
,D-AIIB9 A PA 'I AIPo "ENCE I6
.P A L F EN C AI., NO - I I I

O"CL1A55If16 lE 2,D , FUt5 L, F0 ~ T 001-lK0E7hhENLm
UN

larch 1M8 Report. No. STAN-CS-82.901

- Optimal Font Caching

by

David R. Fuchs

Donald FE. Knuth

Department of Computer Science

Stanford University
Stanford, CA 94305

riROVED FOR PUBLIC RELEASE; DISTRIBUTIONI UtOUM1TE

C-,

-

If " SEP 21 1982

~ 0921 066

Optimal Font Caching

by David R. Fuchs and Donald E. Knuth

Computer Science Department
Stanford University

Stanford, California 94305

Abstract. An efficient algorithm is presented for communicating letter-shape information from

a high-speed computer with a large memory to a typesetting device that has a limited memory.
The encoding is optimum, in the sense that the total time for typesetting is minimized, using a
model that generalizes well-known "demand paging" strategies to the case where changes to the

cache are allowed before the associated information is actually needed. Extensive empirical data
shows that good results are obtained even when difficult technical material is being typeset on a

machine that can store information concerning only 100 characters. The methods of this paper
are also applicable to other hardware and software caching applications with restricted lookahead.

Keywords: Cache memory, data structures, lookahead, optimum allocation, prepaging,

typesetting, data reductiol,.

A.J

This restrh was supported in part by National Science Foundation grant IST-M97f7, by National
Science Foundation grant MCS-77-23728, by M/)e of Naval Rxwaerch contract 110014.-31-K-028$9, and by
the IBM Corportion. Reproduction In whole or In parL Is permitted Wo any purpose of the United StAtw
ivernmenaL

APP-

- I-I I I

1. Introduction.

The purpose of this paper is to study a data-reduction problem that arises when computers
are applied to phototfpesetting. A page that is printed with modern typesetting equipment may
be regarded as a gigantic matrix of O's and l's, where 0 represents a blank space and 1 represents

ink. For example, the particular machine used in our experiments has approximately 19,000,000
such bits per square inch; therefore a typical page of technical text from a book like [41, which was
printed on that machine, is essentially a matrix of more than 727 million bits. This data must be

reduced by more than three orders of magnitude in order to be transmitted from the host computer
to the typesetter at a rate of 9600 bits per second, if the page is to be finished in less than two
minutes. Typical methods of data compression are considered excellent ir they achieve a reduction
factor of only 50 per cent, so it is clear that special techniques are needed if high-resolution digital
printing is to be efficient.

The main factor accounting for this thousand-fold reduction in the number of information
bits is, of course, the fact that pages are composed from letters that have comparatively simple
shapes. For example, a typical character that measures 5 X 10 printer's points, where there are
72.27 printer's points per inch, has a digital pattern occupying about 182,000 bits on the machine
mentioned above, but this pattern can be specified satisfactorily with about 250 bytes = 2000
bits.

Even with this reduction, however, there remain about 2500 characters per page, so about

5,000,000 bits still need to be transmitted. The problem would be simple if the typesetter knew
all of the digital patterns for all of the letters, since we would merely have to transmit letter
codes. But typical technical texts involve a variety of different fonts and special symbols, and
many typesetting machines have only a limited local memory for the storage of character patterns.
Therefore the character shapes must be transmitted from the host computer to the typesetter, and
the only way we can compress this data is by using the fact that most characters are used again

and again.

For example, suppose that the typesetter has enough memory to record the shapes of 60
characters. This is just barely enough for the letters a to z and A to Z, but we also need to deal
with numerals and punctuation marks, together with italic and bold variations, and with changes

in size and style. The standard industrial practice has been to solve the size-change problem
by doing simple scaling operations, so that "8-point type" Is obtained as an 80% reduction of
"10-point type"; but typographers are very unhappy about this compromise, because the results

were much better on the old hot-lead machines when every point size was designed separately.
Fortunately it turns out that individual lines of text hardly ever need a great variety or characters
even without the compromise; therefore the typesetter can use its memory as a "cache" for 60
characters, including the 30 or so that it needs on the current line.

The typesetter might also be able to accept a few more character descriptions that will be

needed on subsequent lines, at the same time as It Is setting type on the current line; these new

characters can replace "dead" ones In the cache, and with luck the cache will be up to date at all
times. For example, if there is Ume to make live adjustments to the cache on each line, 30 new
characters can be brought In when a new font Is desired, If the changes begin six lines In advance.

By looking ahead to see which characters need to be sent In the future, the host computer can

S9.

I -

control the typesetter's cache contents in an emcient way. The purpose or this paper is to examine
suitable algorithms by which the host computer can exhibit such clairvoyant behavior, and to
study how much is gained by such techniques.

Section 2 presents a theoretical model or a general cache allocation problem, and Section 3
derives an optimal allocation strategy for that model. Data structures and algorithms by which the
optimum strategy can be computed with reasonable efficiency are described in Sections 4 and 5.
The concluding section presents empirical results that illustrate what can be achieved.

Although this paper is oriented towards a particular application to typesetting, the reader
is encouraged to speculate about how the same methods could be ailied to the design or ultra-
high-speed computers. One can imagine a pipelined arithmetic unit, playing a role analogous to
that or the typesetter, taking orders from another computer, whose function is to preload a cache
memory with numeric data, based on the knowledge of a particular algorithm's control structure.
Instead of relying on the conventional architecture of a general purpose computer, one could apply
the methods of this paper to a large class of important computation-intensive algorithms whose
control structure is predictable.

