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ABSTRACT

Prototyping is the pivotal activity that structures innova-
tion, collaboration, and creativity in design. Prototypes
embody design hypotheses and enable designers to test
them. Framing design as a thinking-by-doing activity fore-
grounds iteration as a central concern. This paper presents
d.tools, a toolkit that embodies an iterative-design-centered
approach to prototyping information appliances. This work
offers contributions in three areas. First, d.tools introduces
a statechart-based visual design tool that provides a low
threshold for early-stage prototyping, extensible through
code for higher-fidelity prototypes. Second, our research
introduces three important types of hardware extensibility
— at the hardware-to-PC interface, the intra-hardware
communication level, and the circuit level. Third, d.tools
integrates design, test, and analysis of information appli-
ances. We have evaluated d.tools through three studies: a
laboratory study with thirteen participants; rebuilding pro-
totypes of existing and emerging devices; and by observing
seven student teams who built prototypes with d.tools.

ACM Classification: H.5.2. [Information Interfaces]: User
Interfaces — input devices and strategies; interaction
styles; prototyping; user-centered design. D.2.2 [Software
Engineering]: Design Tools and Techniques — State dia-
grams, user interfaces.

General terms: Design, Human Factors

Keywords: Toolkits, information appliances, design tools,
prototyping, integrating physical & digital, design thinking

INTRODUCTION

Ubiquitous computing devices such as information appli-
ances—mobile phones, digital cameras, and music play-
ers—are growing quickly in number and diversity. To
arrive at usable designs for such physical Uls, product
designers commonly build a series of prototypes — ap-
proximations of a product along some dimensions of inter-
est. These prototypes are the pivotal media that structure
innovation, collaboration, and creativity in design [21, 32].
Design studios pride themselves on their prototype-driven
culture; it is through the creation of prototypes that design-
ers learn about the problem they are trying to solve.

Reflective practice, the framing and evaluation of a design
challenge by working it through, rather than just thinking it
through, points out that physical action and cognition are

Figure 1. Toolkit support for design thinking: d.tools inte-
grates design, test, and analysis for physical prototyping.

interconnected [23, 30]. Successful product designs result
from a series of “conversations with materials.” Here, the
“conversations” are interactions between the designer and
the design medium—sketching on paper, shaping clay,
building with foam core [31]. The epistemic production
[22] of concrete prototypes affords unexpected realizations
that a designer could not have arrived at without producing
a concrete artifact. This articulation of design as a thinking-
by-doing activity foregrounds iteration as a central concern
of design process. And indeed, product designer Michael
Barry argues that, “the companies that want to see the most
models in the least time are the most design-sensitive; the
companies that want that one perfect model are the least
design sensitive.” [33]

In this paper, we suggest iteration as a core concern for Ul
tools and present d.tools, a design tool that embodies an
iterative-design-centered approach to prototyping physical
UIs (see Figure 1). This work offers three contributions.

The first contribution is a set of interaction techniques and
architectural features that enable d.tools to provide a low
threshold for early-stage prototyping. d.tools introduces a
visual, statechart-based prototyping model (see Figure 2)
that extends existing storyboard-driven design practice [19].
To provide a higher ceiling than is possible with visual
programming alone, d.tools augments visual authoring with
textual programming.
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Figure 2. Left: The d.tools software authoring environment offers (1) a device designer; (2) a statechart editor; (3) a source
code editor; and (4) an image browser. Right: The d.tools hardware interface (5) connects compatible hardware inputs (6)
to the PC. d.tools includes authoring support for small LCD screens (7).

Second, d.tools offers an extensible architecture for physi-
cal interfaces. In this area, d.tools builds on prior work [4,
7,9, 13, 14, 26] that has shielded software developers from
the intricacies of mechatronics through software encapsula-
tion, and offers a similar set of library components. How-
ever, the d.tools hardware architecture is significantly
more flexible than prior systems by offering three exten-
sion points—at the hardware-to-PC interface, the intra-
hardware communication level, and the circuit level—that
enable experts to extend the library.

Third, d.tools integrates design, test, and analysis of infor-
mation appliances. In test mode, d.tools records a video of
the user’s interaction with the physical device and logs
interaction events to structure the video. Analysis mode
uses this integration of video and event logs to facilitate
post-test review of usability data. While iterative design is
central to current practice, few tools—the notable excep-
tion being SUEDE [24]—have explored how this cycle can
be facilitated through computation.

The rest of the paper is organized as follows. We begin by
outlining key findings of fieldwork that motivated our
efforts. We then describe the key interaction techniques for
building, testing and analyzing prototypes that d.tools of-
fers. We next outline implementation decisions and con-
clude with a report on three different strategies we have
employed to evaluate d.tools.

