
 

 

Programming by a Sample:  
Rapidly Prototyping Web Applications with d.mix 

 

Björn Hartmann, Leslie Wu, Kevin Collins, Scott R. Klemmer 
Stanford University HCI Group 

Gates Computer Science 
Stanford, CA 94305 

[bjoern, lwu2, kevinc, srk]@cs.stanford.edu 
 

 
ABSTRACT 
As an increasing number of web sites provide APIs, sig-
nificant latent value for supporting developers’ use of these 
APIs lies in the site-service correspondence: the site and its 
API offer complementary representations of equivalent 
functionality. We introduce d.mix, a tool that realizes this 
latent value, lowering the threshold for creating web 
mash-ups. With d.mix, users browse annotated web sites and 
perform a parametric copy of elements of interest. While a 
traditional copy contains web page elements, a parametric 
copy performs proxy-based rewriting of pages to select the 
underlying programmatic calls that yield those elements. 
Developers can paste this code and edit, execute, and share 
scripts on d.mix’s wiki-based authoring environment. This 
approach speeds the creation of web applications while 
preserving the flexibility and high ceiling of script-based 
programming. An initial study with eight participants found 
d.mix to enable rapid experimentation, and suggested ave-
nues for improving its annotation mechanism. 
ACM Classification: H5.2 [Information interfaces and 
presentation]: User Interfaces — Graphical user interfaces. 
General terms: Design, Human Factors 
Keywords: programming by example modification, 
mash-ups, web services, prototyping 

INTRODUCTION 
With the advent of Service-Oriented Architectures (SOA)  
[7], the number and diversity of application building blocks 
that are openly available as web service APIs is growing 
rapidly. The web site programmableweb.com, which tracks 
availability and use of web APIs, reports 1720 different 
available APIs as of March 2007. These APIs promise de-
velopers a cornucopia of interface elements and data 
sources. Many of these web APIs are the programmatic in-
terface to successful web sites, where the site and the asso-
ciated API offer complementary views of the same under-
lying functionality. In essence, the web site is the largest, 
functional example of what can be accomplished with an 
API. To date, the potential value to developers that could be 
achieved by coordinating these representations has largely 
remained latent.   
While web services have seen particular growth in the en-
terprise sector, rapid access to rich features and data also 
make web APIs a promising tool for prototyping and the 
creation of situated software: “software designed in and for a 

particular social situation or context” [31]. The small audi-
ence of situated software applications limits developer re-
sources. As such, enabling faster and lower-threshold [25] 
authoring of these applications provides a catalyst for 
broader creation. 
As the number and scale of APIs and web services increase, 
and as programming entertains an ever-widening audience, 
more software is written by opportunistically combining 
pre-existing, high-level blocks of functionality. In these 
mash-ups, the program design resides in the glue layers that 
combine the different chunks of functionality. We define a 
web mash-up as a web application that recombines elements 
from at least two or more external web applications. 
Mash-ups are instances of the long tail [8] of software — the 
large numbers of small applications that cumulatively have a 
big impact. One of the broad shifts introduced in the 
mash-up paradigm is that the designer’s effort and creativity 
are reallocated: less time is spent building an application up 
brick by brick, while more time and ingenuity is spent 
finding and selecting components, and then creating and 
shaping the “glueware” that interfaces them [16]. 
Two factors are currently hampering broader use of web 
APIs: the complexity of installing web application envi-
ronments and the complexity of understanding and using 
web service APIs.  
To enable flexible and rapid authoring of API-based web 
applications, this paper introduces d.mix (see Figure 1), a 
browser-based design tool with two notable attributes. The 
first is a programmable proxy system employing a 

 
Figure 1. When programming by a sample, users first 
browse web sites that offer APIs through a proxy that adds 
annotations. They then select pieces they wish to copy and 
send them to the d.mix editor, where they can change pa-
rameters graphically or edit the underlying API source code.



 

 

site-to-service map that establishes the correspondence 
between elements shown on the site and the web service 
calls needed to replicate these data programmatically. This 
system enables users to create code that invokes web APIs by 
browsing the respective web site and visually specifying the 
web site elements they wish to use in their own application. 
The second contribution is a server-side active wiki that 
hosts scripts generated by the proxy. As a 
browser-accessible authoring tool, the active wiki provides a 
configuration-free environment for authoring and sharing of 
both source code and working applications. Together, these 
two components offer a perspective of how web developers 
could use the surface structure and social structure of the 
web as a means to democratize the tools of production [8]. 
The d.mix approach targets the growing group of web de-
signers and developers that are familiar with HTML and 
scripting languages (e.g., JavaScript and ActionScript), lo-
wering the experience threshold required to build and share 
mash-ups. d.mix offers a completely graphical interaction 
path, from selecting samples to pasting them into a new page 
and changing their attributes using property sheets. Addi-
tionally, by virtue of displaying the actual underlying code 
to users, d.mix allows developers with sufficient technical 
expertise to drill down into code as needed. 
To create a system that is felicitous with the practices of web 
developers, we employed a mixed-methods approach. First, 
each week for eight weeks, we met with web developers, 
using the d.mix prototype as a probe to elicit discussion on 
mash-up design. Second, to gauge the first-use experience of 
d.mix, we conducted a preliminary lab study with eight web 
developers. Third, we built example applications using our 
tool to explore a broader range of interaction designs. 
The rest of this paper is structured as follows. To motivate 
the d.mix approach, we first present a short summary of 
research in information foraging and programming by 
demonstration. The next section introduces the main inter-
action techniques of our system through a scenario, followed 
by the implementation of d.mix. We then describe the two 
forms of evaluation undertaken: iterative feedback from web 
professionals and an initial laboratory study. We conclude 
with a discussion of related research and commercial sys-
tems, limitations of the current implementation, and an 
outlook to future work. 

BACKGROUND 
Our work draws on models of information foraging and re-
search in programming by demonstration. We present a brief 
introduction to both areas here. 

