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Figure 1. The R3 paper applications toolkit supports developers 
through an event-driven model, output to devices, and visualiza-
tions for design. With R3, developers have created tools for tasks 
such as web design (left) and music composition (right).

ABSTRACT 
With advances in digital pens, there has been recent interest 
in supporting augmented paper in both research and com-
mercial applications. This paper introduces the iterative 
design of a toolkit for event-driven programming of aug-
mented paper applications. We evaluated the toolkit with 69 
students (17 teams) in an external university class, gather-
ing feedback through e-mail, in-person discussions, and 
analysis of 51,000 lines of source code produced by the 
teams. This paper describes successes and challenges we 
discovered in providing an event-driven architecture as the 
programming model for paper interaction. Informed by this 
evaluation, we extended the toolkit with visual tools for 
designing, developing, and debugging, thereby lowering the 
threshold for exploring paper UI designs, providing infor-
mal techniques for specifying UI layouts, and introducing 
visualizations for event handlers and programming inter-
faces. These results have implications beyond paper 
applications — R3 takes steps toward supporting program-
ming by example modification, exploring APIs, and 
improved visualization of event flow. 
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devices and strategies; prototyping; user-centered design. 
D.2.2 [Software Engineering]: Design Tools and Tech-
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INTRODUCTION 
This research addresses toolkit support for computationally-
augmented pen-and-paper applications, as many domains — 

e.g., biology [21, 42] and music (see Figure 1) — require a 
level of robustness, readability, and battery life not present 
in today’s tablet computers. In recent years, the approach of 
integrating paper and digital interactions [13, 40] has re-
ceived increasing attention due to advances in both 
commercial technology and interactions research. Commer-
cial digital pens [2, 6] can now capture handwriting and 
send it to a computer wirelessly, in real-time. This synchro-
nous interaction between pen, paper, and computer allows 
paper interfaces to control an application.  
This toolkit research is motivated by the many projects that 
have demonstrated the potential of augmenting pen and 

paper; we highlight some here. For example, Audio Note-
book is a paper interface that correlates handwritten notes 
with audio of lectures [36]. A-book enables biologists to 
augment their lab notebooks with a PDA that helps them 
create links to digital content [21]. PADD coordinates doc-
uments in the digital and physical worlds — handwritten 
physical annotations are overlaid on the source PDF [8]. 
PapierCraft enhances these digital documents, enabling 
users to edit them with pen gestures [20]. Print-n-Link 
detects citations in documents, and allows readers to re-
trieve them in a mobile setting [27]. Finally, ButterflyNet 
enables field biologists to find photos by navigating field 
notes [42]. In the commercial realm, the FLY pen can run 
applications from games to daily planners [19]. 
Currently, many applications leverage the Anoto pen plat-
form [2], though other technologies are also available. For 
example, the EPOS pen works with unmodified paper, using 
ultrasound to determine the pen’s location [6]. However, 
current infrastructure support for designing integrated paper 
and digital interactions requires considerable expertise. 
Anoto provides two tools: one for designing Forms (FDK) 
and another for processing pen data (SDK) [2]. The FDK 
augments paper with a tiny dot pattern, enabling digital 
pens to identify their location. The SDK provides access to 
the ink strokes after a user has docked his digital pen. It 
allows developers to render ink, but does not provide sup-
port for real-time interface events (e.g., when a user crosses 
off a task on his paper calendar). Similarly, PADD integrates 
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Figure 2. In this high-level overview of the R3 architecture, note how input arrives from pens and paper, and output is sent to devices. R3 
lowers the threshold for processing real-time and batched pen input, and dispatches events to the handlers created by the developer. R3 
services are flexibly coupled, so they can be used separately from the toolkit. On the lower right, we see the debugging tools that we imple-
mented in response to user feedback and our analysis of the source code developers produced. 

handwritten annotations back into digital documents [8], 
but does not support event handling. iPaper provides real-
time retrieval of media associations [34], yet requires sig-
nificant centralized infrastructure to handle requests. 
We address this steep learning curve by taking a user-
centered approach to designing a paper + digital toolkit. 
Specifically, this research demonstrates that providing tools 
to help designers explore different solutions, and iteratively 
improve upon them, can lower the threshold for creating 
applications [24] and provide wider walls for exploring the 
design space [33]. With effective tools, designers can better 
support mobile computing through digital paper.  
This paper presents the R3 paper applications toolkit. Its 
goals are to reduce the time required for designers to create 
prototypes, to support the reuse of components through 
inspection and copying, and to help developers recycle and 
customize old solutions for new usage contexts. To support 
the large community of designers familiar with graphical 
interfaces, R3 introduces the GUI’s event-driven and model-
view-controller architectures [16] to augmented paper ap-
plications. Beyond lowering the learning threshold, R3 
contributes methods to:  

 Specify paper user interfaces and event handlers by 
sketching with an inking pen on physical paper. 