FIELDWORK

To learn about opportunities for supporting iterative design
of ubiquitous computing devices, we conducted individual
and group interviews with eleven designers and managers
at three product design consultancies in the San Francisco
Bay Area, and three product design masters students. This
fieldwork revealed that designing off-the-desktop interac-

tions is not nearly as fluid as prototyping of either pure
software applications or traditional physical products.

Most product designers have had at least some exposure to
programming but few have fluency in programming. De-
sign teams have access to programmers and engineers, but
delegating to an intermediary slows the iterative design
cycle and increases cost. Thus, while it is possible for in-
teraction design teams to build functional physical proto-
types, the cost-benefit ratio of “just getting it built” in
terms of time and resources limits the use of comprehen-
sive prototypes to late stages of the design process. Com-
prehensive prototypes that integrate form factor (looks-like
prototypes) and functions (works-like prototypes) are
mostly created as expensive one-offs that serve as presenta-
tion tools and milestones, but not as artifacts for reflective
practice.

Interviewees reported using low-fidelity techniques to
express Ul flows, such as Photoshop layers, Excel spread-
sheets, and sliding physical transparencies in and out of
cases (a glossy version of paper prototyping). However,
they expressed their dissatisfaction with these methods
since the methods often failed to convey the experience
offered by the new design. In response, we designed
d.tools to support rapid construction of concrete interaction
sequences for experience prototyping [10] while leaving
room to expand into higher-fidelity designs for presenta-
tions.

REFLECTIVE PROTOTYPING WITH D.TOOLS

In this section we discuss the most important interaction
techniques that d.tools offers to enable the rapid design and
evaluation of interactive physical devices. d.tools supports
design thinking rather than implementation tinkering. Us-
ing d.tools, designers place physical controllers (e.g., but-
tons, sliders), sensors (e.g., accelerometers, compasses),



and output devices (e.g., LEDs, LCD screens, and speakers)
directly onto their physical prototypes. The d.tools library
includes an extensible set of smart components that cover a
wide range of input and output technologies. In design
mode, software duals of physical 1/0 components can be
graphically arranged into a visual representation of the
physical device (see Figure 2, part 1). On the PC, designers
then author behavior using this representation in a visual
language inspired by the statecharts formalism [16] (see
Figure 2, part 2). d.tools employs a PC as a proxy for an
embedded processor to prevent limitations of embedded
hardware from impinging on design thinking.

Designers can test their authored interactions with the
device at any point in time, since their visual interaction
model is always connected to the “live” device. When
seeking to gather feedback from others, designers switch to
test mode. In test mode, d.tools records live video and
audio of user interactions with the prototype—important
for understanding ergonomics, capturing user quotes, and
finding usability problems. d.tools also logs all user inter-
action events and uses this log to automatically structure
the test videos. Video can provide critical usability insights
and aid in communicating these insights to other team
members, but working with usability video can be prohibi-
tively time-consuming [27]. d.tools interactions with struc-
tured video enable rapid usability analysis through aggre-
gate data visualization, fast access to video data through
the visual interaction model and vice versa, and finally
comparative evaluation of multiple user tests in a video
matrix.

DESIGNING A PROTOTYPE

This section presents d.tools support for authoring interac-
tion models with physical I/O components. As an example
scenario, consider a designer creating a handheld GPS unit
featuring tilt-based map navigation.

Designing physical interactions with “plug and draw”
Designers begin by plugging
physical components into
the d.tools hardware
interface (which connects to
their PC through USB) and
working within the device designer of the authoring envi-
ronment. Physical components announce themselves to
d.tools, creating virtual duals in this editor. Alternatively—
when the physical components are not at hand or designing
interactions for a control that will be fabricated later—
designers can create visual-only input and output compo-
nents by dragging and dropping them from the device edi-
tor’s palette. A designer can later connect the correspond-
ing physical control or, if preferred, even manipulate the
behavior via Wizard of Oz [20] at test time.

In the device editor, designers create, arrange and resize
input and output components, specifying their appearance
by selecting images from an integrated image browser.
This iconic representation affords rapid matching of soft-
ware widgets with physical /0 components.

The component library available to designers comprises a
diverse selection of buttons, switches, sliders, knobs, and
RFID readers. Outputs include LCD screens, LEDs, and
speakers. LCD and sound output are connected to the PC
A/V subsystem, not our hardware interface. In addition,
general purpose input and outputs are available for design-
ers who wish to add custom components. Physical and
virtual components are linked through a hardware address
that serves as a unique identifier of an input or output.