Information foraging 
As the number and size of programming libraries swells, 
locating and understanding documentation and examples is 
playing an increasingly prominent role in developers’ ac-
tivities [32]. d.mix assists users with information foraging 
by shortening the time spent hunting for information 
patches. It co-locates two different kinds of information on 
one page: examples of what functionality and data a web site 
offers, together with information how one would obtain this 
information programmatically. Because problems often cut 

across package and function boundaries, example-based 
documentation provides value by aiding knowledge crys-
tallization and improving information scent  [29]. 
For this reason, examples and code snippets, such as those in 
the Java Developers Almanac, are a popular resource. This 
approach of documentation through example complements 
more traditional, index-based documentation. d.mix com-
bines dynamic example generation with browsing of what 
the examples would look like based on the most complete 
example there is. 

Programming by a Sample, or by Example? 
d.mix’s approach draws on prior work in programming by 
example, also known as programming by demonstration [12, 
21, 27]. In these systems, the user demonstrates a set of ac-
tions on a concrete example — such as a sequence of image 
manipulation operations — and the system infers application 
logic through generalization from that example. The logic 
can then be re-applied to other similar cases.  
The class of applications that d.mix addresses are those that 
employ web services. Through d.mix’s site-to-service map, 
a designer can sample a portion of an extant web page; d.mix 
then replaces the surface attributes of that sample with the 
web service calls that generated the sample. While d.mix 
shares much of its motivation with programming- 
by-example systems, the approach is quite distinct. Instead 
of providing the computer with an example that the system 
then generalizes, designers specify logic through locating 
and parameterizing found examples. In this way, the task is 
more one of programming by example modification, which 
Nardi highlights as a successful strategy for end-user de-
velopment [27]. Modification of a working example also 
speeds development because it provides stronger scaffolding 
than writing code tabula rasa. 

HOW TO PROGRAM BY A SAMPLE 
A scenario will help introduce the main interaction tech-
niques. We also encourage readers to watch the accompa-
nying video, on the web at http://hci.stanford.edu/mashups. 
Jane is an amateur rock climber who frequently travels to 
new climbing spots with friends. Jane would like to create a 
page that serves as a lightweight web presence for the group. 
The page should show photos and videos from the latest 
outings. She wants content to update dynamically so she 
doesn’t have to maintain the page. She is familiar with HTML 
and has some JavaScript experience, but does not consider 
herself an expert programmer. 
Jane starts by browsing the photo and video sharing sites her 
friends use. Scott uses the photo site Flickr and marks his 
pictures with the tag “climbing.” Drew also uses Flickr, but 
uses an image set instead. Karen shares her climbing videos 
on the video site YouTube. In short, this content spans 
multiple sites and multiple organizational approaches. 
To start gathering content, Jane opens Scott’s Flickr profile 
in her browser and navigates to the page listing all his tags 
(see Figure 2a). She then presses the “ sample this” button 
in her browser bookmark bar. This reloads the Flickr page, 
adding dashed borders around the elements that she can 



 

 

copy into her sampling bin. 
Jane right-clicks on the on tag “climbing,” opening a context 
menu which offers her the choice to copy the set of images 
Scott tagged with that word (see Figure 2b). The copied item 
appears in her sampling bin, a repositionable floating layer 
on top of the page. 
She selects Send to Wiki and enters a new page name, 
“ClimbersPortal” (see Figure 2c). Her browser now displays 
this newly created page in the d.mix programmable wiki. 
The visual representation dynamically requests the specified 
images; the textual representation contains the correspond-
ing API call to the Flickr web service (see Figure 2d). 
Continuing her information gathering, Jane samples Sam’s 
climbing photo set on Flickr (see Figure 2e). Her wiki page 
now displays both Scott’s photos and several images from 
Sam. Jane would like the page to display only the latest three 
images from each person. She right-clicks on Sam’s images 
to invoke a property sheet which shows that the content 
came from a Flickr photo set and gives parameters for the 
user id associated with the set and for the number of images 
to show (see Figure 2f). Changing the parameters reloads the 
page and applies the changes. 
Jane then opens Karen’s YouTube video page. For Karen’s 
latest video, d.mix offers two choices: copy this particular 
file, or copy the most recent video in Karen’s stream. Be-
cause Jane wants the video on her page to update whenever 
Karen posts a new file, she chooses the latter option.  
Next Jane would like to layout the images and add some 
text. She clicks on “edit source,” which displays an HTML 
document, in which each of the three samples she inserted 
corresponds to a few lines of Ruby script, enclosed by a 
structuring <div> tag (see Figure 2g). She adds text and a 
table structure around the images. Remembering that Scott 
also sometimes tags his images with “rocks,” she modifies 
the query string in the corresponding script accordingly.  
When she is satisfied with the rendered view of her active 
wiki page, she emails the URL of the wiki page to her group 

members to let them see the page (see Figure 2h). 

IMPLEMENTATION 
In this section, we describe d.mix’s implementation for 
sampling, parametric copying, editing, and sharing. 
“Sample This” button rewrites pages 
d.mix provides two buttons, sample 
this and stop sampling, that can be 
added to a browser’s bookmark bar to 
enable or disable sampling mode. 
Sample this is implemented as a 
bookmarklet — a bookmark containing 
JavaScript instead of a URL — that sends the current browser 
location to our active wiki. This invokes the d.mix proxy, 
combining the target site’s original web markup with an-
notations found using our site-to-service map (see Figure 3).  
It is important to note that the original web site need not 
provide any support for d.mix. The active wiki maintains a 
collection of site-to-service maps, contributed by knowl-
edgeable developers. The site-to-service map describes the 
programmatically accessible components that are associated 
with a particular set of URLs (see Figure 4). For example, on 
the Flickr web site, pages of the form 
http://flickr.com/photos/<username>/tags contain a list of 
image tags for a particular user, displayed as a tag cloud. A 
user’s tags can be accessed by calling the API method 
flickr.tags.getListUser and passing in a user id. Similarly, 
photos corresponding to tags for a given user can be re-

Figure 2. With d.mix, users switch between foraging for content and editing copies of that content in an active wiki environment.

