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Abstract

The Web today provides a corpus of design examples unparalleled
in human history. However, leveraging existing designs to pro-
duce new pages is currently difficult. This paper introduces the
Bricolage algorithm for automatically transferring design and con-
tent between Web pages. Bricolage introduces a novel structured-
prediction technique that learns to create coherent mappings be-
tween pages by training on human-generated exemplars. The pro-
duced mappings can then be used to automatically transfer the con-
tent from one page into the style and layout of another. We show
that Bricolage can learn to accurately reproduce human page map-
pings, and that it provides a general, efficient, and automatic tech-
nique for retargeting content between a variety of real Web pages.

1 INTRODUCTION
Designers in many fields rely on examples for inspiration [Herring
et al. 2009], and examples can facilitate better design work [Lee
et al. 2010]. Examples can illustrate the space of possible solutions,
and also how to implement those possibilities [Brandt et al. 2009;
Buxton 2007]. Furthermore, repurposing successful elements from
prior ideas can be more efficient than reinventing them from scratch
[Gentner et al. 2001; Kolodner and Wills 1993; Hartmann et al.
2007].

The Web today provides a corpus of design examples unparalleled
in human history. Unfortunately, this powerful resource is un-
derutilized. While current systems assist with browsing examples
[Lee et al. 2010] and cloning individual design elements [Fitzger-
ald 2008], adapting the gestalt structure of Web designs remains a
time-intensive, manual process.

Most design reuse today is accomplished via templates, which are
specially created for this purpose [Gibson et al. 2005]. With tem-
plates’ standardized page semantics, people can render content into
predesigned layouts. This strength is also a weakness: templates
homogenize page structure, limit customization and creativity, and
yield cookie-cutter designs. Ideally, tools should offer both the ease
of templates and the diversity of the entire Web. What if any Web
page could be a design template?

This paper introduces the Bricolage algorithm for automatically
transferring design and content between Web pages. Bricolage
matches visually and semantically similar elements in pages to cre-
ate coherent mappings between them. These mappings can then be
used to transfer the content from one page into the style and layout
of the other, without any user intervention (Figure 1).

Bricolage learns how to transfer content between pages by train-
ing on a corpus of exemplar mappings. To generate this corpus, we
created a Web-based crowdsourcing interface for collecting human-
generated mappings. The collector was populated with 50 popular
Web pages, and 39 participants with some Web design experience
were recruited to specify correspondences between two to four pairs
of pages each. After matching every fifth element, participants also
answered a free-response question about their rationale. The result-
ing data was used to guide the development of the algorithm, train
Bricolage’s machine learning components, and verify the results.
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Figure 1: Bricolage computes coherent mappings between Web
pages by matching visually and semantically similar page elements.
The produced mapping can then be used to guide the transfer of
content from one page into the design and layout of the other.

Since the mappings collected in our study are highly structured and
hierarchical, Bricolage employs structured prediction techniques to
make the mapping process tractable. Each page is segmented into
a tree of contiguous regions, and mappings are predicted between
pages by identifying elements in these trees. Bricolage introduces
a novel tree matching algorithm that allows local and global con-
straints to be optimized simultaneously. The algorithm matches
similar elements between pages while preserving important struc-
tural relationships across the trees.

This paper presents the page segmentation algorithm, the data col-
lection study, the mapping algorithm, and the machine learning
method. It then shows results demonstrating that Bricolage can
learn to reproduce human mappings with a high degree of accu-
racy. Lastly, it gives examples of Bricolage being used for creat-
ing design alternatives, including rapid prototyping and retargeting
content to alternate form factors such as mobile devices.

2 PAGE SEGMENTATION

Creating mappings between Web pages is facilitated by hav-
ing some abstract representation of each page’s structure that is
amenable to matching. One candidate for this representation is the
Document Object Model tree of the page, which provides a direct
correspondence between each page region and the HTML that com-
prises it. However, the DOM may contain many nodes that have no
visual effect on the rendered page, and lack other high-level struc-
tures that human viewers might expect.
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Figure 2: A consistent page segmentation like the ones produced
by our algorithm, and the associated DOM tree.

