteration: this is approximately
3 times what available controllers can handle.

Table 4 shows how controller and worker templates
reduce control plane costs. Both controller and worker
templates cut the overhead significantly as they trans-
form thousands of tasks into a single message. Their ben-
efits are roughly equal. A controller template transforms
tens of thousands of messages from the driver to the con-
troller to a single message. Worker templates transform
tens of thousands of messages from the controller to the
workers to one message per worker. Together, they re-
duce control plane overhead from 93% to negligible.

5.4 Template Adaptation

If a controller decides to re-balance a job across workers,
remove workers, or add workers, it must recompute new
worker task graphs and install the corresponding tem-
plates on workers whose responsibilities have changed.
Figure 9 shows the time it takes for each iteration of lo-
gistic regression as a cluster manager adjusts the avail-
able workers. The run begins with templates disabled: it-
erations take 1.07s. On iteration 10, templates are turned
on. This iteration takes 1.2s due to controller template
installation (20% overhead). On iteration 11, the con-
troller’s half of worker templates is installed. On iter-
ation 12, the worker’s half of the worker templates is
installed. We intentionally separated each phase of the
template installation on progressive iterations to show
the cost and gain from each. However, all phases could
overlap on a single iteration (39% overhead). Once all
templates are installed, the iteration time drops to 0.07s.

On the 20th iteration, the controller receives a com-
mand from a cluster manager to stop using half of its
workers. This does not change the controller template,
but forces the controller to recompute worker templates.
It then executes at half speed (0.14s/iteration), until iter-
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lation. The median task is 13ms, the 10th percentile is
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Figure 11: Still of a PhysBAM simulation of water being
poured into a glass.

ation 30. At iteration 30, the 50 workers are restored to
the controller. It is then able to go back to using its first
set of templates, which are still cached.

5.5 Complex Applications

This final set of experiments examines how templates
scale to support complex applications. PhysBAM is
an open-source library for simulating many phenom-
ena in computer graphics [18]. It is the result of over
50 developer-years of work and has won two Academy
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Figure 12: Iteration time of a PhysBAM water simula-
tion in Nimbus with and without templates as well as its
standard MPI implementation.

Nimbus /wo templates

@ Nimbus

31.7 - VP

11

Awards. We ported PhysBAM to Nimbus, wrapping
PhysBAM functions inside tasks and interfacing Phys-
BAM data objects into Nimbus so they can be copied
and transferred.

We wrote a driver program for a canonical fluid simu-
lation benchmark, water being poured into a vessel (e.g.,
Figure 11). This simulation uses the particle-levelset
method [19], maintaining the simulation as a volume of
fixed grid cells but using particles along the surface of
the water to simulate it in much higher detail. The sim-
ulation is the same core simulation used in films such
as The Perfect Storm and Brave and has a triply-nested
loop with 26 different computational stages that access
over 40 different variables.

We ran a 10243 cell simulation (512GB-1TB of RAM)
on 64 workers, comparing the performance of Nimbus
with PhysBAM’s hand-tuned MPI implementation. The
MPI implementation cannot re-balance load, and in prac-
tice developers rarely use it due to its brittle behavior and
lack of fault tolerance.

Figure 10 shows the CDF of task duration in Phys-
BAM. While the main computational tasks are 60-70ms
some tasks run for only 100us. These tasks computing
minimum and maximum values over small sets. Fig-
ure 12 shows PhysBAM’s performance using Nimbus
and MPI. Without templates, the simulation generates
tasks 8 times faster than a controller can handle: Nim-
bus takes 520% longer than MPI, because controller be-
comes a bottleneck. With templates, it runs within 15%
of the MPI implementation.

6 Related Work

This paper builds on a long history of related work from
several disparate fields: cloud computing, high perfor-
mance computing, and programming languages.

Fast data analytics: Within the database and paral-
lel computing communities, prior work has explored
the computational inefficiency of Spark code, propos-
ing new programming models and frameworks to replace
it [26, 13]. Facebook’s Al research group has open-
sourced GPU modules for the Torch machine learning
framework. [7]. There is also ongoing research on a
common intermediate language for Spark that provides
a glossary of data-parallel optimizations (including vec-
torization, branch flattening and, prediction), suggesting
performance in some cases even faster than, hand-written
C [32, 37]. The trend shows that the next generation of
cloud computing frameworks will execute tasks which
run orders of magnitude faster than today.