Authoring interaction models

Designers define their prototype’s behavior by creating
interaction graphs in the statechart editor (see Figure 2).
States are graphical instances of the device design. They
describe the content assigned to the outputs of the proto-
type at a particular point in the UI: screen images, sounds,
LED behaviors. States are created by dragging from the
statechart editors palette onto the graph canvas. As in the
device editor, content can be assigned to output compo-
nents of a state by dragging and dropping items from the
asset library onto a component. All attributes of states,
components and transitions (e.g., image filenames, event
types, data ranges) can also be manipulated in text form via
attribute sheets.

Transitions represent the control flow of an application;
they define rules for switching the currently active state in
response to user input (hardware events). The currently
active state is shown with a red outline. Transitions are
represented graphically as arrows connecting two states.

oo R To create a transition, designers mouse over
the input component which will trigger the
transition and then drag onto the canvas. A
= e target copy of the source state is created and
™ source and target are connected. Transitions
are labeled with an icon of the triggering

input component.

Conditions for state transitions can be composed using the
Boolean AND and OR. A single such connective is applied

= to all conditionals on a transition arrow, as

",',- ET complex Boolean expressions are error-

| LCD e . . .

“IE« This allows authoring conditionals such as
“transition if the accelerometer is tilted to

prone. More complex conditionals can be

authored by introducing additional states.
the right, but only if the tilt-enable button is held down
simultaneously.”

Within the visual editor, timers can be added as input com-
ponents to a device to create automatic transitions or (con-
nected with AND to a sensor input) to require a certain
amount of time to pass before acting on input data. Auto-
matic transitions are useful for sequencing output behav-
iors, and timeouts have proven valuable as a hysteresis
mechanism to prevent noisy sensor input from inducing
rapid oscillation between states.

While the statechart’s visual representation aids a
designer’s understanding of the control flow, complex
designs still benefit from explanation. d.tools supports



commenting with text notes that can be freely placed on the
statechart canvas.

Demonstrating transitions

Through our own prototyping practice and through student
projects built with d.tools, we discovered that fine-tuning
parameters of continuous sensors is a time-consuming,
trial-and-error process. Mapping sensor values to discrete
categories is further complicated by noise and non-linear
responses. The time taken “tuning the dials” could be better
spent exploring the design space.

— d.tools facilitates parameter setting in two
j ways. First, the Sensor Data View pre-
s [ sents a real-time visualization of all at-
[ .

tached continuous sensors. Second,
ranges of sensor data that trigger transi-
tions can be authored by demonstration.
The designer selects the input icon on the transition that
represents the desired continuous input, bringing up a real-
time display of the sensor’s current value and history. The
designer then performs the desired interaction with the
physical prototype (e.g., tilting an accelerometer to the
right or moving a slider) and presses keys to define upper
and lower thresholds for the transition. This technique
replaces needing to set numerical sensor values through
trial-and error parameter modification with a physical
demonstration technique. This approach lends itself to
future work on machine-learning by demonstration for
capturing more complex input patterns (cf. [12]).

g0 oy

Raising the ceiling

The statechart-based visual programming model embodied
in d.tools enables rapid design of initial comprehensive
prototypes, but the complexity of the control flow and
interactive behavior that can be authored is limited. To
support later phases of design, when labor and expertise
permit higher-fidelity prototyping, d.tools provides two
mechanisms that enable more complex interactions: paral-
lel statecharts and extending statecharts with code.

Expressing parallelism in single point-of-
control automata results in an exponen-

tially growing number of states. Our first-

use study also showed that expressing

parallelism via cross-products of states is not an intuitive
authoring technique. To support authoring parallel, inde-
Function Description

pendent functionality, multiple states in d.tools can be
active concurrently in independent subgraphs (e.g., the
power button can always be used to turn the device off,
regardless of the other state of the model).

i@ ISJ visual states to specify behaviors that
' Ei“ﬁ" = are beyond the capability of the

"0 | = | visual environment (e.g., dynami-
cally generate graphics such as map
annotations). The right-click context menu for states offers
actions to edit and hook or unhook Java code for each state.
The first time a designer chooses to add code, d.tools gen-
erates a skeleton source code file and opens a Java editor.
We leverage the Eclipse programming environment to
provide auto-completion, syntax highlighting, and inte-
grated help. Eclipse automatically compiles, loads, and
updates code. d.tools offers a compact API that calls de-
signers’ functions on transition and input events, allows
designers to query input state of any attached hardware,
gives write access to attached outputs (e.g., to program-
matically change the image shown on the LCD screen), and
allows remote control of third party applications (see Table
1). Using this API, two of the authors prototyped acceler-
ometer-based zoom and pan control for the Google Earth
application in less than 30 minutes.