 Integrate the development process with visualizations 
of the UI and event handlers to aid in debugging. 

 Explore custom coding solutions through a direct ma-
nipulation API browser that generates source code. 

The R3 toolkit enables designers to create rich paper-centric 
applications (see Figures 2). To do this, R3 builds upon the 
Anoto platform to support interactions with pen and paper. 
With Anoto, an inking pen reads a location-specifying dot 
pattern printed on a paper page. This enables R3 to receive 
the location, force, and time of each pen stroke either in 
real time (through Bluetooth) or in batched mode (after the 
user docks his pen).  

To evaluate R3’s architecture, we deployed the toolkit to an 
undergraduate HCI class of 69 students (17 teams). Through 
analysis of the students’ source code, we found that R3 
provided a low threshold for programmers to create paper 
user interfaces. Moreover, we found that developers: 

 Used programming by example modification to speed 
their development with new frameworks (such as R3). 

 Had cognitive difficulty in selecting and composing 
visual operations on digital ink. 

 Depended on debugging output to iteratively grow 
their applications. 

We also discovered limitations of the R3 approach, primar-
ily concerning the speed at which a designer could explore 
and test designs. In response to these findings, we intro-
duced visual design, development, and debugging tools to 
support rapid exploration. In the following section, we 
highlight R3’s architectural features, and describe how a 
developer uses it to create pen-and-paper applications. We 
then describe our evaluation of the toolkit, through both 
internal use and external deployment. We detail observa-
tions from the deployment, and describe how we applied 
resulting design implications to a second iteration of R3. To 
conclude, we frame our contributions in related work and 
suggest future directions. 

THE PAPER TOOLKIT ARCHITECTURE 
In providing toolkit support for pen-and-paper interfaces, 
our goal was to augment, and not replace, developers’ 
existing practices. For this reason, we modeled R3’s archi-
tecture after event-driven GUI architectures, such as 
Windows Forms [22] and Java Swing [38]. R3 receives 
input from one or more digital pens, and invokes event 
handlers attached to active regions on a paper interface (see 
Figure 2). This approach, which draws on traditional GUI 
idioms, eases the development transition between graphical 
and augmented paper interaction by providing existing 
developers with a familiar programming model. On the 
whole, this model is effective for paper + digital interfaces. 



However, the GUI architectural paradigm cannot be copied 
wholesale to this domain because paper cannot itself pre-
sent real-time graphical feedback; we introduce the 
challenges to designing augmented paper interaction and 
describe how R3 addresses them.  

Designing a Paper Interface 
Consider this scenario: Karen would like to design a task 
management application that will allow users to jot notes on 
paper. After writing a note, the user will tap a dedicated 
rectangle at the bottom of the paper with his pen. Through a 
Bluetooth connection, a nearby computer will capture the 
strokes and add the note to the user’s digital calendar. 
R3’s development process proceeds as follows: on a PC, 
Karen uses R3’s interface layout tool to create a Sheet ob-
ject (analogous to a Swing JFrame). Then, she creates one 
large Region to capture the user’s handwriting, and a small 
Region to act as an upload button (see Figure 2, left). She 
adds two Event Handlers: an ink collector to the large re-
gion, and a click handler to the small region. Karen then 
prints the paper UI; R3 automatically renders Anoto pattern 
on the active regions. When active, the ink collector re-
ceives the user’s strokes from the wireless connection. 
When the user taps on the paper button, Karen’s code re-
trieves ink from the ink collector (optionally passing it 
through handwriting recognition), renders it as a JPEG im-
age file, and uploads it to the user’s web calendar. 
However, suppose that Jim, a graphic designer who does 
not program, collaborates with Karen. In this case, Karen 
offloads the design of the paper UI to Jim. R3 allows Jim to 
use any graphical tool to design the interface’s look-and-
feel. Jim and Karen can thus work in parallel. Jim can de-
sign the art in Adobe Illustrator, export to PDF, and use R3’s 
direct manipulation paper interface builder to add and name 
interactive regions. Meanwhile, Karen can create the back-
end code. When Jim has finished, he provides Karen with 
his paper UI specification. Karen’s program reads in the 
paper UI and attaches handlers to the named regions.  
The R3 library provides many pen event handlers, including 
click detectors, marking gesture interpreters, and handwrit-
ing recognizers (which use the recognition service, seen in 
Figure 2). The flexibility of R3’s event architec-
ture allows developers to create their own 
handlers. When Karen and Jim print the paper 
interface, R3’s print subsystem automatically 
instruments regions containing handlers with the 
Anoto dot pattern. Lastly, with the printed UI in 
hand, they can test their application immediately. 
Overall, R3’s approach of separating interface 
design from implementation augments existing 
practices, as graphic artists can use familiar tools 
such as Adobe Illustrator to create the visual 
design of the paper UI. The paper UI develop-
ment process is also flexible, as the developer 
can either 1) start from a PDF, 2) generate the UI 

directly through the R3 Java API, or 3) use R3’s support for 
model-based paper UIs, which separate an XML interface 
specification from the Java-based application logic. This 
approach of using XML as an interface representation was 
seen in [1, 26], and is used in, e.g., Mozilla’s XUL [23]. 

