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1 . Int roduction 

Despite the proliferation of computer networks, distributed application programs are still 
uncommon. A major reason for this is the sensitivity of these applications' performance to various 
aspects of the network environment in which they are run. In addition to the inherent cost of the 
computation, the cost of communication between the distributed parts of the application are incurred. 
Consequently, the total computation cost of a distributed program is almost always higher than the 
total computation cost of an equivalent centralized program. 

There are two approaches to improving the performance of distributed applications. The traditional 
approach is to improve the performance of the underlying network communication mechanism, 
possibly with problem-oriented protocols [20]. Another approach is to decrease the amount of 
network traffic by judicious partitioning of responsibility between the distributed components of the 
application, together with high·level protocols that reduce the frequency and volume of 
communication and that allow concurrent operation of the various components. 

For comparison, consider the many performance studies made of demand·paged virtual memory 
systems. Although performance can be improved by speeding up the handling of page faults, better 
results are usually achieved by reducing the number of page faults. For example, increasing phYSical 
memory, tuning the page size, improving the locality of the application, or using a better replacement 
algorithm can make as substantial a difference a5 buying a faster disk. 

One method of distribution that is becoming increasing I:..' popular, especially where graphics is 
concerned, entails the use of backend computing engines which communicate with frontend display 
facilities. This organization seeks to split out user· interactive functions that are especially sensitive to 
time delays into the frontend, leaving functions that are less time critical in the backend. However. 
such a separation may still involve fairly extensive interaction between the various parts of the 
distributed system, implying that care must be taken to avoid having the network communication 
become a bottleneck. 

The V distributed operating system (V· System) being developed at Stanford supports distributed 
graphics applications of the sort just described [3, 9, 23]. This paper describes experience gained 
with the V·System with respect to various factors that affected those applications' performance. 
Section 2 describes the V·System environment. Section 3 describes the observed performance 
behavior of distributed applications. The six sub!':equent sections analyze various tactors in some 
detail, including the effects of processor speed (Section 4), issues in high·level protocol design 
(Section 5), general issues in transport protocol design (Section 6), and a detailed discussion of one 
particular transport protocol, namely, ARPA Internet TCP [18] (Section 7). Conclusions are drawn in 
section 10. 

2. Overview of the V-System 

The V·System is a message· based distributed operating system designed primarily for high· 
performance workstations connected by local networks. It permits the workstation to be treated as 
multi·function component of a distributed system, rather than solely as a intelligent terminal or 
personal computer. Ultimately, it is intended to provide a general·purpose program execution 
environment similar to some degree to UNIX [19]. 

2.1. HardwareEnvironment 

The V·System is being developed within the hardware environment of the Stanford University 
Network (SUNet). SUNet is a rapidly evolving environment consisting of: 

• workstations, such as the Dolphin, Lisp Machine, Sun [1] and IRIS [6]; 
• standard timesharing systems. such as DecSystem-20/ToPS-20, VAX/UNIX, and 
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VAx/VMS; and 
• dedicated server machines, for printing, file storage, and gateway services; 

interconnectt.;d by 'Jar::JUS local networks, including 3 and 10 Mbit Ethernet [14]. Various machines 
are also connected to long· haul networks such as the ARPANET. 

SUNet is representative of the workstation-based distributed systems currently in place or being 
developed at many locations worldwide. As a result, the V-System architecture is well-suited to any 
such system. 

2.2. Software Aichitecture 

The V-System consists of a distributed kernel and a distributed set of server processes. The 
distributed kernel provides network-transparent interprocess communication based on synchronous 
message-passing - such that a sender blocks until a reply is received. It consists of the collection of 
kernels resident on the participating machines. The host kernels are integrated via a 10w-ov'~1 :-Jead 
inter-kernel protocol (IKP) that supports transparent interprocess communication between 
machines [3]. 

Servers include device servers, storage servers, virtual graphics terminal servers, exception 
servers, and nptwork servers. The following section discusses network services in some detail. 

Lastly, a standard program environment has been defined, the principal instance of which is a C 
program library. The C library 1'1cludes runtime support for standard C and UNix-like library functions 
to facilitate the porting of eXisting C programs. 

2.3. Network Services 

The V-System supports network transport through three different protocol families. The standard 
means of communication between hosts on the same local network is by means of the inter·kernel 
protocol (IKP) mentioned above. The typical use of IKP is as a a reliable datagram service, such that 
packets are delivered, but duplicates are not suppressed. 1 IKP is implemented directly on top of the 
data· link level and is used by oach host's kernel whenever interprocess communication is requested 
with a non·local process. Reliable byte·streams (henceforth referred to as V 1/0 connections) are 
provided external to the kernel by means of a reliable block 1/0 protocol that suppresses duplicates, 
together with a library package that provides a byte-stream interface to that block 1/0 protocol [23]. 

Access to hosts that do not reside on the same local network or that do not support the V·System's 
specialized communications protocols is provided by means of the Xerox PUP [2] and ARPA 
Internet [17J protocol families. The two families are supported up through the network and transport 
levels, respectively. in the form of an internet server. Higher-level protocols, such as TELNET for 
remote terminal access, are provided as separate packages that interface to the internet server via V 
1/0 connections. 

Since it is envisioned as the primary interface to hosts beyond the local network. the internet server 
has been designed to allow easy addition of other protocol families. That is, it has been structured 
with an eye towards flexibility at the expense of some speed. Clients of the internet server interact 
with it by means of V 1/0 connections. The server interfaces these connections to whatever network 
protocol has been requested. Thus, clients rarely need concern themselves with the details of the 
network protocols used to access a remote host. Protocol concerns only appear when creating a 
connection instance and when protocol-specific commands need to be specified to the server. 

1'n fact. clients may request Ihat duplicates be suppressed. bulthis feature is rarely used. 
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2.4. Application Model 

From the previous discussion it should be apparent that applications may run local to the user's 
workstation or on any other host accessible via the various communications protocols. Ultimately, all 
applications must communicate with the user via the virtual graphics terminal server (VGTS) resident 
on the user's workstation [9, ~ 6]. The VGTS provides the usual facilities present in contemporary 
window systems, including the ability to run any number of applications simultaneously, mapping 
them to the display when and where the user desires. 

However, the VGTS is distinguished from most other window systems by two key features. First, it is 
designed to operate in a environment composed of a variety of applications, machines, and networks, 
with widely varying terminal interaction requirements. In contrast, most window systems have 
confined themselves to homogeneous environments, which require less flexibility in the window 
system. 