Designers can attach Java code to

=28

Executing interaction models at design time

Designers can execute interaction models in three ways.
First, they can manipulate the attached hardware; the pro-
totype is always live. Second, they can imitate hardware
events within the software workbench by using a simula-
tion tool where the cursor can be used to click and drag
virtual inputs that will then generate appropriate event
transitions. Finally, designers can employ the Wizard Of Oz
[20, 24] technique by operating the prototype’s visual rep-
resentation. In all cases, the prototype is fully interactive.

TESTING & ANALYZING PROTOTYPES

d.tools provides integrated support for designers to test
prototypes with users, and analyze the results to inform
subsequent iteration. Manual video annotation and analysis
for usability tests is enormously time consuming. Even
though video recording of user sessions is common in
design studios, resource limits often preclude later analysis.
We introduce d.tools support for video analysis through

enterState ()

Is called when the code’s associated state receives focus in the statechart graph.

update (String component,
Object newValue)

Is called when a new input event is received while the code’s state has focus. The component’s
hardware address (e.g., “/btn5” for a button) is passed in as an identifier along with the updated

value (Booleans for discrete inputs, Floats for continuous inputs, and Strings for received RFID

tags).

getInput (String component)

Queries the current value of an input.

setOutput (String component,
Object newValue)

Controls output components. LCD screens and speakers receive file URLs, and LEDs and general
output components Booleans for on/off.

println(String msg)

Outputs a message to a dedicated debug view in our editor.

keyPress (KeyEvent e)

keyRelease (KeyEvent e)  external applications.

Inserts keyboard events into the system’s input queue (using Java Robots [1]) to remote control

Table 1. The d.tools Java API allows designers to extend visual states with source code. The listed functions serve as
the interface between designer’s code and d.tools runtime system. Standard Java classes are also accessible.
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Figure 3. In Analysis mode, statechart and recorded video are synchronized and each can be used to access the other.

Inset: simultaneous interaction with statechart and video editina is possible on a dual-screen workstation.

timestamp correlation between video and statechart (see
Figure 3); this video functionality is implemented as an
extension to the VACA video analysis tool [11]. d.tools
automatically creates timeline annotations that capture the
complete set of state transitions and device events at test
time. After completing a test, at analysis time, the video
view enables designers to access video segments from the
statechart authoring environment and vice versa. This in-
teraction allows for fast video query and enables accessing
interaction code (the statechart) from a record of its execu-
tion (the video). The video view also enables comparison
of multiple test sessions (see Figure 4).

Test

In test mode, d.tools executes user interactions just as in
the design phase. Interactions with
the physical prototype are reflected
in the statechart, and outputs are
reflected back in the device. Addi-
tionally, however, d.tools logs all device events and state
transitions for video synchronization.

user statechart video

\; b

Switching to test mode initiates video capture. Then, as
events and transitions occur they are displayed on the video
view timeline in real-time. To clarify correspondence be-
tween statechart and video views, a consistent color-coding
is used for states and hardware components in both. One
row of the timeline corresponds to the state events for each
independent subgraph of the statechart (see Figure 3, part
1), and an additional row displays hardware events. Three
types of hardware events are displayed. [Instantaneous
events, such as a switch changing from on to off, appear as
single slices on the timeline. Events with duration, such as
the press and release of a button, show up as block seg-
ments (see Figure 3, part2). And continuous events, such as
slider movements, are drawn as small line graphs of that
event’s value over time (see Figure 3, part 3).

During the test session, the designer can make live annota-
tions. d.tools offers dedicated buttons on an attached video
control console to quickly mark positive (e.g., interesting

quotes) or negative (e.g., usability problems) sections for
later review. The experimenter’s annotations are displayed
in the video view as a separate row on the timeline.

Analyze

Analyze mode allows the designer to review the data from
user test sessions. The video view and statechart editor
function in tandem as a multiple view interface [6] into the
test data to aid understanding of the relationship between
the user experience and the interaction model underlying it.
d.tools supports both single user analysis and group analy-
sis, which enables designers to compare data across
multiple users.

