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Abstract

This paper describes the hardware F-Buffer implementation featured itatbst ATI graphics processors. We
discuss the implementation choices made in each chip and the various impd¢éiorechallenges faced like over-
flow handling. The F-Buffer was originally intended as a solution for multspeisading. We demonstrate this
functionality, comparing it to traditional multi-pass rendering techniquesl sihhow performance results. Given
hardware F-Buffer support, we describe extended uses like ordepamtient blending. We also show how a future
F-Buffer implementation might be extended to allow more advanced opesdifie data filtering.

Categories and Subject Descript¢ascording to ACM CCS) |.3.1 [Computer Graphics]: Graphics processors 1.3.7
[Computer Graphics]: Color, shading, shadowing, and texture

1. Introduction e Exploration of functionality and features made possible

. o . . by F-Buffer support.
Multi-pass rendering is the traditional method for handling « Proposed extensions to the current F-Buffer implementa-

Iarge slja(_jers that need to_bg refactored into smaller shaders tion to allow greater flexibility and performance.
to fit within the resource limits of hardware. Even though

hardware resources are increasing, there are still limits on the )

number of interpolants, program length, texture fetches, and 2- Overview of F-Buffer

available memory that still make it necessary to use multi- \Mark and Proudfoot's introduction of the F-BuffeMP01]
pass rendering for large shade@NS" 02, FHHO4 RLV *04)]. presents a thorough explanation and overview of the basic

However, using standard render-to-texture techniques 1o fynctionality and implementation options of an F-Buffer. We
store intermediate values can create visible artifacts when pyiefly review the basic concepts here.

shading transparent objects because overlapping fragments
overwrite previously stored temporary values for that screen
location. A rasterization order FIFO buffer, an F-Buffer, is
an enhanced method of storing fragment data which assigns
a unique storage location to each rendered fragméRO[L].
Using an F-Buffer for intermediate results allows for multi-
pass rendering with correct transparency.

The F-Buffer provides an enhanced method for storing
intermediate results during multi-pass rendering. As frag-
ments are rasterized in the first pass of a shader, the fragment
data generated by the pass is stored in a FIFO buffer (an F-
Buffer). This data will include, for each output fragment, one
or more RGBA colors, used for temporaries in intermediate
passes. In subsequent passes, this stored data is read from

This paper presents the F-Buffer implementation available the FIFO buffer as input data, where it is used for that pass’s
in AT1 9800 [AT103b] and X800 [AT104] series graphics pro- computations.

cessors. The primary contributions of this paper are: Generally, every rendering pass except the first reads from

e An explanation of the different implementation choices 0ne or more F-Buffers. If a pass represents a leaf of the shade

made in each generation of hardware and their ease of use.tree it does not need to read from an F-Buffer since there
are no temporaries to be restored. Every shader pass except

the last always writes to at least one F-Buffer. The last pass
of the shader writes to the framebuffer as in normal render-
T mhouston@graphics.stanford.edu ing. Hardware that can simultaneously read two F-Buffers
1 {preetham, segal}@ati.com and write one F-Buffer is sufficient to render any shade tree
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F-Buffer implementation, mostly dealing with overflow han-
dling, referred to as ATI Fbuffer2.

3.1. Common implementation

We discuss the common implementation choices between

the two generations of processors. These choices are the core
Standard Method F-Buffer of the F-buffer implementation dealing with where and how
F-Buffers are stored, rasterized to, and how previous passes’
data are restored. Most of the design decisions were made
to have minimum impact on the rest of the processor design,
and to reuse as much of the standard pipeline functionality
as possible.