2. A cache-allocation model.
Consider an alphabet oF m possible characters that might be kept in a cache that can hold at

most a characters at once. We wish to implement a sequence of commands of the following three
types:

L(i) Lock character i in the cache, where I < i m.
U(i) Unlock character i.

G Get any character and place it into the cache.

Such a sequence is called a "job." Character i is said to be "wedged" at a certain point of a job
iF more L(i) commands than U(i) commands have occurred before that point. We assume that
the U(i) command appears only when character i is wedged, so at any point in reading through a
job, we will never have seen more L(i) commands than U() commands for any i. Furthermore we
assume that there are never more than s different characters wedged at any one time; a job that
does not meet this requirement needs a larger cache.

Initially the cache hass a empty slots. When an L(i) command occurs and character i is not
present In the cache, we say that there is a 'fault." In the case of a fault, the typesetter comes
to a halt while character i is brought Into the cache, either going Into an empty slot or replacing
some unwedged character. Similarly, at the time or a 0 command, any character not present in
the cache can be brought into a cache slot that is not occupied by a wedged character. In this
case, we do not consider that a fault has occurred since the typesetter is still busy doing a previous
line. Thus, 0 commands allow us to anticipate L commands so that future faults are avoided. It
Is also possible to "pam" a 0 command, leaving the cache unchanged, If this seems more desirable
than bringing In a new character.

Note that a character must be In the cache whenever It is wedged, because an L(i). command

guarnatee that character i Is present, and because no character can be replaced until it has become

unwedged.
U~h.

Ij

II

This model is more general than the 'page reference" model that is usually used to study

cache behavior in a virtual memory system. The page reference model is the special case in which

there are no 0 commands, and where each L(i) command is immediately followed by U(i). Our

model also assumes that we know the entire sequence of commands in a job before the job is begun.

In our application, the typesetting or a full line must operate in real time with no waiting

for faults. Thus, a line of type containing the chararters i 1i 2 ... i, might be represented by the
command sequence

L(it) L(i2) ... L(,) GC U(is) U(i2) . . .U(i),

ir there is time to bring into the cache as many as k characters for future lines while the line is being
typeset. The actual typesetting of the line starts after the command L(i,) has been completed.

This sequence of commands ensures that all characters needed on the line will be present in the
cache before typesetting takes place. The L instructions for line (i 4 I) are not begun until the
typesetter has completed line i, so that no characters needed on the line will get over-written

before the typesetter is done with them.

The model does not specify what character is replaced at the time of a fault or of a G
command. A "caching strategy" is a set of rules that govern what happens to the cache at such

times. A "strategy trace" is the output of a strategy when it is fed a job; in other words, it is a
list that records, at each G and L command, which character, it any, is to be brought into which

cache slot.

3. An optimum caching strategy.
In this section we shall see that an intuitively plausible strategy for cache allocation actually

minimizes the total number of faults, among all possible strategies for a given command sequence.
(This generalizes Belady's well known "MIN" method in the page reference model 11,2,51.)

The strategy is simply this:

1) Whenever a character is brought into the cache, place it in an empty slot, if possible;

otherwise let it replace an unwedged character i that never appears in a subsequent L(i)
command, if possible; otherwise let It replace the unwedged character i in the cache whose
next appearance in an L(i) command Is as late as possible. Since at most a characters
can be wedged at once, one of those three cases must always hold.

j 2) Whenever a G -command appears, bring In the character i not currently in the cache,

whose next appearance In an L(i) command Is as soon as possible, unless all unwedged
: characters currently in the cache will be locked by L commands that occur between the

current 0 command and this L(s) command, or unless no such character i exists.

When a character Is brought Into the cache by rule (2), Its cahe slot I selected by to rule (1).
The can In role (2) where o uch i eus ccurs when all the eacters needed by the rest of the
job am already In the caeh.

4

I .--. ,! -

,1~

To prove that this strategy 8 is optimum, we shall compare its trace on any job to any other

possible trace for the same job, and show that S's trace leads to no more fault. More precisely,
let Sj be S's trace for any job J. ir x is different from Sr, we shall construct a trace X 1

that has no more faults than Xr at any time, and X , agrees with Si longer than Xr does. In

other words, if X, agrees with Sr on the first t - 1 commands but differs from it at command

number t, then X1, will agree with Sj for at least the first i commands. Repeated application of

this argument will show that S leads to the smallest possible accumulated number of faults at all

times.

The construction we shall define makes use of a "trace completion subroutine". The input to

the trace completion subroutine consists of a job J, a trace Wr that implements J, and a partial
trace Yj that is only defined through the (p - l)th command or J. The subroutine will complete

the definition of Yr, such that it is at least as good as WI. The following conditions must hold

just after command (p - 1) for both Wr and Yj (omitting the implied subscript 'J'):

i) There are characters w and V such that the cache for W has the form {} U C and the cache
for Y has the form {y} U C, for some set of characters C, where to 0 C andy 0 C. In other

words, the caches are identical except for at most one element.

i) Trace W has had at least as many faults as trace Y.

iiI) If the sequence of future commands causes to to be locked before V, where wo and V are the

characters mentioned in condition (i), then W has already had more faults than Y.

The second condition says that Y is no worse than W. The third condition says in effect that

character to cannot be a "better" thing to have in the cache than V, unless Y can afford one more

fault without failing behind W.

If these three conditions are satisfied, we shall say that "relation (w,p) holds for (W, Y, J)" at
the current position in the job. The trace subroutine is called only when relation (w, p) holds for

(W, Y, J) at command p - 1. The subroutine proceeds by figuring out what Y should do for the

pth command in order to preserve these invariant conditions. In other words, if relation (t,p)
* holds before the pth command or J, the subroutine shall define the next step of Y so that

relation (w', yl) holds after the pth command, for some to' and V1. The subroutine can now do

the (p + I)th command, and so on, until Y has been defined for all of J. Since the Invariants still

hold, we know by (1i) that Y Is no worse than W, so the subroutine does what was claimed.

