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From GUIDON to NEOMYCIN and HERACLES in Twenty Short Lessons

William J. Clancey

x Origins
The idea of developing a tutoring programn from the
MYCIN knowledge base was first described by Ted Short-
liffe (1974). In fact, it was the mixed-initiative dialogue of
the SCHOLAR teaching program (Carbonell, 1970) that
inspired Shortliffe to produce the consultation dialogue of
MYCIN. He conceived of it as a question-answer program
in SCHOLAR s style, using a semantic network of disease
knowledge. Shortly after 1 joined the MYCIN project in
early 1975, Bruce Buchanan and I decided that developing
a tutoring program would be my thesis project.

The GUIDON program was operational in early 1979.
This review describes the k2y ideas in GUIDON and the
important developments of the following six years as re-
search continued under funding from the Office of Naval
Research (ONR), the Defense Advanced Revearch Projects
Agency (DARPA), and the Army Research Institute. The
first three years were covered briefly in an earlier report
(Clancey & Buchanan 1982). In general, only publications
from this project are cited; many other references appear
in the cited publications. vep -1 - cmpde-

Overview: Introduction to the Programs

Figure 1 shows the relationship between programs we
have constructed in the past six years, including MYCIN
and EMYCIN, which served as the foundation.

The medical consultation system, MYCIN, was gener-
alized to EMYCIN (van Melle, 1979). The tutoring sys-
tem, GUIDON, was designed to wotk with any EMYCIN
knowledge base (Clancey 1979a, Clancey & Letsinger 1984,
Clancey 1982a).

NEOMYCIN, another medical diagnosis program, ex-
pands MYCIN's disease knowledge to include competing
alternatives, for example, diseases that might be confused
with meningitis. This provides an opportunity for teaching
diagnostic strategy. MYCIN’s strategy of exhaustive, top-
down refinement is sufficient for the small set of discases

Bill Clancey is a sanior ressarch sssociate in the Stanford Knowledge
Syd.-l‘borﬂuy 701 Welch Road, Building C, Palo Alto, CA
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it knows about, but it is unrealistic for medical diagnosis
in general. Using NEOMYCIN, we can convey the more
complex processes of f~rming hypotheses, grouping com-
petitors discriminating among competitors and reasoning
causally. A second important idea in NEOMYCIN, distin-
guishing it from other expert systems, is that the inference
procedur= for diagnosis is represented in a well-structured
language, separate from the medical knowledge. This fa-
cilitates explanation and student modelirg.

HERACLES is the generalization of NEOMYCIN,
standing for Heuristic Classification Shell (Clancey 1985a).
By analogy with EMYCIN, we might say that HERACLES
is “NEOMYCIN without the knowledge,” but there is a big
difference. We rctain NEOMYCIN’s diagnostic procedure;
it is reused and adapted in new applications.

GUIDON?2 is a set of tutoring systems that work for
any HERACLES knowledge base; it is currently being de-
veloped with NEOMYCIN. In the GUIDON2 family of
programas, we are exploring different forms of student and
teacher initiative (Clancey 1984a).

Guidon: “Transfer of Expertise”

In GUIDON (See Figure 2), we held the MYCIN knowl-
edge base constant and considered the additional knowl-
edge about teaching that would provide a gond tutoring
system. We were especially interested in teaching from dif-
ferent knowledge bases using one program. This exciting

Abstract
1 review the rescarch leading from the GUIDON rule-based
tutoring sysiem, incleding the reconfiguration of MYCIN iato
NEOMYCIN and NEOMYCIN’s generalisation ia the heuristic
clamsification shell, HERACLES. The presentation is organised
chromologically around pictures and dislogues that represeat
comceptual turning poiats and crystallise the basic ideas. My
parpose is to collect the important resulis in one place, 50 they
can be easily grasped. In the conclusion, [ make some observa-
tiocs abowt our ressarch methodology.
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Figvre 1. A Map Showing the Evolution of Research. Figure 2. Guidon Teaches from MYCIN’s Knowl-

NEOMYCIN, a reconfiguration of MYCIN, is also a medical
consultation program. Research from both programs follows
a parallel path: generalising the system into a knowledge sys-
tem shell, applying the shell to develop knowledge systems in
other domains (PUFF, SACON, CASTER), and developing an
instructional system compatible with any knowledge system de-
veloped from the shell. This paper describes the key ideas in
GUIDON and tue upper path of research.

idea was motivated by the EMYCIN design that allows
putting in a different knowledge base and carrying on a
consultation in a different domain. GUIDON’s teaching
knowledge is separate from the medical knowledge; s0, it
is reusable and adaptable to new applications. This is a
significant advance over traditional computer-assisted in-
struction methodology that requires writing a new pro-
gram for each case to be discussed. We now have two
kinds of generality: First, this tutor can discuss any case
that MYCIN can solve. Second, we can swap in a different
knowledge base and discuss cases in another domain. The
separation of the knowledge base from the procedures that
interpret it is the important idea.

Discourse Procedures:
Alternative Dialogues and Transitions.

Another successful aspect of GUIDON’s design is the rep-
resentation of the tutoring knowledge. This knowledge can
be shown as a transition diagram, whkere each node rep-
resents a situation within a tutoring dialogue (See Figure
3). The program has a list of rules for reasoning about
what to do at each step. For example, when GUIDON de-
tects that a goal under consideration has been determined
(from MYCIN’s point of view), it selects fiom three al-
ternative transitions: presenting a conclusion, presenting
& summary, and asking the student to make a hypothesis
(Clancey 1979b).

Each of these transitions is encoded by rules called tu-

edge Base. The MYCIN knowledge base, combined with
an interpreter for applying rules and interacting with a user,
forms a comsultation program. The same knowledge base is in-
terpreted by teachiag rules for interacting with » student in a
case-method dialogue, coastituting the GUIDON instructional
program. MYCIN’s rules are ranked, relating them to years of
medical experience (for modeling the studeat and selecting new
material for the student to learm). Additional aanotations indi-
cate subtype aad causal relations among rule clauses and relate
the rules to a general description of the infectious process which
is used by GUIDON to provide more comcise explamations of
MYCIN's reasoning. Within a few limits, GUIDON can discuss
any case that MYCIN ot any EMYCIN program caa solve. In
conventional computer-assisted instruction, a new program is
written for each case.

toring or t-rules, numbering about 200. We Ltuilt the sys-
tem very much like a traditional expert system, running
cases and incrementally modifying the t-rules. When the
program said something inappropriate, we modified t-rule
conditions to change when that kind of remark would oc-
cur. Similarly, GUIDON sometimes missed an opportunity
1o say something interesting. For example, if a fact can be
inferred by definition, there is no need to go througk a
long dialogue, gathering data and forming hypotheses and
80 on; 30 we added t-rules to deal with this case, leading
the program to give MYCIN’s conclusion or to ask for the
student’s conclusion, depending on the model of what the
student knows and the goals for the dialogue.

This works rather well, though it lacks a theoretical
foundation. Arbitrary strategies are encoded in the tutor-
ing rules. Building on the t-rule idea, Beverly Woolf has
added a hierarchical structure to the alternative dialogues,
couched in the terminology of discourse analysis. This rep-
resents in a more principled way the choices the program
is making. (See Woolf & McDonald 1984.)
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Figure 3. Dialogue Transition Diagram. Each node
stands for a situation in a case-method dialogue, represenied
in GUIDON as a stylized procedure of ordered rules or a rule
set, totalling 200 rules in 40 situations. For example, in pur-
suing a goal explicitly agreed upon by student and program,
the student can request more case data. GUIDON can recog-
nize the data as relevant (o a subgoal, provide ¢ as a set of
related information (block), or determine that there is no aced
to ask (perhaps because the requested data can be inferred
from known information). Arrows that loop back indicate that
s situation may occur iteratively or recursively. For example,
several related rules might be presented after a given rule is dis-
cussed. The italicized labels indicate the basis for a transition:
Economy, Domain logic, and Tutoring goals.

Overlay Model: Evaluating a Student Hypothesis

Pethaps the most interesting reasoning in GUIDON in-
volves evaluating a student’s partial solution (See Figure
4) (Clancey 1979¢). In this example, the student says
that the organisms causing the infection could be Dipleo-
coccus, Pseudomonas, or Neisseria. The program looks at
MYCIN’s ruies and sets up a consistent mapping. It uses
double evidence, a history of interaction with the student,
and a measure of rule difficulty to construct a consistent
model.