Several page segmentation algorithms seek to partition the DOM
in order to decompose Web pages into discrete sets of visually-
coherent 2D regions [Cai et al. 2003; Chakrabarti et al. 2008; Kang
et al. 2010], These algorithms produce good results as long as the
page’s DOM tree closely mirrors its visual hierarchy, which is the
case for many simple Web pages.

However, these techniques fail on more complex pages. Modern
CSS allows content to be arbitrarily repositioned, meaning that the
structural hierarchy of the DOM may only loosely approximate the
page’s visual layout. Similarly, inlined text elements are not as-
signed individual DOM elements, and therefore cannot be separated
from surrounding markup. In practice, these issues render existing
segmentation algorithms poorly suited to real-world Web pages.

Bricolage introduces a novel page segmentation algorithm that “re-
DOMs” the input page in order to produce clean and consistent seg-
mentations (Figure 2). The algorithm comprises four stages. First,
each inlined element is identified and wrapped inside a <span>
tag to ensure that all page content is contained within a leaf node
of the DOM tree. Next, the hierarchy is reshuffled so that parent-
child relationships in the tree correspond to visual containment on
the page. Each DOM node is labelled with its rendered page coor-
dinates, and the algorithm checks whether each child’s parent is the
smallest region that contains it. When this constraint is violated,
the DOM is adjusted accordingly, taking care to preserve layout de-
tails when nodes are reshuffled. Third, redundant and superfluous
nodes that do not contribute to the visual layout of the page are re-
moved. Fourth, the hierarchy is supplemented to introduce missing
structure. This is accomplished by computing a set of VIPS-style
separators across each page region [Cai et al. 2003], and inserting
enclosing DOM nodes accordingly.

At the end of these four steps, all page content is assigned to some
leaf node in the DOM tree, and every non-leaf node properly con-
tains its children. In practice, this algorithm can produce standard-
ized segmentations even for complex, design-oriented pages.

3 ANALYZING HUMAN MAPPINGS

The difficulty of developing automatic methods for generating map-
pings between Web pages has been noted [Fitzgerald 2008]. Rather
than attempting to formulate an algorithm for page mapping a pri-
ori, we hypothesize that a more promising approach is to use ma-
chine learning techniques to train on a set of human-generated map-
pings.

To this end, we created the Bricolage Collector, a Web application
for gathering human page mappings. We used the collector to so-
licit a corpus of mappings online, constructed between a variety of
different Web pages, and analyzed these mappings to answer ques-
tions about how people map pages. To establish a baseline for the
algorithm, we examined the consistency of the collected mappings
and tested them for structural and hierarchical patterns. To facil-
itate the selection of discriminative features for the learning, we
investigated the factors people consider when deciding which page
elements to match. The corpus of generated mappings was then
used to train and test the Bricolage algorithm.

3.1 Study Design

We selected a diverse corpus of 50 popular Web pages chosen from
the Alexa Top 100, recent Webby nominees and award winners,
highly regarded design blogs, and our own personal bookmark col-
lections. The set omits pages which rely heavily on Flash, since
they cannot be segmented effectively. To avoid overwhelming hu-
man mappers, it also omits pages which contain more than a hun-
dred or so distinct elements.

From this corpus, we preselected a focus set of eight page pairs
which seemed like good candidates for content transfer. Each par-
ticipant was asked to match one or two pairs from the focus set,
and one or two more chosen uniformly at random from the corpus.
In this way, the collector gathered data about how different peo-
ple map the same pair of pages, and about how people map many
different pairs.

We recruited 39 participants for the study through email lists and
online advertisements. Each reported some prior Web design expe-
rience.

Figure 3: The Bricolage Collector Web application asks users to
match each highlighted region in the left (content) page to the cor-
responding region in the right (layout) page. Zoom in for detail.

3.2 Procedure

Participants were first instructed to watch a tutorial video demon-
strating the Bricolage Collector interface and describing the task
(Figure 3). Users were asked to produce mappings to transfer the
content from the left page into the layout of the right. The tutorial



emphasizes that participants can use any criteria they deem appro-
priate to match elements between pages. Upon completion of the
tutorial, participants were redirected to the Collector Web applica-
tion, and presented with the first pair.

The interface iterates over the segmented regions in the content
page one at a time, and asks participants to find a matching region
in the layout page. The user selects this region via the mouse or
keyboard, and confirms it by clicking the “match” button at the top
of the app. If no good match exists for a particular region, the user
clicks the “no match” button.

