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ABSTRACT 
Visibility of work practice is important because it enables 
peripheral participation of and facilitates coordination 
between colleagues. Moving activities from the physical 
world onto the digital desktop has diminished visibility by 
consigning the artifacts of work practice to the computer 
screen; the serendipity of stumbling across physical 
artifacts is lost. One method of reintroducing visibility is 
the proactive display of colleagues’ digital work artifacts. 
This paper introduces an adaptive content presentation 
technique designed to improve the visibility of content for 
both ambient awareness and interactive browsing. In this 
work, we define the information presentation problem to be 
dynamically focusing user attention to a maximally useful 
subset of available information. Our technique takes a 
decision-theoretic approach to interface generation, using 
content metadata as inputs to our algorithm. The data view 
is generated dynamically, based on high-level attributes of 
the current state and a declarative relationship between the 
user’s input and the resulting view. We have evaluated the 
technical efficacy of this algorithm by implementing it in 
the context of the ButterflyNet browser.  
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INTRODUCTION 
Traditionally, information browsing on PCs has had a pull 
model of information access: search. While search is 
successful, you can generally only find things that you 
know you’re looking for. This is a result of the imperative 
query style: to see information, the user specifies the set 
and presentation style of information to view. For small 
information collections and pragmatic actions (i.e., 
browsing to accomplish specific, well-defined tasks), 
imperatively specifying the set and presentation style of 
information to view is tractable and successful. This is the 
pragmatics of information browsers. 

Increasingly, however, people use computers not only as 
tools for pragmatic action, but as tools for epistemic action 
[14] — to support thought processes and provide inspiration. 
This behavior is particularly prevalent in creative 
professions such as design, where the goal is often not to 
produce, but to learn. Some systems, e.g., social networking 
and collaborative filtering web sites, have introduced 
interfaces designed to proactively inform users and 
encourage exploration. Still, most traditional computer tools 
include little, if any, support for epistemic activity. 

To deal with increasingly large information collections —
 and, more importantly, for supporting epistemic tasks — we 
suggest that it can be more effective to declaratively specify 

Figure 1. An adaptively generated view of designers’ 
sketchbooks. Note the adaptive sidebar (right), which 
displays content related to the item currently in focus in the 
media browser (left). 

 



 

an information view. A declarative query style does not 
require that the user completely specify the results of the 
query, only an eventual goal, allowing queries to be made 
implicitly and for results similar to those directly requested 
to be returned. This opportunistic presentation of data 
facilitates epistemic activities, by presenting data of interest 
of which the user may not even be aware. Dynamically 
focusing user attention to a manageable subset of 
information that is “most relevant” at a given situation and 
time, and properly displaying this information, may have 
profound impacts on the quality and efficiency of the 
browsing user experience. 

To address this problem, we introduce an adaptive interface 
[21] (see Figures 1, 2) that employs a decision-theoretic 
approach to selecting information. Unlike traditional static 
interfaces, adaptive interfaces are “aware” of both general 
and current user tasks, needs, and preferences. Adaptive 
interfaces attempt to optimize the presentation of 
information by emphasizing those contents which are most 
useful in a given context. Additionally, adaptive interfaces 
may be proactive: that is, they may display relevant content 
even when the user has not explicitly (imperatively) 
requested it. The hypothesis manifest in this work is that 
proactively presenting information can increase awareness 
and serendipitous browsing. 

From a technical perspective, this work draws on prior 
work on model-based user interfaces [28] and automated 
layout [8, 20]. In particular, we draw on the idea of casting 
interface generation as constraint-based optimization [3].  

This research has also been partially inspired by 
ButterflyNet [34], a mobile capture and access system 
targeted at user groups which make use of voluminous and 
varied sets of data, such as that of designers and field 
biologists. In this paper, we leverage the ButterflyNet 
system as a test bed for creating and manipulating 
heterogeneous content, and extend it to support adaptive 
interfaces. 

This work offers four contributions: a precise definition of 
the information presentation problem we address, the 
various dimensions we use to analyze it, algorithms for 
calculating an appropriate rendering, and a technical 
evaluation via a manifestation of this adaptive technique in 
the ButterflyNet browser. 