For example, suppose the student mentions Neisserie.
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GOAL: COVERFOR

Figure 4. A Student Model Constructed by the
Overlay Technique. The student states that the organisms
causing the iafection might be Diplococcus, Pswedomonas,
or Neisseria. MYCIN rules that conclude about the organ-
isms causing the infection are shown with associated patient
data. For example, rule 507 states that if the patient is be-
tween 15 and 55 years old, then Diplococcus and Neisseria
are organisms that therapy should cover. Circled values are
missing from the student’s hypothesis (for exxmple, E.coli) or
wrongly stated (for example, Neisseris). Dotted lines lead
from rules the student probably did mot use. m = evideace
link that the tutor believes is unknown to the studeat. R and
W = links to the right and wrong values the tutor believes are
known by the student; ! = a wnique explanation; the tutor
knows of a0 other avidence at this time. 7 = questionable, the
tutor is uncertain about which evidence was considered by the
student. For example, R? means that the student stated this
value, it s correct, sad more than ome MYCIN rule supplies
evidence for it.

If MYCIN’s rules argue for and against this hypothesis,
then the student might know the positive evidence, but
not the negative evidence. GUIDON concludes in a simi-
lar way that Psesdomonas is believed by the student be-
cause the patient is burned—but not because of the white
blood count (WBC) or because the infection occurred in
the hospital (nosocomial)—given that the student didn™,
mention the two other diagnoses associated with this ev-
idence /E.coli and Klebsiells). It’s a straightforward, log-
ical analysis, demonstrating the value of production rules
for index'ng how facts are concluded and used in a pro-
gram.

The Sacon Tutorial:
Experimenting with other Knowledge Bases

Figure 5 shows an excerpt from s dialogue with GUIDON



using the SACON knowledge base. It graphically demon-
strates the value of keeping GUIDON's tutoring knowl-
edge generai: The same tutoring program can interpret
SACON'’s rules and discuss a structural analysis problem
with a student.

We must now determine whether the shape of the floor sec-
tion (SUB-STRUCTURE-1) is one of: the surface shapes.
Here is some relevant data you could have asked for: the
geometry of the floor section is planar, the modelling dimen-
sionality of the floor section is 2, and continuum is one of the
constructions of the floor section.

What does this tell you about the shape of the floor section?
** HELP

Can you conclude that the shape of the floor section is (select
from the following):

(1) beam—suggestive evidence (.62)

(2) semimonococque—suggestive evidence (.62)

(3) not shell-—strongly suggestive evidence (-.95)

(4) plate—with certainty (1.0)

- 4

Yes, that's right (see RULE100).

Figure 5: Excerpt of GUIDON Tutorial Using SACON
Knowledge Base. GUIDON encounters an incomplete sub-
goal in a rule that it’s trying to discuss with the student. A
t-rule in the procedure for discussing an incomplete subgoal
finds that the subgoal can be inferred by a definitional rule
and then invokes the procedure for discussing definit 'onal rules.
GUIDON gives the student new information (the geometry, di-
mensionality, and construction of the floor section), and then
asks him if he can now infer the shape of the floor section. The
student asks for help, and GUIDON converts the question into
a multiple choice. Reasoning about the curreat problem state,
text generation, and quiz construction and evaluation are all
accomplished by general t-rules that were originally developed
in the context of a medical diagnosis dialogue.

This interaction plausibly captures some of the behav-
ior we'd like to see in a teaching program. It was produced
entirely by t-rules that were written for medical examples
and then just plugged into SACON. It took about an hour
to make it all work, with a few modifications to cope with
syntactic variations in SACON’s rules. For further dis-
cussion and an example from PUFF, see (Clancey 1979,
Clancey 1982a).

Inadequacy of Mycin:
Implicit, Nonpsychological Strategy

We now consider the analysis that led to NEOMYCIN.

What problems atise in using MYCIN for teaching?
Figure 6 shows an excerpt from an experiment with

GUIDON; this was a pivotal example for me. GUIDON

indicates that the the age of the patient, 24, is not ev-
idence for Neisseria. Yet, a rule in the knowledge base
says, “If the age of the patient is between 15 and 55, then
Neisseria 1s one of the organisms.” 1 was rather surprised.
This rule is consistent with the student’s hypothesis and
Jjustification.

The problem is that some of the information in the
premise of this rule is still unknown, so MYCIN can’t ap-
ply the rule. Specifically, there is no indication that the age
of the patient is causally related to Neisseria and that the
age would be sufficient in itself to suggest this conclusion.
GUIDON has no way of knowing that one of the clauses
is more directly associated with the conclusion than any
other clause. To make this clear, consider another rule: “If
the age of the patient is greater than 17 and the patient
is an alcoholie, ther Diplococcus might be causing the in-
fection ” Considering this rule and knowing only that the
patient is 34 would not make you think of Diplococcus.
Here the age clause controls the application of the rule,
preventing the program from asking whether a child is an
alcoholic. The causal relation is between alcoholism and
Diplococcus.

The student’s knowledge and the procedure being used
are very different from MYCIN. The student has probably
formed a hypothesis just hearing the age of the patient and
some tentative information (not shown in the excerpt) that
suggests meningitis. MYCIN will only conclude Neisseria
when, from its point of view, it has exhaustively consid-
ered the evidence for meningitis and considered whether
it is bacterial and so on. MYCIN does a top-down search
through the set of diseases, but the student has “triggered”
meningitis from just partial information, with no direct ev-
idence for an infection or bacterial infection at all.

To properly respond to the student, we would have
to represent the association betwcen age and Neisseria
explicitly and separate out the search procedure. How-
ever, to recognize what strategy the student is following,
we'd have to encode a different strategy, expressing why
it makes sense to think about Neisseria just knowing the
age and some tentative evidence for meningitis. The very
idea of a hypothesis is foreign to MYCIN.

The ldea of Strategy: From “tracing a parameter”
to “focusing on a hypothesis”

Figure 7 and Figure 8 illustrate that at a certain level
MYCIN’s reasoning is arbitrary, lacking the focus on hy-
potheses we find in people. People group their questions
logically; they don’t jump around without reason. How-
ever, MYCIN does not focus on a particular hypothesis as
it goes down through its (implicit) tree of diseases. When
it considers types of meningitis or organisms, the types
are considered arbitrarily, based on the order in which
rules were entered into the program. The program pro-
ceeds systematically from infection to meningitis to bacte-
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What are the organisms which might be causing the infec-
tion?

>> NEISSERIA-MENINGITIDIS

What facts about this case tell you that Neisseria-meningitidis
is one of the organisms which might be causing the infection?
>> AGE

>>

— > The fact that the age of Pt538 is 34 years is not evidence
for the conclusion that Neisseria-meningitidis is one of the
organisms which might be causing the infection.

Do you have a question?
-

Figure 6: Problematic Excerpt of GUIDON Tutorial
Using MYCIN Knowledge Base. The student offers to
state a partial solution (student input follows “>>"). The pro-
gram responds by rephrasing the current topic as a question,
“What are the organisms which might be causing the infec-
tion?” When the student says Neisseria, GUIDON checks and
finds that MYCIN has made no conclusion at all up to this
point. A t-rule prompts the student to justify his hypothesis.
The student says that he is considering the age of the patient.
It’s a lost cause for the student, however; whatever he says
next GUIDON will reply, “No, that’s not sufficient,” because
MYCIN has made no conclusion. At the final prompt, the stu-
dent can review the available data and MYCIN's reasoning, if
desired. In fact, the student’s hypothesis is reasonable, but
GUIDON would need to know how MYCIN’s rules are con-
structed and a different model of reasoning to understand why
the student did something diffcrent.

rial meningitis to organism, but the process is unordered
at each level of refinement with regard to children. This
is because the goals that MYCIN pursues are always more
general than the conclusions in the rules being applied. In
order to teach a procedure to a student and to recognize
what the student is doing, we need a program that will
deliberately focus on particular diseases and that will be
able to articulate its focusing principle.

This analysis of MYCIN was directly inspired by a
study of strategy by Brown (Brown, Collins, & Harris
1977). He points out that a problem solver does not apply
algebraic operators randomly when simplifying an equa-
tion; there is som= logic behind each choice, describing a
line of reasoning. Applying this analysis to MYCIN, I un-
derstood for the first time how a strategy reasons about
operators or problem-solving methods, focusing their ap-
plication. In MYCIN, a rule corresponds to an operator,
and problem solving involves some strategy for selecting
which rule to apply. Specifically, diagnostic ressoning is
usefully controlled by focusing data requests and hypoth-
esis testing.

From this perspective, it can be seen that describ-
ing strategy only in terms of domain rule ordering, as
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in Davis’s original conception of metarules, is inade-
quate. The problem is that there is an implicit, undisci-
plined mapping between medical knowledge and MYCIN’s
parameter-value language. For example, if MYCIN’s dis-
eases were all represented by individual parameters (rather
than by a general parameter called “coverfor” with or-
ganisms as values), then the normal back-chaining process
would make the reasoning focused. Thus, a strategy can
be implicitly encoded in the relation between parameters
and their values. Recalling the age-alcoholism example, a
strategy is already implicitly coded in the ordering of rule
clauses. Before metarules can be written to systematically
control domain rules according to a hypothesize-and-test
strategy, conventions must be established for distinguish-
ing between data and hypothesis parameters and consis-
tently encoding causal and subtype relationships among
them.

