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~Phe purpose of knowledge engineering is to develop partial qualitative models for
solving practical problems. These models--called knowledge bases in expert systems--

must have appropriate diagnostic knowledge to deal with the real-world problems.

In general, solutions to diagnostic problems can be either selected from a set of pre-
enumerated alternatives (for known conditions) or constructed (for novel problems or
those that combine multiple, interacting disorders in an unforeseen way). While
engineering design is often thought of as a constructive ‘ problem-solving process,
diagnosis is typically thought of as a selection or classification problem. But the solution
method is not inherent in the task itself. Instead, it depends on the problem solver’s

previous knowledge, requirements for customization, and the like.

For example, engineering csign may involve selection from among competing possible
designs (especially in the case of the experignced designer), and diagnosis sometimes

requires consideration of the system’s structure and function.‘H-/‘Q

o ——- s s i = — - ——

\Nevenhelu, useful programs can be developed that solve diagnostic problems by
selection alone. We believe that starting with a well-defined classification procedure and
a relational language for stating the classification model eases the development of a
program that diagnoses by selection. To iest this thesis, we built an expert system,
called Caster, that addresses a pasticular diagnostic problem: malfunctions in industrial
sandcasting. Our goal was to demonstrate that these control structures, developed for a

medical diagnosis problem, are general and tﬁplicnble to engineering applications.

.

Caster uses the Heracles qualitative modeling environment, a shell generalized from

the Neomycin medical diagnosis system. Heracles provides s well-defined diagnostic



procedure that structures inference according to a pattern called heuristic classification,
and it provides a relational language to state knowledge of taxonomies of malfunctions

and abnormal state transitions. [5]

History
The Mycin system, [11] developed in the mid-1970s, showed that it was possible for a
computer to diagnose and treat infectious diseases with the accuracy of a human
expert. [2] Subsequent research has sought to improve understanding of the nature of
domain knowledge and the expert’s inference process. One line of research resulted in

Neomycin, a reconfigured and extended version of the original Mycin system. (4]

Neomycin's principled representation of domain knowledge is in terms. of disease
taxonomies, causal networks of abnormal states, and hierarchies of findings such as
measurements, general observations, and disease symptoms. Its design also explicitly
represents control strategy so that the system can articulate its diagnostic strategy to
users, and so that. in a tutorial setting, the system has some basis for recognizing the

logic behind student behavior. [4]

Consequently, Neomycin's knowledge base consists of both domain-level rules about
medical disorders and control rules that express techniques to select and apply domain
rules as human experts would. For efficiency, these control rules can be precompiled
into procedural code and can be interpreted by an explanation facility to teach the

system's diagnostic strategy.

Neomyein's control knowledge (a rule set that heuristically classifies findings,



abnormal states, and diseases) evolved concurrently with its domain-specific knowledge
base. The set of control rules developed for Neomycin has evolved into a cohesive whole
characterized as heuristic classification. Knowledge engineers have used this control
strategy in several expert systems, including Mycin, Puff, Sacon, the Drilling Advisor,
Grundy, and Sophie IIl. The strategy was not explicitly represented, so the systems

could not reason about their actions.

This is the crucial difference between Heracles and, for example, Emycin, which does
not have a heuristic classification control strategy built in. Thus, Emycin users
implicitly build a heuristic classification control strategy into their domain rules, and
every system designer (knowledge engineer) must repeat this task. Clearly, this is a

significant obstacle to efficient knowledge acquisition -- one Heracles can overcome.

Heuristic classification
Simple classification problem-solving involves selecting from a set of pre-enumerated
solutions. These solutions are often organized hierarchically, and classification consists

of matching observations about an unknown entity against features of known solutions.

In heuristic classification, solutions and solution features may be matched
heuristically, by direct, nonhierarchical amociation with some concept in another
classification hierarchy. For example, Mycin does more than identily an unknown
organism in terms of visible festures of an organism: Mycin heuristically relates an

abstract characterization of the patient to a classification of diseases.

