
Adaptive Interfaces for Supporting Design by Example
Brian Lee, Scott R. Klemmer, Savil Srivastava

Stanford University HCI Group
Computer Science Department

Stanford, CA 94305-9035
[balee, srk, savil]@cs.stanford.edu

Ronen Brafman
Stanford University Multiagent Group

Computer Science Department
Stanford, CA 94305

brafman@cs.stanford.edu

ABSTRACT
Analogy plays an important cognitive role in reasoning and
problem solving. One illustration of analogical cognition
can be found in design practice, where viewing examples is
an established technique for inspiration and learning. While
digital information technologies have made it easier for
designers to access examples of other designers’ work, sig-
nificant opportunities exist for selecting and presenting ex-
amples in a proactive fashion. In this paper, we introduce
techniques for dynamically deriving interfaces for example-
based design tools using decision-theoretic selection, de-
signer specification, and end-user preference as inputs. This
paper describes a manifestation of these techniques in the
Adaptive Ideas web page builder, an HTML-based display
platform for web page designers that leverages content me-
tadata to automatically generate displays of examples. We
present an evaluation of these techniques through a first-use
study.

ACM Classification: H.5.2. [Information Interfaces]: User
Interfaces — Graphical user interfaces (GUI); Interaction
styles. D.2.2 [Software Engineering]: Design Tools and
Techniques — user interfaces. H1.2. [Models and Prin-
ciples]: User/ Machine Systems.

General terms: Design, Human Factors, Algorithms

Keywords: Adaptive interfaces, design by example, deci-
sion theory, model-based UIs

INTRODUCTION
Analogy plays an important cognitive role in reasoning and
problem solving [12]. One illustration of analogical cogni-
tion can be found in the use and reuse of examples, where
people draw from one example of a subject to gain insight
or information on another. Viewing examples of previous
work is an established technique in many design discip-
lines: compendiums such as “The Big Book of Logos” [5]
serve as highly regarded resources for inspiration.

Digital information technologies have significantly im-
proved users’ ability to access a wealth of information: de-
signers seeking to find examples of other designers’ work
need only open their web browsers. However, finding ex-
amples that are useful (representative, interesting, different,
etc.) in a vast ocean of resources is difficult; designers may
get lost among the possibilities, and many may not even
know where to start.

We propose a novel application of decision-theoretic me-
thods to the challenge of adaptively selecting, laying out,
and navigating example artifacts to improve design prac-
tice. The hypothesis manifest in this work is that proactive
presentation and agile browsing of analogical information
can increase awareness and serendipitous inquiry.

The design of such an example-centered system raises sev-
eral issues: How are examples provided to the system? How
does the system choose what examples to show? How does
one browse the chosen examples? How does one copy and
/or modify features of existing examples in order to inte-
grate them into one’s own work?

Figure 1. An adaptively generated web page builder, with
examples displayed along the bottom of the interface. Inter-
active components are specified by a designer; content
selection and interaction layout is performed algorithmically.

2

Our research focuses on the second question: how to select
and present interesting sets of examples in ways which are
felicitous with current practice. In addition to choosing
good examples, it is important to manage the dynamics of
the user’s attentional focus [12], as proactively displaying
presentation information introduces additional potential for
distraction and error.

This paper contributes a technique for dynamically deriving
interfaces for example-based design tools using decision-
theoretic selection, designer specification, and end-user
preference as inputs. The algorithm is embodied in Adap-
tive Ideas, an HTML-based display platform which leverag-
es content metadata and adaptive algorithms to automatical-
ly generate displays relevant to users’ current activities (see
Figure 1). The dataset in the Adaptive Ideas web page
builder prototype is drawn from real homepages posted on
the World Wide Web.

From a technical perspective, this research draws on prior
work on model-based user interfaces [25] and adaptive in-
terfaces [9], and in particular on the idea of casting inter-
face generation as a constraint-based optimization problem
[3, 11, 32].

The rest of the paper is organized as follows. We define the
concerns of example subset selection and outline the di-
mensions that we use to analyze it. We next explain the
Adaptive Ideas layout algorithm, implementation, and per-

formance. We describe results of a first-use study examin-
ing the use of our example-based interface for website de-
sign. We conclude by discussing related and future work.

EXAMPLE SELECTION
The Adaptive Ideas web page builder seeks to assist users
by displaying examples of existing pages. At its core is a
subset algorithm that chooses which examples from the
corpus to display to users so as to “maximize” estimated
design value.