 
Figure 3. d.mix annotates web pages using an HTTP proxy.



 

 

Figure 4. The site-to-service map defines a correspondence between HTML elements
and web service API calls. This graphic highlights this mapping for three items on Flickr.

trieved by a call to 
flickr.photos.Search.  
When the user is in sampling mode, 
d.mix’s programmable HTTP proxy 
rewrites the viewed web page, adding 
JavaScript annotations. These 
annotations serve two functions. First, 
d.mix uses the site-to-service map to 
derive the set of web service compo-
nents which may be sampled from the 
current page. It does so by searching 
for known markup patterns — using 
XPath and CSS selectors — and 
recording the metadata that will be 
passed on to web services as parame-
ters, such as a user or photo ID, a 
search term, or a page number. 
Second, d.mix’s annotation visually 
augments the elements that can be 
sampled with a dashed border as an 
indication to the user. 
In the other direction, the “stop sampling” bookmarklet 
takes a proxy URL, extracts the client site URL and sets it as 
the new browser location, ending access through the proxy. 
d.mix is implemented in the Ruby programming language. 
We chose Ruby to leverage the freely available 
programmable proxy, the mouseHole [4] and Ruby’s 
metaprogramming libraries. 
Parametric copy is achieved by generating web API code 
An annotation of an HTML 
element (e.g., an image on a 
photo site) comprises a set of 
action options. For each op-
tion, a right-click context 
menu entry is generated. 
Associated with each menu entry is a block of source code, 
which in d.mix is Ruby script. The code generation routines 
draw both upon the structure of the page (to know what class 
of items are there) as well as the content of the page (which 
specific items are there). 
As an example of how d.mix’s source-code generation 
works, consider a “tag cloud” page found on Flickr. All tags 
are found inside the following structure: 
<p id=”TagCloud”> 
  <a href=”…”>Tag1</a> 
  <a href=”…”>Tag2</a>… 
</p> 

The site-to-service mapping script to find each element and 
annotate it is: 
@user_id=doc.at("input[@name='w']")["value"] 

doc.search("//p[@id='TagCloud']/a").each do |link| 
  tag = link.inner_html 
  src = generate_source(:tags=>tag, :user_id=>@user_id) 
  annotations += context_menu(link, ”tag description”, src) 
end 
 

In this code example, the Ruby code makes use of the 
Hpricot library [3] to extract the user’s id from a hidden 
form element. It then iterates over the set of links within the 
tag cloud, extracts the tag name, generates source code by 

parameterizing a source code stub for flickr.photos.search 
and generates the context menu for the element. 
In essence, the d.mix mapping code is performing on-the-fly 
web scraping of pages the developer is visiting to extract the 
needed information for code generation. While scraping can 
be brittle — matching expressions can break when site op-
erators change class or ID attributes of their pages, it is also 
common practice in web development [16] since it is often 
the only way to extract data without cooperation of site op-
erators. An important design decision in d.mix is to scrape at 
authoring-time, when the designer is creating pages such as 
the Flickr-and-YouTube mash-up in the scenario. By 
scraping parameters first, d.mix’s user-created pages can in 
turn make API calls at run-time, which tend to be more stable 
than the HTML format of the initial example pages. 
We acknowledge that building these rewrite rules is 
time-intensive and requires expertise with DOM querying 
through XPath or CSS. However, UI tools such as Solvent 
[19] that support building DOM selectors visually could al-
low much of it to happen by demonstration. Providing a 
smooth process for creating the site-to-service maps is 
important, but is somewhat orthogonal to the contributions 
of this paper. As such, we leave it to future work. For this 
paper, the salient attribute is that the site-to-service map 
need be created only once per web site. This can be per-
formed by a somewhat expert developer, and then all de-
signers wishing to use that site can leverage that effort. 
Server-side active wiki hosts and executes scripts 
d.mix’s active wiki is a space where developers can freely 
mix text, HTML, and CSS to determine document structure, 
as well as Ruby script to express program logic. Whenever a 
developer enters a new page name in the “Send to Wiki” 
dialog on a sampled page, a new wiki page of that name is 
created (if needed) and the generated source code is pasted 
into that wiki page. The developer is then shown the ren-
dered version of the wiki page, in which the web API calls 



 

 

that d.mix generated are executed and their result is shown. 
To see the associated web markup (HTML / CSS) and Ruby 
code, a user can click on the “edit” button as in any other 
kind of wiki. The markup and snippets of script are then 
shown in a browser-based text editor, which has rudimen-
tary syntax highlighting and line numbering. When the user 
clicks on the “save” button, the wiki source is saved, as a 
new revision, and the user is redirected to the rendered ver-
sion of the wiki page. In this rendered version, HTML, CSS, 
and JavaScript tags take effect, and the embedded Ruby 
code is evaluated by a templating engine, which returns a 
single string for each snippet of Ruby code. 
When evaluating Ruby code, the active wiki does so in a 
sandbox, to reduce the security risks involved. The sandbox 
has limited access to objects such as the File class, but can 
maintain application state in a database or make web service 
calls through SOAP, REST, or other web service protocols. 
In traditional web interface design, the user interface de-
signers create a mockup in HTML which is later thrown over 
the wall to the front-end engineers (or vice versa). By con-
trast, the active wiki allows web UI designers to quickly 
switch between rendered view, markup, (meta)data, and 
application logic, with less cognitive friction involved in 
keeping the mappings between the Model, View, and Con-
troller — the active wiki keeps track of this for them. 
Pasted material can be re-parameterized and edited 
In comparison to a standard copy-and-paste operation, the 
notable advantage of our parametric copy is that an ele-
ment’s properties can be changed after the fact. To provide 
rapid editing of the most common parameters of a pasted 
element — namely those passed to a web service, our wiki 
offers graphical editing of parameters through property 
sheets, implemented as floating layers in JavaScript. 
Widget-based wiki platforms (e.g., [10])  also offer pa-
rameter-based editing of their widgets — but typically do not 
offer access to the underlying widgets’ source-code repre-
sentation. In contrast, d.mix generates Ruby script, which 
can be edited directly. 
Like other development environments, the active wiki offers 
versioning and importing of code living elsewhere on the 
wiki. It does not yet support WYSIWYG wiki editing, but 
such functionality could be supported in the future. 
As a test of the complexity of code that can be written in a 
wiki environment, we implemented all site-to-service map-
ping scripts as wiki nodes. This means the wiki scripts used 
to drive the programmable proxy and thus create new wiki 
pages are, themselves, wiki pages. To allow for modulari-
zation of code, a wiki page can import code or libraries from 
other wiki pages (analogous to “#include” in C or import in 
Java). 
The generated code makes calls into Ruby modules that we 
define, which broker communication between the active 
wiki script and the web services. For example, users’ Ruby 
scripts must reference working API keys, which are often 
needed to make web service calls to popular web APIs. 
While using a small static number of web API keys would be 