Figure 1 shows the inference structure schematically. It shows that heuristic



classification consists, essentially, of data abstraction, heuristic match, and hypothesis
refinement. Basic observations about the target system are abstracted into feature
categories according to definitional relationships, qualitative relationships between
numeric measurements and nonnumeric conceptual descriptions, and generalizations

between classes of findings and their subtypes.

Inferential leap. From this hierarchy of data abstractions, the heuristic classification
problem solver makes a great inferential leap via heuristic or causal relations to a
hierarchy of solution classes. A heuristic relation is unceriain, often derived empirically

from the problem solver's (such as a physician’s) experience.

A heuristic relation typically takes the piace of a network of causal relations between
problem features and solutions because the causal relations are unobservable, poorly
understood, or invariant for most cases. After a heuristic match or causal propagation
suggests a general malfunction hypothesis, the hypothesis must be refined according to

the distinctions relevant to fixing the target problem (that is, prescribing therapy).

Refinement goal. The goal of refinement is to confirm or rule out competing
specializations of the general hypothesis at each level in the malfunction taxonomy by
requesting specific findings or tests. The result of this refinement is the specific cause of

the general malfunection.

For example, if a heuristic match suggests a general hypothesis (solution class), a
heuristic classification system begins to explore and reﬁne, the classification by replacing
the hypothesis on the system's current list of potential malfunctions (called the
differential) with known subtypes. The system tries to gather more evidence to confirm



or rule out each competing hypothesis. The system repeats the refinement phase for

each subtype.

The classification hierarchies are not always trees, as generally portrayed for simplicity
in this article. They may be "tangled” structures with some concepts having multiple
parents. While it is convenient to think of heuristic classification as ordered steps of
data abstraction, heuristic match, and hypothesis refinement, the heuristic classification

model actually makes no claims about the execution order.

Depending on the needs of the application, the diagnostic procedure can be organized
to reason, for example, either forward from observations to solutions or backward by
hypothesizing solutions and then asking for findings that either confirm or refute the

hypotheses.

The heuristic classification strategy implemented in Heracles is opportunistic: The
system pursues lines of reasoning as they are suggested by new findings. The system
simply does not do all the data abstraction, then all the heuristic matching, and then all
the hypothesis refinement. Instead, the refinement process may suggest the need for

new data (to confirm or refute a hypothesis), which in turn might trigger further data

abstraction, and so on.

Heracles shell
The Heracles system is a comprehensive environment for Luilding heuristic-
classification qualitative models of engineering problems. This environment includes an

explanation facility, [7] an interactive, graphics-based display developed for debugging



and teaching, [10] and a graphics-based knowledge editor designed for the Caster

system.

These facilities give the knowledge engineer a well-defined relational language to
express knowledge about classes of solutions and their features and specializaiions,

about classes of findings, and atout networks of causal relationships among abnormal

states.

We generalized Heracles from Neomycin the same way Emycin was generalized from
Mycin. [12] We removed all the domain rules and domain parameters from Neomycin
and generalized any references to medicine in the control rules. Figure 2 shows Heracles
as the core of the Neomycin and Caster systems. The relational language for qualitative
models is the same. The classification procedure indexes the model in terms of these

relations.

Implementing classification. Part of the key to efficient model design for selection
problems is having a heuristic-classification control strategy already built into the
problem solver. If the knowledge engineer can solve a problem with this computational
method -- and experience shows it to be extremely general — his job will be much easier
because the vocabulary for stating the qualitative model and the procedure for
interpreting it during a consultation are supplied in advance. The knowledge engineer is
thus freed to concentrate on defining the basic terms and their relationships in the

target domain.

In Heracles, control rules are grouped into tasks like explore-and-refine a general

hypothesis, group-and-differentiate the current hypotheses in the differential, process a
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(new) finding, and so on. There are 29 tasks and 75 control rules. (These control rules
are also referred to as metarules since they are essentially rules which reason about the
application of domain-specific rules or, more generally, what information to gather, and

what assertions to make.)

Each task is associated with a short, ordered set of control rules. These rules are often
applied iteratively according to the specification of the given task. Thus, heuristic
classification in Heracles is highly structured and has relatively few steps or methods to

achieve any one task.