Design value is operationalized through two proxy meas-
ures: the usefulness of example content to the user’s current
task or request, and the value associated with the size of
display elements in the overall interface. In this section, we
elaborate on how content is selected for display.

Content Elements and Attributes
Content elements are example media that together comprise
the dataset from which the adaptive algorithm selects. In
Adaptive Ideas, they are existing homepages harvested
from the web. Content elements have attributes, which are
facets [31] that can be flat or hierarchical.

This paper focuses on using visual properties as attributes:
background color, primary font, column layout, and visual
density. Here, we manually assigned values for each page
attribute; we believe that a production implementation
could tractably assign them automatically.

Figure 2. The Adaptive Ideas system uses subset selection algorithms and layout functions to automatically generate exam-
ple-augmented interfaces.

3

Distance
At the heart of the Adaptive Ideas algorithm is the determi-
nation of distance, a metric that models the likeness of two
attribute values. The distance between two attributes is a
real number whose value depends on the properties of the
attribute. For example, the distance function between two
background colors is calculated by mapping the colors into
a three-dimensional space (biconic HSB) and calculating the
distance between the respective points in the color space. In
contrast, the distance function used for fonts is a simple
ternary function: 0 if the fonts are the same, 1 if they are
both serif or both sans serif fonts, 2 if the fonts do not share
serif characteristics.

Distance functions are used to compute two types of subsets
of interest to the display of examples: similarity and variety.

Similarity
The goal of the similarity subset algorithm is to find a set of
n objects most similar to a given object for a given attribute.
We hypothesized that showing examples similar to a given
example would be useful for designers who may have a
exemplar in mind which is close to ideal, and are looking
for subtle design variations.

Adaptive Ideas uses a simple algorithm to derive similarity
subsets: it calculates the distance of all objects from the
given object and sort them in ascending order of distance,
taking the first n items (see Figure 3).

Variety
The goal of the variety subset algorithm is to find a set of n
objects that represent a “diverse” subset of objects along a
given attribute axis. We hypothesized that showing a well-
selected variety of examples along a given attribute would
give designers a better feel for the overall attribute space
and thus provide better inspiration.

This raises the question of what defines a “well-selected”
variety: one that shows off all possible values of the given

attribute, one that represents the distribution of the underly-
ing dataset, or one following some other formula? For in-
stance, the majority of websites in our prototype dataset
have a background color of white. An algorithm that tries to
represent the distribution of the dataset would contain most-
ly white web pages (Figure 3c); in this case, an algorithm
that focuses on displaying a variety of possible values may
be more desirable, allowing users to see the full design
space (Figure 3d). On the other hand, such an algorithm
may emphasize outliers or unusual points in the design
space.

The Adaptive Ideas framework takes a spaced stochastic
approach to selecting a representative variety. First, the
system picks a random example from the dataset as a start-
ing point. Next, a random example is selected from the re-
maining elements in the dataset which are at least ε distance
away from all of the elements selected thus far, where ε is a
spacing function defined on a per-attribute basis.

The choice of ε has significant influence on the behavior of
the spaced stochastic algorithm. When ε is zero or small
relative to the design space, this algorithm degenerates to
the completely random case (Figure 3c). As ε gets larger
relative to the space, the algorithm has fewer elements from
which to choose, and thus risks not filling up the space. We
select a large ε, such that the theoretical maximum number
of elements chosen is close to n.

The algorithm continues picking elements until either (1) n
elements have been selected or (2) there are no legal ele-
ments remaining, i.e., every remaining unselected element
is less than ε distance away from an element in the selected
subset. If more elements are needed (case 2), the system
selects elements at random from the full set of remaining
elements until n have been chosen. On balance, ε guaran-
tees that distinctly different values for the given attribute
will be represented in the variety set, while filling out re-
maining elements randomly implies that some of the under-

Figure 3. Illustration of Adaptive Ideas subset selection algorithms. (a) Two-dimensional representation of examples laid out in
an attribute design space. Note that the space is “chunky,” that is, a large fraction of the examples can be found in one area.
(b) Similarity algorithm, which chooses the n closest examples to the given example. (c) Naïve variety algorithm, which ran-
domly chooses n elements from the design space. Note that large areas of the design space are not represented by any cho-
sen examples. (d) Adaptive Ideas variety algorithm, which chooses examples at least ε distance away from other chosen ele-
ments. Although the underlying distribution is partially hidden, users are shown a larger portion of the valid design space.

