
October 1987 Report No. STAN-CS-87-1 188 (7
Also Numbered KSL-87-61 0d..,

AD-A198 708
11FLE CP

Experiments with a Know ledge-Based System
on a Multiprocessor

by

Russell Nakano and Masafuni Minami

D["

Department of Computer Science

Stanford University
Stanford, CA 94305

DISTRIMtmN STATEMFNT A I
Approved for Public releaae i

Distribution uwnlimited

KJU / I

Knowledge Systems Laboratory October 1987
Report No. KSL 87-61

Experiments with a Knowledge-Based System

on a Multiprocessor

by

Russell Nakanot and Masafumi Minami

KNOWLEDGE SYSTEMS LABORATORY INSEO)E

Computer Science Department
Stanford University -A cesinF

Stanford, California 94305 NTceIS CRAI

OTIC TAB 0
Unannot.nced

tWORKSTATION SYSTEMS ENGINEERING J1St iit'

Digital Equipment Corporation By1% 0)
Palo Alto, California 94301

Ames~~ ~ ~ ~~~~~I Contrac NC -20SBoigCntatW267, nrh

Workstation Systems Engineering group of Digital Equipment Corporation.

Abs ract
~Ie /

This paper documents results obtained and the lessons$ learned in the
derign, implementation, and execu'on of a simulated real-time application on a simulated
parallel processor. Specifically, dmr parallel program ran 100 times faster on a 100-
processor multiprocessor compared to a I-processor multiprocessor.

The machine architecture is a distributed-memory multiprocessor. The target
machine consists of 10 to 1000 processors, but because of simulator limitations, we ran
simulations of machines consisting of I to 100 processors. Each processor is a computer
with its own local memory, executing an independent instruction stream. There is no
global shared memory; all processes communicate by message passing. The target
programming environment, called Lamina, encourages a programming style that stresses
performance gains through problem decomposition, allowing many processors to be
brought to bear on a problem. The key is to distribute the processing load over replicated
objects, and to increase throughput by building pipelined sequences of objects that handle
stages of problem solving. _ ,

We focused on a knowled -based application thax simulates real-time
undJerstnding of radar tracks, called rrc. This paper desa'b*6 a portion of the Airtrac
application implemented in Lamin/and a set of expenm"ts that we performed. -

following hy=poteses 1) Performance of oiaconcurrent program improves
with additional processors, and thereby attains a significant level of speedup. 2)
Corectness of o: concurrent program can be maintained despitr a high degree of problem
decomposition highly overloaded input data conditions. (<)

iii

Table of Contents

Table of Contents... v
List of Figures ... Vi
List of Tables..vi

41. Introduction .. 1
2. Definitions ... 2
3. Comnputational model.. 3

3. 1. Machine model ... 3
3.2. Programmer model.. 4

4. Design principles.. 5
4. 1. Speedup... 6

4. 1. 1. Pipelining ... 6
4.1.2. Replication.. 6

4.2. Correctness.. 7
4.2.1. Consistency .. 7
4.2.2. Mutual exclusion .. 9

4.3. Dependence graph programs.. 10
5. The Airtrac problem.. 14

5. 1. Airrra data association as dependence graph............................ 17
5.2. Lamiina implemnentation..21

6. Experiment design.. 24
7. Results ... 27

7.1. Speedup.. 27
7.2. Effects of replication .. 29
7.3. Less than perfect correctness... 31
7.4. Varying the input data set.. 32

8. Discussion 35
8.1. Decomposition and correctness 35

8. 1. 1. Assigningfunctions to objects 36
8.1.2. Whynmessage order maters.................................. 36
8.1.3. Reports as values rather than objects 37
8.1.4. Initialization... 37

8.2. Other issues .. 39
8.2.1. Load balance.. 39
8.2.2. Conclusion reuracion .. 41

9. Summary ... 42
Ackniowledgemnents.. 43

References.. 4

V

List of Figures

Figure 1. Decomposing a problem to obtain pipeline speedup 6
Figure 2. Lecomposing a problem to obtain replication speedup 7
Figure 3. A dependence graph program for a simple numerical computation. 12
Figure 4. A dependence graph program for the simple numerical computation 13
Figure 5. Definition of the "optimized summation" subgraph 14
Figure 6. Input to Airtac .. 16
Fit- -e 7. Grouping reports into segments in data association 17
Fi, :e 8. Dependence graph program represeniation of Airt-ac data association. 18
Figure 9. Decomposition of the "handle track" sub-problem 19
Figure 10. Decomposition of the "check fit" sub-problem 20 S
Figure 11. Object structure in the data association module 21
Figure 12. Comparison of the number of active tracks in the many-aircraft and one-

aircraft scenarios .. 27
Figure 13. Confirmation latency as a function of the number of processors 28
Figure 14. Inactivation latency as a function of the number of processors 29
Figure 15. Confirmation latency as a function of the number of radar track managers. 30
Figure 16. Confirmation latency as a function of the number of input handlers 31
Figure 17. Correctness plotted as a function of the number of processors for the one-

aircraft and many-aircraft scenarios .. 32
Figure 18. Confirmation latency as a function of the number of processors varies with

the input scenario .. 33
Figure 19. Input workload versus time profiles shown for t-o possible input scenarios.

.................. 35
Figure 20. Creating static objects during initialization................................ 38

vi

List of Tables

Table 1. Corre~spondence of Lamnina objects with functions in the dependence
graph programn.. 24

vi

111, 110 , 1 M 1 , ' III N 11

1. Introduction

This paper focuses on the problems confronting the programmer of a concurrent
program that runs on a distributed memory multiprocessor. The primary objective of our
experiments is to obtain speedup from parallelism without compromising correctness.
Specifically, our parallel program ran 100 times faster on a 100-processor multiprocessor
compared to a 1-processor multiprocessor. The goal of this paper is to explain why we
made certain design choices and how those choices influence our result.

A major theme in our work is the tradeoff between speedup and correctness. We
attempt to obtain speedup by decomposing our problem to allow many sub-problems to be
solved concurrently. This requires deciding how to partition the data structures and
procedures for concurrent execution. We take care in decomposing our problem- to a first
approximation, more decomposition allows more concurrency and therefore greater
speedup. At the same time, decomposition increases the interactions and dependencies
between the sub-problems and makes the task of obtaining a correct solution more difficult.

This paper focuses on the implementation of a knowledge-based expert system in a
concurrent object-oriented programming paradigm called Lamina [Delagi 87a]. The target
is a distributed-memory machine consisting of 10 to 1000 processors, but because of
simulator limitations, our simulations examine I to 100 processors. Each processor is a
computer with a local memory and an independent instruction stream. 1 There is no global
shared memory of any kind.

Airtrac is a knowledge-based application that simulates real-time understanding of
radar tracks. This paper describes a portion of the Airtrac application implemented in
Lamina and a set of experiments that we performed. We encoded and implemented the
knowledge from the domain of real-time radar track interpretation for execution on a
distributed-memory message-passing multiprocessor system. Our goal was to achieve a
significant level of problem-solving speedup by techniques that exploited both the
characteristics of our simulated parallel machine, as well as the parallelism available in our
problem domain.

The remainder of this paper is organized as follows. Section 2 introduces
defiu. ,ns that we use throughout the paper. Section 3 describes the model of the parallel
machine that we simulate, and the model of computation from the viewpoint of the
programmer. Section 4 outlines a set of principles that we follow in our programming
effort in order to shed light on why we take the approach that we do. Section 5 describes
the signal understanding problem that our parallel program addresses. Section 6 describes
the design of our experiments, and Section 7 presents the results. Section 8 discusses a
number of design issues, and Section 9 summarizes the paper.

leach processor is roughly comparable to a 32-bit mic.oprecessc !b-- system equipped with a

multitasking kernel that supports interprocessor communication and restartable processes (as opposed to
resumable processes). The hardware system is assumed to support higb-bandwidth, low-latency inter-
processor communications as descnbed in Byrd et.al. [Byrd 87].

1

2. Definitions

Using the definitions of Andrews and Schneider [Andrews 83], a sequential
program specifies sequential execution of a list of statements; its execution is called a
process. A concurrent program specifies two or more sequential programs that may be
executed concurrently as parallel processes.

Tm

We define Sn,m speedup as the ratio nn where Tk denotes the time for a given
n

task to be completed on a k-processor multiprocessor. Both Tm and Tn represent the same

concurrent program running on m-processor and n-processor multiprocessors,
respectively. When we compare an n-processor multiprocessor to a 1-processor
multiprocessor, we obtain a measure for Sn/l speedup, which should be distinguished

from true speedup, defined as the ratio r-, where T* denotes the time for a given task to
n

completed by the best implementation possible on a uniprocessor.2 In particular, T"
excludes overhead tasks (e.g. message-pa,.sing, synchronization, etc.) that TI counts.

We define correctness to be the degree to which a concurrent program executing on 0
a k-processor multiprocessor obtains the same solution as a conventional uniprocessor-
based sequential program embodying the same knowledge as contained in the concurrent
program. We call the later solution a reference solution. We use a serial version of our
system to generate a reference solution, to evaluate the correctness of the parallel
implementation.3

MacLennan [MacLennan 82] distinguishes between value-oriented and object-

oriented programming styles. A value has the following properies:

" A value is read-only.

* A value is atemporal (i.e. timeless and unchanging).

* A value exhibits referential t'ansparency, that is, there is never the danger of one
expression altering something used by another expression.

These properties make values extremely attractive for concurrent programs. Values
are immutable and may be read by many processes, either directly or through "copies" of I
values that are equal; this facilitates the achievement of correctness as well as concurrency.
A well-known example of value-oriented programming is functional programming
(Henderson 80]. Other examples of value-oriented programming in the realm of parallel
computing include systolic programs [Kung 82] and scalar data flow programs [Arvind 83,
Dennis 85], where the data flowing from processor to processor may be viewed as values
that represent abstractions of various intermediate problem-solving stages.

2A 1-processor multiprocessor executes the same parallel program that runs on a a-processor
multiprocessor. In particular, it creates processes that communicate by sending messages, as opposed to
sharing a common memory.

3Unfortunately, our reference program is not a valid producer of T* estimates, and we cannot use it S
to obtain me speedup estimates. Project resource limitations prevented us from developing an optimized
program to serve as a best serial implementation.

In contrast, MacLennan dctms objects in computer programming to have one orthore of the following properties:

• An object may be created and destroyed.

- An object has state.

* An object may be changed.

* An object may be shared.

Computer programs often simulate some physical or logical situation, where objects
represent the entities in the simulated domain. *For example, a record in an employee
database corresponds to an employee. An entry in a symbol table corresponds to a variable
in the source text of a program. Variables in most high-level programming languages
represent objects. Objects provide an abstraction of the state of physical or logical entities,
and reflect changes that those entities undergo during the simulation. These properties
make objects particularly useful and attractive to a progranmmer.

Objects in a concurrent program introduce complications. In particular, many
parallel processes may attempt to create, destroy, change, or share an object, thereby
causing potential problems. For instance, one process may read an object, perform a
computation, and change the object. Another process may concurrently perform a similar
sequence of actions on the same object, leading to the possibility that operations may
interleave, and render the state of the object inconsistent. Many solutions have been
proposed, including semaphores, conditional critical regions. and monitors; all of these
techniques strive to achieve correctness and involve some loss uf concurrency.

Our programming paradigm, Lamina, supports a variation of monitors, defined as a
collection of permanent variables (we use the term instance variables), used to store a
resource's state, and some procedures, which implement a set of allowed operations on the
resource [Andrews 83]. Although monitors provide mutual exclusion, concurrency
considerations force us to abandon mutual exclusion as the sole technique to obtain
correcmess.