Figure 3 shows an example of one of the control rules Heracles uses to process inr.ut
data. Roughly translated, it says, "If the current task is forward-reason, and if a newly
entered piece of data has not vet been clarified, then invoke a subtask called clarify-

finding to further classily the data.”

For example, if Neomycin learns that the patient has a headache, one of the possible
choices it has is to ask more specific questions (such as how long, how often, or exactly
where these headaches occur) that further clarify the initial, general finding of

headache.

It is exactly this collection of tasks and metarules developed in Neomycin that we use
in Caster, although not all of them apply. For instance, those rules pertaining to the
distinction between circumstantial evidence and laboratory data are superfluous in

Caster because all the data in Caster is circumstantial.

Knowledge-expression language. Anather part of the key to efficient model design

for selection problems is a well-defined relational language in which the knowledge



engineer can express knowledge of the domain. In Heracles, the fundamental terms
(domain parameters) include findings, descriptions of abnormal internal occurrences (for
simplicity we will call them states), and treatable causes. The fundamental relations
include heuristic rules expressing a cause and effect (or causal) relationship,

subsumption relations, taxonomic relations, and qualitative abstraction rules.

The possible relations between domain parameters that we need to describe the Caster
system are as follows. Findings can subsume other findings (for example, since brain
surgery is "a kind of" surgery, surgery is said to subsume brain surgery). Likewise,
abnormal states can subsume other abnormal states. Abnormal processes are grouped
into a classification hierarchy of diagnostic hypotheses by links that express a

type/subtype or taxonomic relationship.

Findings and diagnostic hypotheses may be related directly by heuristic rules or by
causal networks of abnormal states. Thus, findings can be caused by abnormal states,
abnormal states can be caused by other abnormal states, and abnormal states can be
caused by a particular hypothesized malfunction in a class of malfunctions. In general,

diagnostic hypotheses are types of malfunctions endemic to a specific domain.

In our specific application of heuristic classification to diagnosis of processes, the
disorder classification models the process in terms of what can go wrong at particular
stages. Each terminal node specifies a model of the world in terms of symptoms and
causes, and each terminal node exists because it is a treatable cause (that is, it can be

heuristically related to fixes).

Moreover, each fix is a change to physical system functions and processes. Thus, our



goal is Lo construct a qualitative model that will fix a physical system, not a model that

diagnoses a system for its own sake.

Tools to express knowledge. The ability to efficiently build a useful knowledge
base partly depends on the well-known expert system tenets: The interface should be
easy to learn, and easy to use. The Heracles user interface has a graphics-based display
facility and a graphics-based knowledge editor. The editor is mouse- and window-
driven, and its main menu is displayed as a pop-up window that lets the knowledge

engineer move a node, add a node, delete a node, add a link, or delete a link (see Figure

1),

Nodes correspond to domain parameters such as findings, abnormal states, and
malfunctions. Links refer to relations between parameters, such as causal rules, subtype

relations, and subsumption relations.

An important feature of the knowledge editor is its knowledge of which domain
parameters can be associated by which relations. For example, there are a number of
slots associated with causal rules, and each slot may take any of a number of values.
The knowledge engineer must only specify nodes and links between them -- the
knowledge editor will determine which slots and values are appropriate, and then fill

them in automatically.

Thus, the knowledge engineer doesn’t have to know how to fill all the appropriate
slots in all the appropriate schemata each time he specifies a domain relation. He
doesn’t even have to know that these slots exist. The knowledge editor makes the job of

entering new knowledge much easier. It also makes it easier for the knowledge engineer
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to see, literally, how the changes he makes will affect the old knowledge.

Sandcasting domain
Sandcasting is a metalworking process used to make all sorts of objects from crescent
wrenches to V8 engine blocks to ocean liner propellers. It involves packing a two-part
box, called a flask, full of sand around a pattern of the object to be cast. In Figure 5,
the casting is of an L-shaped object. The pattern is removed by separating the box
along a parting line. The dimensions of the flask can be from about a {oot square to 20

or 30 feet square, depending on the size of the object to be cast.