4

lying distribution of values will be reflected. A variant
would be to iterate over successively smaller values of ε
until enough legal elements are found; this would further
emphasize the breadth of the design space.

INTERFACE LAYOUT
The Adaptive Ideas system recognizes two categories of
display elements: content elements (examples) and interac-
tive elements.

Interactive elements are interface units which provide some
function or expose a service; examples include traditional
GUI elements such as buttons and sliders, and more com-
plex elements such as HTML editors. Interactive elements
may include content, but are distinct from content elements
because their behavior is dynamic rather than static.

The Adaptive Ideas system uses a combination of designer
specifications and adaptive techniques to perform interface
layout. Designers may create XML-based templates to par-
tially specify the appearance and behavior of an example
display. Similar to Damask [16], templates allow interface
designers to specify grouping and layout of content and
interactive elements in a device-independent fashion. Using
templates, designers can also embed interactive web com-
ponents which are not part of the Adaptive Ideas system but
which provide other services, such as email and calendaring
systems. This ability to include any HTML snippet that
represents interactive content introduces a mash-up ap-
proach to creating adaptive displays.

The Adaptive Ideas algorithm decides how to visually
present the display elements by selecting a layout style. The
layout style is a function of the output display D and tem-
plate T, and is specified as a set of tuples of content ele-
ments, positions, and sizes:

hwyxe ,,,,

where e is an element, x and y are the element’s position in
this layout, and w and h are the width and height in pixels
of the element. In the Adaptive Ideas implementation, all
elements are allocated rectangular regions.

Content elements are laid out in special interactive regions
called adaptive information grids. The template dictates
where these grids should be rendered, though their sizes are
dynamically chosen in the same fashion as other elements.

Presentation Value
A key consideration when choosing a layout is deciding the
size to render display elements. Larger items are generally
easier to read and select, and therefore correspond to higher
attentional value than smaller items. (In social settings, re-
search suggests that people correlate size with permissibili-
ty in reading other’s content [26].) However, increased
space for one element necessarily implies less space for
another. We encode this tradeoff in a presentation value
function: p(e,w,h,D). This function estimates the utility of
presenting a display element e at a given size (w, h) in a
given display D.

In general, larger sizes receive higher presentation scores
and smaller sizes receive lower scores. However, the rela-
tionship between size and value is non-linear, and varies by
element type. (One could extend the Adaptive Ideas archi-
tecture so that this relationship is defined on a per-instance
basis, perhaps using metrics similar to those of Suh et al.
[24].) Figure 4 shows an example of how content presenta-
tion scores are calculated.

We derived the presentation value functions for the current
Adaptive Ideas system by assessing utility of the various
element types (text, images, interactive widgets) at different

Figure 4. The Adaptive Ideas system assigns presentation value functions for content elements. Left: Graph of sample pres-
entation values for example images. Right: A grid shown at very small (1), small (2), and large (3) sizes. Note that the images
are readable when larger, still understandable when smaller, but not generally useful at the smallest sizes, modeled by the
significant drop in presentation values at the latter.

5

sizes, then hand-tuning the functions and their parameters.
One special case is the adaptive information grid, which has
a presentation function equal to the sum of the presentation
values of the content elements it contains.

Relevance
Another important piece of the Adaptive Ideas layout algo-
rithm is relevance, which models the value of an interactive
element in a given situation.

Relevance is determined with respect to a user’s focus. This
focus (or foci, if more than one) is specified either implicit-
ly when selecting content to view or edit, or explicitly by
requesting a similarity or variety subset. The goal of using
this concept of focus ensures that the interface only displays
elements relevant to the user’s current activities, so as not
to distract her from the task at hand.

To estimate the usefulness of seeing an interactive element
d given the current focus or foci F, the Adaptive Ideas sys-
tem uses a display relevance function: r(d,F). Generally,
elements that the user has explicitly requested receive high-
er scores from r than elements which are being shown peri-
pherally; elements which are not needed in the current inte-
raction state are assigned an r score of zero. These func-
tions are also defined by hand on a per-element basis, but
may be configured by designers or adapted through use.

ADAPTIVE CALCULATIONS
The Adaptive Ideas system (see Figure 2) receives the fol-
lowing inputs from the system and the environment: content
elements, interactive elements, output display, and a design
template. The algorithm searches the space of possible
layouts and selects the layout with the maximum estimated
utility for the given output display.

Estimated Value of Display Elements
For displays of content elements in information grids, we
use a simple algorithm for indicating order: a row-major
ordering (left-to-right, top-to-bottom) where the starting
item is at the top left.

