
Iterative Design of a Paper + Digital Toolkit:
Supporting Designing, Developing, and Debugging

Ron B. Yeh, Scott R. Klemmer, Andreas Paepcke
Marcello Bastéa-Forte, Joel Brandt, Jonas Boli

Stanford University HCI Group, Computer Science Department
Stanford, CA 94305-9035, USA
[ronyeh, srk]@cs.stanford.edu

Figure 1. The R3 paper applications toolkit supports developers
through an event-driven model, output to devices, and visualiza-
tions for design. With R3, developers have created tools for tasks
such as web design (left) and music composition (right).

ABSTRACT
With advances in digital pens, there has been recent interest
in supporting augmented paper in both research and com-
mercial applications. This paper introduces the iterative
design of a toolkit for event-driven programming of aug-
mented paper applications. We evaluated the toolkit with 69
students (17 teams) in an external university class, gather-
ing feedback through e-mail, in-person discussions, and
analysis of 51,000 lines of source code produced by the
teams. This paper describes successes and challenges we
discovered in providing an event-driven architecture as the
programming model for paper interaction. Informed by this
evaluation, we extended the toolkit with visual tools for
designing, developing, and debugging, thereby lowering the
threshold for exploring paper UI designs, providing infor-
mal techniques for specifying UI layouts, and introducing
visualizations for event handlers and programming inter-
faces. These results have implications beyond paper
applications — R3 takes steps toward supporting program-
ming by example modification, exploring APIs, and
improved visualization of event flow.

ACM Classification Keywords
H.5.2. [Information Interfaces]: User Interfaces — input
devices and strategies; prototyping; user-centered design.
D.2.2 [Software Engineering]: Design Tools and Tech-
niques — User interfaces.
Keywords
Toolkits, augmented paper, design tools, device ensembles.

INTRODUCTION
This research addresses toolkit support for computationally-
augmented pen-and-paper applications, as many domains —

e.g., biology [21, 42] and music (see Figure 1) — require a
level of robustness, readability, and battery life not present
in today’s tablet computers. In recent years, the approach of
integrating paper and digital interactions [13, 40] has re-
ceived increasing attention due to advances in both
commercial technology and interactions research. Commer-
cial digital pens [2, 6] can now capture handwriting and
send it to a computer wirelessly, in real-time. This synchro-
nous interaction between pen, paper, and computer allows
paper interfaces to control an application.
This toolkit research is motivated by the many projects that
have demonstrated the potential of augmenting pen and

paper; we highlight some here. For example, Audio Note-
book is a paper interface that correlates handwritten notes
with audio of lectures [36]. A-book enables biologists to
augment their lab notebooks with a PDA that helps them
create links to digital content [21]. PADD coordinates doc-
uments in the digital and physical worlds — handwritten
physical annotations are overlaid on the source PDF [8].
PapierCraft enhances these digital documents, enabling
users to edit them with pen gestures [20]. Print-n-Link
detects citations in documents, and allows readers to re-
trieve them in a mobile setting [27]. Finally, ButterflyNet
enables field biologists to find photos by navigating field
notes [42]. In the commercial realm, the FLY pen can run
applications from games to daily planners [19].
Currently, many applications leverage the Anoto pen plat-
form [2], though other technologies are also available. For
example, the EPOS pen works with unmodified paper, using
ultrasound to determine the pen’s location [6]. However,
current infrastructure support for designing integrated paper
and digital interactions requires considerable expertise.
Anoto provides two tools: one for designing Forms (FDK)
and another for processing pen data (SDK) [2]. The FDK
augments paper with a tiny dot pattern, enabling digital
pens to identify their location. The SDK provides access to
the ink strokes after a user has docked his digital pen. It
allows developers to render ink, but does not provide sup-
port for real-time interface events (e.g., when a user crosses
off a task on his paper calendar). Similarly, PADD integrates

 1

Figure 2. In this high-level overview of the R3 architecture, note how input arrives from pens and paper, and output is sent to devices. R3
lowers the threshold for processing real-time and batched pen input, and dispatches events to the handlers created by the developer. R3
services are flexibly coupled, so they can be used separately from the toolkit. On the lower right, we see the debugging tools that we imple-
mented in response to user feedback and our analysis of the source code developers produced.

handwritten annotations back into digital documents [8],
but does not support event handling. iPaper provides real-
time retrieval of media associations [34], yet requires sig-
nificant centralized infrastructure to handle requests.
We address this steep learning curve by taking a user-
centered approach to designing a paper + digital toolkit.
Specifically, this research demonstrates that providing tools
to help designers explore different solutions, and iteratively
improve upon them, can lower the threshold for creating
applications [24] and provide wider walls for exploring the
design space [33]. With effective tools, designers can better
support mobile computing through digital paper.
This paper presents the R3 paper applications toolkit. Its
goals are to reduce the time required for designers to create
prototypes, to support the reuse of components through
inspection and copying, and to help developers recycle and
customize old solutions for new usage contexts. To support
the large community of designers familiar with graphical
interfaces, R3 introduces the GUI’s event-driven and model-
view-controller architectures [16] to augmented paper ap-
plications. Beyond lowering the learning threshold, R3
contributes methods to:

 Specify paper user interfaces and event handlers by
sketching with an inking pen on physical paper.

 Integrate the development process with visualizations
of the UI and event handlers to aid in debugging.

 Explore custom coding solutions through a direct ma-
nipulation API browser that generates source code.

The R3 toolkit enables designers to create rich paper-centric
applications (see Figures 2). To do this, R3 builds upon the
Anoto platform to support interactions with pen and paper.
With Anoto, an inking pen reads a location-specifying dot
pattern printed on a paper page. This enables R3 to receive
the location, force, and time of each pen stroke either in
real time (through Bluetooth) or in batched mode (after the
user docks his pen).

