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Optimal Font Caching
by David R. Fuchs and Donald E. Knuth
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Abstract. An efficient algorithm is presented for communicating lctter-shape information from
a high-speed computer with a large memory to a typesetting device that has a limited memory.
The encoding is optimum, in the sense that the total time for typesetting is minimized, using a
model that generalizes well-known “demand paging” strategics to the case where changes to the
cache are allowed before the associated information is actually needed. Extensive empirical data
shows that good results are obtained even when difficult technical matcrial is being typeset on a
machine that can store information concerning only 100 characters. The mcthods of this paper
are also applicable to other hardware and software caching applications with restricted lbokahead.\
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1 Introduction.

The purpose of this paper is to study a data-reduction problem that arises when computers
are applied to phototqpescttmg. A page that is printed with modern typeselting equipment may
be regarded as a gigantic matrix of 0's and 1's, where 0 represents a blank space and 1 represents
ink. For cxample, the parlicular machine used in our experiments has approximately 19,000,000
such bits per square inch; therefore a typical page of technical text from a book like (4], which was
printed on that machine, ig essentially a matrix of more than 727 million bits. This data must be
reduced by more than three orders of magnitude in order to be transmitted from the host computer
to the typesctter at a rate of 9600 bits per second, if the page is to be finished in less than two
minutes. Typical methods of data compression are considered excellent if they achicve a reduction
factor of only 50 per cent, so it is clear that special techniques are necded if high-resolution dngﬂ.al
printing is to be efficient.

The main factor accounting for this thousand-fold reduction in the number of information
bits is, of course, the fact that pages are composed from letters that have comparatively simple
shapes. For cxample, a typncal character that measures 5 X 10 printer’s points, where there are
72.27 printer’s points per inch, has a dlgltal pattern occupying about 182,000 bits on the machine
mentioned above, but this pattern can be specified salisfactorily with about 250 bytes = 2000
bits. ‘

Even with this reduction, however, there remain about 2500 characters per page, so about
5,000,000 bits still nced to be transmitted. The problem would be simple il the typesetter knew
all of the digital patterns for all of the letters, since we would merely have to transmit letter
codes. But typical technical texts involve a variety of different fonts and special symbols, and
many typesetting machines have only a limited local memory for the storage of character patterns.
Therefore the character shapes must be transmitted from the host computer to the typeseiter, and
the only way we can compress Lhis data is by using the fact that most characters are used again
and again.

For cxample, suppose that the typesetter has cneugh memory to record the shapes of 60
characters. This is just barely cnough for the lelters a to z and A to Z, but we also need to deal
with numerals and punctuation marks, together with italic and bold variations, and with changes
in size and style. The standard industrial practice has been to solve the sise-change problem
by doing simple scaling operations, so that “8-point type” is obtained as an 80% reduction of
“10-point type”; but typographers are very unhappy about this compromise, because the results
were much better on the old hot-lead machines when every point sise was designed scparately.

" Fortunately it turns out that individual lines of text hardly ever need a great variety of characters
even wilhout the compromise; thorefore the typesctier can use its memory as a “cache” for 60
characters, including the 30 or so Lhal it nceds on the current line.

The typesetter might also be able to accept a few more character descriptions that will be
needed on subsequent lines, at the same time as it is setting type on the current line; these new
characters can replace “dead” ones in the cache, and with luck the cache will be up to date at all
times. For example, il there is ime to make five adjustments to the cache on cach line, 30 new
characters can be brought in when a new font is desired, if the changes begin six lines in advance.
By looking ahead to sce which characlers need to be sent in Lhe future, the host computer can
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control the typesectter’s cache contents in an cfficient way. The purpose of this paper is to examine
suitable algorithms by which the host computer can exhibit such clairvoyant behavior, and to
study how much is gained by such techniques.

Section 2 presents a theoretical model of a general cache allocation problem, and Section 3
derives an oplimal allocation strategy for that model. Data structures and algorithms by which the
optimum strategy can be computed with rcasonable cfficiency are described in Sections 4 and 5.
The concluding section presents empirical results that illustrate what can be achieved.

Although this paper is oriented towards a particular application to typesetting, the reader
is encouraged to speculate about how the same methods could be ap;lied to the design of ultra-
high-speed computers. One can imagine a pipelined arithmetic unit, playing a role analogous to
that of the typesetter, taking orders from another computer, whose function is to preload a cache
memory with numeric data, based on the knowledge of a particular algorithm’s control structure.
Instead of relying on the conventional architecture of a general purpose computer, one could apply

the methods of this paper to a large class of important computation-intensive algorithms whose
control structure is predictable.

2. A cache-allocation model.

Consider an alphabet of m possible characters that might be kept in a cache that can hold at
most s characters at once. We wish to implement a sequence of commands of the following three
types:

L(s) Lock character 1 in the cache, where 1 < i < m.
U(f) Unlock character s.

G Get any character and place it into the cache.

Such a sequence is called a “job.” Character § is said to be “wedged” at a certain point of a job
it more L(s) commands than U(s) commands have occurred before that point. We assume that
the U(s) command appears only when character ¢ is wedged, so at any point in reading through a
job, we will ncver have scen more L(s) commands than U(s) commands for any ¢. Furthermore we
assume that there are never more than s different characters wedged at any one time; a job that
does not meet this requirement needs a larger cache.