We classify techniques for obtaining speedup in problem-solving into two
categories: replication and pipelining. Replication is defined as the decomposition of a
problem or sub-problem into many independent or partially independent sub-problems that
may be concurrently processed. Pipelining is defined as the decomposition of a problem or
sub-problem into a sequence of operations that may be performed by successive stages of a
processing pipeline. The output of one stage is the input to the next stage.

3. Computational model

' 3.1. Machine model ,
Our machine architecture, referred to as CARE [Delagi 87a], may be modeled as an

asynchronous message-passing distributed system with reliable datagram service
(Tanenbaum 81]. After sending a message, a process may continut. wU execute (i.e.
message passing is asynchronous). Arrival order of messages may differ from the order in
which they were sent (i.e. datagram as opposed to virtual circuit). The network guarantees
that no message is ever lost (i.e. reliable), although it does not guarantee when a message

3

will arrive. Each processor within the distributed system is a computer that supports
interProcessor communication and restartable processes. Each processor operates on its
own isutuction stream, asynchronously with respect to other processors.

In synchronous message passing, maintaining consistent state between
communicating processes is simplified because the sender blocks until the message is
received, giving implicit synchronization at the send and receive points. For example. the
receiver may correctly make inferences about the sender's program state from the contents
of the message it has received, without the possibility that the sender program continued to
execute, possibly negating a condition that held at the time the original message was sent.

In asynchronous message passing, the sender continues to execute after sending a
message. This has the advantage of introducing more concurrency, which holds the
promise of additional speedup. Unfortunateiy, in its pure form, asynchronous message
passing allows the sender to get arbitrarily far ahead of the receiver. This means that the
contents of the message reflects the state of the sender at the time the message was sent,
which may not necessarily be true at the time the message is received. This consideration
makes the maintenance of consistent state across processes difficult, and is discussed more
fully in Section 4.

3.2. Programmer model

Our programming paradigm, Lamina, provides language constructs that allows us
to exploit he distributed memory machine architecture described earlier [Delagi 8T]. In
particular, we focused our programming efforts on the concurrent object-oriented pro-
gramming model that Lamina provides. As in other object-oriented programming systems,
objects encapsulate state information as instance variables. Instance variables may be
accessed and manipulated only through methods. Methods are .nvoked by message-
passing.

However, despite the apparent similarity with conventonal object-oriented systems,
programming within Lamina has fundamental differences:

. Concurrent processes may execute during both object creation and message

sending.

- The time requir- to create an object is visible to the programmer.

* The time required to send a message is visible to the programmer.

* Messages may be received in a different order from which they were senL

These differences reflect the s:rong emphasis Lamina places on concurrency. While
all object-oriented systems encounter delays in object creation and message sending, these
delays are significant within the Lamina paradigm because of the other activities that may
proceed concurrently during these periods. Subtle and not-so-subtle problems become
apparem when concurrent processes communicate, whether to send a message or to create a
new object. For instance, a process might detect that a particular condition holds, and
respond by sencing a message to another process. But because processes continue to
execute during message sending, the condition may no longer hold when the message is
received. This example illustrates a situation where the recipient of the message cannot
correctly assume that because the sender responds to a particular condition by sending a
message, that the condition still holds when the message is received.

4

Regarding message ordering, partly as a result of our experimentation, versions of
Lamina subsequent to the one we used provide the ability for the programmer to specify
that messages be handled by the receiver in the same order that they were sent [Delagi 87c].
Use of this feature imposes a performance penalty, which places a responsibility on the
programmer to determine that message ordering is truly warranted. In the Airtrac
apolication, we believed that ordering was necessary and imposed it through application
level routines that examined message sequence numbers (time tags) and queued messages
for which all predecessors had not already been handled.

In Lamina, an object is a process. Following the definition of a process provided
earlier, we make no commitment to whether a process has a unique virtual address space
associated with it. Each object has a top-level dispatch process that accepts incoming
messages and invokes the appropriate message handler; otherwise, if there is no available
message. the process blocks. Sending a message to an object corresponds to
asynchronous message-passing at the machine level. A method executes atomically. Since
each object has a single process, and only that process has access to the internal state
(instance variables), mutual exclusion is assured. An object and its methods effectively
constitute a non-nested monitor.

Our problem-solving approach has evolved from the blackboard model, where
nodes on the blackboard form the basic data objects, and knowledge sources consisting of
rules are applied to transform nodes (i.e. objects) and create new nodes [Nii 86a, Niu 86b].
Bro% a et. al. used concepts from the blackboard model to implement a signal-interpretation
application on the CARE multiprocessor simulator [Brown 86]. Lamina evolved from the
experiences from that effort. In addition, lessons learned in that earlier effort have been
incorporated into our work, including the use of replication and pipelining to gain
performance, and improving efficiency and correctness by enforcing a degree of consis-
tency control over many agents computing concurrently,

4. Design principles

Lamina represents a programming philosophy that relies on the concepts of
replication and pipelining to achieve speedup on parallel hardware. The key to successful
application of these principles relies on finding an appropriate problem decomposition that
exploits concurrent execution with minimal dependency between replicated or pipelined
processing elements.

The price of concurrency and speedup is the cost of maintaining consistency among
objects. When writing a sequential program, a programmer automatically gains mutual
exclusion between read/write operations on data structures. This follows directly from the
fact that a sequential program has only a single process; a single process has sole control -

over reads and writes to a variable, for instance. This convenience vanishes when the
programmer writes a concurrent program. Since a concurrent program has many
concurrently executing processes, coordinating the activities of the processes becomes a
significant task.

In this section, we develop the concept of a dependence graph program to provide a
framework in which tradeoffs between alternate problem decompositions may be
examined. Choosing a decomposition that admits high concurrency gives speedup, but it
may do so with the expense of higher effort in maintaining consistency. We introduce
dependence graph programs to make the tradeoffs more explicit.

5

&X ' A ',', S I I--

4.1. Speedup
Researchers have debated how much speedup is obtainable on parallel hardware, on

both theoretical and empirical grounds; Kruskal has surveyed this area [Kruskal 85). We
take the empirical approach because our goal is to test ideas about parallel problem solving
using multiprocessor architectures. Our thinking is guided, however, by a number if
principles describing how to decompose problems to obtain speedup.

4.1.1. Pipelining

Consider a concurrent program consisting of three cooperating processes: Reader,
Executor, and Printer. The Reader process obtains a line consisting of characters from an
input source, sends it to the Executor prncess, and then repeats this loop. The Executor
performs a similar function, receiving a line froni the Reader, processing it in some way,
and sending it to the Printer. The Printer receives lines from the Executor, and rits out
the line. These processes cooperate to form a pipeline; see Figure 1. By using
asynchronous message passing, we obtain concurrent operation of the processes; for
instance, the Printer may be working on one line, while the Executor is working on
another. This means that by assigning each process to a different processor, we can obtain
speedup, despite the fact that each line must be inputted, processed, and output
sequentially. By overlapping the operations we can achieve a higher throughput than is
possible with a single process performing all three tasks.

RedrH { xetor PnteV

Figure 1. Decomposing a problem to obtain pipeline speedup.

By decomposing a problem in sequential stages, we can obtain speedup from pipelining.

4.1.2. Replication

Consider a variation of Reader-Executor-Printer problem. Suppose that we are able
to achieve some overlap in the operations, but we discover that the Executor stage
consistently takes longer than the other stages. This causes the Printer to be continually
starved for data, while the Reader completes its wsk quickly and spends most of its time
idle. We can improve the overall throughput by replicating the function of the Executor
stage by creating many Executors. See Figure 2. By increasing the number of processes
performing a given function, we do not reduce the time it takes a single Executor to
perform its function, but we allow many lines to be processed concurrently, improving the
utilization of the Reader and Printer processes, and boosting overall throughput. This
principle of replicating a stage applies equally well if the Reader or the Printer is the
bottleneck.

6

.......... jj

Executor-1

Prin
. Reader o re

Executor-n

Figure 2. Decomposing a problem to obtain replication speedup.

By duplicating identical problem solving stages, we can obtain speedup from replicatioa.

4.2. Correctness

4.2.1. Consistency

In order to achieve speedup from parallelism, we decompose a problem into smaller
sub-problems, where each sub-problem is represented by an object. By doing this, we
lose the luxury of mutual exclusion between the sub-problemr because of interactions and
dependencies that typically exist between sub-parts of a problem. For example, in the
Reader-Executor-Printer problem, the simplest version is where a line may be operated
upon by one process truly independently; we might want to perform ASCII to EBCDIC
character conversion of each line, for instance. We organize the problem solving so that
the Reader assembles fixed-length text strings, the Executor performs the conversion, and
the Printer does output duties. This problem is well-suited to speedup from the simple
pipeline parallelism illustrated in Figure 1. In MacLennan's value/object terminology, a
"fixed-length text suing" may be viewed as a value that represents the i-th line in the input
text; the text string is read-only and it is atemporal. The trick is to :w the ASCII and
EBCDIC versions of a text strings as different values corresponding to the i-th line; the
Executor's role is to take in ASCII values and transform them into EBCDIC values of the
same line. As we will see, value passing has desirable properties in concurrent message-
passing systems.

In a more complicated example, we might want to perform text compression by
encoding words according to their frequency of appearance, where the Reader process
counts the appearance of words and the Executor assigns words to a variable length output
symbol set. The frequency table is a source of trouble; it is in object which the Reader
writes and updates, and which the Executor reads. Unforunately, the semantics we
impose on the text compression task requires that the Reader complete its scan of the input
text before the Executor can begin its encoding task. This dependency prevents us from
exploiting pipeline parallelism.

As another example, we might want to compile a high-level language source
program text (e.g. Pascal, Lisp, C) into assembly code. Suppose we allow the Reader to
build a symbol table for functions and variables, and we let the Executor parse the

7

or le W\

tokenized output from the Reader, while the Printer outputs assembly code from the
Executor's syntax graph stuctures. In the scheme outlined here, the symbol table resides
with the Reader, so whenever the Executor or Printer needs to access or update the symbol
table, it must send a message to the Reader. Consistency becomes an important issue
within this setup. For instance, suppose that the Executor determines on the basis of its
parse. that the variable x has been declared global. Within a procedure, a local variable also
named x is defined, which requires that expressions referring to x within this procedure use
a local storage location. Suppose the end of the procedure is encountered, and since we
want all subsequent occurrences to x to refer to the global location, the Executor marks the
entry for x accordingly (via a message to the Reader). When the Printer sees a reference to
x, it consults the symbol table (via a message to the Reader) to determine which storage
location should be used; if by misfortune the Printer happens to be handling an expression
within the procedure containing the local x, and the symbol table has already been updated,
incorrect code will be generated. The essential point is that the symbol table is an object; as
we defined earlier, it is shared by several parallel processes, and it changes. A number of
fixes are possible, including distinguishing variables by the procedure they are occur
within, but this example illustrates that the presence of objects in concurrent program raises
a need to deal with consistency.

Consistency is the property that some invariant condition or conditions describing
correct behavior of a program holds over all objects in all parallel processes. This is
typically difficult to achieve in a concurrent program, since the program itself consists of a
sequential list of statements for each individual process or object, while consistency applies
to an ensemble of objects. The field of distributed systems focuses on difficulties ansing
from consistency maintenance (Cornaflon 85, Weihl 85, Filman 84]. Smith [Smith 81]
refers to this programing goal as the development of a problem-solving protocol.

The work of Schlichting and Schneider (Schlichting 831 is particularly relevant for
our situation: they study partial correctness properties of unreliable datagram asynchronous
message-passing distributed systems from an axiomatic point of view. They describe a
number of sufficient conditions for partial correctness on an asynchronous distributed
system:

" monotonic predicates,

" predicate transfer with acknowledgements.