The rest of this paper is organized as follows. We begin by 
defining the adaptive interface problem and describing at a 
high level the dimensions that we use to analyze it. We then 
present a theoretical framework, with precise mathematical 
formulations of the various axes. We discuss the technical 
efficacy of our algorithm and outline implementation 
decisions. Finally, we present several scenarios of actual 
and envisioned use of adaptive interfaces. 

ADAPTIVE INTERFACES 
The goal of an adaptive interface may be stated as follows: 

Given a set of content elements, a relevance measure, a set 
of layout constraints, and a user experience goal, show an 
interface layout that maximizes the utility of the display for 
the specified user experience. 

 

Figure 2. Architecture of a prototypical adaptive browsing system. 



In this section, we define various parts of a high-level 
conceptual framework for adaptive interfaces.  

Content 
A content element is a single logical unit of information or 
data. Content is heterogeneous; we have identified three 
general categories of content: 

Text: handwritten notes, text files, emails, articles 

Images: photographs, whiteboard captures, other 
images 

Data: tabular data, graphs, numerical data  

The ButterflyNet system features three types of content: 
handwritten notes, pictures, and whiteboard captures. 

Content has various attributes, or metadata (see Figure 3). 
Attributes may be flat or hierarchical. In the current version 
of the system, the attribute library comprises creation time, 
modification time, ownership, media type, and tags. 
Examples of other attributes that may prove valuable 
include location, last viewed time, and categories [33]. 

Relevance 
At the heart of our decision-theoretic algorithm is the 
determination of relevance: figuring out what information 
is “most valuable” in a given situation. To assess relevance, 
we first model the user’s desired focus as a pivot: a 
collection of content attributes and values that serve as 
metrics for what the user wants to see. Pivots may be 
explicitly defined (e.g., a keyword search) or implicitly 
defined (e.g., inferred based on the content elements the 
user is currently viewing). Using pivots, we can define 
functions which estimate how useful or relevant a given 
content element is in a given situation. 

Pivots may involve one or more axes along attribute 
dimensions. Some axes for pivoting based on attributes 
include keyword matching (matching target keywords 
based on textual annotations), temporal proximity 
(difference between creation time and focused item creation 
time), and spatial proximity (distance between creation 
location and focused item creation location); Figure 3 lists 
other possible pivot axes. In ButterflyNet, we have 
implemented pivots based on linear combinations of 
temporal proximity, recentness, keyword matching, and 
media type. 

Presentation 
The goal of the adaptive browser is to produce a 
presentation, or visual layout, based on display constraints. 
Presentation depends on the properties of both the output 
device and the content elements to be displayed. 

Visual output devices have the following salient display 
characteristics: 

• Physical width and height: length, e.g., inches 

• Display resolution: pixels per unit length 

• Available screen space: number of pixels wide and 
high 

Similarly, content elements have the following salient 
display characteristics: 

• Aspect ratio: original shape of the content 

• Presentation value: measure of the value of 
displaying this content at a given size 

ButterflyNet does not currently consider physical properties 
of displays; only screen space in pixels and element aspect 
ratios are used to evaluate layouts. 

 

Figure 3. Example categories of content attributes (dark blue), attributes (light blue), and pivot axes derived from those 
attributes (white). 



 

Context 
Lastly, we consider the role that the adaptive browser plays 
in the current activity. What is the user trying to do? What 
is the larger task, application, or user experience goal? 

• Attentional level [11]: is the adaptive browser the 
focus of the interaction, when detail is important, 
or an ambient display, when glanceability [18] is 
the priority? These situations have very different 
implications for layout optimization. 

• User preferences: preferences explicitly stated by 
the user (e.g., relative weight of keywords versus 
temporal proximity) 

In this work, we have explored two use modes for the 
adaptive browser — main browser and ambient/contextual 
sidebar — which feature correspondingly different user 
experience goals for the adaptive portion of the interaction. 

THEORETICAL FRAMING  
We now provide formal mathematical definitions for the 
key dimensions of the adaptive interface rendering problem. 

Content elements (e) are the basic units of displayable 
information in our framework. Every content element has a 
media type T. 

Input Variables 
The adaptive interface receives the following inputs from 
the user and environment (see Figure 2): 

Display (D): Target output display. For purposes of this 
algorithm, a display has a set of layout constraints CD, e.g., 
available screen space (wmax × hmax). 

Pivot (P): A set of zero or more (attribute, value) pairs 
representing some measure of interestingness in relation to 
the user’s current desired focus. 