Now to define Y on the pth command. We know that relation (to,) holds. If w , so that
both traces currently have the same cache contents according to condition (I), we simply let Y be
the same as W on command p. Relation (w, V) still holds. (In this case, the net iteration of the

subroutine will hue w = V, so the (p + 1)th acton of Y will spn be defined to be the same as
that of W by thi rule, and o on, so from this time henceforth Y Is the same as W.)

i On the other hand If w 94 1, note that both w and V must currently be unwdged, since w
does not occur In Y's cache and V does not appear In W'su The tolowing subeams arlse In defining

Y on command t:

5

-Jil i II ! I . J _ l

. "

a) if the command is L(l), so that a fault occurs with trace W, suppose W replaces z by p.
Trace Y has no fault, so it can't bring a character into the cache; but after the command
L(y), it is easy to check that relation (w, z) holds, because condition (ii) implies that W has
now had more faults than Y.

b) If the command is L(to), so that a fault occurs with Y but not W, then Y replaces y in
its cache by w. This replacement is legitimate, because y is currently unwedged. Afterwards
relation (tw,w) holds, since condition (iii) implies that this case can arise only if Y could afford

at least one fault.

c) If the command is L(i) where i w, i 76 V, and i C, a fault occurs in both traces. If W
replaces to by i, then Y replaces p by i; relation (i, i) holds. Otherwise, if w replaces z by i
for some z E C, then Y also replaces z by i, and relation (to,y) still holds.

d) Ir the command is L(i), where i E C, or if it is U(i), no fault occurs ror either W or Y, and
relation (t,y) remains true.

e) If the command is C and if W replaces to by v, then Y replaces y by v, and relation (v, v)

holds.

f) Finally, if the command is 0 and if W replaces z by v for some z E C, or if W does nothing,
then Y likewise replaces z by v or does nothing. Relation (to,) still holds.

This completes the definition of Y from W, except in one degenerate case: Suppose that the
command is L(p) and that W brings character p into an empty position in its cache. This is a
variation on ease (a), where Y cannot braing in a character because no fault has occurred. We can
avoid this situation by assuming that the set C in condition (i) always contains s - 1 elements,
i.e., that there are no empty positions. For we can fill each empty position with distinct dummy
characters that do not appear in any commands; this convention makes the proof go through.

Now that the trace subroutine has been specified, we shall use it to prove the optimality of
strategy S. Suppose X7 is any trace different from Sr for some job J. The first difference occurs
at the tth command In the traces. We will create a trace X1. to be the same as S. up to and
Including the tth command, such that relation (z, V) holds for (Xi, Xp J), for some 2 and V. We
can then call the trace subroutine to complete X1 such that it is at least as good as XK,. Then
we will be aute to repeat the process with S7 and X'1 , getting X5, which Is like Sr through the
(t + I)th command and at least as good as X' (and therefore at least as good as XJ), and so on.
The Baal result Is that 8, Is the same as X(*) for some a :5 length(J), and Sr Is no worse than
Xj. Since J and X are arbitrary, this will prove that S Is optimal. (Once again, we will drop
the J when It s understood.)

So the only tak left Is to show that if -X'is defined to be the same as through command t,
then relation (s,ux) holds for (X,X',J) for some x and a. Just before command t, both X and.
X' have ad the ime number of raults and both their caches have the same contents. The Ith
command must eiher be an Lcommand thatmas a fault, or a O comumand on which S and X

. . .. aI

didn't both pass. Suppose first that command t is L(i), where i is not in either cache at time t, and
X replaces character j by i while S replaces character k by i. Relation (k,j) holds for (X, X1, J)
because rule (1) guarantees that character k is not locked before characterj.

Similarly, if the tth command is G, and if X passes while 8 replaces k by z, relation (k, z)

holds for (X, X', J) since rules (1) and (2) imply that k Is not locked before z. And if X replaces

j by w when implemfenting a G command, while S passes on that G, relation (w, j) holds, since
rule (2) ensures that w is not locked before j.

The only remaining case is that the tth command is G, and that trace X replaces j by z

while S replaces k by w. If j = k, relation (z, w) holds for (X,X',J) because of rule (2). On the
other hand, if j 3 k, we have to invoke the trace subroutine twice before obtaining a trace that4 dominates X and agrees with S on commands I through t: we first let Z be a trace that replaces k
by z, so that Z is a mixture of X and S. At this point, relation (k,j) holds for (S, Z,J), because
of rule (1). Completing Z with the trace subroutine, we now have a trace that is still different
from S in the tth command. This command, however, is a G command where Z replaces k by z,
while X' replaces k by w, and so relation (z,w) holds for (Z,X',J).

We have now shown that it is always possible to set up Xr to obey the invariant conditions,
and this finally completes the proof that S is optimum.

4. Implementing the optimum strategy.
Let m be the -total number of possible characters, let s be the size of the cache, and let n be

the number of commands in job J. Our goal is to have an algorithm that computes the optimal
trace Sr. Job J's commands are in arrays 5p and char before the algorithm begins. If the jth

command is L(i), U(i), or G, then

op [= 'L', charlf i,
or opjJ = 'U', char] =i,
or op (']- 'g', char ('] - undefined,

respectively, for 1 < <_ n. For the present we shall pretend that we have enough memory to
store all n of the commands at once.