In this formulation, an element’s absolute location has no
effect on its estimated value. A more complex model would
assign different values if an element appeared in the center
or the side, near the top or near the bottom of the interface.

Given a focus F, the estimated value of an interactive ele-
ment at a given size is a multiplicative function of its relev-
ance to the given focus and its presentation value at the
given size:

),(),,(),,,(FerhwepFhwes ×=

A low presentation or relevance value will result in a low
score, even when the other input value is high: a highly
relevant item is of little value if it is unrecognizable, and a
prominently displayed item is not valuable if it is not rele-
vant to the user’s current task or state.

Estimated Value of a Layout
Given a focus F, the estimated value of a layout is the sum
of the estimated values of all elements displayed in the
presentation:

∑
∈

=
Le

FhwesLFs),,,(),(

where w and h are the width and height of element e in
layout L.

This function presumes that the contributions of a given
element are independent of the presence or absence of other
elements. Though we account for some of this in our selec-
tion algorithms, we recognize that this assumption may not
be valid for all situations: there may be interactions be-
tween different elements that may either increase (e.g., due
to synergies) or decrease (e.g., due to clutter or overlap) the
estimated value of a presentation. Computing such relation-
ships has been researched in other domains with highly
structured metadata [32] but is nontrivial when dealing with
freeform and less structured data.

Finding the Optimal Interface Layout
Assuming no additional constraints beyond the requirement
to fit all selected items on the screen, and using the current
model of presentation scores, this problem can be viewed as
a two-dimensional variant of the knapsack problem. This is
a difficult computational problem, and an active area of
research [17]. As we anticipate the existence of additional
constraints, we believe that optimization algorithms for this
problem will be an important topic of research.

We use dynamic programming (caching the results of sub-
problems; in this case, partial layouts) and branch-and-
bound methods to conduct the search. To boost perfor-
mance, we also perform discrete calculations for layout:
instead of evaluating every possible integer width and
height, we iterate through possible dimension values in
five-pixel increments.

Optimizing layout is simplified when laying out content
elements in an information grid. As fractional displays of
content elements are useless, the algorithm needs only to
search through a small range of discrete size settings, spe-
cifically sizes that result in an exact integer number of ele-
ments either across or down for a given size. Finding the
best set of content items to display at a given size then be-
comes a greedy search, linear in the number of elements.

Intuitively, the information presentation problem is a tra-
deoff between showing a smaller number of items at larger
sizes and showing a larger number of items at smaller sizes.
The Adaptive Ideas framework quantifies this tradeoff neat-
ly and succinctly, enabling quick and efficient evaluation of
candidate interfaces.

SCENARIO
We illustrate the envisioned use of the Adaptive Ideas web
page builder with an example scenario. Elaine Marsh is a
21-year-old economics student, starting her senior year.

6

Studious and reserved, Elaine spends much of her time out-
side the classroom serving as vice president of the Alpha
Beta Gamma honor society and volunteering as a tutor at a
local high school. Elaine wants to make a homepage that
details her undergraduate activities, including class projects,
research papers, and leadership positions. Her vision for the
page includes a mature, sophisticated design and a slightly
conservative feel.

She opens the Adaptive
Ideas web page builder and
is presented with a variety
of possible starting points
for her website. She
browses through them,
looking for a design that
she thinks is appropriate.
Elaine chooses a two-
column design with a pur-
ple background.

The interface displays her
selection in the editing
area. Links and buttons
indicate features that the
user can copy and where to
paste them. A text note
reminds Elaine that she can
browse more examples and
copy elements from each of
them to her prototype, or she can edit things manually using
the controls along the top of the interface.

Elaine decides that the back-
ground color isn’t exactly
what she would want, so she
selects “Show a variety of
background colors;” the in-
terface presents several ex-
amples spanning different
hues, saturations, and
brightnesses. Elaine selects
one of the blue examples and then clicks “Show examples
similar to this one”; a set of blue and purple examples is
displayed. She sees an example with a tasteful light blue
background that she fancies. She clicks on “background
color”, clicks on the blue of the
example, and clicks a third time
on the prototype to replace the
purple background with the new
blue.

Elaine still isn’t completely satis-
fied with the background color,
so she clicks on the color widget
at the top of the interface, and
selects the background of the prototype. A color wheel pops
up, allowing her to tweak the blue slightly, making it a
touch lighter. She then clicks on the text of the prototype

web page, replacing the exam-
ple’s name with hers, and filling
in some of the page navigation
with her categories.

