
Report No. STAN-CS-84-1009

Complexity of A Top-Down Capture Rule

Yehoshua Sagiv and Jeffrey D. Ullman

Department of Computer Science

Stanford University
Stanford, CA 94305

COMPLEXITY OF A TOP-DOWN CAPTURE RULE
Yehoshua Sagiv

Hebrew University
Jeffrey D. Ullmant

Stanford fFniv.

ABSTRACT
Capture rules were introduced in [U] as a method for planning the
evaluation of a query expressed in first-order logic. We examine a
capture rule that is substantiated by a simple top-down implemen-
tation of restricted Horn clause logic. A necessary and sufficient
condition for the top-down algorithm to converge is shown. It is
proved that, provided there is a bound on the number of argu-
ments of predicates, the test can be performed in polynomial time;
however, if the arity of predicates is made part of the input, then
the problem of deciding whether the top-down algorithm converges
is NP-hard. We then consider relaxation of some of our constraints
on the form of the logic, showing that success of the top-down algo-
rithm can still be tested in polynomial time if the number of argu-
ments is limited and in exponential time if not.

I. PRELIMINARIES
We consider the question of capture rules and their substantiation
as outlined in [U]. The purpose is to plan the evaluation of queries
expressed in logical terms. Suppose we are given a “logic pro-
gram” in the form of first-order Horn clauses, which we shall write
in the Prolog form:

c The meaning of such a statement is that Bl and B2 and . . . and
Bk imply A. Initially, we shall make the following restrictions on

L the form of the clauses.
1. Arguments may not be constants.
2. Arguments may not involve functions; e.g., A@, y) is legal, but

A(f(z), y) is not.
3. A variable may appear only once on the left side of a rule.

Thus, A@, z) :- B(z, y), C(y, 9) is illegal because ti the

7 Work partially supported by AFOSR grant 80-0212 and an Einstein Fel-
lowship of the Israeli Academy of Arts and Sciences. The work was per-
formed at Hebrew University.

-2-

arguments of A, although C, being on the right side, is permit-
ted to have repeated arguments.
Conditions (1) and (3) will eventually be relaxed. Condition (2)

is a familiar simplification made by people investigating logic
applied to databases, such as [HN]. In Section IV we shall briefly
consider applications of our results to rules that do not obey (2).

When discussing databases with a collection of logical ruler; that
affect the interpretation of the data, it is normal to identify certain
predicate symbols as representing relations of the database; the
remaining predicates take as values the relation consisting of all
facts about that predicate that can be deduced from the database.
Database predicates are assumed not to appear on the left sides of
rules; that is, they are not defined in more primitive terms. The
use of databases with associated logic was discussed in many of the
articles in [GM], for example.

A query to such a database is a “goal,” or predicate symbol
with given arguments, which may each be either bound or free. A
queryA(zI, . . . , z,) is intended to produce a relation over those of
the zi’s that are free. Tt is formed by taking the relation for A and
performing a selection in which, if ~6 is a bound variable, then the
ith component of the relation must have value zi.I
Example 1: Let us introduce our running example: computing the
transitive closure of a graph. We take E(z, y) to be a database
relation, which we may interpret as the arcs of a directed graph.
The transitive closure of E may be defined by the two rules:

q: T(x, y) :- E(x, y)
r2: T(x, y) :-E(x, z), T(z, y)

Then the relation associated with T is easily seen to be the transi-
tive closure of E.

A possible query is T(1, w), that is, list all the nodes that can
be reached from node 1. In principle, the answer to this query is
found by computing T, selecting for the first component equal to 1,
and then projecting onto the second component. Ther,e are more
efficient ways to answer that query, and one of the purposes of this
paper is to investigate a more efficient algorithm and a test for
whether that algorithm works for a given set of rules. .

Rule /Goal Trees
One way to define the relation denoted by a query is to expand it in
a tree of rules and goals. This is the methodology followed by Pro-
log, and it has been used in a number of systems recently, such as

-3-

[MS] and [T*]. The nodes of the tree are either goat nodes,
corresponding to predicates with specific arguments, or they are
mLle nodes, corresponding to Horn clauses, also with a particular
substitution for its variables. The root node is a goal node
corresponding to the query.

The children of a rule node are goal nodes corresponding to the
terms on the right side of the rule. The children of each goal node
correspond to the rules whose heads (left sides) unify with the goal.
Whatever substitution for variables is implied by the unification
applies not only to the rule node, but to its goal children.
Example 2: Consider the goal T(1, w) from Example 1. The upper
levels of the rule/goal tree for this query are shown in Fig. 1. Con-
ventionally, we represent rule nodes by their left sides and the :-
symbol only; the complete rule can be deduced from the children
of the rule node. Since variables are local to a rule node and its
goal children, we have used arbitrary values for the free variable z
appearing in rule T2,- z and z 1 are the values chosen. Note that the
tree is infinite, since the goal T(z 1, w) is equivalent, after a substi-
tution of variables, to its ancestor goal T(z, w). l

T(1, w):-
I

T(z, w):- T(z, w):-
/ / \

E(z, w> E(z, 21) T(z 1, w>

Fig. 1, Rule/goal tree.

We may define relations for the nodes of a rule/goal tree as fol-
lows. Relations for goal nodes are over those arguments of tne
predicate symbol for that goal that are free variables, and relations
for rule nodes are over all variables appearing in the rube. To com-
pute the relation for a goal, take the relations for its rule children,
project them onto the variables of the goal, and take the union. To
compute the relation for a rule, take the natural join of the

-4-

relations for its rule children. There is a technicality that if there
is a variable appearing on the left side of the rule but noat the sight,
we must take the Cartesian product of the result with a copy of the
“domain” of the variable. If that domain is infinite, this operation
may not make sense, so we shall assume that the component for
any such variable is represented by a placeholder and that we do
not actually compute the Cartesian product. See [U] for details of
the construction of relations as we work up the tree.

Even though the tree is infinite, the above construction makes
sense. (See [CH], e.g.) The reason is that all the operations on reia-
tions that we use are monotone, meaning that if we add tuples to
one of the arguments, the effect on the result of the operaLion is
only the addition of zero or more tuples. For example, the set
difference A-B of relations is not monotone, because we could add
tuples to B and as a consequence delete tuples from the result.

We may therefore define the relation associated with the root
of an infinite rule/goal tree to be the limit of the relation we get by
cutting off the tree at the top n levels, computing the relation of
the root by assuming that nondatabase relations at the bottom
level are empty, and taking the limit as n + 00. Of course the
resulting relation could be infinite, even if the database relations
are finite.

Rule/Goal Graphs
A joke told by mathematicians goes as follows. The professor was
teaching the formula

n
c i= n(n+l)/Z

i=l

The clever student was asked to give a concrete value of n and to
tell what the formula said. The student replied “let n = no. Then
the formula says”

n0

c
i= n&z,+ l)/ 2

i=l

Well we don’t think that’s very funny either, but it does serve to
introduce an important point. It is necessary to distinguish
between free variables and “bound variables.” The latter are sym-
bols representing values that will be known as we implement the
query, but are not necessarily known at the planning stage. The
former represent attributes in the relation printed as 4a response
to the query, or in intermediate relations that are compukd to
help form the response to the query.

--a-

In planning how to respond to a query, we may use the fact that
a bound variable, like no, is fixed and finite in any situation, while
free variables can assume any of an unlimited number of values in
the same relation. As a simple example, if answering a query
requires us to answer questions of the form “what is the sum of the
first no squares,” we know we can write an iterative program that
will sum the first no squares. The loop will eventually terminate,
although we cannot predict how long it will take until we know no.
Tn contrast, the query “what is the sum of the first n squares” asks
for an infinite set of pairs (n, (n(n+ l)/ Z), and there is no algo-
rithm that can compute it.