Molten metal is poured down a large tapered hole, called a sprue, into a cavity, called
a sprue well, that cuts down on the turbulence caused by pouring and that allows
impurities to settle before flowing into the mold cavity. The metal flows into the mold

through runners that open onto the mold through gates.

The pl.cement and size of the pattern equipment -- sprues, runners, and gates -- is
critically important. For example, if the gates are too small, the metal may not fill the
mold before beginning to solidify, thus cutting off flow into the mold prematurely. On
the other hand, if the gates are too large, impurities can wash into the mold, causing
structural and surface defects, like cracks and bubbles, in the casting. There are also

many other considerations in pattern equipment design.

As the metal cools, its volume is reduced because molten metal has more volume than
solid metal. As the metal solidifies, it must be kept under pressure snd more molten

metal must be available to replace the lost volume. Other funnel-shaped holes called
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risers, which fill with metal during pouring, take care of this. The force of gravity on
the metal in the risers can exert enough pressure to keep the casting from developing

shrinkage cracks.

This qualitative physical description of sandecasting forms the foundation to
understand the techniques in diagnosing sandcasting malfunctions. The problem is how

to get a computer to understand sandcasting so that it can diagnose malfunctions.

The malfunctions we intend Caster to diagnose are the common and repeatable
failures the quality control engineer faces every day. For example, the temperature of
the molten metal, the pattern equipment, and the molding sand can vary from casting
to casting. The pattern equipment will gradually wear away with time. The molding
sand may contain varying amounts of moisture. Levels of impurities in the molten metal
will vary. All these variables and many more will cause repeatable sandcasting

malfunctions.

Knowledge acquisition experiment
The knowledge bases for most expert systems depend very heavily on substantial input
from domain experts. Unfortunately, the time of the skilled diagnostician is usually in
great demand, so the time needed to build a quality knowledge base clashes with the

need to have the expert fight fires elsewhere at the same time.

On the other hand, reference material for a given domain is often readily available -

but it is generally recognized that written references are a poor substitute for the

domain expert.
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Because the demand for the domain expert’s time will always exceed the time
available and because domain experts frequently consult reference works with good
results, a fruitful research area would be trying to improve domain-knowledge

acquisition techniques for written reference material.

Firmly entrenched procedure. One important reason an expert can assimilate new
knowledge from reference manuals is that he starts with a firmly entrenched problem-
solving procedure and a solid understanding of the fundamental terms and relations in
his domain. We hypothesized that if we could equip a novice in the domain with a well-
defined problem-solving procedure and a relational language for the knowledge
representation, perhaps he, too, could efficiently construct a qualitative model of the

domain from written reference materials.

Eaclier research in studying a variety of knowledge bases, which showed that heuristic
classification is a robust and well-defined problem-solving strategy for selection
problems, seemed to endorse this hypothesis. Furthermore, there is considerable
psychological support for heuristic classification as a model of how experts use

experiential knowledge of familiar problem situations and solutions. |5}

To test our hypothesis, we chose an experiment in knowledge acquisition where we
attempted to become, in a limited sense, our own domain experts by studying many
textbooks and manuals on diagnosing sandeasting malfunctions, rather than extensively

interviewing experts,

We tried to use heuristic classifieation and Heracles's relational model language as the

foundation for our own emerging mental qualitative model, and as a framework to
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guide the instantiation of Caster's computer model. We relied heavily on the casting

handbook Analysis of Casting Defects [1] and referred to experts only on difficult or

unclear matters.

Developing a qualitative model. There are about 15 major classes of sandcasting
malfunctions. We initially concentrated on the kinds of sandcasting malfunctions that
cause shrinkage cavities. A shrinkage cavity is the result of letting the casting cool

without forcing new metal into the mold to offset the reduction in volume as the metal

solidifies.

A shrink is an observable defect that would be considered a general finding in Caster
as much as a headache is a finding in Neomycin. It is then possible to clarify that
finding according to how long it has been occurring, what percentage of castings exhibit

this defect, and the like.

