
October 1985

~

N
N
<t
I

C
<t

rt·~~:~,

~:.'
.. Report No. ST /\ N·CS·86·1117

A/so /lumbered CS/,-85-287 , .
, ...• :

. ./
i,

........)

An Empi rical Study of
Dist ri buted Application Pe rfo rmance

by

Keith /\. Lant/. William I. Nowkki •• md Marvin M. Thcimer

Department of Computer Science

Stanford University
Stanrord. C/\ 94305

:;:-Al
.' ~.~ --

.p'

'. .': ",

".~.":~---- '"

'.~
. ~~,

(/)

............................. --..... _-----------------------

REPORT DOCUMENTATION PAGE READ lNSTRUcrlONS
BEFORE COMPLETING FORM

I. IIIEPOIilT NUM.EIII Z. GOVT ACCESSION NO. J. IIIECIPIENT'S CATAI.OG NUMBEIII

.. TITI.E (.. d Sub"".) S. TVPE 0' ItEPOIilT • P,e:RIOO COVEREO

An Empirical Study of Distributed Application technical
Performance t. PEIII'OIilMING OIilG. IIIEPORT NUMItEIil

STAN-CS-86-1117
7. AU THOR(.) •• CONTRACT OR GRANT NUMBER(ej

MDA903-80-C-0102
Keith lantz, William Nowicki, Marvin Theimer NOO039-83K-0431

t. PER'ORMING ORGANIZATION NAME AND AOORESS 10. PROG"AM EI.EMENT. PROJECT. TASK

Computer Science Department
AREA' WORK UNIT to/U"'8ERS

Stanford University
Stanford, CA 94305

II. CONTltOl.l.lNG O"'CE NAME AND AOORIESS 12. ItEPORT DATE

Defence Advanced Research Project Agency October 1985
1400 Wilson Blvd. I'. ~:r.ER 0' PAGES

Arlington, VA 22209
I •. MON,TORING AGENCY NAME. AOORES5(II d.U.,." fro .. Con"o/lln. Office) IS. SECURITY CI.ASS. (0' ,h,. ,eport)

unclassified
IS •. OECI.ASSI 'IC ATION/ OOWNGRADING

SCHEOUI.E

II. OISTRI.UTION STATEMENT (0/'"'. If.po,,)

Approved for public release: distribution unlimited

17. OISTRI.UTION STATEMENT (0/," • • be"ac' aft,.,.d'n .'ock '0, II "1I1.,,,'/~ If.port)

". SUPPI.EMENTARY NOTES

't. t(EY WOlilOS (Con,lnu. on ,."., •• • id. '1 n.c ••• .". and Id.n,fly by bloc" numb.,)

20 AaSTRACT (Conl/nu. Oft , ,. •• ,d. "n.c •••• ". and 'd.nll'y lIy lI.oc" nu",II.,)

See next page.

DO 1473

SI'CURITY _C1.A~SIFICATION OF THIS PAGE (When Oata Entered)

19. KEY WORDS (Cont,nuedl

20 ABSTRACT (Contlnuedl

A major reason for the rarity of distributed applications, despite the proliferation of networks, is the
sensitivity of their performance to various aspects of the network environment. We demonstrate that
distributed applications can run faster than local ones, using common hardware. We also show that
the primary factors affecting performance are, in approximate order of importance: speed of the
user's workstation, speed of the remote host (it any), and the high·level (above the transport level)
protocols used. In particular, the use of batching, pipelining, and structure in high·level protocols
reduces the degradation often experienced between differ>::-nt bandwidth networks. Less significant,
but still noticeable improvements result from proper design and implementation of the underlying
transport protocols. Ultimately, with proper application of these techniques, network bandwidth is
rendered virtually insignificant.

DD FOAM 1473'BACKI
1 JAN 73

EDITION OF 1 NOV 16 IS OBSOLETE SECURITY CL.ASSIFICATION OF TMIS P~GE (When Oa,a Ent.red)

An Empi rical Study of
Distributed Application Performance

Keith A. Lantz, William I. Nowicki, and Marvin M. Theimer

Abstract

I Acc"'''-'-' -(NTI;~~~;~&~ v_~·_~r..----4
I DTIe ~-~.::.~
I t.:,,[;~,:,-::., .'::C~ 0
t J L..J L i.:: -" .. " i :':-'--------1

j---------.---~
i E" ___ _

I r;i:_t.~·
1_ ...

I i, ';
1--

!

'Dlst
!

A major reason for the rarity of distributed applications, despite the proliferation of networks, is the
sensitivity of their performance to various aspects of the network environment. We demonstrate that
distributed applications can run faster than local ones, using common hardware. We also show that
the primary factors affecting performance are, in approximate order of importance: speed of the
user's workstation, speed of the remote hG;.t , : any), and the high·level (above the transport level)
protocols used. In particular, the use of ba:"h'- J, pipelining, and structure in high·level protocols
reduces the degradation often experienced b", 3en different bandwidth networks. Less significant,
but still noticeable improvements result from proper design and implementation of the underlying
transport protocols. Ultimately, with proper application of these techniques, network bandwidth is
rendered virtually insignificant.

This research was supported by the Defense Advanced Research Projects Agency under contracts
MDA903·80·C·Ol02 and NOOO39-83·K·0431, by the National Aeronautics and Space Administration
under contract NAGW·419, and by the National Science Foundation under a Graduate Fellowship.
This paper was published in IEEE Transactions on Software Engineering SE·l1(10):1162·1174,
October 1985.

1 . Int roduction

Despite the proliferation of computer networks, distributed application programs are still
uncommon. A major reason for this is the sensitivity of these applications' performance to various
aspects of the network environment in which they are run. In addition to the inherent cost of the
computation, the cost of communication between the distributed parts of the application are incurred.
Consequently, the total computation cost of a distributed program is almost always higher than the
total computation cost of an equivalent centralized program.

There are two approaches to improving the performance of distributed applications. The traditional
approach is to improve the performance of the underlying network communication mechanism,
possibly with problem-oriented protocols [20]. Another approach is to decrease the amount of
network traffic by judicious partitioning of responsibility between the distributed components of the
application, together with high·level protocols that reduce the frequency and volume of
communication and that allow concurrent operation of the various components.

For comparison, consider the many performance studies made of demand·paged virtual memory
systems. Although performance can be improved by speeding up the handling of page faults, better
results are usually achieved by reducing the number of page faults. For example, increasing phYSical
memory, tuning the page size, improving the locality of the application, or using a better replacement
algorithm can make as substantial a difference a5 buying a faster disk.

One method of distribution that is becoming increasing I:..' popular, especially where graphics is
concerned, entails the use of backend computing engines which communicate with frontend display
facilities. This organization seeks to split out user· interactive functions that are especially sensitive to
time delays into the frontend, leaving functions that are less time critical in the backend. However.
such a separation may still involve fairly extensive interaction between the various parts of the
distributed system, implying that care must be taken to avoid having the network communication
become a bottleneck.

The V distributed operating system (V· System) being developed at Stanford supports distributed
graphics applications of the sort just described [3, 9, 23]. This paper describes experience gained
with the V·System with respect to various factors that affected those applications' performance.
Section 2 describes the V·System environment. Section 3 describes the observed performance
behavior of distributed applications. The six sub!':equent sections analyze various tactors in some
detail, including the effects of processor speed (Section 4), issues in high·level protocol design
(Section 5), general issues in transport protocol design (Section 6), and a detailed discussion of one
particular transport protocol, namely, ARPA Internet TCP [18] (Section 7). Conclusions are drawn in
section 10.