Figure 1: Here we use a simple example to show the dif-
ference between traditional multi-pass rendering using the
framebuffer and using an F-Buffer when rendering transpar-
ent objects. We draw a cyan triangle behind a yellow trian-
gle, each with an opacity of 0.5. We use a two pass shader
that saves off the triangle colors in the first pass and restores  F-Buffers are stored in graphics DRAM for processors
the colors in the second pass. As is shown, the traditional with onboard memory, and in host memory for processors
method restores the values of the last fragments drawn for without onboard memory. The storage requirements for on-
both triangles yielding incorrect results. chip F-buffers are too large, and would therefore be too ex-
pensive, for the number of fragments many applications need
to store. For example, storing a float4 value per fragment at
1024x 1024 would require up to 16MB. Even worse, using
composed of binary operations, with more F-Buffer inputs multiple F-Buffer targets, the user could output to four float4
supporting more complex shade trees. values through the use of multiple render targets, requiring
up to 64MB. Similar to writing to a standard framebuffer, the

The most important property of the F-Buffer is that it as- > e h
latency of writing to an F-Buffer is hidden by the rendering

sociates a unique storage location with each rasterized frag- llali  the hard
ment. In contrast, a framebuffer can associate more than Paralielism of the hardware.

one fragment with a single storage location, if there are  F.Buffers are treated in much the same way as stan-
overlapping polygons rendered. An F-Buffer's association dard 2D textures. At creation, F-buffers are defined to
of each fragment with its own storage location eliminates have a square size in powers of 2 (eg 32x32, 64x64, ...,
the transparent-surface-rendering difficulties of conventional 2048x2048). This allows us to reuse all of the texture ma-
multi-pass rendering. With an F-Buffer, there is no longer chinery already available in the driver and processor, allow-
a storage conflict between multiple fragments covering the ing the use of standard texture lookups to restore values from
same pixel, although partially-transparent surfaces must still the F-Buffer. When the F-buffer is in read mode, the ad-
be rendered in back-to-front order. See Figlire dress of the fragment in the F-Buffer is calculated from a
global counter maintained by the scan converter and passed
to the fragment shader via the fragment color interpolant.
This value needs to be scaled by the size of the F-buffer be-
ing used. The user binds the previous F-buffer to one of the
texture units and performs a texture lookup to restore the
previous values. The disadvantage of this approach is that it
adds the cost of one dependent texture lookup and requires
the use of one interpolant (fragment color), but it provides a
flexible method for the restoration of values and the use of
multiple previously stored F-buffers, up to 16. An example
of the output of a triangle rasterized to F-Buffers of different
sizes is bound to texture and displayed is provided in Figure
2.

F-Buffers use graphics memory more efficiently and flex-
ibly than auxiliary framebuffers (deep framebuffers) would.
An ideally sized F-Buffer uses just enough memory to hold
the fragments produced by the current shader. In contrast, an
auxiliary framebuffer also uses memory for all of the pix-
els that are not touched by the current shader. An example
of the space savings of F-Buffer over using the framebuffer
for storage can be seen in Figl2eThe reads and writes to
an F-Buffer are perfectly coherent, since F-Buffer accesses
are FIFO rather than random. For an off-chip F-Buffer, this
property allows memory reads and writes to efficiently use
large-granularity transfers.

Polygons are rasterized on every pass. The original pa-
per concentrates on a single rasterization approach, but this
The original F-Buffer paper describes several possible hard- can drastically increase the amount of storage required for
ware implementations. We discuss the F-Buffer implemen- an F-Buffer and limit the shading flexibility. All interpolants
tation in the ATI 9800 and X800 series graphics processors (e.g. color, texture coordinates, etc) generated in the first
and why certain design choices were made. The ATl 9800 pass would have to be stored if needed for subsequent passes.
series implements what is referred to as ATI Fbuffer in the Since only the first pass can generate interpolants, the pro-
marketing literature, and the X800 series has an improved grammer is limited to the interpolants available. As noted

3. Implementation
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Triangle (normal raster) 64x64 128x128 256x256 512x512