Initially the cache has & empty siots. When an L(i) command occurs and character ¢ is not
present in the cache, we say that there is a “fault.” In the case of a fault, the typesctter comes
to a halt while character 1 is brought into the cache, cither going into an empty slot or replacing
some unwedged character. Similarly, at the time of a G command, any character not present in
the cache can be brought into a cache slot that is not occupicd by a wedged character. In this
case, we do not consider that a fault has occurred since the typesetler is still busy doing a previous
line. Thus, G commands allow us to anticipate L commands so that future faults are avoided. It
is also possible to “pass” a G command, leaving the cache unchanged, if this scems more desirable
than bringing in a new character.

Note that a character must be in the cache whencver it is wedged, because an L(s). command.
guarantocs that character § is present, and because no character can be replaced until it has become
uawedged.
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This modcl is morc general than the “page reference” model that is usually used to study

cache behavior in a virtual memory system. The page refercnce model is the special case in which
there are no G commands, and where each L(¢) command is immediately followed by U(s). Our
model also assumes that we know the entire sequenece of commands in a job before the job is begun.
In our application, the typesctting of a full line must operate in real time with no waiting
for faults. Thus, a line of type containing the chararters ¢113...4, might be represented by the
command sequence
L(31) L(3s) . .. L(s,) G* U(5,) U(s3) . . . U(5,),

if there is time to bring into the cache as many as k characters for future lines while the line is being
typeset. The actual typesetting of Lhe line starts after the command L(i,) has been completed.
This scquence of commands ensures that all characters nceded on the line will be present in the
cache before typesetling takes place. The L instructions for line (¢ + 1) are not begun until the
typesetter has completed line ¢, so that no characters needed on the line will get over-written
before the typesetter is done with them.

The model does not specify what character is replaced at the time of a fault or of 2 G
command. A “caching strategy” is a sel of rules that govern what happens to the cache at such
times. A “strategy trace” is the output of a strategy when it is fed a job; in other words, it is a
list that records, at each G and L command, which character, if any, is to be brought into which
cache slot.

3. An optimum caching strategy. .

In this section we shall see that an intuitively plausible strategy for cache allocation actually
minimizes the total number of faults, among all possible strategics for a given command sequence.
(This generalizes Belady’s well known “MIN” method in the page reference model {1,2,5].)

The strategy is simply this: '

1) Whenever a character is brought into the cache, place it in an empty slot, il' possible;
otherwise let it replace an unwedged character § that ncver appears in a subsequent L(s)
command, if possible; otherwise let it replace the unwedged character ¢ in the cache whose
next appearance in an L($) commsnd is as late as possible. Since at most s characters
can be wedged at once, onc of thase three cascs must always hold.

2) Whenever a G command appears, bring in the character 4 not currently in the cache,
whose next appearance in an L{f) command is as soon as possible, unicss all unwedged
characters currently in the cache will be locked by L commands that occur between the
current G command and this L(5) command, or unless no such character § exists,

When a character is brought into the cache by rule (3), its eache slot is selected by to rule (1).
The case in rule (3) whore no such i exists occurs when all the chacters needed by the rest of the
Job are already in the cache. ‘
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To prove that this strategy S is optimum, we shall compare its tracc on any job to any other
possible trace for the same job, and show that S's trace leads to no more faults. More precisely,
let Sy be S's trace for any job J. If X  is differcnt from S;, we shall construct a trace X/,
that has no more faults than X; at any time, and X', agrees with S; longer than Xy does. In
other words, if X; agrees with S; on the first £ — 1 commands but differs from it at command
number ¢, then X', will agrec with S, for at least the first £ commands. Repeated application of
this argument will show that S leads to the smallest possible accumulated number of faults at all
times. )

The construction we shall define makes use of a “trace completion subroutine”. The input to
the trace completion subroutine consists of a job J, a trace W; that implements J, and a partial
trace Y; that is only defined through the (p— l).l.h command of J. The subroutine will complete
the definition of Y, such that it is at least as good as W;. The lollowing conditions must hold
just after command (p — 1) for both W; and Y (omitting the implied subscript ‘J’):

i) There are characters w and y such that the cache for W has the form {w}UC and the cache
for Y has the form {y} U C, for some sct of characters C, wherc w ¢ C and y € C. In other
words, the caches are identical except for at most one element.

ii) Trace W has had at least as many faults as trace Y.

jii) If the sequence of future comm@ds causes w to be locked before y, where w and y are the
characters mentioned in condition (i), then W has alrcady had more faults than Y.

The second condition says that Y is no worse than W. The third condition says in effect that
character w cannot be a “better” thing to have in the cache than y, unless Y can alford one more
fault without lalling behind W.

If these three conditions are satisfied, we shall say that “relation (w,y) holds for (W,Y,J)” at
the current position in the job. The trace subroutine is called only when relation (w,y) holds for
(W,Y,J) at command p— 1. The subroutine procceds by Aguring out what Y should do for the
pth command in order to preserve these invariant conditions. In other words, if relation (w,y)
holds before the pth command of J, the subroutine shall define the next stcp of ¥ so that
relation (w',y’) holds after the pth command, for some w’ and y’. The subroutine can now do
the (p + 1)th command, and so on, until Y has been defined for all of J. Since the invarianta stil
* hold, we know by (ii) that Y is no worse than W, so the subroutinc docs what was claimed.