The Tetracycline Rule:
Structure, Strategy, and Support

This brings us to about 1980 when I studied MYCIN’s 400
rules to determine how they might be reconfigured for use
in teaching. Up to this point, in constructing GUIDON,
only limited annotations had been added to the original
rule set. Now any change at all would be allowed.

Early on, 1 developed a framework that turned out to
be very useful in protocol analysis. Ip this framework, ex-
planations are analyzed according to knowledge roles, how
knowledge is used in relation to other knowledge (Clancey
1983a) (See Figure 9):

o The Aesristic rale: A relation between data and diag-
noses or therapies

e Struciure: Subsumption relations among data, diag-
noses, and therapies

o Straiegy: The procedure for applying rules
o Support: The justification for rules

As an example of structural knowledge, you might
think of “SSS” when trying to remember this framework.

To understand the different kinds of knowledge here,
suppose that you have a patient who is four years old.
You would probably say, “Well, I'm not going to prescribe
tetracycline.” However, that’s not a very good model of
how a physician reasons; this would be a strange conclu-
sion to make right at the beginning. Just as there is a
logic for requesting data and for focusing on hypotheses,
there is a logic for making assertions given available infor-
mation. All together, we call this logic the inference proce-
durc. (In the literature, it is also called control knowledge
or, more specifically, diagnostic strategy. To emphasize the
reasoning about control alternatives, the term managerial
atrategy or metastrategy is also used, particularly in the
education literature [Schoenfeld 1981)).

By strategy, 1 mean the general goal that leads the
physician to remember a heuristic rule. For example, when



32) Does J. Smith have » history of NEUROSURGERY?
L 1 J NO

33) Does J. Smith live in a crowded envirrzment?

* NO

34) Do you suspect recent alcoholic history in J. Smith?
** NO

35) Is the meningitis a hospital-acquired infection?

** YES

36) Is J. Smith's clinical history consistent with
EPIGLOTTITIS?

* NO

37) Is J. Smith's clinical history consistent with
OTITIS-MEDIA?

** NO

38) Has J. Smith ever undergone splenectomy?

** NO

39) Is J. Smith a burn patient?

** YES

STRATEGIC KNOWLEDGE

5

contraindications
STRUCTURAL
/ KNOWLEDGE
pationt
factors

infection-speciic
factors

HEURISTIC RULE

v
AGEC7 —» NO TETRACYCLINE

Figure 7: Sequence of Data Requests from MYCIN
Consultation.

GOAL nrOENS AE QUESTION
—— ECOU —— (MuisB11) —— Q32 NEUROSURGERY
l— NOSSERA . (Aue83)) — (33 CAOWD
(Mule838) — QXM ALCOMOLC
b— on:wo..[
(Mel00) —— QI SPLENECTOMY
COVEwORn
(Muie84f) —— Q36 NHOSOCOMAL
—T T {
m)_[ 0% graLoTTme
Q37 OTMB-MED
e PORUDO. ——— (Pu678) —— Q30 BUAN

Figure 8. Ralating MYCIN's Data Requests to Or-

ganism Hypotheses. MYCIN’s questions, shown in Figure
7, have been reordered according to the hypotheses that moti-
vate them. For example, question 33 about liviag in a crowded
environment is asked in order to apply rule 533, which con-
cludes Neisseria. ARl of the questionn pertain to the same
goal — determining what organisms therapy should cover —
but the rules conclude about differemt orgamisms. Neither
the sequence of rule applications nor the questions are sorted
by organism. Questions 34 and 38 pertain to Diplococcus-
preumoniae, with three intervening questions pertaining to
Hemophilus-influenzae. Thus, ia pursuing a goal, MYCIN’s
reasoning is unfocused at the level of possible values for the
goal, in this case organisms that might be causing the infec-
tion.

W

Cr wem: aron
of growing bones & teeth.

SUPFORTING KNOWLEDGE

Figure 9. Analysis of Knowledge Relating to
MYCIN’s Tetracycline Rule. The rul: states, “If the
patient is less than seven years old, ther remove tetracycline
from the list of drugs under consideration.” Relation of age to
other comtraindication factors (such as whether the patient is
preguaat), justification for the rule, and time when it would be
coasidered are relevant to explaining this rule, but are not rep-
resented in MYCIN. Making explicit this structural, support,
and strategic knowledge enhances our ability to understand and
modify MYCIN.

is it important to remember not to prescribe Tetracycline?

Obviously the physician must take this into account
when prescribing therapy.

By structural knowledge, I mean the relations by
which heuristic rules are indexed and subsequently con-
trolled. In general, this involves categorising the facts the
rules use (for example, patient factors) and the facts they
cenclude about (for example, therapies).

By support knowledge, I mean the justification for the
rule. Why wouldn’t you prescribe tetracycline to someone
who is less than seven years 0ld? Here we have a chem-
ical process, a chelation mechanism, that results in the
molecule binding to the growing teeth and bones, and a
social considerstion that attests people don’t waat to have
discolored teeth. This is a very interesting justification be-
cause it shows that giving tetracycline might save
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the patient’s life, even though it might have an undesirable
side effect. That’s important to know if tetracycline is the
only drug available. It’s a nice example of why it’s useful
to know the justification of a rule—so you can violate the
rule and know what the consequences will be.

Generally, this figure suggests a framework for under-
standing an expert’s explanations. When I ask a physician
who is solving a problem. “Why did you ask that ques-
tion?" 1 classify the answer into one of these categories.
If the physician tells me, “Well I'm not going to prescribe
tetracycline because the age is less than seven,” 1 am be-
ing told what assertions were made from given information
(that is, a heuristic rule). If I ask the physician why and
I get an explanation having to do with chelation, then
I'm being given the justification for ihe assertion (that is,
support). If the physician says “This is jusy one of the con-
traindications I'm going to consider,” then I'm being told
about the organization of his knowledge, the categories
used for focusing (that is, structure). Finally, if the physi-
cian tells me when contraindications are considered and
how each type is considered, then I'm getting the infer-
ence procedure (that is, strategy). 1 tried to consistently
apply this analysis when working with physicians, particu-
larly to focus their explanations on strategy and avoid the
bottomless pit of support explanations.

NEOMYCIN research focuses on representing strategy
and structure because this is the deficiency of GUIDON we
most want to improve. We also sense that structure and
strategy are at the top of a pyramid of knowledge and are
more limited in nature. A research effort focused on them
is attractive because this knowledge conceivably might be
carefully and exhaustively explored

The Beckett Tapes: An Articulate Teacher

In 1980, Reed Letsinger and I worked with Tim Beckett,
M.D., who was recommended by Ted Shortliffe and who
turned out to be a rather fortunate choice. Beckett was
known at Stanford for being a good teacher. He could
articulate general principles for reasoning very well. He
didn’t just say what it is you should ask about or what your
conclusions should be—he was abls to speak in general
terms about how you should think.

We taped interviews and classroom interactions, and
transcrived and studied them (Clancey 1984b). In one
interaction, Beckett interrupts a student who is examining
a patient played by ancther student:

When you ask these questions about whether gar-
gling makes it better or worse, or whether it’s bet-
ter certain times of the day, are you thinking about
how that’s going to help you mave down different
diagnoses? ... ask a couple of general questions
maybe that could lead you into other areas to {ol-
low up on, rather than zeroing in.

Note the absence of medical terms in his strategic ad-
vice. Again:
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We’re talking at the top of infections, but before
we go down infections, are there any other things
you can think of? The mistake you don’t want to
make is leaving out the important things on top.

We repeatedly heard these general statements—move
down different diagnoses, ask general questions, don’t leave
out important things on top. These were the strategic
gems—-better than I could have expected—that would al-
low us to construct NEOMYCIN. Essentially, 1 saw the
opportunity here for a program that would talk procedu-
rally about ihese operations: Moving down different diag-
noses, asking general questions, not leaving out important
things at the top. This procedure is separate from the
medical knowledge, deseribing how the medical knowledge
is searched. That is, the statement of strategy does not
directly mention domain terms; it is abstract.

In Beckett’s explanations, we see regular switching
back and forth between the concrete situation and a gen-
eralization:

Ask it very generally, like “Have you had any ma-
jor medical problems, or are you on any medica-
tion?” Those types of general questions are impor-
tant to ask early on because they really tell you
how soon you can focus down.

You have to taink of some of the common things,
but at the same time you have to think of some
of the serious things that may not be common.
What is a serious infection that can get in your
throat?

This last example shows most clearly my model of in-
ference in NEOMYCIN.

Refining the diagnosis and thinking of some of the
common things, the physician looks into the domain model
and asks, “What is a serious infection that can get in the
throat” and “What are some of the common things that
could cause it?” This is how the metarules in NEQMYCIN
work.