Event Handling with Multiple Pens 
The R3 architecture distinguishes itself from traditional GUI 
architectures in two ways. First, analogously to research on 
toolkits for multiple mice (e.g., [10]), R3 handlers can re-
ceive input from multiple pens, determined through a PenID 
in the PenEvent. Applications that leverage this multiple-
pen functionality include Diamond’s Edge, a collaborative 
drawing environment, and the Twistr game, a two-player, 
bimanual interface where players use pens to tap photos 
from a set on a large paper print (see Figure 3). In Twistr, a 
single pressed event is invoked when any of the four pens is 
depressed. The handler requests the PenID, and rewards the 
appropriate player for finding his photo.  

Providing Feedback through Output Devices 
The second way that R3 differs from the traditional GUI 
architecture is that interaction happens within a device 
ensemble [31], where user actions are distributed across 
paper and computer (see e.g., [42]). To support this interac-
tion style, R3 provides feedback by invoking Actions on 
devices, such as a handheld display. These ensemble inter-
actions are accomplished through a mobile code approach 
[39], passing Java as XML across a network. The program-
mer instantiates a Device with a remote IP address. The 
program can then ask the remote Device to invoke an Ac-
tion (e.g., OpenURL). Other than the computer’s host name, 
R3 abstracts network details from the developer.  
With this approach, a pen-and-paper program can provide 
real-time interaction across multiple devices. For example, 
in BuddySketch — an application we built to provide shared 
sketching in video conferencing — each computer is a De-
vice, and in response to input on paper, one computer asks 
its remote peer to update ink or display photographs. 

Debugging and Testing with Event Save and Replay 
To assist developers in debugging applications, R3 logs 

Figure 3. Left) Students used R3 to produce research such as Diamond’s Edge 
[3], a collaborative drawing environment integrating sketching on paper with 
manipulations on a digital table. Right) The authors used R3 to explore large 
paper interfaces, including this Twistr game, which recognizes four pens.
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every PenEvent. A developer can replay this logged input 
stream using the R3 GUI. Saving and replaying user input 
offers four benefits. First, logged input can be valuable in 
automated unit testing of graphical user interfaces, tradi-
tionally a weakness in testing frameworks. Second, 
debugging with logged input is preferable because working 
with the same input produces consistent results across trials. 
Third, debugging with logged input is more efficient, as it 
eliminates the need to physically reproduce the input on 
every occasion. Lastly, this architectural feature is useful 
for saving and later reviewing tests with end users. 

Implementation 
The R3 toolkit is primarily implemented with Java SE 6.0, 
with smaller components providing services to the main 
toolkit. Pen input from the Anoto SDK is handled through a 
Microsoft .NET 2.0 component, since the drivers are pro-
vided as Windows DLLs. As the “user interface” created by 
R3 is physical paper, there needs to be a printer-friendly 
format for these interfaces. To provide a system that is 
widespread, flexible, and low threshold, we chose PDF: R3’s 
paper interface builder is implemented as an Adobe Acrobat 
plug-in; the interface can be augmented, and the dot pat-
terns rendered, using the iText PDF library. Handwriting 
recognition is built on Microsoft’s Tablet PC recognizer. 

DETERMINING NEEDS THROUGH LONG-TERM USE 
We employed a mixed-methods approach to designing and 
evaluating R3. Our evaluation comprised three methods: 
building applications ourselves, observing its use in a class, 
and analyzing the source code developers produced. Each 
approach highlights distinct considerations; for example, in-
depth analysis of the code can help to improve the toolkit at 
the API and architecture levels, whereas anecdotes from 
long-term usage may inform the design process as a whole. 
Over the last ten months, the architectural features of R3 
have evolved based on our desire to address three goals: 
Learnability How low is the threshold for learning to 

create useful paper interfaces? Which aspects of R3 
contributed to lowering this threshold, and which were 
bottlenecks to further lowering it? 

Extensibility What is the ceiling on the complexity of 
applications that experts can create? Which R3 aspects 
contribute to this, and which prevent a higher ceiling? 

Explorability Will designers create a large variety of 
applications, utilizing a large variety of input tech-
niques? How can R3 better support the ability for 
designers to rapidly create and test ideas? 