a problem for large scale deployment (many sites limit the 
number of requests you can issue in an hour), we believe our 
solution works well for prototyping and for deploying situ-
ational applications with a limited number of users.  
Sharing is built-in as applications are hosted server-side. 
An important attribute of the d.mix wiki is that public 
sharing is the default and encouraged state. An end-user can 
contribute their own site-to-service mapping for a web site 
they may or may not own, or simply submit small fixes to 
these mappings as a web site evolves. If an end-user makes 
use of d.mix to remix content from multiple data sources, 
another end-user can just as easily remix the remix — copy-
ing, pasting, and parameterizing the elements from one ac-
tive wiki page to another. 

ADDITIONAL APPLICATIONS 
In this section we review additional applications of d.mix 
beyond the use case demonstrated in the scenario. 
Existing web pages can be virtually edited 
The same wiki-scripted programmable HTTP proxy that 
d.mix employs to annotate API-enabled web sites can also be 
used to remix, rewrite, or edit any web page, document, or 
web application to improve a site’s usability, aesthetics, or 
accessibility, enabling a sort of recombinant web. As an 
example, we have created a rewriting script on our wiki that 
provides a connection between a popular event listing site 
and a third-party calendaring web application. By parsing 
the event’s microformat on the event site and injecting a 
graphical button, users can copy events directly to their 
personal calendar. Because this remix is hosted on our active 
wiki, it is immediately available to any web browser. 
Another example is reformatting of web content to fit the 
smaller screen resolution and lower bandwidth of mobile 
devices. Using d.mix, we wrote a script that extracts only 
essential information — movie names and show times — from 
a cluttered web page. This leaner page can be accessed 
through its wiki URL from any cell phone browser (see 
Figure 5). Note that the reformatting work is executed on the 
server and only the small text page is transmitted to the 
phone. d.mix’s server-side infrastructure made it possible to 
develop, test, and deploy this service in 30 minutes. In con-
trast, client-side architectures such as Greasemonkey [2] do 
not work outside the desktop environment, while server-side 
proxies can only be configured by administrators. 

 
Figure 5. The rewriting technology in d.mix can be used to 
tailor content to mobile devices. Here, essential information 
is extracted from a movie listings page. 



 

 

Beyond web-only applications 
The scenario presented in this paper focused on data-centric 
APIs from successful websites with large user bases. While 
such applications present the dominant use case of mash-ups 
today, we also see opportunity for d.mix to enable de-
velopment of situated ubiquitous computing applications. A 
wide variety of ubicomp sensors and actuators are equipped 
with embedded web servers and publish their own web ser-
vices. This enables d.mix's fast iteration cycle to extend the 
“remix” functionality into physical space. To explore d.mix 
design opportunities in web-enabled ubicomp applications, 
we augmented two smart devices available in our lab to 
support API sampling: a camera that publishes a feed of lab 
activity, and a web-controlled power outlet. Combining 
elements from both servers, we created a wiki page that al-
lows remote monitoring of lab occupancy to turn off room 
lights if they were left on at night (see Figure 6). 
More important than the utility of this particular example is 
the architectural insight gained: since the web services of the 
camera and power outlet were open to us, we were able to 
modify their web pages and embed API annotations with the 
services. This proof of concept demonstrated that web ser-
vice providers can integrate support for API sampling di-
rectly into their pages, obviating the need for a separate 
site-to-service map on the d.mix server. 

FEEDBACK FROM WEB PROFESSIONALS 
As d.mix matured, we met weekly with web designers to 
obtain feedback for a period of eight weeks. Some of these 
meetings were with individuals, others were with groups; 
the largest group was 12. We mostly recruited informants at 
professional events; informants included attendees of sev-
eral Ruby programming language user groups, web devel-
opers at startup companies in Silicon Valley, and researchers 
at industrial research labs interested in web technologies.  
Perhaps the most important issue raised by informants was 
one of scale. An early informant was a web developer at a 
Bay Area calendaring startup. He was most interested in the 
technology to allow rewriting of third party pages through 
scripts shared on a wiki. He saw performance as well as 
legal hurdles to grow our approach to many simultaneous 
users. Another team voiced similar concerns, particularly 
about scaling issues arising from the limits imposed by web 
services as to how many API calls a user can make. Scaling 
concerns are clearly central to the question of whether a 
mash-up approach can be used to create wide-distribution 
web applications; however, they are less critical for tools 
such as d.mix that are primarily designed for prototyping 
and situated software. 
As the reach of mash-ups expands, informants were inter-
ested in how users and developers might locate relevant 
services. Several informants, including a JavaScript devel-
oper at a web-based instant-messaging startup, suggested 
that it was important to consider how tools might aid users in 
finding new components. They noted that while services are 
rapidly proliferating, there is a dearth of support for search 
and sensemaking in this space. Mackay [23] and MacLean 
[24] have explored the social side of end-user-created 
software — and the recent Koala work has made strides in 