An predicate is monotonic if once it becomes true, it remains so. For example, if
the Reader process maintains a count of the lines in the variable totalLines, and it
encounters the last line in the input text, as well having seen all previous lines, then it might
send the predicate P, "tota ines - 16," to the Executor and to the Printer. The Printer
process might use this information even before it has received all the lines, to check if
sufficient resources exist to complete the job, for instance. Intuitively, it is valid to assert
the total number of lines in the input text because that fact remains unchanged (assuming
the input text remains fixed for the duration of the job). Formally, the Reader maintains the
following invariant condition on the predicate P:

Invariant: "message not sent" or "P is true"

In contrast, an assertion that the current line is 12, as in "currentLine - 12," changes as
each line is processed by the Reader. The monotonic criterion cannot be used to guarantee
the correctness of this assertion.

8

A technique to achieve correctness without monotonic predicates is to use
acknowledgements. The idea is to require the sender to maintain the truth condition of a
predicate or assertion until an acknowledgement from the receiver returns. In the Reader-
Executor-Printer example, the Reader follows the convention that once it asserts
"currentLine - 12," it will refrain from further actions that would violate this fact until it
receives an acknowledgement from the Executor. This protocol allows the Executor to
perform internal processing, queries to the Reader, and updates to the Reader, all with the
assurance that the current line will remain unchanged until the Executor acknowledges the
assertion, thereby signalling that the Reader may proceed to change the assertion.
Formall%. the Reader and Executor maintain the following invariant condition on the
predicate P:

Invariant: "message not sent" or "P is true" or "acknowledgement received"

Note that the each techrique has drawbacks, despite their guarantees of correctness.
For the mc-'otonic predicate techaique, the challenge is to define a problem decomposition
and solution protocol for which monotonic predicates are meaningful. In particular, if a
problem decomposition truly allows transfer of values between processes, then by the
semantics of values as we have defined them, values are automatically monotonic. This
explains in formal terms why a "data flow" problem decomposition that passes values
avoids difficult problems related to consistency. For the predicate acknowledgement
technique, we may address problems that do not cleanly admit monotonic predicates, but
we lose concurrency in the assert-acknowledge cycle. Less concurrency tends to translate
into less speedup. In the worst case, we may lose so much concurrency in the assert-
acknowledge cycle that we find that we have spent our efforts in decomposing the problem
into sub-problems only to discover that our concurrent program performs no faster than an
equivalent sequential program!

Throughout the design process. we are motivated by a desire to obtain the highest
possible performance while maintaining correctness. For tasks in the problem whose
durations impact the performance measures, we take the approach of looking first for
problem decompositions that allow either value-passing or monotonic predicate protocols.
Where neither of these are possible, we implement predicate acknowledgement protocols.
In the implementation of Airtrac-Lamina, we did not have to resort to heuristic schemes that
did not guarantee correctness.

For initialization tasks, the time to perform initialization tasks (e.g. creating
manager objects and distributing lookup tables) is not counted in the performance metrics,
but correctness is paramount. Since initialization requires the establishment of a consistent
beginning state over many objects, we use the predicate acknowledgement technique to S
have objects initialize their internal state based on information contained in an initialization
message, and then signal their readiness to proceed by responding with an
acknowledgement message.

4.2.2. Mutual exclusion

Lamina objects are encapsulations of data, together with methods that manipulate
the data. They constitute monitors which provide mutual exclusion over the resources they
encapsulate. These monitors are "non-nested" because when a Lamina method (i.e.
message handler) in the current CARE implementation invokes another Lamina method, it
does so by asynchronous message passing (where the sender continues executing after the
message is sent), thereby losing the mutual exclusion required for nested monitor calls. In
return, Lamina gains opportunities to increase concurrency by pipelining sequences of
operations.

9

Within the restriction of non-nested monitor calls, the programmer may use Lamina
monitors to define atomic operations. If correctness were the sole concern, the
programmer could develop the entire problem solution within a single method on a single
object; but this is an extreme case. The entire enterprise of designing programs for
multiprocessors is motivated by a desire for speedup, and monitors provide a base level of
mutual exclusion from which a correct concurrent program may be constructed.

The critical design task is to determine the data structures and methods which
deserve the atonicity that monitors provide. The choice is far from obvious. For example,
in the ASCII-to-EBCDIC translator example, we assumed the Executor process
sequentially scanning through the string, translating one character at a time. We see that tha
translation of each character may be performed independently, so a finer-grained problem
decomposition is to have many Executor processes, each translating a section of the text
line. In the extreme, we can arrange for each character to be translated by one of many
replicated Executor processes. Choosing the best decomposition is a function of the
relative costs of performing the character translation versus the overhead associated with
partitioning the line. sending messages, and reassembling the translated text fragments (in
the correct order!). The answer depends on specific machine performance parameters and
the type of task involved, which in our example is the very simple job of character
translation, but might in general be a time-consuming operation. Unfortunately, the
programmer often lacks the specific performance figures on which to base such decisions,

must choose a decomposition based on subjective assessments of the complexity of the
task at hand, weighed against the perceived run-time overhead of decomposition, together
with the run-time worries associated with consistency maintenance. On the issue of how to
choose the best "grain-size" for problem solving, we can offer no specific guidance.
However, since the CARE-Lamina simulator is heavily instrumented, it lets the
programmer observe the relative amount of time spent in Actual computation versus
overhead activities.

In addition to providing mutual exclusion, Lamina also encourages the structured
programming style that results from the use of objects and methods. In particular, mutual
exclusion may be exploited without necessarily building large, monolithic objects and
methods that might reflect poor software engineering practice. Since Lamina itself is built
on Zetalisp's Flavors system (Weinreb 80], it is easy for the programnmer to define object
"flavors" with instance variables and associated methods to be atomically executed within a
Lamina monitor. This can provide important benefits of modularity and structure to the
software engineering effort.

To summarize, Lamina objects and methods may be viewed as non-nested monitor
constructs that provide the programmer with a base level of mutual exclusion. The
potential for additional concurrency and problem-solving speedup increases as finer
decompositions of data and methods are adopted. However, these benefits must be
weighed against the difficulties of maintaining consistency between objects in a concurrent
program. Two techniques for maintaining consistency have been described, differing in
their applicability and impact on concurrency.

4.3. Dependence graph programs

The previous sections have defined concepts relevant to the dual goals of achieving
speedup and correctness. This section builds upon those concepts to provide a framework
in which tradeoffs between speedup and correctness may be examined. A dependence
graph program is an abstract representation of a solution to a given problem in which
values flov, between nodes in a directed graph, where each node applies a function to the
values arriving on its incoming edges and sends out a value on zero or more outgoing

10

0

edges. The edges correspond to the dependencies which exist between the functions
[Arvind 33]. A pure dependence graph program is one in which the functions on the nodes
are free from side effects; in particular, a pure dependence graph program prohibits a
function from saving state on any node. (Note that this definition does not preclude a
system-level program on a node from handling a function f x, Y) by saving the value of x
if the value of x arrives before the value for Y. Strictly speaking, an implementation of an f
function node must save state, but this state is invisible to the programmer.) A hybrid
dependence graph program is one in which one or more nodes save state in the form of
local instance variables on the node. Functions have access to those instance variables.

Gajski et. al. [Gajski 82] summarize the principles underlying pure data flow

computation:

-asynchrony

- functionality.

Asynchrony means that all operations are executed when and only when the required
operands are available. Functionality means that all operations are functions, that is, there
are no side effects.

Pure dependence graph programs have two desirable properties. First, consistency
is guaranteed by design. As we have defined it, there are only values and transformations
applied to those values. There are no objects to cause inconsistency problems. Second,
we can theoretIr'ay achieve the maximal amount of parallelism in the solution, and if we
ignore overhead costs, maximize speedup in overall performance. This follows from the
asynchrony principle, which means that in the ideal case we can arrange for each
computation on a node to proceed as soon as all values on the incoming edges are available.

Hybrid dependence graph programs allow side effects to instance variables on
nodes, thereby making it more convenient and straightforward to perform certain
operations, especially those associated with lookup and matching. This immediately
introduces objects into the computational model, and raises the usual concerns about
consistency and correctness.

We will use dependence graph programs to serve two purposes. First, we depict
the dependencies contained within a problem Second, we explain why we made certain
design decisions in solving the Airtrac problem; in particular, we show why we impose
certain consistency requirements on the problem solving protocol. A dependence graph
serves as an abstract representation of a problem solution, rather than a blueprint for actual
implementation. Specifically, we want to avoid the pitfall of using a dependence graph
program to dictate the actual problem decomposition. Overhead delays associated with
message routing/sending and process invocation degrade speedup from the theoretical ideal
if the actual implementation chooses to decompose the problem down to the grain-size
typically found in a dependence graph representation. Given an arithmetic expression, for
instance, it may not be desirable to define the grain-size of primitive operations at the level
of add, subtract, and multiply. This may lead to the undesirable situation where excessive
overhead time is consumed in message packing, tagging, routing, packing, matching,
unpacking, and so forth, only to support a simple add operation.

ConSider the following numerical example from Gajski et. al. (Gajski 82]. The
pseudo-code representation of the problem is as follows:

co - 0

A=x £ 1 Ixo = 8 d2a

ai - di / ei

flUata ab, c

One possible dependence graph program for thisproblem is shown in Figure 3. This is the
same graph presented by Gajski et. al. They assume that division takes three processing
units, multiplication takes two units, and addition takes one unit. As noted in their paper,
the critical path is the computational sequence al, bI , c1 , C2 , c3 , c4 , C5 , C6 , C7 , CB; the
lower bound on the execution time is 13 time units.

dl,el d2,a2 d3,*3 d4,*4 dS,*5 doS d7,o7 deS,*

41 a2 a3 *4 as as a7 as

CO C c c3 C4 C5 CS c7 cS

Figure 3. A dependence gaph progrm for a simple numerical computation.

A possible concurrent program implementation would be to assign eight processes
to compute the quantities bl,...,b 8 , and a ninth to combine the bi and output c l ,...,c 8 .
Such an arrangement maximizes the decomposition of the problem into sub-problems that
may run concurrently, while minimizing the communication overhead. For instance, there
is no loss in combining the computation of c1 ,...,c8 into a single process because of the
inherently serial nature of this particular computation.

Another concurrent program might choose a slightly different decomposition and
partition the computation of cl,...,c8 into, say, three processes: cl-c 2 -c3 , c4 -c5 -c6 , and
c7 -c8 . This arrangement uses 11 processes versus the 9 processes in the previous
example. While this leads to no improvement in the lower bound of 13 time units for a
single computation with d, e, and f, it shows an improvement with repeated computations
with different values of the input arrays, d, e, and f. For instance, this allows one
computation to be summing on the c7 -c8 process while another is summing on the c4-€5-c 6
process. Depending on the compiexity of the computation relative to the overhead costs, it
might even be worthwhile to define one process for each of the c1 ,...,c 8 , giving 16
processes overall. This illustrates two points. First, a strictly sequential computation gives

12
S

an opportunity for pipeline concurrency if many such computations are required. Second,
given a dependency graph, many possible problem decompositions are possible.

Gajski et. al. also present a different dependence graph program that is optimized to
eliminate the "ripple" summation chain by a more efficient summation network. The
dependence graph program for this scheme is shown in Figures 4 and 5. Figure 4 is the
"top-level" definition of the program. We use the convention of using a single box,
optimized sumation, in Figure 4 to represent the subgraph that performs the more
efficient summation. Figure 5 shows the expansion of that box as a graph. Showing a
dependence graph program in this way is merely a convenience; one should envision the
subgraphs in their fully expanded form in the top-level dependence program definition.