Now (o define Y on the pth command. We know that relation (w,y) holds. If w =y, so that
both traces currcntly have the same cache contents according to condition (i), we simply let Y be
the same as W on command p. Relation (w,y) still holds. (In this case, the next iteration of the
subroutine will have w = y, s0 the (p + 1)th action of Y will again be defined to be the same as
that of W by this rule, and 30 on, so from this time henceforth Y is the same as W.)

On the other hand if w o€ g, note that both w and y must currently be unwedged, since w
does not occur in Y's eache and y does not appear in W's. The following subcases arisc in defining
Y on command §{:
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a) If the command is I(y), so that a fault occurs with trace W, supposc W replaces z by y.
Trace Y has no fault, so it can’t bring a character into the cache; but after the command
L{y), it is easy to check that relation (w,2) holds, because condition (ii) implies that W has
now had more faults than Y.

b) If the command is L{w), so that a fault occurs with ¥ but not W, then Y replaces y in -

its cache by w. This replacement is legitimate, because y is currently unwedged. Afterwards
relation (w, w) holds, since condition (jii) implies that this case can arise only if Y could afford
at least one fault.

c) If the cornmand is L(s) where ¢ 7£ w, 17y, and i € C, a fault occurs in both traces. If W
replaces w by 1, then Y replaces y by 1; relation (¢,1) holds. Otherwise, if w replaces z by 4
for some z € C, then Y alse rcplaces z by ¢, and relation (w,y) still holds.

d) If the command is L(s), where i € C , or if it is U(3), no lault occurs for cither W or Y, and
relation (w,y) remains true.

e) Il the command is G and if W replaces w by v, then Y replaces ¢ by v, and rclation (v, v)
holds.

f) Finally, if the command is G and if W replaces z by v for some z € C, or if W does nothing,
then Y likewise replaces z by v or does nothing. Relation (w,y) still holds.

This completes the definition of Y from W, except in one degcnerate case: Suppose that the
command is L(y) and that W brings character y into an empty position in its cache. This is a
variation on casc (a), where Y cannot braing in a character because no fault has occurred. We can
avoid this situation by assuming that the set C in condition (i) always contains s — 1 elcments,
i.e., that there are no empty positions. For we can fill each empty position with distinct dummy
characters that do not appear in any commands; Lhis convenlion makes the proofl go through.
Now that the trace subroutine has been specified, we shall use it to prove the optimality of
strategy S. Suppose X is any trace diflerent from Sy for some job J. The first difference occurs
at the tth command in the traces. We will creatc a trace X/, to be the same as S; up to and
including the tth command, such that relation (z,y) holds for (X7, X’;, J), for some z and y. We
ean then call the trace subroutine to complete X’ such that it is at least as good as X ;. Then
we will be aiie to repeat the process with Sy and X/;, getting X%, which is like S; through the

(¢ + 1)th command and al lcast as good as X (and therefore at Ieasl. as good as X ), and so on.

The final result is that S; is the same as X ) for some n < length(J/), and S; is no worse than
X;. Since J and X are arbitrary, this will prove that S is optimal. (Once again, we will drop
the J when it is understood.)

So the only task left is to show that if X’ is defined to be the same as S through command ¢,

then relation (s,2’) holds for (X, X', J) for some = and «’. Just before command ¢, both X and.

X' have had the same number of faults, and both their eaches have the same contents. The ith
command must either be an L command that cansos a fault, or a G command on which § and X
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didn’t both pass. Supposc first that command ¢ is L(z), where 4 is not in cither cache at time ¢, and
X replaces character j by ¢ while S replaces character k by . Relation (k, 5) holds for (X, X", J )
because rule (1) guarantees that character k is not locked before character j.
Similarly, if the tth command is G, and if X passes while S replaces k by 2, relation (k, 2)
4 holds for (X, X', J) since rules (1) and (2) imply that k is not locked before z. And if X replaces
J by w when implementing a G command, while S passes on that G, relation (w, 5) holds, since
rule (2) ensures that w is not locked before j.
The only remaining case is that the tth command is G, and that trace X replaces 5 by 2
while S replaces k by w. If § = k, relation (z,w) holds for (X, X", J) because of rule (2). On the
| other hand, if j £ k, we have to invoke the trace subroutine twice before obtaining a trace that
! dominates X and agrees with S on commands 1 through ¢: we first let Z be a trace that replaces &
i by z, so that Z is a mixture of X and S. At this point, relation (k, j) holds for (S, Z, J), because
of rule (1). Completing Z with the trace subroutinc, we now have a trace that is still different
i from S in the tth command. This command, however, is a G command where Z replaces k by 2,
while X’ replaces k by w, and so relation (2, w) holds for (Z,X’, J).
o We have now shown that it is always possible to set up X', to obey the invariant conditions,
£ : and this finally completes the proof that S is optimum.

el =
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4. Implementing the optimum strategy.
Let m be the-total number of possible characters, let s be the size of the cache, and let n be
the number of commands in job J. Our goal is to have an algorithm that computes the optimal

trace Sy. Job J's commands are in arrays op and char before the algorithm begins. If the jth 4
command is L(s), U(s), or G, then . ’