As confirmation of the potential effectiveness of Beck-
ett’s approach, we analyzed his best student’s reasoning.
The student obviously followed the procedure Beckett. ar-
ticulated in class. Of course, not all students would nec-
essarily find Beckett’s teaching approach to be useful, but
we had an existence proof and clear statements of at least
one diagnostic procedure, so we wrote the approach down.

About this time, we also had the first glimmer of how
an explicit procedure could help a student learn relevant
medical knowledge. When I had Beckett present problems
to me, I often lacked the medical knowledge to carry out
the procedure. However, knowing the procedure, I found
that [ could ask reasonably intelligent questions: “I know
I should be thinking about some of the serious and com-
mon causes of this disease, but I don’t know what they
are.” This has evolved into our version of explanation-
based learning (see The Situation-Specific Model: From



a Diagnosis to an Exploration). We also applied the pro-
cedure to an analysis of Beckett’s interruptions of students:
Given this mode! of his reasoning, could we use it to infer
his strategy for interrupting students and providing assis-
tance? The most telling example, occurring jusi before
Beckett asks the question about sore throats shown here,
is analyzed in (Clancey 1984c).

Neomycin: Separating the Medical Knowledge
from the Diagnostic Procedure

Figure 10 shows the architecture of NEOMYCIN, illus-
trating the idea of separating the diagnostic inference
procedure (control knowledge) from the medical knowl-
edge. Crucially, both are represented in well-structured
languages so that they can be reasoned about by the expla-
nation, knowledge-acquisition, and student-modeling pro-
grams (Clancey 1983b).

(FOLLOW-UP-QUESTION headache SFINDING) ?

doo A
Oomain Knowiedge

Dlsgnostic
Bave inference
(viewed 28 a detsbese) Procedwe

;t\_/L

(CAUSED-8Y dipiopla SHYPOTHESS) ?

Figure 10. Architecture of NEOMYCIN. An infer-
ence procedure queries the knowiedge base, relating findings
and hypotheses to one another in order to make a diagnosis.
For example, given that the patient has diplopia (double vi-
sion), the program asks the knowledge base what could cause
it. One or more hypotheses might be returned, which the in-
ference procedure will proceed to discriminate, test, and refine,
making further inquiries about disease and symptom relations.

Davis’s conception of metarules for expressing strategy
inspired this design. However, TEIRESIAS’s metarules
compose domain facts with procedure, just like MYCIN’s
rules (Clancey 1983a). NEOMYCIN’s metarules mention
no domain terms. Moreover, they constitute a coherent
procedure that completely controls every data request and
every inference; so there is no back chaining of rules at all.

As is apparent in Beckett's generalizations, we can
think of this procedure as “asking questions of the domain
model.” The language of relations used in metarules corre-
sponds to the propcsitions in the knowledge base. These
relations impose a classification on domain terms. This
is what 1 called structural knowledge in the tetracycline
analysis.

Given a hypothesis, the prog:am asks, “What is a com-
mon cause of this disorder?” The program then looks up

this relation in the knowledge base. In this sense, the in-
ference procedure is interpreting the domain model. if we
compiled the procedure—instantiating and composing it
with respect to a particular knowledge base—we would
get something very similar to MYCIN's rules. In making
this abstraction, stating these general rules, I'm not claim-
ing that people reason through general statements every
time or even realize that these patterns exist. In partic-
ular, reasoning categorically probably involves automatic
processes of memory. Some distinctions, such as consider-
ing causal prerequisites of diseases before effects, might be
regularities that the physician does not conscicusly realize
(Clancey 1984c).

I now believe that these domain relations are in large
part what we want to teach students, as generalizations,
to help them learn about new diseases. in describing how
to focus reasoning, we are indirectly saying how knowl-
edge should be practically organized. For example, we
say, “You should think in terms of common causes and se-
rious causes.” That is much more informative than saying,
“You should form a hypothesis™ or “You should reason
forward.” We hypothesize that the procedure is automatic
once you have the knowledge. A medical student might
not have to be told to refine hypotheses, but he! has to be
taught the subtypes of fungal meningitis.

The Disease Taxonomy:
Searching an Abnormal Process Classification

There are several dimensions for describing NEOMYCIN’s
reasoning: psychological aspects of memory and attention,
Al representation and control techniques, and aspects of
medical causal reasoning. Figure 11 provides one perspec-
tive in which these dimensions come together.

The main part of the knowledge base is a taxonomy
of diseases or, more generally, a classification of abnormal
processes. Each disease describes a process, something
that has happened to the patient in the past, accounting
for the set of observed manifestations. In general, there
can be many different taxonomies, orthogonal and tangled.

How do we know that a given taxonomy is complete?
This important question did not explicitly arise in MYCIN
research because we didn't isolate the disease taxonomy as
a separate object of study. We now hypothesize that the
physician’s diagnostic classification, particularly its level of
specificity, depends on how it will be used. The physician
is not involved in scientific research here; what goes into
the taxonomy is based on distinctions useful for selecting
therapy. For example, NEOMYCIN makes no attempt to
determine precisely which type of viral meningitis the pa-
tient has. The reason is that they’re all treated the same—
with a lot of aspirin and orange juice—and it is irrelevant
to resolve the cause any further. Thus, NEOMYCIN’s

!} ;asculine expressions in this article are used as generic terms. No
bias is intended.
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Figure 11. Looking Up and Looking Down in Di-

agnostic Search. Disease knowledge is represented as a
taxonomy of processes. At the highest level are internal aber-
rations in structure building or maintenance (for example, coe-
genital diseases) and processes involving environmental interac-
tion (for example, infection, trauma). Processes are specialized
here by location, temporal extent, and specific agent. The tax-
onomy is overprinted to show hypothetically how it might be
searched. Initial information—chief complaints—triggers some
hypothesis, shown arbitrarily here in the middle of the dis-
ease taxonomy. Two operations follow: (1) looking up, think-
ing of the bigh-level categories and discriminating among them
(GROUP-AND-DIFFERENTIATE) aad (2) looking down to
refine hypothenes when distinctions are important for selecting
therapy (EXPLORE-AND-REFINE). This is to be contrasted
with an exhaustive, top-down search, which a large knowledge
base makes impractical.

discase taxonomy deliberately remains a partial model of
abnormal processes within this area of medicine.

Another part of the knowledge base, the causal
network, is discussed in the context of CASTER (See
CASTER: From Disease to Abnormal Subetances and Pro-
cesses.)

The Diagnostic Procedure:
Search Operators and Constraints

The overall diagnostic strategy or inference procedure is a
program consisting of a set of subprocedures as shown in
Figure 12.

Each procedure is represented as a set of ordered and
controlled conditional statements called metarvles. Rules
provide a uniform, well-structured language. Although ex-
perienced programmers can read a LISP encoding of the
diagnostic procedure easily enough, it is difficult to write
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a program that can understand arbitrary LISP code. Too
much of the design is implicit and not available for expla-
nation. Therefore, we devised a highly structured repre-
sentation, organized around the idea of rule sets, with ev-
ery “loop” encoded as a separate task (subprocedure) and
the control of rules stated declaratively (simple vs. itera-
tive, try-all versus stop-on-success). Each task has a typed
focus (argument), local variables, and an explicit “end con-
dition” (equivalent to the “while” or “until” condition of a
loop). Making every program statement a rule facilitates
interpreted control, annotation, and record keeping.

The overall design is similar to LOOPS, which
evolved at the samne time as NEOMYCIN. However,
NEOMYCIN's metarules use variables, rather than do-
main terms. Also, the end condition, inherited by task
invocation, enables a procedure anywhere on the current
stack to regain control, either because its goal is completed
or there is reason to reconsider how its subgoals are being
accomplished. Figure 13 shows the flow of control in terms
of focus changes.

In writing down the diagnostic procedure as rules, we
are following the same methodology used in developing
MYCIN and GUIDON. With the knowledge expressed in a
disciplined way, it now becomes possible to study patterns
and to consider how the knowledge could be derived. Such
implications are too numerocus to recapitulate here. The
interested reader will find the metarules listed in (Clancey
1984c), with a discussion of the procedure in terms of op-
eraiors and the cognitive, social, mathematical, and case
population constraints implicit in the rules. The next sec-
tion considers the procedure as a grammar.

image and Odysseus:
Parsing the diagnostic process

Given the abstract nature of the tasks and metarules, they
can be viewed as a kind of grammatr for parsing a problem
solver’s sequence of requests for data. Such an analysis is
shown in Figure 14, the picture I had in the back of my
mind in about 1980 when I wanted some way for GUIDON
to reason about what a student was doing. An interpreta-
tion of a student’s partial solution provides a good basis for
assisting him when he doesn't know what do next. Such
an interpretation is also a source of information for relat-
ing a student’s explicitly stated diagnosis to a model of his
domain knowledge. As a contextual analysis, it potentially
shortens the interactive dialogue that might be necessary
to confirm the student’s understanding.