To evaluate R3’s architecture, we deployed the toolkit to an
undergraduate HCI class of 69 students (17 teams). Through
analysis of the students’ source code, we found that R3
provided a low threshold for programmers to create paper
user interfaces. Moreover, we found that developers:

 Used programming by example modification to speed
their development with new frameworks (such as R3).

 Had cognitive difficulty in selecting and composing
visual operations on digital ink.

 Depended on debugging output to iteratively grow
their applications.

We also discovered limitations of the R3 approach, primar-
ily concerning the speed at which a designer could explore
and test designs. In response to these findings, we intro-
duced visual design, development, and debugging tools to
support rapid exploration. In the following section, we
highlight R3’s architectural features, and describe how a
developer uses it to create pen-and-paper applications. We
then describe our evaluation of the toolkit, through both
internal use and external deployment. We detail observa-
tions from the deployment, and describe how we applied
resulting design implications to a second iteration of R3. To
conclude, we frame our contributions in related work and
suggest future directions.

THE PAPER TOOLKIT ARCHITECTURE
In providing toolkit support for pen-and-paper interfaces,
our goal was to augment, and not replace, developers’
existing practices. For this reason, we modeled R3’s archi-
tecture after event-driven GUI architectures, such as
Windows Forms [22] and Java Swing [38]. R3 receives
input from one or more digital pens, and invokes event
handlers attached to active regions on a paper interface (see
Figure 2). This approach, which draws on traditional GUI
idioms, eases the development transition between graphical
and augmented paper interaction by providing existing
developers with a familiar programming model. On the
whole, this model is effective for paper + digital interfaces.

However, the GUI architectural paradigm cannot be copied
wholesale to this domain because paper cannot itself pre-
sent real-time graphical feedback; we introduce the
challenges to designing augmented paper interaction and
describe how R3 addresses them.

Designing a Paper Interface
Consider this scenario: Karen would like to design a task
management application that will allow users to jot notes on
paper. After writing a note, the user will tap a dedicated
rectangle at the bottom of the paper with his pen. Through a
Bluetooth connection, a nearby computer will capture the
strokes and add the note to the user’s digital calendar.
R3’s development process proceeds as follows: on a PC,
Karen uses R3’s interface layout tool to create a Sheet ob-
ject (analogous to a Swing JFrame). Then, she creates one
large Region to capture the user’s handwriting, and a small
Region to act as an upload button (see Figure 2, left). She
adds two Event Handlers: an ink collector to the large re-
gion, and a click handler to the small region. Karen then
prints the paper UI; R3 automatically renders Anoto pattern
on the active regions. When active, the ink collector re-
ceives the user’s strokes from the wireless connection.
When the user taps on the paper button, Karen’s code re-
trieves ink from the ink collector (optionally passing it
through handwriting recognition), renders it as a JPEG im-
age file, and uploads it to the user’s web calendar.
However, suppose that Jim, a graphic designer who does
not program, collaborates with Karen. In this case, Karen
offloads the design of the paper UI to Jim. R3 allows Jim to
use any graphical tool to design the interface’s look-and-
feel. Jim and Karen can thus work in parallel. Jim can de-
sign the art in Adobe Illustrator, export to PDF, and use R3’s
direct manipulation paper interface builder to add and name
interactive regions. Meanwhile, Karen can create the back-
end code. When Jim has finished, he provides Karen with
his paper UI specification. Karen’s program reads in the
paper UI and attaches handlers to the named regions.
The R3 library provides many pen event handlers, including
click detectors, marking gesture interpreters, and handwrit-
ing recognizers (which use the recognition service, seen in
Figure 2). The flexibility of R3’s event architec-
ture allows developers to create their own
handlers. When Karen and Jim print the paper
interface, R3’s print subsystem automatically
instruments regions containing handlers with the
Anoto dot pattern. Lastly, with the printed UI in
hand, they can test their application immediately.
Overall, R3’s approach of separating interface
design from implementation augments existing
practices, as graphic artists can use familiar tools
such as Adobe Illustrator to create the visual
design of the paper UI. The paper UI develop-
ment process is also flexible, as the developer
can either 1) start from a PDF, 2) generate the UI

directly through the R3 Java API, or 3) use R3’s support for
model-based paper UIs, which separate an XML interface
specification from the Java-based application logic. This
approach of using XML as an interface representation was
seen in [1, 26], and is used in, e.g., Mozilla’s XUL [23].

Event Handling with Multiple Pens
The R3 architecture distinguishes itself from traditional GUI
architectures in two ways. First, analogously to research on
toolkits for multiple mice (e.g., [10]), R3 handlers can re-
ceive input from multiple pens, determined through a PenID
in the PenEvent. Applications that leverage this multiple-
pen functionality include Diamond’s Edge, a collaborative
drawing environment, and the Twistr game, a two-player,
bimanual interface where players use pens to tap photos
from a set on a large paper print (see Figure 3). In Twistr, a
single pressed event is invoked when any of the four pens is
depressed. The handler requests the PenID, and rewards the
appropriate player for finding his photo.

Providing Feedback through Output Devices
The second way that R3 differs from the traditional GUI
architecture is that interaction happens within a device
ensemble [31], where user actions are distributed across
paper and computer (see e.g., [42]). To support this interac-
tion style, R3 provides feedback by invoking Actions on
devices, such as a handheld display. These ensemble inter-
actions are accomplished through a mobile code approach
[39], passing Java as XML across a network. The program-
mer instantiates a Device with a remote IP address. The
program can then ask the remote Device to invoke an Ac-
tion (e.g., OpenURL). Other than the computer’s host name,
R3 abstracts network details from the developer.
With this approach, a pen-and-paper program can provide
real-time interaction across multiple devices. For example,
in BuddySketch — an application we built to provide shared
sketching in video conferencing — each computer is a De-
vice, and in response to input on paper, one computer asks
its remote peer to update ink or display photographs.