2. Overview of the V-System

The V·System is a message· based distributed operating system designed primarily for high·
performance workstations connected by local networks. It permits the workstation to be treated as
multi·function component of a distributed system, rather than solely as a intelligent terminal or
personal computer. Ultimately, it is intended to provide a general·purpose program execution
environment similar to some degree to UNIX [19].

2.1. HardwareEnvironment

The V·System is being developed within the hardware environment of the Stanford University
Network (SUNet). SUNet is a rapidly evolving environment consisting of:

• workstations, such as the Dolphin, Lisp Machine, Sun [1] and IRIS [6];
• standard timesharing systems. such as DecSystem-20/ToPS-20, VAX/UNIX, and

An Emnlllr.al Study of I),slllbukd AppliC[llton Performance

VAx/VMS; and
• dedicated server machines, for printing, file storage, and gateway services;

interconnectt.;d by 'Jar::JUS local networks, including 3 and 10 Mbit Ethernet [14]. Various machines
are also connected to long· haul networks such as the ARPANET.

SUNet is representative of the workstation-based distributed systems currently in place or being
developed at many locations worldwide. As a result, the V-System architecture is well-suited to any
such system.

2.2. Software Aichitecture

The V-System consists of a distributed kernel and a distributed set of server processes. The
distributed kernel provides network-transparent interprocess communication based on synchronous
message-passing - such that a sender blocks until a reply is received. It consists of the collection of
kernels resident on the participating machines. The host kernels are integrated via a 10w-ov'~1 :-Jead
inter-kernel protocol (IKP) that supports transparent interprocess communication between
machines [3].

Servers include device servers, storage servers, virtual graphics terminal servers, exception
servers, and nptwork servers. The following section discusses network services in some detail.

Lastly, a standard program environment has been defined, the principal instance of which is a C
program library. The C library 1'1cludes runtime support for standard C and UNix-like library functions
to facilitate the porting of eXisting C programs.

2.3. Network Services

The V-System supports network transport through three different protocol families. The standard
means of communication between hosts on the same local network is by means of the inter·kernel
protocol (IKP) mentioned above. The typical use of IKP is as a a reliable datagram service, such that
packets are delivered, but duplicates are not suppressed. 1 IKP is implemented directly on top of the
data· link level and is used by oach host's kernel whenever interprocess communication is requested
with a non·local process. Reliable byte·streams (henceforth referred to as V 1/0 connections) are
provided external to the kernel by means of a reliable block 1/0 protocol that suppresses duplicates,
together with a library package that provides a byte-stream interface to that block 1/0 protocol [23].

Access to hosts that do not reside on the same local network or that do not support the V·System's
specialized communications protocols is provided by means of the Xerox PUP [2] and ARPA
Internet [17J protocol families. The two families are supported up through the network and transport
levels, respectively. in the form of an internet server. Higher-level protocols, such as TELNET for
remote terminal access, are provided as separate packages that interface to the internet server via V
1/0 connections.

Since it is envisioned as the primary interface to hosts beyond the local network. the internet server
has been designed to allow easy addition of other protocol families. That is, it has been structured
with an eye towards flexibility at the expense of some speed. Clients of the internet server interact
with it by means of V 1/0 connections. The server interfaces these connections to whatever network
protocol has been requested. Thus, clients rarely need concern themselves with the details of the
network protocols used to access a remote host. Protocol concerns only appear when creating a
connection instance and when protocol-specific commands need to be specified to the server.

1'n fact. clients may request Ihat duplicates be suppressed. bulthis feature is rarely used.

Overview of thp. V·System 3

2.4. Application Model

From the previous discussion it should be apparent that applications may run local to the user's
workstation or on any other host accessible via the various communications protocols. Ultimately, all
applications must communicate with the user via the virtual graphics terminal server (VGTS) resident
on the user's workstation [9, ~ 6]. The VGTS provides the usual facilities present in contemporary
window systems, including the ability to run any number of applications simultaneously, mapping
them to the display when and where the user desires.

However, the VGTS is distinguished from most other window systems by two key features. First, it is
designed to operate in a environment composed of a variety of applications, machines, and networks,
with widely varying terminal interaction requirements. In contrast, most window systems have
confined themselves to homogeneous environments, which require less flexibility in the window
system.

Second, the VGTS supports structured graphics. Specifically, a graphical object can be defined in
terms of other objects, which can in turn be defined in terms of yet other objects. Thus, the VGTS
supports structured display files rather than the more common segmented display files [15]. The
resulting virtual graphics terminal protocol (VGTP) is a high-level object-oriented protocol that
a!tempts to limit both the frequency of communication between application and VGTS and the
amount of data transmitted at anyone time.

The VGTP is constant over all applications. However, some applications have no knowledge of the
VGTP and some applications are running on machines that do not support the interprocess
communication mechanisms underlying the VGTP. The following situations arise (see Figure 2-1,
where each inter-machine arc is labeled with an example (presentation protocol, transport protoco/)
pair):

• Application A runs on the workstation and communicates via the VGTP. Current
examples include text editors, document illustrators, and VLSI design aids.

• Application B runs on a machine that supports V kernel services, specifically, network­
transparent interprocess communication via IKP. B communicates with the VGTS via the
VGTP, as in the case of a application A.

• Application C runs on a machine that does not support IKP, but does support a traditional
network architecture such as the Internet protocol family [17]. In addition, a VGTP
interface package is available that encapsulates the VGTP within the appropriate
transport protocol. Similarly, a local agent for the application, C', is created on the
workstation to decapsulate the VGTP. Thus, the application may still be written in terms
of the VGTP and neither it nor the VGTS have any knowledge that the other is remote.
Our VLSllayout editor, for example, can be run in this fashion under VAX/UNIX.

• Application 0 has no knowledge of the VGTS or the VGTP; it wishes to regard the
workstation as just another terminal. The local agent, 0', is "user TELNET" and performs
the appropriate translations between TELNET and VGTP.

• Application E is distributed between the workstation and one or more other machines.
The local agent. E', is responsible for representing the multitude to the VGTS. It must
perform the appropriate set of protocol conversions indicated above. In addition, it may
wish to perform application-specific functions, such as high-level caching. In that case,
the protocol used to communicate with the remote applications may require more than
simple transport service. '

All applications but A make use of a network transport protocol, whether they realize it or not.
Application B employs an interprocess communication protocol that has nothing to do with graphics
per se. Application 0 employs a protocol that in no way depends on knowledge of the VGTS and
typically has nothing to do with graphics; in order to run, an appropriate protocol-converter must run
on the workstation .

. _._--------------------------- ------~

4 An Empirical Study of Distributed Application Performance

SUN
Compiler

8
VOTP

IKP

DEC·2Q

Text Editor

Telnet

TCP

Local
Illustrator

Custom

NOP

Figu fa 2·1: Classes of applications in the V -System.

VAX

VLSI Layout
Editor

VOTP

RTP/BSP

VAX

Distributed
Game

Applications C and E, on the other hand, know all about the VGTS and are very interested in
graphics. We will refer to the protocol they employ as the network graphics protocol (NGP). The NGP
may be a simple encapsulation of the VGTP within an existing transport protocol, it may be a problem·
oriented protocol [20], or it may itself be a multi-level protocol. Application C, for example, may find a
direct encapsulation of the VGTP acceptable. Application E, however, may wish to maintain a
replicated database (the main database and the cache), or may wish to trade reliability against cost.
In these cases, the NGP offers considerably more function than mere encapsulation/decapsulation of
the VGTP. In general, the VGTP and NGP correspond roughly to presentation and session layer
protocols, respectively, in the ISO reference model [24].