Single User Analysis
Single user mode provides playback control of a test ses-
sion video using a glanceable timeline visualization of the
flow of UI state and data throughout that session. d.tools
statechart _video | speeds up video analysis by enabling
BRZ F»W designers to work both from their
?EEEI it | Interaction models to corresponding
A video segments and from video
k ':F<___ a exploration to the statechart,
%‘3 St | facilitating analysis within the original
=
A design context. In addition to this
dynamic search and exploration, the statechart also shows
an aggregation of all user interactions during the test: the
line thicknesses of state transitions are modified to indicate
how often they were traversed (see Figure 3, part 4). This
macro-level visualization shows which transitions were
most heavily traversed and which were never reached.

d

Statechart to video: To access video from the interaction
model, the designer can select a state in the statechart — the
video annotations are automatically filtered such that only
corresponding video clips are shown on the timeline and
played. Similarly, the designer can query by demonstration:
manipulating a hardware component on the physical proto-
type (e.g., pushing a button or moving a slider) causes the
corresponding input event category to be selected in the
video view. Designers can also select multiple categories



Figure 4. Group Analysis mode aggregates timeline
and video data of multiple user sessions into one view.

by manipulating multiple hardware components within a
small time window. Thus, the designer can effectively
search for a particular interaction pattern within the video
data by re-enacting the interaction on the prototype itself.

Video to statechart: During video playback a dynamic
visualization of transition history is displayed on top of the
d.tools statechart. Active states get highlighted and d.tools
also animates a real-time moving trail along the state transi-
tions, indicating which state was previously active and
which will be active next. This window into the chronology
of interactions provides a visual reminder of context.

Group Analysis

Group mode collects all of the user capture sessions corre-
sponding to a given statechart and displays
= them together. The timeline now aggregates
flows for each user. The video window
displays an n x m table of videos, with the
rows corresponding to the n users, and the columns corre-
sponding to the m categories (comprised of states, hard-
ware events, and annotations). Thus, a cell in the table
contains the set of clips in a given category for a given
user. Any set of these clips may be selected and played
concurrently. Selecting an entire row plays all clips for a
particular user; selecting an entire column plays all clips of
a particular category. As each clip is played, an indicator
tracks its progress on the corresponding timeline.

ARCHITECTURE AND IMPLEMENTATION
Implementation choices for d.tools hardware and software
emphasize both a low threshold for initial use and extensi-
bility through modularity at architectural seams. In this
section we describe how these design concerns and exten-
sibility goals are reflected in the d.tools architecture.

10 hardware,

e.g.,slider —
ATtiny45 = &
12C slave +sv 3 [~ OSC msgs
R | viauss —
ATtinIy45 GNo 3 ~ PC running d.tools
other 12C 12C slave e
- ATmega128
deviceeg, 10 hardware, 12C mgster
accelerometer e.g., button

Figure 6. The d.tools architecture uses standardized,
open protocols for hardware and PC communication.

Plug-and-Play Hardware

d.tools contributes a plug-and-play hardware platform that
enables tracking identity and presence of smart hardware
components for plug-and-play operation. /O components
for low-bandwidth data use a common physical connector
format so designers do not have to worry about which
plugs go where. Smart components each have a dedicated
small microcontroller; an interface board coordinates
communication between components and a PC (see Figure
5). Components plug into the interface board to talk on a
common 12C serial bus (see Figure 6). The 12C bus abstracts
electrical characteristics of different kinds of components,
affording the use of common connectors. The interface
board acts as the bus master and components implement
12C slave protocols. A USB connection to the host computer
provides both power and the physical communication
layer.

Atmel microcontrollers are used to implement this architec-
ture because of their low cost, high performance, and pro-
grammability in C. The hardware platform is based around
the Atmel ATmegal28 microcontroller on a Crumb128
development board from chip45. /0 components use At-
mel ATtiny45 microcontrollers. Programs for these chips
were compiled using the open source WinAVR tool chain
and the IAR Embedded Workbench compiler. Circuit
boards were designed in CADsoft Eagle, manufactured by
Advanced Circuits and hand-soldered.

d.tools distinguishes audio and video from lower-
bandwidth components (buttons, sliders, LEDs, etc.). The
modern PC A/V subsystem provides plug-and-play support
for audio and video; for these components d.tools uses the
existing infrastructure. For graphics display on the small
screens commonly found in information appliances, d.tools
includes LCD displays which can be connected to a PC
graphics card with video output (e.g., Purdy AND-TFT-
25PAKIT). This screen is controlled by a secondary video
card connected to a video signal converter.