User experience goal (G): This is an abstract value 

representing the desired user experience (e.g., attentional 
level). User experience goals affect evaluation functions. 

Evaluation Functions 
Content is evaluated among two axes when calculating an 
adaptive rendering: presentation and relevance. Both of 
these functions are highly subjective — they are merely 
estimates of relative utility. 

Content presentation value function (p): This function is an 
estimate of the value of presenting a given content element 
with media type T at a given size (w, h) for a given user 
experience goal G, and is written as pT(w,h,G). Generally, 
smaller sizes will receive lower presentation scores. 
However, different types of content may have different 
presentation values at the same size; see Figure 4 for an 
example of how presentation scores may vary by media 
type. 

Content relevance function (r): This function is an estimate 
of the usefulness of seeing a content element given the 
current pivot and user experience goal, and is written as 
r(e,G,P). Generally, content elements which are closer to 
the pivot (that is, whose attribute values are closer to the 
pivot’s attribute values) will receive higher relevance 
scores. 

Legal Rendering 
A rendering, or presentation, is given by a set of tuples of 
the form: 

hwyxe ,,,,  

where e is a content element, x and y are the element’s 
position in this rendering, and w and h are the width and 
height of the element in this rendering. 

A legal rendering φ  is a rendering in which all objects 
satisfy the display constraints CD (i.e., they do not fall 

Figure 4. Example content presentation value functions (CPVF) for recognition of images versus text. Left: Graph of the CPVFs 
for pictures (red) and notes (blue). Center: A picture shown at small (1) and large (2) sizes. Right: A page of notes shown at 
the same relative dimensions (3 and 4). Note that, though both content elements occupy the same physical area, the picture is
still recognizable at the small size, whereas the page of notes is not readable at all when small. Thus, these two types of 
content may have different utility values at the same scale (depending on the user experience goal). 



outside the allocated screen area and do not overlap). 

Estimated Value of a Content Element 
Given a user experience goal G and pivot P, the estimated 
value of a content element is a function of its relevance 
value (relative to the current pivot) and its presentation 
value (at a given size). Our formulation uses a 
multiplicative function: 

),,(),,(),,,( PGerGhwpPGes T ×=φ  

A more complex model would be one where an element’s 
location also affects its value. In such a model, the same 
element would get a different score if it appeared in the 
center or the side, near the top or near the bottom. In our 
formulation, the value of an element does not depend on 
location. 

Estimated Value of a Presentation 
Given a user experience goal G and pivot P, the estimated 
value, or score, of a presentation with elements E is a 
function of the estimated values of all elements displayed in 
the presentation. We assume that the function is linear, 
specifically a sum of the individual values: 

∑
∈
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We recognize that there may be interactions between 
different content elements that may either increase (e.g., 
due to synergies) or decrease (e.g., due to clutter or overlap) 
the presentation score. In the current system, we assume 
that the contributions of a given content element are 
independent of the presence or absence of other content 
elements. Relaxing this restriction will be the subject of 
future work. 

Tradeoffs 
Intuitively, the information presentation problem is a 
tradeoff between showing a smaller number of more 
relevant items at larger sizes and showing a larger number 
of less relevant items at smaller sizes. The framework 
presented here quantifies this tradeoff neatly and succinctly. 
Though simplified in a number of ways, this framing 
identifies a quick and efficient way to evaluate potential 
adaptive renderings for quality. 

To see how tradeoffs might arise, imagine there is some 
content element c that has the highest content score, say 5. 
The fact that c has a high score motivates us to give it more 
screen space. To see this, imagine c′ is a similar item that 
carries a lower content score, say 3. For any presentation 
choice, the total value of c will be higher than that of c′ at 
the same size. Let us assume that c and c′ can be displayed 
in small, medium, or large size, with relative values 1, 2, 
and 3. Furthermore, suppose that at most two medium but 
only one large item can fit on the user’s screen. In that case, 
displaying c and c′ in medium size has value of 16, which 
displaying c in large size only has value 15. However, if the 

content value of c was 6, we would prefer to display c in 
large size, and not display c′. 

Abstract Algorithm 
The best rendering is the maximum score over all legal 
renderings. We can compute the best rendering using the 
following abstract algorithm: 

• Compute a value for each possible configuration. 
This will be the sum of the values of all elements 
displayed in the configuration. (Note that there is 
an additional constraint that the same item may 
only appear once in a rendering.) 