Bob London, Navid Wilkins, and | have been devel-
oping student-modeling programs with the common goal
of using NEOMYCIN’s diagnostic procedure to interpret
a sequence of student requests for data. London has fol-
lowed a top-down approach in the IMAGE program (Lon-
don & Clancey, 1982); Wilkins’s ODYSSEUS program uses
exhaustive, bottom-up reasoning (Wilkins, Buchanan, &
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Figure 12.

Invocation of Diagnostic Tasks, Shown as a Lattice. Each task is represented in NEOMYCIN as a stylized

procedure, shown here as a node, with the subprocedures it calls below it. For example, pursuing a hypothesis involves testing
and refining the hypothesis. To relate new findings and hypotheses, all tasks eventually call FORWARD-REASON, which invokes
additional tasks not shown here. GENERATE-QUESTIONS is invoked when there is insufficient information to proceed; it chases
down leads in different ways, thus explaining its central position. Note also that FINDOUT calls TEST-HYPOTHESIS so that
domain rules will be selected deliberately, replacing the back chaining of EMYCIN. Using this represeatation for explanation
and student modeling requires additional knowledge about task preconditions and postconditions and how metarules controlling

task invocation are ordered.

Clancey 1984). Evaluation of these alternative approaches
is in progress.

Figure 14 shows a parse of ressoning produced by the
ODYSSEUS program. We're testing this program with
“synthetic” students, systematically varying NEOMYCIN
and comparing ODYSSEUS’s interpretation to the known
variations in the knowledge base. Another application is
to give ODYSSEUS a sequence of data requests and to
have it determine what knowledge base changes would be
required to produce this sequence, consistent with the in-
ference procedure. We believe that the simple classifica-
tion nature of the inference procedure makes this approach
plausible. We're developing this capability for a tutoring
program called GUIDON-DEBUG (Clancey, et al. 1986).
The same program could be used for knowledge acquisi-
tion.

Neoxpl: Stiategic Explanation

Using NEOMYCIN’s well-structured representation, Di-
ane Hasling, Glenn Rennels, and I (1983) reformulated
MYCIN’s WHY/HOW explanations in terms of metarules
and tasks. Figure 15 shows how procedural information

is available prosaically (by asking WHY) or through the
task stack.

Although our WHY/HOW system goes up the goal
stack in a way similar to MYCIN’s explanation program,
this new program takes advantage of the structured rep-
resentation to be more selective about what it says. In
particular, it looks at the focus of a task to determine
whether to mention the task as it goes up the stack. A
focus can be one of three basic terms—a finding, » hy-
pothesis, or a domain rule—or a list of these. If the focus
is a rule or list of rules, the explanatic. program skips over
the task (for example, APPLYRULES). The task is men-
tioned if its metarule establishes a new focus, such as going
from a list of hypotheses to a single hypothesis (GROUP-
AND-DIFFERENTIATE) or from a hypothesis to a rule
(TEST-HYPOTHESIS). This turns out to be a good ex-
planation heuristic. A new explanation system under de-
velopment uses the propositional encoding of the metarules
(described later) to select particular rule-premise clauses
to mention.
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Figure 13. Predominant Focus Shifts in Diagno-

sis. This diagram simplifies the dynamic flow of control be-
tween tasks, revealing how findings and hypotheses are related.
New findings suggest new hypotheses and support existing hy-
potheses (FORWARD-REASON); a decision is made to focus
on a particular HYPOTHESIS (ESTABLISH-HYPOTHESIS-
SPACE); a decision is made to focus on a particular finding
(TEST-HYPOTHESIS); the implications of the new informa-
tion are considered, and so on. In contrast, MYCIN does not
change its goals on the basis of new data or deliberately or-
der the goals and data it will pursue. Accomplishing this by
abstract metarules (not specifying domain terms) requires ex-
plicitly representing relations between findings and hypotheses,
on the basis of which they will be selectively considered.

Tasks (appearing in bold italics) can be related to Figure
12, which shows the subtasks they invoke. In practice,
ESTABLISH-HYPOTHESIS-SPACE is only invoked if there
is reason to stop pursuing the curreat HYPOTHESIS. Criteria
for applying domain rules in FORWARD-REASON are com-
plex. For example, new findings are related to hypotheses “in
focus”; if a new HYPOTHESIS “explains” the known findings
at least as well as existing hypotheses, it is comsidered; mew
hypotheses are related to previously known findings, etc. The
program stops when its differeatial, the list of most-specific hy-
potheses under comsideration, has been discriminated, tested,
and refined.

MRS /Neomycin:
From Findings and Hypotheses to Relations

Student modeling, debugging, and explanation require
that our programs reason about the premises of metarules,
particularly to determine which domain facts matched
and why rules failed. Originally, metarule premises
were encoded in LISP. In a hybrid system called
MRS/NEOMYCIN, Conrad Bock and I rerepresented
metarule premises in MRS, a logic-programming language
that provides a framework for multiple representations of
knowledge and control of reasoning (Genesereth & Smith
1982). Bock also recoded the interpreter in MRS rules,
and placed a simple deliberation-action loop at the top
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(Clancey & Bock 1982). Unfortunately, recoding the inter-
preter slowed down the program by an order of magnitude
and made the procedure too obscure to read or maintain.
In the current version of the program, we retain the origi-
nal interpreter and use a variant of MRS as a specification
language for metarule premises, which are compiled into
Lisp. This provides the well-structured, uniform language
our modeling and explanation programs require without
sacrificing runtime efficiency. Figure 16 illustrates how
MRS is used in the metarules and definitional rules for
relations.

Primitive relations are compiled as direct LISP oper-
ations, using explicit declarations about how propositions
are represented in the LISP-encoded knowledge base. For
example, a TYPE propoeition is represented as a property
list structure, so the compiler substitutes a GETPROP, an
ASSOC, or more complex loop construction, depending on
what terms are known when the proposition is encoun-
tered in the metarule. In encoding propositions in stan-
dardized LISP structures, distinguishing between the lan-
guage for expressing knowledge and how it is stored in the
computer, we are exploiting the multiple representation
aspect of MRS, which is one interpretation of its name.
A number of elegant patterns in the metarules made the
compiler easy to write (Clancey, forthcoming). Figure 17
summarizes how rules, tasks, and relations are encoded
as EMYCIN rules and parameters and how these entities
are related. Our success in building HERACLES on top
of EMYCIN demonstrates the generality of the original
parameter-rule representation language. It is closer to a
typical frame language than is commonly realized.

The most exciting result of this reformulation is what
it reveals about tbe relational nature of the knowledge
base. It is now evident that the metarules are selecting foci
(findings, hypotheses, domain rules) on the basis of how
they a.e related to one another. These relations can be
either static (for example, red-flag finding, one that needs
to be explained) or dynamic (for example, hypothesis in
focus). The knowledge base can be viewed as a database,
defined in terms of these three primitive terms and rela-
tions among them. Writing a new metarule tends to re-
quire defining a new preference relation for discriminating
among findings, hypotheses, and domain rules. That is,
each new relation further classifies the primitive terms in
a way useful for controlling reasoning. For example, the
metarule shown in Figure 16 required the new relation,
“a finding that needs to be explained.” As this example
shows, the meaning of a relation is tied to how the rela-
tion is used. This is particularly clear for relations such as
follow-up question and trigger rule.

A detailed analysis shows that the metarules are col-
lecting, sorting, and filtering domain terms and rules on
the basis of their applicability as operands (foci) for the
operators (subtasks) that will accomplish the current task.
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Figure 14. ODYSSEUS’s Parse of a Student’s Data Requests. Given a sequence of requests for patient data,
listed on the right side of the figure (Q5, Q6, Q7), the program indicates all of the alternative justifications for why a question
might have been asked. For example, the student’s query about seizures (FINDOUT/Seizures, Q6) might have been asked to
determine whether the disease is caused by an Intracranial Mass Lesion, Subarachnoid Hemorrhage, and so on. The program
indicates in inverse video, combining its bottom-up analysis with a top-down parse, that this question relates to meningitis
(TEST-HYPOTHESIS/Meningitis), as part of the process of discriminating hypotheses (GROUP-AND-DIFFERENTIATE).
Thus, the problem state (hypotheses under consideration) and the tasks interact to explain finding requests in terms of a logic for
focusing on hypotheses and findings. Note that by the same analysis the question about a fever (Febrile, Q5) has three consistent
interpretations. This kind of analysis is not possible using MYCIN because, first, its reasoning did not involve “looking uwp”
from “triggered hypotheses™ and, second, its inference procedure is represented behaviorally as specific productions. A functional
representation, as diagnostic tasks, relates surface behavior to abstract goals, which can be accomplished in multiple ways.
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For example, metarules for TEST-HYPOTHESIS col- Guidon-Watch: Reifying the Process

lect, sort, and filter potential findings to support a hypoth-  The availability of graphics has changed how we can illus-
esis. trate reasoning and is shaping our ideas of what we’d like

Refining a hypothesis means collecting, soriing, and to show. As a first step toward implementing a new in-
filtering its causes and subtypes (for example, distin- structional program on top of NEOMYCIN, Mark Richer

guishing between common and serious causes). Gener-
ally, the domain relations classify NEOMYCIN’s experien-
tial knowledge of predefined disease models (sce Heracles:
From Diseases to Stereotypes) according to how they are
triggered, tested, discriminated, and refined by operators
(tasks) for constructing a problem-specific, historical ac-
counting of the disease process (see The Situation Specific
Model: From a Diagnosis to an Explanation).