The associative property of addition is used to derive the optimized summation
function. For instance, the computation of c8 is rewritten as follows:

C8

M ((((({cO + b) + b2) + b3) + b4) + b5) + b 6) + b 7) + b8)

W (cO + ((b1 + b2) + (b3 + b4))) + ((b 5 + b 6) + (b 7 + be))

By regrouping the addition operations, this dependence graph program has more
parallelism, and reduces the lower bound on execution time from 13 to 9 execution time
units. It is important to realize that the second program is truly different from the first; it
cannot be obtained from the first by graph uansformations or syntactic manipulations that
do not rely on the semantics of the functions on the nodes.

dlial d2.2 d3,*3 d4,o4 d5,e5 d6.e6 d7,*7 dS8
fl 2 3 f4 f5 f6 f7 f 8

bl b2 W3 b4 b5 a6 7 bI

C11 c2 c3 c4 C I S c7 C

Figure 4. A dependence graph program for the simple numerical computaton.

This uses optimization of the recurrence relation using the associative property of
addition. This represents the t"op-level" definition of the solution. The optimized
summation subgraph is shown here a single box, and is shown in expanded form in
Figure S.

13
LUM

optimized summaton is defined as...

bi b2 b3 b4 b5 b6 b7 be

c1 c2 c3 4 3 c8 47 ci

+!

imu S. Definition of the "opumiud summation" subgph.

This example highlights several points. First, a given problem may have more than
one valid dependence graph program. In the example presented here, the use of knowledge
about the underlying semantics of the addition function allows more parallelism. Second,
the dependence graph program serves as a intermediate representation from which the
solution may be defined for a parallel machine. Third, the dependence graph program does
not necessarily make a commitment to the form of the concurrent program. Fourth, for
convenience we may describe a dependence graph program as a top-level graph, together
with several subgraph definitions.

S. The Airtrac problem

In Airtrac, the problem is to accept radar track data from one or more sensors that
are looking for aircraft. Figure 6 depicts a region under surveillance as it might be seen on
a display screen at a particular snapshot in time. (Whereas Figure 6 shows many reported
sightings, an actual radar would probably show only the most recent sighting.) Locations
are designated as either good or bad, where a bad location is illegal or unauthorized, and a
good location is legal. The "X" and "Y" symbols represent locations of a good and bad
airport, respectively. The locations of radar and acoustic sensors are also shown. The
small circles represent track reports that show the location of a moving object in the region
of coverage.

Track reports are generated by underlying signal processing and tracking system,
and contain the following information:

location and velocity estimate of object (in x-y plane)

14

- --- ----- --- I

* location aid velocity covariance

* the time of the sighting, called the scantime

* track id for identification purposes.

We would like to answer the following questions in real-time:

* Is an aircraft headed for a bad destination?

* Is it plausible that an aircraft is engaged in smuggling?

By "smuggling" we mean the act of transporting goods from a region or location desig-
nated as bad to another bad location. For instance, flying from an illegal airstrip and
landing at another illegal airstrip constitutes smuggling.

1

.S

S.

S.

X good uirport
>0bad airport

o rack repot (id@firne)

A radar

time = 100 X!

idl@100 0
0

idl@o 0 8o 2@100
O 0

0 0
0 0

idl1O1 0 3 !d2*60

Figure 6. Input to Ainrc.

This shows the inputs that the system receives. The small circles represent estimated
positions of objects from radar or acoustic sensors tagged by their identification number
and observation time; the goal of the system is to use the time history of those sightings
to infer whether an aircraft exisus, its possible destinations, and its sturategy.

This paper describes our implementation of a solution of a portion of the Airurac
problem. We refer to this portion as the data association module. Figure 7 depicts the
desired output of the data association step: groupings of reports with the same track id into
straight-line, constant-speed sections. These are called Radar Track Segments, and have
four properties:

" If the Radar Track Segments contains three or more reports, a best-fit line is
computed. If the fit is sufficiently good, the segment is declared confirmed.

* If a best-fit line has been computed, each subsequent report must fit the line
sufficiently closely. If so, the Radar Track Segments remains confirmed.
Otherwise, the report that failed to fit (call it the non-fitting report) is treated
specilly, and the track is declared broken.

" A broken track causes the non-fitting report and subsequent reports to be used to
form a new Radar Track Segment.

16

The last report for a given track id defines that a track is declared inactive.

The remaining parts of the Airtrac problem have not yet been implemented as of this
writing, but are described more fully elsewhere [Minami 87, Nakano 87].

time - 100

x

idl@01 0
010

W 00
00
0 00

idl@100 0

id @ O'T id2060

Figure 7. Grouping reports into segments in data association.

This shows the first step in problem solving. grouping the reports into straight-line sec.
toos called Radar Track Segments.

5. 1. Airtrac data association as dependence graph

Figure 8 shows the Airtrac data association problem as a dependence graph
program. On a periodic basis, tack reports consisting of position and velocity information
for a set of track ids enters the system. Two operations are pertormed. First, the system
checks if a track id is being seen for the first time. If so, a new track-handling subgraph is
created. A track-handling subgraph is shown in Figure 8 as a functional box labeled
"handle track i," which expands into a graph as shown in Figure 9. Second, the system
checks if any track id seen in a previous time has disappeared. If so, it generates an
inactivation message for the handle :rack subgraph for the particular track id that
disappeared. If the track id has been seen previously, then it is sent to the appropriate
handle track subgraph.

We distinguish between pure functional nodes, shown as rectangles, and side-effect
nodes, shown as rounded rectangles. One use of side-effect nodes is to keep track of
which track ids have been seen at the previous time. For instance, by performing set
difference operations against the current set of track ids, it is possible to determine the
disappeared and new tracks:

disappearedTracks - previousTracks - currentTrack3

17

nevTrack$ - currentTracks - previousTracks

One way to implement this scheme is to have the ids disappeared? and id previously

seen? nodes update local variables called previousTracks and currentTracks, as

successive track reports arrive.

inactivate a a

-I dinipdreepRd?I S.S(rarerriw id)

L handie
snd report t d, uIi
ienoe at o i nac tate I
yes track "W8

seen.? I save tra's.

IP~l Trmk

ARuze S. Dependence smhb provrepreentaion of Aintra dam assuociaton.

The dashed boxes indicate the problem decomposition used .n the Lamina
implementation.

Besides detecting new and disappeared tracks, side-effect nodes are used to create a
new track-handling subgraph, and maintain the lookup table between track id and the
message pathway to each track-handling subgraph. New track creates a new track handler
subgraph. Whenever a new track is encountered, send report to appropriate track
is notified, so that subsequent reports will be routed correctly. This arrangement requires
that one and only one track handler exist for each track id. send report to
approprzate track saves the handle4 to the track handler created by new track, sorts
the incoming reports, and sends reports to their proper destinations.

In this abstract program, we iuplicitly assume that only one track report may be
processed at a time by the four side-effect nodes in Figure 8. If we allow more tan one
track report to be processed concurrently, we may encounter inconsistent situations that
allow, for instance, a track id to be seen in one track report, but the send report to
appropriate track node does not yet have the handle to the required track handler
subgraph when the next track report arrives. We define the program semantics to avoid
these situations.

Handle track receives track reports for a particular id, as well as an inactivation
message if one exists. It is .urther decomposed into a subgraph as shown in Figure 9. The

4A handke is analogous to a mail address in a (physical) postal system: a Lamina object may use

another object's handle to send messages to that object. Since the message passing system utilizes dynamic
roung and we assume that an object remains stationary once created, the handle does not need to encode
any information about the particular path messages should folow.

18

nodes in the handle track subgraph pass a structured value between them, called track
segments. A track segment has the following internal structure:

" report list (a list of track reports, initially empty)

* best-fit line (a vector of real numbers describing a straight-line constant-velocity

path in the x-y plane)I
Each node may transformi the incoming value and send a different value on an outgoing
edge. Add appends a report to the report list of a track segment. Line fit computes the
best-fit line, and if the confirmation conditions hold, sends the track segment to confirm.
conf irm declares the track segment as confirmed, and passes the list to check f it. If
linef it fails to confirm, the earliest report in the list is dropped by drop, and another
add, linef it box awaits the arrival of the next report to restart the cycle. The
inactivate function waits until all reports have arrived before declaring the track inactive.
Conceptually, we view the operations of confirm and inactivate as being monotonic
assertions made to the "outside world," rather than value transformations to the track
segment.

*hamUrde isc "rodnd as...

R6& Rsq.4. ...

awSmo 1fi ilNG

am am a.S ft i&M4

Glp Ca*CO i

Rbast~ Raclar Truc Sognurtt

IRi..Rist

Figure 9. Decomposition of the "handle track" sub-problem.I The dashed boxes indicate the problem decomposition used in the Lamina
implementation.

Check f it itself is further decomposed into more primitive operations, as shown

in Figure 10. The linecheck operation is similar to the 1. ine fit function previously

19

Jill

described, except that it compares a new report against the best-fit line computed during the
linefit operaton: if the new report maintains the fit, the report list is sent to the oK box, and
this cycle is repeated for the next report. If the linecheck operation fails, then the track is
declared broken, a new track segment is defined. This track segment is sent the report that
failed the linecheck operation, in addition to all subsequent reports for this particular track
id. The track handling cycle is repeated as before.

"check fli" is defined as...

Rl

OK add, pass linecheck
Slinecheck fail linecheck

4 t

pa s laeh c he k f i l r e h c

confirm Odd, passak.nnowecR1r1, h n . s
seinechck egment track~~fail lin.Jec k ck

Rl4

Itbre, row handle R1+2, Ri+3,..
It~t segment -ltrack

~Ri+1, ti 2
\Radar Track Segment .

Figure 10. Decomposition of the "check fit" sub-problem.
The dashed boxes indicate the problem decomposition used in the Lamina .
implementation

A number of observations may be made about the dependence graph program
described in this section. First, the sequence of the reports matters. The graph structure
clearly depicts the requirement that the incorporation of the Ri-th report into the track
segment by the add operation must wait until all prior reports, RI Ri-1, have been
processed. This is true for the li.nef it1, li.necheck, and inactivat:e functions.
Second, this program avoids the saving of state information except in the operations that
must determine whether a given track id has been previously seen, and in the sorting
operation where track reports are routed to the appropriate track handler. Except for these,
we find that the problem may be cast in terms of a sequence of value transformations.
Third the program admits the opportuity for a high degree of parallelism. Once the track
handler for a given track id has been determined, the processing within that block is
completely independent of all other tracks. Fourth. the opportunity for concurrency witin
the handling of a particular track is quite low, despite the outward appearance of the
decompositions shown in Figures 8 and 9. Indeed, an analysis of the dependencies shows
that reports must be processed in order of increasing scantime. Fifth, unlike certain
portions of the dependence graph that have a structure that is known a priori, the track

20

handler portions of the graph have no prior knowledge of the track ids that will be
encountered during processing, implying that new tracks need to be handled dynamically.

5.2. Lamina implementation

In this section, we express the solution to the data association problem as a set of
Lamina objects, together with a set of methods on those objects which embody the abstract
solution specification presented in the previous section.

Figure 11 shows how we decompose the Airtrac problem for solution by a Lamina
concurrent program. We define six classes of objects: Main Manager, Input Simulator,
Input Handler, Radar Track Manager. Radar Track, and Radar Track Segment. Some
objects, referred to as static objects, are created at initialization time, and include the
following object classes: Main Manager, Input Simulator, Input Handler, and Radar Track
Manager objects. Others are referred to as dynamic objects, are created at run-time in
response to the particular input data set, and include the following object classes: Radar
Track and Radar Track Segment.