Second, the VGTS supports structured graphics. Specifically, a graphical object can be defined in 
terms of other objects, which can in turn be defined in terms of yet other objects. Thus, the VGTS 
supports structured display files rather than the more common segmented display files [15]. The 
resulting virtual graphics terminal protocol (VGTP) is a high-level object-oriented protocol that 
a!tempts to limit both the frequency of communication between application and VGTS and the 
amount of data transmitted at anyone time. 

The VGTP is constant over all applications. However, some applications have no knowledge of the 
VGTP and some applications are running on machines that do not support the interprocess 
communication mechanisms underlying the VGTP. The following situations arise (see Figure 2-1, 
where each inter-machine arc is labeled with an example (presentation protocol, transport protoco/) 
pair): 

• Application A runs on the workstation and communicates via the VGTP. Current 
examples include text editors, document illustrators, and VLSI design aids. 

• Application B runs on a machine that supports V kernel services, specifically, network­
transparent interprocess communication via IKP. B communicates with the VGTS via the 
VGTP, as in the case of a application A. 

• Application C runs on a machine that does not support IKP, but does support a traditional 
network architecture such as the Internet protocol family [17]. In addition, a VGTP 
interface package is available that encapsulates the VGTP within the appropriate 
transport protocol. Similarly, a local agent for the application, C', is created on the 
workstation to decapsulate the VGTP. Thus, the application may still be written in terms 
of the VGTP and neither it nor the VGTS have any knowledge that the other is remote. 
Our VLSllayout editor, for example, can be run in this fashion under VAX/UNIX. 

• Application 0 has no knowledge of the VGTS or the VGTP; it wishes to regard the 
workstation as just another terminal. The local agent, 0', is "user TELNET" and performs 
the appropriate translations between TELNET and VGTP. 

• Application E is distributed between the workstation and one or more other machines. 
The local agent. E', is responsible for representing the multitude to the VGTS. It must 
perform the appropriate set of protocol conversions indicated above. In addition, it may 
wish to perform application-specific functions, such as high-level caching. In that case, 
the protocol used to communicate with the remote applications may require more than 
simple transport service. ' 

All applications but A make use of a network transport protocol, whether they realize it or not. 
Application B employs an interprocess communication protocol that has nothing to do with graphics 
per se. Application 0 employs a protocol that in no way depends on knowledge of the VGTS and 
typically has nothing to do with graphics; in order to run, an appropriate protocol-converter must run 
on the workstation . 

. ...... _._--------------------------- ------~ 
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Applications C and E, on the other hand, know all about the VGTS and are very interested in 
graphics. We will refer to the protocol they employ as the network graphics protocol (NGP). The NGP 
may be a simple encapsulation of the VGTP within an existing transport protocol, it may be a problem· 
oriented protocol [20], or it may itself be a multi-level protocol. Application C, for example, may find a 
direct encapsulation of the VGTP acceptable. Application E, however, may wish to maintain a 
replicated database (the main database and the cache), or may wish to trade reliability against cost. 
In these cases, the NGP offers considerably more function than mere encapsulation/decapsulation of 
the VGTP. In general, the VGTP and NGP correspond roughly to presentation and session layer 
protocols, respectively, in the ISO reference model [24]. 

3. Observed Behavior of Distributed Applications 

Several distributed applications written specifically for the V·System are graphics·oriented. All 
graphics operations are performed through the services of the VGTS, which imposes a very definite 
style of interaction on applications by means of the high-level protocol (the VGTP) employed. Thus, 
the perspective presented might be regarded as biased towards this one class of applications. 
However, we claim that the observations presented below are applicable to almost all distributed 
applications since they can be converted into equivalent non-graphics· oriented statements. 
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3.1. Nature of the Experiments 

Performance measurements have been taken for three benchmark programs, two for graphics and 
one for text, in a variety of test confiyurations. 

3.1.1. Benchmarks 

The first graphics benchmark created a fully·connected 36·agon with a radius of 350 pixels, 
drawing 630 vectors or 288,364 pixels. Thus the average vector size in this benchmark was 457 
pixels. Since the picture was a fully· connected polygon, many different angles of vectors were used. 
This was intended to test the performance of traditional vector graphics functionality. The action was 
repeated ten times, and the numbers listed are the mean of ten consecutive trials. 

All numbers given as vectors per second in this chapter refer to this same artificial benchmark, so 
they should be valuable for relative comparisons but not absolute limits. However, since most 
significant computation was done before the timed parts of this program, and the number of items in 
the picture is relatively large, the intent was to measure the peak rates of adding items to a symbol 
and then drawing that symbol. This would measure the rate of initially drawing a new picture. 

The second graphics benchmark was intended to test the effects of using structure on a simple 
picture of the kind used in a VLSllayout editor [7]. This benchmark drew an array of five by six NMOS 
inverters [13]. Each of these 30 inverters consisted of 26 rectangles, for a total of 780 rectangles, all 
filled with one of four stipple patterns (which would appear as colors in a color implementation) 
representing the four NMOS layers. First the picture was drawn using a single· level display file and 
adding all 780 rectangles individually. The second part of this test defined a contact cut symbol, then 
an inverter symbol, and then added 30 calls to the inverter symbol, with only 23 primitive items in the 
display file. Although the regularity factor of this drawing (the ratio of total items divided by defined 
items, or 30 in this case) is fairly high, modern VLSI designs typically have regularity factors in the 
same range, and the trend is to increasing regularity [10,11]. In fact, many of the designs currently 
under development would not be possible with smaller regularity factors. Independent of the 
structure, the resulting image was about 400 pixels on a side. 

The tQX! bcnchr;·.=.~:: programs sir.~p:J wrote c!";aro.;:tcrs IJntil stopped by the user. This behavior 
would occur, for example, when displaying a new page in a text editor. The characters were from a 
fixed· width font with each character eight pixels wide and 16 pixels high, or 128 total pixels per 
character. This was the standard font used by most applications except those doing specialized text 
display. 