Original plan. In our original plan, after establishing the data abstraction hierarchy
for shrinks, the next goal was to identify from the manual the abnormal processes that
could cause a shrink and then to organize them into a classification hierarchy with

general malfunctions at the top and more specific malfunctions further down.

Finally, we wanted to uncover the heuristic relations between the data abstraction
hierarchy and the taxonomy of malfunctions or perhaps identify a causal network of

abnormal states relating abstractions and malfunctions.

In retrospect, we might have expected the job would not be so straightforward.
Although we came to the task well-armed with our explicitly represented diagnostic

procedure and relational model language, the authors of the casting manual didn’t have
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the same commitment to explicit diagnostic models.

Each sentence’s mention of causality of some sort obscured problem feature hierarchies
and malfunction taxonomies. The manual consists largely of independent heuristic
causal relationships between observations and diagnoses. For example, the manual has
many sentences like "Excessive gas producing inorganic materials can cause gas defects
in castings . . . ," "Uncured shell sand will . .. cause pinholes, and "Excess moisturs

in green molding sand is probably the greatest cause of gas defects in cast metals.”

Thus, this casting manual is loosely organized as a very long list of causal relations of
the form <some malfunction> causes <some symptom>. This long list is subdivided
into about 15 major sections corresponding to the major observable symptoms. Each
section is divided into several subsections corresponding to the basic processes in which

malfunctions arise.

General diagnostic strategy. The authors of the manual made no attempt to teach a
general diagnostic strategy, probably because the assumed reader is one already skilled
in the art of sandcasting diagnosis. By assuming that the reader is a sandcasting expert
with his own well-developed diagnostic methods, the authors were free to provide useful
reference information in a highly concentrated form that the reader can assimilate into

his existing "knowledge base® as he sees fit.

Our first pass at representing this type of description resulted in a group of
fragmented causal associations (see Figure 8). About all we were sure of was that
shrinkage cavities were caused by a variety of problems, including insdequate supply,

not enough gates and risers, risers that are too amall, and gates that sre too large. From
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this sort of description, it was not at ail obvious what were treatable causes, what were

internal descriptions, and so forth.

Fundamental cause. However, after much reflect’~1 and several abortive attempts at
restructuring our initial list of causal associations, we realized that a fundamental cause
of shrinkage cavities was inadequate supply and that the other problems mentioned, like

too few gates or risers, were causes of inadequate supply.

There are essentially three reasons why the casting might be inadequately fed. One is
that there simply is no metal available to feed. This can result from too few risers, risers
that are too small, and similar reasons. A.nother cause is that the mold broke, possibly
due to mishandling. Thus, the metal was available but leaked out. The third cause is
that the feed is shut off, possibly because the neck of the riser is too small (that is, the
metal in the small riser neck solidified, preventing an adequate flow) or the metal was

not heated sufficiently.

It should be clear that we were doing more than merely translating the text in the
manual into Heracles’s relational model language. In studying the manual, our own
qualitative model of the shrinkage cavity problem gradually emerged. Only after we
really understood the causality behind shrinks could we put that knowledge in the

language used by Heracles.

At the same time, however, we used the causal structure defined by Heracles to enable
us to ferret out the causal networks of abnormal state transitions implicitly expressed in

the casting manual.

Another important insight was the realization that the general malfunction classes in
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Neomycin are fundamentally different than those found in the sandcasting domain. In
medicine, we see clearly identifiable abnormal processes (such as infectious processes,
vascular disorders, and traumatic processes) and abnormal agents that cause those
processes. In casting, there are no analogous abnormal processes or agents. Instead,
there is a clear sequence of normal processes (such as melting, pouring, and solidifying)
that are affected by abnormal events (such as a mold breaking or the feed being shut
off).

Partial model. Figure 7 shows a simplified version of our reorganized knowledge of
shrinkage cavities which shows the normal processes of melting, molding, solidifying,
and so forth, with the abnormal conditions that might occur in each process; For
example, a poor jacket fit is just one abnormal condition which might arise during the

normal molding process.