L2 ;

oplj] = ‘r, char[j] =,
or op(j]="U", char[j] =1,
or oplj] =G, char [j] = undefined,

respectively, for 1 < j < n. For the present we shall pretend that we have enough memory to \
store all n of the commands at once.
The algorithm records the resulting trace in the cache and char arrays. If cache[j] > 0, n
step 5 of the trace says to bring character char([j] into cache slot cache(s]; and when cachelj] = 0, !
then no character is to be brought into the cache during step 5. Thus, if a fault occurs at the
Jth command, the algorithm should set cache[j] Lo the cache position that S allocates to char[j],
where 1 < cache[j] < o. If op(j] = ‘G’ and if strategy S replaces cache position k by character ¢,
the algorithm should set cache[j] « k and char[j] ~ c. In other cascs the algorithm should set
cache|j] «— 0. Note that the char array is altered by this algorithm, but only in G commands.
Our algorithm works with two pointers p and ¢, where 1 < p < ¢ < n + 1. Pointer »
represenis the current position where we are defining the trace; we shall say that the trace has been
defined “up to time p,” thinking of a ciock thai advances when p increases. Pointer g looks ahead
to the first L command that locks a character not in the cache at time p; il no such commands
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exist, we have ¢ = n + 1. For cach character ¢ there are two values

0, if 1 is not present in the cache at time p;

slot[i] = {

usage[i] = the number of L[i] instructions before command g minus the

the cache position of s, otherwise.

number of U[s] instructions before command p.
For cach cache position k¥ < s we will have

1, if slot[s] = &;

contents[k] =
Ikl {0, if position k is empty.

Suppose that character ¢ appears in r; different “lock” commands, numbered j;3 < ji3 <
++ < Jir;+ A preliminary pass over the char array suffices to fill two auxiliary arrays firat{i] and
nezt[j], for 1 < i < m and 1 < j < n, so that

first[s] = ja1, nezt[iy] = jaa, ..., nestfji,] =n+1.

If »; = 6, we can set first[t] = n + 1, although this value won’t be looked at so it really doesn’t
matter.

Initially p = q = 1, usage[i] = slot[f] = 0 for 1 < i < m, and contents[k] = 0, for
1 < k < s. The initial value of first[s] will be j;; as stated above; but as the algorithm progresses,
firat[i] will be updated so that it is the smallest element > ¢ of the set {ji1,7i2,...,7ir}. For
convenience, we also set first[0] = n+ 1 and usage[0] = 0, so that 0 is essentially a character that
never appears.

One more thing completes this family of data structurcs: There is a priority queue @ of all
cache positions k such that usage|[contents|k]] =0; these posilions are ordered by first[contents[k]].
Initially @ contains all positions (1, ..., s} in arbitrary order. Any suitable scheme for implement-
ing a priority queue can be used for @Q; if s is small, a sorted lincar list will be adequate, while if
s is large a method that requires at most O(log s) stcps per operation might be most appropriate.
Note that Q contains all cache positions whose contents will be unwedged at all times between p
and ¢ inclusive, sorted in order of the first time they will be locked after time g.

The algorithm proceeds by advancmg p one step at a tune, first moving ¢ as far as it can
ahead of p:

while p < n'do

begin integer i; comment bring this character into the cache next;

{move q forward until reaching L{s) with i not present);

(process command p, attempting to bring in §);

pep+l;

end.
The subalgorithm that moves g forward will set s to the character that should be brought into the
cache next; this is the character not present at time p that is going to be needed soonest. If no
such characters exist, wewill have q=n+l and ¢ = 0:
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(move ¢ forward until reaching L(s) with ¢ not present) =
begin § + 0; ‘
whﬂeéﬁnmdi=0do

if oplg] # ‘L’ then g+~ g +1
else begin i «— charlq);
if slot[s] > 0 then
begin first[i] — nezt|q);
-if usage[i] = 0 then delete sloti] from Q;
usage[i] = usagefs] + 1;
g+—q+1;i+0;
end; :
end; '

end;
When deleting slot[s] from @, it may hclp to know that slot[i] is at the rear of Q; 1 is the character
that would currently be chosen last for replacement in the cache on the basis of pnonty since it
has the minimal value of first[contents[i]].
The processing of command p has two main components, dependmg on whether the command
is for unlocking or bringing in a character:
(process command p, attempting to bring in i) =
begin cacke([p] — 0; comment this value may be changed later;
if op[p] = ‘U’ then (unlock char[p])
else if i > 0 and (op(p] = ‘G’ or p = g) then (try to bring in i and advance q)
end.
The first of these is a simple update to the data structures:
(unlock ckar[p]) =
begin integer j; comment unlock this character;
J « char[p];
usage[j] — usage[j] —1;
if usage(j] = O then insert slot[j] into Q with key first(s];
end. '
The other operation is the most interesting:
(try to bring in i and advance ¢) =
if Q is empty then
begin if p = g then rcport overfllow crror;
end
else begin integer k; comment change this cache position;
delete k from @ with maximum first[contents(k]];
cache[p] — k; cher|p| ~ i;
slot{contents[k]] «— O; slot[i] — k; contents|k] « i;
firstli] — nestlq]; woagel] —1; g~ q+1;
end;
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Note that if p = g, we have opfp] = ‘L’ and a lault has occurred. An overflow error is detected if
=gqand Q is empl.);, since this means that the pth command is trying to lock some character
not in the cache, while s other characters are already wedged.