To take advantage of this distinction between bound and free
variables, and to help with the planning of efficient strategies to
answer complex queries, [U] introduced “‘rule/goal graphs,” in
which the nodes correspond to predicates and rules, with a
specified selection of variables bound. We shall assume that the
order of variables is fixed, and that order will be the lexicographic
one by default. Then a goal like T(z, y) is represented in the
rule/goal graph by four nodes Tg, where Q = qlq2, and each qi is
either b (bound) or f (free). Thus, T*f corresponds to the case
where z is bound and y is free. Similarly, rules are represented by
nodes with superscripts to indicate which variables are bound and
which are free. Thus, ~$1’ represents r2 of Example 1 tith z
bound and y and z free.

The predecessors of a goal node correspond to all the rules
whose heads have the same predicate as the goal. Similarly, the
predecessors of a rule node are the goals that appear on the right
of the rule. In both cases, the superscripts must be correct, and
the rule to follow is that Xq has y13 as a predecessor only if JI
makes a variable bound exactly when Q makes that variable bound.
Example 3: Figure 2 shows that portion of the rule/goal graph for
the rules of Example 1 that is relevant to the node Tbf . That is, we
show only Tbf , its predecessors, their predecessors, and so on. m

Capture Rules
Also introduced in [U] is the notion of “capturing” a node of the
rule/goal graph. When we capture a node like Tbf we must have an
algorithm that, given any bound value, say x0, for the first argu-
ment of T, will produce the relation that is the set of y for which
T(x o, y) is true, i.e., the relation for T, selected for z = zo, and
projected onto the y-component. This algorithm, called the suh-
stantiation, may only make use of algorithms that produce the

-6-

Eg. 2- Rule/goal graph.

relations for certain other, already-captured nodes, given values
for any variables that the superscripts for these nodes indicate are
bound.

[U] discusses several capture rules and the requirements that
a capture rule must follow. Chief among these is the requirement
that whenever the rule applies to capture a node (or set of nodes)
of the rule/goal graph, supported by the fact that another set of
nodes is already captured, there is an algorithm that for any node
among the set just captured, takes the values of the bound vari-
ables for that node, and computes the relation for that node and
bindings, calling only on hypothetical routines that do the same for
the nodes supporting the capture. As a simple example, we may
capture any node whose predicate is a database relation, and if the
predecessors of a node in the rule/goal graph are all captured,
then we may capture that node. However, there are other, more
complex rules that work under a variety of conditions.

Capture rules help us to plan the implementation of a query,
and they are analogous to query optimization strategies in ordinary
relational database theory. They must be independent, in the
sense that the test for applicability of a rule is local; it depends
only on the set of nodes supporting the capture, and not on the
particular algorithms that substantiate the capture of the support-
ing nodes. Different capture rules will typically have substantia-
tions of different costs, and it would be natural to make passes
over the rule/goal graph using capture rules of increasing cost,
until the goal node corresponding to the query is captured. By
unraveling the sequence of captures, we have a method for com-
puting the query, and that method is likely to be as efficiently
implementable as any algorithm for answering that query.

However, while it is easy to state capture rules and their sub-
stantiations’ it is much harder to answer the question: given an
algorithm for computing relations, what is the most general cap-
ture rule that it substantiates? Put another way, can we provide a

-7-

necessary and sufficient condition for a given query-
implementation algorithm to work? We shall next discuss a partic-
ular, very simple algorithm and show exactly the conditions that
will allow it to be used to capture a set of nodes.

-I-l- AN ALGORITHM FOR SUBSTANTIATING CERTAIN CAF’TURE RULES
In this section we shall first introduce the notion of a ‘*downwards
dependency” in database relations. This idea is used to define a
variant of top-down construction of the rule/goal tree. In the next
section we gve a test for whether this construction converges when
applied to a given set of rules.

Downwards Dependencies
Let R(X,, . . . , Xn) be a database relation. We shall assume that
the domain of each attribute Xi is the nonnegative integers. Our
real requirement is that there be a partial order < on each domain
with no infinite descending chains, i.e., infinite sequences

generalize to
1 use the non-

al>a2> - . - . However, our proofs are easily seen to
such partial orders, and all our counterexamples, wil
negative integers.

We shall take the dependency Xi => Xi to mean
tuple of R, the jth component is strictly less than
ponent.

that in every
the ith com-

Example 4: If E (X, Y) represents the edges of a finite acyclic
directed graph, then we may assume that if there is an arc n -+m,
then n > m,. If that is the case, then there is a dependency
X => Y. We could also assume that the nodes were numbered so
that if n-m. then n < m. J which would give us the dependency
Y => X. However, we cannot assume both at once.

For another example, in the relation
EMPS(EMP,SALARY,MGR)L

we might assume that EM.P => MGR. That would make sense if
there were no cycles in the managerial hierarchy (typical organiza-
tions seem to have cycle-free hierarchies) and the hierarchy had a
finite number of levels (even corporations with an infinite number
of employees seem to have a finite number of levels of manager).
Again, we could also choose to order the names of employees so
that the dependency MGR => EMP held, but we could not have
both. .

In addition to the three constraints on the form of rules men-
tioned in Section I, we shall add two more. In what follows, we

-8-

make the natural translation of => dependencies on the attrtiutes
of relations to the same relationship on variables. That is, if
R(X, Y, 2) is a relation’ with X => Y, and there is a term
R(u, v J w) in some rule, then we shall say u => v in that rule.
4. Innoruledowehavez =>z andy =>z forz #y.
5. If in some rule we have z => y J and y is an argument of some

nondatabase relation on the right, then x appears on the left
side of the rule, and y does not.

Example 5: The rules from Example 1 satisfy the above condjctions,
if we take the dependency in the relation E(X, Y) to be X => Y.
Rule (5) does not hold if we instead assume Y => X. l

The Algorithm
The algorithm we shall consider is a simple modification of top-
down expansion of the rule/goal tree. The change applies to the
case in which we have just expanded a rule node, and there are one
or more database relations among the goal children. Moreover’
there is at least one dependency X => Y that applies to a goal
node whose X-component is a constant 50.

We consult the relation corresponding to that node for all the
Y-values, say i yl, . . . J yk 1, that appear in tuples with X-value x0.
Suppose that the free variable corresponding to attribute Y is y.
(Note that y must be free by condition (5) on the form of rules.)
Then for each goal node that involves variable y J we create Ic chil-
dren, and in the i th child, the goal has y* in place of y. This pro-
cess of expansion is repeated for each free variable y that can be
replaced by a set of constants. Note that by condition (4)’ if y can
be expanded’ there is a unique way to do so. In cases where more
than one application of => is possible for a goal, we shall expand
the variables such as Y at once, in all possible ways, so the original
goal has children with these variables replaced by all possible com-
binations of constants.

The construction of the rule/goal tree continues, until all
leaves are either
1. database relations,
2. rule nodes with empty right sides,
3. goal nodes that have been “expanded” by the rule above, but

where the set of constants [y 1, . . . J yk 1 was actually empty, or
4. goal nodes corresponding to nodes of the rule/goal graph that

have already been captured. These tree nodes will, in the
remainder of the paper, be treated exactly as if they were

-9-

database relations, and the term “database relation” will be
construed to include them.
If and when the tree construction terminates, we work up the

tree, computing the relations for each node in the normal way.
It is important to note that this algorithm uses one specific

“trick,” which we call sideways information passing, to help con-
vergence. There are other tricks we could use; for example, if a
goal leaf is known to return an empty relation, then its parent will
also return empty, which may lead to its parent returning empty,
and so on. Also, we could use sideways information passing to
enumerate the possible values for a free variable whenever that
variable appears in a database re1ation.t These improvements on
the algorithm might or might not be made in practice; the decision
whether it is worthwhile to replace free variables by sets of con-
stants is not clearcut. Unfortunately, these other variants of the
top-down algorithm do not appear to have simple decision pro-
cedures that will tell us whether they converge for a given set of
rules. The decision procedure we propose is, of course, a sufficient
condition for the more powerful variants.