• Return the presentation with the highest score. 

Assuming no additional constraints beyond the requirement 
to fit all items on the screen, and using the current model of 
presentation scores, this problem can be viewed as a two-
dimensional variant of the knapsack problem. This is a 
difficult problem, and an active area of research in 
operations research [15]. As we anticipate the existence of 
additional constraints, we believe that optimization 
algorithms for this problem will be an important topic of 
research. 

IMPLEMENTATION 
We have implemented adaptive interface techniques in the 
ButterflyNet system, which supports several different types 
of content, including handwritten notes, images, and 
whiteboard contents. ButterflyNet takes advantage of 
digital media and associated metadata to offer a rich 
interface for visualizing content. The normal method of 
accessing content in the ButterflyNet desktop application is 
through a media browser, in which a user browses through 
a logical collection of homogeneous content (e.g., a 
notebook or photo album). Content elements currently in 
focus are displayed in the content panel on the left, while 
the context panel on the right presents menus, data, or other 
content related to the items in focus. 

We apply adaptive interfaces in two modes of use: as a 
primary browser, and as a contextual sidebar. 

Adaptive Interfaces 
The adaptive sidebar (see Figure 1) is a contextual element 
that displays content related to whatever the user is 
browsing at the moment. As the user browses, the adaptive 
pivot changes automatically, reflecting content related to 
the elements in focus in the main browser. Users may 
double-click a content element in the sidebar to select that 
element: the media browser is changed to the appropriate 
media type (if necessary), and the selected element is 
brought into focus. 

The adaptive browser (see Figure 5, left) allows users to 
browse all available content using an adaptive interface as 
the focal point. Users may pivot about individual elements 
by selecting them with a single-click; the adaptive browser 
then shows the content elements most closely related to the 



 

selected element. Users may also specify their own pivots 
by explicitly selecting attribute values such as keywords 
(“objects tagged with the words ‘whiteboard design’”), 
creation or modification time (“items created on Tuesday, 
August 29, 2006 around 3:45 p.m.”), ownership (“content 
from my group members”), media type (“all photographs”), 
or combinations of the above (“Erica’s notes and photos 
from last Friday”). Users may also double-click an element 
to bring the element into focus in a media browser, 
switching the adaptive interface into sidebar mode. 

Internally, two components drive the adaptive interfaces: an 
adaptive interface generator and a scoring manager. The 
scoring manager takes a content element, reads metadata 
for the element from the ButterflyNet database, and returns 
a score relative to the current pivot. The adaptive interface 
generator takes a scored set of content elements and returns 
a legal rendering (ordered list of elements and sizes) for the 
adaptive browser to display. 

The ButterflyNet implementation of adaptive interfaces also 
offers an interface for modifying properties of the adaptive 
algorithms and renderings (see Figure 5, right). Relative 
weights of the various metadata facets are user-configurable 
via a direct manipulation UI. Users may filter based on 
media type: content may be grouped by media types (so 
that, for example, notes and pictures are displayed in 
different sections of the adaptive presentation), or one of 
more types of content may be hidden altogether. 

Design Decisions 
To narrow the presentation search space and keep the user 
interface responsive, we make three simplifying design 
decisions and assumptions in our implementation of the 
adaptive algorithm. 

First, though content is heterogeneous and may have a 

number of different aspect ratios, we treat every content 
element as a quantum unit and allocate a fixed aspect ratio 
and size, similar to the PhotoMesa system [1]. This has the 
advantage of producing nicely aligned grids of elements, 
with the drawback that significant amounts of space may be 
wasted for elements that do not align well with the fixed 
aspect ratio (e.g., portrait-oriented images in a landscape-
shaped space). 

Second, we only perform discrete calculations for layout. 
Rather than evaluating every possible element size that fits 
the fixed aspect ratio, we only evaluate sizes that result in 
an exact integer number of elements across (one across, two 
across, three across, etc.), in effect treating element sizes as 
discrete, rather than continuous. 

Finally, we use a simple algorithm for showing relevance: a 
row-major ordering (left-to-right, top-to-bottom) where the 
most important items are at the top left. Other possibilities 
for displaying importance could include combinations of 
position, size (making important items larger), color 
(highlighting the closest matches), and other visual 
properties.  