3.1.2. Test Configurations 

The actual structure of the protocols and programs used in the performance measurements are 
illustrated in Figures 3·1 and 3·2. The VGTS is implemented as a ccllection of server processes within 
the V·System, access to which is achieved via i/O connections. The server host implementations are 
thought to be representative of what other distributed graphics systems might use. The benchmarks 
were conducted with the following communication configurations: 

Local Application running on the same workstation as the one used for display. The application 
sends V messages directly to the VGTS. Since the application runs in a separate address 
space from the VGTS, the V kernel's data transfer operations are needed to move 
information from the application to the VGTS' address space; no shared memory is used. 
This is illustrated in Figure 3·1 a. 

Sun·IKP Application running under the V·System but on a different machine, connected via 
Ethernet to another workstation, and using the V·System inter· kernel protocol. As 
illustrated in Figure 3·1 b, the application uses the same message· passing interface, but 
with the kernels implementing the IKP. 

VAx·IKP Application running under VAX/UNIX, connected via Ethernet to the workstation, and 
using V·System IKP. As Illustrated in figure 3·2a, this involves the application writing to a 
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pipe, which is read by the V-server program. which sends messages over the network 
to a V kernel. The workstation runs a simple "agent" called fexecute which is 
necessary only because both the VGTS and the V·server are both servers: they both are 
sent messages to which they reply, instead of initiating the sending of messages by 
themselves. 

PUP Application running under VAX/UNIX, connected via Ethernet to the workstation, and 
using PUP TELNET. Figure 3·2b illustrates tniS configuration. Th~ application uses 
pseudo·tty devices (ptys) to communicate with the PUP TELNET server program 
(Te 1 ser). This program sends packets over the network to the workstation, where a user 
PUP TELNET program sends the messages to the VGTS. On both ends, the TELNET 
programs contain (are linked with) the transport· and network· level code. 

E·IP Application running under VAX/UNIX, connected via Ethernet to the workstation, and 
using Internet TELNET. This is Figure 3·2c. The application again uses j)seudo·tty 
devices to communicate with the IP TELNET server (Tel netd). The implementation of the 
transport protocol in this case is in the UNIX kernel on the re'I'lote host and in the internet 
server on the workstation. IThe user TELNET program finally sends the messages to ~he 
VGTS. 

A·IP Application running under VAX/UNIX, connected via Ethernet and ARPANET to the 
workstation, and using Internet TELNET. This is the same as Figure 3·2c, but the network 
now includes a gateway and an extension through the ARPANET backbone. 

Application 

I v kernel J 
Application 

IKP net 

V kernel I V kernel I 
VlO ~iI" VlO 

vaTS 
VOTS 

a) Local b) SUN·IKP 

Figu re 3·1: Configurations with hosts running V only. 

Tests were conducted using standard 10 Mbit/second Ethernet and 10 MHz 68000's, unless 
otherwise noted. For configurations involving VAX·11's, 750's, 780's, and a 785 were used, and the 
tests were conducted at night with corrE><,;)ondingly light loads. Real applications are often run with 
high timesharing loads, but these are har~' to control for the sake of the experiments. 

Even more difficult to control were changes to underlying software. Some variation through time 
inevitably occurred in the VGTS, other workstation software, and host software. For example, 
introducing new features and fixing errors typically reduce performance, while easing bottlenecks 
found during experiments improves performance, While each table in this paper compares 
configurations with similar software, two different tables may compare configurations with dissimilar 
software. The detailed results presented in [16] specify each configuration. 
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Figure 3·2: Configurations with workstation running V and remote host running UNIX. 

3.2. Summary of Performance Results 

Given the declarative nature of the VGTP, four measures of interest are: 

7 

construction rate The rate that objects can be added to a symbol, without any display 
operations. 

batch rate The rate that objects can be added to a symbol, and then displayed. 

incremental rate The rate that objects can be added and displayed as each is added. 

display rate The rate that objects can be displayed out of the display file. 

Construction rate is the best measure of the peak network offered load for distributed graphical 
applications. The batch rate takes into account display overhead, which is fairly independent of the 
network. Nevertheless, it gives the best measure of overall graphics throughput. On the other hand, 
the incremental rate gives a better measure of expected response time, when interpreted as the 
maximum number of display transactions per second. Display rate is another measure of response -
to screen rearrangement or simple editing functions. However, it is not affected by distribution and 
will be little discussed here. 

Vector graphics performance is summarized in Table 3·1. In all of the tables, columns are labeled 
with the test configurations listed above (local, Sun·IKP, VAx·IKP, PUP, E·IP, and A·IP). Most rows are 
labeled with (speed. host. rate) triples, where speed is the speed of the Sun workstation processor (8 
or 10 MHz), host is the type of VAX (750, 780, or 785), and rate is one of the rates listed above 
(construction, batch, or incremental). All numbers are in vectors or characters or rectangles per 
second, so larger numbers indicate better performance. All results have been rounded to two 
significant digits, and should be taken as order of magnitude estimates only, due to the many factors 
involved. However, as we shall see, even these very rough measurements can be helpful to determine 
the feasibility of this approach. 

Table 3·1 presents the performance figures for configurations employing the most common 
processors, 10 MHz Sun and VAx·750. As shown by the construction rate row, objects can be 
constructed at 440 vectors/second for applications running locally, and 380 vectors/second for 
Ethernet·based applications. Overall graphics throughput, as shown by the batch rate row, is 220 
vectors/second for local applications, up to 350 vectors/second for Ethernet·based applications, and 
120 vectors/second for ARPANET . based applications. Incremental display permits 62 vectors/second 



8 An Empirical Study of Distfibutcd Application Performance 

for local applications. up to 87 vectors/second for Ethernet·based applications, and 39 
vectors/second tor ARPANET ·based applications. Actual display rates are on the order of 430 
vectors/second, or .2 million pixels/second, or 5 microseconds/pixel, including all display overhead. 

Vectors/second 
CgnfiguratiQn LQ~al IKP PUP E·IP A·IP 
10, -", display 430 
10.750, construction 440 380 200 220 130 
10, 750, batch 220 350 200 220 120 
10,750, incremental 62 81 58 87 39 

Table 3-1: Summary of vector graphics performance. 

The text results are summarized in Table 3·2. Throughput is 7700 characters/second for local 
applications. up to 4300 characters/second for local net· based applications. and 1900 
characters/second for ARPANET·based applications. Additional details appear in Tables 4·1 and 4·2. 

Characters/second 
Configuration Local IKP PUP E·IP A·IP 
10, 780, text 7700 4300 1600 4300 1900 

Table 3-2: Summary of text performance. 