this direction for the web [22] — we believe further efforts in 
this direction to be a promising avenue for future work. 
Informants saw the merits of the d.mix approach to extend 
beyond the PC-based web browser. A researcher at an in-
dustrial research lab expressed interest in creating an “elastic 
office,” where web-based office software is adapted for 
mobile devices. This focus on mobile interaction encour-
aged our interest in using a mash-up approach to tailoring 
web applications for mobile devices (see Figure 5).  
Informants also raised the broader implications of a mash-up 
approach to design. A user experience designer and a plat-
form engineer at the offices of a browser vendor raised 
end-user security as an important issue to consider. At a 
fashion-centered web startup, a web developer brought our 
attention to the legal issues involved in annotating sites in a 
public and social way.  
Our recruiting method yielded informants with more exper-
tise than d.mix’s target audience; consequently, they asked 
questions about — and offered suggestions for raising — the 
ceiling of the tool. In a group meeting with 12 web designers 
and developers, informants expressed interest in creating 
annotations for a new API, and asked how time-consuming 
this process was. We explained that annotation in d.mix 
requires 5 to 10 lines per element; this was met with a posi-
tive response. A suggestion they offered for future work was 
for d.mix to fall back to HTML scraping when sites lack APIs.  

EVALUATION 
We conducted a first-use evaluation study with eight par-
ticipants: seven were male, one female; their ages ranged 
from 25 to 46. We recruited participants with at least some 
web development experience. All participants had some 
level of college education; four had completed graduate 
school. Four participants had a computer science education; 
one was an electrical engineer; three came from the life 
sciences. As recruiting developers with Ruby experience 
proved difficult, only 4 participants had more than a passing 
knowledge of this scripting language. Everyone was familiar 
with HTML; six participants were familiar with JavaScript; 
and six with at least one other high-level scripting language. 
Four participants had some familiarity with web APIs, but 

Figure 6. An example of a d.mix ubicomp mashup: web 
services provide video monitoring and lighting control. 



 

 

only two had previously attempted to build a mash-up. 

Study Protocol 
Study sessions took approximately 75 minutes. We made 
three web sites with APIs available for sampling — Yahoo! 
web search, the Flickr photo sharing site, and YouTube, a 
video sharing site. For each site, d.mix supported annota-
tions for a subset of the site’s web API. For example, with 
Flickr, participants could perform full-text or tag searches 
and copy images with their metadata, but they could not 
extract user profile information. Participants were seated at a 
single-screen workstation with a standard web browser. We 
first demonstrated d.mix’s interface for sampling from web 
pages, sending content to the wiki, and editing those pages. 
Next, we gave participants three tasks to perform. 
The first task tested the overall usability of our approach — 

participants were asked to sample pictures and videos, send 
that content to the wiki, and change simple parameters of 
pasted elements, e.g., how many images to show from a 
photo stream. The second design task was similar to our 
scenario — it asked participants to create an information 
dashboard for a magazine’s photography editor. This re-
quired combining data from multiple users on the Flickr site 
and formatting the results. The third task asked participants 
to create a meta-search engine — using a text input search 
form, participants should query at least two different web 
services and combine search results from both on a single 
page. This task required generalizing a particular example 
taken from a website to a parametric form by editing the 
source code d.mix generated. Figure 7 shows two pages that 
one participant produced using d.mix. After completing the 
tasks, participants filled out a qualitative questionnaire on 
their experience and were also debriefed verbally. 

Successes 
On a high level, all participants understood and successfully 
used the workflow of browsing web sites for desired content 
or functionality, sampling from the sites, sending sampled 
items to the wiki, and editing items. Given that less than one 
hour of time was allocated to three tasks, it is notable that all 
participants successfully created dynamic pages for the first 
two tasks. In task 3, five participants created working me-
ta-search engines (see Figure 7). However, for three of the 
participants without Ruby experience, its syntax proved a 
hurdle; they only partially completed the task. 
Our participants were comfortable with editing the gener-
ated source code directly, without using the graphical 
property editor. Making the source accessible to participants 
allowed them to leverage their web design experience. For 
example, multiple participants leveraged their knowledge of 
CSS styles to change formatting and alignment of our gen-
erated code to better suit their aesthetic sensibility. Copy and 
paste within the wiki also allowed participants to reuse their 
work from a previous task in a later one. 
In their post-test responses, participants highlighted three 
main advantages that d.mix offered to them compared to 
their existing toolset: elimination of setup and configuration 
barriers; enabling of rapid creation of functional web ap-
plication prototypes; and lowering of expertise threshold. 

First, participants commented on the advantage of having a 
browser-based editing environment. There was “minimum 
setup hassle,” since “you don’t need to set up your own 
server.” One participant’s comments sum up this point suc-
cinctly: “I don’t know how to set up a Ruby/API environ-
ment on my web space. This lets me cut to the chase.” 
Second, participants also highlighted the gain in develop-
ment speed. Participants perceived code creation by select-
ing examples and then modifying them to be faster than 
writing new code or integrating third party code snippets. 
Third, participants felt that d.mix lowered the expertise 
threshold required to work with web APIs because they were 
not required to search or understand an API first. A web 
development consultant saw value in d.mix because he felt it 
would enable his clients to update their sites themselves. 