Debugging and Testing with Event Save and Replay
To assist developers in debugging applications, R3 logs

Figure 3. Left) Students used R3 to produce research such as Diamond’s Edge
[3], a collaborative drawing environment integrating sketching on paper with
manipulations on a digital table. Right) The authors used R3 to explore large
paper interfaces, including this Twistr game, which recognizes four pens.

 3

every PenEvent. A developer can replay this logged input
stream using the R3 GUI. Saving and replaying user input
offers four benefits. First, logged input can be valuable in
automated unit testing of graphical user interfaces, tradi-
tionally a weakness in testing frameworks. Second,
debugging with logged input is preferable because working
with the same input produces consistent results across trials.
Third, debugging with logged input is more efficient, as it
eliminates the need to physically reproduce the input on
every occasion. Lastly, this architectural feature is useful
for saving and later reviewing tests with end users.

Implementation
The R3 toolkit is primarily implemented with Java SE 6.0,
with smaller components providing services to the main
toolkit. Pen input from the Anoto SDK is handled through a
Microsoft .NET 2.0 component, since the drivers are pro-
vided as Windows DLLs. As the “user interface” created by
R3 is physical paper, there needs to be a printer-friendly
format for these interfaces. To provide a system that is
widespread, flexible, and low threshold, we chose PDF: R3’s
paper interface builder is implemented as an Adobe Acrobat
plug-in; the interface can be augmented, and the dot pat-
terns rendered, using the iText PDF library. Handwriting
recognition is built on Microsoft’s Tablet PC recognizer.

DETERMINING NEEDS THROUGH LONG-TERM USE
We employed a mixed-methods approach to designing and
evaluating R3. Our evaluation comprised three methods:
building applications ourselves, observing its use in a class,
and analyzing the source code developers produced. Each
approach highlights distinct considerations; for example, in-
depth analysis of the code can help to improve the toolkit at
the API and architecture levels, whereas anecdotes from
long-term usage may inform the design process as a whole.
Over the last ten months, the architectural features of R3
have evolved based on our desire to address three goals:
Learnability How low is the threshold for learning to

create useful paper interfaces? Which aspects of R3
contributed to lowering this threshold, and which were
bottlenecks to further lowering it?

Extensibility What is the ceiling on the complexity of
applications that experts can create? Which R3 aspects
contribute to this, and which prevent a higher ceiling?

Explorability Will designers create a large variety of
applications, utilizing a large variety of input tech-
niques? How can R3 better support the ability for
designers to rapidly create and test ideas?

Feedback from Internal Use
Two students used an early version of R3 to develop Dia-
mond’s Edge (see Figure 3), a drawing environment that
integrates paper with digital tables [3]. This project com-
prised only 20 source files, leveraging R3 for capturing
input from multiple pens, rendering digital ink on a canvas,
and sending drawings to printers. We also used R3 to sup-

port our own research on large paper surfaces (GIGAprints)
[41]. Diamond’s Edge and GIGAprints were presented as a
poster and a video at Ubicomp 2006.
One genre of concern that these projects highlighted was
the need to support flexible input. To accomplish this, we
abstracted the input architecture, creating a Pen interface
that enables simultaneous input from multiple physical
devices, and enables developers to implement their own
subclass for the input technology of their choice. We also
found that in multiple projects, developers needed to pack-
age incoming pen samples and interpret them as higher-
level user actions. While Anoto tools provide direct access
to x and y coordinates, our toolkit collects these into ab-
stractions like clicks, gestures, and freeform ink.

Observations of an External Deployment
While longitudinal use by experts (the authors and col-
leagues) offered insight on the ceiling of the platform’s
flexibility and extensibility, use by novices (students at
another university) helped us understand R3’s accessibility.
To observe on-the-ground use of the principles manifest in
the R3 toolkit, we provided it to an undergraduate HCI class
at an external university (the authors were not part of the
teaching staff). In this class, 69 students (17 teams) de-
signed and built pen-and-paper projects. Students began
using R3 in the eighth week of the fourteen-week class,
after they had tested their early-stage paper prototypes [29].
We summarize these projects in Figure 4. Project topics
were varied, including paper-based web design, personal
organizers, and sharing tools for news and blogs. Of the 17
paper UIs created by these teams, 16 allowed the selection
of buttons or areas on the page. Only three accepted pen
gesture as input. Most applications were mobile (10 of 17),
and four supported batched input.
During the deployment, the first author held two in-person
sessions at the university to answer questions and receive
feedback. He also responded to postings on the R3 news-
group. In total, this comprised more than 20 hours of
providing support and gathering feedback. After the semes-

Figure 4. Summary of 17 class projects developed with R3. We see
that R3 supported a variety of projects (though three dealt with
university exams). Notice that while selection interactions were
common (e.g., check a box), advanced interactions such as ges-
tures were rare (e.g., draw a musical note). Notably, only four of the
projects implemented asynchronous interactions, where ink and
actions are batch processed once the user returns to their desktop.

ter, we analyzed the project mate-
rials, including reports and source
code, to evaluate the successes
and limitations of R3. This work
demonstrates that in-depth analy-
sis of the products of a toolkit can
be used to inform the design of
the toolkit itself.
Out of our analysis of the team
materials, our notes from provid-
ing support, and analysis of
50,962 lines of code, we identified three areas as opportuni-
ties for improved support: better debugging infrastructure,
integrating batched and real-time interactions, and support
for web application platforms. While streaming support
worked well during development, operating the digital pens
in batched mode—where data resides on the pen until it is
synchronized through a cable — can ease deployment of
mobile applications, as it eliminates the need for a PC with-
in wireless range at runtime. Through the students’ written
reports, it became clear that tools should treat batched mode
and streaming mode more interchangeably. This suggests
that, as user interface tools support a broader spectrum of
input technologies, the abstraction goals put forth through
UIMS and model-based interface research [24] are likely to
play an increasingly important role.