3.3. Evaluation 

The remainder of this paper will examine the measurements just presented in some detail. We will 
attempt to c::how the effect of varying different parameters, and, ultimately, enumerate the factors in 
the order of their importance. These parameters include: 

• speed of the workstation 

• speed of the remote host, if any 

• speed of the network 

• choice and implementation of network transport protocol 

• level at which information is communicated, including characteristics of the high-level 
graphics protocols 

We will demonstrate that performance is most sensitive to processor speed and least sensitive to 
network speed. Sensitivity is measured by the degree of performance improvement relative to the 
degree of change in the indicated parameter. Thus, a 50% performance improvement due to a 200% 
increase in processor speed is much more significant than a 300% improvement in performance due 
to a 6000% increase in network speed. 

It is quite easy to rate the sensitivity to hardware factors. Software factors are another matter; it is 
easy to measure the absolute performance improvement resulting from a change in software, but 
quite difficult to measure the degree of that change. Also note that there are limits beyond which 
changing one factor will not affect performance; for example, a CPU-bound application running on a 
remote host will be little affected by an increase in workstation speed. Nevertheless, certain 
conclusions can be drawn based on available information. 

There are, of course, other factors that affect performance, including the choice of algorithm and 
the implementation of "inner loops". For example, recoding the inner loop of the lowest-level line­
drawing algorithm improved VGTS display rates by 200% [16J. While the return on investment can be 
quite impressive, such improvements typically are good for only a one-time increment in performance. 
This paper focuses on factors that have the potential of influencing performance on a much broader 
scale. 
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4. Effects of P rocesso r Speed 

As should be expected, the speed of an application is directly related to the speed of the processor 
on which it runs. Use of 10 MHz Sun workstations instead of 8 MHz workstations yielded up to 22% 
improvement (see Table 4.1).2 Use of a VAX·111780 instea1 of a VAx·l11750 yields up to 50% 
improvement (see Table 4·2). 

Vectors/second 
Configyration Local IKP PUP E·IP 
10, 780, batch 210 190 130 110 
8, 780, batch 180 150 110 99 

Characters/second 
10,780, text 7700 4300 1600 4300 
8,780, text 6700 3200 1400 3600 

Table 4·1: Effect of workstation speed. 

Configuration 
10, 780, construction 
10, 750, construction 

10, 780, text 
10, 750, text 

V€; ~tors/second 
IKP PUP E·IP 
510 210 170 
340 130 110 

Characters/second 
4300 1600 4300 
4100 1400 2300 

Table 4·2: Effect of remote host speed. 

A·le 
92 
88 

1900 
1800 

Two of the more surprising results relate to the benefits of distributed computing. First, applications 
can be expected to run faster when distributed between a VAx·7ao and a Sun workstation than when 
run locally (see Table 4·3). Although construction rates are lower in the distriblJted case, the 
concurrency from the use of two processors results in higher rates for both batch and incremental 
display. Second, some applications execute faster using a VAX·785 on the ARPANET than using a 
VAx·7oo on the local net (see Table 4·4). Since the ARPANET;S substantially slower than the Ethernet 
and network communication in general is slower than local communication, the conclusion is that 
CPU speed is the dominant factor in this instance. 

Vectors/second 
Configuration - Local E·IP 
10, 780, batch 220 380 
10, 780, incremental 62 92 

Table 4·3: Sun workstation vs. Ethernet·based VAX·111780. 

Regardless of where the application executes, the workstation is always required to do some work, 
namely, to maintain and display the graphical objects. Therefore, performance is more sensitive to 
workstation speed than to remote processor speed. For example, whereas a 25% increase in 
workstation speed results in almost linear speed·up, a 100% increase in VAX speed results in at most 
50% speed·up as seen in Tables 4·1 and 4·2. Note that Tables 4·1 and 4·2 were constructed with 
early versions of the protocols; later changes to the protocols increased the sensitivity of IP to server 
host speed, but decreased the sensitivity of IKP and PUP. 

2The principal reason that the increase from BMhz to 10Mhz 68000 processors did not produce a 25% increase in the 
performance was that the 10MHz design required polling 01 the keyboard and mouse. 
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Configuration 
10, 785, construction 
10. 750. construction 

10. 785. batch 
10, 750. batch 

Vectors/second 
E·fP A·fP 

160 
130 

140 
125 

Table 4·4: ARPANET·based VAx·111785 vs. Ethernet·based VAX-111750. 

One might conclude from these measurements that there is little reason to distribute applications, 
since the proven performance improvements might not outweigh additional programming demands. 
However, the processors tested differ by at most a factor of 4 in performance. If, on the other hand, 
an Cray·XMP were available, we would expect a marked increase in performance - roughly linear 
with processor speed. Moreover. our benchmarks make no significant computational or database 
demands that would take advantage of faster hosts. Finally. some applications simply cannot run on 
the workstation, due to memory or language requirements, for example. 

5. Issues in High-level Protocol Design 

The nature of the applications and of the information they communicate among their distributed 
parts make the network behave differently from what might commonly be expected. In particular, the 
use of appropriate "high-level" protocols can reduce the degradation that is experienced between 
different bandwidth networks. This can influence the choice of remote hosts since the performance 
penalty of accessing a high-performance host over a long-haul internetwork instead of a less powerful 
host located on a local network may be outweighed by the difference in host capabilities. 

For example, the results for the structured graphics benchmark are given in Table 5·1. The first line 
shows the performance of a rather simple "stop·and·wait" protocol where every operation requires a 
returr. value and no operation is initiated until the response to the previous operation is received. 
Notice that performance is rather poor, especially over long·delay networks like the ARPANET. Each 
successive line indicates the performance improvement achieved by adding more "intelligence" to 
the protocol. 

5.1. Pipelining 

Configuration 
10,750, incremental 
10,750, pipelined incremental 
10, 750, batch unstructured 
10, 750, batch structured 

Rectangles/second 
Local E·IP A·IP 

41 5 2 
61 66 36 

310 180 81 
1070 670 370 

Table 5·1: Effects of pipelining, batching, and structure. 