Feedback from Internal Use 
Two students used an early version of R3 to develop Dia-
mond’s Edge (see Figure 3), a drawing environment that 
integrates paper with digital tables [3]. This project com-
prised only 20 source files, leveraging R3 for capturing 
input from multiple pens, rendering digital ink on a canvas, 
and sending drawings to printers. We also used R3 to sup-

port our own research on large paper surfaces (GIGAprints) 
[41]. Diamond’s Edge and GIGAprints were presented as a 
poster and a video at Ubicomp 2006. 
One genre of concern that these projects highlighted was 
the need to support flexible input. To accomplish this, we 
abstracted the input architecture, creating a Pen interface 
that enables simultaneous input from multiple physical 
devices, and enables developers to implement their own 
subclass for the input technology of their choice. We also 
found that in multiple projects, developers needed to pack-
age incoming pen samples and interpret them as higher-
level user actions. While Anoto tools provide direct access 
to x and y coordinates, our toolkit collects these into ab-
stractions like clicks, gestures, and freeform ink.  

Observations of an External Deployment 
While longitudinal use by experts (the authors and col-
leagues) offered insight on the ceiling of the platform’s 
flexibility and extensibility, use by novices (students at 
another university) helped us understand R3’s accessibility. 
To observe on-the-ground use of the principles manifest in 
the R3 toolkit, we provided it to an undergraduate HCI class 
at an external university (the authors were not part of the 
teaching staff). In this class, 69 students (17 teams) de-
signed and built pen-and-paper projects. Students began 
using R3 in the eighth week of the fourteen-week class, 
after they had tested their early-stage paper prototypes [29]. 
We summarize these projects in Figure 4. Project topics 
were varied, including paper-based web design, personal 
organizers, and sharing tools for news and blogs. Of the 17 
paper UIs created by these teams, 16 allowed the selection 
of buttons or areas on the page. Only three accepted pen 
gesture as input. Most applications were mobile (10 of 17), 
and four supported batched input. 
During the deployment, the first author held two in-person 
sessions at the university to answer questions and receive 
feedback. He also responded to postings on the R3 news-
group. In total, this comprised more than 20 hours of 
providing support and gathering feedback. After the semes-

Figure 4. Summary of 17 class projects developed with R3. We see 
that R3 supported a variety of projects (though three dealt with 
university exams). Notice that while selection interactions were 
common (e.g., check a box), advanced interactions such as ges-
tures were rare (e.g., draw a musical note). Notably, only four of the 
projects implemented asynchronous interactions, where ink and 
actions are batch processed once the user returns to their desktop. 



ter, we analyzed the project mate-
rials, including reports and source 
code, to evaluate the successes 
and limitations of R3. This work 
demonstrates that in-depth analy-
sis of the products of a toolkit can 
be used to inform the design of 
the toolkit itself. 
Out of our analysis of the team 
materials, our notes from provid-
ing support, and analysis of 
50,962 lines of code, we identified three areas as opportuni-
ties for improved support: better debugging infrastructure, 
integrating batched and real-time interactions, and support 
for web application platforms. While streaming support 
worked well during development, operating the digital pens 
in batched mode—where data resides on the pen until it is 
synchronized through a cable — can ease deployment of 
mobile applications, as it eliminates the need for a PC with-
in wireless range at runtime. Through the students’ written 
reports, it became clear that tools should treat batched mode 
and streaming mode more interchangeably. This suggests 
that, as user interface tools support a broader spectrum of 
input technologies, the abstraction goals put forth through 
UIMS and model-based interface research [24] are likely to 
play an increasingly important role. 

Figure 5. Teams used copy-and-paste to facilitate coding. Many times, developers would copy 
a class file needed to get a program working, and then customize the skeleton to address their 
new needs. Developers can benefit from tools that support this coding-by-growing behavior. 

Consistent with current trends, six teams integrated web 
applications into their projects, from “scraping” HTML to 
working with established APIs (e.g., Flickr and Google 
Calendar). Consequently, students asked that R3 provide 
stronger support for these kinds of applications. For exam-
ple, one group wanted to integrate their application with the 
Apache Tomcat servlet container. A second group wanted 
to create a Firefox plug-in. As applications move online, 
toolkit support is most effective when it not only provides 
strong intra-application support, but support for integrating 
external services. 
Overall, R3 was a big success. 17 teams with no prior ex-
perience in building paper interfaces (many without GUI 
programming experience) were able to build working pro-
jects using R3 in less than six weeks. 

INFORMING DESIGN WITH SOURCE CODE ANALYSIS 
We now describe how we used source code analysis as an 
evaluation method to help us assess R3’s usability. Examin-
ing the source code produced by developers offers an 
empirical account of usage patterns and gives insight into 
usability successes and limitations of the API. We reviewed 
the 304 source files by hand; these files comprised ~35,000 
statements and ~51,000 lines of code, including comments. 
We recorded observations for each file, with special em-
phasis on the paper related code. Throughout the code 
review, we noticed three recurring themes—coding-by-
example modification, customizing tool support, and itera-
tive debugging. In the next sections, we highlight the 

patterns, provide evidence, and introduce designs that we 
added to enhance these practices. 