After every fifth match, the interface presents a dialog box ask-
ing,“Why did you choose this assignment?” These rationale re-
sponses are logged along with the mappings, and submitted to a
central server.

3.3 Results

In total, the 39 participants generated 117 mappings between 52
pairs of pages: 73 mappings for the 8 pairs in the focus set, and
44 covering the rest of the corpus. The collection also generated
rationale explanations for 227 individual region assignments, av-
eraging 4.7 words in length. Participants averaged 10.5 seconds
finding a match for each page region (σ2 = 4.23s, min = 4.42s,
max = 25.0s), and about five minutes per pair of pages (µ =
5.38m, σ2 = 3.03m, min = 1.52m, max = 20.7m).

3.3.1 Consistency

Given two mappings for a particular pair of pages, we define the
consistency to be the percentage of page regions which are given
identical assignments. For the eight focus pairs, the average inter-
mapping consistency was 78.3% (σ2 = 10.2%, min = 58.8%,
max = 89.8%).

Moreover, 37.8% of page regions were mapped identically
by all participants. For instance, inset is an ordered plot
of the frequency of the region assignments used in mappings
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for the focus pair http://
ncadpostgraduate.com
and http://31three.
com. Nearly half of these
assignments were present in
all of the human mappings.

3.3.2 Rationale

To gain intuition about how people map Web pages, we analyzed
the rationale participants provided for the matches they made. One
of the most popular and effective tools for mining textual data
of this sort is Latent Semantic Analysis (LSA) [Deerwester et al.
1990], which provides an automatic mechanism for extracting con-
textual usage of language in a set of documents.

LSA takes a “bag of words” approach to textual analysis: each doc-
ument is treated as an unordered collection of words without regard
to grammar or punctuation. We followed the standard approach,
treating each rationale as a document, forming the term-document
matrix, and extracting is eigenvectors. We used Euclidean nor-
malization to make annotations of different lengths comparable,
and inverse document-frequency weighting to deemphasize com-
mon words like a and the. The principal components of the term-
document matrix represent the semantic “dimensions” of the ratio-
nales, and words with the largest projections onto each component
are its descriptors.

For the first component, the words with the largest projections in-
clude: footer, link, menu, description, videos, picture, login, con-
tent, image, title, body, header, search, and graphic. These words
pertain primarily to visual and semantic attributes of page content.

For the second component, the words with the largest projections
include: both, position, about, layout, bottom, one, two, three, sub-
section, leftmost, space, column, from, and horizontal. These words
are mostly concerned with structural and spatial relationships be-
tween page elements.

3.3.3 Structure and Hierarchy

Two statistics examine the structural and hierarchical properties of
the 81 collected mappings: one measuring the degree to which
mapped nodes preserve ancestry, and the other measuring the de-
gree to which the mapping keeps groups of siblings together.

We define two matched regions to be ancestry preserving if their
parent regions are also matched. The degree of ancestry preser-
vation in a mapping is the number of ancestry preserving regions
divided by the total number of matched regions. Participants map-
pings preserved ancestry 53.3% of the time (σ2 = 19.6%, min =
7.6%, max = 95.5%).

Similarly, we define a set of page regions sharing a common parent
to be sibling preserving if the regions they are matched to also share
a common parent. Participants produced mappings that were 83.9%
sibling preserving (σ2 = 8.13%, min = 58.3%, max = 100%).

3.4 Analysis

While users do not map pages in exactly the same way, the map-
pings produced by different people are highly consistent. Addition-
ally, many assignments between pages were unanimous: there is a
“method to the madness.”

LSA found two factors to be highly predictive of human mappings:
matching visual and semantic counterparts across pages, and pre-
serving meaningful patterns and arrangements between elements.

This analysis helps clarify the kind of machine learning algorithm
needed to produce good mappings between pages. It must incorpo-
rate semantic and structural constraints, and learn how to balance
between them. It should produce mappings that are consistent with
the ones in the training corpus, at least to the degree that those map-
pings are internally consistent themselves.