It is straightforward to verify that the operations preserve the invariant relations we have
stated for the data structures, and therefore that an optimum strategy $ is being found.

Note that the running time of this implementation is of order m + nlogs. If a lot of G
commands are present, the pointer ¢ tends to be quite far ahead of p so that comparatively few
characters in the cache will have zero usage; thus @ will not contain many entries, and t’ running
time will be essentially linear. Thus, additional G commands will make the algorithm - er, even
though they cause it to find the optimum over a larger space of possible strategies.

§. Refinements to the implementation.

The algorithm of Section 4 can be modified in various ways to improve its efficier.., and to
take account of practical constraints.

In the first place, the running time will be improved if we realize that p usually incrcases
several times before ¢ moves. If ¢+ > 0, so that op[g] = ‘L’ and char[q] = i needs to be brought
in, pointer ¢ will stand still until the code {try to bring in ¢ and advance g) is actually executed.
Therefore the main loop of the program can be reorganized with a loop on g followed by a loop
on p followed by an operation that increases both p and g.

In the second place, the fact that n is large means that it is undesirable Lo have a separate
array nezt[j] for 1 < j < n; this additional array limits thec number of commands that can be
accommodated. By looking at the way this_ algorithin uses nezt, we can see that the nezt and
char arrays can be overlapped at the expense of a (shorter) array second(j] for 1 < j < m.
The new conventions arc as follows, if the “lock” commands following time ¢ for character ¢ are
Jir < o0 < Jat ’

IPrg=0: firstfi}=n+1, second[i] = undefined.

Bri=1:  first[s] = ja, second[il] =n+1, char[ja]=1.

If r;==12: ﬁﬂt[‘] = Ji1, aecmd[i] = J, c’lﬂ'[jﬂl =1, chcr[j,-g] =n+l.

Itr; 23:  firstfs] = jiy, second[s] = jia, char[ji] =13, charljia] =Ja,
ey chor(fse 1)) = Jir,, charfii ] =n+1.

The operation *first[i] «— next[g]’, which appears twice in the algorithm of Section 4 at times when
r; > 0, is now changed to the following code:
begin integer j;
3§ + second[d]; firstli] «~ j;
if j < » then
begin second[i] — char(j]; char(s] « §;
end;
end,
In the third place, we must face the fact Lhat jobs generally have more commands than could
poesibly be held in our computer’s memory. Rather than having the algorithin read in an entire
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job, figure out the cache trace and put it into the cache array, we will instead regard the cache
allocation algorithm as a corouline that docs the caching “on line” as it reads the commands. In
other words, il we can store only np commands in memory at once, we would like to have an
algorithm that will have read ng commands ahead of the one it is aclually implementing at any
given time. Thus, when the coroutine is called on to provide the value of cache[z], it has elements
z through (z+ng—1) of the char and op arrays in cyclic bulfers in memory. The coroutine figures
out what to do for step z, and then it reads in command (z + nq), over-writing op[z] and char[z].

When lookahead is limited to ng future commands, we might not discover a truly optimum
trace. But the only errors we make would be to remove certain items from the cache in a different
order when thosc items are not used at all during the next ng steps. If ng is large enough compared
to the cache sizc, it is highly likely that all such items will leave the cache anyway, even in an
optimal trace; so a limited-lookahead method will usually be no worse than the optimum. Indced,
our proof of optimality in Scction 3 shows Lhat a variety of strategies will usually perform no worse
than strategy S.

Implementation of the coroutine philosophy means that we need to update the first, second,
and char arrays on-line instcad of assuming that they have been initialized by a preliminary pass
over all the commands. For this purpose we need another array last[i] for 1 < i < m, containing
the value of j,,,, if r; > 0; we lcave last[i] undefined if r; == 0. Furthermore some other sentinel
value must be used instead of n + 1 in the first and second arrays, since we don’t know what n
is. We shall use 0; the test ‘j < n’ above should therefore be changed to ‘1>0.

The algorithm now starts by filling up the op and char arrays with the first ng commands in
the job, the first, second and last arrays are set up to reflect these commands, aid p and ¢ are
set to 1. The entire data structure must be kept up to date as p and ¢ change. For instance, as
P is incremented to Z, the algorithm should put command number ng + 1 into op[1] and char(l],
and update the first, second, and last arrays to reflect this new command. Thus, the statement
‘p+— p+1is replaced by:

(advance p) =
begin (op[p], char[p]) — ncxt command in the job;
if op(p] = ‘L’ then
begin integer i; { — char[p];
if first[s] = 0 then
begin first[i] «— p; second[i] + 0;
(if slot[i] € @ then change its key);
end
else begin char(p] + 0; .
if secondfi] = 0 then secondfi] ~ p
else char[last[i]] — p;

end;
last[i) ~ p;
end;
ifp=ngthenp— lelsepe—p+1;
end.
11
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The statements ‘q «— ¢ + 1’ are changed. to:

ifg=ngthen g+ lelse g+—gqg+1;
A few other changes to the code are required to keep ¢ from incrementing when it gets ng commands
ahead of p. '