3. Observed Behavior of Distributed Applications

Several distributed applications written specifically for the V·System are graphics·oriented. All
graphics operations are performed through the services of the VGTS, which imposes a very definite
style of interaction on applications by means of the high-level protocol (the VGTP) employed. Thus,
the perspective presented might be regarded as biased towards this one class of applications.
However, we claim that the observations presented below are applicable to almost all distributed
applications since they can be converted into equivalent non-graphics· oriented statements.

Observed Behavior of Distributed Applications 5

3.1. Nature of the Experiments

Performance measurements have been taken for three benchmark programs, two for graphics and
one for text, in a variety of test confiyurations.

3.1.1. Benchmarks

The first graphics benchmark created a fully·connected 36·agon with a radius of 350 pixels,
drawing 630 vectors or 288,364 pixels. Thus the average vector size in this benchmark was 457
pixels. Since the picture was a fully· connected polygon, many different angles of vectors were used.
This was intended to test the performance of traditional vector graphics functionality. The action was
repeated ten times, and the numbers listed are the mean of ten consecutive trials.

All numbers given as vectors per second in this chapter refer to this same artificial benchmark, so
they should be valuable for relative comparisons but not absolute limits. However, since most
significant computation was done before the timed parts of this program, and the number of items in
the picture is relatively large, the intent was to measure the peak rates of adding items to a symbol
and then drawing that symbol. This would measure the rate of initially drawing a new picture.

The second graphics benchmark was intended to test the effects of using structure on a simple
picture of the kind used in a VLSllayout editor [7]. This benchmark drew an array of five by six NMOS
inverters [13]. Each of these 30 inverters consisted of 26 rectangles, for a total of 780 rectangles, all
filled with one of four stipple patterns (which would appear as colors in a color implementation)
representing the four NMOS layers. First the picture was drawn using a single· level display file and
adding all 780 rectangles individually. The second part of this test defined a contact cut symbol, then
an inverter symbol, and then added 30 calls to the inverter symbol, with only 23 primitive items in the
display file. Although the regularity factor of this drawing (the ratio of total items divided by defined
items, or 30 in this case) is fairly high, modern VLSI designs typically have regularity factors in the
same range, and the trend is to increasing regularity [10,11]. In fact, many of the designs currently
under development would not be possible with smaller regularity factors. Independent of the
structure, the resulting image was about 400 pixels on a side.

The tQX! bcnchr;·.=.~:: programs sir.~p:J wrote c!";aro.;:tcrs IJntil stopped by the user. This behavior
would occur, for example, when displaying a new page in a text editor. The characters were from a
fixed· width font with each character eight pixels wide and 16 pixels high, or 128 total pixels per
character. This was the standard font used by most applications except those doing specialized text
display.

3.1.2. Test Configurations

The actual structure of the protocols and programs used in the performance measurements are
illustrated in Figures 3·1 and 3·2. The VGTS is implemented as a ccllection of server processes within
the V·System, access to which is achieved via i/O connections. The server host implementations are
thought to be representative of what other distributed graphics systems might use. The benchmarks
were conducted with the following communication configurations:

Local Application running on the same workstation as the one used for display. The application
sends V messages directly to the VGTS. Since the application runs in a separate address
space from the VGTS, the V kernel's data transfer operations are needed to move
information from the application to the VGTS' address space; no shared memory is used.
This is illustrated in Figure 3·1 a.

Sun·IKP Application running under the V·System but on a different machine, connected via
Ethernet to another workstation, and using the V·System inter· kernel protocol. As
illustrated in Figure 3·1 b, the application uses the same message· passing interface, but
with the kernels implementing the IKP.

VAx·IKP Application running under VAX/UNIX, connected via Ethernet to the workstation, and
using V·System IKP. As Illustrated in figure 3·2a, this involves the application writing to a

6 An Empirical Study of Distributed Application Performance

pipe, which is read by the V-server program. which sends messages over the network
to a V kernel. The workstation runs a simple "agent" called fexecute which is
necessary only because both the VGTS and the V·server are both servers: they both are
sent messages to which they reply, instead of initiating the sending of messages by
themselves.

PUP Application running under VAX/UNIX, connected via Ethernet to the workstation, and
using PUP TELNET. Figure 3·2b illustrates tniS configuration. Th~ application uses
pseudo·tty devices (ptys) to communicate with the PUP TELNET server program
(Te 1 ser). This program sends packets over the network to the workstation, where a user
PUP TELNET program sends the messages to the VGTS. On both ends, the TELNET
programs contain (are linked with) the transport· and network· level code.

E·IP Application running under VAX/UNIX, connected via Ethernet to the workstation, and
using Internet TELNET. This is Figure 3·2c. The application again uses j)seudo·tty
devices to communicate with the IP TELNET server (Tel netd). The implementation of the
transport protocol in this case is in the UNIX kernel on the re'I'lote host and in the internet
server on the workstation. IThe user TELNET program finally sends the messages to ~he
VGTS.

A·IP Application running under VAX/UNIX, connected via Ethernet and ARPANET to the
workstation, and using Internet TELNET. This is the same as Figure 3·2c, but the network
now includes a gateway and an extension through the ARPANET backbone.

Application

I v kernel J
Application

IKP net

V kernel I V kernel I
VlO ~iI" VlO

vaTS
VOTS

a) Local b) SUN·IKP

Figu re 3·1: Configurations with hosts running V only.

Tests were conducted using standard 10 Mbit/second Ethernet and 10 MHz 68000's, unless
otherwise noted. For configurations involving VAX·11's, 750's, 780's, and a 785 were used, and the
tests were conducted at night with corrE><,;)ondingly light loads. Real applications are often run with
high timesharing loads, but these are har~' to control for the sake of the experiments.

Even more difficult to control were changes to underlying software. Some variation through time
inevitably occurred in the VGTS, other workstation software, and host software. For example,
introducing new features and fixing errors typically reduce performance, while easing bottlenecks
found during experiments improves performance, While each table in this paper compares
configurations with similar software, two different tables may compare configurations with dissimilar
software. The detailed results presented in [16] specify each configuration.

Observed Behavior of DI"~lIbuled Applications

Appllcatlun v· server

'execute

a) VAX·IKP

AppllC3t,on PUP ~elser

vGTS

BSP

BSP

PUPlelnet

b) PUP Telnet

iptn

Unix TCP

net

Internet

server

c) IP Telnet

Figure 3·2: Configurations with workstation running V and remote host running UNIX.

3.2. Summary of Performance Results

Given the declarative nature of the VGTP, four measures of interest are:

7

construction rate The rate that objects can be added to a symbol, without any display
operations.

batch rate The rate that objects can be added to a symbol, and then displayed.

incremental rate The rate that objects can be added and displayed as each is added.

display rate The rate that objects can be displayed out of the display file.

Construction rate is the best measure of the peak network offered load for distributed graphical
applications. The batch rate takes into account display overhead, which is fairly independent of the
network. Nevertheless, it gives the best measure of overall graphics throughput. On the other hand,
the incremental rate gives a better measure of expected response time, when interpreted as the
maximum number of display transactions per second. Display rate is another measure of response -
to screen rearrangement or simple editing functions. However, it is not affected by distribution and
will be little discussed here.