The algorithm records the resulting trace in the cache and char arrays. If cache[j" > 0,
step j of the trace says to bring character charVj into cache slot cacheLji; and when cachelj] = 0,
then no character Is to be brought into the cache during step j. Thus, If a fault occurs at the

jth command, the algorithm should set cacei to the cache position that S allocates to char [i],
where 1 cache [j] : s. If opV1 = 'C' and if strategy8 replaces cache position k by character c,
the algorithm should set cacheV] +- k and charL j .- c. In other cas the algorithm should set
€wheW +- 0. Note that the char array is altered by this algorithm, but only in G commands.

Our algorithm works with two pointers p and q, where 1 : p :5 q : a + 1. Pointer p

reprusenti the current position where we are defining the trace; we shall say that the trace has been
deled %p to time p," thinking of a aiock thai advances when p Increases. Pointer q looks ahead

to the irt L command that locks a character not in the cache at time p; if no such commands
7

.•-. ,... ; ,. ,,

exist, we have q - r + 1. For each character i there are two values

slti] = {O, if i is not present in the cache at time p;

I the cache position of i, otherwise.

usage [,i = the number of L[ij instructions before command q minus the

number of U[ij instructions before command p.

For each cache position k < s we will have

content.k I~li, if slotfil = k;

,- O,if position k is empty.

Suppose that character i appears in ri different "lock" commands, numbered ji, < "i2

<" jij,. A preliminary pass over the char array suffices to 1ll two auxiliary arrays first fil and

neztUj], for 1 <i < m and 1 < I n, so that

first[il = ii, nezt[ji , ... , neztb,, = n + 1.

If ri = 0, we can set first [i] = n + 1, although this value won't be looked at so it really doesn't
matter.

Initially p = q = 1, uage[i] = slot[i]-- 0 for 1 < i < m, and contents[k] = 0, for
1 < k < a. The initial value of first[ij will be ji, as stated above; but as the algorithm progresses,
firs*(ij will be updated so that it is the smallest element > q of the set (Jj,jj2,.-. ,j,. For

convenience, we also set first[0] 1 n + I and usage -01 = 0, so that 0 is essentially a character that
never appears.

One more thing completes this family of data structures: There is a priority queue Q of all

cache positions k such that usage [contents [k]] = 0; these positions are ordered by first [contents [k]].

Initially Q contains all positions (1,..., s} in arbitrary order. Any suitable scheme for implement-
ing a priority queue can be used for Q; if a is small, a sorted linear list will be adequate, while if
s is large a method that requires at most O(log a) steps per operation might be most appropriate.

Note that Q contains all cache positions whose contents will be unwedged at all times between p
and q inclusive, sorted In order of the first time they will be locked after time q.

The algorithm proceeds by advancing p one step at a time, first moving q as far as it can
ahead of p:

while p _ n do
begin integer i; comment bring this character into the cache next;

(move q forward until reaching L(i) with i not present);

(procem command p, attempting to bring In i);
p4- p+1;
end.

The subalgorlthm that moves q forward will set i to the character that should be brought into the

cache net; this is the character not present at time p that is going to be needed soonest. If no
such characters exist, we will have q a + I and i - :

I"

(move q forward until reaching L(i) with i not present) -

begin i 4- 0;
while q < n and i = 0 do

if vp [q] 3 'L' then q +-- q + 1
else begin i +- char q];

if slot Ii] > 0 then
begm fiat [il -- next 1q1;

..if wage i! = 0 then delete slot li] from Q;
tuage[ij = wage [i] + 1;
q -- q + 1; i -0;

end;
end;

end;
When deleting slot [i] from Q, it may help to know that slot[i] is at the rear of Q; i is the character
that would currently be chosen last for replacement in the cache on the basis of priority since it
has the minimal value of first[contentslill

The processing of command p has two main components, depending on whether the command
is for unlocking or bringing in a character:

(process command p, attempting to bring in i)
begin cache (p) +- 0; comment this value may be changed later;
if opjp] = 'U' then (unlock charM])
else if i > 0 and (op[p].= 'C' or p = q) then (try to bring in i and advance q)
end.

The first of these is a simple update to the data structures:
(unlock char[pi) =

begin integer j; comment unlock this character;
j 4- char p];

uboe[j +-- usageb'l- 1;
if usage[j]- = 0 then insert slot(j into Q with key first(j];
and.

The other operation is the most interesting.
(try to bring in i and advance q) -

if Q Is empty then

begin if p = q then report overflow error;
end

else begin integer k; comment change this cache position;
delete k from Q with maximum Jirstfemtcs(kj;
cache p] +- k; c .- i;

.st(csentualkil .- 0; dot[sl .- k; eonteaftak] -i;

iii- nestjqj; Sl.- 1; q - q +;

and;

Note that ir p q, we have opMp] = 'L' and a fault has occurred. An overflow error is detected if
p = q and Q is empty, since this means that the pth command is trying to lock some character
not in the cache, while s other characters are already wedged.

It is straightforward to verify that the operations preserve the invariant relations we have
stated for the data structures, and therefore that an optimum strategy S is being found.

Note that the running time of this implementation is of order m + n log s. If a lot of G
commands are present, the pointer q tends to be quite far ahead of p so that comparatively few
characters in the cache will have zero usage; thus Q will not contain many entries, and t' running

time will be essentially linear. Thus, additional G commands will make the algorithm - er, even
though they cause it to find the optimum over a larger space of possible strategies.

5. Refinements to the implementation.
The algorithm of Section 4 can be modified in various ways to improve its efficiei. , and to

take account of practical constraints.
In the first place, the running time will be improved if we realize that p usually increases

several times before q moves. [f i > 0, so that op[q] = 'L' and char [q] = i needs to be brought
in, pointer q will stand still until the code (try to bring in i and advance q) is actually executed.

