
Novcmlwr 1987 Hcport No. S’I’AN-(X-87-1189
Also Nunhred KSL-87-65

c lnst rumented Architectural Simulation

bY

El. A. IMagi, N. Saraiya, S. Nishimura, and G. Byrd

Department of Computer Science

Stanford University
St;mfortl, CA 94305

Knowledge Systems Laboratory
Report No. KSL 87-65

November 1987

Instrumented Architectural Simulation

bY
Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura,

and Greg Byrd

Digital Equipment Corporation
Maynard, Massachusetts 01754

Stanford University
Stanford, California 94305

This work was supported by DARPA Contract
F30602-85-C-0022, NASA Ames Contract NCC 2-2200Sl, and Yoeing

Contract W26687.5. Greg Byrd was supported by an NSF Graduate
Fellowship and by the Stanford University, Department of

Electrical Engineering.

Instrumented Architectural Simulation
Bruce A. Delagi, Nakul Saraiya, Sayuri Nishimura, and Greg Byrd

Digital Equipment Corporation Stanford University
Maynard, Massachusetts 01754 Stanford, California 94305

ABSTRACT
Simulation of systems at an architectural level can offer an effective way to study critical

design choices if (1) the performance of the simulator is adequate to examine designs executing
significant code bodies -- not just toy problems or small application fragments, (2) the details
of the simulation include the critical details of the design, (3) the view of the design presented
by the simulator instrumentation leads to useful insights on the problems with the design, and
(4) there is enough flexibility in the simulation system so that the asking of unplanned
questions is not suppressed by the weight of the mechanics involved in making changes either
in the design or its measurement. A simulation system with these goals is described together
with the approach to its implementation. Its application to the study of a particular class of
multiprocessor hardware system architectures is illustrated.

1 INTRODUCI’ION
Simulation systems are quite often developed in the context of a particular problem. To a

degree, this is true for SIMPLE, an event based simulation system, and CARE, the computer
array emulator that runs on SIMPLE? The problem motivating the development of both

’ SIMPLE and CARE was the performance study of 100 to lOOO-element multiprocessor systems
executing a set of signal interpretation applications implemented as “1000 rule equivalent
expert systems” [21.

A set of constraints pertinent to this problem governed the design of SIMPLE/CARE. The
applications represented significant bodies of code and so simulation run times were expected
to be an important consideration. Moreover, the issues involved with the interactions of
multiprocessor system elements were sufficiently unexplored prior to simulation that
simplifications in the CARE system model, specifically with respect to element interactions,
were suspect. This need for detail was, of course, in tension with the need for simulation
performance. The ways that simulated system components would be composed into complete
systems was initially difficult to bound. Further, it was clear that the models of these

a components would be elaborated over time and would undergo substantial change as design
concepts evolved. It was also clear that the ways of examining the operation of these
components would change independently (and at a great rate) as early experience indicated
what alternative aspect of system operation should have been monitored in any given
completed run.

The design goals that emerged then were (1) that the simulation system should support the
management of substantial flexibility with regard to simulated system structure, function, and
instrumentation and (2) that, in order to accomplish runs in acceptable elapsed times, the detail
of simulation should be particularly focused on the communications, process scheduling, and
context switching support facilities of the simulated system -- that is, on just those aspects of
system execution critical to multiprocessor (as opposed to uniprocessor) operation.

‘SIMPLE and CARE were developed by the authors at the Knowledge Systems Lab of Stanford University. SIMPLE
is a descendent of PALLAD Cl] optimized for the subset of PALLADlO’s capabilities relevant to hierarchical design
capture and simulation. It is written in Zetalisp [33 and currently runs on Symbolics 3600 machines and Tl Explorers.w

This work was_ supported by DARPA Contract F30602-85-C-0012, NASA Ames
?&t&t kCC 2-2200SI, and Boeing Contract W266875. Greg Byrd was
supported by an NSF Graduate Fellowship and by the Stanford University
Department- of Electrical Engineering.

1.1 Design Time Interaction And Run Time Operation
Encapsulation of the state of design components with the procedures that manipulate that

state is one clear way to manage design evolution. Such encapsulation partitions the design
along well defined boundaries. Components (by and large) interact with other components
only through defined ports. Connections between components terminate at such ports. When
a system simulation is initialized, connections are traced SO that for every port, the simulator
knows the connected (terminating) ports together with their containing CompOnentS. Once such
initialization is complete, that is, throughout the simulation run, assertions about the state of a
port of one component can be directly translated to assertions about the state of connected
ports of other components.