Vector graphics performance is summarized in Table 3·1. In all of the tables, columns are labeled
with the test configurations listed above (local, Sun·IKP, VAx·IKP, PUP, E·IP, and A·IP). Most rows are
labeled with (speed. host. rate) triples, where speed is the speed of the Sun workstation processor (8
or 10 MHz), host is the type of VAX (750, 780, or 785), and rate is one of the rates listed above
(construction, batch, or incremental). All numbers are in vectors or characters or rectangles per
second, so larger numbers indicate better performance. All results have been rounded to two
significant digits, and should be taken as order of magnitude estimates only, due to the many factors
involved. However, as we shall see, even these very rough measurements can be helpful to determine
the feasibility of this approach.

Table 3·1 presents the performance figures for configurations employing the most common
processors, 10 MHz Sun and VAx·750. As shown by the construction rate row, objects can be
constructed at 440 vectors/second for applications running locally, and 380 vectors/second for
Ethernet·based applications. Overall graphics throughput, as shown by the batch rate row, is 220
vectors/second for local applications, up to 350 vectors/second for Ethernet·based applications, and
120 vectors/second for ARPANET . based applications. Incremental display permits 62 vectors/second

8 An Empirical Study of Distfibutcd Application Performance

for local applications. up to 87 vectors/second for Ethernet·based applications, and 39
vectors/second tor ARPANET ·based applications. Actual display rates are on the order of 430
vectors/second, or .2 million pixels/second, or 5 microseconds/pixel, including all display overhead.

Vectors/second
CgnfiguratiQn LQ~al IKP PUP E·IP A·IP
10, -", display 430
10.750, construction 440 380 200 220 130
10, 750, batch 220 350 200 220 120
10,750, incremental 62 81 58 87 39

Table 3-1: Summary of vector graphics performance.

The text results are summarized in Table 3·2. Throughput is 7700 characters/second for local
applications. up to 4300 characters/second for local net· based applications. and 1900
characters/second for ARPANET·based applications. Additional details appear in Tables 4·1 and 4·2.

Characters/second
Configuration Local IKP PUP E·IP A·IP
10, 780, text 7700 4300 1600 4300 1900

Table 3-2: Summary of text performance.

3.3. Evaluation

The remainder of this paper will examine the measurements just presented in some detail. We will
attempt to c::how the effect of varying different parameters, and, ultimately, enumerate the factors in
the order of their importance. These parameters include:

• speed of the workstation

• speed of the remote host, if any

• speed of the network

• choice and implementation of network transport protocol

• level at which information is communicated, including characteristics of the high-level
graphics protocols

We will demonstrate that performance is most sensitive to processor speed and least sensitive to
network speed. Sensitivity is measured by the degree of performance improvement relative to the
degree of change in the indicated parameter. Thus, a 50% performance improvement due to a 200%
increase in processor speed is much more significant than a 300% improvement in performance due
to a 6000% increase in network speed.

It is quite easy to rate the sensitivity to hardware factors. Software factors are another matter; it is
easy to measure the absolute performance improvement resulting from a change in software, but
quite difficult to measure the degree of that change. Also note that there are limits beyond which
changing one factor will not affect performance; for example, a CPU-bound application running on a
remote host will be little affected by an increase in workstation speed. Nevertheless, certain
conclusions can be drawn based on available information.

There are, of course, other factors that affect performance, including the choice of algorithm and
the implementation of "inner loops". For example, recoding the inner loop of the lowest-level line­
drawing algorithm improved VGTS display rates by 200% [16J. While the return on investment can be
quite impressive, such improvements typically are good for only a one-time increment in performance.
This paper focuses on factors that have the potential of influencing performance on a much broader
scale.

Observed Behavior of Distributed Applications 9

4. Effects of P rocesso r Speed

As should be expected, the speed of an application is directly related to the speed of the processor
on which it runs. Use of 10 MHz Sun workstations instead of 8 MHz workstations yielded up to 22%
improvement (see Table 4.1).2 Use of a VAX·111780 instea1 of a VAx·l11750 yields up to 50%
improvement (see Table 4·2).

Vectors/second
Configyration Local IKP PUP E·IP
10, 780, batch 210 190 130 110
8, 780, batch 180 150 110 99

Characters/second
10,780, text 7700 4300 1600 4300
8,780, text 6700 3200 1400 3600

Table 4·1: Effect of workstation speed.

Configuration
10, 780, construction
10, 750, construction

10, 780, text
10, 750, text

V€; ~tors/second
IKP PUP E·IP
510 210 170
340 130 110

Characters/second
4300 1600 4300
4100 1400 2300

Table 4·2: Effect of remote host speed.

A·le
92
88

1900
1800

Two of the more surprising results relate to the benefits of distributed computing. First, applications
can be expected to run faster when distributed between a VAx·7ao and a Sun workstation than when
run locally (see Table 4·3). Although construction rates are lower in the distriblJted case, the
concurrency from the use of two processors results in higher rates for both batch and incremental
display. Second, some applications execute faster using a VAX·785 on the ARPANET than using a
VAx·7oo on the local net (see Table 4·4). Since the ARPANET;S substantially slower than the Ethernet
and network communication in general is slower than local communication, the conclusion is that
CPU speed is the dominant factor in this instance.

Vectors/second
Configuration - Local E·IP
10, 780, batch 220 380
10, 780, incremental 62 92

Table 4·3: Sun workstation vs. Ethernet·based VAX·111780.

Regardless of where the application executes, the workstation is always required to do some work,
namely, to maintain and display the graphical objects. Therefore, performance is more sensitive to
workstation speed than to remote processor speed. For example, whereas a 25% increase in
workstation speed results in almost linear speed·up, a 100% increase in VAX speed results in at most
50% speed·up as seen in Tables 4·1 and 4·2. Note that Tables 4·1 and 4·2 were constructed with
early versions of the protocols; later changes to the protocols increased the sensitivity of IP to server
host speed, but decreased the sensitivity of IKP and PUP.

2The principal reason that the increase from BMhz to 10Mhz 68000 processors did not produce a 25% increase in the
performance was that the 10MHz design required polling 01 the keyboard and mouse.

10 An Enlpirical Study of Distributed Application Performance

Configuration
10, 785, construction
10. 750. construction

10. 785. batch
10, 750. batch

Vectors/second
E·fP A·fP

160
130

140
125

Table 4·4: ARPANET·based VAx·111785 vs. Ethernet·based VAX-111750.

One might conclude from these measurements that there is little reason to distribute applications,
since the proven performance improvements might not outweigh additional programming demands.
However, the processors tested differ by at most a factor of 4 in performance. If, on the other hand,
an Cray·XMP were available, we would expect a marked increase in performance - roughly linear
with processor speed. Moreover. our benchmarks make no significant computational or database
demands that would take advantage of faster hosts. Finally. some applications simply cannot run on
the workstation, due to memory or language requirements, for example.

5. Issues in High-level Protocol Design

The nature of the applications and of the information they communicate among their distributed
parts make the network behave differently from what might commonly be expected. In particular, the
use of appropriate "high-level" protocols can reduce the degradation that is experienced between
different bandwidth networks. This can influence the choice of remote hosts since the performance
penalty of accessing a high-performance host over a long-haul internetwork instead of a less powerful
host located on a local network may be outweighed by the difference in host capabilities.