Therefore the main loop of the program can be reorganized with a loop on q followed by a loop

on p followed by an operation that increases both p and q.
In the second place, the fact that n is large means that it is undesirable to have a separate

array nezt~j] for i < j : n; this additional array limits the number of commands that can be

accommodated. By looking at the way this algorithm uses next, we can see that the next and
char arrays can be overlapped at the expense of a (shorter) array second[j] for 1 _ j _ m.
The new conventions are as follows, if the "lock" commands following time q for character i are
hil < ... < ji,:

If ri = 0: frst[i =n + 1, second il = undefined.
If r, = 1: first[i] = ji, secondlil - n + 1, charjI = i.
If r, = 2: firstfii = jil, second iI = it , charjji = i, charj',gj = n + I.
It ri a 3: jlrsti] = J~i, second[i] = jj, charUj'] = i, Char[,0 = Js,

..., hr~j=(,,- -- r,, char 'i,,.J =n + 1.

The operation 'first ij +- next [q', which appears twice in the algorithm or Section 4 at times when
ri > 0, Is now changed to the following code:

bes iteg ir j;
j 4-- .uOndfst; ftrstjSl j;
ifj<a tbe

begin secondlil .- eharLj; CarU4- i;
ad;

In the third place, we must face the fact that job generally have more commands than could
possibly be held In our computer's memory. Rather than having the algorithm read in an entire

to

,.

_______ U -

job, figure out the cache trace and put it into the cache array, we will instead regard the cache
allocation algorithm as a coroutine that does the caching "on line" as it reads the commands. In
other words, if we can store only no commands in memory at once, we would like to have an
algorithm that will have read no commands ahead of the one it is actually implementing at any
given time. Thus, when the coroutine is called on to provide the value of cachelz], it has elements
z through (x+ no- 1) of the char and op arrays in cyclic buffers in memory. The coroutine figures
out what to do for step x, and then it reads in command (z + no), over-writing op[l] and char[zj.

When lookahead is limited to no future commands, we might not discover a truly optimum
trace. But the only errors we make would be to remove certain items from the cache in a different
order when those items are not used at all during the next no steps. If no is large enough compared
to the cache size, it is highly likely that all such items will leave the cache anyway, even in an
optimal trace; so a limited-lookahead method will usually be no worse than the optimum. Indeed,
our proof of optimnality in Section 3 shows that a variety of strategies will usually perform no worse
than strategy S.

Implementation of the coroutine philosophy means that we need to update the first, second,
and char arrays on-line instead of assuming that they have been initialized by a preliminary pass
over all the commands. For this purpose we need another array lastill for 1 < i < m, containing
the value of jj,, if ri > 0; we leave last [i] undefined if ri = 0. Furthermore some other sentinel
value must be used instead of n + 1 in the first and second arrays, since we don't know what n
is. We shall use 0; the test 'j < n' above should therefore be changed to 'j > 0'.

The algorithm now starts by filling up the op and char arrays with the first no commands in
the job, the first, second and last arrays are set up to reflect these commands, and p and q are
set to 1. The entire data structure must be kept up to date as p and q change. For instance, as
p is incremented to 2, the algorithm should put command number no + 1 into op[lJ and char(I],
and update the first, second, and last arrays to reflect this new command. Thus, the statement
'p- p + 1 is replaced by:

(advance p) =
begin (op [p], char[p]) +-- next command in the job;
if op (p] = 'L' then

begin integer i; i - char [p];
if first fil = 0 then

begin first[iJ)- p; secondfil 4- 0;
(if slot i] E Q then change its key);

end

else begin char (p] 4- 0;
if second [i] = 0 then secondfi] 4- p

else char[lstlil] +- P;
end;

last [i +- P;
end;

if p = no then p- 1 else p- p+ 1;

end.

ITI

The statements 'q 4-- q + 1' arc changed. to:
if q=no then q4-- 1 else q4--q+l;

A few other changes to the code are required to keep q from incrementing when it gets no commands

ahead of p.
A "dead" character is one that, as far a we can tell from our limited lookahead, will never

again be used in the job. Thus, character i is dead if and only if usage(i] = 0 and firstfi = 0.
It is convenient to split Q into two separate parts: Qo, which is simply an unordered set of all
cache positions which are empty or contain dead characters, and the remaining part Q1, which
is a priority queue ordered by the nonzero key values first [contents [k]]. These key values are to
be "circularly ordered" in the sense that we regard z > V if z < p q V, since z is one lap
ahead of y in such a case. Note that the operation (if slot i) E Q then change its key) simply
removes slot [i] from Qo and enters it into Qi with key p, which will be higher than any other key
currently in Q1. The elements of Qo are all regarded as having higher keys than those or Qi.

It is a simple matter to fill in all the remaining details: to take care of shutting down the
input operations when all commands have been read and to terminate the coroutine when all of
the cache commands have been implemented.

6. Empirical tests.
The authors have used these procedures to drive an Alphatype CRS phototypesetter, producing

such technical books as 14). In this application the characters in the cache have variable size, so
the actual cache storage is allocated dynamically. When a new character is brought into the cache,
there might already be room, but on the other hand, it might be necessary to remove several
other characters before a hole appears that is large enough to accommodate an especially large
newcomer. The number of G commands at the end of a line is not fixed, because it depends on
the sizes of characters that are actually brought in.

In other words, the theoretical model studied earlier in this paper was a rather drastic
simplification of the actual problem that had arisen in practice. As usual. But (as usual) the
theoretical considerations provided valuable guidelines for a practical implementation, and by using
an algorithm that is optimal or near-optimal under the simplifying assumptions, the authors were
able to achieve quite satisfactory results even though those assumptions were violated.