Shortcomings 
We also discovered a range of challenges our participants 
faced when working with d.mix. Universally, participants 
wished for a larger set of supported sites. This is a not a tri-
vial request since annotation of web pages requires devel-
oper work. A longer public deployment is needed to gauge 
whether d.mix users can and will generate their own site- 
to-service maps on the wiki. 
Other shortcomings discovered can be categorized into 
conceptual problems related to the action of sampling; dif-
ficulty of multi-language development; insufficient er-
ror-handling support in the wiki; and lack of documentation.  
Inconsistent model of our sampling implementation 
Participants were confused by limitations in what source 
elements were “sampling-aware.” For example, to specify a 
query for a set of Flickr images in d.mix, the user currently 
must sample from the link to the image set, not the results. 
This suggests that the d.mix architecture should always 
enable sampling from both the source and from the target 
page. Also, where there is a genuine difference in effect, 
distinct highlighting treatments could be used to convey this. 
Participants complained about a lack of visibility whether a 
given page would support sampling or not. Since rewriting 
pages through the d.mix proxy introduces a page-load delay, 

Figure 7. Two pages a participant created during our user 
study. Left image: Information dashboard for a magazine 
editor, showing recent relevant images of magazine pho-
tographers. Right image: Meta-search engine showing both 
relevant web pages and image results for a search term.



 

 

participants browsed the web sites normally, and only turned 
on the sampling proxy when they had found elements they 
wished to sample. Only after this action were they able to 
find out whether the page was enhanced by d.mix. One 
means of addressing this is to provide feedback within the 
browser as to whether the page may be sampled; another 
would be to minimize the latency overhead introduced 
through the proxy so that users can always leave their 
browser in sampling mode. 
Multi-language scripting 
Dynamic web pages routinely use at least three different 
notation systems: HTML for page structuring, JavaScript for 
client-side interaction logic, and a scripting language such as 
Ruby for server-side logic. This mixing of multiple pro-
gramming languages in a single web page introduces both 
flexibility and confusion for web developers. 
d.mix’s property sheets implementation exacerbated this 
complexity. It wrapped the generated Ruby code in a HTML 
<div> element whose attributes were used to construct the 
graphical editor, but were also read by the Ruby code inside 
the tag to parameterize web API calls. Participants were 
confused by this wrapping and unsuccessfully tried to insert 
Ruby variables into the <div> tag. 
Lack of documentation & insufficient error handling 
Many participants requested more complete documentation. 
One participant asked for more comments in the code ex-
plaining the format of API parameters. For example, two 
participants struggled to modify an image-search call to 
support multiple parameters. A related request was to pro-
vide structured editors in the graphical property sheets that 
offered alternative values and validated data entry.  
Participants also complained that debugging their wiki 
pages was hard. Several participants complained about the 
“incomprehensible error messages” that syntax and execu-
tion errors generated. d.mix currently catches and displays 
Ruby sandbox exceptions, along with the source code that 
generated the exception.  
How to go beyond the wiki environment? 
Participants valued the active wiki for its support of rapid 
prototyping. However, because of a perceived lack of secu-
rity, robustness and performance, participants did not regard 
the wiki as a viable platform for larger deployment. One 
participant remarked, “I’d be hesitant to use it for anything 
other than prototyping” and two others expressed similar 
reservations. Our motivation was to target situational ap-
plications with a small number of users. A real-world de-
ployment would be needed to determine if the wiki is a 
suitable platform for deploying situational web applications. 
Usability problems 
Two smaller usability problems that disrupted participants’ 
work were also discovered: from experience with shopping 
carts on commerce web sites, participants expected the 
sampling bin to be persistent across different pages within a 
web site. Participants also wished that the “send to wiki” 
dialog offered a drop-down list of existing wiki pages in-
stead of requiring them to enter a full page name each time. 

RELATED WORK 
d.mix draws on existing work in three areas. First, it draws 
on research for end-user modification of the web. Second, it 
relates to tools that lower the threshold of synthesizing web 
applications. Third, d.mix relates to projects that deal with 
locating, copying, and modifying program documentation 
and examples. We discuss each area in turn. 

Tools for end-user modification of web experiences 
Greasemonkey [2], Chickenfoot [9] and Koala [22] are cli-
ent-side Firefox browser extensions that enable users to re-
write web pages and automate browsing activities.  
Greasemonkey enables the use of scripts that alter web 
pages as they are loaded; users create these scripts manually, 
generally using JavaScript to modify the page’s Document 
Object Model (DOM). Chickenfoot builds on Greasemon-
key, contributing an informal syntax based on keyword 
pattern matching; the primary goal of this more flexible 
syntax was to enable users with less scripting knowledge to 
create scripts. Koala further lowers the threshold, bringing to 
the web the approach of creating scripts by generalizing the 
demonstrated actions of users (e.g., [11, 26]).Of this prior 
work, Koala and d.mix are the most similar. d.mix shares 
with Koala the use of programming-by-demonstration 
techniques and the social-software mechanism of sharing 
scripts server-side on a wiki page. d.mix distinguishes itself 
in three important ways. First, Chickenfoot and Koala are 
end-user technologies that shield users from the underlying 
representation. d.mix’s approach is more akin to visual web 
development tools such as Adobe Dreamweaver [1], using 
visual representations when they are expedient, yet also 
providing access to the code. Supporting direct editing of 
source enables experts to perform more complex operations; 
it also avoids some of the “round-trip” errors that can arise 
when users iteratively edit an intermediate representation. 
Second, prior work focuses on automating web browsing 
and rewriting web pages using the DOM in the page source — 

they do not interact with web service APIs directly. In con-
trast, d.mix leverages the web page as the site for users to 
demonstrate content of interest; d.mix’s generalization step 
maps this to a web service API, and stores API calls as its 
underlying representation. Third, with d.mix, the code is 
actually executed server-side, in addition to being stored 
server-side. In this way, d.mix takes an infrastructure service 
approach to support end-user remixing of web pages. This 
approach obviates the need for users to install any software 
on their client machine, and the increasing use of the web as 
a software platform provides evidence as to the merit of this 
approach.  