Fig. 3- Directed acyclic graph.

Example 6: Suppose we use the rules of Example 1 on the graph of
Fig. 3. We shall assume that there is a => dependency from the
first component of E to the second. In Fig. 4 we see the rule/goal
tree for the goal T(5, w), i.e., the tree of nodes accessible from 5.
We use arbitrary names of the form 2/i for free variables
corresponding to y in rule r2. When a variable is bound to a set of
constants by the sideways information rule, we show that set
equated to the variable. The goal node T(3, y2) is equivalent to the
goal T(3, y). We show a dotted line from the former to the latter,
which may be interpreted in one of two equivalent ways.

t However, limiting sideways information passing to the direction of => ar-
rows has some good intuition behind it. Since the values on the right are
less than the values on the left of the =>, we might expect the set of
values on the right corresponding to a given value on the left to be rather
small. That would typically be true if the dependency were EIsIP => MGR,
for example, but not if it were the other way around.

- lo-

1. A subtree equivalent to that dangling from T(3, y) will appear
below T(3, ~2).

2. The system will identify the equivalence of the two goals, and
the relation for T(3, ~2) will be copied from the relation for
T(3, y) when the latter is computed. This strategy is used, for
example, in [MS], but it doesn’t affect convergence of the algo-
rithm, even though it may make some trees that would be
infinite become finite. The reason is that when the tree would
otherwise be infinite, there must be a pair of identical goals
that are ancestor and descendant. For these nodes, we shall
never be able to compute the desired relation working up the
tree.t

T(5, w)
A \

T(5, w):- T(5, w):-
I / \

T(z, Y)
I

WI Y)
\

T(3, y):- T(3, y):- ’ \ T(4, y):- T(4, y):-
I / \ ‘1 \ I

E(3, y) E(3, y=11,2{) T(y, yl)‘,E(4, y) E(4,
/ I ‘.

T(2, y I):-
I / \ / / I

E(1, y 1) E(1, y I=#) T(y 1, y3) E(Z y 1) E(Z y I=#) T(y 1, y4)
/ /

none none
Fig. 4. Expansion of rule/goal tree with sideways

information passing.

t Iterative bottom-up methods of evaluating such relations may work ([RI,
[HN], [U], e.g.), but bottom-up evaluation is often a far more expensive
process than top-down expansion of the tree, and the use of these more
powerful methods will not be considered here.

-ll-

~.TESTINGWHETHERTHETOP-DOWNALGORITHMCONVERGES
In essence, given our five restrictions on the form of rules, very
limited things can happen as we trace any path down the rule/goal
tree. Tn particular, let us follow what happens to the arguments in
a goal node. Suppose A(Q, yo, z) is a goal, where z. and yo denote
specific constant values, and z is a free variable. A rule head that
unifies with this goal will bind one of its variables to zO and one to
yo. Condition (3) assures that the same variable could not be
bound to both z. and yo, or to one of these and to z.

Possibly, the right side of the rule has a term or terms with
dependencies that make some variable(s) be strictly less than zo
or y. (but not both). In that case, the sideways information
feature of the algorithm of Section II will create descendant goals
in which these variables are replaced, in all possible ways, by con-
stants.

Thus, all variables appearing in the rule are either set equal to
z. or yo, are bound to values strictly less than one of these, are
bound to z (the third argument of A), or are new free variables.
The same, therefore, applies to the goal nodes that are children of
the rule node (or grandchildren in the case that expansion of vari-
ables into sets of constants occurs). We shall see that the presence
of free variables as arguments of goals does not affect convergence
of the algorithm, so we need only trace the positions in which. bound arguments occur.

Argument Mappings
It helps to express the way bound arguments are passed down the
rule/goal tree by directed, bipartite graphs, which we shall call
argument mappings. In these graphs, the two sets of nodes will be
called the domain and range sets, and all arcs will go from the
domain to the range. The domain and range sets are each

*identified with a class, which is a predicate symbol with a super-
script indicating which arguments are bound. For example, the
class corresponding to the term A(zo, yo, z) would be Abbf .

The domain and range sets each have nodes for each bound
variable in their class. If A (zl, . . . , zk) appears on the left of a
rule and B(y,, . . . ,y,) appears on the right, then there is an
argument mapping from class A* to BP if the following conditions
are met.
1. p makes an argument yi bound if and only *if it is either equal

to an argument that Q makes bound, or xj => y$ for some vari-
able xj that Q makes bound.

~ - 12.

2. There is an arc from x6 to yi labeled Ot if and only if z$ is bound
according to q, and yj and xi are the same variable.

3. There is an arc from xi to yj labeled 1 if and only if Z~ is bound
by q and xi => yj.
According to condition (4) on the form of rules, there can be

only one arc into any node. Since argument mappings only use
nodes for bound variables, there will be exactly one arc into each
node. Also, condition (5) tells us that there are no other => rela-
tionships; each one must be from a domain node to a range node.
Example 7: Consider the rule

Ah y) :-B(x, x, z), C(y, 2)
and suppose that a dependency on C tells us y => z . Then the fol-
lowing is the argument mapping from class Abb to Bbbb:

That is, the first two arguments of B each come from the first
argument of A, while the third argument of B is related by => to
the second argument of A. m

Argument mappings can be composed in an obvious way, and
the result will be an argument mapping, although the labels on arcs
may become larger than 1. The mappings still have the property
that there is exactly one arc into each of the range nodes, and the
domain and range sets of nodes are each identified with specific
classes.

We can see a composition as representing a path in the rule
goal tree. If the classes of the domain and range sets are A* and
BP respectively then there is a path in some rule/goal tree from
a goal node labeled A, with bound arguments where q indicates, to
a goal node labeled B, with bound arguments where p indicates. If
there is an arc from x to y, labeled 0, then argument y of the
latter node is identical to argument x of the former. If the arc has
label m > 0, then the value of y is at least m less than the value of
m

t We omit 0 labels on arcs, as a default.

.

- 13-

Fixpoints of Argument Mappings
We can now begin to see how argument mappings relate tr, the
convergence of the algorithm of Section II. If arbitrarib long com-
positions of argument mappings exist, but the labels on their arcs
remain bounded, then we can start the rule/goal construction off
with bound arguments that exceed the bound on the labels. We
can load the database with tuples guaranteeing that whenever we
are forced by a => dependency to take a step downward, WE can
step downward by 1. It is then possible to show that some path in
the rule/goal tree grows forever, corresponding to the arbitrarily
long sequence of compositions of argument mappings with limited
arc labels.

‘Conversely, if the only growing sequences of compositians of
argument mappings also have growing labels on the arcs, then no
matter what value we start our bound arguments with at the root
of the rule/goal tree, we shall eventually find that some argument
must become negative as we follow any path in the tree. However,
there are no negative values in domains, which meams that at
some point along the path, we applied the sideways information
transfer rule, but there were no values in the database far the
variable on the right of the =>. In that case, the path in the
rule/goal tree terminated after some finite length.