I 'nputSimulator i

radar reportsin 1=enrodic batches RT.1 RTS-I-1 co.1 nfcirmation,

Inu~nlr RadarTrack , RT-n RTS-2-1 RTS-2-2 '
.1Manager'- i

diispatch create. sontJ
reorder, create reorder, reorder,

detect breaks, detect breaks,

create managers create create

[Main Manager
I

Figure 1i. Object structure in the data association module.

Each object is implemented as a Lamina object, which in Figure 11 corresponds to a
separate box. The problem decomposition seeks to achieve concurrent processing of
independent sub-problems. The Lamina message-sending system provides the sole means
of message and value passing between objects. Wherever possible, we pass values
between objects to minimize consistency problems, and to minimize the need for protocols
that require acknowledgements. For example, we decompose our problem solving so that
we require acknowledgements only during initialization where the Main Manager sets up
the communication pathways between static objects.

With respect to the dependence graph program, the Lamina implementation takes a,straightforward approach. All of the side-effect functions contained in Figure 8, together

with some operations to support replication, reside in the Input Handler and Radar Track

21

+_'-Km ' *%' ' "N ..

Manager object classes. Objects in these two classes are static; we create a predetermined
number of them at initialization time to handle the peak load of reports through the system.
Replication is supported by partitioning the task of recognizing new and disappeared track
ids among Radar Track Managers according to a simple modulo calculation on the track id.
Given the partitioning scheme, each Radar Track Manager operates completely
independently from the others. Thus, although it needs to maintain a set of objects (e.g.
the current tracks, previous tracks), the objects are encapsulated in a Lamina object.
Access to and updating of these objects is atomic, providing the mutual exclusion required
to assure correctness as specified by the dependence graph program.

Functions in Figures 9 and 10 reside mostly in objects of the Radar Track Segment
class, with the inactivation function being performed by objects of the Radar Track class.
Objects of these two classes are dynamic: we create objects at run-time in response to the
specific track ids that are encountered. For any particular track id, one Radar Track object
together with one or more Radar Track Segment objects are created. A new Radar Track
Segment is created each time the track is declared broken, which may occur more than once
for each track id. Unlike the dependence graph program where we posrulate a track
segment as a value successively transformed as it passes through the graph, the Lamina
implementation defines a Radar Track Segment object with instance variables to represent
the evolving state of the track segment. We implement all the major functions on track
segments as Lamina methods on Radar Track Segment objects. Again, Lamina objects
provide mutual exclusion to assure correctness.

Although nothing in the problem formulation described here indicates why we
create multiple Radar Track Segments for a given track, we do so in anticipation of adding
functionality in future versions of Airtrac-Lamina. From examination of Figure 10, we see
that given any sequence of reports Ri, and any pattern of b-oken tracks, we obtain no
additional concurrency by creating a new Radar Track Segment when a track is declared
broken. This is because in the dependency graph program presented here, no activity
occurs on one Radar Track Segment after it has created another Radar Track Segment.
However, we anticipate that in subsequent versions of Airtrac-Lamina, a Radar Track
Segment will continue to perform actions even after a track is declared broken, such as to
respor -I to queries about itself, or to participate in operations that search over existing
Radar C'rack Segments.

Logically, the semantics of the dependency graph program and the Lamnina program
are equivalent, as they must be. The difference is that the former requires a graph of
indeinite size. where its size corresponds to the number of reports comprising the track.
The ,atter requires a quantity of Radar Track Segment objects equal to one plus the number
of times the track is declared broken. Although we can easily conceptualize a graph of
indefinite size in a dependency graph program, we cannot create such an entity in practice.
Because object creation in Lamrina takes time, we try to minimize the number of objects that
are created dynamically, especially since their creation time impacts the critical path time. A
poor solution is to dynamically create the objects corresponding to an indefinite-sized graph
as we need them. A better solution is to create a finite network of objects at initialization
time, with an implicit "folding" of the infinite graph onto the finite network, thereby
avoiding any object-creation cost at run-time. Our Lanina program, in fact, uses a hybrid
of these two approaches, folding an indefinite "handle track" graph onto each Radar Track
Segment object, and creating a new Radar Track Segment object dynamically when a a
track is declared broken. By this mechanism, we model transformations of values between
graph nodes by changes to instance variables on a Lamina object. The effect on
performance is beneficial. Relative to the first solution, we incur less overhead in message
sending between objects because we have fewer objects. Relative to the second solution,
we create objects that correspond to track ids that appear in the input data stream as they are

22

needed, which has the effect of bringing more processors to bear on the problem as more
tracks become visible.

Both the Radar Track and Radar Track Segment collect reports in increasing
scantime sequence. They do so because of the ordering dictated by the dependence graph

program, and because the Lamina implementation at the time the experiments were

performed did not provide automatic message ordering. Moreover, we know that simply
collecting reports in order of receipt leads to severe correctness degradation. For instance,
if the scantumes are not contiguous, the scheme by which a Radar Track Segment computes
the line-fit leads to nonsensical results because best-fit lines will be computed based on
non-consecutive position estimates, leading to erroneous predictions of aircraft movement.
To circumvent these problems, we use application-level routines to examine the scantime
associated with a report. and queue reports for which all predecessors have not already
been handled. These routines effectively insulate the rest of the application from message
receipt disorder, and allow the Lamina program to successfully use the knowledge
embodied in the dependency graph program.

To indicate the size of the problem, a typical scenario that we experimented with
contained approximately 800 radar track reports comprising about 70 radar tracks. At its
peak, there is data for approximately 30 radar tracks arriving simultaneously, which
roughly corresponds to 30 aircraft flying in the area of coverage.

The correspondence between the Lamina objects in the implementation presented
here and the primitive operations embodied in the dependence graph program is shown in
the Table 1. The functions described in the dependence graphs are implemented on Radar
Track Manager, Radar Track, and Radar Track Segment objects. The Main Manager and
Input Simulator perform tasks not mentioned in the dependence graph program. Their
tasks may be viewed as overhead: the Main Manager performs initialization, and Input
Simulator simulates the input data port. The Input Handler's job is to dispatch incoming
reports to the correct Radar Track Manager, thereby supporting the replication of the Radar
Track Manager function across several objects. In this way the task of the Input Handler
may be viewed as a functional extension of the Radar Track Manager tasks.

23 1

Table I. Correspondence of Lamina objects with functions in the dependence graph
program

Lmn batCorregwading de tmndence gcaph p roglr= goeratio

Main Manager -none-
(Create the manager objects in the system at initialization
tlne.)

Input Simulator -none-
(Simulate the input data port that would exist in a real
system. This function is an artifact of the simulation.)

Input Handler -none-
(Allows replication of the Radar Track Manager objects; this
may be viewed as a functional extension of the Radar Track
Manager.)

RadarTrack Manager ids disappeared?, id previously seen?, new track,
send report to appropriate track

Radar Track add, inactivate

Radar Track Segment add, linefit, confir-. drop, inactivate,
linecheck, OK, break, new Zegment

Table I also shows that we decompose the problem to a lesser extent than might be
suggested by the dependence graph program, but the overall level of decomposition is still
high. We "fold" the dependence graph onto a smaller number of Lamina objects, but we
nonetheless obtain a high degree of concurrency from the independent handling of separate
tracks. Additional concurrency comes from the pipelining of operations between the
following sequence of objects: Input Handler, Radar Track Manager, Radar Track, and
Radar Track Segment.

6. Experiment design

Given our experimental test setup, there are a large number of parameter settings,
including the number of processors, the choice of the input scenario to use, the rate at
which the input data is fed into the system, the number of manager objects to utilize; for a
reasonable choice of variations, trying to run all combinations is futile. Instead, based on
the hypotheses we attempted to confirm or disconfirm, we made explicit decisions about
which experiments to try. We chose to explore the following hypotheses:

Performance of our concurrent program improves with additional processors,
thereby attaining significant levels of speedup.

24

" Correcr.-ess of our concurrent program can be maintained despite a high degree of
problem decomposition and highly overloaded input data conditions.

* The amount of speedup we can achieve from additional processors is a function
of the amount of parallelism inherent in the input data set.

Long wall-clock times associated with each experiment and limited resources forced
us to be very selective about which experiments to run. We were physically unable to
explore the full combinatorial parameter space. Instead, we varied a single experimental
parameter at a time, holding the remaining parameters fixed at a base setting. This strategy
relied on an intelligent choice of the base settings of the experimental parameters.

We divided our data gathering effort into two phases. First, we took measurements
to choose the base set of parameters. Our objective was to run our concurrent program on
a system with a large number of processors (e.g. 64), picking an input scenario that feeds
data sufficiently quickly into the system to obtain full but not overloaded processing
pipelines. We used a realistic scenario that has parallelism in the number of simultaneous
aircraft so that nearly all the processors may be utilized. Finally, we chose the numbers of
manager objects so the managers themselves do not limit the processing flow. The goal
was to prevent the masking of phenomena necessary to confirm or disconf'um our
hypotheses. For example, if we failed to set the input data rate high enough, we would not
fully utilize the processors, making it impossible that additional processors display
speedup. Similarly, if we failed to use enough manager objects, the overall program
performance would be strictly limited by the overtaxed manager objects, again negating the
effect of additional processors.

Based on measurements in phase one, we chose the fo :owing settings for the base

set of parameter settings:

* 64 processors,

* Many-aircraft scenario (described more fully below),

" Four input handler objects,

" Four radar track manager objects,

" Input data rate of 200 scans per second.

These settings give system performance that suggests that processing pipelines are
full, but not overloaded, where nearly all of the processing resources are utilized (although
not at 100 percent efficiency), and the manager objects are not themselves limiting overall
performnance.

The input data rate governs how quickly track reports are put into the system. As
reference, the Airtrac problem domain prescribes an input data rate of 0.1 scan per second
(one scan tvery 10 seconds), where a scan represents a collection of track reports
periodically generated by the tracking hardware. For the purpose of imposing a desired
processing load on our simulated multiprocessor, our simulator allows us to vary the input
data rate. With a data rate of 200 scans per second, we feed data into our simulated
multiprocessor 2000 times faster than prescribed by the domain to obtain a processing load
where parallelism shows benefits. Equivalently, we can imagine reducing the performance
of each processor and message passing hardware in the multiprocessor by a factor of 2000

25

to achieve the same effect, or with any combination of input dam rae increase and hardware
speed reduction that results in a net factor of 2000.

In the second phase, we vary a single parareter while holding the other parameters
fixed. We perform the following set of three experments:

" Vary the number of processors from I to 100.

• Vary the input scenario to use the one-aircraft scenario.

" Vary the number of manager objects.

Figure 12 shows how the many-aircraft-and one-aircraft scenarios differ in the
number of simultaneous active tracks. In the many-aircraft scenario, many aircraft are
active simultaneously, giving good opportunity to utilize parallel computing resources. In
contrast, the or.-aircraft scenario reflects the extreme case where only a single aircraft flies
through the coverage area at any instant, although the total number of radar track reports is
similar between the two scenarios. Although broken tracks in the one-aircraft scenario may
give rise to multiple track ids for the single aircraft, the resulting radar tracks are non-
overlapping in time.

26

LC

Active Tracks vs. Scan

30.

S 20

I ... Many-aircraft
0 scenario

A 10 - One-aircraft
UI scenarioz

0

0 20 40 60 80 1460 1500

Scan

Figure 12. Comparison of the number of active tracks in the many.aircaft and one-
aircaft scenarios.
This shows the number of active tracks versus the scan. The scar number correspoods to
scenario time in increments of 0.1 seconds.