4 COMPUTING PAGE MAPPINGS

Since the abstract page representation produced by Bricolage’s
segmentation algorithm is a modified DOM tree, we turn to the
tree matching literature which proposes several efficient methods
for computing mappings between trees [Zhang and Shasha 1989;
Shasha et al. 1994; Zhang 1996]. Unfortunately, by definition,
these algorithms strictly preserve ancestry: once two nodes have
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been placed in correspon-
dence, their descendants must
be matched as well. Rigidly
enforcing ancestry prevents
semantic considerations from
being balanced with structural
ones. For instance, when two
pages root their navigation el-
ements differently, mapping the semantics of these regions is prob-
ably more important than preserving the overall page hierarchy (in-
set).

http://ncadpostgraduate.com
http://ncadpostgraduate.com
http://31three.com
http://31three.com
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Figure 4: To determine the ancestry penalty for an edge e =
[m,n], we count the children of m and n which induce ancestry
violations. Here, only n′ induces a cost on e.

Bricolage introduces a novel optimization algorithm which flexi-
bly balances semantic and structural constraints. The algorithm
connects the nodes of the two page trees to form a graph, and as-
signs a cost to each edge comprised of three terms. The first term
measures visual and semantic differences between the correspond-
ing page elements, the second penalizes edges that violate ancestry
relationships, and the third penalizes edges that break up sibling
groups. Determining the best page mapping then reduces to finding
a minimum-cost perfect matching of the constructed graph. Brico-
lage uses structured prediction to learn a cost function under which
the set of exemplar mappings are minimal [Collins 2002].

Formally, given two page trees with nodes T1 and T2, we construct
a complete bipartite graph G between T1 ∪ {⊗1} and T2 ∪ {⊗2},
where⊗1 and⊗2 are no-match nodes. We then define a page map-
pingM to be a set of edges fromG such that every node in T1∪T2

is covered by precisely one edge. The rest of this paper usesM(m)
to denote the image of a node m in the mapping regardless of the
tree in which m resides.

To find the best mapping between pages, the algorithm assigns a
cost c(e) to each edge e ∈ G, and aggregates them to compute the
total mapping cost c(M) =

∑
e∈M c(e). Bricolage then searches

for the least-cost mapping M? = argminM c(M).

4.1 Exact Edge Costs

We define the cost of an edge e ∈ T1 × T2 to be the sum of the
visual, ancestry, and sibling costs

c(e) = cv(e) + ca(e) + cs(e).

For the remaining edges inG, all of which involve no-match nodes,
we fix the cost c(e) = wn, wherewn is a constant no-match weight.

To compute cv([m,n]), the algorithm compares visual and seman-
tic properties of m and n by inspecting their DOM nodes. We de-
scribe the computation of this term in detail later in the paper.

The ancestry cost ca(·) penalizes edges in the mapping which vio-
late ancestry relationships between the pages’ elements. Consider
a node m ∈ T1, and let C(m) denote the children of m. We define
the ancestry-violating children of m to be the set

V (m) =
{
m′ ∈ C(m) |M(m′) ∈ T2 \ C(M(m))

}
,

and define V (n) symmetrically. Then, the ancestry cost for an edge
is proportional to the number of ancestry violating children of its
terminal nodes

ca([m,n]) = wa (|V (m)|+ |V (n)|) ,

where wa is a constant ancestry violation weight (see Figure 4).
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Figure 5: To determine the sibling penalty for an edge [m,n], we
count the number of siblings of m that are not mapped to the sib-
lings of n, and vice versa. In this example, only n′ induces a cost
on [m,n].

The sibling cost cs(·) penalizes edges which fail to preserve sibling
relationships between trees. To calculate this term, we must first
define a few tree-related concepts. Let P (m) denote the parent
of m. Then, the sibling group of a node m is the set S(m) =
{C(P (m))}. Given a mapping M , the sibling invariant subset of
m is the set

I(m) =
{
m′ ∈ S(m) |M(m′) ∈ S(M(m))

}
,

and the sibling divergent subset of m is the set

D(m) =
{
m′ ∈ S(m) \ I(m) |M(m′) ∈ T2

}
,

and the distinct sibling groups of m comprise the set G(m) =⋃
m′∈S(m) P (M(m′)). We define all corresponding terms for n

symmetrically, and then compute

cs([m,n]) = ws

(
|D(m)|

|I(m)||G(m)| +
|D(n)|

|I(n)||G(n)|

)
,

wherews is a constant sibling violation weighting term. Intuitively,
this term balances two important quantities: the degree to which the
siblings of a node are “broken up” by the mapping, and the degree
to which the node follows its siblings (see Figure 5).