By removing unnecessary return values, even incremental operations can be pipelined. This results 
in both fewer messages and more concurrency than the "stop·and·wait" protocol, with an 
accompanying performance improvement of 50% for local operations and 1000% to 1500% for remote 
operations (compare the first and second lines of Table 5·1). In fact, remote incremental operations 
are almost always faster than local incremental operations due to this concurrency. 
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5.2. Batching 

Moving from the second to the third line of Table 5-1 shows the effect of another simple change to 
the graphics protocol. Specifically, for "batch" display, operations are (indeed) batched so that 
values are returned only after an ent:re sequence of operations (such as all changes to a given 
symbol) have been performed. This change reduces network delays substantially, yielding 
performance improvements of up to factors of 500% over and above the improvements achieved by 
pipelining. Other measurements have shown improvements of up to 3000% using only batching. 
Similar effects can be seen in all tables displaying both incremental and batch rates, where the batch 
rate indicates the effect of batching and the incremental rates indicates unbatched operation. 

5.3. Structure 

The virtual graphics terminal protocol allows objects to be defined in terms of graphical primitives 
such as vectors or rectangles, or in terms of other objects. Once the objects are defined, they can be 
made to appear on or disappear from the screen with short commands of only a few bytes. This can 
result in considerable performance advantages, a fact that has, in fact, been known for some 
time [12]. 

As seen by comparing the third and fourth lines of Table 5·1, using structure instead of an 
unstructu .. ed list of primitive items increases performance again by factors of 3 to 4 for both local and 
remote operations. The principal reason for this is that considerably less data needs to be 
transmitted. The benefits of reducing the amount of data transmitted are even more obvious by 
comparing the VGTP to protocols that transmit bitmaps - such as Remote BitBlt [8]. 

The amount of data transmitted is directly proportional to the amount of memory used to store the 
data at the workstation, so Table 5·2 shows memory usage. In the vector benchmark, for example, 
the structured display file (SDF) represented the fully·connected polygon with 20 bytes per item, or 
12,600 bytes. This compares to the 800 by 000 bitmap area, which would take 80,000 bytes. In 
practice, most objects are even less dense than the fully. connected polygon, so the advantage would 
be even greater. In particular, the SDF approach has the advantage as long as there are more that 20 
bytes of bitmap space for each item in the SDF. The rectangle benchmark shows that even without 
using structure, a factor of about two in memory savings is possible. Using structure, the 900 bytes 
used by the SDF is a factor of 37 less than the space for the bitmap. 

5.4. Summary 

Benchmark 
vector 
rectangle, unstructured 
rectangle, structured 

Bytes of memory used 
SDF Bitmap 

12,600 00,000 
15,600 34,000 

900 34,000 

Table 5·2: Effect of structure on memory usage. 

Ultimately, the time to define and display the picture for a local application was about 1 millisecond 
per item. This is roughly the time to perform a local Send - Receive - Reply sequence in the V 
kernel, so any protocol that uses a message transaction for each item will be slower. Moreover, it is 
faster to run this benchmark over the ARPANET and use structure than it is to run the same program 
locally and use incremental or unstructured display. The latter is comparable to traditional graphics 
systems. It is also faster to run the program across the Ethernet and use structure than it is to run the 
program locally, even with batching. 
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6. Issues in Transport Protocol Design and Implementation 

Regardless of the level of communication. it is important to make the underlying transport protocol 
as efficient as possible. There are two fundamental. and orthogonal. approaches: 

1. Take advantage of the particular network or applications environment by using 
specialized protocols. 

2. Implement the chosen protocol efficiently. For example. make judicious use of kernel 
support and processes in structuring the protocol implementation. 

6.1. Tuning the Protocol 

The first approach is exemplified by the V-System's inter-kernel protocol (IKP). which for our 
applications usually provides significantly better performance than PUP or Internet protocols (see 
Tables 3-1 and 3-2). Remember. however. that these measurements indicate PUP and Internet 
performance using their respective TELNET protocols as "transport" protocols. IKP's performance 
advantage should be somewhat less if we were to use the real. underlying transport protocols -
RTP IBSP and TCP. respectively. The virtues of IKP have been discussed at length in several 
previous papers. including [3]. 

Although speCialization at such a low level can achieve significant performance advantages. it is 
nevertheless mandatory that a general-p~rpose. internetwork protocol be available to communicate 
with hosts and networks that do not support the specialized protocol. In fact. an internetwork 
protocol may yield higher overall performance than a specialized protocol if it allows access to a 
higher-performance processor than would be available using the specialized protocol. Moreover, 
internetwork protocols themselves can be tuned to meet different performance objectives. For 
example. the PUP protocols tend to emphasiS response and are relatively "light-weight". whereas 
Internet protocols are tuned for throughput and are relatively "heavy-weight". 

6.2. Tuning the Implementation 

The second basic approach to efficient network transport, namely. efficient implementation, has 
been a subject of much discussion in the networking community [4]. Indeed. the implementation of a 
protocol may have a greater effect on performance than any properties inherent in the protocol itself. 

For example. much of the advantage Internet protocols have over PUP for text performance is due 
to the fact that the Internet transport service is implemented inside the UNIX kernel. whereas PUP is 
implemented outside the kernel as a user process. This results in significant context-switching 
overhead. Note again that this overhead is most apparent for network-bound. throughput-intensive 
applications. such as our text benchmark (see Table 3-2). 

On the other hand. IKP is also implemented as a process under VAX/UNIX and tends to perform 
significantly better (for construction and batch rates) than either PUP or Internet. This advantage 
accrues from the fact that IKP is tuned for operation on local area networks - both in its protocol 
design as discussed above and in its implementation. For example. the IKP implementation used 
1024-byte packets. while both PUP and IP used packets of 100 or 200 bytes. Similar observations 
relative to TCP are presented in the next section. 

Naturally. network services implemented as processes can be significantly affected by the priority at 
which they run. Table 6-1 indicates the effect of changing the relative priorities of the application 
program or the TEWET server program. This test was done using the PUP protocol on a local 10 
Mbit/second Ethernet. The first column gives the results for normal operation. For the second 
column. the operating system gave priority to the TELNET server program. Batch performance actually 
decreased. since more network packets were sent. For the third column. both the application and the 
TELNET server were given priority. which increased both the batch and incremental rates. However, 
as shawn in the last column, the best performance was obtained by giving priority to the application. 
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Configuration 
10,750, batch 
10, 750, incremental 

Normal 
170 
47 

Vectors/ second 
Telser & 

Telser 
160 
48 

Application 
190 
58 

Ta ble 6-1: Effect of process priorities. 