Figure 2: This figure shows how an F-Buffer is laid out in memory for different sides fragments are output into the F-Buffer
in rasterization order. On the left is the rainbow triangle to be rasterized to2x512 window. For the 64x64 F-Buffer, we are
only able to output the first 4096 fragments, the top corner of the triangle1E8x128, we get a little bit further before we
overflow the F-Buffer. At 256x256, we have successfully rasterizegliimgle, and have a small amount of wasted space. At
512x512, we can easily fit all of the fragments into the F-Buffer. Mosteobttffer is unused, corresponding to the amount of
wasted space when using traditional multi-pass rendering.

in [CNS"02, RLV*04, FHHO04], a lack of interpolants in it- user must restart the current shading pass by submitting a
self can create the need for multi-pass rendering. Rasteriz- smaller batch of geometry. After the successful batch is fully

ing polygons on each pass requires less storage and enableshaded and output to the framebuffer, the next batch will

more flexible use of interpolants. The disadvantage of this need to be submitted for shading. Fortunately, since over-
approach is that multi-pass shading a scene with many ver- flow can be detected at the end of the first shading pass, only
tices can become bound by vertex processing instead of frag- one pass of wasted work can occur.

ment processing. This will be explored in more detail in sec-

tion 4. Although this is a functional solution, it puts a large bur-

den on the user to achieve correctness and a large perfor-
Conventional framebuffer operations (depth test, alpha mance premium on overflow. To avoid overflow altogether,

test, stencil, etc) are performed at the end of the last shaderthe yser is forced to estimate how many fragments an ob-
pass, when F-Buffers are only used as input. Therefore, eachiject will generate and batch geometry accordingly. This may
pass using an F-Buffenustgenerate the exact same order force the user to be overly conservative in their rendering un-
of fragments for the previous values to be restored correctly. less they have intimate knowledge of the rasterization prop-
All fragments that may be rasterized must be accounted for erties of the hardware. Encountering overflow with this im-
in the F-Buffer. This means that many operations that might plementation can lead to redundant computation and ineffi-
normally mask a fragment output, e.g. using the KIL instruc- - ciencies in shading.
tion in a fragment program, setting write masks, or using
alpha/stencil/depth tests, are disabled when an F-Buffer is The X800 series provides hardware overflow handling,
bound as output. However, the advantage of forcing con- which greatly eases the burden on the programmer. The
sistent fragment generation is that the same F-Buffer can hardware allows the F-buffer to fill up, and provides the user
be used as both input and output since we can avoid read- feedback that an overflow has occurred as well as the number
modify-write hazards as we always read and write to the of F-Buffers of the allocated size needed to handle the over-
same location. This guarantee cannot be made if a user ac-flowing fragments. The overflow handling implementation
cesses an F-Buffer with general texture addressing. provides a user-controlled fragment window. This window

specifies the range of fragments, which is an F-buffer size

number of fragments offset by multiples of the F-Buffer size,
3.2. Overflow Handling allowed to be written to the F-buffer. All fragments outside
of the specified fragment window will be discarded early,
before entering the fragment processors. For example, if the
user defines a 32x32 F-buffer and generates 2048 fragments,
this will overflow the buffer exactly one time. The user will
shade the first 1024 fragments with their multi-pass shader,

With the 9800 series, the programmer creates an F-Buffer and the remaining 1024 fragments of overflow will be dis-

of a certain size and is responsible for handling overflow. carded. The user can then shift the F-buffer window by one,
The user can query the hardware to test whether overflow hasand the first 1024 fragments will be discarded and the sec-
occurred after their submitted geometry’s fragments have ond 1024 will be shaded. A longer example in pseudo code is
committed to the F-Buffer. Fragments overflowing the F- available in AppendipA. This functionality allows for every
Buffer generate undefined results. If overflow occurs, the fragment to be shaded only once, regardless of the amount

As mentioned in the original F-Buffer paper, overflow han-
dling is one of the more complex aspects of an F-buffer im-
plementation. This is where the two generations of hardware
differ in implementation.
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Figure 4: Performance results from running the 3 pass pit-
ted thin glass shader on a low vertex and high vertex count
_— _—— S Y sphere of the same size with different F-Buffer sizes.