RESULTS 
We have assessed the technical efficacy of the techniques in 
two fashions: by measuring adaptive interface generation 
times in ButterflyNet, and by exploring how the handles we 
have provided enable the specification of different types of 
results. 

Interface Generation 
We tested our algorithms on a Pentium D 3.2 GHz running 
Windows XP with 2 GB of RAM. ButterflyNet and the 
adaptive browsers were implemented in Java and compiled 
using the Java SE 6 Beta 2 runtime. For the qualitative 
evaluations below, we used actual data sets from users of 

   

Figure 5. Left: An adaptive browser displaying heterogeneous content. Right: Direct manipulation interface for changing 
relative weights of metadata. Users can directly affect how the pivot scores content elements by favoring one metadata 
attribute or another. 



the ButterflyNet system. 

Database Access Time 
ButterflyNet uses a database to maintain metadata, from 
which we draw inputs for our algorithm. On average, it took 
approximately four minutes to read 4,000 content elements 
(predominantly complex notes files with dozens of strokes) 
into an empty embedded database, or approximately 60 
milliseconds per content element. This is a one-time cost, 
however, and is not incurred every time the rendering is 
requested, or even every time the program is run, only 
whenever a content element is created or modified. 

Scoring and Layout Time 
For a dataset of 270 content elements (notes and images 
from a group of three students over one quarter), the 
running time of the scoring algorithm was 1.21 
milliseconds; the layout algorithm, 0.073 milliseconds. 

For a dataset of 4,200 content elements (notes and images 
from a class of approximately 40 students over one quarter), 
the running time of the scoring algorithms was 12.3 
milliseconds; the layout algorithm, 0.423 milliseconds. 

We expected that scoring time would vary linearly as a 
function of the number of content elements, which is what 
we found. Similarly, we expected layout time to vary 
linearly as a function of screen space but be bounded by the 
number of content elements; the latter constraint was 
evidenced in our test cases. 

Element Rendering Time 
The above running times do not count the rendering time 
for content elements, which generally ranged in the 
hundreds of milliseconds for the most complex sets of 
objects in ButterflyNet. While loading and displaying 
several complex objects takes time, this is not a part of the 
adaptive algorithm. 

In practice, overall time to display an adaptive presentation 
was dominated by the rendering time of the content 
elements, suggesting that the implementation efficacy 
problem in adaptive browsers is still predominantly one of 
element rendering and not of calculating layouts efficiently. 
This result demonstrates that we can effectively produce 
adaptive presentations in user-interactive timeframes. 

Exploring the Content Space 
An important part of our adaptive browsing approach is the 
inclusion of direct-manipulation handles that enable users 
to retrieve different types of information depending on the 
desired goal. Broadly speaking, the ability to change the 
relative weights of the five metadata types included in the 
current library produced results that we observed to be 
relevant and informative. For example, as one author 
browsed his notebook in the media browser, we observed 
the presented notes and pictures, which came from both his 
personal collection and those of other users chosen by the 

adaptive sidebar. Changing the relevant facet weights had 
intuitive effects on the rendering produced: 

Time correlation: An increase in the weight of timestamps 
produced a collection of notes and photos from the same 
event (e.g., a lecture or field outing). 

Content correlation: An increase in the weight of keyword 
matching (relative to timestamps) returned a collection of 
notes and photos related to the subject of the focused 
items (e.g., items labeled with the name of a company 
project). 

Awareness: A decrease in the weight of content belonging 
to the user exposed the user to more content belonging to 
other users, thereby raising awareness of others’ 
activities. Conversely, an increase in the weight of 
content belonging to the user’s project, or just the user’s 
own content, narrowed the scope of the awareness “feed” 
to more familiar documents. 

SCENARIOS 
Drawing on results from longitudinal studies of design 
education and practice [17] and observations of use of our 
implementation, we have constructed three scenarios that 
reflect envisioned uses for adaptive interfaces in designers’ 
work practice. 

In the following scenarios, Ada, Erica, Justin, and Leland 
are designing a new interactive web site for players of a 
popular online fantasy video game. The website will enable 
visitors to read the latest game tips, post messages in online 
forums, and learn about upcoming events. Young, 
ambitious, and technologically savvy, the four designers 
use a company tool for supporting design (ButterflyNet) to 
organize, retrieve, and share their project-related 
information, including handwritten notes, freehand 
sketches, whiteboard captures, photographs, diagrams, and 
text documents. 