To test whether compositions of argument mappings have
growing arc labels or not, we can ask about fixpoints of mappings.
Consider a mapping whose domain and range sets are in the same
class. Then there is an obvious correspondence between the
domain and range nodes, so we can identify corresponding pairs of
nodes and draw the mapping on a single set of nodes, with exactly
one labeled arc entering each node. We call this graph the col-
lapsed gmph for the mapping. Then this mapping is said to have a
fixpoint if there is an assignment of numerical values to the nodes
such that if there is an arc labeled m from node v to node U, then
the value of u is exactly m less than the value of ‘u .
Example 8: Consider the following argument mapping, which we
assume goes from some class to the same class.

We can compose it with itself as follows:

- 14-

The result of this composition, as a bipartite graph, is

We may identify the nodes in a column, and show the composition
as a collapsed graph:

1 2

Lemma 1: The following three conditions are equivalent far the
compositions of any finite set of argument mappings.
a) There is an infinite sequence of mappings pl, p2, . . . and a con-

stant c such that for all i, the composition
p$ 0 /#L&l 0 ’ - - o p1 is legal (the class of the domain of pj
equals the class of the range of pi-1 for all j), and in its argu-
ment mapping, no arc has label greater than c .

b) There is an argument mapping with a fixpoint.
c) There is an argument mapping whose collapsed graph has no

cycle with a positive sum of edges.
Proof:
(c) implies (b). As each node has exactly on entering arc, all col-,
lapsed graphs are collections of cycles, with trees fanning out from
some of the nodes in the cycles. Let k be the largest weight (sum
of edge labels) of any path in the graph. Since there are no posi-
tive weight cycles, Ic is finite. Assign kt to each node that is in a
cycle. Then, work down from the roots of the trees, assigning to
each node the value of its parent minus the label of the arc enter-
ing that node. For example, the nodes in the collapsed gra(ph of
Example 8 would be assigned values 3, 3, 2, 1, 0, from the left.
(b) implies (a). A fixpoint of any mapping is also a fixpoint of that
mapping composed with itself any number of times. Bti the
fixpoint has specific values, whose differences are bounded, so if

- 16

the arc labels grow as we compose the mapping with itself many
times, we cannot meet the condition of a fixpoint, that the values of
the nodes differ by the label of the arc between the nodes. Thus, if
there is a mapping with a fixpoint, there is an arbitrarily long
sequence of compositions with a bound on arc labels.

.

(b) implies (c). Suppose we have a mapping with a fixpoint, but its
collapsed graph has a positive-weight cycle, involving nodes
nl --) 7x2 +. ’ ’ +nk + nl. Then if we compose the mapping with
itself k times, the resulting mapping has the same fixpoint, but the
collapsed graph for the mapping has a positive-weight loop at each
of the nodes nl, . . . ,nk, an impossibility for a mapping that has a
fixpoint.
(a), implies (b). Suppose such an infinite sequence and constant c
exists. Consider what happens if we start with arguments
(c,c,. .., c) and apply the mappings p,, p2, . s . in turn. First,
note that some class A must occur an infinite number of times as
the range class of these compositions. As the composition of map-
pings at each step has no arc of label greater than c , no value ever
gets below 0. Thus, we can find two steps at which the range class
is A, and the values of the arguments are the same. The mqping
consisting of the composition of the p’s between these two steps
evidently has a fixpoint. 9

An Algorithm to Test the Conditions of Lemma 1
Condition (c) is easiest to test. We iteratively find the set of argu-
ment mappings that are compositions of the given set of mappings,
So. However, we shall not distinguish between arc labels greater
than 0, since we care only whether a pos
not what the exact weight of the cycle is.
tion are given in Fig. 5.

itive-weight cycle exists,
The details of the itera-

Complexity of Testing Condition (c)I
. Let there be T argument mappings and let m, be the maximum size

of a domain or range set. Then T is also an upper limit on the
number of classes. Hence the number of different mappings, with
labels above 1 replaced by 1, is no more than ~~(2771)~; the ractor
r2 represents the T choices for the domain and range classes, while
Gwm represents the fact that each of the m or fewer range
nodes has an entering arc from any of at most m domain nodes,
each arc labeled 0 or 1. Thus, the number of maplpings ever
marked “new” is no greater than this quantity. For each “new”
mapping, we look at no more than T V’S, spending Q(m) time on
each pair. Thus, a bound on the running time of the algorithm is

- 16-

s := so;
mark all members of S “new”;
while changes to S occur do begin

for all new p in S do begin
mark p “old”;
let A be the range class of p;
for all mappings v in SO with domain class A do

begin
P := v op;
let u be p with arc labels greater

i f a i

end
end

end
end

than 1 replaced by 1;
s not in S then begin
mark 0 “new”;
S := s u faj

Fig. 5. Algorithm to test Lemma 1.

.

This figure looks formidable, but it is typical for m, which
corresponds to the number of arguments of predicates in the logi-
cal rules, to be small, perhaps limited by 3 or 4. If we regard m as
a constant, the algorithm is actually polynomial in the size of the
input (the argument mappings written out). Moreover, in typical
cases we do not expect to generate anything like the full set of pos-
sible mappings, nor shall we typically generate only one new map-
ping per iteration of the loop; thus the actual time consumed will
probably be acceptable. In case m must be considered a variable,
we can still show the following.

1 Theorem 1: Deciding whether condition (c) of Lemma 1 holds is in
PSPACE.
Proof: We shall give a nondeterministic polynomial space algorithm
to decide; this can be converted to a deterministic polynomial
space algorithm by Savitch’s theorem.7 Guess a starting class A
and a mapping with domain class A to get an initial mapping and
range class for that mapping. Repeatedly guess a mapping whose
domain equals the range of the current mapping, and compose the

t See [HU] for notions of nondeterministic algorithms, Savitch’s theorem,
etc.

- l?-

current mapping with the chosen one to get a new current map-
ping. If the range class of the current mapping is A, check
whether the collapsed graph is free of positive-weight cycles, and
say “yes“ if so.

.

Throughout this process we have only to record one mapping
at any time, and no arc labels above 1 are ever needed, since they
may be replaced by 1. Thus, the required space is of the same
order as that needed to write the largest argument mapping in the
input, and is therefore linear in the input size. .

A Capture Rule for the Algorithm of Section II
We shall now describe the conditions under which we can capture
a set of nodes of the rule/goal graph using as substantiation the
algorithm of Section II. First, we need to modify the construction
of the rule/goal graph slightly to accommodate the sideways
information passing inherent in that algorithm. The change
occurs when we consider the superscript on a goal node AP that is
the predecessor of some rule node rp, where A is not a database
relation. In the modified graph, p will make a variable 3: bound
not only if Q makes z bound, but also if there is some other vari-
able y such that Q makes y bound, and there is a dependency
y => x coming from some term on the right side of T. That term
could have the same predicate A.

. Example 9: Consider the rules

q: A@, y, 2) :- B(y, z, w), c(x, w)
r2: A@, y, 2) :- B(z, x, w), c(y, w)
‘-3: B(x, Y, 2) :- A(x, 2, y), A(y, y, z)

We shall assume a dependency from the first argument of C to the
second.

.

The modified rule/goal graph, or at least the portion that is
required to capture Abbb , is shown in Fig. 6. The important point
about the modification is that Bbbb, rather than Bl*b, is a prede-
cessor of ~~~~~ and Y{bbb. The reason is that the dependency on C
tells us x => w in Q and y => w in TV. l

The capture rule allows us to capture any set S of nodes pro-
vided
1. All predecessors of S are either in S or already captured, and
2. When the nodes of S are converted to argument mappings in a

manner to be described, the set of mappings does not satisfy
the conditions of Lemma 1; that is, every composition of the
mappings from a class to the same class has a positive-weight

- 18-

Fig. 6- Modified rule/goal graph.

cycle.
For example, we may let

S = IAbbb, +‘bb, ,ibbb, Bbbb , #‘b j

in Fig. 6, and condition (1) will be satisfied since C is a database
relation, and therefore Cb’ can be captured by elementary means
LlT .