Programming by Example Modification 
Our first observation was that developers would copy 
chunks of source code, paste it into their project, and then 
grow their application around this working base. This find-
ing is consistent with earlier studies (e.g., [14, 30]). In our 
analysis, we wanted to identify what types of code develop-
ers copied, how much they would copy at one time, and 
from where they would copy from the code.  
We used a combination of static analysis methods to detect 
the code clones. First, we used MOSS, a tool traditionally 
used to detect plagiarism in software [32], to detect simi-
larities between the student projects and the toolkit. Since 
MOSS could not work with code residing on the web, we 
also reviewed the corpus by hand to identify potential 
clones. We found that looking for unusual comments and 
method names was effective in identifying copied code. 
Once we identified a candidate, we would perform a text 
search over the entire corpus, and a web search, to discover 
the source of the copied code. To our knowledge, this paper 
presents the first work that uses static code analysis to study 
developers’ copy-and-paste behavior for the purpose of 
assessing the usability of a toolkit. 
We found that the frequency of copying was independent of 
whether the code was supporting the paper or the GUI parts 
of the interaction (see Figure 5). The data shows that 41% 
of the 159 copied pieces of functionality supported the GUI, 
and 37% supported the paper. Of the instances we discov-
ered, developers most often (96 of 159) copied one class 
file (rather than whole packages, single methods, or snip-
pets) and then modified the class to fit their application. 
Developers copied from several sources, including their 
own “Hello World” assignment, the R3 toolkit, and the Web 
(e.g., the Java Swing tutorials).  
In addition to studying what was copied, and how much was 
copied at one time, we also analyzed where code was cop-
ied from. We found that the single most common source of 
copied code was the paper application template provided 
for use in the students’ first assignment. Prior research (e.g., 
[14, 30]) found that developers use copy-and-paste to save 
time during development. In addition to efficiency, we find 
that developers use this technique to cope with learning 
APIs (to reduce errors using the unfamiliar framework). 
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Figure 6. While the display and scale operations were commonly 
customized, it took more effort to create application-specific solu-
tions for calculating metrics for and recognizing strokes. Making it 
easier to explore these opportunities may lower the threshold and 
pull up the tail of this curve. 

Since the developers only had a few weeks to learn the R3 
architecture, copy-and-paste was a natural strategy. Copy-
ing provided a working base functionality upon which 
developers could grow their project. This suggests that tools 
can embrace the development practice of growing code 
through tools to generate these “Hello World’s” and support 
the copying-and-pasting of working code segments. Today, 
development environments provide ways to generate com-
mon code templates that can be customized. For example, 
the Eclipse IDE expands the word “try” into a full Java try-
catch exception handling block. These templates are in-
tended to help developers avoid the mundane details, 
reducing errors and speeding up the programming process. 
There are two alternate approaches. First, R3 can provide 
ways to generate working examples from documentation. 
Second, R3 can support the rapid generation of working 
code from high-level specifications of the paper application 
(such as drawings). We address these issues later. 

Customizing Tool Support: Extending Ink Operations 
In their projects, students not only used the provided R3 
library elements, they also created their own (e.g., a custom 
paper UI PDF renderer). This behavior was most pronounced 
in the area of manipulating digital ink, where developers 
who needed custom features would either subclass, or copy-
and-modify existing toolkit components. To gather this 
data, we searched for and categorized all instances of ink 
operations in the class’s source code corpus. In Figure 6, we 
see that while groups directly used R3 to decorate and dis-
play ink objects, only a handful felt comfortable enough to 
implement customized interactions for their applications. 
The developers who needed custom solutions extended the 
library to include operations to recognize inked gestures, 
select ink in space and time, and cluster strokes for calculat-
ing location and size. Since some developers extended R3’s 
ink operations library, one might conclude that R3 omitted 
elements that should have been included; however, we 
expect that even with a large set of available operations 
developers will still find the need to composite or create 
their own custom solutions.  

Iterative Debugging of Event Handlers 
One technique that we used to understand “trouble spots” in 
the API — where developers struggled — was to search the 
source code for debug output (e.g., System.out.println()). As 
debugging statements are generally used to display state, 
the values of variables, or signal error conditions, they may 
reveal which parts of R3 were more difficult to work with. 
The source files contained 1232 debugging statements 
(containing println). We examined and annotated each one 
(see Figure 7). From this data, we see where these debug-
ging statements are located. Our code analysis found that 
39% of all console output functions were inside event han-
dlers: 333 debugging statements were located in GUI event 
handlers, and 145 were located in R3 event handlers. 
We also examined what was printed in each debug state-
ment. While many of the values were objects particular to 
each project, we found that a large portion of statements 
were of the “got here” type (statements that serve no pur-
pose other than to tell the developer that a code block was 
reached). In fact, when coupled with the data on where the 
debug statements were located, we find that more than half 
of GUI event handler printlns and almost a third of R3 event 
handler printlns were “got here” statements. This suggests 
that we can help developers better understand when their 
event handlers are being reached. 
Early on, these statements can serve as working stubs, 
helping developers keep track of which event handlers have 
not been implemented. We observed this when printlns 
were placed next to tool-generated comments. For example:  
System.out.println("Zoom In"); 
// TODO Auto-generated Event stub actionPerformed() 