NEOMYCIN has about 170 relations in its control
vocabulary. They appear in the 75 metarules, grouped
into 20 tasks. In HERACLES, the generalization of
NEOMYCIN, the knowledge engineer can modify these
metarules, defining new relations for describing his do-
main.

and 1 (1985) used the Interlisp-D window and menu fea-
tures to construct a complex interactive system for brows-
ing the knowledge base and watching reasoning. This in-
cludes the dynamic task tree (similar to Figure 14) and the
task stack (see Figure 15). Our work has been directly in-
spired by Brown’s emphasis on reifying or making concrete
the reasoning process (Brown 1983).

Figure 18 shows how the disecase taxonomy is over-
printed to reveal the pattern of NEOMYCIN'’s reasoning.
In GUIDON-DEBUG, now under development, it is possi-
ble to roll back the consultation display to show any win-
dow at the time any given question was asked. This is a
debugging facility we could hardly have imagined even five
years ago.
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Figure 15. Multiple Views of the Diagnostic Process: Question, Evidence Relation, Task Stack, Metarules,
and Prosaic Condensation. When NEOMYCIN asked about seisures (question 8), the user selected a subitem in the KB
WINDOWS menu, which caused the task stack—the current line of reasoning—to be displayed. The rule above a task is the
metarule that invoked it; thus, rule 400 selected meningitis as a focus, invoking TEST-HYPOTHESIS with it as an argument.
Selecting meningitis in this window caused the table in the lower left to be displayed. Here, boldface type indicates positive
findings and successfully applied rules. Greyed areas correspond to negative findings and failed rules. Thus, the patieat is not a
neonate; rule 424 succeeded. Arrows preceding a finding indicate that the finding is in a triggering relation with the hypothesis.
For example, the headache voluntecred in the chief complaint caused the program to try to apply rule 424. When the wser

selected EXPLAIN in the menu adjacent to the consultation typescript, the program summarised the line of reasoning, skipping
over “uninteresting” tasks.

Heracles: From Diseases to Stereotypes NEOMYCIN approach to Al students, I found that it was
possible to redescribe other knowledge bases in its terms.

In late 1983 I began to consider how NEOMYCIN might be  For example, in terms of the mapping between models of
generalized. What kinds of problems can be conveniently  situation descriptions and selected solutions, “people are
solved by an architecture consisting of a classification net-  to diseases” as “meals are to wines.” I had also recently
work and a separate, abstract control strategy? In partic-  reread Rich’s work on user modeling (Rich 1979), intend-
ular, to what problems can the same diagnostic strategy  ing to apply this to our explanation program. I recognised
be applied? It was obvious from the start that the proce-  that it fit the same pattern—models of people related to a
dure had nothing specifically to do with medicine; was it  taxonomy of books. Finally, I rec;lled that Rubin (1975)
more general than diagnosis? In attempting to teach the  and Aikins (1983) emphasised that diseases are described
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TASK: PROCESS-FINDING
FOCUS: SFINDING

Metarule

IF: (AND (OR (FINDINGTYPE $FINDING REDFLAG)
(NOT (DIFF.EXPLAINED SFINDING)))
(MAKESET (TRIGGERS? $FINDING SRULE)
RULELST))
THEN:(TASK APPLYRULES RULELST)

If the finding must always be explained or
it is not curvently explained by the differential,
then trigger Aypotheses that erplain it.

niti r

IF:  (AND (DIFFERENTIAL $HYP)
(EXPLAINEDBY SFINDING SHYP))
THEN:(DIFF.EXPLAINED S$SFINDING)

A finding is esplained by the differential
if it’s explained by some hypothesis in the differentiol.

IF: (OR (CAUSED-BY $F $H)
(AND (TYPE $H $SPARENT)
(EXPLAINEDSY $F SPARENT)))
THEN:(EXPLAINEDBY $F $H)

A finding is ezplained by & hypothesis
if it is caused by the Aypothesis or
by some more general category.

Figure 16: Propasitior 1l Representation of a Metarule.
This is ome of six metarnles for accomplishing the task
PROCESS-FINDING, which is invohed whenever a new find-
is serious and has to be explained (a red-flag findiag), or it's
something that’s not currently explained by the set of possibil-
ities under consideration. The program gathers up the frigger
rules—automatic inferences—and tries to apply them. The
idea is that if the finding doesa’t always have to be explained
aad it’s explained by hypotheses that were already triggered,
you shoulda’t trigger & new hypothesis. For example, if the
patieat has & headache, and other evidence suggests menin-
gitis, which would explain the headache, there's no need to
coasider other explanations of the headache. Intermediate re-
lations, such aa EXPLAINEDBY, are defined by other rules
(simplified here). All pattera variables in these rules are instan-
tiated as domain rules or terms. All expressions are implicitly
universally quantified.

te— e T
e
o T N
/:—T\__}w“
e =7
= —— S

Figure 17. How Control Knuwledge is Encoded in
HERACLES. HERACLES is implemented as a specialisatioa
of EMYCIN. Above is shown the original coaception of domain
parameters and rules. In HERACLES parameters are special-
ised as domain relations, control tasks, aad domaia terms, con-
ditiomally inferred and involied by rules. We wse “relation” in
the mathematical semse to refer 10 both predicates and func-
uoms. “Finding” and “hypothesis” formally classify the domain
terms (for example, meningitis), and informally are weed to re-
for to propasitions ia a situation-specific model; s0, we say that
“the patient has meningitis® is & hypothesis.

Tasks are accomplished by aa interpreter that applies
metarules. wend by metarule premises (such as
{EXPLAINED-BY $F $H) appearing ia Figure 16), can be in-
ferred definitionally by rules o¢ can be inferred by procedural
attachment (for example, accessing Lisp structures). These
propositions are both static and dynamic. They classify do-
maia propositions and domain rules, as well as chasacterising
the problem-sclving state (such as whether a hypothesis is in
the differential or whether a task has been doae yot). Addi-
tional relations that classify tasks are wsed by the task inmter-
preter (ot shown here). Metarnle actions apply domain rules,
request (from the wser) or conclude domasia propositions, or
invole other tasks. Im particulaz, the task FINDOUT wuses all
of these methods to infer domain propositions. Ian HERACLES
all domain rules are applied directly by metarules rather thaa
by back chaining. Oaly domaia rules meation domain terms
directly; other rules wee variables.
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Figure 18. Overprinting a Classification Network to Show How it is Searched. Nodes blink and are boxed to
make visible the “looking up” and “looking down™ process of diagnosis. Numbers indicate the relative certainty of conclusions;
the cumulative certainty factor (CUMCF) includes hierarchical propagation. Heavy-bordered boxes indicate the program'’s
differential - the most specific cut through the taxonomy and causal nctwork. The differential is printed in the lower right
window with in-fenting to show specialization by process subtype and cz2use. When a hypothesis is selected, the evidence window
can be displayed, indicating which findings and rules have been considered and the outcome of each consideration. Dozens of
other windows are available, including different views of causal networks and the history of task invocation.

(in knowlrdge bases) as stereotypes. The general model of
heutistic classification fell into place: Some problems can
be solved by selection, heuristically relating a classifica-
tion of problem data to a classification of known solutions
(Clancey 1985a).

To my chagrin, this new model required a reconceptu-
alization of parts of NEOMYCIN. We began to consider
the diseases as stereotypes, we introduced qualitative ab-
straction of numeric data where it had been omitted in
MYCIN, and we realized that our representation of dis-
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eases as classes is inadequate given what is required in
general and what is evident in other programs {for exam-
ple, allowing for multiple inheritance). We call the recon-
ceptualized framework HERACLES. It is not a completed
tool but an idea that continues to evolve.

Figure 19 illustrates the heuristic classification analy-
sis of SACON, a program that many of us knew about and
talked about for five or six years, but that few understood
until its knowledge base was portrayed in this way. The
purpose of SACON is to select a configuration of programs



in a structural analysis software package developed by the
Mare Corporation. These programs can analyze an object
for structural failure in many ways, some of which are un-
necessarily accurate and time consuming. An expert can
tell you which of the programs should be run to analyze a
particular structure, and that is SACON's task. Imposing
a type classification on SACON’s concepts, and labeling
inferences as abstractions, heuristics, and refinements, we
find a previously hidden secondary structure which helps
us to understand what SACON does.