For example, the results for the structured graphics benchmark are given in Table 5·1. The first line
shows the performance of a rather simple "stop·and·wait" protocol where every operation requires a
returr. value and no operation is initiated until the response to the previous operation is received.
Notice that performance is rather poor, especially over long·delay networks like the ARPANET. Each
successive line indicates the performance improvement achieved by adding more "intelligence" to
the protocol.

5.1. Pipelining

Configuration
10,750, incremental
10,750, pipelined incremental
10, 750, batch unstructured
10, 750, batch structured

Rectangles/second
Local E·IP A·IP

41 5 2
61 66 36

310 180 81
1070 670 370

Table 5·1: Effects of pipelining, batching, and structure.

By removing unnecessary return values, even incremental operations can be pipelined. This results
in both fewer messages and more concurrency than the "stop·and·wait" protocol, with an
accompanying performance improvement of 50% for local operations and 1000% to 1500% for remote
operations (compare the first and second lines of Table 5·1). In fact, remote incremental operations
are almost always faster than local incremental operations due to this concurrency.

Issues in High-level Protocol Design 11

5.2. Batching

Moving from the second to the third line of Table 5-1 shows the effect of another simple change to
the graphics protocol. Specifically, for "batch" display, operations are (indeed) batched so that
values are returned only after an ent:re sequence of operations (such as all changes to a given
symbol) have been performed. This change reduces network delays substantially, yielding
performance improvements of up to factors of 500% over and above the improvements achieved by
pipelining. Other measurements have shown improvements of up to 3000% using only batching.
Similar effects can be seen in all tables displaying both incremental and batch rates, where the batch
rate indicates the effect of batching and the incremental rates indicates unbatched operation.

5.3. Structure

The virtual graphics terminal protocol allows objects to be defined in terms of graphical primitives
such as vectors or rectangles, or in terms of other objects. Once the objects are defined, they can be
made to appear on or disappear from the screen with short commands of only a few bytes. This can
result in considerable performance advantages, a fact that has, in fact, been known for some
time [12].

As seen by comparing the third and fourth lines of Table 5·1, using structure instead of an
unstructu .. ed list of primitive items increases performance again by factors of 3 to 4 for both local and
remote operations. The principal reason for this is that considerably less data needs to be
transmitted. The benefits of reducing the amount of data transmitted are even more obvious by
comparing the VGTP to protocols that transmit bitmaps - such as Remote BitBlt [8].

The amount of data transmitted is directly proportional to the amount of memory used to store the
data at the workstation, so Table 5·2 shows memory usage. In the vector benchmark, for example,
the structured display file (SDF) represented the fully·connected polygon with 20 bytes per item, or
12,600 bytes. This compares to the 800 by 000 bitmap area, which would take 80,000 bytes. In
practice, most objects are even less dense than the fully. connected polygon, so the advantage would
be even greater. In particular, the SDF approach has the advantage as long as there are more that 20
bytes of bitmap space for each item in the SDF. The rectangle benchmark shows that even without
using structure, a factor of about two in memory savings is possible. Using structure, the 900 bytes
used by the SDF is a factor of 37 less than the space for the bitmap.

5.4. Summary

Benchmark
vector
rectangle, unstructured
rectangle, structured

Bytes of memory used
SDF Bitmap

12,600 00,000
15,600 34,000

900 34,000

Table 5·2: Effect of structure on memory usage.

Ultimately, the time to define and display the picture for a local application was about 1 millisecond
per item. This is roughly the time to perform a local Send - Receive - Reply sequence in the V
kernel, so any protocol that uses a message transaction for each item will be slower. Moreover, it is
faster to run this benchmark over the ARPANET and use structure than it is to run the same program
locally and use incremental or unstructured display. The latter is comparable to traditional graphics
systems. It is also faster to run the program across the Ethernet and use structure than it is to run the
program locally, even with batching.

12 An Empirical Study of Distributed Application Performance

6. Issues in Transport Protocol Design and Implementation

Regardless of the level of communication. it is important to make the underlying transport protocol
as efficient as possible. There are two fundamental. and orthogonal. approaches:

1. Take advantage of the particular network or applications environment by using
specialized protocols.

2. Implement the chosen protocol efficiently. For example. make judicious use of kernel
support and processes in structuring the protocol implementation.

6.1. Tuning the Protocol

The first approach is exemplified by the V-System's inter-kernel protocol (IKP). which for our
applications usually provides significantly better performance than PUP or Internet protocols (see
Tables 3-1 and 3-2). Remember. however. that these measurements indicate PUP and Internet
performance using their respective TELNET protocols as "transport" protocols. IKP's performance
advantage should be somewhat less if we were to use the real. underlying transport protocols -
RTP IBSP and TCP. respectively. The virtues of IKP have been discussed at length in several
previous papers. including [3].

Although speCialization at such a low level can achieve significant performance advantages. it is
nevertheless mandatory that a general-p~rpose. internetwork protocol be available to communicate
with hosts and networks that do not support the specialized protocol. In fact. an internetwork
protocol may yield higher overall performance than a specialized protocol if it allows access to a
higher-performance processor than would be available using the specialized protocol. Moreover,
internetwork protocols themselves can be tuned to meet different performance objectives. For
example. the PUP protocols tend to emphasiS response and are relatively "light-weight". whereas
Internet protocols are tuned for throughput and are relatively "heavy-weight".

6.2. Tuning the Implementation

The second basic approach to efficient network transport, namely. efficient implementation, has
been a subject of much discussion in the networking community [4]. Indeed. the implementation of a
protocol may have a greater effect on performance than any properties inherent in the protocol itself.

For example. much of the advantage Internet protocols have over PUP for text performance is due
to the fact that the Internet transport service is implemented inside the UNIX kernel. whereas PUP is
implemented outside the kernel as a user process. This results in significant context-switching
overhead. Note again that this overhead is most apparent for network-bound. throughput-intensive
applications. such as our text benchmark (see Table 3-2).

On the other hand. IKP is also implemented as a process under VAX/UNIX and tends to perform
significantly better (for construction and batch rates) than either PUP or Internet. This advantage
accrues from the fact that IKP is tuned for operation on local area networks - both in its protocol
design as discussed above and in its implementation. For example. the IKP implementation used
1024-byte packets. while both PUP and IP used packets of 100 or 200 bytes. Similar observations
relative to TCP are presented in the next section.

Naturally. network services implemented as processes can be significantly affected by the priority at
which they run. Table 6-1 indicates the effect of changing the relative priorities of the application
program or the TEWET server program. This test was done using the PUP protocol on a local 10
Mbit/second Ethernet. The first column gives the results for normal operation. For the second
column. the operating system gave priority to the TELNET server program. Batch performance actually
decreased. since more network packets were sent. For the third column. both the application and the
TELNET server were given priority. which increased both the batch and incremental rates. However,
as shawn in the last column, the best performance was obtained by giving priority to the application.

Issues in Transport Protocol Design and Implementation

Configuration
10,750, batch
10, 750, incremental

Normal
170
47

Vectors/ second
Telser &

Telser
160
48

Application
190
58

Ta ble 6-1: Effect of process priorities.

Application
200

58

13

Another interesting comparison is between remote execution on a timesharing host and execution
on another workstation. Table 6·2 displays this comparison. The construction rate is about the same
on the VAX/UNIX system and on the V·System. The incremental rates on the VAX/UNIX
implementation are very poor without pipelining, due to the fact that the IKP server process (the
V·server) is polling every few seconds for output from a pipe, while the other protocols are
interrupt.driven.3 Note, however, that the total batch rate and the pipelined incremental rate are much
higher on the VAX than on another workstation. This is due to the fact that there is less concum.ncy
in the remote workstation case, due to the synchronous nature of V·System message·passing. Much
better performance could be obtained by replying to the message before it is processed, instead of
after the operations are performed.