Indeed, it would almost surely be unfeasible to develop an optimum strategy that takes account
of all the details of the actual application, since the problem or optimum dynamic storage allocation
is already NP-complete before we add the extra complexities of cache management. (See (31,
problem SR2.) Instead of worrying about special schemes for dynamic allocation, the authors
found that It was sufficient to replace unwedged characters simply on the basis of their priority,
without regard to their size or to the priorities or sizes of their neighbors.

Figure I shows a sample text that was subjected to a variety of experiments discussed below.
This text had been used to debug the 1WF typesetting system in 1978, and it also provided the
style pages In the design of (41; thus it. represents a wide variety of different things that happen in.
a 700-page book, compressed into about four pages. It involves the typesetting of 5211 characters,
of which 576 are distinct when size variations are taken into account.

12

.4 . .J - .

The task of driving the authors' typesetting equipment can be described in terms of the
abstract model of Section 2 as the problem of implementing a sequence of commands having the
following general form:

Lock all characters used on line k;
Tell the typesetter to start setting line k;
If time permits, issue C commands to bring in future characters;
Unlock all characters used on line (k - 1).

We do this for k = 1,2,..., except that the pattern changes in special cases. The term "line"
means a sequence of characters that are to be typeset at the same baseline; thus, a complex
mathematical formula might actually occupy many lines. There is usually time to preload future
characters into the cache, because the time to transmit the information about what to set on line k
is usually less than the time for the actual typesetting of that line.

Note that there are generally two consecutive lines wedged in the cache at once, since line (k-1)
isn't unlocked until after line k has been locked; this is due to buffering inside the typesetting
machine. In emergency situations, when the ordinary policy would overload the cache, line (k - 1)
will be unwedged sooner and the controlling process will pause to make sure that the buffer is clear;
the cache will also be repacked at such times in order to make all of the available memory appear in
consecutive locations. Also, if the typesetter is still busy doing line k when the controlling process
begins to tell it about typesetting line (k + 1), the typesetter will stop taking commands until it
is through with line k. Note that this allows characters from line (k + 1)'s C commands to be j
brought in while line k is still being typeset. Cine (k + 1)'s L commands that cause faults will not
entirely overlap, since the G commands should account for most of the time that the typesetter
spends on line k.

Special actions occur at the beginning of a page: If the klm has to move comparatively
far in order to be in the proper position to start the new page, there is extra time to preload
font information, hence the controlling process issues additional G commands. In particular, the
characters for the first lines of the first page will generally have been brought into the cache by
the time the typesetter is positioned at the top baseline.

Several dozen experiments were performed on Figure 1 In order to get some idea as to how
the algorithm performs under various conditions. The cache size was varied so that it would be
able to hold approximately 50, 75, 100, 125, or 150 characters; we shall refer to these sizes as
C50, C75, ... , C150, respectively. The speed at which font information could be transmitted was
varied so there was free time to send either an average of six new characters per line (i.e., about
six G instructions after each line), or about 4.5 new characters per line, or no such characters;
in the latter came, no G commands are given, so the algorithm must minimize the total number
of characters transmitted. We shall refer to these transmission speeds as G6, G4.5, and GO. The
algorithm was also run in four modes: (i) with full lookahead; (11) with internal memory cut back

so that only about 12 lines of data could be accommodated at once; (iti) with internal memory
cut back to only about 6 lines; and (1v) with full lookahead but with the priority queue decisions
revered so that the worst possible cache replacements were made whenever the algorithm had to

13 j
OAPNW- -W Z l

take something from the cache. These four lookahead modes will be called Loo, L12,1.~6, and LO,
respectively. Five cache sizes, three speeds, and four lookahead modes make ror sixty combinations,
and so sixty experiments were performed and the resulting numbers of faults are shown in Table A.

Table A
FAULTS THAT OCCUR WHE N TYPESETTING FIGURE 1

____GO G4.5 G6 __

LO_ , L6 L12 Loo LO L6 L12 Loo LO L6 L12 Leo__

C50 1881 1060 1040 1037 572 268 288 254 378 198* 204 197'- C50
C75 1883 960 858 * 834 389 91 76 69 146 35 31* 32 C75

CIOO 1854 954 789 752 353* 79* 30 27 110 20* 0* 3 0100
0125 1821 941 786 699 381 83 26 12 22 22 0 0 0125
C150 1819 917 779 614 1356 66 26 9 0* 22 0 0 C150

(Asterisks denote "anomalous" values that are surpringly low.)

These results are quite encouraging. Consider first the GO case, when no "freeloading" is
done: At least 576 faults must occur, since each distinct character must be brought in at least
once, and the table shows that a caching strategy with lookahead is able to make sure that only a
few characters need to be brought in twice. The number of faults under C4.5 is substantially less,
even for the unusually complicated text of Figure 1; and with GB and a moderately large cache
the faults disappear entirely.

The starred entries in Table A show interesting anomalies where a lucky combination of
circums~tances led to fewer faults than would be expected. Consider, for example, the cases with
G4.5 and L6 or LO, where the cache size C100 turned out to be slightly better than C125. The
reason was that these inherently nonoptimal strategies made better guesses in the 0100 case.
Another interesting example is the case 06 and 0150, where the supposedly pessimal strategy,
LO actually did better than LB. The reason here is that LO only pessimises the choice of cache
replacements. The other part of our algorithm, which looks ahead to find the next candidate for
G bringing in, remains optimum; and when there are enough G's, this part of the algorithm is
strong enough to make the replacement strategy immaterial. On the other hand the LB restriction
curtails the elfectiveness of the G lookahead as well as the replacement lookahead, so LB. can come
out worse. The 22 faults occurred at the beginning of Figure 1's page 3, where a conversion from
nine-point to ten-point type takes place;, LB wasn't prepared for so many changes all at once.