Hardware Extensibility

Fixed libraries limit the complexity ceiling of what can be
built with a tool by knowledgeable users. While GUIs have
converged on a small number of widgets that cover the
design space, no such set exists for physical Uls because of
the greater variety of possible interactions in the real world.
Hence, extending the library beyond what “comes with the

12C input/output omponents (ATtiny45)

Status LED

ATmegal2878
master
controller

open 12C connectors

Figure 5. The d.tools board offers plug-and-play
interfacing for I/0O components.



box” is an important concern for physical computing tools.
In the d.tools software, extensibility is provided by its Java
hooks. In the d.tools hardware architecture (see Figure 6)
extensibility is offered at three points: the hardware to PC
interface, the hardware communication level, and the elec-
tronic circuit. This allows experts with sufficient interest
and skill to modify d.tools to suit their needs.

d.tools hardware and a PC communicate by exchanging
OpenSoundControl (0OSC) messages. OSC was chosen for
its open source API, existing hardware and software sup-
port, and human readable addressing format (components
have short path-like addresses — e.g., buttons are labeled
/btnl or /btn6.) By substituting devices that can produce
0SC messages or software that can consume them, d.tools
components can be integrated into different workflows. For
example, music synthesis programs such as PD and
Max/MSP can receive sensor input from d.tools hardware.
Connecting other physical UI toolkits to d.tools involves
developing an OSC wrapper for them. As a proof of con-
cept, we have written such a wrapper to connect Phidgets
InterfaceKits to the d.tools software.

Developers can extend the library of smart /O components
by adding components that are compatible with the indus-
try standard 12C serial communication protocol. 12C offers a
large base of existing compatible hardware. For example,
the accelerometers used in d.tools projects are third party
products that send orientation to d.tools via on-board ana-
log-to-digital converters. Presently, adding new 12C devices
requires editing of a source code file for the master micro-
controller; in future work this configuration will be pushed
up to the d.tools authoring environment.

On the circuit level, d.tools can make use of inputs that
vary in voltage or resistance and drive generic discrete
outputs with on/off control pulse width modulation. This
allows designers versed in circuit design to integrate new
sensing and actuation technologies at the lowest level. This
level of expansion is shared with other hardware platforms
that offer direct pin access to digital I/O lines and analog-
to-digital converters.

Software

To leverage the benefits of a modern IDE, d.tools was im-
plemented in Sun's Java JDK 5 as a plug-in for the open-
source Eclipse platform. Its visual editors are fully inte-
grated into the Eclipse development environment. d.tools
uses the Eclipse Graphical Editing Framework (GEF) for
graphics handling. d.tools file 1/0 is done via serialization
to XML using XStream, which enables source control of
device and statechart files in ASCII format using CVS or
similar tools.

The video viewer is implemented in C# and uses Microsoft
DirectShow technology for video recording and playback.
Synchronization between the statechart and video views is
accomplished by passing XML fragments over UDP sockets
between the two applications. DirectShow was chosen
because it allows synchronized playback of multiple
streams of video.

Figure 7. A selection of projects built with d.tools.
(1) music player for children; (2) media player; (3) digital
camera back; (4) tangible drawer for a tabletop display; (5)
voice message trading pebble; (6) tangible color mixer.

EVALUATION AND ITERATION

In this section, we outline the methodological triangulation
we employed to evaluate and iteratively refine our tool.
Evaluations were carried out at different points during a
seven-month period. First, an early version of the tool was
tested by thirteen design students and professional design-
ers in a first-use lab study to ascertain the use threshold.
Second, the authors rebuilt prototypes of three existing
devices and used it in a research project. Third, we made
d.tools hardware kits available to students in a project-
centric interaction design course at our university. Figure 7
shows some of the projects and devices built with d.tools
as part of these evaluations. These evaluations addressed
designing with d.tools and motivated the design-test-
analyze integration, we reserve evaluation of test and
analysis modes for future work.

Establishing threshold with a First Use Study

We conducted a controlled study of d.tools in our labora-
tory to assess the ease of use of our tool; the study group
comprised 13 participants (6 male, 7 female) who had
general design experience. Participants were given three
design tasks of increasing scope to complete with d.tools
within 90 minutes. Most participants were students or
alumni of design-related graduate programs at our univer-
sity.

Successes

Automatic recognition of hardware connections and visual
statechart authoring were intuitive and well-received. Re-
fining default behaviors through text properties and ex-
pressing functional independence in a statechart was less
intuitive; nevertheless, participants mastered these strate-
gies by the end of the session.

After an initial period of learning the d.tools interface,
participants spent much of their time with design thinking



—reasoning about how their interface should behave from
the user’s point of view instead of wondering about zow to
implement a particular behavior. This was especially true
for authoring UI navigation flows.

In a post-test survey, participants consistently gave d.tools
high marks for enabling usability testing (u=4.6 on 5 point
Likert scale), shortening the time required to build a proto-
type (u=4.3), and helping to understand the user experience
at design time (u=4.25).

Shortcomings discovered

One significant shortcoming discovered through the study
was the lack of software simulation of an interaction
model: the evaluated version did not provide for stepping
though an interaction without attached hardware. This
prompted the addition of our software simulation mode.