Conversion of Rules to Argument Mappings
The conversion process is as follows. Suppose Aq is a node of S and
9 is one of its predecessors (i.e., T is a rule with head A). Let S
be a nondatabase predicate appearing on the right sid.e of T, and
suppose that corresponding to this occurrence of I3 on the right is
the predecessor Bt of TP.f Then there is an argument mapping
from class Aq to Bb. For each node in the range set, say
corresponding to variable z, there is an entering arc from
a) The node of the domain set corresponding to z if z is bound

according to q; in this case the arc has label 0, or
b) The node corresponding to y of the domain set if y is bound

according to q and there is a dependency y => z due to some
other predecessor of Y?

Note that the definition of the modified rule/goal graph guarantees
that all and only the variables made bound by t will satisfy (a) or
(b) .
Example 10: For the set S consisting of all the nodes in Fig. 6
except for Cbf, we get the mapping

t Recall that if By is already captured, then this occurrence of B is a “da-
tabase relation.”

.

- 19-

Abbb

Bbbb

from the path through ~~~~~ from Bbbb to Abbb, and we get the
mapping

A bbb

Bbbb

from the path through yJbbb. For paths through ygbb, we must
realize that Abbb represents both terms on the right of ~3,
A@, z, y) and A(y, y, z). For the former, we get the mapping

and for the latter we get

Validation of the Capture Rule
We can now show that the capture rule given above exactly
characterizes the conditions under which the algorithm of Section
II substantiates the capture of set of nodes S.
Theorem 2: Suppose we have a set of nodes S of a rule/goal graph
meeting condition (1) of the capture rule. Then the algorithm of
Section II attempts to construct an infinite tree when started with
some database and with some goal A(+ . . . ,xk) corresponding to
some node AfJ in S (i.e., the x6’s are bound exactly when Q says
they should be) if and only if the conditions of Lemma 1 are met.
Proof:
14: Suppose that a sequence pl, k, 0 l l and constant c as
described in condition (a) of Lemma 1 exist. Let Aa be the domain
class of pl. Then we shall show that for some database there is an
infinite sequence of nodes constructed in the rule/goal tree with
root A&, . . . , ak), where ui is either c, if Q makes argument zi
bound, or ai = zi, a free variable, if not. The database we have in

20 -

mind is any one where for each dependency X => Y all relations
with attributes X and Y have, for any pair (i, j) with C’S i >,j 20,
a tuple with X-value i and Y-value j.

We shall construct a path in the rule/goal tree that has nodes
corresponding to each of the mappings in the given sequenae. In
particular, corresponding to kn will be a goal node B(y,,, . . . ,,ym),
if the range class of c(rt is BP for some p . We shall call this node
N,. The yiJs will be as follows. Let v be the composition
&&o “- O/Al. If p says that argument i of B is free, then yi
could be any variable. If argument i is bound, then look at the arc
entering the range node for position i in V. If that arc has label d,
let yi = c -d. By our assumptions, d 5 c J so no constant beaomes
negative.

.

As a special case, let the goal node at the root be ND. Then we
can perform an induction on n to construct each of the nodes A?&
i 2 1. Suppose we have constructed the node Nn = B(y 1, . . ,ynr)’
and we want to construct the node Nn+l = C(zl, . . . , Q). Then
there must be some rule T with B on the right and a term C on the
left, such that h+l was constructed from r to reflect the transi-
tion from B on the left to this occurrence of C on the right. II’here
can be only free variables appearing once among the arguments of
the left side of T by conditions (l)-(3) regarding the form of rules.
Thus, the left side unifies with the goal at N, J and it has a child
corresponding to this occurrence of C on the right of T.

This child has some occurrences of constants that are copies
of constant arguments of H By the way P,+~ was constructed
from T, zi will be a copy of yt if and only if pn+l has an arc with
label 0 from the domain node corresponding to yi to the range
node corresponding to zj.

If Pn+l has no arcs labeled 1 we are done; the child
corresponding to C serves as Nm+l. Suppose there is some arc, say

’ to the range node for zi, that has label 1. Then there must be
some term D on the right of T that has variables yi and Zj:, and
Yi => zj. Our database relations, of which D is one, have been
constructed so that if yi has constant value e in N,, then there is
in D a tuple with e in the component for y+ and e -1 in the com-
ponent for Zj. Thus, there will be a grandchild of Nn in whisch Zj
has the value e -1. By the inductive hypothesis, in the composi-
tion of @n 0 . - . 0 pi, the arc into yi has some label d J so in
k&+1 O ’ - * o p1 the arc into Zj has label d +l. Thus, e := c -tiZ and
e - l = c -(d +l), so the inductive hypothesis about the value of zi
is proven. Note that d +l 4 c must hold by condition (a) of Lemma

- 2 1 -

1, so we can never face a situation where e -1 does not exist in thc-
database.

If there are several arcs labeled 1 in P~+~, then we can find 2.
grandchild of N, that has the proper value for each argument th.a!.
is the target of one of those arcs. This grandchild is Nn+l. WC
have now completed the induction on n and see that an infinitc-
path in the rule/goal tree exists.
Only Q? The converse also requires some attention to details, bu’;
the ideas are the same as for the first part of the proof, and we
shall only sketch them. Suppose we are given an infinite path in
the rule/goal tree. We look at the goal nodes along the path, skip-
ping those whose children are also goal nodes; that happens only-
when sideways information transfer occurs. Then we can con-
struct a sequence of argument mappings corresponding to this
sequence of goal nodes in the obvious way. Suppose c is the lar&-
est constant appearing among the arguments at the root of the
tree (if there are no constants then we may take c = 0).

Every arc of label 1 in an argument mapping corresponds to Z:
situation in which a constant at some goal node is set equal to ii
value that is strictly less than a certain constant at the previou:t
goal node. Thus, we may prove by an easy induction down the
path that no arc in the composition of the first n argument map-
pings has a label higher than c, for if it did, then in the rule/goal
tree there would be a negative constant. Thus, condition (a) o$
Lemma 1 is seen to hold. 9

Complexity of Deciding Whether the Capture Rule Applies
As discussed in [U], we can assume that we apply the capture rule
only to minimal sets S, and these can be found in time that is
linear in the number of nodes of the rule/goal graph by finding
strong components in the reverse graph.

- Let there be s rules, at most t terms on any right side, and le<:
the maximum number of arguments in a predicate be m.. The>
number of argument mappings constructed from these rules is nc
more than stZm, that is, no more than the number of r,ules, mult:-
plied by the number of terms on the right of each rule, and thc-
number of combinations of bound and free variables among tht-
arguments of the left side of the rule.

By the reasoning given prior to Theorem 1, we may test condl-
tion (c) of Lemma 1, which is equivalent to testing condition (a), ir:
time O(s3t323m(2m)m~1), or O(s3ts(16m)m+1). Suppose we let n
be the size of the input, i.e., the rules written down. Then surelv s;I

- 22 -

t , and m are all no larger than n. Hence, we may observe the ffol-
lowing.
Theorem 3: If m, the maximum number of arguments in a fpredi-
cate, is constant, then we can find all applications of the capture
rule of Section II in polynomial time, If not, the problem is in EXF-
TIME, that is, time 2 to a polynomial. =

IV, APPLICATION TO RULES WITH FUNCTIONS IN ARGUMENTS
The ideas of the previous sections can be applied in certain situa-
tions to rules in which there are functions. Without loss df gen-
erality, we shall speak of a “cons“ function used as a list fmmer;
[zly] denotes the list with head z and tail y; [] denotes the empty
list.