Later, these debug statements can help developers visualize 
what their program is doing in response to pen input. This 
code evolution is referred to as “debugging into existence” 
[30]. The printlns in event handlers suggest that we can 
improve developers’ understanding of event handlers, and 
provide better support for existing debugging practices. 

Successes and Shortcomings 
R3 main success centers on its familiar programming mod-
el, which presented a low threshold for students. For 
instance, one team wrote in their final report for the course: 
“We have a very good impression of the R3 toolkit, and we 

Figure 7. Analysis of the source code of 17 projects revealed that 
people place most of their debugging statements (printlns) in event 
handlers (GUI and R3). Many of the only statements tell the devel-
oper when the code “Got Here.” However, most are of object values 
specific to the particular application. 



believe that it presents an acceptable threshold of entrance 
for a novice to moderately skilled Java programmer.” Be-
cause R3 extended established GUI conventions, students in 
the semester-long class could use their experience while 
working on their paper interfaces. Notably, many students 
learned GUI programming as a part of this introductory 
course (one group reported that “none of us had developed 
event-driven programs prior to this project.”). The fact that 
Swing and R3 are architecturally similar meant that students 
did not have to learn two different programming models.  

Figure 8. R3 translates low-fidelity paper sketches to working paper 
interface specifications (XML & Java), or an equivalent GUI that can 
be used for simulation. 

Through its extensible architecture, R3 provides a high 
ceiling of application complexity — four teams leveraged 
this to create their own ink handling. Team D recognized 
when users crossed out handwritten text, and updated a web 
planner to reflect the completed task. Team G recognized 
paper-based games (e.g., tic-tac-toe). Team I detected boxes 
users had drawn, and supported import of photos into those 
areas. Team N recognized handwritten musical symbols, 
including whole, half, quarter, and eighth notes, and trans-
lated the composition into MIDI files. 
This field study also exposed shortcomings in R3. First, 
designing with R3 had a bottleneck — users reported that 
printing paper UIs inhibited rapid design, development, and 
testing, as printing a paper interface is much slower than 
rendering a GUI. We later eliminated the need to print dur-
ing design and testing by providing a graphical preview of 
the paper UI, and a means to use preprinted notebooks to 
simulate the UI.  
Second, R3 developers could not debug paper UIs without 
physical pens. One developer noted that “the fact that we 
had only one pen to share made it extremely difficult for 
everyone to write individual pieces of code….only one 
person at a time could perform any debugging.” While R3’s 
support for recording pen events and replaying them pro-
vides a mechanism that addresses this issue, save & replay 
was not advertised as a tool for distributed debugging.  
Third, R3 did not provide a transparent way to swap batched 
and real-time pen interactions. Batched pen data would 
appear to the program as ink (like in PADD), and would not 
explicitly invoke event handlers (R3) or media associations 
(iPaper). The deployment revealed that while developers 
prefer using real-time pen input during testing, many expect 
their users to operate in a disconnected environment (10 of 
17 projects were mobile apps). Providing easy ways to 
interchange batched and real-time interaction would address 
the desire to use synchronous systems for debugging and 
asynchronous ones for deployment. Finally, because R3 
provides many features, it is difficult for newcomers to 
quickly grasp the extent of the toolkit’s architecture. Look-
ing at the developer experience, we find that R3 should 
provide visual aids for the exploration, development and 
testing of paper UIs. 

INTEGRATING CODE WITH VISUAL DESIGN AND TEST 
In R3’s second iteration, we introduced tool support for 
exploration, augmenting the coding practices we observed: 

 coding-by-growing from “hello world” programs 
 debugging events through “got here” statements 
 customizing and composing operations of ink strokes 

Supporting these practices enhances R3’s explorability, as 
designers can prototype, customize, and test their programs 
more quickly. The insight here is that currently, designers 
of paper UIs must maintain a mental mapping between the 
code that they write and the 2D visual representation of the 
input surface. That is, there exists both a large gulf of exe-
cution, the gap between the designer’s goals and the toolkit 
actions he needs to attain those goals, and a large gulf of 
evaluation, the difficulty in determining whether the paper 
UI is working based on the toolkit’s output [12]. We suggest 
that visual tools can narrow these gaps. The ideas we pre-
sent in this section bridge the visual task of designing and 
testing paper UIs to the less visual task of writing back-end 
code to make the application work. 