Partitioning issues of system structure, component behavior, and instrumentation into separate
domains of consideration helps in managing a design that is both fluid and complex. System
structure, that is, the relationship between components, can be specified through use of an
interactive, graphics structure editor and is largely independent of component function per se.
Component behavior is encapsulated in a set of definitions pertinent to the given class of
component, Each component in a SIMPLE simulated system is a member of a class defined
for that component type. Instrumentation is automatically and invisibly made part of the
definition of each simulated component that is to be monitored during a run. This is done by
arranging that the class of every component to be monitored is a specialization of the genera\
instrumented-box cl~. The basic data structures and procedures for monitoring simulated
components and maintaining the organizational relationships between each component and its
related instrumentation are inherited through this general, ancestral class and are thus made a
separate, substantially independent consideration in the design.

A further partitioning of concerns is employed to separate out the definition of the
application programming language interface and its support (as provided by CARE) from the
underlying information flow control governing component behavior. The behavioral
descriptions of components (which are expressed as sets of condition/action rules) deal
generically with gating information, independently of the structure of the information, between

- ports of the component and its internal state variables. This is separated in the component
model definitions from the functions performed to create and manipulate the information so
gated. The simulated implementation of the application programming language support
facilities, on the other hand, relies only on the specifics of the information and its structure
and plays no part in gating it between the components of the system. Changing the definition
of the application language is thus done independently of changing component flow control
behavior. The application programmer and the implementer of the application language
interface may use whatever data structures seem suitable to them, be they numbers and
keywords or procedure bodies and execution environments. The simulation system doesn’t care.

The component probe definitions, that is, the specifications of what information should be
captured for each component type, are separated from the descriptions of the behavior of such

w components. in designing for flexibility in the instrumentation system, it turned out to be
important to further divide the information presentation from the information collection
issues. The mapping from particular component probes to particular instrument panels and the
transformations to be applied to the information as it passed from a given kind of probe to a
given panel (and between panels) is captured in the instrument specification. This is a
definition of what kinds of panels are included in an instrument, how they fit on an
inskument screen, how they are labeled and scaled, and what information from which kinds of
probes are displayed on each panel. The instrument specification also indicates what kinds of
probes are to be connected to which kinds (that is, which classes) of components in the system.

Putting together all the definitions of components, component probes, panels, instruments,
applications interfaces, and inter-component relationships is done in a set of design time
interactions by a system architect. These interactions are used by the simulation system to
generate efficient run time representations so that simulation performance goals can be met.
Figure 1 illustrates the partition between design time interactions and simulation run time
operation. Structure editing pulls together components from the component library to produce
a circuit. Associated with some components in the library, there are definitions for the syntax
and underlying mechanisms of a multiprocessor applications language. These specify the
interface used to provide the program input to the multiprocessor system being simulated.2

%he laWWe Primitives supplied can be used to define multiprocessor language interfaces for either shared-viriable
or value-passing paradigms. AS supplied, the language interface built on these primitives support value-passing on
Stream between objects but alternative interfaces can be (and have been) easily defined in terms of the given
primitives.

Figure 1: Design Time Interactions and Run Time Representations

The definitions used to generate component probes are associated with each library
component to be monitored. There may be several such definitions, each appropriate to
measuring a different aspect of the associated component’s operation. An instrument
specification selects from these definitions, elaborates them with selections from a set of probe

- operation modules to include any pre-processing (for example, a moving average) to be
calculated by the probe, and indicates under what conditions what information from the probe
is to be sent to which panels of the instrument and how it is to be transformed and displayed
there. Instrument specifications also partition the screen among the panels of the instrument.
The end product of these design time interactions is an instrumented circuit and an instrument.
The instrument comprises a set of instrument panels and a set of constraints relating them to
! he instrument screen. The instrumented circuit ties together instances of components, probes,
-nd panels for a simulation run.

For each defined class of component and its associated probes, the design time interactions
produce code bodies that accomplish simulation operations during a run. It is an attribute of
the underlying Lisp base of the simulation system that changes in these definitions have

a immediate effect even during a simulation run -- an important capability during debugging.