In [U], there is a discussion of an efficient test for a subset of
the cases in which we can capture a set of nodes using as a sub-
stantiation the straightforward top-down construction of the
rule /goal tree. This capture rule applies to collections of rulles in
which all the cons operators appear on the left sides of rules The
motivation behind the capture rule is that in some cases we could
detect that for a particular argument, say the ith, whenemr we
had agoalnodeA(z,, . . . ,q) in the rule/goal tree, with a descen-
dant A(yl,. . . ,yk)’ then yi could be proved to be a proper mblist
of q (both these arguments would be bound variables, lof course).
The test for this condition is polynomial in the size of the set cap-
tured; that is, if there are T nodes, and m, is the maximum number
of variables in the rule or in a predicate corresponding to any
node, then the algorithm is polynomial in T and m .

In [N], a similar idea is proposed, but it is more general, in that
convergence of the top-down algorithm can be proved by finding
any set of the arguments of A, say &J . . . ,& { such that in any
ancestor-descendant situation described in the previous para-
graph’ there is at least one ip for which yt, can be shown a proper
subpart of q,; j can vary for different ancestor-descendant pairs.
The algorithm proposed in [IN] for detecting such situations
involves considering all possible paths from A to A in the rule/goal
graph, as well as all possible subsets of arguments’ so it can be
exponential in both r and m.
Example 11: The following example taken from [N] shows how look-
ing for subsets of arguments that together guarantee convergence
can be an advantage. The merger of two lists to form a third can
be expressed as:

- 23-

merge (x, [I, x) :-
merge ([I, y I y) :-
merge([aIx]J [bly]J [+]) :- a (: bJ merge(zJ [bly]J ‘)
merge ([alx], [b Iy], [blz]) :- a > b, merge ([alx], y, 2)

Certainly, if the third argument is bound, then whenever merge
calls itself recursively, the third argument is a proper subpart of
its initial value. But in addition, if the first and second arguments
are both bound, then one or the other (but not both) will become
a proper subpart of its initial value, so we are able to oapture not
only merge Ub J but also merge bbf with a capture rule substan-
tiated by top-down expansion of the rule/goal tree. m

Of course, in more general sets of rules, involving the mutual
recursion of many predicates, and the shifting of arguments from
one position to another, detecting all such opportunities can be
time consuming - exponential in the size of the problem as we
mentioned. Fortunately, the methods of the previosus section
carry over to this case, and we can adapt them to provide a test
that is exponential in m but polynomial in r. Moreover, sinoe our
algorithm looks at only those argument mappings that it isf;orced
to look at, while [N] looks at all possible paths through the set of
nodes being captured regardless of whether or not they am gen-
erating different argument mappings, we expect our approach to
be far more efficient in practice.

From rules with structured arguments on the left we can catn-
struct argument mappings that are analogous to those used in
Theorem 2. Here, an arc labeled 1 from x to y corresponds to the
notion that y is a proper subpart of x, rather than being numeri-
cally less than x. An arc labeled 0 means that y is x itself. As
long as there are no structured arguments on the right, there till
be an argument mapping in the sense of Section ITT between any
rule head and any nondatabase term on the right. That is, each
argument appearing on the right side, whose value is bound, vi11
either be a copy of a bound variable on the left, or a subpart of
one of these. The test of Theorem 2 will then answer the question
of [N]: will a given set of rules lead to infinite recursion whets the
root goal has a certain set of arguments bound.

The proof of the “if” portion can be modified so that instead of
starting with constant c for each bound argument at the rebot of
the rule/goal tree, we start with a constant list that is a complete
tree of depth c , i.e., the head and tail of the list are each complete
trees of depth c -1. Moreover, Theorem 3 will apply; if them is a
constant upper bound on the number of arguments in a term,

24 -

then the test is polynomial in the size of the data.
Example 12: Strictly speaking, the rules of Example 11 violate our
constraint that the arguments on the right be without structure.
However, it is easy to see that the argument [b Iv] in the right side
of the third rule and [a Iz] in the fourth are copies of iarguments
on the left side of those rules, so we can use arcs of label 0 to
reflect the copying of arguments in each case.t Then the argu-
ment mappings corresponding to rules (3) and (4) of Example 11
are (assuming all three arguments are bound):

respectively. The class is mergebbb for each domain anad range, of
course.

It is easy to see that any composition of these two mawings
will have a positive-weight cycle, so top-down expansion is
guaranteed to converge; sideways information passing as
described in Section II is not needed, and in fact doesn’t make
sense, since we are using the structure of the list arguments to
force progress downwards, rather than using any numerical ine-
qualities. Notice also that if the third argument of merge is free
rather than bound, the two mappings are changed only by having
the rightmost column disappear. The remaining mappings still
have no composition without a positive-weight cycle, so we can
capture mergebbf , as [N] observed. Similarly, if only the third
argument is bound, we have argument mappings consisting only of

’ the rightmost column; this set has no composition without a
positive-weight cycle, so we can capture meqe ff b. .

t Incidentally, it is possible to avoid structured arguments on the right if we defineia “car”
function that extracts the first element of a list. Then we could write: cu~([u)y 1, u):-,
~Tse([44# Y, I44) :- Q s b, mm(z, I/, z), cu+, b), and mewe(z, [bly], b]z]> :-
a > b, mrga(z, y, z), cur(t, u).

- 25 -

v. AN IIvTRAcTABm REsuL’r

.

While the capture rule of Section III can be applied in polynomial
time if the maximum number of arguments in any predicate is
fixed, the same problem turns out to be intractable if we let the
number of arguments be part of the input. We begin by showing
the following intractability result, and then show how the difficulty
of deciding properties of argument mappings translates into prob-
lems about logical rules.
Lelmrna 2: It is NP-hard to determine, given a set of argument map-
pings, whether some composition of those mappings is free of
positive-weight cycles.
Proof: Our reduction is from 3SAT. Suppose we are given an
instance of 3SAT in which the variables are x1, . . . , x,, , and there
are f factors, F1, . . . , Ff. Initially, let us construct a set of argu-
ment mappings in which there are v +l classes, which we denote
A*. Al, - - - &. and each class has f +l arguments, which we
number 0, 1, . . . , f . Variable i corresponds to A,, and factor j
corresponds to argument j; A0 and argument 0 play special roles
as we shall see.

There will be one argument mapping from A0 to Al, in which all
arcs have both head and tail corresponding to the same argument,
as:

.

c
%

1 ? 1
4

. l . . -- . . . 9 1
0

All arcs but that for argument 0 have label 1.
Next, for each variable z$ there are two argument mappings,

one corresponding to si and the other to z,. Each takes class 4
to class A,+1 (to class A, if i = v). All arcs in these mappings have
label 0. In the mapping for x4, range node 0 has an arc from
domain node 0. Range node j, for j 5: 1, has:
1. An arc from domain node 0 if q is a term in Fj .
2. An arc from domain node j otherwise.
The pattern is suggested below.

For the argument mapping corresponding to z%?+, the same

26 -

construction is used, but the arc comes from domain node 0 if and
only if Z$ is in Fi.

Consider a composition of mappings that takes us once from
AOtoAIto --. to A, and back to Ao. The composition uses one of
the two possible mappings for each variable, and therefore
corresponds in a natural way to a truth assignment. lf that truth
assignment is satisfying, then every range node has an arc that
comes from domain node 0, with label 0. But if some fat tor Fj is
not satisfied, then range node j has an arc from domain node j,
and the label is 1. Thus, the existence of a composition taktig us
from Ao, once around the cycle, and back to Ao, with no positive-
weight cycle, is equivalent to the existence of a satisfying assign-
ment.