7. Results

7.1. Speedup

Our performance measure is latency. Latency is defined as the duration of time
from the point at which the system receives a datum which allows it to make a particular
conclusion, to the point at which the concurrent program makes the conclusion. We use
latency as our performance measure instead of total running time measures, such as "total
time to process all track reports," because we believe that the latter would give undue
weight to the reports near the end of the input sequence, rather than weigh performance on
all track reports equally.

We focus on two types of latencies: confirmation latency and inactivation latency.
Confirmation latency measures the duration from the time that the third consecutive report
is received for a given track id, to the time that the system has fitted a line through the 0
points, determined that the fit is valid, and it asserts the confirmation. Inactivation latency
measures the duration from the time that the system receives a track report for the time
folowing the last report for a given track id, to the time when the system detects that the
track is no longer active, and asserts the inactivation. Since a given input scenario contains
many track reports with many distinct track ids, our results report the mean together with
plus and minus one standard deviation. 0

Figures 13 and 14 show the effects on confirmation and inactivation latencies,
respectively, from varying the number of processors from 1 to 100. Boxes in the graphs

27

indicate the mea. Error bars indicate one standard deviation. The dashed line indicates the
locus of linear speedup relative to the single processor case; its locus is equivalent to an
Snil speedup level of n for n processors.

Confirmation Latency vs Number of Processors

10

1 , *..i ~ lnear "peeu

.01'

Number af Prwiceuo

Figure 13. Confimation latency as a fixnction of the nuber of processors.

This mneasures the duration froni the time that the third consecutive report is received for a
Siven trsck id. to the time that the system has fitted a line through the points, and
detemmined that the fit is valid

The results for both the confirmation and inactivation show a nearly linear decrease
in the mean latencies, corresponding to S100 /1 speedup by a factor of 90 for the
confirmnation latency, and to S100/1 speedup by a factor of 200 for the inactivation latency.
The sizes of the error bars make it difficult to pinpoint a leveling off in speedup, if there is
any, over the 1 to 100 prc.essor range.

28

I:! ~ ~ ~ 1J - *'LDQD

Inactivation Latency vs. Number of Processors

10

...... near speedup

.01

1 10

Numbw of Proesrs

Figure 14. Inactivation latency as a function of the number of processors.

This measures the duration from the time that the system recei -- s a track report for the
time following the last report for a given track id. to the time .%hen the system detects
that the track is no longer active, and asserts that conclusion.

7.2. Effects of replication

By replicating manager nodes, we measure the impact of the number of manager
objects on performance. as measured by the confirmation latency. In one experiment we
fix the number of Raar Track Managers at 4 while we vary the number of Input Handlers.
In the other experiment we fix the number of Input Handlers at 4 while we vary the number
of Radar Track Managers.

Figures 15 and 16 show the results. We plot the confirmation latency versus the
number of managers, instead of against the number of processors as done in Figures 13
and 14.

29

C!

Effect of Radar Track Managers on Confirmation Latency

100

-Number of Processors

4- 64

11 4-

1 10

Number of Radar Track Managers

Figure 15. Confirmation latency as a function of the number of radar track

managers.

We see that replicating Radar Track Manager objects improves performance; this is
because increasing the number of processors does not impro% e performance in the single
Radar Track Manager case, but does in the 4 and 6 Radar Track Managers cases (see
Figure 16). Put another way, if we had not used as many as 4 Radar Track Manager
objects, then our system performance would have been hampered, and might even have
precluded the high degree of speedup displayed in the previous section. Comparing
Figures 15 and 16, we also observe that using more Radar Track Managers helps reduce
confirmation latency more significantly than using more Input Handlers.

An interesting phenomenon occurs in the 16-processor case. Although the
conclusion is not definitive given the size of the error bars, increasing the number of both
types of managers from 2 to 4 and 6 increases the mean latency. The likely cause is the
current object-to-processor allocation scheme: because each manager object is allocated to a
distinct processor, increasing the number of manager objects decreases the number of
processors available for other types of objects. Given our allocation scheme (described
more fully in Section 8.2), using more managers in the 16-processor case may actually
impede speedup.

30

Effect of Input Handlers on Confirmation Latency

100

Number of Processors
lo" 1,4. 16

4-36
464

10

Number of Input handlers

Figure 16. Confirmation latency u a function of the number of inpt handlers.

The optimal number of manager objects appears to sometimes depend on the
number of processors. For Radar Track Managers, 2 or 4 managers is best for the 16-
processors array, and 4 or 6 managers is best for the 36 and 64-processor arrays. For
Input Handlers, the number of managers does not appear to make much difference, which
suggests that Input Handlers are less of a throughput bottleneck than Radar Track
Managers. This suggests that in practice it will be necessary to consider the intensity of the
managers' tasks relative to the total task in order to make a program work most efficiently.
Overall these experiments confirm that replicating objects appropriately can improve
performance.

7.3. Less than perfect correctness

Our Lamina program occasionally fails to confirm a track that our reference solution
properly confirms. This arises because the concurrent program does not always detect the
first occurrence of a report for a given track in the presence of disordered messages. We
notice the following failure mechanism. Suppose we have a track consisting of scantimes
100, 110, 120, 150. Suppose that the rate of data arrival is high, causing message
order to be scrambled, and that reports for scantimes 110, 120. and 130 are received before
the report for 100. As implemented, the Radar Track object notices that it has sufficient
number of reports (in this case three), and it proceeds to compute a straight line through the
reports. When a report for scantime 140 or higher is received, it is tested against the
computed line to determine whether a line-check failure has occurred. Unfortunately, when
the report fdr scantime 100 eventually arrives, it is discarded. It is discarded because the
track has already been confirmed, and confirmed tracks only grow in the forward direction.

31

Figure 9 reveals why this error causes discrepancies between the Lamina program
and the reference serial program the handle track operation in the Lamnina program is given
a different set of reports compared to the reference program, leading to a different best-fit
line being computed. To be certified as correct, we requi that the reports contained in a
confirmed Radar Track Segment must be identical between the Lamina solution and the
reference solution.

The lesson here is that message disordering does occur, and that it does disrupt
computations that rely on strict ordering of track reports. In our experiments, the
incorrectness occurs infrequently. See Figure 17. We believe that with minimal impact on
latency, this source of incorrectness can be eliminated without significant change to the
experimental results.

Correctness vs. Number of
Processors

0.9

0.8

0.71

0.6. v Many-aircraft

w One-aircraft
scenario

0.3

0.2

0.1

0.0.

1 10 100

Numbr of Procsmo

Fige 17. Correctnss plotted as a function of the number of processors for the
om-aimuft Ud many- imft scenios.

7.4. Varying the Input data set

The results from using the one-aircraft scenario highlight the difficulties in
measuring performance of a real-time system where inputs arrive over an interval instead of
in a batch. Before experimentation began, we hypothesized that the amount of achievable
speedup from additional processors is a function of the amount of parallelism inherent in
the input data set. The results relative to this hypothesis are inconclusive. Figure 18 plots
the confirmation latency against the number of processors for two input scenarios, the
many-aircraft scenario (30 tracks per scan) and the one-aircraft scenario (1 track per scan).

32

Confirmation Latency vs. Number of
Processors for Different Scenarios

3 scenario
.1

no speedup_/

,001.
10 100

Number of Processors

Figure 18. Confirmation latency as a function of the number of processors varies
with the input scenario.

The one-aircraft scenario displays two distinct operating modes xie in which processor
availability and waiting time determines the latency, and another in which data can be
processed with little waiting.

The one-aircraft scenario displays interesting behavior: see Figure 18. While the
confirmation latency decreases from the 1-processor to 4-processor case, just as in the
many-aircraft scenario, there is distinctly different behavior for 16, 36 and 64 processor
cases, where the average latency is constant over this range. The key to understanding this
phenomenon is to realize that inputs to the system arrive periodically. The many-aircraft
scenario generates approximately 800 reports comprising 70 radar tracks over a 200
millisecond duration. In contrast, the one-aircraft scenario generates approximately 1300
reports comprising 70 radar tracks over an 8 second duration. Thus, although the volume
of reports is roughly equivalent (800 versus 1300), the duration over which they enter the
system differs by a factor of 40 (0.2 seconds versus 8 seconds). In terms of radar tracks
per second, which is a good measu. - of the object-creation workload, the many-aircraft
scenario produces data at a rate of 50 tracks per second, while the one-aircraft scenario
produces data at a rate of 8.8 tracks per second. This disparity causes the many-aircraft
scenario to keep the system busy, while the one-aircraft scenario meters a comparable
inflow of data over a much longer period, during which the system may become quiescent
while it awaits additional inputs.

The one-aircraft scenario displays two distinct operating modes: one in which
processor availability and waiting time determines the latency, and another in which data
can be processed with little waiting. For the 1-processor and 4-processor cases, the system
cannot process the input workload as fast as it enters, causing work to back up. This
explains why the average confirmation latency for the 70 or so radar tracks is nearly as long
as the scenario itself: most of the latency is consumed in tasks waiting to be executed. In

33

r.

contrast, for the 16-processor, 36-processor and 64-processor cases, there are sufficient
computing resources available to allow work to be handled as fast as it enters the system.
This explains why the average latency bottoms out at 18 milliseconds, and also tends to
explain the small variance.

Recalling that this particular experiment sought to test the hypothesis that the
amount of achievable speedup from additional processors is a function of the amount of
parallelism inherent in the input data set, we see that these experimental results cannot
confirm or disconfirm this hypothesis. The problem lies in the design of the one-aircraft
input scenario. The reports should have been arranged to occur over the same 20
millisecond duration as in the many-aircraft scenario, instead of over an 8 second duration.
Had that been done, the two scenarios would present to the system comparable workloads
in terms of reports per second, but would differ intemally in the degree to which sub-parts
of the problem can be solved concurrently.

The distinction between the one-aircraft and many-aircraft scenarios can be
described in Figure 19. This graph is an abstract representation of Figure 12 presented
earlier, and plots the input workload as a function of time. The many-aircraft scenario pre-
sents a high input workload over a very shot duration, while the one-aircraft scenario
presents the same total workload spread out over a much longer interval. If we imagine the
dashed lines to represent the workload threshold for which an n-processor system is able to
keep up without causing waiting times to increase, we see that the many-aircraft scenario
exceeded the ability of the system to keep up even at the 100-processor 'level, but the one-
aircraft scenario caused the system to transition from not-able-to-keep-up to able-to-keep-
up somewhere between 4 and 16 processors. A more appropriate one-aircraft scenario,
then, is one that has the same input workload profile as the current many-aircraft scenario.
Such a scenario would allow an experiment to be performed that fixes the input workload
profile, which our experiment inadvertently varied, thereby contaminating its results.

34H

sill

many-aircraft inputf woskload profl

........................... 100 processors
.---------- ---------- 64 processors

10

IptWorkload able-to-kep-up thehld
Input Wrla

[work/sec- .- -- --------------------------- 16 processors

woroad profile

- - -.-.-.-..................- -- - 4 processors

--- - --- - -- - ------ - --- - --- --- - ----- processor

0.1

Scenario Time

Figure 19. Input workload versus time profiles shown for two possible input
scenarios.
The workload threshold above which the work becomes incrmsingly backlogged varies
accoiding to the number of processors.

8. Discussion

This section discusses how we achieved our experimental results using the concepts
developed in Section 4. Specifically, we focus on the relationships between problem
decomposition, speedup, and achievement of correctness.

8.1. Decomposition and correctness

In this section we analyze the problem solving knowledge embodied in the data
association module. We use the dependence graph program to represent inherent
dependencies in the problem. This is contrasted with the Lamina implementation to shed
light on the rationale behind our design decisions. The goal is to identify the general
principles that govern the transition from a dependence graph program to a runnable
Lamina implementation.