She continues to browse exam-
ples looking for inspiration. A
page that uses the Georgia font
catches Elaine’s eye; after some
consideration, she switches the
prototype to Georgia, both for
readability and style, and alters the font size using the ma-
nual controls. She adds a head-and-shoulders picture of
herself to the top-left corner of the page. Next to the pic-
ture, she places a prominent link to her resume. Satisfied,
she uploads the page to a server.

IMPLEMENTATION
We have implemented these selection and layout algorithms
in the form of an example-based application for web design.
The current prototype generates HTML interfaces using Java
Servlets and AJAX for additional interactivity. Our testbed
implementation leverages a collection of approximately 250
homepages harvested from the web.

Internally, three components drive Adaptive Ideas: a subset
manager, an adaptive interface generator, and a web page
proxy. The subset manager takes a content request (similari-
ty or variety, number of items), reads metadata for all the
examples from the Adaptive Ideas database, and returns an
appropriate subset of the elements. The adaptive interface
generator takes as input a set of content elements, a display
template, and a set of output properties, and returns an
HTML layout. The web page proxy identifies the properties
of example websites in the focus pane (see below), taking a
click coordinate and returning the requested style feature at
that point.

Externally, the Adaptive Ideas website editor prototype
interface contains three interactive components: the web
editor, the example pane, and the focus pane.

The example pane is an adaptive information grid which
displays a set of examples. When the interface is first
started, only the example pane is shown (see Figure 5, left).
To begin, the user is presented with examples representing
a variety of background colors. The user navigates through
the examples by clicking next and previous buttons at the
bottom right and bottom left. The user may also request to
see a variety of elements along a different dimension by
clicking a drop-down box at the bottom of the component.

The user selects an example to modify by clicking on an
example on the initial screen. This brings up the example
page in the web editor (see Figure 5, center) at the top of
the page. The web editor is a WYSIWYG HTML editor, im-
plemented using Mozilla Firefox’s design mode, which
allows the user to manually edit the page.

Once the user has selected an example to edit, clicking on
another example in the example pane brings that example

7

page into view in the focus pane (see Figure 5, right). From
the focus pane, the user may copy features from the exam-
ple to their prototype by selecting a feature, clicking on a
point on the example to copy the feature from that point,
and clicking on a point in the prototype to paste the feature
at that point. The user may also request to see examples
similar to the example in focus by clicking a drop-down
box at the bottom of the component.

EVALUATION
We conducted a first-use study of Adaptive Ideas to assess
the usefulness of our example-based interfaces for design
practice. The study group comprised nine participants. Par-
ticipants had the following educational backgrounds: three
from Computer Science, four from Engineering, and two
from Humanities disciplines. Participants’ ages ranged from
24 to 30; six were male, three female. All of the participants
were frequent web users; two of the participants self-rated
as experienced or expert web designers; the others had little
to no experience designing websites.

Participants were seated at a workstation with the Adaptive
Ideas web page builder. Sessions began with a demonstra-
tion of the capabilities of the web page builder. Participants
were then asked to create websites for two different perso-
nas (one was described in the Scenario section), using a
different variation of the builder interface for each. The
standard features variant disabled the similarity and variety
features and sorted the examples randomly: users could
view all examples, but could only browse them using the
next and previous page controls. The adaptive features va-
riant offered the full set of controls described in the Imple-
mentation section. Personas and interfaces were varied
across participants using a Latin square ordering.

Study Results
In our post-study survey, participants found the general
presentation of examples highly useful (mean = 4.5, median

= 4.5 on a 5-point Likert scale, σ = 0.53), and appreciated the

ability to borrow features directly from example web pages
(mean = 3.9, median = 4, σ = 0.83). Participants found the
adaptive browsing features to be helpful in finding exam-
ples, indicating the variety tool to be most useful while ex-
ploring the design space (mean = 4.4, median = 5, σ = 1.01),
although the similarity tool was also welcomed (mean = 3.9,
median = 4, σ = 0.78). In general, participants did not find the
examples to be distracting (mean = 2.2, median = 2, σ = 0.83).

Responses were less conclusive on whether it was easier to
navigate examples using the adaptive features interface
(mean = 3.7, median = 4, σ = 1.22). However, observations and
server logs revealed that several participants resorted to
long stretches of “linear” browsing while using the standard
features interface, during which they clicked on many ex-
amples in a row in order to examine them. In the adaptive
interface, users selected fewer items for larger viewing.
This may indicate that the similarity and variety tools lent
themselves to more efficient exploration. Participants also
expressed a desire for more dimensions along which to sort
and browse examples, particularly aesthetic attributes such
as formality.