4.2 Bounding Edge Costs

While this cost model provides an elegant way to balance semantic,
ancestral, and sibling constraints, it cannot be used to search for the
optimal mapping M? directly. In particular, while cv([m,n]) can
be evaluated for an edge by inspecting m and n, ca(·) and cs(·) re-
quire information about the other edges are in the mapping. There-
fore, to use this model to search forM? directly, one would have to
know the mapping a priori.

While we cannot evaluate ca(·) and cs(·) precisely, we can compute
bounds for them on a per-edge basis [Chawathe and Garcia-Molina
1997]. Moreover, by computing tight upper and lower bounds for
each edge, we can remove some edges from G that are guaranteed
not to appear in M?. Each time we prune an edge in this way, the
bounds for other nearby edges may be improved. Therefore, to find
M?, we iteratively prune and bound edges until we have reduced
the size of G as much as possible.

To bound the ancestry cost of an edge [m,n] ∈ G, we must con-
sider each child of m and n and answer two questions. First, is it
impossible for this node to induce an ancestry violation? Second, is
it unavoidable that this node will induce an ancestry violation? The
answer to the first question informs the upper bound for ca(·); the
answer to the second informs the lower.
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Figure 6: To bound ca([m,n]), observe that neither m′ nor n′

can induce an ancestry violation. Conversely, m′′ is guaranteed to
violate ancestry. No guarantee can be made for n′′. Therefore, the
lower bound for ca is wa, and the upper bound is 2wa.

It is possible for a nodem′ ∈ C(m) to induce an ancestry violation
as long as there is some edge between it and a node in T2 \ (C(n)∪
{⊗2}). Conversely, the node cannot be guaranteed to induce an
ancestry violation as long as some edge exists between it and a node
in C(n) ∪ {⊗2} . Accordingly, we define indicator functions

1Ua (m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ 6∈ C(n) ∪ {⊗2}
0 else

,

1La (m′, n) =

{
1 if 6 ∃[m′, n′] ∈ G s.t. n′ ∈ C(n) ∪ {⊗2}
0 else

.

Then, the upper and lower bounds for ca([m,n]) are

Ua([m,n]) =

wa

 ∑
m′∈C(m)

1Ua
(
m′, n

)
+

∑
n′∈C(n)

1Ua
(
n′,m

) ,

and

La([m,n]) =

wa

 ∑
m′∈C(m)

1La
(
m′, n

)
+

∑
n′∈C(n)

1La
(
n′,m

) .

Figure 6 illustrates the computation of these bounds. Observe that
pruning edges from G will cause the upper bound for ca([m,n]) to
decrease, and the lower bound to increase.

Bounds for cs([m,n]) may be obtained in a similar way, by bound-
ing each of the three terms |D(·)|, |I(·)|, and |G(·)|. To bound
|D(m)|, let S̄(m) = S(m)\{m} and consider a nodem′ ∈ S̄(m).
It is possible that m′ is in D(m) as long as some edge exists be-
tween it and a node in T2 \ (S̄(n)∪ {⊗2}). Conversely, m′ cannot
be guaranteed to be in D(m) as long as some edge exists between
it and a node in S̄(n) ∪ {⊗2}. Then, we have

1UD(m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ 6∈ S̄(n) ∪ {⊗2}
0 else

,

UD(m,n) =
∑

m′∈S̄(m)

1UD(m′, n),

and

1LD(m′, n) =

{
1 if 6 ∃[m′, n′] ∈ G s.t. n′ ∈ S̄(n) ∪ {⊗2}
0 else

,

LD(m,n) =
∑

m′∈S̄(m)

1LD(m′, n).
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Figure 7: To bound cs([m,n]), observe that m′ is guaranteed to
be in I(m), and m′′ is guaranteed to be in D(m). No guarantees
can be made for n′ and n′′. Therefore, the lower bound for cs is
ws/4, and the upper bound is 3ws/4.