35

8.1.1. Assigning functions to objects
We obtained speedup from both independent handling of tracks, and possibly from

pipelining within a track, without the necessity to decompose the problem into the small
functional pieces suggested in Figures 9 and 10. One might be tempted to believe that a
direct translation of the nodes and edges of the dependence graphs into Lamina objects and
methods might yield the maximal speedup, but careful study of the dependencies in Figures
9 and 10 reveals that there is very little concurrency to be gained.

In Figure 9. the entire graph is dependent on the arrival of report Ri. For instance.
before a track is declared broken, the top-level "handle track" graph requires the arrival of
reports RI, R2,...,Rlast. The leftmost add node needs Ri, and the remainder of the graph
is dependent on this node. The add node to the right of this one is dependent on the arrival
of R2, and the remaining right-hand subgraph is dependent on this node. Tus pattern
holds for the entire graph, implying that computation may only proceed as far as
consecutive reports beginning with R1 have arrived. Thus, little concurrency may be
gained from the "handle track" operation; in particular, no pipelining is possible because the
entire graph receives only one set of reports, R1,...,Rlast. Figure 10 is similarly
dependent on sequential processing of reports. We conclude that lumping all of the
functions of Figures 9 and 10 into a small number of objects does not incur a great expense
in concurrency. Given the overhead costs associated with message sending and process
invocation, we speculate that one or two objects might yield the best possible design. In
fact, our design uses k+2 objects, where k is the number of times a track is declared
broken; k is typically fewer than three, giving us fewer than five objects for each "handle
track" graph.

The dependence graph program provides several use f.l insights regarding a good
problem decomposition. First, it justifies a decomposition rhat treats the "handle track"
function as primitive function, rather than a finer-grained decomposition. Second, it clearly
shows the independence between tracks, suggesting a relatively painless problem
decomposition along these lines. Third, it shows the need to maintain consistent state
about which tracks have been seen, and those which have not, suggesting a decomposition
according to track id number, which is the approach that our Lamina program takes.

8.1.2. Why message order matters

A significant part of the Lamina concurrent program implements techniques to allow
a Lamina object receiving messages from a single sender to handle them as if they were
received in the order in which they were originally sent, without gaps the in the message
sequence. By doing this, we incur a performance cost because the receiver waits for arrival
of the next appropriate message. rather than immediately handling whatever has been
received.

The dependence graphs help to justify such costs because the dependencies imply
ordering. Indeed, in preliminary work in a different framework, one author discovered that
when no explicit ordering constraints were imposed during Airtrac data association
processing, and -ither additional heuristics nor knowledge was used, incorrect
conclusions resulted in cases when the input data rate was high. The incorrect conclusions
arose from performing the line-fit computation on other reports different from the first three
consecutive reports. As such, the incorrectness reflected an interaction between message
disordering arising in CARE and the particular Airtrac knowledge, rather than the specific
problem solving framework. We believe, for instance, that similar incorrect conclusions
would arise in a Lamina program that did not explicitly reorder reports.

36

We emphasize that although the particular problem that we studied showed strong a
correctness benefits from imposing a strict ordering of reports, this should not be
interpreted as a claim that all problems need or require message ordering. As the
dependence graphs make strikingly clear, the very knowledge that we implement dictates 0
ordering. Another problem may not require ordering, but require a strict message tagging
protocol, for instance. As a general approach, we believe that the programmer should
represent the given problem in dependence graph form, preferably explicitly, to expose the
required set of dependencies, and let the overall pattern of dependencies suggest the kinds
of decompositions and consistency requirements that might prove best.

8.1.3. Reports as values rather than objects

In the dependence graph program we represent reports as values sent from node to
node. Similarly, in the Lamina implementation, we use a design where reports are values
sent from object to object. This works well because reports never change, enabling us to
treat reports as values. The cost of allowing an object to obtain the value of a report is a
fairly inexpensive one-way message, where value-passing is viewed as a monotonic
transfer of a predicate. This approach works because we know ahead of time which
objects need to read the value of a report, namely the objects that constitute the processing
pipeline.

Consider a second design where reports are represented as objects. In this scheme,
instead of a report being a value passing through a processing pipeline, we arrange for read
operations to be applied to an object. Conceptually these are identical problems, the only
difference being the frame of reference. In the first case, the datum moves through
processing stages requiring its value. In the case being considered here, the datum is
stationary, and it responds to requests to read its value. This is attractive when it is not
known in advance which objects will need to read its value. The penalty is an additional
message required to request the object's value, and the associ,..ted message receipt system
overhead.

A third design represents reports as objects, but replaces the read message in the
previous design with a request to perform a computation, and uses the object's reply
message to convey the result of the computation. By arranging a set of reports in a linear
pipeline, we can allow the first report to send the results of its computation to the second
report, and so forth. This design is the dual of the first design because in this design we
send a sequence of computation messages through a pipeline of report objects, whereas in
the first design we send a sequence of report value messages through a pipeline of
computing objects. The designs differ in the grain-size of the problem decomposition;
since our problem has a small number of computations and a large number of reports, the
first design yields a small number of computing objects with many reports passing
through, whereas the third design yields a large number of objects with a small number of
computation messages passing through.

In our design, namely the first design discussed, we choose to represent reports as
values sent to successive objects in a processing pipeline because our problem
decomposition tells us in advance the objects in a pipeline. Using this design minimizes the
number of messages required to accomplish our task, and uses a larger grain-size compared
to its dual.

8.1.4. Initialization

Our approach to initialization embodies the correctness conditions of Schlichting
and Schneider. Formally, we combine the use of monotonic predicates and predicate
transfer with acknowledgement.

37

During initialization of our application. we create many objects, typically managers.
At run-time, these objects communicate among themselves, which requires that we collect
handles during creation, and distribute them after all creation is complete. Specifically, the
Main Manager collects handles during the creation phase; in essence, each created object
sends a monotonic predicate to the Main Manager asserting the value of its handle. The
invariant condition may be expressed as follows:

Invariant (asserting own handle): "handle not sent" or "my handle is X"

The Main Manager detects the fact that all creation is complete when each of the
predetermined number of objects respond; at this point, it distributes a table containing all
the handles to each object. It waits until an acknowledgement is received from each object
before initiating subsequent problem solving activity. This is important because if the
Main Manager begins too soon, some object might not have the handle to another object
that it needs to communicate with. In essence, the table of handles is asserted by a
predicate transfer with acknowledgement. The invariant condition is described as follows: 0

Invariant (distibuting table of handles):

"table not sent"

or "problem solving not initiated" 0

or "all acknowledgements received"

Main-mnanager

return
initiate Input-simulator own handle
node
creation

Input-handler-1 Input-handler-m

RTMgr-I FRTMgr-n

Figure 20. Creating statc objects during initialization.

Correctness is crucial du..ng initialization because a missing or incorrect handle, or
a missing or improperly created object causes problems at run-time. These problems can
compound themselves, causing performance or correctness degradation to propagate. By

38

using an initialization protocol that is guaranteed to be correct, these problems may be
avoided.

8.2. Other issues

8.2.1. Load balance

We define load balance as how evenly the actual computational load is distributed
over the processors in an array over time. Processing load is balanced when each
processor has a mix of processes resident on it that makes all the processors equally busy.
If a balanced processing cannot be achieved, the overall performance of a multiprocessor
may not reflect the actual number of processors available to perform work due to poor load
balance. In our experimentation, we discoverea the critical importance of a good load
balance algorithm.

We encountered two kinds of problems. The first problem deals with where to
pla,.. a newly crtxLted object. Since we want to allocate objects to processors so as to
evenly distribute the load, and because we want to avoid the message overhead associated
with a centralized object/processor assignment facility, we focused on the class of
algorithms that make object-to-processor assignments based on i cal information available
to the processor creating the object. The second problem deals with how objects share
limited processor resources. It turns out, for instance, that extremely computation-
intensive objects can severely impair the performance of all -"her objects that share its
processor.

At one point in our experimentation, for instance, we observed a disappointing
value of unity for the S64/1 6 speedup factor, where we ins-.ad expected a factor of 4.
Moreover, we noticed an extremely uneven mapping of processes to processors: the
approximately 200 objects created during the course of problem solving ended up crowded
on only 14 of the 64 available processors! The culprit was the algorithm that decided
which neighboring processor should be chosen to place a new object. The algorithm
worked as follows. Beginning with the first object created by the system, a process-local
data structure, called a locale, is created that essentially records how many objects are
already located at every other processor in the processing array. When a new process is
spawned, the locale data structure is consulted to choose a processor that has the fewest
existing processes. This scheme works well when a single object creates all other objects
in the system; unfortunately in Airtrac many objects may create new objects.

Given the locale for any given process, when the process spawns a new process,
we arranged for the new process to inherit the locale of its parent. The idea is that we want
the new process to "know" as much as its parent did about where objects are already placed
in the array. This scheme fails because of the tree-like patem of creations. Beginning with
the initial manager object at the root of the tree, any given object has inherited a locale
through all of its ancestors between itself and the root. Therefore the locale on a given
object will only know about other objects that were created by the ancestors of the object
before the locale was passed down to the next generation. Put another way, the locale on a
given object will not reflect creations that were performec n non-ancestor objects, or
creations that were performed on ancestor objects after the l,ale was passed down. This
leads to extremely poor load balance.

The same problem occurs even if we define a single locale for each processor that is
shared over all processes residing on that processor. Unfortunately, that locale will only
know about other objects that were created by objects residing on that processor. That is,

39

the locale on a given processor will not reflect creations that were performed by objects that
reside on other processors.

In contrast, ideal load balance occurs when each object knows about all creations
that have taken place in the past over the entire processing array. This ideal is extremely
difficult to achieve. First, we want to avoid using a single globally-shared data structure.
Second, finite message sending time makes it impossible for many objects performing
simultaneous object creation to access and update a globally-shared structure in a perfectly
consistent manner.

We changed to a "random" load balance scheme which randomly selected a
processor in the processing array on which to create a new object [Hailperin 87]. Running
the base case on a 64 processor array with approximately 200 objects. we managed to use
nearly all the available processors. Processor utilization improved dramatically.

Random processor allocation gave us good performance. In fact, we can argue
from theoretical grounds that a random scheme is desirable. First, we deliberately
constrain the technique to avoid using global information that would need to be shared.
This immediately rules out any cooperative schemes that rely on sharing of information.
Second, any scheme that attempts to use local information available from a given number of
close neighbors and performs allocations locally faces the risk that some small
neighborhood in the processing array might be heavily used, leaving entire sections of the
array underutilized. We are left therefore, with the class of schemes that avoids use of
shared information but allows any processor to select any other processor in the entire
array. Given these constraints, a random scheme fits the criteria quite nicely and in fact
performed reasonably well.

Further experimentation revealed more problems. Manager objects have a
particularly high processing load because a very small number of objects (typically 5 to 9)
handles the entire flow of data. When a non-manager objects happens to reside on the
same processor as a manager object, its performance suffers. For example, a Radar Track
object is responsible for creating a Radar Track Segment object, and the time taken for the
create operation affects the confirmation performance. Unfortunately, any Radar Track
object that happens to be situated on the same processor as a manager object (e.g. Input
Handler, Radar :rack Manager) gets very little processor time, and thereby contributes
significant creation times to the overall latency measure.

Whereas in the random scheme the probability that a given processor will be chosen

for a new object is 1 for n processors, our modified random scheme does the following:
n4

" If there are fewer static objects (e.g. managers) than processors, then place static
objects randomly, which can be thought of as sampling a random variable wihout
replacement. Place dynamically created objects uniformly on the processors that
have no static objects, this time sampling with replacement.