Configuration
la, 750, construction
10, 750, batch
10, 750, incremental
10,750, pipelined incremental

Vectors/second
SUNIKP VAXIKP

380 380
190 350
29 4.6
44 81

Table 6-2: Effect of IKP implementation.

7. Issues in TCP Implementation

Our current VGTP can be used with any transport protocol providing a reliable byte stream. This
section presents experiences gained from implementing the ARPA TCP protocol for the V-System's
internet server. Most of the throughput numbers presented in this section come from experiments
that set up a TCP connection between two Sun workstations, each with its own internet server, and
then sent bytes back and forth as fast as possible.

7.1. Packet Buffer Allocation

Protocols like Tep control the flow of network traffic by means of a byte· oriented receive window.
However, many implementations manage their memory resources in the form of fixed· length packet
buffers. This implies that an estimate must be made of the average number of bytes that will arrive in
each packet in order to calculate an appropriate receive window size to present. Multiple buffer sizes
can alleviate this problem, but may also incur significant overhead costs on some machine
architectures. For example, the network device driver may work most efficiently when copying entire
packets to a single locatiqn in memory.

Buffer compaction is another approach to the problem of selecting an appropriate receive window
size. This involves copyi.~g the contents of several partially filled buffers into a single, subsequently
full buffer. However, this approach can break down when employed between hosts of significantly
different speed such as a workstation and a mainframe computer. The phenomenon that can occur is
that the faster host may inundate the slower host with a large number of packets, each containing ..

In'

3rhe 4.2BSD·based server could be modified to use the 58 lec t system call, which would eliminate this delay.

14 An Empirical Study 01 Distributed Application Perlormance

only a small number of bytes. The total number of bytes sent is within the limits of the receive window
presented; however the total number of packets that must be processed (and compacted) is larger
than the number of buffers available. The result is that packets are lost because the receiving host
cannot compact the previous packets fast enough to accept the new ones. This causes unnecessary
retransmissions along with their associated timeout delays. Depending on the implementation at the
sending end this can bring things to an almost complele halt. This phenomenon has been observed
regularly with TELNET connections, where terminal output is typically generated one line at a time.

One possible solution to the problem of matching the receive window to the available buffer
resources involves utilization of "hints" from higher level protocols about the nature of network traffic
that can be expected. These hints can then be used to allocate buffers of appropriate size and
number. For example, file transfer applications will generate network traffic consisting of a steady
stream of large packets, whereas TELNET·like applications will tend to generate traffic consisting of
irregularly generated large packets interspersed with bursts of many small packets. This approach is
already used by several implementations of the Xerox RTP/BSP byte-stream protocol [21.

A second observation about packet buffer management deals with the form of memory
management used. Personal workstations usually do not have a great deal of spare memory
available, so that preallocation of a large pool of buffers is not reasonable unless local secondary
storage and virtual memory management are available. Typically, application-level memory
management packages such as the C malloc/free routines provide greater functionality than
necessary and may also be tuned for a different pattern of memory usage than is generated by
networking code. An improvement can be achieved by utilizing a two-tiered scheme where the
general memory management routines are only used to obtain "chunks" of several buffers at a time;
which are then kept on a separate free list. Choice of chunk size should be such that each network
connection requires on average one chunk of buffers. Variations in traffic are then handled by
allocating/deallocating additional chunks as needed. Use of this simple scheme yielded an
improvement of about 3% in the performance of the internet server.

7.2. Timeouts

One might expect that if a byte-stream protocol is only (or primarily) going to be used within a local
network, that protocol need not implement dynamic timeout values for acknowledgement and
retransmission of packets in a byte-stream. Dynamic values are clearly needed for efficient
performance in an internet environment since the variable number of gateways and networks that
packets must traverse can cause significant variations in transit times. However, in the local case,
one would expect variations to be much smaller in magnitude, allowing the use of fixed values for
timeout intervals. This considerably simplifies the implementation of timeouts and avoids the
overhead of continually monitoring the arrival and departure times of each packet (which typically
involves an operating system kernel trap to obtain the current time).

Based on these assumptions an early implementation of the internet server used fixed timeout
values, with the following effects:

• Mismatched timeout values caused considerable difficulties with file transfer
connections, sometimes slowing throughput down by a factor of two or more. It was
discovered that the retransmission timeout interval was set too short for the host being
sent to, resulting in the retransmission of all packets .

• Similarly, faulty implementations of the protocols on some hosts caused timeout interval
mismatches which noticeably affected the delay characteristics of TELNET connections to
these hosts. (Quantitative assessment of the delays have not been possible due to the
their intermittent nature.)

.In order to avoid unnecessary retransmissions when dealing with (mostly timesharing,
heavily loaded, mainframe) hosts that take a long time to process a network packet, the
"standard" retransmission timeout was at one point set to a value of 4 seconds. When

Issues in TCP Implementation

this timeout value was used for timing tests run between two workstations the result was a
10% degradation in performance from using a more a~propriate value of 1/4 second .

• At one point too short an acknowledgement timing period was used. This resulted in
acknowledgements being sent twice as often as necessary, with a degradation in
performance of about 1 %.

15

As one can see, different higher-level protocols and different host combinations impose different
values to use as optimal (fixed) timeout intervals. Performance considerations here must include both
throughput and delay, since some connections are more concerned with short delay than maximum
throughput. For example, TELNET connections desire short acknowledgement timeouts in order to
avoid unnecessary delays to the user. In contrast, FTP connections are only concerned with
throughput and can afford occasional long delays. Short acknowledgement timeout values for these
only increase the network control traffic, thereby decreasing throughput.

Similarly, connections that experience a high error rate need a different set of timeout values from
those used for connections which run relatively error free. (Periods of high error rate on a local
network are not as uncommon as one might expect - see Section 9). Furthermore, the error rate a
connection experiences is variable with time, so that a single set of timeout values for a given
connection is also not appropriate.

The conclusion one must draw is that a general byte'stream protocol cannot "cheat" by using fixed
timeout values even when it is intended to run primarily in a local network settjng.

7.3. General Considerations

The experience gained with implementing TCP indicated that it is a very large protocol which is
hard to implement correctly. Furthermore, TCP's performance is very sensitive to errors in its
implementation. Differences in throughput and delay of up to an order of magnitude were observed
as a result of errors occurring in such places as retransmission, receive window management, etc.
Also, all of Clark's comments concerning silly window syndromes were observed to be true, since
early TCP implementations on our VAX/UNIX and DEC·20/Tops·20 hosts ignored his suggestions [5].

Our best TCP throughput to date is about 450 Kbits/sec when using packet sizes of 1000 bytes.
This translates to about 18 ms per 1000-byte packet. TELNET throughput at 4300 characters/sec
represents less than 10% of this bandwidth (see Table 3·2). The remaining time is taken up by the
application generating the text, together with the terminal emulation and display routines within the
VGTS. This demonstrates, once again, the relative insignificance of transport issues.