Application 
200 

58 

13 

Another interesting comparison is between remote execution on a timesharing host and execution 
on another workstation. Table 6·2 displays this comparison. The construction rate is about the same 
on the VAX/UNIX system and on the V·System. The incremental rates on the VAX/UNIX 
implementation are very poor without pipelining, due to the fact that the IKP server process (the 
V·server) is polling every few seconds for output from a pipe, while the other protocols are 
interrupt.driven.3 Note, however, that the total batch rate and the pipelined incremental rate are much 
higher on the VAX than on another workstation. This is due to the fact that there is less concum.ncy 
in the remote workstation case, due to the synchronous nature of V·System message·passing. Much 
better performance could be obtained by replying to the message before it is processed, instead of 
after the operations are performed. 

Configuration 
la, 750, construction 
10, 750, batch 
10, 750, incremental 
10,750, pipelined incremental 

Vectors/second 
SUNIKP VAXIKP 

380 380 
190 350 
29 4.6 
44 81 

Table 6-2: Effect of IKP implementation. 

7. Issues in TCP Implementation 

Our current VGTP can be used with any transport protocol providing a reliable byte stream. This 
section presents experiences gained from implementing the ARPA TCP protocol for the V-System's 
internet server. Most of the throughput numbers presented in this section come from experiments 
that set up a TCP connection between two Sun workstations, each with its own internet server, and 
then sent bytes back and forth as fast as possible. 

7.1. Packet Buffer Allocation 

Protocols like Tep control the flow of network traffic by means of a byte· oriented receive window. 
However, many implementations manage their memory resources in the form of fixed· length packet 
buffers. This implies that an estimate must be made of the average number of bytes that will arrive in 
each packet in order to calculate an appropriate receive window size to present. Multiple buffer sizes 
can alleviate this problem, but may also incur significant overhead costs on some machine 
architectures. For example, the network device driver may work most efficiently when copying entire 
packets to a single locatiqn in memory. 

Buffer compaction is another approach to the problem of selecting an appropriate receive window 
size. This involves copyi.~g the contents of several partially filled buffers into a single, subsequently 
full buffer. However, this approach can break down when employed between hosts of significantly 
different speed such as a workstation and a mainframe computer. The phenomenon that can occur is 
that the faster host may inundate the slower host with a large number of packets, each containing .. 

In' 

3rhe 4.2BSD·based server could be modified to use the 58 lec t system call, which would eliminate this delay. 



14 An Empirical Study 01 Distributed Application Perlormance 

only a small number of bytes. The total number of bytes sent is within the limits of the receive window 
presented; however the total number of packets that must be processed (and compacted) is larger 
than the number of buffers available. The result is that packets are lost because the receiving host 
cannot compact the previous packets fast enough to accept the new ones. This causes unnecessary 
retransmissions along with their associated timeout delays. Depending on the implementation at the 
sending end this can bring things to an almost complele halt. This phenomenon has been observed 
regularly with TELNET connections, where terminal output is typically generated one line at a time. 

One possible solution to the problem of matching the receive window to the available buffer 
resources involves utilization of "hints" from higher level protocols about the nature of network traffic 
that can be expected. These hints can then be used to allocate buffers of appropriate size and 
number. For example, file transfer applications will generate network traffic consisting of a steady 
stream of large packets, whereas TELNET·like applications will tend to generate traffic consisting of 
irregularly generated large packets interspersed with bursts of many small packets. This approach is 
already used by several implementations of the Xerox RTP/BSP byte-stream protocol [21. 

A second observation about packet buffer management deals with the form of memory 
management used. Personal workstations usually do not have a great deal of spare memory 
available, so that preallocation of a large pool of buffers is not reasonable unless local secondary 
storage and virtual memory management are available. Typically, application-level memory 
management packages such as the C malloc/free routines provide greater functionality than 
necessary and may also be tuned for a different pattern of memory usage than is generated by 
networking code. An improvement can be achieved by utilizing a two-tiered scheme where the 
general memory management routines are only used to obtain "chunks" of several buffers at a time; 
which are then kept on a separate free list. Choice of chunk size should be such that each network 
connection requires on average one chunk of buffers. Variations in traffic are then handled by 
allocating/deallocating additional chunks as needed. Use of this simple scheme yielded an 
improvement of about 3% in the performance of the internet server. 

7.2. Timeouts 

One might expect that if a byte-stream protocol is only (or primarily) going to be used within a local 
network, that protocol need not implement dynamic timeout values for acknowledgement and 
retransmission of packets in a byte-stream. Dynamic values are clearly needed for efficient 
performance in an internet environment since the variable number of gateways and networks that 
packets must traverse can cause significant variations in transit times. However, in the local case, 
one would expect variations to be much smaller in magnitude, allowing the use of fixed values for 
timeout intervals. This considerably simplifies the implementation of timeouts and avoids the 
overhead of continually monitoring the arrival and departure times of each packet (which typically 
involves an operating system kernel trap to obtain the current time). 

Based on these assumptions an early implementation of the internet server used fixed timeout 
values, with the following effects: 

• Mismatched timeout values caused considerable difficulties with file transfer 
connections, sometimes slowing throughput down by a factor of two or more. It was 
discovered that the retransmission timeout interval was set too short for the host being 
sent to, resulting in the retransmission of all packets . 

• Similarly, faulty implementations of the protocols on some hosts caused timeout interval 
mismatches which noticeably affected the delay characteristics of TELNET connections to 
these hosts. (Quantitative assessment of the delays have not been possible due to the 
their intermittent nature.) 

.In order to avoid unnecessary retransmissions when dealing with (mostly timesharing, 
heavily loaded, mainframe) hosts that take a long time to process a network packet, the 
"standard" retransmission timeout was at one point set to a value of 4 seconds. When 
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this timeout value was used for timing tests run between two workstations the result was a 
10% degradation in performance from using a more a~propriate value of 1/4 second . 

• At one point too short an acknowledgement timing period was used. This resulted in 
acknowledgements being sent twice as often as necessary, with a degradation in 
performance of about 1 %. 
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As one can see, different higher-level protocols and different host combinations impose different 
values to use as optimal (fixed) timeout intervals. Performance considerations here must include both 
throughput and delay, since some connections are more concerned with short delay than maximum 
throughput. For example, TELNET connections desire short acknowledgement timeouts in order to 
avoid unnecessary delays to the user. In contrast, FTP connections are only concerned with 
throughput and can afford occasional long delays. Short acknowledgement timeout values for these 
only increase the network control traffic, thereby decreasing throughput. 