Figure 3: A 3 pass pitted thin glass shader applied to a
sphere and lit with the St. Peter’s Basilica illumination data
[Deb9g rendered to a 512x512 window using a 128x128 F-
Buffer. Rendering this object requires 23 F-Buffer windows,
or 69 passes total. Correct transparency is maintained be-
cause each fragment rendered gets its own storage in the

F-Buffer during intermediate passes. Even though fragments outside of the current F-Buffer

window are discarded before fragment shading, there is still
the cost of sending the geometry through the vertex units
each pass. For each F-Buffer window, we must resend the
geometry. If the F-Buffer size is chosen small enough, ge-
ometry processing will dominate the cost of rendering each

of overflow, but may require the geometry to be submitted
many times, once for each shading pass for each F-Buffer

window. F-Buffer window. We expect the performance of shading
to increase linearly with a reduction in the the number
4. Results of F-Buffer windows required, until we become fragment

processing bound, in which case performance should stay
In this section, we will concentrate on the F-Buffer support roughly the same since the same number of fragments are
in the X800 series and later hardware since they have a morerendered regardless of F-Buffer window size. The effect of
flexible implementation. Using ASHLIATI03a], we have this can be seen in Figur® where we show the render-
created a pitted glass shader that exceeds the resource liming performance of a simple and highly tessellated sphere,
its available on all current hardware. This shader is a com- with 12,288 and 196,608 vertices respectively, rendered to a
bination of the glass and stucco Renderman shaders. Us-1024x1024 framebuffer using different sized F-Buffers. We
ing RDS [CNS*02], ASHLI chooses to split the shader into  are using the same three pass shader as above for these tests.
three rendering passes. Since this shader relies on blendingThe low vertex sphere is vertex processing bound for small
and our test objects generate overlapping fragments, tradi- F-Buffer sizes, but becomes fragment processing bound for
tional multi-pass techniques using render-to-texture fail to larger F-Buffer sizes. For the 64x64 F-Buffer, we overflow
shade the object correctly. As can be seen in Fi@tee- 162 times, so we must submit geometry a total of 489 times
cause each fragment gets a unique storage location in the F-for our 3 pass shader. For the 256x256 F-Buffer, we overflow
Buffer, correct shading is preserved. The difference in ren- only 10 times and have to submit the geometry 33 times to
dering transparent objects with an F-Buffer and traditional complete our shading. In both cases, we shade the same total
framebuffer rendering can best be seen with the simple ex- number of fragments, but the larger F-Buffer naanyfewer
ample in Figurel. Because of the implementation decisions vertices sent through the vertex processors to complete the
made, the performance of rendering to F-Buffers with no shader. For the more tessellated sphere, we are heavily ver-
overflow is equivalent to using traditional framebuffer meth- tex bound and you can just start to see the performance curve
ods. knee over when using very large F-Buffers.
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5. Discussion

F-Buffers provide an elegant mechanism to support multi-
pass rendering while being able to maintain correct trans-
parency. With compiler and runtime support for F-Buffer
added to systems like RTSLPMTHO1] and ASHLI
[ATI03al, very large shaders can be used with objects re-
quiring transparency.

However, given hardware support for F-Buffer, there are
other rendering problems that can be solved. In this section
we talk about extended uses of F-Buffer for shading op-
erations. We also explore several possible implementation
changes to optimize F-Buffer support and to make it more
flexible.

5.1. Extended shading operations

We can implement order-independent blending by storing
the final fragment colors as well as their xyz screen space
location into two separate F-Buffers. Instead of forcing the
user to sort the geometry, we will use the F-Buffer to sort
the fragments into the correct order for blending. Since we
have xyz values and the final color for each fragment, we

can sort the fragments to achieve order-independent blend.

Using a stable sort, like bitonic sort, we can sort fragments

5

on a fragment, that fragment still needs to be accounted for
in the output of the F-Buffer. If it were possible to prevent
the fragments from being output to the buffer and still pro-
duce a FIFO, interesting data filtering operations could be
performed. For example, if the user was generating a ver-
tex array with the fragment shader, they could kill fragments
to prevent certain vertices from being output into the buffer.
The main difficulty in this addition is finding a way to keep
the coherent output properties of F-Buffer in maintaining
performance.