Enhancing Group Design Practice 
Erica, Justin, and Leland head down to the studio meeting 
room for their weekly brainstorm. Upon entering the studio 
meeting room, they notice that the digital whiteboard is in 
screensaver mode, displaying a series of pictures and notes 
related to the upcoming meeting. The screensaver is 
actually an adaptive screensaver; based on knowledge of 
users’ calendars, the screensaver has inferred the purpose of 
the meeting and is proactively cycling through salient 
content from the previous week’s meeting, plus a sprinkling 
of related material (based on keyword and category 
attributes) from other designers and teams at the company. 
Leland walks up to the whiteboard and selects some of last 
week’s notes for review; the three of them usually walk 
through the previous week’s notes together to establish 
context for this week’s meeting. While at the board, Leland 
notices an interesting whiteboard discussion from the game 
interaction design team on spell documentation, a hot topic 
of debate in his group as well. He moves the capture to the 
foreground so that it fills the whiteboard, and sits down to 



 

begin the meeting with the other group’s notes on the board 
as a starter for discussion. 

Finding the Rationale behind a Decision 
Ada missed the design session; she was consulting on 
another project at her company, dealing with user forums. 
When she returns to her office, she opens her design 
browser and requests content from Wednesday at noon, the 
time of her group’s weekly design session. As she scans 
whiteboard captures and notes from the meeting, she 
notices that the group decided to remove certain privacy 
options from users’ online profiles. Curious, she does some 
searches on keywords she finds on items related to the new 
topic of discussion (“privacy,” “opt-out”), looking for the 
rationale behind the decision to make this alteration. After 
browsing for a bit, she comprehends the reason for the 
change but disagrees with it, and prints out a few salient 
notes for debate material at the next staff meeting. 

Writing a Project Summary 
Erica is writing a summary of the work that their group has 
done on the web site project over the past year. She begins 
by opening her design browser and perusing her own design 
notebooks. As she browses her notebooks, related material 
comes up in the sidebar, including other team members’ 
notebook pages, whiteboard captures from group design 
sessions, and text documents and emails generated by the 
team. The contextual aspect of the adaptive interface allows 
her to browse more flexibly: rather than having to seek out 
individual documents with explicit searches, she browses 
paths of “relatedness,” reviewing associated material, 
bringing context elements into focus, looking for important 
pieces of information in their collective design repository. 
Eventually, she flags ten documents for closer inspection. 

RELATED WORK 
This research draws on three areas of prior work: model-
based user interfaces, automatic layout systems, and 
document scoring systems. We discuss each in turn. 

Model-Based User Interfaces 
The area of model-based user interfaces (e.g., [22, 24]) 
began with the interest of creating tools for specifying 
interfaces declaratively, through high-level semantics, 
rather than imperatively, by the pixel-level details of the 
implementation. Szekely [28] provides a retrospective 
overview of this field. After the initial string of successes 
that Szekely identified, this field slowed down in the early 
1990s, primarily because the desktop PC did not provide 
sufficient diversity to mandate a higher-level 
representation: the value of abstraction is derived from the 
lower margin costs of repurposing — with one platform, 
there was no amortization to be had. 

As ubiquitous computing has edged towards reality, the 
playing field has changed. We now have Weiser’s 
“computing by the inch, foot, and yard” [31], and model-
based interfaces offer significant promise in managing the 
diversity of computing platforms. An example of this 

success is Pierce’s work on divisible user interfaces [10], 
which provides a unified representation for applications 
whose interface is partitioned across multiple devices. This 
re-emergence of model-based abstractions comes very 
much from the same spirit as the current paper. The place 
that this current work fits into this larger picture is that it 
introduces decision-theoretic techniques for specifying the 
display portion of these applications. 

Automatic Layout 
Several projects have explored the automatic layout of 
interfaces and/or information. The most closely related 
system in the literature is SUPPLE [8], which examined a 
constraint-based optimization approach to interface 
adaptation. Another system, the Personal Universal 
Controller [20], performed automatic layout of complex 
service interfaces on different devices using a different 
theoretical model. We apply a decision-theoretic strategy 
similar to that of SUPPLE to the area of information 
presentation, but with significantly different constraints. 
Rather than addressing user widgets, we deal with 
information sources. This work has the additional burden of 
needing to render layouts in user-interactive timeframes (< 
100 milliseconds) in order to keep interactions fluid, 
potentially introducing interesting tradeoffs between 
optimality and performance. 