Studying and generalizing knowledge-based programs,
we van go quite a bit further. First, we can realize that as
stereotypes the classifications are models of systems: spec-
ifications or descriptions of systems and plans for assembly
or modification of systems. Second, the classification se-
quences, relating one model to another, are regular and
limited in nature, constituting tasks. A model of system
being monitored is related to a plan for controlling its be-
havior. A diagnostic model of a faulty system is related
to a repair plan. A specification is related to a design
and then to an assembly plan. Finally, the idea of sys-
t.ms, tasks, and common sequences is independent of how
the solutions are computed each step along the way. Ei-
ther heuristic classification or some constructive method
(perhaps involving nonmonotonic reasoning, hypothetical
worlds, and so on) might be used. It is important to re-
member that this inference structure shows the pattern of
inferences that map given information to final solutions,
and makes no claims about the process or order in which
the inferences are made. Further examples and extensive
discussion appear in (Clancey 1985a, 1986).

Caster: From Diseases to
Abnormal Substances and Processes

In addition to the disorder taxonomy (Figure 11), a knowl-
edge base for diagnosetic problems constructed in HERA-
CLES might include a causal-associational network. Dis-
orders in this network are descriptions of internal states in
the system being diagnosed. Figure 20 shows such a net-
work for CASTER, a knowledge system for sand-casting
diagnosis.

Tim Thompson and I (1986) developed this program
in order to better understand the distinction between the
pathophysiological states of the causal net and the etiolo-
gies, or final causes, of the disorder taxonomy. This dis-
tinction was emphasized in the CASNET program (Weiss
et al. 1978); our in*erest was to apply the ideas to a non-
medical problem.

What did we learn from the CASTER experiment?
First, for diagnosing malfunctions in some manufactur-
ing process, it is useful to organize the disorder taxon-
omy according to each stage in the overall process (pat-
tern design, melting, and so on). In contrast, the top level
of NEOMYCIN’s taxonomy cotresponds to defects in the
neurological system, viewing it as an object, not a process:

assembly flaw (congenital), environmental influence (infec-
tion, toxicity, trauma, psychological load), or degeneration
(vascular disorder, immunoresponse, muscular disorder).
In both of these physical systems, externally observable
manifestations are explained in terms of internal system
behavior, tracked back to faulty structures and malfunc-
tions of subsystems. These are in turn explained by the
etiologies, processes in which the system interacted with its
environment, bringing it to its current state. In medicine,
these etiologies include congenital problems (caused by the
mother’s lifestyle or her environment), psychogenic prob-
lems (emotional overload), trauma (structurally damaging
the body), toxic environment, and so on. In the human
body, internal systems generate new subsystem structures,
so developmental and degenerative processes are also im-
portant etiologies. We believe .hat this analysis can be
generalized to cover all physical systems.

A second interesting result is the set of heuristics we
discovered for constructing a well-formed causal network
(Clancey 1984d). These heuristics include asking the ex-
pert about categories of states; asking about unobserv-
able states that track back to different etiologies; distin-
guishing clearly between substances and processes, par-
ticularly, never causally linking substances directly; and
working backward from repairs to causes. This last point
emphasizes that the purpose of the causal-associational
and etiologic taxonomy is to make choices about repair, a
point I emphasized in The Disease Taxonomy: Searching
an Abnormal Process Clarification. Uncertainty in diag-
nustic reasoning need only be resolved to the extent that
it makes a difference in distinguishing among repairs.

Our heuristics can be viewed as criteria for critiquing
a behavioral causal model. Can we formalize these con-
straints so that they can be taught to a student? Viewing
a diagnosis as a model is the first step.

The Situation-Specific Model:
From a Diagnosis to an Explanation

This lesson might be the most important. It is the idea
that a diagnosis is not the name of a disease but an args-
ment which causally relates the manifestations which need
to be explained (because they are abnormal) to the pro-
ceases that brought them about (See Figure 21). A number
of ideas come together here:

o Diseases are processes (see The Disease Taxonomy:
Searching an Abnormal Process Classification and
Caster: From Diseases to Abnormal Subetances and
Processes.) Thus, a diagnosis is a network causally
linking manifestations and states to procesees.

® A causal explanation applies the general concepts and
links in a knowledge bas: 1o construct a case-specific
model (Patil, Szolovits, & Schwarts 1981). Thus, the
network linking manifestations and diseases is a model
of a particular sequence of events in the world (also
called a situation-specific model).
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Figure 19. Inference Structure of SACON. Aa ab

stract descriptica of infereace chains is shown above a par-
ticular sequence of associations. SACON ibstracts the given
structure and relates this abstraction to half 3 dosen rules of
thumb that make a quantitative prediction of the structure’s
behavior under stress. Specifically, the fact that the stracture
is a beam is combined with information about its sise, support,
and load distribution in order to select & mumeric equation,
which computes stress and deflection. These predictions are
abstracted, and definitionally related to the structural analysis
program. Specifically, the characterisation of stress, combined
with informstion about loading and error tolerance, is classi-
fied as a particular kind of “analysis® for which the program
is specialised. The SACON program selects from about 30 dif-
fereat program combinations. This corresponds to the number
of organisms in MYCIN, aad is probably good to remember
when considering whether the heuristic classification method is
appropriate for solving a probiem.

e Diagnostic operators examine and modify the d:fer-
ential (most specific diseases under consideration),
linking and refining them. Thus, HERACLES tasks
are operators for a situation-epecific
model (similar to ABEL's diagnostic operators (Patil,
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Szolovits, & Schwartz 1981).

¢ A causal explanation has the structure of a geome-
try proof: It must account for all of the findings and
must be coherent and consistent. Thus, the situation-
specific model must be a connected graph with one
process at the root (assuming a single fault).

The evolution of these ideas is intriguine, revealing
how our computational tools and the use of tie computer
as a modeling medium changes how we think. Sometime in
19835 it occurred to me that we could extend the windows
offered by GUIDON-WATCH to include a graph show-
ing how the final diagnosis related to the known findings.
When [ saw the way Anderson replaced a linear geome-
try proof by a graph (using the same Interlisp-D graph-
ics package), the analogy between a causal explanation
and a proof became concrete (Anderson, Boyle, & Yost
1985). Thus, the example from another domain showed
how Patil’s idea of a patient-specific model could be useful
in teaching, and the availability of the graphics package
encouraged us to create the picture to see what it would
look like.

It is astounding to realise how many hundreds of ex-
pert systems are cranking out diagnoses with neither the
programs nor their designers ever explicitly considering a
diagnosis as a coherent causal model. They don’t even
check to see if all of the findings are covered by the final
diagnosis. Our language is too loose: The program prints
out the name of a disorder, and we say, “The program
has made a diagnosis.” However, where is the explanation
argument?

For the purpose of teaching, this graph could perhaps
be the best way to reify the process of diagnosis. For sev-
eral years, inspired by Brown’s emphasis on “process ver-
sus product” (possibly derived from Dewey [1964]), I've
been searching for some written notation that we could
use, something analogous to algebra, to make visible what
the operators of diagnosis (NEOMYCIN’s tasks) are do-
ing. The analogy with geometry turns out to be stronger
than the analogy with algebra because each inference itself
relies on a proof, analogous to the causal arguments be-
hind each link of the situation-specific model. In algebra
the inference rules are all axioms.

Giving this window to the student, we might have him
carry out the diagnosis by posting his hypotheses and link-
ing them to the known findings. Each step along the way,
there are visible problems to be solved. The student can
see that he is trying to construct a logically consistent
network. Behind each request for data is an operation for
making the network hang together—explaining the find-
ings that need to be explained and refining the hypotheses
that need to be made more specific. An instructional pro-
gram is now being develc jed based on this idea. Called
GUIDON-MANAGE, it has a student “manage” the diag-
nosis by explicitly applying strategic operators.
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Figure 20. CASTER’s Causal-Associational Network for Shrinking Defects in Cast Iron. This simplified network
relates structural failures (for example, mold wall movement) to functional failures (for example, inadequate mold support).
These are all internal to the system and often can’t be observed directly. Reasoming proceeds as follows. Given some surface
fault, such as shrinkage cavities in the cast iron, we reason backwards to possible causes: (1) feed of metal shut off, (2} a brokea
mold (leak), and (3) absence of metal to feed. Gates, risers, and fillets refer to structures for shunting metal and venting gases.
Terminal modes, on the right side, track the problem back to some problem in the iron-casting process (pattera design, mold
formation, metal melting, and 0 on), thus relating system behaviors to external causes (the desigmer’s assumptions, previous
treatment of the sand, contamination of the metal supply, and 50 on). We believe that analysing such networks, relating them to
the well-defined structure and function of the sand-casting system, will help us to redefine in a principled way the causal relations

given to us by experts in other domains, such as medicine. Working in multiple domains proliferates metaphors and helps us to
develop more general theories about expert knowledge.