From Paper Prototypes to Working Interfaces 
To support the coding-by-example modification observed in 
our code analysis, we included a feature to allow a designer 
to export a drawn-on-paper sketch of an interface to code 
that will generate the UI (see Figure 8). This reduces the 
initial effort of learning to lay out paper UI components and 
attach event handlers to them, and enables designers with-
out programming experience to create paper UIs. Currently, 
we support a simple visual language: the outermost box 
becomes a Sheet; internal components become Regions; 
lines that exit the Sheet become Event Handlers. Text writ-
ten next to a handler is recognized and matched to a 
particular handler in R3’s library. Finally, the sketch is 
exported to an XML representation, which is read in at run-
time to generate the paper user interface. 

Visual Browser for Ink Operations 
Our source code analysis revealed that people would extend 
the existing ink operations by copying and modifying tool-
kit code (e.g., an ink rendering snippet). We also found that 
occasionally, developers would rewrite code even when it 
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already existed in the toolkit (e.g., exporting ink to a JPEG). 
These observations on the customization of ink operations 
suggest that we can provide a more effective way for devel-
opers to understand what is available in the R3 Ink API, how 
each operation would affect the digital ink, and how one 
might customize them.  
Our working prototype presents source code alongside 
visual previews of ink strokes (see Figure 9). Suppose a 
developer wants to find the longest stroke in a list of Ink-
Strokes. She browses the API through drop-down menus, 
and selects getStrokeWithMostSamples(). Upon adding this 
method, the longest stroke is highlighted in red. She copies 
the resulting code into her IDE, where she can grow the 
code if necessary. A complementary approach would be to 
integrate API finding into Web searches [37]. 

Visual Debugging of Event Handlers 
The challenge with using console output for debugging 
events is that event handling code does not run until the 
developer provides input to bring the program to the desired 
state. Having a rapid way to debug events would save con-
siderable work. Our source code analysis of debugging 
output reveals that we need to help developers understand 
what happens when event handlers are called. 
The second iteration of R3 provides techniques to support 
debugging. We now provide visual representations of the UI 
during testing, and visualize the source code reached by 
each event handler as the program runs. To help developers 
understand which event handlers are called, R3 provides a 
visualization of the event handlers laid out on the 2D paper 
UI (see Figure 10). The visualization tracks statistics, such 
as how many times an event was triggered. To improve 
existing practice, R3 provides a new debug-to-console tech-
nique; the developer invokes R3’s showMe() method to send 
values to both the console and a 2D visualization of the 
paper UI. This helps a developer see which event handlers 
were called, and evaluate the object values in context of 
that event handler. When the debugging tool is hidden, 
showMe() maintains current practice by outputting to the 
console, behaving exactly like println(). 

Paper and Tablet-based Simulation 

Figure 9. R3 supports rapid exploration of the Ink API by providing 
a browser that shows the effect of method calls visually and imme-
diately, and allowing developers to export code to their IDE.

Finally, to eliminate the need to print while debugging, we 
added two ways to simulate the paper UI. First, we allowed 
simulation (through a tablet or mouse). Second, we now 
allow developers to bind any patterned paper to regions at 
application runtime. Therefore, developers can use pre-
printed Anoto notebooks to simulate their paper UIs. 

RELATED WORK 
This research builds upon earlier work in user interface 
software architectures, design tools, and studies of existing 
development and debugging practices. 

User Interface Software Architectures and Design Tools 
The R3 approach was inspired mainly by architectures for 
graphical user interfaces. The first iteration of the paper 
toolkit borrowed the basic ideas of components, layout, 
event handling, and extensibility from GUI toolkits like Java 
Swing [38], Windows Forms [22], and SubArctic [11]. R3 
extends this model to device ensembles composed of both 
augmented paper and digital systems. The second iteration 
of R3 supports an XML representation of the paper UI, gen-
erated by the designer’s hand-sketched prototypes. This 
representation was inspired by the movement to better 
separate the view from event handling, seen in earlier work 
[1, 26] and now on commercial platforms (e.g., XUL [23]).  
For paper interfaces, there exist several authoring tools. 
Anoto’s SDK [2] enables developers to access pen samples, 
but provides no explicit support for event handling or out-
put to devices. Several frameworks build on Anoto. Cohen 
et al.’s work [4] integrates pen input with speech com-
mands. PADD supports the integration of annotations on a 
physical document back into the digital one [8]. iPaper is a 
data-centric approach that maps pen input to remote data 
and code stored on the iServer [27, 34]. One limitation with 
this approach is that a database server containing these 
resources must be accessible to the pen’s host. This general-
ized approach works in a production system, but it limits 
the speed at which a designer can explore prototypes on her 
local machine. iPaper is the platform most related to our 

Figure 10. Building on debugging practices, R3 presents output on 
a 2D visualization of the paper UI. Here, the developer has inter-
acted with the large paper region; its digital counterpart is 
highlighted. A panel displays the event code from the context of the 
region. Finally, showMe() displays output next to the region. 



own, and is largely complementary to our interaction-
centric approach. However, R3’s Actions hides the network 
complexity that iPaper exposes (HTTP requests between 
client and server); instead, R3 devices act as peers. R3’s 
main contribution beyond the prior work is the depth in the 
evaluation of extensive use of the toolkit, and the subse-
quent iteration of the architectural abstractions. 