Figure 5. Teams used copy-and-paste to facilitate coding. Many times, developers would copy
a class file needed to get a program working, and then customize the skeleton to address their
new needs. Developers can benefit from tools that support this coding-by-growing behavior.

Consistent with current trends, six teams integrated web
applications into their projects, from “scraping” HTML to
working with established APIs (e.g., Flickr and Google
Calendar). Consequently, students asked that R3 provide
stronger support for these kinds of applications. For exam-
ple, one group wanted to integrate their application with the
Apache Tomcat servlet container. A second group wanted
to create a Firefox plug-in. As applications move online,
toolkit support is most effective when it not only provides
strong intra-application support, but support for integrating
external services.
Overall, R3 was a big success. 17 teams with no prior ex-
perience in building paper interfaces (many without GUI
programming experience) were able to build working pro-
jects using R3 in less than six weeks.

INFORMING DESIGN WITH SOURCE CODE ANALYSIS
We now describe how we used source code analysis as an
evaluation method to help us assess R3’s usability. Examin-
ing the source code produced by developers offers an
empirical account of usage patterns and gives insight into
usability successes and limitations of the API. We reviewed
the 304 source files by hand; these files comprised ~35,000
statements and ~51,000 lines of code, including comments.
We recorded observations for each file, with special em-
phasis on the paper related code. Throughout the code
review, we noticed three recurring themes—coding-by-
example modification, customizing tool support, and itera-
tive debugging. In the next sections, we highlight the

patterns, provide evidence, and introduce designs that we
added to enhance these practices.

Programming by Example Modification
Our first observation was that developers would copy
chunks of source code, paste it into their project, and then
grow their application around this working base. This find-
ing is consistent with earlier studies (e.g., [14, 30]). In our
analysis, we wanted to identify what types of code develop-
ers copied, how much they would copy at one time, and
from where they would copy from the code.
We used a combination of static analysis methods to detect
the code clones. First, we used MOSS, a tool traditionally
used to detect plagiarism in software [32], to detect simi-
larities between the student projects and the toolkit. Since
MOSS could not work with code residing on the web, we
also reviewed the corpus by hand to identify potential
clones. We found that looking for unusual comments and
method names was effective in identifying copied code.
Once we identified a candidate, we would perform a text
search over the entire corpus, and a web search, to discover
the source of the copied code. To our knowledge, this paper
presents the first work that uses static code analysis to study
developers’ copy-and-paste behavior for the purpose of
assessing the usability of a toolkit.
We found that the frequency of copying was independent of
whether the code was supporting the paper or the GUI parts
of the interaction (see Figure 5). The data shows that 41%
of the 159 copied pieces of functionality supported the GUI,
and 37% supported the paper. Of the instances we discov-
ered, developers most often (96 of 159) copied one class
file (rather than whole packages, single methods, or snip-
pets) and then modified the class to fit their application.
Developers copied from several sources, including their
own “Hello World” assignment, the R3 toolkit, and the Web
(e.g., the Java Swing tutorials).
In addition to studying what was copied, and how much was
copied at one time, we also analyzed where code was cop-
ied from. We found that the single most common source of
copied code was the paper application template provided
for use in the students’ first assignment. Prior research (e.g.,
[14, 30]) found that developers use copy-and-paste to save
time during development. In addition to efficiency, we find
that developers use this technique to cope with learning
APIs (to reduce errors using the unfamiliar framework).

 5

Figure 6. While the display and scale operations were commonly
customized, it took more effort to create application-specific solu-
tions for calculating metrics for and recognizing strokes. Making it
easier to explore these opportunities may lower the threshold and
pull up the tail of this curve.

Since the developers only had a few weeks to learn the R3
architecture, copy-and-paste was a natural strategy. Copy-
ing provided a working base functionality upon which
developers could grow their project. This suggests that tools
can embrace the development practice of growing code
through tools to generate these “Hello World’s” and support
the copying-and-pasting of working code segments. Today,
development environments provide ways to generate com-
mon code templates that can be customized. For example,
the Eclipse IDE expands the word “try” into a full Java try-
catch exception handling block. These templates are in-
tended to help developers avoid the mundane details,
reducing errors and speeding up the programming process.
There are two alternate approaches. First, R3 can provide
ways to generate working examples from documentation.
Second, R3 can support the rapid generation of working
code from high-level specifications of the paper application
(such as drawings). We address these issues later.

Customizing Tool Support: Extending Ink Operations
In their projects, students not only used the provided R3
library elements, they also created their own (e.g., a custom
paper UI PDF renderer). This behavior was most pronounced
in the area of manipulating digital ink, where developers
who needed custom features would either subclass, or copy-
and-modify existing toolkit components. To gather this
data, we searched for and categorized all instances of ink
operations in the class’s source code corpus. In Figure 6, we
see that while groups directly used R3 to decorate and dis-
play ink objects, only a handful felt comfortable enough to
implement customized interactions for their applications.
The developers who needed custom solutions extended the
library to include operations to recognize inked gestures,
select ink in space and time, and cluster strokes for calculat-
ing location and size. Since some developers extended R3’s
ink operations library, one might conclude that R3 omitted
elements that should have been included; however, we
expect that even with a large set of available operations
developers will still find the need to composite or create
their own custom solutions.