Because we had difficulty with our first attempt at building a qualitative model for
shrinkage cavities, and because we believed we had resolved the source of that problem,
we continued developing knowledge of another common type of casting malfunction: gas

defects (see in Figure 8).

Significantly, it took several man-months to come to grips with the shrinkage cavities
model while it took only a couple of weeks to develop a similarly complex model for gas

defects.

Ezample scasion. The following is an excerpt of a script (annouted in italics) showing
heuristic classification as applied to the partial qualitative model shown in Figure 7.
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16-May-86 22:43:56

Please enter information about the casting
1) Casting Type:

IRON

2) Please describe the chief complalnts:
*+ SHRINKAGE-CAVITIES

xkK

Caster begins by applying the heuristic rule suggesting
tnadeguate supply.

DIFFERENTIAL: (INADEQUATE-SUPPLY 800)

Caster 18 exploring and refintng the differential.
Inadequate-supply has been replaced by metal-leak, feed-is-
shut-off, and no-metal-to-feed. Metai-leak suggests a
broken-mold, so Caster inquires whether there is evidence of
a runout.

3) Does Casting-4 have a runout?
*% N

Caster has looked at feedss-shut-off, which suggests
that fillets may be too small, so the system asks i f the
shrink is al a corner, which would be strong evidence for
fillets-too-small.

4) Does Casting-4 have a shrink at a corner?
*» Y

Finally, Caster looks for evidence that there is no

metal avaslable to feed, namely that there is a high reject ratio.

5) Does Casting-4 have a high reject ratio?

*% N

DIFFERENTIAL: (METAL-LEAK 100) (FEED-IS-SHUT-OFF 100)
(FILLETS-TOO0-SMALL 700)

This example shows how heuristic classification can reduce the amount of search
required by ruling out some lines of reasoning while at the same time promoting a more
focused and thereforr more natural interaction with the user. The example also
illustrates hypothesis refinement and the opportunistic style in which heuristic

classification is implemented.
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Inadequate-supply is replaced in the differential by its three children, metal-leak, feed-
is-shut-off, and no-metal-to-feed. Each of these more specific hypotheses suggests
hypotheses elsewhere in the malfunction taxonomy. Caster adds those hypotheses to the
differential and tries to explore them along with the subtypes already in the differential
by asking for confirming evidence which could in turn trigger further data abstraction.

(Their children do not come into play in this example, and are therefore not shown in

Figure 7.)

The next step in our development of Caster would be to extend and validate Caster’s
domain knowledge by using the system in the context of real-world problems. We are
ready to perform such an analysis, but because the foundry has only very recently

begun recording malfunction case histories, we cannot yet get the required data.

Experts examining traces of Caster working on hypothetical cases confirm that Caster
does appear to make the correct diagnoses. This is important to us since one of our
goals was to determine how well heuristic classification can be applied to nonmedical

domains requiring causal reasoning.

Obeervations on the experiment. Although virtually all the well-known knowledge
acquisition systems are designed specifically for human knowledge sources, we were able
to show that Heracles, using an explicitly implemented heuristic classification control
strategy and a relational language for building qualitative models, can build partial

qualitative models for the sandcasting domain from dingpostic manuals.

Novice sandcasting diagnosticians such as ourselves could succeed in building Caster

because the Herscies framework helped us understand the domain by organizing the
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knowledge in the reference manuals so it could be used for diagno:s. Without it, we
would still be staring at our original, overwhelming, unconnected, and not very useful

list of causal relations from the manual.

The casting manual told us a lot of things about the casting domain, but it didn't tell
us what to do with this knowledge. It didn’t explain that some observations subsume
other observations. It didn’t explain that general malfunction classes can be refined into

more specific hypotheses by asking specific questions. Heracles provided this vocabulary.

After we realized that sandcasting diagnoses are best characterized as a sequence of
normal processes affected by abnormal events, we were able to use the casting manual

efficiently to build partial qualitative models to diagnose sandcasting problems.

Understanding the different ways diagnostic hierarchies of processes can be organized
is an important result of this research. For example, notice that the normal processes of
sandeasting are subject to a temporal ordering. First we design the pattern, then build

the mold, and then melt and pour the metal. Finally the metal solidifies.