Specifying sensor parameters textually worked well for
subjects who had some comfort level with programming,
but were judged disruptive of the visual workflow by oth-
ers. Interaction techniques for graphically specifying sensor
ranges were added to address this issue.

Building existing and novel devices

To evaluate the expressiveness of d.tools’ visual language,
we recreated prototypes for three existing devices—an
Apple iPod Shuffle music player, the back panel of a Casio
EX-Z40 digital camera, and Hinckley et al.’s Sensing PDA
[18]. We distilled the central functionality of each device
and prototyped these key interaction paths.

Additionally, a novel project built with d.tools explored
physical drawers as a file access metaphor for a shared
tabletop display [29]. The first author built four drawer
mechanisms mounted underneath the sides of a Diamond-
Touch interactive table. Opening and closing these drawers
controlled display of personal data collections, and knobs
on the drawers allowed users to scroll through their data.

From these exercises, we learned that interactive physical
prototypes have two scaling concerns: the complexity of the
software model, and the physical size of the prototype.
d.tools diagrams of up to 50 states are visually understand-
able on a desktop display (1920x1200); this scale is suffi-
cient for the primary interaction flows of current devices.
Positioning and resizing affords effective visual clustering
of subsections according to gestalt principles of proximity
and similarity. However, increasing transition density
makes maintaining and troubleshooting statecharts taxing,
a limitation shared by other visual authoring environments.
An area for future work is the design of techniques that
selectively display transitions based on the current context.

In building these systems, the percentage of implementa-
tion-related work (as opposed to graphic design or physical
construction) was less than 30% of total prototyping time,
enabling the prototyping to be driven by design concerns.
In the drawers project, the presence of multiple independ-
ent drawers prompted the need for multiple concurrently
active states as well as sensor data access from Java.

HCI Design Studio

We deployed the d.tools hardware and software to student
project teams in a masters level HCI design course at our
institution [25]. Students had the option of using d.tools
(among other technologies) for their final project, the de-
sign of a tangible interface. Seven of twelve groups used
d.tools. In this real-world deployment, we provided techni-
cal assistance, and tracked usability problems, bug reports
and feature requests.

Successes

Students successfully built a range of innovative interfaces.
Examples include a wearable “sound pebble” watch that
allows children to record and trade secret messages with
their friends, a color mixing interface in which children can
“pour” color from tangible buckets onto an LCD screen,
and an augmented clothes rack that offers product compari-
sons and recommendations via hanger sensors and built-in
lights.

Students were able to work with supplied components and
extend d.tools with sensor input not in the included library.
For example, the color mixing group integrated four me-
chanical tilt switches into their project.

Shortcomings discovered

Remote control of third party applications (especially Mac-
romedia Flash) was a major concern — in fact, because such
support was not integrated into the graphical tool, two
student groups chose to develop their project with Phidgets
[14], as it offers a Flash API. To address this need, we
released a Java API for the d.tools hardware with similar
connectivity and added Java execution ability to d.tools
statecharts. We observed that student groups that used
solely textual APIs ended up writing long-winded statechart
representations using switch or nested conditional state-
ments; the structure of their code could have been more
concisely captured in our visual language.

The first author also served as a physical prototyping con-
sultant to a prominent design firm. Because of a focus on
client presentation, the design team was primarily con-
cerned with the polish of their prototype — hence, they
asked for integration with Flash. From a research stand-
point, this suggests—for “shiny prototypes”—a tool inte-
grating the visual richness of Flash with the computational
representation and hardware abstractions of d.tools.

RELATED WORK

The d.tools system draws on previous work in two areas:
prototyping and evaluation tools, and physical computing
tools. This section summarizes how d.tools relates to each
body of work.

Tool support for prototyping and rapid video evaluation
Most closely related to the design methodology embodied
in d.tools is SUEDE [24], a design tool for rapidly prototyp-
ing speech-user interfaces. SUEDE introduces explicit sup-
port for the design-test-analyze cycle through dedicated UI
modes. It also offers a low-threshold visual authoring envi-
ronment and Wizard of Oz support. SUEDE has been used
and extended by several speech Ul firms. SUEDE’s open



architecture enabled these firms to extend the visual envi-
ronment to support complex interactions. d.tools extends
SUEDE’s framework into a new application domain —
physical user interfaces. It contributes a model for applying
design-test-analyze to applications that transcend software
development and adds integration of video analysis into the
cycle. Like SUEDE, the d.tools system supports early-stage
design activities.