8. Effects of Network Bandwidth

All of the above factors combine to render the actual network bandwidth insignificant. Table 8-1
shows that although a 3 Mbitlsecond Ethernet is about 60 times faster than the 56 Kbitlsecond links
used in the ARPANET, using a backend host on the local network yields less than a 50% performance
improvement over using a backend host on the ARPANET. In fact, most of the difference in the total
batch rate is due to the delay of the ARPANET and intervening gateway, not any bandwidth restriction.
Moreover, there was very little measurable performance difference between using the 3 Mbit/second
experimental Ethernet rather than 10 Mbitlsecond standard Ethernet.

Configuration
10, 750, construction
10, 750, batch

Vectors/second
E3·IP E10·IP A·IP

220 230 130
210 220 120

Table 8·1: Effect of network bandwidth.

16 An Empirical Study of Distributed Application Performance

These results can be attributed primarily to the level of communication as discussed in section 5,
and the conclusion that processor speed is the usual bottleneck. This is consistent with other
measurements of Ethernet performance [21] that show very low utilization of the available bandwidth
of the Ethernet, and comparatively long delays on the ARPA Network. Thus, these systems rarely
approach the limits described in analytical studies that concentrate on performance under heavy
loads [22]. In fact, these protocols can be used on very low-bandwidth communication links.

Each Addltem call sends 20 bytes of data, so a construction rate of 230 items per second (the
Ethernet load given in Table 8-1) corresponds to only 4600 bytes per second, or about 40
Kbits/second - 0.4% of the Ethernet's bandwidth. Due to the small amount of data, graphics could
even be possible over standard speed telephone lines. For example, at 1200 bits/second, a peak rate
of 7.5 items/second should be possible. To test this, the experiment was run successfully on a
workstation over a 1200 bits/second telephone link. Several other rates were tested using point-to-
point RS·232 connections at various speeds, with the results given in Table 8·2. .

Configuration
10,750, construction
10, 750, batch
10,750, structure

1200
7.4
6.2
84

Items/second
2400 4800 9600

14 26 54
12 23 46

142 230 320

10M
166
131
380

Table 8·2: Effect of point·to·point communication rates.

For the structure benchmarK, even at 1200 bits/second, the measured creation rate was 7.4
items/second, very close to the maximum 7.5 calculated above. This rate is slightly less than linear in
relation to the bandwidth, indicating that even at low speeds the CPU can be a factor. Moreover, the
total rate when using structure was 84 items/second at 1200 bits/second, which is twice as fast as
running the program locally with incremental drawing (the first entry in Table 5-1). Structure and lack
of significant delays also makes this rate faster than the batch rate for the ARPANET (the last entry in
Table 5-1). Finally, the 9600 bits/second structure rate is only about 15% slower than using Ethernet,
even though Ethernet has a raw bandwidth a thousand times greater.

9. Other Factors

9.1. Client Packet Size

A dramatic performance improvement was achieved with a special version of the internet server that
allo'w',ed clients to Read and Write blocks of 4 Kbyte rather than the "normal" 1 Kbyte limit. The
server divides these blocks into 1 Kbyte chunks for actual transmission over the networK. This
effectively eliminated an additional Send-Receive-Reply message exchange per packet (along with
the associated overhead of the 110 library routines, etc.) and also produced a mode in which packets
would be sent out onto the networK in bursts of 4 ata·time. The result was about a 15·20% increase
in performance.

9.2. Remote Internet Servers

Because the V-System supports network· transparent interprocess communication, the internet
server can be run as a "remt.'.~" server, residing only on one host in the local network. This results In
significant savings of memory space on "user client" workstations since the internet SI:)"Ver require!
about 60 Kbytes for its code and static data structures and a minimum of 20 Kbytes available for its
process stack spaces and packet buffer pools. However, the performance penalty for this
configuration can be significant.

To test TELNET throughput, tests were run with a VAx·7OO generating text output to Sun

Other Factors 17

workstations. One connection was opened between the Sun running the internet server and the VAX,
and one connection was opened between a Sun not running the internet server and the VAX. By
running both connections simultaneously, external factors such as mainframe load variations could
be factored out of the performance results. These result showed that performance degraded by
about 15% on average for output rates up to about half the maximum throughput capacity of a
connection. At higher output rates, the performance penalty rapidly went up, approaching 50% near
the connection's peak capacity. This is exactly what one would expect since the network traffic is
essentially doubled when the internet server is running on a different host from both ends of a
connection, rather than on the same host as one end of the connection. The smaller penalty at lower
output rates indicates that performance is being limited by the mainframe rather than by the internet
server.

Unfortunately the numbers just presented represent the performance when only two connections
are being maintained through the internet server - a local one and a single remOte one. However,
the whole purpose of running the internet server in a remote configuration is to allow a single copy to
service the entire local environment, implying that multiple connections would normally be
maintained. Furthermore, the maximum throughput capacity of connections is inversely related to the
number of the connections the server is maintaining at any given time. Thus, one would expect to
obtain only a small fraction of the performance obtainable with a private copy of the server devoted to
maintaining only a single or a few connections. Fortunately, TELNET connections do not normally
operatA at full throughput capacity, but tend to exhibit a bursty pattern of communications. This
implies that the average throughput that the internet server must maintain will be a small fraction of
the total load that could be presented by all connections combined. Our experience to date confirms
this observation.

Accurate delay measurements comparing the local to the remote server configuration have not
been obtained due to the difficulty of factoring out random load variations from the results. However,
the delay penalty seems to be similar to the throughput penalty in behavior and magnitude.

Similar results were obtained for FTP connections through the internet server to a VAx-780. The
average performance penalty for using a remote internet server was about 20%. Unlike the TELNET

measurements, this result indicates that performance was being limited primarily by the VAX, once
again showing the importance of processor speed.

9.3. Network Pollution

Perhaps the most annoying "external" factor that affects the performance of network
communications at Stanford is that of network pollution, caused when one or more hosts transmit
large numbers of garbage packets. These packets can cause a network's load to increase to the
pOint where the network becomes useless. The problem is further aggravated if the packets being
transmitted are broadcast packets, since all hosts on the network must read them in and process
them before they can be discarded. Even worse, broadcast addresses on the 3 Mbit Ethernet are
frequently designated by the value 0, which is a very common "random" bit pattern! The result is that
not only does the network become congested, but all hosts on the network may be brought to a
standstill as they spend most of their CPU cycles processing and discarding bad broadcast packets.

9.4. Network Interface Hardware

A final factor that affected performance was the nature of the network interface hardware. Our
early-generation Sun workstations use an Ethernet interface that contains a 4 Kbyte hardware buffer
for reading packets from the network. Packets that arrive when the buffer is full are discarded by the
interface. This effectively limits the length of pipeline that can be specified for a byte-stream
connection when dealing with a host that generates packets at a significantly faster rate than the
workstation can process them. Consequently, a 10 MHz workstation talking to an 8 MHz workstation
can generate packets fast enough so that specifying a TCP receive window larger than about 5000
bytes results in numerous retransmissions due to lost packets. In general, we have observed that

18 An Empirical Study of Distributed Application Performance

network bandwidth far exceeds interface throughput.

10. Conclusions

First, we have demonstrated that distributed applications can run faster than local ones, using
common hardware. Indeed, may "real" applications should reap a greater reward from distribution
than our benchmarks, since the benchmarks make no significant computational or database
demands that would take advantage of faster remote hosts. Moreover, the reader should remember
that some applications simply cannot run on the workstation, due to memory or language
requirements, for example. Lastly, there is little additional effort in creating an application to run on a
remote host - typically, it is simply recompiled.