Iterative Debugging of Event Handlers
One technique that we used to understand “trouble spots” in
the API — where developers struggled — was to search the
source code for debug output (e.g., System.out.println()). As
debugging statements are generally used to display state,
the values of variables, or signal error conditions, they may
reveal which parts of R3 were more difficult to work with.
The source files contained 1232 debugging statements
(containing println). We examined and annotated each one
(see Figure 7). From this data, we see where these debug-
ging statements are located. Our code analysis found that
39% of all console output functions were inside event han-
dlers: 333 debugging statements were located in GUI event
handlers, and 145 were located in R3 event handlers.
We also examined what was printed in each debug state-
ment. While many of the values were objects particular to
each project, we found that a large portion of statements
were of the “got here” type (statements that serve no pur-
pose other than to tell the developer that a code block was
reached). In fact, when coupled with the data on where the
debug statements were located, we find that more than half
of GUI event handler printlns and almost a third of R3 event
handler printlns were “got here” statements. This suggests
that we can help developers better understand when their
event handlers are being reached.
Early on, these statements can serve as working stubs,
helping developers keep track of which event handlers have
not been implemented. We observed this when printlns
were placed next to tool-generated comments. For example:
System.out.println("Zoom In");
// TODO Auto-generated Event stub actionPerformed()

Later, these debug statements can help developers visualize
what their program is doing in response to pen input. This
code evolution is referred to as “debugging into existence”
[30]. The printlns in event handlers suggest that we can
improve developers’ understanding of event handlers, and
provide better support for existing debugging practices.

Successes and Shortcomings
R3 main success centers on its familiar programming mod-
el, which presented a low threshold for students. For
instance, one team wrote in their final report for the course:
“We have a very good impression of the R3 toolkit, and we

Figure 7. Analysis of the source code of 17 projects revealed that
people place most of their debugging statements (printlns) in event
handlers (GUI and R3). Many of the only statements tell the devel-
oper when the code “Got Here.” However, most are of object values
specific to the particular application.

believe that it presents an acceptable threshold of entrance
for a novice to moderately skilled Java programmer.” Be-
cause R3 extended established GUI conventions, students in
the semester-long class could use their experience while
working on their paper interfaces. Notably, many students
learned GUI programming as a part of this introductory
course (one group reported that “none of us had developed
event-driven programs prior to this project.”). The fact that
Swing and R3 are architecturally similar meant that students
did not have to learn two different programming models.

Figure 8. R3 translates low-fidelity paper sketches to working paper
interface specifications (XML & Java), or an equivalent GUI that can
be used for simulation.

Through its extensible architecture, R3 provides a high
ceiling of application complexity — four teams leveraged
this to create their own ink handling. Team D recognized
when users crossed out handwritten text, and updated a web
planner to reflect the completed task. Team G recognized
paper-based games (e.g., tic-tac-toe). Team I detected boxes
users had drawn, and supported import of photos into those
areas. Team N recognized handwritten musical symbols,
including whole, half, quarter, and eighth notes, and trans-
lated the composition into MIDI files.
This field study also exposed shortcomings in R3. First,
designing with R3 had a bottleneck — users reported that
printing paper UIs inhibited rapid design, development, and
testing, as printing a paper interface is much slower than
rendering a GUI. We later eliminated the need to print dur-
ing design and testing by providing a graphical preview of
the paper UI, and a means to use preprinted notebooks to
simulate the UI.
Second, R3 developers could not debug paper UIs without
physical pens. One developer noted that “the fact that we
had only one pen to share made it extremely difficult for
everyone to write individual pieces of code….only one
person at a time could perform any debugging.” While R3’s
support for recording pen events and replaying them pro-
vides a mechanism that addresses this issue, save & replay
was not advertised as a tool for distributed debugging.
Third, R3 did not provide a transparent way to swap batched
and real-time pen interactions. Batched pen data would
appear to the program as ink (like in PADD), and would not
explicitly invoke event handlers (R3) or media associations
(iPaper). The deployment revealed that while developers
prefer using real-time pen input during testing, many expect
their users to operate in a disconnected environment (10 of
17 projects were mobile apps). Providing easy ways to
interchange batched and real-time interaction would address
the desire to use synchronous systems for debugging and
asynchronous ones for deployment. Finally, because R3
provides many features, it is difficult for newcomers to
quickly grasp the extent of the toolkit’s architecture. Look-
ing at the developer experience, we find that R3 should
provide visual aids for the exploration, development and
testing of paper UIs.

INTEGRATING CODE WITH VISUAL DESIGN AND TEST
In R3’s second iteration, we introduced tool support for
exploration, augmenting the coding practices we observed:

 coding-by-growing from “hello world” programs
 debugging events through “got here” statements
 customizing and composing operations of ink strokes

Supporting these practices enhances R3’s explorability, as
designers can prototype, customize, and test their programs
more quickly. The insight here is that currently, designers
of paper UIs must maintain a mental mapping between the
code that they write and the 2D visual representation of the
input surface. That is, there exists both a large gulf of exe-
cution, the gap between the designer’s goals and the toolkit
actions he needs to attain those goals, and a large gulf of
evaluation, the difficulty in determining whether the paper
UI is working based on the toolkit’s output [12]. We suggest
that visual tools can narrow these gaps. The ideas we pre-
sent in this section bridge the visual task of designing and
testing paper UIs to the less visual task of writing back-end
code to make the application work.

From Paper Prototypes to Working Interfaces
To support the coding-by-example modification observed in
our code analysis, we included a feature to allow a designer
to export a drawn-on-paper sketch of an interface to code
that will generate the UI (see Figure 8). This reduces the
initial effort of learning to lay out paper UI components and
attach event handlers to them, and enables designers with-
out programming experience to create paper UIs. Currently,
we support a simple visual language: the outermost box
becomes a Sheet; internal components become Regions;
lines that exit the Sheet become Event Handlers. Text writ-
ten next to a handler is recognized and matched to a
particular handler in R3’s library. Finally, the sketch is
exported to an XML representation, which is read in at run-
time to generate the paper user interface.

Visual Browser for Ink Operations
Our source code analysis revealed that people would extend
the existing ink operations by copying and modifying tool-
kit code (e.g., an ink rendering snippet). We also found that
occasionally, developers would rewrite code even when it

 7

already existed in the toolkit (e.g., exporting ink to a JPEG).
These observations on the customization of ink operations
suggest that we can provide a more effective way for devel-
opers to understand what is available in the R3 Ink API, how
each operation would affect the digital ink, and how one
might customize them.
Our working prototype presents source code alongside
visual previews of ink strokes (see Figure 9). Suppose a
developer wants to find the longest stroke in a list of Ink-
Strokes. She browses the API through drop-down menus,
and selects getStrokeWithMostSamples(). Upon adding this
method, the longest stroke is highlighted in red. She copies
the resulting code into her IDE, where she can grow the
code if necessary. A complementary approach would be to
integrate API finding into Web searches [37].