Novice versus expert use
In post-study interviews, users with little to no design expe-
rience particularly approved of having examples integrated
into the design tool. All of them expressed particular ap-
preciation for the ability to request variety subsets.

The two self-rated experts differed strongly in their opi-
nions of the use of examples for website design. One of the
expert participants found the limitations of the example-
borrowing interface annoying and thought the examples
were both unhelpful and distracting to the design task, wast-
ing valuable screen space. The other experienced partici-
pant commented that the browsing of examples worked
well with her personal strategy for this type of design task:
“That’s my philosophy of designing websites: I like to find
a template or exemplar that I think is good and then tweak it

Figure 5. Screenshots of the Adaptive Ideas web page builder. Left: Initial grid of examples. As the user has not yet selected
an example to modify, the editor and focus panes have zero r values, so those components are hidden. Center: Interface after
the user has selected an example to modify; the selected example is loaded into the web editor, with more examples along the
bottom of the screen. Right: Interface after the user has selected an object on which to focus (light blue image, bottom left) and
requested to see similar items (grid of pastels, bottom right).

8

by hand.” This suggests that future instances of example-
adaptive interfaces should allow power users to disable
example display at their discretion, but also hints that de-
sign by example interfaces may be valuable even for expe-
rienced users.

RELATED WORK
This research draws on three areas of prior work: model-
based user interfaces, automatic layout systems, and docu-
ment scoring systems. We discuss each in turn.

Model-Based User Interfaces
The area of model-based user interfaces (e.g., [21]) began
with the interest of creating tools for specifying interfaces
declaratively, through high-level semantics, rather than
imperatively, by the pixel-level details of the implementa-
tion. Szekely [25] provides a retrospective overview of this
field. The field slowed down in the early 1990s, likely be-
cause the desktop PC did not provide sufficient diversity to
mandate a higher-level representation: the value of abstrac-
tion is derived from the lower margin costs of repurpos-
ing — with one platform, there was no amortization to be
had.

Automatic Layout
Several projects have explored the automatic layout of in-
terfaces and/or information. Perhaps the two most closely
related systems are SUPPLE [11] and RIA [32], which ex-
amined constraint-based optimization approaches to inter-
face adaptation. We apply a decision-theoretic strategy sim-
ilar to that of SUPPLE and RIA, but with significantly differ-
ent constraints. Adaptive Ideas addresses both user interface
elements and visual information sources, and supports a
mix of adaptive generation and designer specification. It
also has the additional burden of rendering layouts interac-
tively, potentially introducing interesting tradeoffs between
optimality and performance. Finally, the RIA system dealt
with highly structured, heavily faceted metadata [31]; its
algorithms depended on an intricate understanding of the
dimensions and their relationships. Adaptive Ideas is de-
signed for less structured, more loosely related data.

Many techniques have been introduced for laying out and
browsing large image collections. PhotoMesa [1], a zooma-
ble image browser which encouraged serendipity using a
2D space-filling layout, inspired several design decisions in
our implementation (e.g., quantum elements). Saliency-
based cropping methods [24] are another innovation that
could be applied to later versions of our adaptive interface,
posing interesting questions regarding presentation value
functions for content. Our adaptive interface research ex-
tends this body of work by applying novel techniques in the
context of large heterogeneous data sets.

The selection of what information is visible and its ar-
rangement for the user has significant implications for the
cognitive activities that are ready-at-hand [15], and the ef-
fective presentation of personal information has been the
subject of considerable activity. Furnas’s fisheye calendar
[10] first introduced the idea of a focus + context visualiza-

tion: the calendar item in focus was displayed larger and
with local detail; non-focus items would correspondingly
shrink. More generally, this example demonstrated how
constraints can be effectively used to manage screen layout
globally, and this present research is a continuation in that
vein. Other research has explored book-like metaphors for
information collections [4], and facet-based approaches to
search [8]. Our approach draws strongly on faceted search;
it distinguishes itself in that display elements are not con-
strained to be only those requested — elements with similari-
ties to those requested may be displayed as a means of pro-
viding for serendipity in search and browsing.

Ambient displays have explored the use of spaces and sur-
faces for proactive presentation of information [6, 28, 30].
Our research follows up on this work by applying adaptive
techniques to contextual displays. In particular, we are ex-
ploring the peripheral presentation of examples and other
epistemic artifacts to encourage exploration.