It is also easy to show that if we start the cycle at some class
other than A*, then the absence of a positive-weight cycle implies
that, had we started at A0 and made the same choices of map-
pings, we would again have gotten no positive-weight cycle.

.

However, there is a bug in this construction: we must consider
compositions that go around the cycle of classes more than once.
In particular, we could go around once, destroy the loops of weight
1 for some of the arguments, using one truth assignment, then go
around a second time and kill the rest with another truth asslgn-
ment. It would be nice if we could arrange that every time we went
more than once around the cycle of classes there was guaranteed
to be a positive-weight cycle, but that does not seem possible.
Fortunately, we can do something different; we can guarantee that
there is a positive-weight cycle whenever we go around the cyc=le
more than once and we pick a different truth assignment for one
or more variables.

To this end, for each variable z+ we introduce two more argu-
ments for all classes. In the mapping for xi, the arcs for these
arguments are

0-%\d0 1

while in the mapping for Z, they are

0A1
In all other mappings, the arcs for these two arguments are

- 27 -

I l00

If the first time around the cycle, the mapping for xi is chosen,
then the collapsed graph for the composition is

If some subsequent time around the cycle, the mapping for Z$ is
chosen, then the collapsed graph becomes

and now, whatever mappings are chosen, there will always be a
loop of positive weight at the first of these ttio arguments.

Symmetrically, if the mapping for Z~ is chosen the first time
around the cycle, and later the mapping for xi is chosen, there will
always be a positive-weight loop at the second argument. Now, we
know that if there is a composition of argument mappings with no
positive-weight cycle, it cannot involve both the mappings for Z&
and zi. Thus, if there is no loop of positive weight at the node for
any of arguments 1 through f, then the truth assignment
corresponding to the mappings actually chosen must cover all fac-
tors and is therefore a satisfying assignment. =
ExampIe 13: To give an illustration, we shall consider the boolean
expression (x1 + x~)(z~ + x3), which strictly speaking is not an
instance of 3SAT. The mapping from A0 to A, is

The two mappings from Al to AZ are

The one on the left corresponds to x1 and represents the fact that
x1 covers the first factor but not the second; the mapping on the
right is for 5, and expresses the fact that %I covers the second
term only.

The mappings from A, to A3 are

while the mappings from A3 to A0 are

Figure 7 shows the paths in the composition that represems
the truth assignment x1 = x2 = x3 = 1. Its collapsed gra(ph,

is seen to have no positive-weight cycle, because the assignment
chosen is satisfying. e

A0

4

A2

A3

A0

I %1
IiI

Fig. ‘7, Composition of argument mappings.

Theorem 4: The question of deciding whether a given set of logical
rules obeying conditions (l)-(5) permits the capture of a given set
of nodes by the capture rule of Section IIT is NP-hard.
Proof: By Lemma 2, all we must do is show that given any set of

, argument mappings, we can construct a set of rules yielding those
and only those mappings. Of course, the size of the set of rules
must be polynomial in the size of the set of argument mappings,
and in fact it will be linear.

For each class A we shall have a predicate A, and the node we
shall attempt to capture is Abb ’ * ’ b. Suppose there is am argument
mapping from class A to class B, with k domain no&es and m
range nodes. Then there will be a rule of the form

A(zl, - l V ,xb) :- B(y,, . . . ,ym), other terms
If there is an arc from domain node i to range node j, labeled 0,

- 29 -

then yi = Z+ If there is such an arc, but it is labeled 1, then yj is
a new variable, and among the “other terms” alluded to above, we
introduce a new database relation C(x*. yj), with a dependency
24 => 2/j.

When constructing argument mappings from rules, this rultl
yields only one mapping, and it is exactly the mapping from which-.
it was constructed. It is easily seen to satisfy conditions (l)-(5)
on the form of rules. a
Example 14: From the argument mapping

we construct the rule

A(q, x2, x3) :- B(xlJ &J x2)J ‘txlJ 32)

with dependency z1 => y2 enforced by C. l

VI, SOME GEN-ERAUZATIONS
In this section we shall briefly cover relaxation of our conditions
(1) and (3) on rules.

Duplicate Arguments on the Left Sides of Rules
Condition (3), that no variable appear twice among the argument:3
of any one term on the right side of a rule, is fairly straightfor-
ward to eliminate. First, let us observe where the test for conver-
gence might break down when rules can have left sides like
A(x, x):-. There is a possibility that, although an infinite sequence
of argument mappings whose compositions have no arcs of weigh:
above c exists, when we try to convert this sequence into ar:
infinite path in the rule/goal tree, we fail because A(x J z) does no:
unify with a goal A(yoJ 20). Here, yo and zo are two distinct bound
variables.

A simple solution is to replace terms with identical arguments
by terms with different predicates, in fewer variables, so that nc
term whatsoever has duplicate arguments. The merger of argL,-
ments must be propagated from the left sides of rules to the right.
sides, as discussed in the lemma that follows.
Lemma 3: Every set of rules satisfying conditions (1) and (2) is
equivalent to one in which, if predicate A appears with duplicate
arguments on the left of some rule then A does not appear on the
right of any rule.

- 30 -

Proof: For each predicate symbol A and each partitian IT af the
arguments of A J we introduce a new predicate symbol d,. A, has
one argument for each block of YT. Suppose rule T has A on the
left, and any two arguments of A that are the same variable are in
the same block of IT. Then we generate a rule T, with A, on the
left, and each term B on the right replaced by BP, where p groups
two arguments into a block of the partition only if they are the
same variable in term B, or their variables appear in arguments of
A that are in the same block of 7~

So that we can get, in the modified set of rules, the same
answer to any query that we wold get in the originall rules, we
retain the original predicate symbols, and for each one we intro-
duce rules of the form

A@,, . . - 1~~) :- A,(yl, - . - aym)
for all partitions fl. Here, each yi corresponds to the @ block of
7~, and Xj = yi if and only if j is in block i of 7~. =
Example 15: Consider the rule

r: A(x, x, y, z) :- B(c y,z, w), c(wJ w, x)
For partition 112, 34{, i.e., the partition that equates the fir& two
arguments and equates the last two arguments, we get the rule

r 12,34: A 12,34(X’ Y > :- B1,23,4txl Y, w)J ‘,23tw, x)*

We use y as a representative for the block 34, which equates y
and z.

The partition i13, 241 cannot be used with rule r; the reason is
that the left side of T equates arguments 1 and 2 of A, so these
positions cannot appear in different blocks of a partition.