Similarly, connections that experience a high error rate need a different set of timeout values from 
those used for connections which run relatively error free. (Periods of high error rate on a local 
network are not as uncommon as one might expect - see Section 9). Furthermore, the error rate a 
connection experiences is variable with time, so that a single set of timeout values for a given 
connection is also not appropriate. 

The conclusion one must draw is that a general byte'stream protocol cannot "cheat" by using fixed 
timeout values even when it is intended to run primarily in a local network settjng. 

7.3. General Considerations 

The experience gained with implementing TCP indicated that it is a very large protocol which is 
hard to implement correctly. Furthermore, TCP's performance is very sensitive to errors in its 
implementation. Differences in throughput and delay of up to an order of magnitude were observed 
as a result of errors occurring in such places as retransmission, receive window management, etc. 
Also, all of Clark's comments concerning silly window syndromes were observed to be true, since 
early TCP implementations on our VAX/UNIX and DEC·20/Tops·20 hosts ignored his suggestions [5]. 

Our best TCP throughput to date is about 450 Kbits/sec when using packet sizes of 1000 bytes. 
This translates to about 18 ms per 1000-byte packet. TELNET throughput at 4300 characters/sec 
represents less than 10% of this bandwidth (see Table 3·2). The remaining time is taken up by the 
application generating the text, together with the terminal emulation and display routines within the 
VGTS. This demonstrates, once again, the relative insignificance of transport issues. 

8. Effects of Network Bandwidth 

All of the above factors combine to render the actual network bandwidth insignificant. Table 8-1 
shows that although a 3 Mbitlsecond Ethernet is about 60 times faster than the 56 Kbitlsecond links 
used in the ARPANET, using a backend host on the local network yields less than a 50% performance 
improvement over using a backend host on the ARPANET. In fact, most of the difference in the total 
batch rate is due to the delay of the ARPANET and intervening gateway, not any bandwidth restriction. 
Moreover, there was very little measurable performance difference between using the 3 Mbit/second 
experimental Ethernet rather than 10 Mbitlsecond standard Ethernet. 

Configuration 
10, 750, construction 
10, 750, batch 

Vectors/second 
E3·IP E10·IP A·IP 

220 230 130 
210 220 120 

Table 8·1: Effect of network bandwidth. 
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These results can be attributed primarily to the level of communication as discussed in section 5, 
and the conclusion that processor speed is the usual bottleneck. This is consistent with other 
measurements of Ethernet performance [21] that show very low utilization of the available bandwidth 
of the Ethernet, and comparatively long delays on the ARPA Network. Thus, these systems rarely 
approach the limits described in analytical studies that concentrate on performance under heavy 
loads [22]. In fact, these protocols can be used on very low-bandwidth communication links. 

Each Addltem call sends 20 bytes of data, so a construction rate of 230 items per second (the 
Ethernet load given in Table 8-1) corresponds to only 4600 bytes per second, or about 40 
Kbits/second - 0.4% of the Ethernet's bandwidth. Due to the small amount of data, graphics could 
even be possible over standard speed telephone lines. For example, at 1200 bits/second, a peak rate 
of 7.5 items/second should be possible. To test this, the experiment was run successfully on a 
workstation over a 1200 bits/second telephone link. Several other rates were tested using point-to-
point RS·232 connections at various speeds, with the results given in Table 8·2. . 

Configuration 
10,750, construction 
10, 750, batch 
10,750, structure 

1200 
7.4 
6.2 
84 

Items/second 
2400 4800 9600 

14 26 54 
12 23 46 

142 230 320 

10M 
166 
131 
380 

Table 8·2: Effect of point·to·point communication rates. 

For the structure benchmarK, even at 1200 bits/second, the measured creation rate was 7.4 
items/second, very close to the maximum 7.5 calculated above. This rate is slightly less than linear in 
relation to the bandwidth, indicating that even at low speeds the CPU can be a factor. Moreover, the 
total rate when using structure was 84 items/second at 1200 bits/second, which is twice as fast as 
running the program locally with incremental drawing (the first entry in Table 5-1). Structure and lack 
of significant delays also makes this rate faster than the batch rate for the ARPANET (the last entry in 
Table 5-1). Finally, the 9600 bits/second structure rate is only about 15% slower than using Ethernet, 
even though Ethernet has a raw bandwidth a thousand times greater. 

9. Other Factors 

9.1. Client Packet Size 

A dramatic performance improvement was achieved with a special version of the internet server that 
allo'w',ed clients to Read and Write blocks of 4 Kbyte rather than the "normal" 1 Kbyte limit. The 
server divides these blocks into 1 Kbyte chunks for actual transmission over the networK. This 
effectively eliminated an additional Send-Receive-Reply message exchange per packet (along with 
the associated overhead of the 110 library routines, etc.) and also produced a mode in which packets 
would be sent out onto the networK in bursts of 4 ata·time. The result was about a 15·20% increase 
in performance. 

9.2. Remote Internet Servers 

Because the V-System supports network· transparent interprocess communication, the internet 
server can be run as a "remt.'.~" server, residing only on one host in the local network. This results In 
significant savings of memory space on "user client" workstations since the internet SI:)"Ver require! 
about 60 Kbytes for its code and static data structures and a minimum of 20 Kbytes available for its 
process stack spaces and packet buffer pools. However, the performance penalty for this 
configuration can be significant. 

To test TELNET throughput, tests were run with a VAx·7OO generating text output to Sun 
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workstations. One connection was opened between the Sun running the internet server and the VAX, 
and one connection was opened between a Sun not running the internet server and the VAX. By 
running both connections simultaneously, external factors such as mainframe load variations could 
be factored out of the performance results. These result showed that performance degraded by 
about 15% on average for output rates up to about half the maximum throughput capacity of a 
connection. At higher output rates, the performance penalty rapidly went up, approaching 50% near 
the connection's peak capacity. This is exactly what one would expect since the network traffic is 
essentially doubled when the internet server is running on a different host from both ends of a 
connection, rather than on the same host as one end of the connection. The smaller penalty at lower 
output rates indicates that performance is being limited by the mainframe rather than by the internet 
server. 