A problem may occur in one process (a mistake in pattern design) but a symptom may
not appear until several processes later (a shrinkage cavity). This provides a simple
diagnostic heuristic we could add to Heracles — moving from right to left in the tree of
disorders (or backwards in time from effects to causes). This heuristic very nicely shows

how the representation for causal processes relates to the diagnostic control rules.
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Knowledge acquisition heuristics
Expert system researchers have reached the point of focusing less on "How do we
build expert systems?® and more on "How do we build expert systems right?" For
example, how do we design expert systems that can be better maintained, that can

explain their reasoning to users, and that are easier to build?

Caster’s purpose was less to demonstrate that we could build the system than it was
to understand how starting with a relational vocabulary for a qualitative model
influences knowledge acquisition. One result was the identification of knowledge
acquisition heuristics that are new precisely because they view knowledge acquisition in

terms of constructing a qualitative model.

These heuristics apply not only to diagnostic systems but also to qualitative modeling
for design, modification, monitoring, and control of physical systems in general. These
knowledge acquisition heuristics extend and refine the crucial questions Buchanan et
al. [8] list: "What are the important terms and their interrelations? What does a
solution look like and what concepts are used in it? How are objects in the domain
related?” Indeed, these are crucial questions. However, identifying these questions is not

nearly as difficult as answering them.

We used Heracles's relational language to help us identify the fundamental terms and
relations in sandcasting. We identified the important substances in our domain,
including molding sand, water, various gases, and iron. We identified the important
processes that act on these substances, including melting metal, designing a pattern,

building a mold, and pouring the metal.
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We constructed classification hierarchies for each of these substances to define the
causes of abnormal events that disrupt these normal processes. We identified high-level
descriptions of the symptoms of these problems and then constructed abstraction
hierarchies for each by considering the possible types of information characterizing each
general finding. (That is, we looked for generalizations, definitions, and qualitative

abstractions yielding the general findings.)

The last step was determining the heuristic relationships between elements of the data
abstraction hierarchy and the malfunction taxonomy. Relating general classes, instead of
specific findings and hypotheses, aids learning because many specific relations can be

understood as special cases of a general rule.

Thus, the hierarchical structure of domain knowledge -- the categorization of
processes, substances, and the like piomoted by the heuristic classification model -- is

especially beneficial to knowledge acquisition.

Step-by-step procedures. Our experience with Caster further shows that this step-
by-step procedure for qualitative model building is generically applicable to selection
problems:

o Describe abnormal events in terms of the overall stages of the manufacturing
process.

Ease the categorization of processes and abnormal events by classifying abnormal
events in terms of the processes they occur in. For example, the problem of inadequate
supply occurs during the solidification process. A broken mold is the result of a flaw in

the molding process,



e Identify abnormal properties of substances -- then look for causes.

Before thinking about causality, think of all the possible manifestations of a type of
problem, and then establish causes. For example, metal contamination is a serious
problem in casting. There are a number of possible contaminants, inc'uding aluminum,
silicon, and phosphorus. After identifying as many contamination problems as possible,
consider how each type of contamination might occur and how the problem would
manifest itself. This method is much easier and more complete than trying to identify
the many causes of metal contamination without first considering what those
contaminants might be.

e Identify possible malfunctions, determine the corrections for those probleins,
and then translate those relationships to causality.

Perhaps using case histories, figure out what action is needed to fix each malfunction
and translate that knowledge into a causal representation. For instance, for the feed
shut-off problem, we ask what possible changes could remedy the situation. The answers
include making the gates bigger, the neck of the riser bigger, the fillets larger, and the
metal hotter. All these corrections appear in the causal model for shrinkage cavities
shown in Figure 7.

e Establish causality between findings and malfunctions, then expand
intermediate levels.

After establishing a causal chain between findings and malfunctions, go back and look
for additional hidden causality between the links in the chain. We found that it is quite
natural for the expert to leave out levels of causality because he knows the domain.