Visual Debugging of Event Handlers
The challenge with using console output for debugging
events is that event handling code does not run until the
developer provides input to bring the program to the desired
state. Having a rapid way to debug events would save con-
siderable work. Our source code analysis of debugging
output reveals that we need to help developers understand
what happens when event handlers are called.
The second iteration of R3 provides techniques to support
debugging. We now provide visual representations of the UI
during testing, and visualize the source code reached by
each event handler as the program runs. To help developers
understand which event handlers are called, R3 provides a
visualization of the event handlers laid out on the 2D paper
UI (see Figure 10). The visualization tracks statistics, such
as how many times an event was triggered. To improve
existing practice, R3 provides a new debug-to-console tech-
nique; the developer invokes R3’s showMe() method to send
values to both the console and a 2D visualization of the
paper UI. This helps a developer see which event handlers
were called, and evaluate the object values in context of
that event handler. When the debugging tool is hidden,
showMe() maintains current practice by outputting to the
console, behaving exactly like println().

Paper and Tablet-based Simulation

Figure 9. R3 supports rapid exploration of the Ink API by providing
a browser that shows the effect of method calls visually and imme-
diately, and allowing developers to export code to their IDE.

Finally, to eliminate the need to print while debugging, we
added two ways to simulate the paper UI. First, we allowed
simulation (through a tablet or mouse). Second, we now
allow developers to bind any patterned paper to regions at
application runtime. Therefore, developers can use pre-
printed Anoto notebooks to simulate their paper UIs.

RELATED WORK
This research builds upon earlier work in user interface
software architectures, design tools, and studies of existing
development and debugging practices.

User Interface Software Architectures and Design Tools
The R3 approach was inspired mainly by architectures for
graphical user interfaces. The first iteration of the paper
toolkit borrowed the basic ideas of components, layout,
event handling, and extensibility from GUI toolkits like Java
Swing [38], Windows Forms [22], and SubArctic [11]. R3
extends this model to device ensembles composed of both
augmented paper and digital systems. The second iteration
of R3 supports an XML representation of the paper UI, gen-
erated by the designer’s hand-sketched prototypes. This
representation was inspired by the movement to better
separate the view from event handling, seen in earlier work
[1, 26] and now on commercial platforms (e.g., XUL [23]).
For paper interfaces, there exist several authoring tools.
Anoto’s SDK [2] enables developers to access pen samples,
but provides no explicit support for event handling or out-
put to devices. Several frameworks build on Anoto. Cohen
et al.’s work [4] integrates pen input with speech com-
mands. PADD supports the integration of annotations on a
physical document back into the digital one [8]. iPaper is a
data-centric approach that maps pen input to remote data
and code stored on the iServer [27, 34]. One limitation with
this approach is that a database server containing these
resources must be accessible to the pen’s host. This general-
ized approach works in a production system, but it limits
the speed at which a designer can explore prototypes on her
local machine. iPaper is the platform most related to our

Figure 10. Building on debugging practices, R3 presents output on
a 2D visualization of the paper UI. Here, the developer has inter-
acted with the large paper region; its digital counterpart is
highlighted. A panel displays the event code from the context of the
region. Finally, showMe() displays output next to the region.

own, and is largely complementary to our interaction-
centric approach. However, R3’s Actions hides the network
complexity that iPaper exposes (HTTP requests between
client and server); instead, R3 devices act as peers. R3’s
main contribution beyond the prior work is the depth in the
evaluation of extensive use of the toolkit, and the subse-
quent iteration of the architectural abstractions.

Supporting Existing Coding Practices
In designing the R3 study and understanding the results, we
drew on prior research on the development practices of
software engineers, specifically in how software is created
and modified. Rosson and Carroll studied the code reuse
practices of four programmers and found that they benefited
from having working examples (usage contexts) that they
could modify to include in their own project [30]. In addi-
tion to providing running demonstrations, R3 supports rapid
generation of working code through sketching, allowing
novice developers to specify a working base and incremen-
tally grow their application. This sketching approach was
introduced in SILK [17], and is used by recent systems (e.g.,
[25]). R3’s differs in that developers can sketch with pen
and paper instead of a digital tablet (providing a more
mobile alternative), and then specify event handlers by
writing their name. R3 also exports the interface to integrate
with final working code.
Besides [30], at least two other studies note that program-
mers use copy-and-paste to reduce typing, and ensure that
the fine details (e.g., method names) are correct. First, Kim
et al. studied expert programmers and found that copy-and-
paste was used to save time when creating or calling similar
methods [14]. Later, LaToza et al. found that modifying
usage contexts was one of several types of code duplica-
tion, which causes problems when fixing bugs or
refactoring [18]. However, these studies did not concentrate
on user interface development. Our own observations sup-
port the existence of the copy-and-paste and code-by-
growing behaviors, and suggest that users rely on copying
when they need to learn a new API.
R3’s visualizations for the paper UI and handlers extend
ideas developed in software visualization research. DeLine
et al. introduced designs to help developers visualize com-
mon code paths [5]. The R3 debugger applies this real-time
highlighting to event handlers. However, most of the work
in this community seeks to understand class relationships,
algorithms, and data structures [35]. We extend this effort
by helping developers understand the relationships between
GUIs, event handlers, and debug output. In digital arts, Fry
has visualized call graphs of code bases (e.g., [7]). In inter-
face research, Hands demonstrated an accessible, playing-
card visualization for objects, where properties were shown
in a tabular format [28]. However, event handlers were
represented only in natural language, or implicitly defined
by textual properties. Papier-Mâché’s monitoring window
demonstrated that visuals of objects and events can enhance
the debugging process [15]. R3 also supports the display of

event activation, but increases visibility by overlaying de-
bug output on the paper UI.