This is an amasing change. Ten years ago I thought
I was trying to teach parameters and rules, and now I'm
saying that I want to teach the student to be an efficient
model builder. What can we tell the student that will
help him critique the model that he’s constructing” For
example, we’ll say, “All the important findings need to be
explained.” Observing that he has failed to do something
that needs to be done, we’ll tell him about the opera-
tors, 80 he can step back and say, “Well, what knowledge
might I be missing that prevented me from carrying out
that task?” So debugging by explanation of failure—pro-
ceeding from model constraints to operators to knowledge

¢ Reimplementing the explanation progzram to use the
logic encoding of the metarules (stating this program
in the same task-metarule language 5o that it might
reason about its ¢ wn explanations)

¢ Generalising our graphics package using object-
oriented techniques

e Applying the student-modeling program, ODYSSEUS,
to knowledge acquisition

o Preparing HERACLES for use by other people
I'm going to jump up a level here to consider some

ical lessons we can draw from this research.

relations—is the approach we’re following. This leads to
an interesting model of learning (Clancey et al. 1986).

Methodological Lessons

To summarise ongoing projects mentioned or alluded to
here, we are currently doing the following:
o Developing instructional programs based on NEOMY-
CIN

» Studying learning in the setting of debugging a knowi-
edge base

Figure 1 provides a simplified summary of how the
various programs and research ideas are connected. We
obeerve two examples of a specific expert system being
generalised, with the resulting shell used to construct other
specific systems and a tutoring shell. Is there any logic in
this sequence that might reveal soinething about learning
in general or at least about how we learn by constructing
programs?

In the section names in this article, I indicated the
sequence of terminological changes (“from ... to...") that
seem to mark each major change in my understanding.
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Figure 21.

Partial Diagnoetic Model in NEOMYCIN. The process of diagnosis is the construction of a proof tree,

relating the findings and disorders that could have caused these findings. At some intermediate state when solving the problem,
the network is disconnected and partial. The patient has seisures; what could have caused that? There is some support for
Acute Bacterial Meningitis and Increased Intracranial Pressure, but these two hypotheses haven't been related. Is there some
undeslying cause (process) that could account for all of the manifestations? Diagnostic operators can be viewed as graph
construction operators, facusing on particular nodes and trying to grow the graph down to support possible explanations or
refining it upward to more specific explanations. A final situation-specific model is a connected network, with some root process
that we say explains the internal states (such zs Tncreased Intracranial Pressure), which, in turn, explain the observed findings.
This graph, as an argument having the structure of a proof, is the diagnosis, not the term Acute Bacterial Meningitis.

The renaming that occurred in moving; from “clinical
parameter” to “model” is dramatic. None of the interme-
diate concepts (hypothesis, relation, process, and so on)
is new, but it is interesting to note how they are retained
and how they build upon one another as the knowledge
structures are reinterpreted from different perspectives.

Thus, in HERACLES today, we have parameters,
terms, hypotheses, diseases, processes, stereotypes, and
models. All of these remr sin true descriptions of what’s
in our program. The perspective changes, broadening
from langsage terminology (parameters, terms) to reason-
ing phenomenology (hypotheses), domain ontology (disease
process taxonomy); and, finally, epistemological distine-
tions (stereotypes, models). With the heuristic classifica-
tion perspective at the top—couched in terms of systems,
tasks, and models (Clancey 1986)—previous terminology
is retained for describing the program at different levels.

Looking closely at the sequence of research iteelf, there
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are some clear patterns:

o Abstracting or generalizing terminology to incorporate
another specific downain (for example, moving from
discase to disorder process)

e Separating a domain model (what is “true”) from
the inference process (what to do) by identifying and
justifying procedural sequences (for example, defin-
ing relations for ordering MYCIN’s rule clauses and,
later, defining relations for ordering NEOMYCIN’s
metarules)

o Justifying domain relations in terms of underlying con-
straints and patterns (for example, a theory for genes-
ating appropriate follow-up questions or trigger rules
or a theory for generating a causal network in terms
of faulty structures and malfur.ctions)

Figure 22 summarises the overall pattern. The point
of the znalysis phase is to detect patterns that we want to



model explicitly and that have been mapped into the lan-
guage in an implicit and perhaps undisciplined way. Thus,
findings and hypotheses, causality and subtype, and dis-
ease knowledge and procedures are not distinguished in
MYCIN. Findings and hypotheses are both represented
as parameters. Cause and subtype are represented by se-
quences of clauses in rules, or in the relation between a
parameter and its values (for example, parameter— “the
kind of Meningitis”; value—“Bacterial”). Focusing proce-
dures are also encoded by rule clause ordering.

There is apparently no end to this criticism; the same
game can be played with NEOMYCIN. For example, in
attempting to improve the explanation program we find
that the use of terms in NEOMYCIN’s original metarules
is ludicrously undisciplined; they are used like arbitrary
program variables, with no apparent connection between
$HYP and $CURFOCUS. Interpreting this representation
for diagnosis causes no difficulties, but the explanation
program needs to know that the metarules refer to the
same kind of entity, a hypothesis.

This analysis suggests that detecting patterns of state-
ments in some language, articulating a new classification
model, and defining a new procedure by which the state-
ments are to be interpreted are intricately related. Recall-
ing the analysis of metarules (MRS/NEOMYCIN: From
Findings and Hypotheses to Relations), we observe that
each new purpose for interpreting a representation re-
quires new distinctions—new relations— to classify exist-
ing domain terms, rules, and relations among them. Thus,
the compiler needs to know which domain relations are
predicates and which are functions (in the mathematical
sense). ODYSSEUS needs to know when metarules can
be reordered. The teaching program needs to know why
metarules are ordered a certain way. In classifying rela-
tions and terms, we are constantly asking, “Which things
can be procedurally operated upon in the same way?”

Winograd reached the same conclusion in his analysis
of how language arises. The need to take action reorients
us to the world, forcing us to make new distinctions. The
relevant properties attributed to an object are determined
by the role the object plays in an action: “This grounding
of description in action pervades all attempts to formalize
the world into a linguistic structure of objects, properties,
and events” (Winograd & Flores 1986). Indeed, by this
analysis the world and its objects exist only in language,
mediated by action.

The expert systerm methodology of writing down
kinowledge in some structured way so that it can later
be studied and better formalized is a remarkable, excit-
ing turning point in epistemological practice. We try to
understand why a relation holds by abstracting it and then
trying to find similar relations in the knowledge base. If &
paitern holds, we restate everything more abstractly. Why
is it correct to say that “broken mold” causes “inadequate
feeding”? What otlier causal links in the network connect

METHODOLOGY FOR IMPROVING
COMPUTATIONAL REPRESENTATIONS
PATTERNS
A
ANALYZE
DESCRBE
GENERATIVE EXPRESSIONS
JUSTIFICATIONS A
REPRESENT
ReFoRMALZE 3 LANGUAGE
Figure 22. Methodology for Improving Computa-

tional Models. Ia the process of kmowledge represemtation,
we write statements in some language; we organise what we
have written down, describing and classifying patterns; we ex-
plain the patterns in terms of primitive relations; and we define
s new language that enables us to explicitly state these primi-
tive relations and generate the original patterns. For example,
clause correlations in in MYCIN’s rules are now reformulated in
tasks, metarules, and domain relations. Another cyde occurs
when we study these metarules and articulate the coastraiats
behind their design. Similarly, patterns in NEOMYCIN’s dis-
ease taxonomy and CASTER’s cansal aetwork are articulated
by characterising diseases as processes aad states as abmor-
mal strectures and malfunctions. These new perspectives—
the search for patterns and their articulation in a mew lan-
guage—all rise in an attempt to formulate some gemerative
rationale for constructing similar structures in new domains as
well as to evaluate existing networks for consistency and com-
pletencss. A geaerative theory of a represeatation facilitates
teaching people how 10 use the representation, reformulating
it for efficieacy, and comstructing explanation programs aad

the same kind of concepts, leaving out the same kind of
details? Do all links in the network connect structures to
functions? Is there any reason why they should?

Having written a model down, the most powerful tools
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of language come into play:
e It is possible to reflect on what was said, to ask why
it is true, to develop a better understanding or theory.

e An incremental critique and transformation process
becomes possible—the best way to build anything so
that it is reliable and useful (Pctroski 1985).

Computational languages provide a way of writing
things down so that the model is executable, the very
thing we need for modeling processes. Al research is ex-
ploring how to model physical, inferential, communicative,
motoric, and perceptual processes using qualitative (prin-
cipally nonnumeric, relational) representations (Clancey
1086). Graphics provide a medium for visualizing pro-
cesses, so we can understand the complexity of the sys-
teras we construct (Hollan, Hutchins, & Weitzman 1984;
Clancey 1983c, Richer & Clancey 1985) and even start to
ask new questions as icons and graphs become part of our
language for stating theories. The marriage of qualitative
modeling and graphics in the 1980s, made available on
cheaper. more powerful machines, provides a sharp stim-
ulus to Al research and a good reason to be optimistic
about the progress to come.
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