One of the performance issues not yet discussed with the
current implementation is the inability to use early tests to
prevent fragment generation. For example, if a very complex
shader is applied to an object that is partially occluded, we
would like to be able to use early-z tests to prevent the ren-
dering of the occluded fragments. The difficulty with the cur-
rent implementation is that the culling of fragments because
of the F-Buffer window is done prior to the early discard
units. It would be interesting to explore which early tests
could be supported by F-Buffer. Any implementation must
ensure that the same fragmemsstbe generated for each
pass, and if the output will not be included in the F-Buffer,
how to maintain coherent output into the F-Buffer.

with the same xy screen space location by z value. This can g conclusion

be done inO(log?n) passes. When the F-Buffer is rebound

and restored in the final pass, we generate the fragments inWe have demonstrated the first available commodity hard-
the correct order for blending. In the case of overflow, we Wareé implementation of F-Buffer and discussed the various
have to store each of the overflows in separate F-Buffers and design choices made. With these design choices, F-Buffer

sort between and within each buffer, which is non-trivial and Support was able to be incorporated with minimal impact on
expensive. the rest of the processor design. Using F-Buffer, multi-pass
rendering with correct transparency can now be achieved

There are many papers and rese_arche_rs that have COMyith full hardware acceleration. We have also discussed sev-
mented on the need for a method which uniquely stores each o 5 yses of F-Buffer for extended rendering tasks. Now that

fragment rendered. The F-Buffer provides a solution to this 5 4y/are accelerated support is available, we hope that the
need. Many algorithms traditionally relying on the sorting 4 -ahhics community will explore other uses and extensions
of geometry can be reimplemented by sorting the fragments to E-Buffer

stored in the F-Buffer after rendering has occurred. For ex-
ample, unstructured volume rendering often relies on the vis-
ibility sorting of tetrahedral. Callahan et aC[CS0 de- Appendix A: F-Buffer Pseudo Code
scribe a k-buffer |mplementat|(_)n. to_ hgndle resorting frag- DisplayLoop

ments in the correct order, but it is limited to small number
of overlapping fragments. Using an F-Buffer and sorting it
similar to the above, it may be possible to handle larger val-
ues ofk as well as to improve the efficiency of the algorithm.
There are also interesting possibilities for CSG applications
by modifying Goldfeather’s algorithmdMTF89 to make
use of F-Buffers.

while remaining F-Buffer windows
Set the F-Buffer window
for pass 0 to 2

if pass 0
Attach F-Bufferl to offscreen framebuffer
Bind offscreen framebuffer

5.2. Hardware extensions

if pass 1
Attach F-Buffer2 to offscreen framebuffer
Bind offscreen framebuffer
Bind F-Bufferl to texture

As previously discussed, the current implementation does
not allow for some of the conventional framebuffer opera-
tions to be performed when using F-Buffer. We also do not
allow late discard functions from preventing output to the F-
Buffer. For example, if a shader executes a KIL instruction if pass 2
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Bind normal framebuffer S., HANRAHAN P.: A real-time procedural shading sys-
if first F-Buffer window tem for programmable graphics hardwa#M Transac-
Draw background objects tions on Graphic§August 2001).5

Enable blending N

Enable test functions (depth,stencil,alpha) [RLV™04] RIFFEL A., LEFOHN A. E., \_/'D'MCE K'

Bind E-Buffer2 to texture LEONEM., OWENSJ. D.: Mio: Fast multipass partition-
ing via priority-based instruction scheduling. @raphics

Setup transforms Hardware 2004Aug. 2004), pp. 35-441, 3

Bind vertex and fragment programs for pass
Render geometry

if first F-buffer window and pass is 0
Get remaining number of F-Buffer windows to render
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