A “dead” character is onc that, as far a we can tell from our limited lookahead, will never
again be used in the job. Thus, character i is dead if and only if usage(s] = 0 and first[i] = 0.
It is convenient to split @ into two separate parts: @Qq, which is simply an unordered set of all
cache positions which are empty or contain dead characters, and the remaining part Q;, which
is a priority queue ordered by the nonzero key values first[contents[k]]. These key values are to
be “circularly ordered” in the scnse that we regard z > y if 2 < p < q < y, since z is one lap
ahead of y in such a case. Note that the opcration (if slot[i] € @ then change its key) simply
removes slot[i] from Qg and enters it into @, with key p, which will be higher than any other key
currently in @;. The elecments of Qg are all regarded as having higher keys than thesc of Q,.

It is a simple matter to fill in all the remaining details: to take care of shulting down the
input operations when all commands have been read and to terminate the coroutine when all of
the cache commands have been implemented.

6. Empirical tests. '

The authors have used these procedures to drive an Alphatype CRS phototypesetter, producing
such technical books as {4). In this application the characters in the cache have variable size, so
the actual cache storage is allocated dynamically. When a new character is brought into the cache,
there might already be room, but on the other hand, it might be necessary to remove several
other characters before a hole appears that is large enough to accommodate an especially large
newcomer. The number of G commands at the end of a line is not fixed, because it depends on
the sizes of characters that are actually brought in.

In other words, the theorctical model studied earlier in this paper was a rather drastic
simplificalion of the actual problem that had arisen in practice. As usual. But (as usual) the
theoretical considerations provided valuable guidelines for a practical implementation, and by using
an algorithm that is optimal or near-optimal under the simplifying assumptions, the authors were
able to achieve quite satislactory results even though those assumptions were violated.

‘Indeed, it would almost surely be unfeasible to develop an optimum strategy that takes account
of all the details of the actual application, since the problem of optimum dynamic storage allocation
is already NP-complete beforc we add the extra complexities of cache management. (See (3],

problem SR2.) Inslead of worrying about special schemes for dynamic allocation, the authors

found that it was suflicient to replace unwedged characters simply on the basis of their priority,
without regard to their sise or to the prioritics or sizes of their neighbors.

Figure 1 shows a sample text that was subjected to a variety of experiments discussed below.
This text had been used to debug the TEX typeseiling system in 1978, and it also provided the

stylc pages in the design of {4]; thus i\ represents a wide varicty of different things that.happen in.

a 700-page book, compressed into about four pages. It involves the typesclling of 5211 characters,
of which 576 arc distinct when size variations are taken into account.
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The task of driving the authors’ typesctting equipment can be described in terms of the

abstract model of Section 2 as the problem of implementing a sequence of commands having the
following general form:

Lock all characters used on line k;

Tell the typesetter to start setting line k;

If time permits, issuc G commands to bring in future characters;
Unlock all characters used on line (k — 1).

We do this for & = 1,2,..., except that the pattern changes in special cases. The term “line”
means a sequence of characters that arc to be typeset at the same baseline; thus, a complex
mathematical formula might actually occupy many lines. There is usually time to preload future
characters into the cache, because the time to transmit the information about what to set on line k
is usually less than the time for the actual typesetting of that line.

Note that there are generally two consecutive lines wedged in the cache at once, since line (k—1)
isn't unlocked until after line k& has been locked; this is due to buffering inside the typesetting
machine. In emergency situations, when the ordinary policy would overload the cache, line (k —1)
will be unwedged sooner and the controlling process will pause to make sure that the buffer is clear;
the cache will also be repacked at such times in order to make all of the available memory appear in
consecutive locations. Also, if the typesctter is still busy doing linec k& when the controlling process
begins to tell it ahout typesetting line (k + 1), the typesetter will stop taking commands until it
is through with line k. Note that this allows characters from line (k + 1)’s G commands to be
brought in while line k is still being typeset. {.ine (k£ + 1)’s L commands that cause laults will not
entirely overlap, since the G commaunds should account for most of the time that the typesetter
spends on line k. )

Special actions occur at the beginning of a page: If the §lm has to move comparatively
far in order to be in the proper position to start the new page, there is extra lime to preload
font information, hence the controlling process issues additional G commands. In particular, the
characters for the first lines of the first page will gencrally have been brought into the cache by
the time the lypesctter is positioned at the top baseline.

Several dosen experiments were performed on Figure 1 in order to get some idea as to how
the algorithm performs under various conditions. The cache size was varied so that it would be
able to hold approximalely 50, 75, 100, 125, or 150 characters; we shall refer to these sises as
C50, C75, ..., C150, respeclively. The speed at which font information could be transmitted was
varied so there was free time to send cither an average of six new characters per line (i.c., about
six G instructions after each line), or about 4.5 new characters per line, or no such characters;
in the latter case, no G commands are given, so the algorithm must minimise the total number
of characters transmitted. We shall refer to these transmission speeds as G8, G4.5, and GO. The
algorithm was also run in four modes: (1) with full lookahead; (ii) with internal memory cut back
g0 that only about 12 lines of data could be accommodated at once; (iii) with internal memory
cut back to only about 6 lines; and (iv) with lull lookahcad but with the priorily queue decisions
reversed so that the worst possible cache replacements were made whenever the algorithm had to
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take somcthing from the cache. These four lookahcad modes will be called Loo, L12, L8, and 1.0,
respectively. Five cache sizes, threc speeds, and four lookahead modes make for sixty combinations,
and so sixty experiments were performed and the resulting numbers of Taults are shown in Table A.