Image browsing research has proposed many novel 
methods of dealing with the problem of laying out large sets 
of data. PhotoMesa [1], a zoomable image browser which 
encouraged serendipity using a 2D space-filling layout, 
inspired several design decisions in our implementation 
(e.g., quantum elements). Saliency-based cropping methods 
[27] are another innovation that could be applied to later 
versions of our adaptive browser, posing interesting 
questions regarding content presentation value functions. 
Our adaptive interface research extends this body of work 
by applying novel techniques in the context of large 
heterogeneous data sets. In general, image browsers deal 
with a homogenous set of data: pictures. 

The selection of what information is visible, and its 
arrangement for the user has significant implications for the 
cognitive activities that are ready-at-hand [13], and the 
effective presentation of personal information has been the 
subject of considerable activity. Furnas’s fisheye calendar 
[7], an early system in this area, introduced the idea of a 
focus+context visualization: the calendar item in focus was 
displayed largely and with local detail; non-focus items 
would correspondingly shrink. More generally, through this 
example, it demonstrated how constraints can be effectively 
used to manage screen layout globally, and this present 
research is a continuation in that vein. Other research has 
explored book-like metaphors for information collections 
[4], and facet-based approaches to search [6]. In this work, 
we make no particular ideological commitment to 
maintaining the navigation affordances of prior 
technologies, though certainly the existing “user base” of 



paper books would make a compelling case for doing so. 
Our approach is more similar to that of faceted search, with 
the exception that the displays elements are not constrained 
to be only those requested — elements with similarities to 
those requested may also be displayed as a means of 
providing for serendipity in search and browsing. 

Ambient displays have explored the use of spaces and 
surfaces for proactive presentation of information [30, 32]. 
Prior work has attempted to facilitate serendipitous 
generation of ideas by peripherally displaying notes [9]. 
Our research follows up on this work by applying adaptive 
techniques to ambient and contextual displays. In particular, 
we are exploring the peripheral presentation of notes and 
other epistemic artifacts to encourage exploration and 
increase visibility of work practice. 

Document Scoring 
With software architecture and information presentation 
addressed, we now turn to the question of the underlying 
algorithms and information model. Similar to prior work on 
information foraging [23], we seek to improve the 
information scent of interfaces. Or, more precisely, the goal 
of this paper is to provide “scents” of potentially valuable 
information in addition to the specific information has 
requested. The use of small steps observed by Teevan et al. 
in their study of orienteering behavior [29] points to the 
value of providing scent via contextual information. 

As the quantity of information we work with increases [16], 
and metadata becomes ever more prevalent [2], improved 
techniques for sorting this information are required. 
Adaptive user interfaces have proven particularly useful in 
managing our personal information. Rhodes’ Remembrance 
Agent demonstrated the use of richer types of metadata —
 most notably location — as a means for retrieving 
information [25]. Perhaps most similar to this project is 
Horvitz et al.’s email ranking system [26], which employs 
decision-theoretic techniques to prioritize and rank emails 
that are likely to contain higher value information or be 
more urgent; this work was very inspirational in framing 
our approach. Haystack [12] takes a highly flexible 
approach to data presentation and user interaction that could 
easily integrate adaptive techniques to increase visibility. 

The information model in this work draws on the idea of 
faceted metadata [33], the conceptually distinct dimensions 
of the metadata. Of particular value has been the recent 
research on lightweight techniques for labeling photographs 
with rich metadata [5, 19], and the use of those in 
information retrieval. Again, the difference with this work 
is that while we employ the same ontological mechanisms, 
the contribution lies in the use of this schema to enable 
proactive and adaptive display. 

CONCLUSION AND FUTURE WORK  
This work offers four contributions: a precise definition of 
the information presentation problem we address, the 
various dimensions we use to analyze it, algorithms for 

calculating an appropriate rendering, and a technical 
evaluation via a manifestation of this adaptive technique in 
the ButterflyNet browser. 

The contribution of this paper is largely an existence proof 
of the tractability of the approach. We are currently in the 
process of planning a study of the benefits of these adaptive 
display techniques with design teams as the population. 
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