The bounds for |I(m)| are similarly given by

1UI (m′, n) =

{
1 if ∃[m′, n′] ∈ G s.t. n′ ∈ S̄(n)
0 else

,

UI(m,n) = 1 +
∑

m′∈S̄(m)

1UI (m′, n),

and

1LI (m′, n) =

{
1 if ∀[m′, n′] ∈ G, n′ ∈ S̄(n)
0 else

,

LI(m,n) = 1 +
∑

m′∈S̄(m)

1LI (m′, n).

For all nonzero sibling costs, the lower bound for |G(m)| is 2 and
the upper bound is LD(m,n) + 1. All remaining quantities are de-
fined symmetrically. Then, upper and lower bounds for cs([m,n])
are given by

Us([m,n]) =
ws

2

(
UD(m,n)

LI(m,n)
+
UD(n,m)

LI(n,m)

)
and

Ls([m,n]) =

ws

(
LD(m,n)

UI(m,n) (LD(m,n) + 1)
+

LD(n,m)

UI(n,m) (LD(n,m) + 1)

)
.

Figure 7 illustrates these computations.

With bounds for the ancestry and sibling terms in place, upper and
lower bounds for the total edge cost may be trivially computed as
cU (e) = cv(e) + Ua(e) + Us(e) and cL(e) = cv(e) + La(e) +
Ls(e).

4.3 Pruning Edges Not In The Optimal Mapping

Under what conditions can an edge be safely removed from G? An
edge can be pruned whenever it is certain that better choices exist
for each of the edge’s nodes. More formally, an edge e = [m,n] ∈
T1×T2 may be removed whenever there exist edges e2 incident on
m and e3 incident on n such that

cL(e) ≥ c∗U (e2) + c∗U (e3),

where

c∗U (e) =

{
cU (e) + wa if e ∈ T1 × T2

cU (e) else
.



Intuitively, if the worst possible combined cost of e2 and e3 is less
than the best possible cost for e—even assuming that both e2 and e3

violate ancestry—e cannot appear in M? and can be safely pruned.
Similarly, edges of the form e = [m,⊗2] may be pruned if there
exists another edge e2 incident on m such that cL(e) ≥ cU (e2) +
wa.

Once an edge [m,n] has been pruned, bounds on all the edges in-
cident on the parents and siblings of m and n can be updated. The
only caveat during this process is that we must test each edge before
pruning it to ensure that its removal will not leaveG without a valid
matching.

4.4 Approximating the Optimal Mapping

To find a low-cost mapping between pages, the bipartite graph G is
constructed and the edge bounds initialized. Pruning begins, and it-
eratively removes edges fromG until no more edges can be pruned.
In general, this process will terminate well before a minimal perfect
matching has been identified.

At this stage, a heuristic algorithm further filters the graph. Edges
are iteratively fixed in order of increasing lower bound, and ac-
cepted into the mapping one at a time. After each edge is fixed,
all other edges incident on its terminal nodes are removed, and an-
other round of pruning is initiated.

After G has been decimated, we form a cost matrix for the assign-
ment problem by averaging the upper and lower bounds for the re-
maining edges. This allows us to find a nearly optimal mapping
between the two trees in polynomial time via the Hungarian algo-
rithm.

5 LEARNING THE COST MODEL

Although this mapping algorithm can be used with any visual and
semantic cost model and associated weights wn, wa, and wv , the
goal of Bricolage is to learn a model that will reproduce a corpus
of human mappings. To do this, Bricolage employs a feature-based
approach to compute the visual and semantic cost cv(·) between
nodes, and trains the weights of these features and those for the
no-match, ancestry, and sibling terms.

5.1 Edge Features

The algorithm first computes a set of real-valued visual and seman-
tic properties for each node in the page trees. Visual properties are
based on a node’s render-time appearance, and include attributes
like width, font size, and mean RGB values. Semantic properties
are inferred from the node’s HTML, and take values in the Boolean
domain {0, 1} indicating conformance with some measurable se-
mantic quality such as “is an image” or “is contained in the header.”
A full list of these properties is given in the Appendix.

To compute the total cost for an edge, the algorithm first calcu-
lates the relative difference between each property for m and n,
and concatenates these values—along with the exact ancestry and
sibling costs and a Boolean no-match indicator—into a feature vec-
tor fe. Given a set of weights wf for each visual and semantic
feature, the edge cost is then computed as c(e) = w̄T fe, where
w̄ = 〈wf , wa, ws, wn〉.