Unfortunately the numbers just presented represent the performance when only two connections 
are being maintained through the internet server - a local one and a single remOte one. However, 
the whole purpose of running the internet server in a remote configuration is to allow a single copy to 
service the entire local environment, implying that multiple connections would normally be 
maintained. Furthermore, the maximum throughput capacity of connections is inversely related to the 
number of the connections the server is maintaining at any given time. Thus, one would expect to 
obtain only a small fraction of the performance obtainable with a private copy of the server devoted to 
maintaining only a single or a few connections. Fortunately, TELNET connections do not normally 
operatA at full throughput capacity, but tend to exhibit a bursty pattern of communications. This 
implies that the average throughput that the internet server must maintain will be a small fraction of 
the total load that could be presented by all connections combined. Our experience to date confirms 
this observation. 

Accurate delay measurements comparing the local to the remote server configuration have not 
been obtained due to the difficulty of factoring out random load variations from the results. However, 
the delay penalty seems to be similar to the throughput penalty in behavior and magnitude. 

Similar results were obtained for FTP connections through the internet server to a VAx-780. The 
average performance penalty for using a remote internet server was about 20%. Unlike the TELNET 

measurements, this result indicates that performance was being limited primarily by the VAX, once 
again showing the importance of processor speed. 

9.3. Network Pollution 

Perhaps the most annoying "external" factor that affects the performance of network 
communications at Stanford is that of network pollution, caused when one or more hosts transmit 
large numbers of garbage packets. These packets can cause a network's load to increase to the 
pOint where the network becomes useless. The problem is further aggravated if the packets being 
transmitted are broadcast packets, since all hosts on the network must read them in and process 
them before they can be discarded. Even worse, broadcast addresses on the 3 Mbit Ethernet are 
frequently designated by the value 0, which is a very common "random" bit pattern! The result is that 
not only does the network become congested, but all hosts on the network may be brought to a 
standstill as they spend most of their CPU cycles processing and discarding bad broadcast packets. 

9.4. Network Interface Hardware 

A final factor that affected performance was the nature of the network interface hardware. Our 
early-generation Sun workstations use an Ethernet interface that contains a 4 Kbyte hardware buffer 
for reading packets from the network. Packets that arrive when the buffer is full are discarded by the 
interface. This effectively limits the length of pipeline that can be specified for a byte-stream 
connection when dealing with a host that generates packets at a significantly faster rate than the 
workstation can process them. Consequently, a 10 MHz workstation talking to an 8 MHz workstation 
can generate packets fast enough so that specifying a TCP receive window larger than about 5000 
bytes results in numerous retransmissions due to lost packets. In general, we have observed that 
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network bandwidth far exceeds interface throughput. 

10. Conclusions 

First, we have demonstrated that distributed applications can run faster than local ones, using 
common hardware. Indeed, may "real" applications should reap a greater reward from distribution 
than our benchmarks, since the benchmarks make no significant computational or database 
demands that would take advantage of faster remote hosts. Moreover, the reader should remember 
that some applications simply cannot run on the workstation, due to memory or language 
requirements, for example. Lastly, there is little additional effort in creating an application to run on a 
remote host - typically, it is simply recompiled. 

Second, we have shown that the primary factors affecting performance of our distributed graphics 
applications are, in approximate order of importance: 

1. Speed of the workstation. 

2. Speed of the remote host, if any. 

3. Level of communication, as determined by the virtual graphics terminal protocol. 

4. Choice and implementation of the network transport protocol. 

5. Bandwidth of the networks employed. 

By modifying point (3), the same observations hold for text. Note again that these observations relate 
to the degree of performance improvement relative to the degree of change in the indicated 
parameters. 

CPU speed rates at the top of the list simply because desired speed-ups can be achieved almost 
indefinitely by substituting more powerful workstations and backend hosts. Similarly linear 
improvement is not possible by altering any of the other "variables". The transport protocol IKP, for 
example, provides as good performance on the local net as can be achieved. 

As workstations become more powerful, one might think that offloading functions from hosts to the 
workstation means that slower backend hosts can be used. In reality, faster hosts are required to 
keep up with the increased demand of the workstations. On the other hand, many people think illat 
as networks become faster, communication is cheap. Unfortunately, network interfaces have not kept 
pace with bandwidth, such that many network operations remain CPU-bound. In both cases, the 
offJoading and increased bandwidth allows more users to share the same resource, but does not 
increase the performance of the individual users. This is true even in the case of microprocessor­
based network controllers, which, while intended to improve performance, have in our experience 
often proven to be slower than simpler and cheaper controllers that perform fewer functions but use 
fixed logiC at a higher speed. Hence, faster hosts are needed, not slower ones. 

With respect to network bandwidth, sensitivity is directly related to communication requirements. 
Communications requirements are inversely related to the frequency of communication and the 
amount of information transmitted, both of which are reduced by the techniques discussed above. 
Therefore, the remarkable insensitivity of our applications to network bandwidth implies that they are 
quite sensitive to the "level" of communication. 

In our system architecture, the high level of communication is due to the virtual graphics terminal 
protocol design. In particular, the ability to batch many operations into a single update using a small 
number of bytes and the ability to pipeline many of the operations provided large increases in 
performance. Overall, the use of high·level graphics protocols reduces the degradation that is 
experienced between different bandwidth networks. This can influence the choice of network 
trandport protocols since the performance penalty of accessing a high·performance host over a 
long.haul internetwork instead of a less powerful host located on a local network may be outweighed 
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by the difference in host capabilities. Indeed, the measured performance improvements between 
transport protocols are considerably less dramatic than those achieved by varying the level of 
communication. 

It is hard to make direct comparisons about network protocols independent of their 
implementations. For example, a protocol inside the kernel of an operating system is usually more 
responsive than if it is implemented on top of the kernel. The increased responsiveness comes with 
the cost of increasing the size of the (usually always resident) kernel and the related difficulties of 
debugging at lower levels. In our particular case, despite the fact that the PUP protocols are simpler 
than the ARPA Internet protocols, ARPA Internet-based TELNET connections can sometimes run about 
twice as fast as PUP-based ones. This is attributed primarily to the fact that PUP is implemented as an 
application outside the Unix kernel whereas the ARPA Internet protocols are implemented inside the 
kernel. 

With respect to general-purpose internetwork protocols, TCP in particular, we observe that they are 
complicated and sensitive to subtle implementation details. In order to support differing (and possibly 
error-prone) implementations on various different hosts one must implement a full "internet-oriented" 
design. Attempting to simplify various design issues for use only on a local network doesn't work if 
other hosts use different designs. 
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