"If there are as many or more static objects than processors, then place roughly

equal numbers of static objects on each processor in the array. Place dynamically
created objects uniformly over the entire array, sampling with replacement.

Thil scheme keeps the high processing load associated with manager objects from
degrading the performance of non-manager objects. This scheme performs well for our

1
40

==~11 Jill;'- -,

cases. We typically had from 5 to 9 static objects, approximately 150 dynamic objects, and
from 1 to 100 processors in the array.

There are other considerations that might lead to further improvement in load 0

balance performance that we did not pursue. These are listed below:

• Account for the fact that not all static objects need a dedicated processor. (In our
scheme, we gave each static object an entire processor to itself whenever possi-
ble.)

* Account for the fact that a processor that hosts one or more static objects may
still be a desirable location for a dynamivally created object, although less so than
a processor without any static objects. (In our scheme, we assumed that any
processor with a static object should be avoided if possible.)

- Relocate objects dynamically based on load information gathered at run-time. S

8.2.2. Conclusion retraction

This section explores some of the thinking behind our approach toward
consistency, which is to make conclusions (e.g. confirnation, inactivation) only when they
were true. This is an extremely conservative stance, and possibly incurs a loss in
concurrency and speedup. An alternative approach which might allow more concurrency is
to make conclusions that are not provably correct: the programmer would allow such
conclusions to be asserted, retracted and reasserted freely until a commitment regarding that
conclusion is made. Jefferson has explored this compuational paradigm, known as virtual
time [Jefferson 85]. The invariant condition describing the truith value of a conclusion P
under such a scheme is shown below:

Invariant: "no commitment made" or "P is true"

In essence, this invariant condition says that the program may assert that P is true, but there
is no guarantee that P is true unless it is accompanied by a commitment to that fact. The
benefits of such an approach is that assertions may precede their corresponding
commitments by some time interval. This interval may be used I) by the user of the system
in some fashion, or 2) by the program itself to engage in further exploratory computation
that may be beneficial, perhaps in reducing computation later. In Airtrac-Lamina, we did
not investigate the benefits from exploratory computation.

For the user of the system, he or she must decide how and when to act upon
uncommitted assertions rendered by the system. On one hand, the user could view
assertions as true statements even before a commitment is made, with the anticipation that a
retraction may be forthcoming. On the other hand, the user could vi ..- an assertion as true
only when accompanied by a commitment; this latter approach places emphasis on the
commitnent, since only the commitment assures the truth of the conclusion.

We decided against using the scheme outlined here. As a technique to allow
concurrent programs to engage in exploratory computations, there might be some merit if
the power of such computations can be exploited. As a logical statement to the user of the
system, such an uncommitted conclusion is meaningless, since it may later be retracted. As
a probabilistic statement to the user of the system, a conclusion without commitment might
indicate some likelihood that the conclusion is true. However, we believe that a better way S
to handle probabilistic knowledge is to state it directly in the problem rather than in the
consistency conditions that characterize the solution technique. This unclear separation

41

M ill I

between domain knowledge and concurrent prograrnming techniques steered us away from
the approach of making assertions with the possibility of subsequent retraction.

9. Summary

Lamina programming is shaped by the target machine architecture. Lamina is
designed to run on a disributed-memory multiprocessor consisting of 10 to 1000 proces-
sors. Each processor is a computer with its own local memory and instruction stream.
There is no global shared memory; all processes communicate by message passing. This
target machine environment encourages a programming style that stresses performance
gains through problem decomposition, which allows many processors to be brought to
bear on a problem. The key is to distribute the processing load over replicated objects, and
to increase throughput by building pipelined sequences of objects that handle stages of
problem solving.

For the programmer, Lamina provides a concurrent object-oriented programming
model. Programming within Lamina has fundamental differences with respect to con-
ventional systems:

* Concurrent processes may execute during both object creation and message

sending.

" The tine required to create an object is visible to the programmer.

• The time required to send a message is visible to the programmer.

* Messages may be received in a different order from % %ich they were sent.

The many processes which must cooperate to accomplish the overall problem-
solving goal may execute simultaneously. The programmer-visible time delays are
significant within the Lamina paradigm because of the activities that may go on during these
periods, and they exert a strong influence on the programing style.

This paper developed a set of concepts that allows us to understand and analyze the
lessons that we learned in the design, implementation, and execution of a simulated real-
td..e application. We confirmed the following experimental hypotheses:

* Performance of our concurrent program improves with additional processors, we
attain significant levels of speedup.

* Correcmess of our concurrent program can be maintained despite a high degree of
problem decomposition and highly overloaded input data conditions.

An inappropriate design of our one-aircraft scenario precluded us from confirming
or disconfirming the following experimental hypothesis:

* The amount of speedup we can achieve from additional processors is a function
of the amount of parallelism inherent in the input data set.

In building a simulated real-time application in Lamina, we focused on improving
performance of a data-driven problem drawn from the domain of real-time radar track
understanding, where the concern is throughput. We learned how to recognize the

42

- will 119- 111

symptoms of throughput bottlenecks; our solution replicates objects and thereby improves
throughput. We applied concepts of pipelining and replication to decompose our problem
to obtan concunency and speedup. We maintaied a high level of correctness by applying
concepts of consistency and mutual exclusion to analyze and implement the techniques of
monotonic predicate and predicate transfer with acknowledgements. We recognized and
repaired load balance problems, discovering in the process that a modified random
processor selection scheme does fairly well.

The achievement of linear speedup up to 100 times that obtainable on a single
processor serves as an important validation of our concepts and techniques. We hope that
the concepts and techniques that we developed, as well as the lessons we learned through
our experiments, will be useful to others working in the field of symbolic parallel
processing.

Acknowledge ments

We would like to thank all the members of the Advanced Architectures Project, who
provided a supportive and stimulating research environment, especially to John Delaney
who provided valuable guidance and support throughout this project, and to Bruce Delagi,
Sayuri Nishimura, Nakul Saraiya, and Greg Byrd, who built and maintained the
Lamia/CARE system. Max Hailperin provided the load balance routines, and also
provided insightful criticisms. We would also like to thank the staff of the Symbolic
Systems Resources Group of the Knowledge Systems Laboratory for their excellent
support of our computing environment. Special gratitude goes to Edward Feigenbaum for
his continued leadership and support of the Knowledge Sy stems Laboratory and the
Advanced Architectures Project. which made it possible to do the reported research. This
work was supported by DARPA Contract F30602-85-C-0012, NASA Ames Contract
NCC 2-220-Sl, Boeing Contract W266875, and the Workstation Systems Engineering
group of Digital Equipment Corporation.

References

(Andrews 831 G.R. Andrews and Fred B. Schneider, Concepts and notations for
concurrent programming Computing Surveys 15 (1) (March 1983) 3-
43.

(Arvind 83] Arvind, R.A. Iannucci, Two fundamental issues in multiprocessing:
the data flow solution, Technical Report MIT/LCS/TM-241,
Laboratory for Computer Science, Massachusetts Institute of
Technology, September 1983.

[Brown 86). H. Brown, E. Schoen, B. Delagi, An experiment in knowledge-based
signal understanding using parallel architectures, Report No. STAN-
CS-86-1136 (also numbered KSL 86-69), Department of Computer
Science, Stanford University, 1986.

(Broy 85] M. Broy ed., Control Flow and Data Flow: Concepts of Distributed
Programming (Springer-Verlag, Berlin, 1985).

43

(Byrd 871. G. Byrd, R. Nakano, B. Delagi, A dynamic, cut-through
communications protocol with multicast, Technical Report KSL 87-
44, Knowledge Systems Laboratory, Stanford University, 1987.

[Corra fion 85] CORNAFION, Distributed Computing Systems: Communication,
Cooperation, Consistency (Elsevier Science Publishers, Amsterdam.
1985).

(Delagi 87a] B. Delagi, N. Saraiya, S. Nishimura, G Byrd, An instrumented
architectural simulation system, 'Technical Report KSL 86-36,
Knowledge Systems Laboratory, Stanford University, January 1987.

(Delagi 8T] B. Delagi and N. Saraiya, -Larnina: CARE applications interface,
Technical Report KSL 86-67, Working Paper, Knowledge SystemE
Laboratory, Stanford University, May 1987.

(Delagi 87c] B. Delagi, private communication, July 1987.

(Dennis 85] J.B. Dennis, Data flow computation, Manfred Broy ed., Control
Flow and Data Flow: Concepts of Distributed Programming
(Springer-Verlag, Berlin. 1985) 345-54.

(Filman 84] R.E. Filman and D.P. Friedman, Coordinated Computing: Tools and
Techniques for Distributed Software (McGraw-Hill Book Co., New
York, 1984).

[Gajski 82] D.D. Gajski, D.A. Padua, D.J. Kuck, R.H. Kuhn, A second opinion
on data flow machines and languages, IEEE Computer (February
1982) 58-69.

(Hailperin 87] M. Hailperin, private communication, July 1987.

(Henderson 80] P. Henderson, Functional Programming (Prentice-Hal International,
Englewood Cliffs, 1980).

(Jefferson 85] D.R. Jefferson, Virtual time, ACM Transactions on Programming
Languages and Systems 7 (3) (July 1985) 404-25.

(Kruskal 85] C.P. Kruskal, Performance bounds on parallel processors: an
optimistic view, Manfred Broy ed., Control Flow and Data Flow:
concepts of Distributed Programming (Springer-Verlag, Berlin.
1985) 331-44.

[Kung 82] H.T. Kung, Why systolic architectures?, IEEE Computer. (January
1982) 37-46.

[MacLerman 82] B J. MacLennan, Values and objects in programming languages,
ACM Sigplan Notices 17 (12) (December 1982).

[Minani 87] M. Minam; Experiments with a knowledge-based system on a
multiprocessor: preliminary Airtrac-Lamina quantitative results,
Working Paper, Technical Report KSL 87-35, Knowledge Systems
Laboratory, Stanford University, 1987.

44

[Nakano 87] R. Nakano, Experiments with a knowledge-based system on a
multiprocessor: preliminary Airtrac-Lamina qualitative results,
WorLing Paper, Technical Report KSL 87-34, Knowledge Systems
Laboratory, Stanford University, 1987.

[Nil 86a] P. Nii, Blackboard systems: the blackboard model of problem
solving and the evolution of blackboard architectures, A! Magazine 7
(2) (1986) 38-53.

[Nii 86b] P. Nil, Blackboard systems part two: blackboard application systems,
blackboard systems from a knowledge engineering perspective, A!
Magazine 7 (3) (1986) 82-106.

[Schlichting 83] R.D. Schlichting and F.B. Schneider, Using message passing for
distributed programming: proof rules and disciplines, Technical
Report TR 82-491, Department of Computer Science, Cornell
Unive-sity, May 1983.

[Smith 81] R.G. Smith, A Framework for Distributed Problem Solving (UMI
Research Press, Ann Arbor, Michigan, 1981).

[Tanenbaun 81] A. Tanenbaum, Computer Networks (Prentice Hall, Englewood
Cliffs, New Jersey, 1981).

[Weihl 85] W. Weihl and B. Liskov, Implementation of resilient atomic data
types, ACM Trans. on Programming Languages and Sysrt ',s 7 (2)
(April 1985) ' 4-69.

[Weinreb 80] D. Weinreb and D. Moon, Flavors: message passing in the Lisp
machine, Technical Report, Memo 602. Massachusetts Institute of
Technology. Artificial Intelligence Laboratory, 1980.

4

45D

5iL AF- D

II-C

w w ' 9w U U U U U U l