Given a mapping M , the algorithm assembles an aggregate feature
vector FM =

∑
e∈M fe to calculate c(M) = w̄TFM . Training

the cost model then reduces to finding a set of weights under which
the mappings in the training set have minimal total cost.

Figure 8: Bricolage used to rapidly prototype many alternatives.
(top) The original Web page. (bottom) The page automatically re-
targeted to three other layouts and styles.



Figure 9: Bricolage used for mobile retargeting. (left) The original Web page. (right) The page automatically retargeted to two different
mobile layouts.

5.2 Generalized Perceptron Algorithm

To learn a consistent assignment for w̄ under which the set of ex-
emplar mappings are minimal, Bricolage uses the generalized per-
ceptron algorithm for structured prediction [Collins 2002].

The perceptron begins by initializing w̄0 = 0. In each subsequent
iteration, the perceptron randomly selects a pair of page trees and
the associated mapping M from the training set. Next, it computes
a new, low-cost mapping M̂ ≈ argminM w̄T

i FM for the current
page pair. Based on the resultant mapping, a new aggregate feature
vector FM̂ is calculated, and the weights are updated by w̄i+1 =

w̄i + αi (FM̂ − FM ), where αi = 1/
√
i+ 1 is the learning rate.

While the generalized perceptron algorithm is guaranteed to con-
verge only if the training set is linearly separable, in practice it pro-
duces good results for many diverse data sets. Since the the weights
may oscillate during the final stages of the learning, the final cost
model is produced by averaging over the last few iterations.

6 CONTENT TRANSFER

Once a mapping has been computed between pages, Bricolage uses
it to guide the transfer of content from one page to the other. To
do this, Bricolage searches the content Web page and identifies all
matched nodes which do not have matched descendants. The chil-
dren of these nodes are processed to inline their CSS properties and
convert all contained URLs to absolute paths. Then, the nodes are
cloned and inserted into the corresponding page in the locations
indicated by the mapping, replacing any children already residing
there. The transfer leaves unmatched regions in the layout page
untouched, preserving its overall structure.

7 IMPLEMENTATION

Bricolage comprises several distinct components implemented us-
ing a wide variety of technologies. The page segmentation, map-
ping, and machine learning libraries are implemented in C++ using
the Qt framework, and use Qt’s WebKit API in order to interface
directly with its browser engine.

To ensure that online Web updates do not interfere with the consis-
tency of the results, all pages in the training corpus are archived us-
ing the Mozilla Archive File Format and uploaded to a centralized
page server running Apache. For efficiency, page segmentations
and associated DOM node features are computed and cached for
each page when it is added to the corpus. Each feature has its own
dynamic plugin library, allowing the set of features to be extended
with minimal overhead, and mixed and matched at runtime.

The Bricolage Collector is written in CSS, Javascript, and HTML.
Mapping results are sent to a centralized Ruby on Rails server as
they are generated, and stored as XML in a database.

8 RESULTS

This section evaluates the efficacy of Bricolage in two ways. First,
we show several practical examples of Bricolage in action. We also
evaluate the machine learning components of the system by per-
forming a cross-validation experiment on the gathered human map-
pings.

8.1 Examples

We show several practical examples of Bricolage being used for au-
tomatic retargeting. Figure 8 demonstrates the algorithm in a rapid
prototyping scenario, in which an existing page is transformed into
several potential replacement designs. This sort of parallel proto-
typing can significantly improve design performance [Dow et al.
2010]. Figure 9 demonstrates that Bricolage can be used to retarget
content across form factors, showing a full-size Web page automat-
ically mapped into two different mobile layouts.

Figure 10 illustrates an ancillary benefit of the cost model learned
by Bricolage. Since Bricolage searches for the optimal mapping be-
tween pages, the returned cost can be interpreted as an approximate
distance metric on the space of page designs. Although the theoret-
ical properties of this metric are not strong (it satisfies neither the
triangle inequality nor the identity of indiscernables), in practice it
provides a useful mechanism for automatically differentiating be-
tween pages with similar and dissimilar designs.
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Figure 10: Bricolage can be used to induce a distance metric on the space of Web designs. By mapping the leftmost page onto each of the
pages in the corpus and examining the mapping cost, we can automatically differentiate between pages with similar and dissimilar designs.