Tools for end-user synthesis of web experiences  
In addition to tools that support modification of a web page’s 
DOM, there are several tools that lower the expertise thre-
shold required to create web applications that synthesize data 
from multiple pre-existing sources. Most notably, Yahoo! 
Pipes [6], Open Kapow [5], and Marmite [34] are tools that 
employ a dataflow approach for working with web services. 
Yahoo! Pipes also offers a visual node-and-link editor for 
manipulating web data sources. It focuses on visually re-
writing RSS feeds. Open Kapow offers a desktop-based 



 

 

visual editing environment for creating new web services by 
combining data from existing sites through API calls and 
screen scraping. Services are deployed on a remote 
“mash-up server.” The main difference between these sys-
tems and d.mix is that Kapow and Pipes are used to create 
web services meant for programmatic consumption, not 
applications or pages intended directly for users. 
The Marmite browser extension draws on the dataflow ap-
proach manifest in Unix pipes and more recent visual tools, 
such as Apple’s Automator. The sources in Marmite consist 
of calls to web services and the use of Marmite’s screen 
scraper. Perhaps Marmite’s strongest contribution to 
end-user programming for the web lies in its linked repre-
sentation of program implementation and state: the imple-
mentation is represented through visual data flow and the 
current state is visualized as a spreadsheet. The user ex-
perience benefit of this linked view is an improved under-
standing of application behavior. Unlike d.mix, Marmite 
applications run client side. An additional distinction from 
d.mix is that the end-user approach of Marmite is based on 
visual dataflow. One of the challenges of data flow, as the 
Marmite authors note, is that users have “a hard time 
knowing what operation to select” — we suggest that the 
direct manipulation embodied in d.mix’s program-
ming-by-demonstration approach ameliorates this 
gulf-of-execution [18] challenge. 
IBM’s QEDWiki uses a widget-based approach to con-
structing web applications in a hosted wiki environment. 
QEDWiki’s widgets are similar to Marmite’s data sinks. This 
approach suggests two distinct communities — those that 
create the widget library elements, and those that use the 
library elements — echoing prior work on a “tailoring cul-
ture” within Xerox Lisp Buttons [24]. d.mix shares QED-
Wiki’s interest in supporting different “tiers” of develop-
ment, with two important distinctions. First, d.mix does not 
interpose the additional abstraction of creating graphical 
widgets; with d.mix, users directly browse the source site as 
the mechanism for specifying interactive elements. Second, 
d.mix better preserves the underlying modifiability of re-
mixed applications by exposing script code on demand. 

Finding and appropriating documentation and code 
The literature has shown [13, 16, 20] that programmers often 
create new functionality by finding an example online or in a 
source repository — less code is created tabula rasa than 
might be imagined. Recent research has begun to more fully 
embrace this style of development. The Mica system [32] 
augments existing web search tools with navigational 
structure specifically designed for finding API documenta-
tion and examples. While Mica and d.mix both address the 
information foraging issues [29] involved in locating ex-
ample code, their approaches are largely complementary. 
Several tools have supported mechanisms for copying web 
content and interface widgets in a structured manner [14, 28, 
30]. Most related to d.mix, Citrine [33] introduced tech-
niques for structured copy and paste between desktop ap-
plications, including web browsers. Citrine parses copied 
text, creating a structured representation that can be pasted 

in rich format, e.g., as a contact record into Microsoft Out-
look. d.mix extends idea of structured copy into the domain 
of source code. With d.mix however, the structuring is 
performed by the extensible site-to-service map as opposed 
to through a hard-coded set of templates. 

LIMITATIONS AND FUTURE WORK 
This section discusses limitations of the current implemen-
tation of d.mix and implications for future work. 
The primary concern of this paper is an exploration of the 
approach of authoring by sampling, not with the details of a 
public deployment of such a tool. As such, there are security 
and authentication issues that a widely-released tool would 
need to address. Most notably, the current d.mix HTTP proxy 
does not handle cookies of remote sites as a client browser 
would. This precludes sampling from the “logged-in web” 

— pages that require authentication beyond basic API keys.  
A second limitation is that using d.mix is currently limited to 
sites that are amenable to web scraping — i.e., those that 
generate static HTML, as opposed to sites that rely heavily on 
AJAX or Flash for their interfaces. 
Third, a comprehensive tool should offer support both for 
working with content that is accessible through APIs and 
content that is not [16]. d.mix could be combined with ex-
isting techniques for scraping by demonstration.  
Lastly, while d.mix is built on wikis, a social editing tech-
nology, we have not yet evaluated how use by multiple de-
velopers would change the d.mix design experience. Prior 
work on desktop software customization has shown that 
people do share their customization scripts [23]. It would be 
worthwhile to study to what extent this holds to rewriting the 
web, and what characteristic differences there are in this 
domain. It is our goal to have an open deployment in the 
future to study these questions.  

CONCLUSIONS 
We have introduced the technique of programming by a 
sample through d.mix, a tool that embodies this technique. 
d.mix addresses the challenge of becoming familiar with a 
web service API and provides a rapid prototyping solution 
structured around the acts of sampling content from an 
API-providing web site and then working with the sampled 
content in an active wiki. Our system is enabled on a con-
ceptual level by a mapping from HTML pages to the API calls 
that would produce similar output. On a technical level, our 
system is enabled by a programmable proxy server and a 
sandbox execution model for running scripts within a wiki. 
Together with our past work [15, 17] we regard d.mix as a 
building block towards new authoring environments that 
facilitate prototyping of rich data and interaction models. 

ACKNOWLEDGMENTS 
We thank Leith Abdulla for programming and video  
production help, whytheluckystiff for Ruby support, and 
Wendy Ju for comments on this paper. 