2 STRUCTURE AND COMPOSITION
Design time interactions to specify a system include the establishment of component

relationships. Such specifications can be said to accomplish the composition of the system
from its components and so define its structure. SIMPLE supports hierarchical composition:
components may be described in terms of a fixed set of relationships among their sub-
components. Additionally, such composite components may have function beyond what can be
inferred strictly from their composition. All this can then be included a higher level
composite and so on indefinitely until the top level “circuit”, the system structure, is reached.

Composition is described graphically and interactively in SIMPLE by picking a previously
specified component type from a menu, placing it in relationship to other components with
“mouse” movements, and, through the same means, specifying the connections between its
selected ports and those of other components.

Although any connection of components can be created by the means noted previously, for
some repetitive, well patterned systems of connections, composition can be automated. The
CARE library includes a component, the iterated-cell, which represents a template for the
creation of composite components by iteration of a unit cell. The specializations include a
method for responding to a request to provide a wiring list. Such a list associates each source
port of a cell with the corresponding destination port (in terms of port names) and the
position of the destination cell relative to the source cell in the iterated structure. The iterated
cell component uses this information to make the required connections between each of its
constituent cells.

3 INSTRUMENTATION
The results of a simulation are primarily the insights -it provides into the operation of the

simulated system. The “insight” we frequently experienced using an early version of the
simulation system was that more interesting results could have been produced by the run just
completed if only the instrumentation had been different. With this in mind, the design for
the current verc’ 7n of the simulation instrumentation system was aimed at flexibility. This
was attained kS .out significant performance impact by building efficient run-time system
structures before each run, as outlined in section 1.1, from the declarations defining the
instrumentation.

Figure 2: Instrument System Organization

The organization of the instrumentation system is pictured in figure 2. The simulator
interacts with component instances through assertions, that is, calls on an assert function, in
behavior rules (the methods associated with :ApplyRul es messages). All instrumented
components are specializations of an instrumented-box (as well as other classes). After each

0 Separation of probe and component definitions to facilitate their independent
modification.

l An application language interface that is easily extended or changed without
recasting the inf,-*rmation flow control described by the component behaviors.

While there is always room for additional capability, SIMPLE/CARE is a usefully complete
system. It now includes:

0 Supplied components for a network multiprocessor simulation with many of their
parameters customizable by menu interactions.

0 A hierarchical structure editor that currently provides automatic grid and torus
composition operators. (Automated composition of richer topologies, such as
hypercubes, has been provided for in the basic design).

l A rule language that supports a synchronous design style without incurring the
overhead of (naive) synchronous simulation. .

l Method invocation for functional simulation that is integrated into the behavioral
simulation rule system and which provides for ‘operations by and on both local and
hierarchically related components.

l Method specification design aids provided by the underlying program development
environment (for example, method dictionaries and quick access to method sources
from the debugging system).

l An evolved set of panel templates providing histograms and sorted, scrollable text
lines as well as self and fixed scaling, “two and a halp dimensioned, history
sensitive displays which may be scatter plots, strip charts, line graphs, intensity
maps, and signal animations.

We set off to build a multiprocessor simulation system with performance adequate for the
understanding of multiprocessor systems executing significant applications. The
SIMPLE/CARE simulation system has been used to study the operation of “expert systems” of

. respectable size [2 3. Depending on instrumentation load, these studies have involved
simulation runs from 20 minutes to several hours each. While faster would surely be better,
performance has proven adequate to these needs.

5 ACKNOWLEDGEMENTS
This work stands on the shoulders of its predecessor, the Palladio system, designed and

implemented by Harold Brown and Gordon Foyster. Our functional goals were more restrictive
than theirs so we had the luxury of design by simplification. Without their implementation
base, it would have been hard to know even where to begin.

Many hands and minds have contributed to the development of SIMPLE/CARE. We are
- particularly indebted to the work of Russ Nakano who started off to do a simple learning
exercise and ended up doing a particularly careful modeling of a intricate signalling protocol.

References
1. Brown, Harold, Christopher Tong, and Gordon Foyster. “PALLADIO: An Exploratory
Design Environment for Integrated Circuits.” IEEE Computer I6 (December 1983).

2. Harold D. Brown, Eric Schoen, and Bruce A. Delagi. An Experiment in Knowledge-Based
Signal Understanding Using Parallel Architectures. Tech. Rept. STAN-CS-86-1136 or
KSL-86-69, Stanford University, October, 1986.

3. Daniel Weinreb and David Moon. Lisp Machine Manual. Symbolics, Cambridge, MA,
1981.