This was frequently the casc in the casting manual. By making implicit relations explicit



23

(as measured by need in actual cases), knowledge can be organized to use search-saving

strategies such as explore-and-refine.

* Express causality in, for example, natural language first, then translate it to
an expert system’s format.

Start by ignoring the expert system entirely and concentrate on expressing causality in
a convenient way. Insisting that the knowledge engineer express his rules in a
particular expert system’s format risks paralyzing the engineer with unnecessary and

orthogonal analysis of issues of little concern to him at the moment.

The Caster knowledge-base editor made this even easier. It very naturally expresses
parameters and the relationships between them without getting bogged down with
unnecessary implementation details. The system implementation should be as
transparent as possible to the knowledge engineer (and we expect this would be

especially important for the domain expert).

Knowledge acquisition bottleneck
Many expert system researchers over the past 10 to 15 years have rallied behind the
battle cry "Knowledge is power!"™ The prototypical expert system architecture
emphasizes a simple inference engine that manipulates data in a knowledge base
consisting of declarative rules and facts. The central idca is that the programmer is
freed, by coding knowledge as declarative rules, from the constraints imposed by more
traditional software languages. The programmer need not worry about each rule's

context bhecause the inference mechanism applies a rule only when its preconditions are

satisfied.
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This approach works in small domains but is very inefficient in real-world-scale
applications. The two main problems are how does the system figure out which rules are

applicable and which of those rules does it apply first?

As a result, virtually all large-scale expert systems either embed control knowledge in
the domain knowledge or make the simple inference engine more complex. Often, the

two approaches are mixed.

In either case, the burden of organizing systein knowledge for efficient and correct use
falls on the person who creates and maintains the knowledge base: the knowledge
engineer. This job is extremely difficult, and the inability to encode knowledge
representations except through this slow process is often referred to as the knowledge

acquisition bottleneck.

There is widespread belief in artificial intelligence circles that this is the last nut to

crack -- then expert systems will truly flourish in the commercial world.

However, one might argue that this intuition is overly simplistic -- what's really
happening is that all the problems associated with traditional programming have been
pushed onto the knowledge engineer. The Mycin system, for example, depended heavily
on the skill of the knowledge engineer, who coded (in an unobvious and implicit way)

virtually all the structure and strategies for using domain knowledge. |3]

As another example, most OPS5-based systems, like R1, [0] use some domain rules
only to create purely contextual assertions that control the application of other rules.
The basic idea is to partition the domain into a large number of small subproblems so

only a limited number of rules need to be considered at any one time. Again, the
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burden is on the knowledge engineer to organize domain knowledge so that this

partitioning is possible.

Thus, the knowledge engineer who builds knowledge bases for real-world expert
system applications is still programming in very much the traditional sense of the word.
In fact, his job is now even harder, both because he has to implement control strategies
in languages that don’t explicitly support control constructs and because people now

expect his software to solve more difficult problems.

Thus, an expert system is by no means a software panacea. Someone, somewhere, has
to do the difficult job of organizing domain knowledge efficiently to handle the target
application correctly. Whether this organization is implemented in a standard
procedural program or by a knowledge engineer in an expert system’s rule base, it is a

difficult and expensive job.

The central problem is that typical knowledge bases consist of both partial qualitative
models and embedded inference procedures. We conclude that if control knowledge
recurs in various domains, as it does in problems solved by experiential classification
knowledge, distilling that knowledge and stating it explicitly once saves considerable

effort.

Put another way, constructing useful models is a fundamental concern for most
engineering problems. Knoﬁledge engineering specifically concerns the construction of
qualitative models. However, the dictum "Knowledge is power® doesn't discriminate
between the model of the domain and the inference procedure. Thus, the relation of this

new technique to traditional engineering practice is not as clear as it could be.
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The inference procedure of heuristic classification supplied with Heracles reduces
knowledge acquisition to constructing classification and state-transition qualitative
models. Since the inference procedure is general, the power of the knowledge lies in the

store of previously encountered problem situations and solutions and of heuristic

connections between them.

Therefore, we believe the lessons of knowledge engineering are better stated by the

dictum "A qualitative model is power!"
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