Second, we have shown that the primary factors affecting performance of our distributed graphics
applications are, in approximate order of importance:

1. Speed of the workstation.

2. Speed of the remote host, if any.

3. Level of communication, as determined by the virtual graphics terminal protocol.

4. Choice and implementation of the network transport protocol.

5. Bandwidth of the networks employed.

By modifying point (3), the same observations hold for text. Note again that these observations relate
to the degree of performance improvement relative to the degree of change in the indicated
parameters.

CPU speed rates at the top of the list simply because desired speed-ups can be achieved almost
indefinitely by substituting more powerful workstations and backend hosts. Similarly linear
improvement is not possible by altering any of the other "variables". The transport protocol IKP, for
example, provides as good performance on the local net as can be achieved.

As workstations become more powerful, one might think that offloading functions from hosts to the
workstation means that slower backend hosts can be used. In reality, faster hosts are required to
keep up with the increased demand of the workstations. On the other hand, many people think illat
as networks become faster, communication is cheap. Unfortunately, network interfaces have not kept
pace with bandwidth, such that many network operations remain CPU-bound. In both cases, the
offJoading and increased bandwidth allows more users to share the same resource, but does not
increase the performance of the individual users. This is true even in the case of microprocessor­
based network controllers, which, while intended to improve performance, have in our experience
often proven to be slower than simpler and cheaper controllers that perform fewer functions but use
fixed logiC at a higher speed. Hence, faster hosts are needed, not slower ones.

With respect to network bandwidth, sensitivity is directly related to communication requirements.
Communications requirements are inversely related to the frequency of communication and the
amount of information transmitted, both of which are reduced by the techniques discussed above.
Therefore, the remarkable insensitivity of our applications to network bandwidth implies that they are
quite sensitive to the "level" of communication.

In our system architecture, the high level of communication is due to the virtual graphics terminal
protocol design. In particular, the ability to batch many operations into a single update using a small
number of bytes and the ability to pipeline many of the operations provided large increases in
performance. Overall, the use of high·level graphics protocols reduces the degradation that is
experienced between different bandwidth networks. This can influence the choice of network
trandport protocols since the performance penalty of accessing a high·performance host over a
long.haul internetwork instead of a less powerful host located on a local network may be outweighed

Conclusions 19

by the difference in host capabilities. Indeed, the measured performance improvements between
transport protocols are considerably less dramatic than those achieved by varying the level of
communication.

It is hard to make direct comparisons about network protocols independent of their
implementations. For example, a protocol inside the kernel of an operating system is usually more
responsive than if it is implemented on top of the kernel. The increased responsiveness comes with
the cost of increasing the size of the (usually always resident) kernel and the related difficulties of
debugging at lower levels. In our particular case, despite the fact that the PUP protocols are simpler
than the ARPA Internet protocols, ARPA Internet-based TELNET connections can sometimes run about
twice as fast as PUP-based ones. This is attributed primarily to the fact that PUP is implemented as an
application outside the Unix kernel whereas the ARPA Internet protocols are implemented inside the
kernel.

With respect to general-purpose internetwork protocols, TCP in particular, we observe that they are
complicated and sensitive to subtle implementation details. In order to support differing (and possibly
error-prone) implementations on various different hosts one must implement a full "internet-oriented"
design. Attempting to simplify various design issues for use only on a local network doesn't work if
other hosts use different designs.

References

1. A. Bechtolsheim, F. Baskett, and V. Pratt. The SUN workstation architecture. 229, Computer
Systems Laboratory, Departments of Computer Science and Electrical Engineering, Stanford
University, March, 1982.

2. D.R. Boggs, J.F. Shoch, E.A. Taft, and A.M. Metcalfe. "Pup: An internetwork architecture". IEEE
Transactions on Communications COM-28, 4 (April 1980), 612-624.

3. D.A. Cheriton. "The V Kernel: A software base for distributed systems". IEEE Software 1,2 (April
1984), 19-42.

4. D.O. Clark. Modularity and efficiency in protocol implementation. RFC 817, Network Information
Center, SRI International, July, 1982.

5. D.O. Clark. Window and acknowledgement strategy in TCP. RFC 813, Network Information
Center, SRI International, July, 1982.

6. J.H. Clark. The Geometry Engine: A VLSI geometry system for graphics. Proc. SIGGRAPH '82,
ACM, July, 1982, pp. 127-133. Proceedings published as Computer Graphics 16(3) ..

7. T. Davis and J. Clark. YALE User's Guide: A SILT -based VLSllayout editor. 233, Computer
Systems Laboratory, Departments of Computer Science and Electrical Engineering, Stanford
University, October, 1982.

8. D.P. Deutsch. Design of a message format standard. Proc. International Symposium on Computer
Message Systems, IFIP, 1981.

9. K.A. Lantz and W.1. Nowicki. "Structured graphics for distributed systems". ACM Transactions on
GraDhics 3,1 (January 1984), 23-51.

10. W.w. Lattin. VLSI design methodology: The problems of the 80's for microprocessor design.
First Caltech Conference on VLSI, California Institute of Technology, Pasadena, California, Janua:y,
1979.

20 An Empirical Study of Distributed Application Performance

11. W.w. Lattin, J.A. Bayliss, D.l. Budde, J.R. Rattner, and W.S. Richardson. "A methodology for
VLSI chip design". Lambda (VLSI Design) 2, 2 (Second Quarter 1981), 34·44.

12. W.D. Little and A. Williams. Enhanced graphics performance with user controlled segment files.
Proc. SIGGRAPH '76, ACM, July, 1976, pp. 179·182. Proceedings published as Computer Graphics
10(2), Summer 1976.

13. Mead and Conway. An Introduction to VLSI Design. Addison·Wesley, 1980.

14. A.M. Metcalfe and D.A. Boggs. "Ethernet: Distributed packet switching for local computer
networks". Comm. ACM 19,7 (July 1976), 395·404. Also CSL·75·7, Xerox Palo Alto Research Center,
reprinted in CSL·80·2 ..

15. W.M. Newman and A.F. Sproull. Principles of Interactive Computer Graphics. McGraw·HiII,
second edition 1979.

16. W.1. Nowicki. Partitioning of Function in a Distributed Graphics System. Ph.D. Th., Stanford
University, 1985.

17. J.B. Postel. "Internetwork protocol approaches". IEEE Transactions on Communications
COM·24, 4 (April 1980), 604·611.

18. J.B. Postel. Transmission Control Protocol. RFC 793, Network Information Center, SRI
International, September, 1981.

19. D.M. Ritchie and K. Thompson. "The UNIX timesharing system". The Bell System Technical
JournalS7, 6 (July/August 1978), 1905·1929.

20. J.H. Saltzer, D.P. Reed, and D.O. Clark. "End·to·end arguments in system design". ACM
Transactions on Computer Systems 2, 4 (November 1984), 277·288. Earlier version appeared in Proc.
2nd International Conference on Distributed Computing Systems, INRIA/LRI, April 1981 , pages
509·512 ..

21. J.F. Shoch and J.A. Hupp. "Measured performance of an Ethernet local network". Comm. ACM
23,12 (December 1980), 711·721.

22. FA Tobagi and V.B. Hunt. Performance analysis of carrier sense multiple access with collision
detection. Proc. Local Area Communications Network Symposium, May, 1979.

23. V·System Development Group. V·System Reference Manual. Computer Systems Laboratory,
Departments of Computer Science and Electrical Engineering, Stanford University, 1986.

24. H. Zimmermann. "The ISO reference model". IEEE Transactions on Communications COM·28,
4 (April 1980), 425·432.