Supporting Existing Coding Practices  
In designing the R3 study and understanding the results, we 
drew on prior research on the development practices of 
software engineers, specifically in how software is created 
and modified. Rosson and Carroll studied the code reuse 
practices of four programmers and found that they benefited 
from having working examples (usage contexts) that they 
could modify to include in their own project [30]. In addi-
tion to providing running demonstrations, R3 supports rapid 
generation of working code through sketching, allowing 
novice developers to specify a working base and incremen-
tally grow their application. This sketching approach was 
introduced in SILK [17], and is used by recent systems (e.g., 
[25]). R3’s differs in that developers can sketch with pen 
and paper instead of a digital tablet (providing a more 
mobile alternative), and then specify event handlers by 
writing their name. R3 also exports the interface to integrate 
with final working code.  
Besides [30], at least two other studies note that program-
mers use copy-and-paste to reduce typing, and ensure that 
the fine details (e.g., method names) are correct. First, Kim 
et al. studied expert programmers and found that copy-and-
paste was used to save time when creating or calling similar 
methods [14]. Later, LaToza et al. found that modifying 
usage contexts was one of several types of code duplica-
tion, which causes problems when fixing bugs or 
refactoring [18]. However, these studies did not concentrate 
on user interface development. Our own observations sup-
port the existence of the copy-and-paste and code-by-
growing behaviors, and suggest that users rely on copying 
when they need to learn a new API.  
R3’s visualizations for the paper UI and handlers extend 
ideas developed in software visualization research. DeLine 
et al. introduced designs to help developers visualize com-
mon code paths [5]. The R3 debugger applies this real-time 
highlighting to event handlers. However, most of the work 
in this community seeks to understand class relationships, 
algorithms, and data structures [35]. We extend this effort 
by helping developers understand the relationships between 
GUIs, event handlers, and debug output. In digital arts, Fry 
has visualized call graphs of code bases (e.g., [7]). In inter-
face research, Hands demonstrated an accessible, playing-
card visualization for objects, where properties were shown 
in a tabular format [28]. However, event handlers were 
represented only in natural language, or implicitly defined 
by textual properties. Papier-Mâché’s monitoring window 
demonstrated that visuals of objects and events can enhance 
the debugging process [15]. R3 also supports the display of 

event activation, but increases visibility by overlaying de-
bug output on the paper UI. 

FUTURE WORK 
Looking forward, we see the results of the R3 study as 
suggesting three valuable directions for further research: 
Ordering Constraints — it is difficult to enforce interaction 
constraints on a paper UI. In a display with graphical feed-
back, a developer can gray out a component when it is not 
appropriate. On paper, one cannot stop a user from arbitrar-
ily checking a box or turning to the next page. Today, 
developers must provide textual directions to the user, and 
handle input that is incomplete or out-of-order.  
Synchronous vs. Asynchronous — R3 supports real-time pen 
interactions through event handlers; batched data requires 
separate ink handlers, to import saved ink into an applica-
tion. We have since found this to be a limitation. Future R3 
iterations will process batched input through event handlers, 
and allow developers to provide hints (e.g., “if real-time 
feedback is unavailable, disregard this event”). 
Slow Refresh — today, if the user needs to update his paper 
interface, he must print out a new copy with the new infor-
mation. Future toolkits should provide explicit support for 
scheduling updates to this paper view (we think of paper as 
the view in MVC, but with an extremely low refresh rate). 

CONCLUSION 
Through an iterative design of the R3 paper applications 
toolkit, we learned that a traditional event-driven approach 
can provide an approachable platform for programmers to 
build pen-and-paper applications. Additionally, support for 
visual development and debugging can make the process 
much more efficient. However, there remain toolkit chal-
lenges in this space (e.g., support for integrating non-
programmers into the process). 
Our results also have implications for the design of graphi-
cal applications. For example, one might allow a designer 
to import a paper sketch into a GUI builder. We also found 
it valuable to use both long-term deployment and the static 
analysis of source code to inform the design process. We 
suggest that future tool design should be informed by such 
techniques. From this study, we conclude that toolkits 
should explicitly support programming by example modifi-
cation, provide efficient exploration of APIs, and present 
good visualizations of program event flow.  
The R3 toolkit and code analysis tools are open source; 
they, and a video demonstrating this research, can be found 
at http://hci.stanford.edu/paper. 
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