Document Scoring
We turn to the question of the underlying algorithms and
information model. As with prior work on information fo-
raging [20], we seek to improve the information scent of
interfaces. More precisely, the goal of this paper is to pro-
vide scents of potentially valuable information in addition
to the specific information has requested. The use of small
steps observed by Teevan et al. in their study of orienteer-
ing behavior [27] points to the value of providing scent via
contextual information.

As the quantity of information we work with increases [18],
and metadata becomes ever more prevalent [2], improved
techniques for sorting this information are required. Adap-
tive user interfaces have proven particularly useful in man-
aging personal information. Rhodes’ Remembrance Agent
demonstrated the use of richer types of metadata — most
notably location — as a means for retrieving information
[22]. Perhaps most similar to Adaptive Ideas is Horvitz et
al.’s email ranking system [23], which employs decision-
theoretic techniques to prioritize and rank emails that are
likely to contain higher value information or be more ur-
gent; this work was very inspirational in framing our ap-
proach. Haystack [14] takes a highly flexible approach to
data presentation and user interaction that could easily inte-
grate adaptive techniques to increase visibility.

The information model in this work draws on the idea of
faceted metadata [31], the conceptually distinct dimensions
of the metadata. Of particular value has been the recent
research on lightweight techniques for labeling photographs
with rich metadata [7, 19], and the use of those in informa-
tion retrieval. Again, the difference with this work is that
while we employ the same ontological mechanisms, the
contribution lies in the use of this schema to enable proac-
tive and adaptive display.

CONCLUSION
This work contributes an algorithm for dynamically select-
ing content for and generating layouts of example artifacts,

9

using a combination of decision-theoretic selection, design-
er specification, and end-user preference. Future work in-
cludes integrating other attributes (e.g., page metadata such
as creation time, title, and keywords; aesthetic properties
such as genre and formality), and deriving design attributes
and values programmatically. We also plan to investigate
alternative representations for examples (e.g., representative
exemplars of example subsets), and examine example-
based interactions that use more implicit cues from task
activities to proactively display content.

ACKNOWLEDGEMENTS
We thank Ron Yeh, Wendy Ju, and Yoav Shoham for their
research insights, and the National Science Foundation and
the Wallenberg Global Learning Network for sponsoring
this research (NSF IIS-0534662, KAW 2004.0184). We are
also grateful to Intel for technology donations.

All human subjects research was conducted under Stanford
University IRB approved protocol 3392.

REFERENCES
 1 Bederson, B. B. PhotoMesa: a zoomable image browser

using quantum treemaps and bubblemaps. UIST 2001:
ACM Symposium on User Interface Software and
Technology. pp. 71–80.

 2 Berners-Lee, T., J. Hendler, and O. Lassila. The Se-
mantic Web, Scientific American, May, 2001.

 3 Brafman, R. I. and D. Friedman. Presentation Adapta-
tion for Rich Media Messages. STRIMM Consortium
Working Paper 2003.

 4 Card, S. K., L. Hong, J. D. Mackinlay, and E. H. Chi.
3Book: a scalable 3D virtual book. CHI 2004: ACM
Conference on Human Factors in Computing Systems.
pp. 1095–98.

 5 Carter, D. E., The Big Book of Logos: Watson-Guptill.
384 pp. 2001.

 6 Churchill, E. F., L. Denoue, J. Helfman, and P. Mur-
phy. Sharing multimedia content with interactive public
displays: a case study. DIS 2004: ACM Conference on
Designing Interactive Systems. pp. 7–16.

 7 Davis, M., S. King, N. Good, and R. Sarvas. From con-
text to content: leveraging context to infer media meta-
data. MM 2004: ACM International Conference on
Multimedia. pp. 188–95.

 8 Dumais, S., E. Cutrell, J. J. Cadiz, G. Jancke, R. Sarin,
and D. C. Robbins. Stuff I've seen: a system for person-
al information retrieval and re-use. SIGIR 2003: ACM
Conference on Research and Development in Informa-
tion Retrieval. pp. 72–79.

 9 Fischer, G. User Modeling in Human–Computer Inte-
raction. User Modeling and User-Adapted Interaction
11(1). pp. 65-86, 2001.

 10 Furnas, G. W. Generalized fisheye views. CHI 1986:
ACM Conference on Human Factors in Computing
Systems. pp. 16–23.

 11 Gajos, K. and D. S. Weld. SUPPLE: automatically ge-
nerating user interfaces. IUI 2004: Proceedings of the

9th international conference on Intelligent user inter-
face. pp. 93–100.