Table A
FAULTS THAT OCCUR WIIEN TYPESETTING FIGURE 1

GO0 G4.5 G6
Lo L6 Li2 ILoo | LO L6 Li2 Loo | LO L8 L12 Loo

C50 | 1881 1060 1040 1037 | 572 268 268 254 378 198+« 204  107.| C50

C75 11863 960 856 834|389 91 76 69 | 146 35 31« 32| C75

C100 | 1854 954 789 752|353« 79+ 30 27110 20« 0+ 3 | C100

C125 ) 1821 941 786 699 | 381 83 26 12| 22 22 0 0] C125

C150 | 1819 917 779 614 | 356 66 26 9| 0« 22 0 0| C150
(Asterisks denote “anomalous” values that are surpringly low.)

These results are quite encouraging. Consider first the GO case, when no “frecloading” is
done: At least 576 faults must occur, since each distinct character must be brought in at lcast
once, and the table shows that a caching strategy with lookahead is able to make sure that only a
few characters necd to be brought in twice. The number of faults under GA.5 is substantially less,
even for the unusually complicated text of Figure 1; and with G6 and a moderately large cache
the faults disappear entirely. : _

The starred entries in Table A show intercsting anomalies where a lucky combination of
circumstances led to fewer faults than would be expected. Consider, for example, the cases with
G4.5 and L8 or L0, where the cache size C100 turned out to be slightly better than C125. The
reason was that these inherently nonoptimal strategies made better gucsses in the C100 case.
Another interesting cxample is the case G6 and C150, where the supposedly pessimal strategy
LO actually did better than L6. The reason here is that L0 only pessimizes the choice of cache
rcplacements. The other part of our algorithm, which looks ahead to find the next candidate for
G bringing in, remains optimum; and when there are enough G’s, this part of the algorithm is
strong enough to make the replaccment strategy immaterial. On the other hand the L8 restriction
curtails the effectivencss of the G lookahead as well as the replacement lookahead, so L8 can come
out worse. The 22 faults occurred at the beginning of Figure 1's page 3, where a conversion from
" nine-point to ten-point type takes place; L6 wasn’t prepared for so many changes all at once.

The most interesling anomaly arose in the case C100 and G8, when the suboptimal strategy
L12 actually turned out to be betler than the supposedly optimal Loo! A careful examination of
what happened shows that this was a case of good luck for 1.12 and bad luck for Loo. It all started
when the typesctting was going along routinely, about ten lines from the bottom of page 1; both
Loo and L12 were doing approximately the same thing, but with minor variations so that their
dynamic storage allocation patlerns in the font cache were guite different. Both strategics had
succeeded in looking rather far shead, and they were beginning to bring in the cightl-point upper-
case letters nceded for the caption al the top of page 2. But when the “oplimal®™ Loo strategy had
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successfully brought in the cight-point ‘O’ and ‘L', its cache had no frec blocks big cnough to bring
in the ‘S’. The restricted L12 strategy, on the other hand, had a fortuitous memory configuration
that allowed it to bring in not only the ‘S’ but also the ‘I’ and ‘N’. This put L12 three characters
ahead of Loo, and it retained a three-character advantage all the way through page 2 and the
beginning of page 3, where comparatively rapid font changes caused the lookahead to evaporate.
Finally L12’s lead manilested itself on the line before (1) on page 3; three faults occurred when
Loo had to bring in ‘W’ and the two pairs of quotation marks.

Note that L12 was almost never a great deal worse than Loo, in any of the cases, so it appears
that a restricted lookahead still makes a satisfactory approximation to optimal behavior. In the
authors’ application it turns out that there is enough core memory to look about 2500 lines ahead;
experiments show, however, that L50 is essentially equivalent to Loo, thus the storage requirements
can be reduced greatly from what we originally thought would be necessary.

Figure 2 shows a detailed trace of what went on in the experiment for case (G4.5, Loo, C125).
The horizontal axis separates the 834 characters that were brought in during the time Figure 1 was
being typeset; all but 12 of these were brought in during G commands, while the remaining 12 were
faults. The vertical axis represents the 314 lines in Figure 1. The graph shows two zig-zag paths,
where the upper one represents each character’s first usc. Thus, the upper path is far above the
lower path when characters are being preloaded many lines ahead, while the two paths touch each
other when a fault has occurred. The lower path has a somewhat crratic behavior: occasionally we
find a horizontal segment on that path, representing a line that introduces many new characters.
(The worst cases are the line following ‘EXERCISES—Special set’ and the line beginning ‘3.3.3.3.
This subsection doesn’t exist’, both of which required 31 new characters to be preloaded in order
to avoid faults.) The upper path, on the other hand, is more regular, because there is roughly the
same amount of time for preloading characters on each line. Variations in the upper path occur
when the characters to be brought in arc especially large or small, or when the line being typeset
is short (as at the cnd of a paragraph), or when the baselines are far apart; but these changes are
comparatively minor.