FUTURE WORK
Looking forward, we see the results of the R3 study as
suggesting three valuable directions for further research:
Ordering Constraints — it is difficult to enforce interaction
constraints on a paper UI. In a display with graphical feed-
back, a developer can gray out a component when it is not
appropriate. On paper, one cannot stop a user from arbitrar-
ily checking a box or turning to the next page. Today,
developers must provide textual directions to the user, and
handle input that is incomplete or out-of-order.
Synchronous vs. Asynchronous — R3 supports real-time pen
interactions through event handlers; batched data requires
separate ink handlers, to import saved ink into an applica-
tion. We have since found this to be a limitation. Future R3
iterations will process batched input through event handlers,
and allow developers to provide hints (e.g., “if real-time
feedback is unavailable, disregard this event”).
Slow Refresh — today, if the user needs to update his paper
interface, he must print out a new copy with the new infor-
mation. Future toolkits should provide explicit support for
scheduling updates to this paper view (we think of paper as
the view in MVC, but with an extremely low refresh rate).

CONCLUSION
Through an iterative design of the R3 paper applications
toolkit, we learned that a traditional event-driven approach
can provide an approachable platform for programmers to
build pen-and-paper applications. Additionally, support for
visual development and debugging can make the process
much more efficient. However, there remain toolkit chal-
lenges in this space (e.g., support for integrating non-
programmers into the process).
Our results also have implications for the design of graphi-
cal applications. For example, one might allow a designer
to import a paper sketch into a GUI builder. We also found
it valuable to use both long-term deployment and the static
analysis of source code to inform the design process. We
suggest that future tool design should be informed by such
techniques. From this study, we conclude that toolkits
should explicitly support programming by example modifi-
cation, provide efficient exploration of APIs, and present
good visualizations of program event flow.
The R3 toolkit and code analysis tools are open source;
they, and a video demonstrating this research, can be found
at http://hci.stanford.edu/paper.

REFERENCES
 1 Abrams, M., C. Phanouriou, A. L. Batongbacal, S. M. Wil-

liams, and J. E. Shuster. UIML: An Appliance-Independent
XML User Interface Language. In Proceedings of The Eighth
International World Wide Web Conference, 1999.

 2 Anoto AB, Anoto Technology, 2007. http://www.anoto.com

 9

http://www.anoto.com/

 3 Bernstein, M., A. Robinson-Mosher, R. B. Yeh, and S. R.
Klemmer. Diamond's Edge: From Notebook to Table and
Back Again. Ubicomp Posters, 2006.

 4 Cohen, P. R. and D. R. McGee. Tangible Multimodal Inter-
faces for Safety Critical Applications, Communications of the
ACM, vol. 47(1): pp. 41–46, 2004.

 5 DeLine, R., A. Khella, M. Czerwinski, and G. Robertson.
Towards Understanding Programs through Wear-based Filter-
ing. SoftVis: ACM Symposium on Software Visualization. pp.
183–92, 2005.

 6 EPOS, EPOS Digital Pen, 2007. http://www.epos-ps.com
 7 Fry, B., distellamap, 2007. http://benfry.com/distellamap
 8 Guimbretière, F. Paper Augmented Digital Documents. UIST:

ACM Symposium on User Interface Software and Technology.
pp. 51–60, 2003.

 9 Hong, J. I. and J. A. Landay. SATIN: a Toolkit for Informal
Ink-based Applications. UIST: ACM Symposium on User In-
terface Software and Technology. pp. 63–72, 2000.

 10 Hourcade, J. P. and B. B. Bederson, Architecture and Imple-
mentation of a Java Package for Multiple Input Devices
(MID). Technical Report, University of Maryland 1999.
http://www.cs.umd.edu/hcil/mid

 11 Hudson, S. E., J. Mankoff, and I. Smith. Extensible Input
Handling in the subArctic Toolkit. CHI: ACM Conference on
Human Factors in Computing Systems. pp. 381–90, 2005.

 12 Hutchins, E. L., J. D. Hollan, and D. A. Norman. Direct Ma-
nipulation Interfaces. Human-Computer Interaction 1(4). pp.
311–38, 1985.

 13 Johnson, W., H. Jellinek, L. K. Jr., R. Rao, and S. Card. Bridg-
ing the Paper and Electronic Worlds: The Paper User
Interface. CHI: ACM Conference on Human Factors in Com-
puting Systems. pp. 507–12, 1993.

 14 Kim, M., L. Bergman, T. Lau, and D. Notkin. An Ethno-
graphic Study of Copy and Paste Programming Practices in
OOPL. International Symposium on Empirical Software Engi-
neering. pp. 83–92, 2004.

 15 Klemmer, S. R., J. Li, J. Lin, and J. A. Landay. Papier-Mâché:
Toolkit Support for Tangible Input. CHI: ACM Conference on
Human Factors in Computing Systems. pp. 399–406, 2004.

 16 Krasner, G. E. and S. T. Pope. A cookbook for using the
model-view controller user interface paradigm in Smalltalk-
80. Object Oriented Programming 1(3). pp. 26–49, 1988.

 17 Landay, J. and B. A. Myers. Interactive sketching for the early
stages of user interface design. CHI: ACM Conference on
Human Factors in Computing Systems. pp. 43–50, 1995.

 18 LaToza, T. D., G. Venolia, and R. DeLine. Maintaining Men-
tal Models: A Study of Developer Work Habits. International
Conference on Software Engineering. pp. 492–501, 2006.

 19 LeapFrog Enterprises, FLY Pentop Computer,, 2007.
http://www.flypentop.com

 20 Liao, C., F. Guimbretière, and K. Hinckley. PapierCraft: A
Command System for Interactive Paper. UIST: ACM Sympo-
sium on User Interface Software and Technology. pp. 241–44,
2005.