The most interesting anomaly arose In the case 0100 and GB, when the suboptimal strategy
L12 actually turned out to be better than the supposedly optimal Loot A careful examination of
what happened shows that this was a cane of good luck for 1,12 and bad luck for Lao. It all started
when the typesetting was going along routinely, about ten lines, from the bottom of page 1; both
Lao and L12 were doing approximately the sme thing, but with minor variations so that their
dynamic storage allocatlon patterns In the rent cache were quite different. Both strategies had
succeeded in looking rather far ahiend, and thmey were beginning to bring in the eight-point upper-
case letters needed for the caption at the top of page 2. But when the *optimnal" Lao strategy had

14

li I II i

__iI ii II - -

successfully brought in the eight-point '0' and 'L', its cache had no free blocks big enough to bring
in the 'S'. The restricted L12 strategy, on the other hand, had a fortuitous memory configuration
that allowed it to bring in not only the 'S' but also the 'I' and 'N'. This put L12 three characters
ahead of Loo, and it retained a three-character advantage all the way through page 2 and the
beginning of page 3, where comparatively rapid font changes caused the lookahead to evaporate.
Finally L12's lead manifested itself on the line before (1) on page 3; three faults occurred when
Loo had to bring in 'W' and the two pairs of quotation marks.

Note that L12 was almost never a great deal worse than Leo, in any of the cases, so it appears
that a restricted lookshead still- makes a satisfactory approximation to optimal behavior. In the
authors' application it turns out that-there is enough core memory to look about 2500 lines ahead;
experiments show, however, that L50 is essentially equivalent to Lo, thus the storage requirements
can be reduced greatly from what we originally thought would be necessary.

Figure 2 shows a detailed trace of what went on in the experiment for case (G4.5, Lo, C125).
The horizontal axis separates the 834 characters that were brought in during the time Figure I was
being typeset; all but 12 of these were brought in during C commands, while the remaining 12 were
faults. The vertical axis represents the 314 lines in Figure 1. The graph shows two zig-zag paths,
where the upper one represents each character's first use. Thus, the upper path is far above the
lower path when characters. are being preloaded many lines ahead, while the two paths touch each
other when a fault has occurred. The lower path has a somewhat erratic behavior: occasionally we
find a horizontal segment on that path, representing a line that introduces many new characters.
(The worst cases are the line following 'EXERCISES-Special set' and the line beginning '3.3.3.3.
This subsection doesn't exist', both of which required 31 new characters to be preloaded in order

to avoid faults.) The upper path, on the other hand, is more regular, because there is roughly the
same amount of time for preloading characters on each line. Variations in the upper path occur
when the characters to be brought in are especially large or small, or when the line being typeset
is short (as at the end of a paragraph), or when the baselines are far apart; but these changes are
comparatively minor.

Sometimes the cache is full, so that the lookahead procedure stops and the current C com-
mands are not used. This is indicated in Figure 2 by the symbol '--' on the upper path; the first
such incidents occur near the bottom of page 2 In Figure 1, and a more significant stoppage occurs
during the big displayed equations near the bottom of page 3.

Before developing the algorithms described above, the authors did a hand simulation on
some sample text using the assumptions (Ci00, Lo, G6), since these parameters appeared to
be appropriate for the typesetting equipment that Stanford planned to acquire. The success or
caching with these parameters, in spite of the multiplicity or fonts needed to typeset difficult
technical material, encouraged us to proceed further. Two years later, after the hardware and
software were put Into production, we found that G4.5 was more appropriate than GO, because
time-sharing Interfered with transmissions to the typesetter; however, this was compensated by
saving space in the typesetter software so that C125 was more representative of the actual cacbe
iese. In fact, the new Alphatype model 400 arrived with additional cache memory, so that our
current software corresponds to CIII and raults hardly ever occur.

Note that the strategy of Section 3 does at miimise the number oft Ums a c aracter Is

---- , . . in 15

!)

brought Into the cache; it only minimizes the number of faults. For example, consider a cache or

size 2 and the job

L(1) L(2) U(1) C U(2) C L(3) L(l) U(1) U(3).

Strategy S will bring in 3 at the first G, then bring In I at the second; the alternative of passing
on the first G and bringing in 3 on the second would be preferable ir we were trying to minimize

the number of brings.
Each time a character is brought into the cache and does not cause a fault, typesetting is not

slowed down, but the amount or information that must be sent to the typesetter does increase, so
it is desirable to try to minimize the number of times characters are brought into the cache. The
algorithm of Sections 4 and 5 can be modified to "pass" a G if there are no dead characters in the
cache (i.e., if Q0 is empty), provided that the lookahead pointer q is sufficiently far from p that it
is reasonably safe to assume we will be able to avoid faults by acting on future G's.