As another example, suppose we were given the query
A(Q, ‘w, ao, Q- One of the starting rules

A(z, xv y, 2) :- A12,&a ys 2)
unifies with this goal, producing the goal Al~,3,4(a~, ao, bo). How-
ever, this goal will produce only a subset of the relation returned
by the starting rule

A(xJ YJ xv 2) :-Al324(xJ YJ 2), *

and its first goal, A13,2,&~J W, bo).
On the other hand, the starting rule

A(x~ x~ YJ Y) :- Al2,&J y)

-3l-

does not unify with the goal, because the last two arguments, a0
and b,, which we presume are different constants, cannot be
unified. l

Theorem 5: We can decide whether or not the algorithm of Section
II will lead to infinite loops even if terms are allowed to have dupli-
cate arguments. If the number of arguments in predicates is
bounded, then this test can be performed in polynomial time; if
not, then the decision may take exponential time.
Proof: We modify the set of rules as in Lemma 3. If the number of
arguments of predicates is bounded, then the number of rules is
multiplied by some constant factor. We already know we can use
the argument mapping test of Lemma 1 to decide whether there is
an ‘infinite loop with root A, for any partition 7~. Thus, given a
query with predicate symbol A, we have only to find which start
rules unify with the query and determine, using condition (c) of
Lemma 1, whether the corresponding A& can lead to infinite
loops. l

Constants in Rules
Constants in rules are different from bound variables in the sense
we have been using the latter term. Constants appearing in rules
never change, so their particular values may be used when decid-
ing whether a capture rule may be applied. In contrast, the bound
variables will always have a particular value when we use the sub-
stantiation algorithm for a capture rule, but in planning what
strategy to use, we may not assume we know the value of a bound
variable. In fact, the algorithm used to substantiate the capture
rule may involve the same calculation with a variety of different
values for the bound variable.

When we allow constants in rules, we come up against the same
problem that we face with duplicate arguments on the left: infinite
sequences of argument mappings may not translate into infinite
paths in the rule/goal tree, because unification with a particular
constant is impossible. When selecting our database to allow the
infinite path, we need not choose only tuples with pairs (i, i-l) in
situations where the second component is constrained to be less
than the first. Rather, we can arrange that all pairs (i, j)J where
j < i J appear in these relations.

However, that is not sufficient if we are faced with a situation
where we have a constant, say 1, in a rule, and in the sequence of
argument mappings there are inequalities that imply this argu-
ment must be at least 2. The following example illustrates the

Figure 8 shows the composition of the three argument mappings
implied by the first three rules. The dashed lines, labeled i J aanong
nodes on one level represent the fact that that the value of the
argument at the tail must exceed the value of the head by at least
i. We also see absolute lower limits on the value of certain nodes,
that may or may not be implied by a dashed arc. In particular, the
second argument of D is forced to be at least 2, because it is
identical to the first argument of C, which in turn was forced to be
at least 2 greater than the second argument of C. Thus, the rule
for D cannot be applied after the three rules above it are applied,
but if we
we would

A

simply constructed argument mappings as in Sect& III,
have no way of knowing that. .

B

- 32 -

problem.
Example 16: Suppose we have the following rules, wlhere some
terms have been elided, and symbol z denotes a variable that
(because of the elided terms and dependencies that VW shall not
state) is forced to be strictly less than x.

A(x, y) :- B(x, z), . . .
B(⌧, y) :- c (⌧, g), l - l

c (⌧, y) : - L?(Z☺ ⌧)☺ * - *

u(z, 1) :- -‘*

1 0
022

Fig. 8. Composition of argument mappings with
inequality constraints.

We therefore propose the following modification to the argu-
ment mapping construction of Section III. Include in the collapsed
graph:
1. Dashed arcs, with labels.
2. Lower bounds for the nodes.
The meaning of these two additional notations is as described in
Example 16.

-33-

Formally, suppose we have a collapsed graph G with set of
nodes q, . . . ,vm, with a collection of solid and dashed arcs and
lower bounds for nodes. Also, suppose that there is an argument
mapping p from iv 1, . . . ,v,J to range node set iq, . . . ,w,J Let
H be the collapsed graph for the composition of the mapping
represented by G with the mapping p. Then in H there is a dashed
arc from wi to Wj with label k if either:
1. There is some node vP .with an arc in p labeled 0 to W$ and an

arc to Wj labeled 1; in this case, k = I.
2. There are nodes vP and vq, with a dashed arc in G from vP to

vp labeled s , an arc in /-I labeled 0 from vP to q, and an arc
labeled T from vq to wj. Here, T is 0 or 1, and r(c = T +S .

Note that if p has an arc labeled 1 entering We, then wi will not be
the tail of a dashed arc in H. This observation reflects the fact
that if the argument corresponding to wi is only constrained to be
strictly less than the value of some other argument, then the
value of W$ has no lower limit (except 0, since all values are
assumed nonnegative).

The lower bound on a node wi is determined as follows.
1. If there is a lower bound T on some node vP in G, and there is

an arc in p labeled 0 from vP to wi, then T is a lower bound on
W$.

* 2. If W$ is the tail of a dashed arc labeled s in H, and T is a lower
bound on the node at the head of this arc, then r+s is a lower
bound on the value of We.

Of course, we need only record the highest of several lower bounds
on a node. It can be checked that no dashed cycles ever result
from this construction.
Ekample 1'7: The collapsed graph for the composition of the first
two mappings in Fig. 8 is:

and the collapsed graph for the composition of ali three is:

- 34-

We may also attach to the domain nodes of the argument map-
pings themselves an indication if that node represents a constant.
Thus, in Example 16, the second domain node for the mapping
from D would have the associated constant value 1. When campos-
ing argument mappings, we do not allow the composition if a con-
stant node must be matched with a node whose lorwer bound
exceeds that constant. If we do so, then we claim that all legal
compositions of argument mappings with the additional informa-
tion described above will correspond to paths in the rule/goal
tree. ‘Thus, we shall claim without detailed proof thre folbwing
theorem.
Theorem 6: We can decide whether or not the algorithm of Section
II will lead to infinite loops even if rules are allowed to have dupli-
cate arguments and constants. If the number of arguments is
bounded and there is bound on the size of constants that appear
in rules, then this test can be performed in polynomial time; itI not,
then the decision may take exponential time.
Proof: When coimputing all compositions of a set of argument map-
pings with dashed arcs and with lower bounds, we need not distin-
guish lower bounds or arc labels that exceed the maximum con-
stant mentioned in the rules. Thus, if the maximum number of
arguments and the maximum constant are both fixed, in&epen-
dent of the instance of the problem, then the number of di&rent
argument mappings is still polynomial in the space it takes to
write down the rules.

If there are no a priori limits on these quantities, then the
number of arguments still cannot exceed the problem size n, and
the constants appearing in rules cannot be larger than cn. The
number of arc labels and limits in a given mapping is no more than
O(n2), so the number of different argument mappings is no more
than (c~)~~‘) for some d. This quantity, (c~)~‘, is still limited by 2
to a polynomial. =

l3lBLlOGRAFWY
[CH]Chandra, A. K. and D. Harel, “Horn clauses and the fixpoint

hierarchy,” hoc. ACM Symp. on Principles of Dakabase S&s-
tems, pp. 158-163, 1982.

[GM]Gallaire, H. and J. Minker, Logic and Databases, Plenum, New
York, 1978.

-35-

[HNjHenschen, L. J. and S. A. Naqvi, “On compiling queries in
recursive first-order databases,” JACM 31: 1, pp. 47-85, 1984.

[HU]Hopcroft, J. E. and J. D. Ullman, Introduction to Automata,
Languages, and Computation, Addison-Wesley, 1979.

[MS]McKay, D. and S. Shapiro, “Using active connection graphs for
reasoning with recursive rules,” Proc. 7th IJCAI, pp. 368-374,
1981.

[N] Naish, L., “Automatic generation of control for logic pro-
grams,” TR 8316, Dept. of CS, Univ. of Melbourne, 1983.

[R] Reiter, R., “Deductive question answering in relational data-
bases,” in [GM], pp. 149-177.

[T*]Taylor, S. et al., “Logic programming using parallel associative
operations,” fntl. Symp. on Logic Programming, pp. 58-68,
1984.

[U] Ullman, J. D., “Implementation of logical query languages for
databases,” unpublished manuscript, Dept. of Computer Sci-
ence, Hebrew Univ., Jerusalem, Israel, May, 1984. Available
from Dept. of CS, Stanford Univ.

-