 

 

REFERENCES 
  1  Dreamweaver,  2007. Adobe Inc. 

http://www.adobe.com/products/dreamweaver 
 2 Greasemonkey,  2007. http://greasemonkey.mozdev.org 
 3 Hpricot, a fast and delightful HTML parser,  2007. 

http://code.whytheluckystiff.net/hpricot 
 4 The MouseHole scriptable proxy, 2007. 

http://code.whytheluckystiff.net/mouseHole 
 5 Open Kapow,  2007. Kapow Technologies. 

http://www.openkapow.com 
 6 Pipes,  2007. Yahoo! http://pipes.yahoo.com 
 7 Service-oriented computing. Communications of the 

ACM, M.P. Papazoglou and D. Georgakopoulos, ed. 
Vol. 46. 

 8 Anderson, C., The Long Tail: Random House Business. 
2006. 

 9 Bolin, M., M. Webber, P. Rha, T. Wilson, and R. C. 
Miller, Automation and customization of rendered web 
pages, in UIST 2005: ACM Symposium on User Interface 
Software and Technology. 2005. 

10 Curtis, B., W. Vicknair, and S. Nickolas, QEDWiki,  
2007. IBM Alphaworks. 
http://services.alphaworks.ibm.com/qedwiki/ 

11 Cypher, A., EAGER: programming repetitive tasks by 
example, in CHI: ACM Conference on Human Factors 
in Computing Systems. 1991. 

12 Cypher, A., ed. Watch What I Do - Programming by 
Demonstration. MIT Press: Cambridge, MA.  
652 pp., 1993. 

13 Fairbanks, G., D. Garlan, and W. Scherlis, Design 
fragments make using frameworks easier, in Proceed-
ings of the 21st annual ACM SIGPLAN conference on 
Object-oriented programming systems, languages, and 
applications. 2006. 

14 Fujima, J., A. Lunzer, K. Hornb, and Y. Tanaka, Clip, 
connect, clone: combining application elements to build 
custom interfaces for information access, in UIST 2004: 
ACM Symposium on User Interface Software and 
Technology. 2004. 

15 Hartmann, B., L. Abdulla, M. Mittal, and S. R. Klemmer. 
Authoring Sensor Based Interactions Through Direct 
Manipulation and Pattern Matching. In Proceedings of 
CHI 2007: ACM Conference on Human Factors in 
Computing Systems, 2007. 

16 Hartmann, B., S. Doorley, and S. R. Klemmer, Hacking, 
Mashing, Gluing: A Study of Opportunistic Design and 
Development. Technical Report, Stanford University 
Computer Science Department, October 2006.  

17 Hartmann, B., S. R. Klemmer, M. Bernstein, L. Abdulla, 
B. Burr, A. Robinson-Mosher, and J. Gee. Reflective 
physical prototyping through integrated design, test, and 
analysis. In Proceedings of UIST 2006: ACM Symposium 
on User Interface Software and Technology, 2006. 

18 Hutchins, E. L., J. D. Hollan, and D. A. Norman. Direct 
Manipulation Interfaces. Human-Computer Interaction 
1(4). pp. 311-38, 1985. 

19 Huynh, D. and S. Mazzocchi, Solvent Firefox Extension,  
2007. http://simile.mit.edu/wiki/Solvent 

20 Kim, M., L. Bergman, T. Lau, and D. Notkin, An Eth-
nographic Study of Copy and Paste Programming Prac-
tices in OOPL, in Proceedings of the 2004 International 
Symposium on Empirical Software Engineering. 2004, 
IEEE Computer Society. 

21 Lieberman, H., ed. Your Wish is my Command. ed. 
Morgan Kaufmann. 416 pp., 2001. 

22 Little, G., T. A. Lau, J. Lin, E. Kandogan, E. M. Haber, 
and A. Cypher. Koala: Capture, Share, Automate, Per-
sonalize Business Processes on the Web. In Proceedings 
of CHI 2007:ACM Conference on Human Factors in 
Computing Systems, 2007. 

23 Mackay, W. E., Patterns of sharing customizable soft-
ware, in CSCW 1990:ACM conference on Com-
puter-supported cooperative work. 1990. 

24 MacLean, A., K. Carter, L. Lövstrand, and T. Moran, 
User-tailorable systems: pressing the issues with buttons, 
in CHI 1990: ACM Conference on Human Factors in 
Computing Systems. 1990. 

25 Myers, B., S. E. Hudson, and R. Pausch. Past, Present, 
and Future of User Interface Software Tools. ACM 
Transactions on Computer-Human Interaction 7(1). pp. 
3–28, 2000. 

26 Myers, B. A., Peridot: Creating User Interfaces by De-
monstration, in Watch What I Do: Programming by 
Demonstration. MIT Press. pp. 125-53, 1993. 

27 Nardi, B. A., A Small Matter of Programming: Per-
spectives on End User Computing. Cambridge, MA: 
MIT Press. 1993. 

28 Ozzie, R., Live Clipboard,  2007. 
http://www.liveclipboard.org/ 

29 Pirolli, P. and S. Card. Information Foraging. Psycho-
logical Review 106(4). pp. 643-75, 1999. 

30 schraefel, m. c., Y. Zhu, D. Modjeska, D. Wigdor, and S. 
Zhao. Hunter Gatherer: Interaction support for the crea-
tion and management of within-web-page collections. In 
Proceedings of International World Wide Web Confer-
ence. pp. pp. 172-81, 2002. 

31 Shirky, C., Situated Software,  2004. 
http://www.shirky.com/writings/situated_software.html 

32 Stylos, J. and B. Myers. A Web-Search Tool for Finding 
API Components and Examples. In Proceedings of IEEE 
Symposium on Visual Languages and Human-Centric 
Computing. pp. 195-202, 2006. 

33 Stylos, J., B. A. Myers, and A. Faulring, Citrine: pro-
viding intelligent copy-and-paste, in UIST 2004: ACM 
Symposium on User Interface Software and Technology. 
2004. 

34 Wong, J. and J. Hong. Making Mashups with Marmite: 
Re-purposing. In Proceedings of CHI 2007:ACM Con-
ference on Human Factors in Computing Systems, 2007. 

 
 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