Sometimes the cache is full, so that the lookahead procedure stops and the current G com-
mands are not used. This is indicated in Figure 2 by the symbol ‘|’ on the upper path; the first
such incidents occur near the bottom of page 2 in Figure 1, and a more significant stoppage occurs
during the big displayed equations near the bottom of page 8.

‘ Before developing the algorithms described above, the authors did a hand simulation on
some sample text using the assumptions (C100, Loo, G8), since these parameters appeared to
be appropriate for the typesetting equipment that Stanford planned to acquire. The success of
caching with these paramectiers, in spile of the multiplicity of founls nceded to typesct difficult
technical material, encouraged us to proceed further. Two years later, after the hardware and
software were put into production, we found that G4.5 was more appropriate than G6, because
time-sharing interfered with transmissions to the typosetter; however, this was compensated by
saving space in the typesetier sofiware so that C125 was more rcpresentative of the actual cache
sise. In fact, the new Alphatype model 400 arrived with additional cache memory, so that our
current software corresponds to C156 and faults hardly ever oceur.

Note that the strategy of Section 3 does not minimise the number of times a character s
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brought into the cache; it only minimizes the number of faults. For example, consider a cache of

size 2 and the job
L(1) L(2) U(1) G U(2) G L(3) L(1) U(1) U(3).

Strategy S will bring in 3 at the first G, then bring in 1 at the second; the alternative of passing
on the first G and bringing in 3 on the second would be preferable if we were trying to minimise
the number of brings.

Each time a character is brought into the cache and docs not cause a fault, typesetting is not
slowed down, but the amount of information that must be sent to the typesctter does increase, so
it is desirable to try to minimize the number of times characters are brought into the cache. The
algorithm of Sections 4 and 5 can be modified to “pass” a G if there are no dead characters in the
cache (i.e., if Qg is empty), provided that the lookahead pointer q is sufficiently far from p that it
is reasonably safle to assume we will be able to avoid faults by acting on future G’s.

For example, suppose lookahcad stops whenever it would require the replacement of a non-
dead character, provided that the algorithm has looked ahcad so far that the next character to be
brought in is 18 or more lines away from the current line being typeset. Let us call this variant
U18. Then the algorithm may well be able to avoid rashly replacing characters that are not dead,
by holding back until a character becomes dead, without seriously risking future faults. Figure 2
shows 834 characters brought in when the parameters are (Loo, G4.5, C125); but if the distance
between the upper path and lower path were constrained to be no more than about 18 or so, it is
plausible to believe that we would end up bringing in characters fewer times, and we might even
be able to approach the optimum of 699 achicved in the case GO. The following data show what
happens for Loo, G4.5, and C125: -

Uco -U24 U6 US U

faults 12 24 24 26 105
brings 834 831 795 761 725

With U18, there are 39 fewer characters brought into the cache, at a cost of 12 faults.

But Figure 1 is not a typical example. Thercfore further tests were made on “real” data. The
text of Section 3.5 of [4] is representative of the difl._ulties of a normal mathematical paper, so
it serves as a good indication what we can usually expect. This second test case, which amounts
to 28 typeset pages, involves the sctting of 57912 characters, 660 of which are distinet. When
the algorithm was applied with parameters (Loo, G4.5, C125, Uco) there were only 17 faults, and
these all occurred near the very beginning. The total number of characlers brought in to do the
whole job was 2745; and with the U18 heuristic, this dropped to 2131, while the number of laults
remained at 17. :

Scveral other experiments were made in the 3.5 file, holding all but one of the settings (I.oo,
G4.5, C128) fixed. When Loo was changed to L13, there still were only 17 faults; restricting further
to LS increased them slightly to 44. And when Loo was changed to the “pessimizing” L0, the result
was 17 again! Thus, the lookahead process appears to be powerful enough to achicve optimality
without the refinement of the priority queue, when we consider typical data, provided that the G
speed and the eache sise arce suitably large.
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As expected, the 17 faults vanished at speed G6. Reducing the spced to G3 increased the
number of faults to 65; these occurred only at the beginning and at the switch to ninc-point type
for the excrcises. With speed G1.5 there were 248 faults, and with speed GO.1 there were 1144;
speed GO gave 1569. (This compares with

Gé G45 G3 G1.5 GO1 GO
0 12 112 333 613 699

in the case of Figure 1.) )

Increasing the cache size to C150 did not reduce the number of faults below 17. With a setting
of size C100 there werce 26 faults, while C75 gave 201. Sise C50 was not quite large enough to hold
all of the characters wedged in one of the nine-point lines; C52 gave 1406 faults.

We can summarize these requirements by saying that typical technical text can be typcset
with negligibly few laults provided that the algorithm of this paper is used in conncction with the
following resources:

i) A cache in the typesetter capable of holding about 125 character shape descriptions;
ii) Time to preload about 4 characters per line without slowing down the typesetting process;
iii) Enough memory in the host computer to look ahead about 12 lines (i.e., about 750 characters)

# in the text to be typeset.
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