For example, suppose lookahead stops whenever it would require the replacement of a non-
dead character, provided that the algorithm has looked ahead so far that the next character to be
brought in is 16 or more lines away from the current line being typeset. Let us call this variant
U16. Then the algorithm may well be able to avoid rashly replacing characters that are not dead,

4 by holding back until a character becomes dead, without seriously risking future faults. Figure 2
shows 834 characters brought in when the parameters are (Loo, G4.5, C125); but if the distance
between the upper path and lower path were constrained to be no more than about 16 or so, it is
plausible to believe that we would end up bringing in characters fewer times, and we might even
be able to approach the optimum of 699 achieved in the case GO. The following data show what
happens for Loo, G4.5, and C125:

Uco -U24 U16 US UO

faults 12 24 24 26 105
brings 834 831 795 761 725

With U18, there are 39 fewer characters brought into the cache, at a cost of 12 faults.
But Figure 1 is not a typical example. Therefore further tests were made on "real" data. The

text of Section 3.5 of 14) is representative of the difl..ulties of a normal mathematical paper, so
it serves as a good Indication what we can usually expect. This second test case, which amounts
to 28 typeset pages, Involves the setting of 57912 characters, 660 of which are distinct. When

the algorithm was applied with parameters (Lao, G4.5, C125, Uo) there were only 17 faults, and
these all occurred near the very beginning. The total number of characters brought in to do the
whole job was 2745; and with the UI heuristic, this dropped to 2131, while the number or faults

remained at 17.
Several other experiments were made in the &. Le, holding all but one or the settings (lo,

G4.5, C16) fixed. When Lao was changed to LII, there still were only 17 faults; restricting further
to 1A Increased them slightly to 44. And when Lao was changed to the "pessimizing' LO, the result
was 17 againf Thus, the lookshead proems appears to be powerful enough to achieve optimality
without the refinement of the priority queue, when we consider typical data, provided that the G
spee and the cache rise are sultably large.

to

II
As expected, the 17 faults vanished at speed C0. Reducing the speed to C3 increased the

number of faults to 65; these occurred only at the beginning and at the switch to nine-point type
for the exercises. With speed G1.5 there were 248 faults, and with speed CO.1 there were 1144;
speed GO gave 1569. (This compares with

G6 G4.5 03 G1.5 GO.1 GO
0 12 112 333 613 899

in the case of Figure 1.)
Increasing the cache size to C150 did not reduce the number of faults below 17. With a setting

of size CIO0 there were 26 faults, while C75 gave 201. Size C50 was not quite large enough to hold
all of the characters wedged in one of the nine-point lines; C52 gave 1406 faults.

We can summarize these requirements by saying that typical technical text can be typeset
with negligibly few faults provided that the algorithm of this paper is used in connection with the
following resources:

i) A cache in the typesetter capable of holding about 125 character shape descriptions;

ii) Time to preload about 4 characters per line without slowing down the typesetting process;
iii) Enough memory in the host computer to look ahead about 12 lines (i.e., about 750 characters)

in the text to be typeset.

Bibliography

[I] L. A. Belady, "A study of replacement algorithms for a virtual-storage computer," IBM

Systems Journal 5 (1966), 78-101.
[21 L. A. lBelady and F. P. Palermo, "On-line measurement of paging behavior by the multivalued

MIN algorithm," IBM Journal of Research and Development 18 (1974), 2-19.

(31 Michael R. Garey and David S. Johnson, Computers and Intractability, San Francisco: W. f1.
Freeman, 1979.

(41 Donald E. Knuth, The Art of Computer Programming Vol. 2: Seminumerical Algorithms,
Reading, Mass.: Addison-Wesley, second edition, 1981.

15] R. L. Mattson, J. Ceesei, D. R. Sluts, and 1. L. Traiger, "Evaluation techniques for storage
hierarchies," IBM Systems Journal 9 (1970), 78-117

17

W_ P.
-
'

,
" -,.

RANDOM NUMSIERS i. evd. u .Y

Nil N-w-'Xj

,,I It... I.

-API.- o we.- glm.

W .8'W% l. tASel C .

&I - - - rue. ITV: G 8S .'eI I..b e..- ..I.e.~
VCue "t- . . - . 4 s..ee ftv e. S h v1.h le -- T tAttlle -'sN .. ,

b-,-~~~W~ C4 pi. 0.6t p-ed. -u.h Alp~AI 44 tin..014lo co AK

emleeteb. ill lb.b.6- sp..
I- N.Ikb. tn SAt-beg 9ie a-fla w CA G eib to~ Te SA -ud"t~tt utt

'f't'd. tr~. toe- e kw el eh.W-- *e I.. I$"~~t PWe'eule ee

hee.. wWNk S . eb.ged .. ew. Ted w. vmva P- 111 1114t...- w-mw

Neehh If V >~.ee. luehe Am- ua. 'I"eu bme

-a X. h . .thu si. Am ho- I che A .t me betbe
use. e d .f p0u ut"ft h e.W *AM# The WW ~ell ee

4g~ I'weuby Puseeg L2.411b t he. es-- .se.

Tb. ~ ~ ~ ~ ~ ~ t see b, gh. ee~*te ehu bhl-b me . T . I -w-f.

be. *rft .a the ie Ak I&e -bWq :h Mu e ..-.. '.e Ae-4-e

LN IF Pob atleeuu ~ ehheepfbeAeegbe se. e ei .h~ u.e
Me dthe lb.t.~s-egu.Iiaul ~ee eu.aw bisma I WI cA.

mo.. m Ih'be~ieeeet~ei iIt~
am w ft-.&h -BL iIlIe.N 1W At-u

be Je.S "wlglA .

tW - 5'f il

~,-eg eeAm Li. . I -. mwtea ltwa.)
It h im ~ i e ' It~ b..s m"e wneeh eh e lt t. g -*

JJ4. 100 aW1 We 1A.6. Aed

the'. a-e be
owb ~ #%MI l em. aft (A " . 4.

dr ~ ~ - -gml ow *i.WN a

OPe~ - ef b.. e. C be Ugte - ep e e .o,

CEAPTIEW THAU I

ltakb I ,, ,. "

SL

"l

b-of

vw-w

a Win&&84

Ee~b%0

Fi-r 2