8.2 Machine Learning Results

To test the effectiveness of Bricolage’s machine learning compo-
nents, we trained Bricolage on the 44 collected human mappings
not in the focus set. The perceptron was run for 400 iterations,
and the weight vector averaged over the last 20. Then, the learned
cost model was used to predict mappings for each of the 8 pairs in
the focus set, and these mappings were compared to the reference
mappings using three different metrics: average similarity, nearest
neighbor similarity, and percentage of edges that appear in at least
one mapping. Table 1 shows these results.

The mappings produced by Bricolage are not indistinguishable
from those generated by humans. For a mapping algorithm to con-
vincingly claim to have learned the space of human mappings, it
would have to achieve an average similarity roughly equal to the
78% inter-mapping consistency of the focus set. Bricolage does
about 15% worse.

However, Bricolage produces results that are often sufficient for it
to masquerade as a human: the nearest neighbor similarity averages
73%. Moreover, almost all of the edges generated by Bricolage
appear in some human mapping: with a larger sampling of human
behaviors, it is likely that the 83% edge frequency would further
increase.

A major motivation for the structured-prediction techniques at the
heart of Bricolage was the hypothesis that ancestry and sibling re-
lationships are crucial to predicting human mappings. To test this
hypothesis, we also trained a cost model for Bricolage based purely
on the visual and semantic metric. The resulting statistics validate
our hypothesis: predicting mappings based purely on visual and se-
mantic differences between page elements results in roughly a 30%
decrease in performance.

Once a cost model has been trained, Bricolage produces mappings
between pages in about 1.04 seconds on a 2.55 Ghz Intel Core i7,
averaging roughly 0.02 seconds per node.

Cost Model Metric %

cv , ca, and cs
Average Similarity 61.8
Nearest Neighbor 73.0
Edge Frequency 82.6

cv alone
Average Similarity 44.6
Nearest Neighbor 53.2
Edge Frequency 64.4

Table 1: Results of the cross-validation experiment. Bricolage per-
forms substantially worse without the ancestry and sibling terms in
the cost model.

9 CONCLUSIONS AND FUTURE WORK

This paper introduced the Bricolage algorithm for automatically
transferring design and content between Web pages. It demon-
strated that Bricolage can learn to closely reproduce human map-
pings, and presented examples of Bricolage being used to automat-
ically retarget real-world Web pages. This work takes a first step
towards a powerful new paradigm for example-based Web design,
and opens up exciting areas for future research.

At present, the algorithm employs only about thirty simple visual
and semantic features. Expanding this set to include more com-
plex and sophisticated properties—such as those based on computer
vision—will likely improve the robustness of the machine learning.

Additionally, the Bricolage prototype’s content transfer implemen-
tation cannot handle many of the idiosyncrasies of modern HTML.
Before the system can see widespread use, this situation must be
remedied.

Because Bricolage can only manipulate Web page content that is
part of the DOM, it cannot retarget pages that are authored entirely
in Flash or Java. Extending Bricolage to handle these technologies
remains future work; optimization approaches like Supple [Gajos
and Weld 2004] may prove valuable.

Perhaps most exciting is the potential for creating an integrated
design-based search and retargeting interface using Bricolage tech-
nology. Properly executed, such a system could have a profound
effect on the Web design status quo.
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APPENDIX: Features

The Bricolage prototype uses the following DOM properties as fea-
tures in the learning.

The visual properties include: width, height, area, aspectRatio,
fontSize, fontWeight, meanColor, numLinks, numColors, numChil-
dren, numImages, numSiblings, siblingOrder, textArea, wordCount,
treeLevel, verticalSidedness (normalized distance from the horizon
of the page), horizontalSidedness (normalized distance from the
midline of the page), leftSidedness (normalized distance from the
left border of the page), topSidedness (normalized distance from
the top border of the page), and shapeAppearance (the minimum of
the aspect ratio and its inverse).

The semantic properties include: search, footer, header, image,
logo, navigation, bottom (if the node is in the bottom 10% of the
page), top (if the node is in the top 10% of the page), fillsHeight (if
the node extends more than 90% down the page), and fillsWidth (if
the node extends more than 90% across the page).
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