 21 Mackay, W. E., G. Pothier, C. Letondal, K. Bøegh, and H. E.
Sørensen. The Missing Link: Augmenting Biology Laboratory
Notebooks. UIST: ACM Symposium on User Interface Soft-
ware and Technology. pp. 41–50, 2002.

 22 Microsoft, Windows Forms, 2007.
http://www.windowsforms.net

 23 Mozilla, XUL, 2007. http://www.mozilla.org/projects/xul

 24 Myers, B., S. E. Hudson, and R. Pausch. Past, Present, and
Future of User Interface Software Tools. ACM Transactions
on Computer-Human Interaction 7(1). pp. 3–28, 2000.

 25 Newman, M. W., J. Lin, J. I. Hong, and J. A. Landay.
DENIM: An Informal Web Site Design Tool Inspired by Ob-
servations of Practice. Human-Computer Interaction 18(3).
pp. 259–324, 2003.

 26 Nichols, J., et al. Generating Remote Control Interfaces for
Complex Appliances. UIST: ACM Symposium on User Inter-
face Software and Technology. pp. 161–70, 2002.

 27 Norrie, M. C., B. Signer, and N. Weibel. Print-n-Link: Weav-
ing the Paper Web. DocEng: ACM Symposium on Document
Engineering, 2006.

 28 Pane, J., A Programming System for Children that is Designed
for Usability., Unpublished PhD, Carnegie Mellon University,
Computer Science, Pittsburgh, PA, 2002.
www.cs.cmu.edu/~pane/thesis

 29 Rettig, M. Prototyping for tiny fingers, Communications of the
ACM, vol. 37(4): pp. 21-27, 1994.

 30 Rosson, M. B. and J. M. Carroll. The Reuse of Uses in Small-
talk Programming. ACM Transactions on Computer-Human
Interaction 3(3). pp. 219–53, 1996.

 31 Schilit, B. N. and U. Sengupta. Device Ensembles. Computer
37(12). pp. 56–64, 2004.

 32 Schleimer, S., D. S. Wilkerson, and A. Aiken. Winnowing:
Local Algorithms for Document Fingerprinting. SIGMOD:
ACM International Conference on Management of Data. pp.
76–85, 2003.

 33 Shneiderman, B., G. Fischer, M. Czerwinski, B. Myers, and
M. Resnick, Creativity Support Tools. Washington, DC: Na-
tional Science Foundation. 83 pp. 2005.

 34 Signer, B., Fundamental Concepts for Interactive Paper and
Cross-Media Information Spaces, Unpublished PhD, ETH Zu-
rich, Computer Science, Zurich, 2006. http://www.
globis.ethz.ch/script/publication/download?docid=411

 35 Stasko, J., J. Domingue, M. H. Brown, and B. A. Price, Soft-
ware Visualization: Programming as a Multimedia
Experience: MIT Press. 550 pp. 1998.

 36 Stifelman, L., B. Arons, and C. Schmandt. The Audio Note-
book: Paper and Pen Interaction with Structured Speech. CHI:
ACM Conference on Human Factors in Computing Systems.
pp. 182–89, 2001.

 37 Stylos, J. and B. A. Myers. Mica: A Web-Search Tool for
Finding API Components and Examples. VLHCC: Visual
Languages and Human-Centric Computing. pp. 195–202,
2006.

 38 Sun Microsystems, Swing, 2007.
http://java.sun.com/javase/6/docs

 39 Thorn, T. Programming Languages for Mobile Code, ACM
Computing Surveys (CSUR), vol. 29(3): pp. 213–39, 1997.

 40 Wellner, P. Interacting With Paper on the DigitalDesk, Com-
munications of the ACM, vol. 36(7): pp. 87–96, 1993.

 41 Yeh, R. B., J. Brandt, J. Boli, and S. R. Klemmer. Interactive
Gigapixel Prints: Large, Paper-based Interfaces for Visual
Context and Collaboration. Ubicomp Extended Abstracts (Vid-
eos), 2006.

 42 Yeh, R. B., et al. ButterflyNet: A Mobile Capture and Access
System for Field Biology Research. CHI: ACM Conference on
Human Factors in Computing Systems. pp. 571–80, 2006.

http://www.epos-ps.com/
http://benfry.com/distellamap
http://www.cs.umd.edu/hcil/mid
http://www.flypentop.com/
http://www.windowsforms.net/
http://www.mozilla.org/projects/xul
http://www.cs.cmu.edu/%7Epane/thesis
http://java.sun.com/javase/6/docs

	ABSTRACT
	ACM Classification Keywords
	H.5.2. [Information Interfaces]: User Interfaces — input devices and strategies; prototyping; user-centered design. D.2.2 [Software Engineering]: Design Tools and Techniques — User interfaces.
	Keywords

	INTRODUCTION
	THE PAPER TOOLKIT ARCHITECTURE
	Designing a Paper Interface
	Event Handling with Multiple Pens
	Providing Feedback through Output Devices
	Debugging and Testing with Event Save and Replay
	Implementation

	DETERMINING NEEDS THROUGH LONG-TERM USE
	Feedback from Internal Use
	Observations of an External Deployment

	INFORMING DESIGN WITH SOURCE CODE ANALYSIS
	Programming by Example Modification
	Customizing Tool Support: Extending Ink Operations
	Iterative Debugging of Event Handlers
	Successes and Shortcomings

	INTEGRATING CODE WITH VISUAL DESIGN AND TEST
	From Paper Prototypes to Working Interfaces
	Visual Browser for Ink Operations
	Visual Debugging of Event Handlers
	Paper and Tablet-based Simulation

	RELATED WORK
	User Interface Software Architectures and Design Tools
	Supporting Existing Coding Practices

	FUTURE WORK
	CONCLUSION
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