This research also draws on prior work on structuring and
accessing usability video of GUI tests through user inter-
face event records; Hilbert and Redmiles present a com-
parative survey of such systems in [17]. Mackay described
challenges that have inhibited the utility of video in usabil-
ity studies, and introduced EVA, which offers researcher-
initiated annotation at record time [27]. Hammontree ef al.
recorded test-generated event data to index video tapes and
for comparing UI prototypes [15]. I-Observe by Badre et al.
[5] enabled an evaluator to access synchronized Ul event
and video data of a user test by filtering event types
through a regular expression language. While Weiler [34]
suggests that proprietary solutions for event-structured
video have been in place in large corporate usability labs
for some time, their proprietary nature prevented us from
learning about their specific functionality. Based on the
data that is available, d.tools extends prior research and
commercial work in three ways. First, it moves off the
desktop to physical Ul design, where live video is espe-
cially relevant, since the designers’ concern is with the
interaction in physical space. Second, it offers a bi-
directional link between model and video where video can
also be used to access and replay flow of control in the
model. Third, it introduces comparative evaluation tech-
niques for evaluating multiple user sessions.

Tool support for physical computing

The Phidgets [14] system introduced physical widgets:
programmable ActiveX controls that encapsulate commu-
nication with USB-attached physical devices, such as a
switch, pressure sensor, or servo motor. Phidgets abstracts
electronics implementation into an API and thus allows
programmers to leverage their existing skill set to interface
with the physical world. In its commercial version, Phidg-
ets provides a web service that marshals physical 1/0 into
network packet data, and provides several APIs for access-
ing this web service (e.g., for Java and ActionScript).

d.tools shares much of its /ibrary of physical components
with Phidgets. In fact, Phidgets analog sensors can be con-
nected to d.tools. Both Phidgets and d.tools store and exe-
cute interaction logic on the PC. However, d.tools differs
from Phidgets in both hardware and software architecture.
First, d.tools offers a hardware extensibility model not
present in Phidgets. d.tools’ three extension points enable
users with knowledge of mechatronics to add to the library
of supported devices. Second, on the software level, d.tools
targets prototyping by designers, not development by pro-
grammers. Textual APIs have too high a threshold and too
slow an iteration cycle for rapid UI prototyping; they have
not generally been adopted by product designers. The

d.tools visual authoring environment contributes a lower
threshold tool and provides stronger support for rapidly
developing the “insides of applications” [28]. Finally
Phidgets only addresses the design part of the design-test-
analyze cycle — it does not offer support for testing or ana-
lyzing user test data.

Calder [4, 26] integrates RFID buttons and other wired and
wireless devices with C and the Macromedia Lingo lan-
guage. Fluid integration with physical mock-ups is aided
by the small form factor of the devices. Calder shares with
d.tools its focus on design; it also describes desirable me-
chanical attachment mechanisms and electrical properties
(battery-powered RF transceivers) of prototyping compo-
nents. Like Phidgets, Calder’s user interface is a textual
API and only supports the design stage.

iStuff [7] extended the idea of programmatic control of
physical devices to support wireless devices, a loose cou-
pling between input and application logic, and the ability to
develop physical interactions that function across an entire
ubiquitous computing environment. iStuff, in conjunction
with the Patch Panel [8], enables standard Uls to be con-
trolled by novel inputs. iStuff targets room-scale applica-
tions. The size of hardware components make it infeasible
to design integrated devices like information appliances.

The Lego Mindstorms Robotic Invention System [2] offers
a visual environment based on control flow puzzle pieces
to control sensors and actuators. While a benchmark for
low-threshold authoring, Lego Mindstorms targets robotics
projects; the programming abstractions are inappropriate
for designing physical user interfaces. Mindstorms supports
developing autonomous stored programs which runs
counter to storyboard-driven development and eliminates
designer access to model behavior at runtime.

Maestro [3] is a commercial design tool for prototyping
mobile phone interactions. It provides a complex visual
state language with code generators, software simulation of
prototypes, and compatibility with Nokia’s Jappla hard-
ware platform. Maestro and Jappla together offer high
ceiling, high fidelity mock-up development; however, the
complexity of the tools make them too heavyweight for the
informal prototyping activities that d.tools targets. The
availability of such a commercial tool demonstrates the
importance of physical Ul design tools to industry.

CONCLUSIONS AND FUTURE WORK

This paper introduced d.tools, a prototyping environment
that lowers the threshold for creating functional physical
prototypes and integrates support for prototype testing and
analysis into the workflow. We have released d.tools to the
design community as open source (see http://hci.stan-
ford.edu/dtools/). Further work is underway to cut the
tether to the PC by executing interaction models directly on
embedded platforms to enable development of truly mobile
prototypes. Finally, beyond individual tools, we are look-
ing at creating entire design spaces that enable and support
iterative design for ubiquitous computing.
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