Cloud programming frameworks: MapReduce [15] is
a widely used programming model for processing large



data sets. Open source MapReduce frameworks such as
Hadoop and Hive [2, 3] are I/O bound: they fetch sta-
ble input data from disks, and save intermediate and fi-
nal results to disks. Spark [38] uses resilient distributed
datasets (RDDs) to perform computations on in-memory
data, while providing the reliability that data on disk pro-
vides. For optimized data analytics with short task, how-
ever, Spark’s centralized runtime system becomes a bot-
tleneck. While Nimbus also uses a centralized controller,
execution templates enable Nimbus to handle orders of
magnitude higher task rate.

Naiad [28] is another framework for in-memory com-
putations. While the distributed event-based runtime
helps scalability without creating a centralized bottle-
neck, the cost of synchronization dominates as the num-
ber of workers grows. Logical to physical graph transla-
tion on Naiad nodes resembles the worker templates on
Nimbus, however the lack of centralized controller to re-
solves the inter-worker dependencies leaves the burden
of synchronization on the runtime system.

Dataflow frameworks such as Dryad [23],
DryadLINQ [36], CIEL ([29] and FlumeJava [14]
focus on abstractions for parallel computations that
enable optimizations and high performance. This paper
examines a different but complementary question: how
the runtime scales out to support very fast computations.
In fact, our framework implementation that incorporates
execution templates, Nimbus, resembles the data flow
model in DryadLINQ [36].

Distributed scheduling systems: There is a huge body
of work on distributed scheduling. They deploy var-
ious mechanisms to provide efficient scheduling deci-
sions with high throughput. For example, Sparrow [31]
uses a stateless scheduling model based on batch sam-
pling and late binding. Omega [33], on the other hand,
leverages a shared global state through atomic transac-
tions to improve the allocation decisions. Apollo [12]
benefits from a similar model, and adds task completion
time estimations to optimize the scheduling decisions.
Tarcil [17] is a hybrid model based on both sampling and
performance estimation. Hawk [16], and Mercury [25]
suggest a hybrid distribute/centralized solution to realize
better efficiency in the cluster.

At a very high level, all these systems solve the same
problem as execution templates do: providing higher
task throughput at the runtime system. However there
is a very important and subtle difference: these systems
distribute the scheduling across the job boundaries. For
a single job with high task rate the scheduling still goes
through a single node. The distributed solution only
solves the problem of multiple jobs producing high ag-
gregate task rate in the cluster by directing the scheduling
of each job to a different node. In a way, execution tem-
plates are orthogonal to theses systems. Every node in
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the distributed implementation could benefit from execu-
tion templates to support jobs with orders of magnitude
higher task rate.

High performance computing (HPC): MPI [34] pro-
vides an interface to exchange messages between par-
allel computations, and is the most commonly used
framework to write distributed computations in the
HPC domain. MPI does not include any support for
load-balancing or fault recovery. Frameworks such as
Charm++ [24] and Legion [11] provide abstractions to
decouple control flow, computation and communication,
similar to cloud data flow frameworks. Their fundamen-
tal difference, however, is that they provide mechanisms
and very little policy; applications are expected to de-
cide on how their data is placed as well as were tasks
run. The scale and cost of the machines they are designed
for (supercomputers) is such that they demand more pro-
grammer effort in order to achieve more fine-tuned and
optimized use of hardware resources.

Just-in-time (JIT) compilation: Finally, the idea of
memoizing control flow and dynamic decisions in an
execution path closely resembles the approach taken in
just-in-time (JIT) compilers [10] as well as the Synthesis
kernel [27]. Both of these approaches note that particular
decisions, while dynamic in the general case, might lead
to deterministic results in any particular case. Therefore,
optimizing that deterministic result can remove all of the
surrounding overhead. While a JIT compiler and the
Synthesis kernel generate optimized native code for par-
ticular functions, execution templates generate optimized
structures for scheduling distributed computations.

7 Conclusion And Future Work

This paper presents execution templates, a novel abstrac-
tion for cloud computing runtime systems that allows
them to support extremely high task rates. The need for
high task rates is driven by the observation that many
modern workloads are CPU-bound, and rewriting them
in high performance code can easily lead to task rates
that overwhelm modern schedulers. Long-running appli-
cations with high task rates, however, usually consist of
many executions of a loop. Rather than reschedule each
iteration of the loop from scratch, execution templates
allow a controller to cache its scheduling decisions and
invoke large, complex sets of tasks on worker nodes with
a single message. Using execution templates, the paper
shows that some benchmark applications reimplemented
in C++ can run up to 40 times faster; without templates,
their speedup is limited only a factor of 5. Finally, execu-
tion templates enable whole new classes of applications
to run in the cloud, such as high performance simulations
used in computer graphics.
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