 12 Gentner, D., K. J. Holyoak, and B. N. Kokinov, The
Analogical Mind: Perspectives from Cognitive Science:
M.I.T. Press. 520 pp. 2001.

 13 Hutchings, H. M. and J. S. Pierce. Understanding the
whethers, hows, and whys of divisible interfaces. AVI
2006: Proceedings of the Working Conference on Ad-
vanced Visual Interfaces. pp. 274–77.

 14 Karger, D. R., K. Bakshi, D. Huynh, D. Quan, and V.
Sinha. Haystack: A general-purpose information man-
agement tool for end users based on semistructured da-
ta. Proc. CIDR. pp. 13–26, 2005.

 15 Kirsh, D. The Intelligent Use of Space. Artificial Intel-
ligence 73(1-2). pp. 31–68, 1995.

 16 Lin, J., Using Design Patterns and Layers to Support
the Early-Stage Design and Prototyping of Cross-
Device User Interfaces, Unpublished Ph.D. Disserta-
tion, University of California, Berkeley, 2005.

 17 Lodi, A. and M. Monaci. Integer linear programming
models for 2-staged two-dimensional Knapsack prob-
lems. Mathematical Programming 94(2-3). pp. 257–78,
2003.

 18 Lyman, P. and H. R. Varian, How Much Information?
2003.
http://www2.sims.berkeley.edu/research/projects/how-
much-info-2003/

 19 Naaman, M., S. Harada, Q. Y. Wang, H. Garcia-
Molina, and A. Paepcke. Context data in geo-
referenced digital photo collections. MM2004: ACM
International Conference on Multimedia. pp. 196–203.

 20 Pirolli, P. and S. K. Card. Information foraging. Psy-
chological Review 106(4). pp. 643–75, 1999.

 21 Puerta, A. R., E. Cheng, T. Ou, and J. Min. MOBILE:
user-centered interface building. CHI 1999: ACM Con-
ference on Human Factors in Computing Systems. pp.
426–33.

 22 Rhodes, B. J. The wearable remembrance agent: A sys-
tem for augmented memory. Personal Technologies
1(4). pp. 218–24, 1997.

 23 Sahami, M., S. Dumais, D. Heckerman, and E. Horvitz.
A Bayesian approach to filtering junk e-mail. AAAI
1998: Workshop on Learning for Text Categorization.

 24 Suh, B., H. Ling, B. B. Bederson, and D. W. Jacobs.
Automatic thumbnail cropping and its effectiveness.
UIST 2003: ACM Symposium on User Interface Soft-
ware and Technology. pp. 95–104.

 25 Szekely, P. Retrospective and Challenges for Model-
Based Interface Development. DSV 1996: Design, Spe-
cification, and Verification of Interactive Systems. pp.
1–27.

 26 Tan, D. and M. Czerwinski. Information Voyeurism:
Social Impact of Physically Large Displays on Informa-
tion Privacy. CHI 2002: ACM Conference on Human
Factors in Computing Systems. pp. 748–9.

 27 Teevan, J., C. Alvarado, M. S. Ackerman, and D. R.
Karger. The perfect search engine is not enough: a

10

study of orienteering behavior in directed search. CHI
2004: ACM Conference on Human Factors in Compu-
ting Systems. pp. 415–22.

 28 Vogel, D. and R. Balakrishnan. Interactive public am-
bient displays: transitioning from implicit to explicit,
public to personal, interaction with multiple users.
UIST 2004: ACM Symposium on User Interface Soft-
ware and Technology. pp. 137–46.

 29 Weiser, M. The Computer for the 21st Century. Scien-
tific American. pp. 94-104, 1991.

 30 Wisneski, C., H. Ishii, A. Dahley, M. Gorbet, S. Brave,
B. Ullmer, and P. Yarin. Ambient Displays: Turning
Architectural Space into an Interface between People
and Digital Information. COBUILD 1998: International
Workshop on Cooperative Buildings. pp. 22–32.

 31 Yee, K.-P., K. Swearingen, K. Li, and M. Hearst. Fa-
ceted Metadata for Image Search and Browsing. CHI
2003: ACM Conference on Human Factors in Compu-
ting Systems. pp. 401–08.

 32 Zhou, M. X. and V. Aggarwal. An optimization-based
approach to dynamic data content selection in intelli-
gent multimedia interfaces. UIST 2004: ACM Sympo-
sium on User Interface Software and Technology. pp.
227-36.

