ADAO0911214

A

ODC FILE COPY,

Stanford

T | REY
@ER QOUNDS FOR ALGEBRAI: xCISDN TREES /

15 Nge rL- 76 (- 2z

;//V:f /}7('”7//"¢~ 315/
X ﬁe@*

e s

(/ / / : f K 9 /
/4—-—
COMPUTER SCIENCT DEPANTMENT
Stanford University




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entersd)

REPORT DOCUMENTATION PAGE BErORE ComPLENING. FoRM
1 REPCORT NUNBER 2. GOVT ACCESSION NO. | 3. REC)PIENT'S CATALOG NUNVMBER
STAN-CS-80-810 * @,409/ / (/
4 TITLE randg Subtitle) 5 YYPE OF REPORT & PERIOD COVERED
Lower Bounds for Algebraic Decision Trees techrical, July 1980

6. PERFORMING ORG. REPORT NUMBER
STAN-C3-80-810

7 AUTHORIW

J. Michael Steele and Andrew C. Yao 8. CONTRACT OA GRANT NUMBER(s)
ONR NOOO14-76-C~0475 /{NR-042-367)
NSF MCS-T77-05313-A01
9. PERFORMING ORGANIZATION NAME AND ADODRESS t0. ;‘;{éiﬁ:ﬁ&g:ihﬂjn; :?J?AJBEECJS TASK
Department of Computer Science

Stanford University

Stanford, California 94305 USA

12. REPORT DATE 13. NO. OF PAGES
11. CONTROLLING OFFICE NAME AND ADDRESS * l 1 0 12
Office Of Naval Rese&mh \iuSEyCL)Rngs'Y CLASS. (of this regort)
Department of the Navy ' SS. (ot whis rec
Arlington, Virginia 22217 Unclassified

14. MONITORING AGENCY NAME & ADDRESS (it ditf trom Cortrolling Officel
ONR Representative - Philip Surra

. 15s. DECLASSIFICATION/DOWNGRADING
Durand Aeromautic Building, Room 165 B SCHEDULE
Stanford University

16. DISTR!'BUTION STATEMENT (of this repory)

Approved for public release; distribution unlimited.

17. GISTAIBUTION STATEMENT (of the abstract entered in Blaock 20, if different from report)

18. SUPPLEMENTARY NOTES

19. XE - WOHDS 1Continue On reverss side if necessary and identify by block number)

Algedbraic Decision trees, Betti Numbers, Connected component,
Decision trees, Information theoretic lower bound, Lower bounds.

20. ABSTRACT (Continue On reverse side if necess. ; snd identity by block numbet)
A topological method is given for obtaining lower bounds for the height of
algebraic decision trees. The method is applied to the knapsack problem where
a (3(n?) bound is obtained for trees with bounded-degree polynomial tests, thus
extending the Dobkin-Lipton result for linear trees. Applications to the convex

bull problem and the distinct element problem are also indicated. Some open
L___problems are discussed.

DD."\V:1473 UNCLASSIFIED

EDITION OF 1 NOV 68 1S OBSOLETE SECURITY CLASS FICATION OF TwiS PAGE (Wnen Dsta Entered)
-_—




Lower Bounds for Algebraic Decision Trees

J. Michael Steele® and Andrew C. Yao!

\ Abstract
\
A topological method is given for obtaining lower bounds for the height of
a}e_bgic decision trees. The method is applied to the knapsack problem where
'8 O(n’)\ bound is obtained for trees with bounded-degree polynomial tests, thus
extending the Dobkin-Lipton result for linear trees. Applications to the convex
bull problem and the distinct element problem are also indicated. Some open

’

problems are discussed. .-

Keywords: Algebraic Decision trees, Betti Numbers, Connected component,
Decision trees, Informaticn theoretic lower bound, Lower bouads.

* Department of Statistics, Stanford University, Stanford, California 94305. The
research of this author was supported in part by Ofice of Naval Research
contract N00014-76-C-0475 (NR-042-267).

t Computer Science Department, Stanford University, Stanford, California 94305.
The research of this author was supported iu part by Nationt] Science Founda-
tion grant MCS-77-05313-A01.



1. Introduetion.

Decision trces are often used to model algorithms for combinatorial and
geometrical problems. While rctivation for these modsals rests primarily on their
generality and couceptual simplicity, tkey also have the benefit of offering at
present the most promising prospect for proving worst case lower bounds in many
problems.

For linear decision trees several powerfu! techniques are known for bounding
the tree height from below, e.g. Reingoid [9], Dobkin [3], Dobkin and Lipton
{4](5], Yso (13], and Yao aud Rivest [15].

Much less is known for general aigebraic decision trees. Beyond the naive in-
formation bound, Rabin’s theorem (Rabin (8]) and the convex huil problem (Yao
[14]) are apparently the only known results.

The purpose of this article is to provide a general methoa ‘or e:tablishing
lower bounds for the worst case performance of algorithms prescribed by arbitrary
algebraic decision trees. Technically this work extends the results of Dobkin and
Lipton [4][5), but the tools put to work here provide non-t.rmnl bounds for a large
class of previously untouchable problems.

Belore giving the detsiled computational model it seems worthwhile to men-
tion informally a concrete application.

Theorem I. Any algebraic decision tree of bounded order which solves the n-
dimensional knapsack problem must have height at least 3(n3).

This result extends the knapsack bounds under the linear decision tree model
due to Dobkin and Lipton (4] and the ©3(n log n) result of Dobkin {3].

The method used here rests critically on a resuit from real algebraic geometry
due to Milnor (7). Since the machinery used by Milnor may not be familiar to
workers in complexity, we have tried to give an expository of the basic facts
necessary for making this work self-contained. The bounds discussed here should
prove usefui in many related problems.

In the pext section we rigo-ously specify the computational mode] and outline
the lower bound method. The third section exposits Milnor’s inequality and gives a



heuristic argument which tries to pinpoint the necessity for the more sophisticated
tools.
The fourth section is devoted to applications and in particular to the proof
of the result on the knapsack problem (Theorexm 1) which was mentioned abovs.
The final section mentions some open problems and suggest a lins of attack
which if sufficiently developed might add significantly to the power of the present
method.




3. Computational Model the General Method.

Let W C R™ be any set. A (d-th order) decision tree T for testing if
2 € W is a ternary tree with each internal node containing s test of the form
p(21,23,...,2,) : 0, where p is a polynomial of degree at most d. Each leafof T
contains “yes® or a "no” answer. For an input 2, the procedure starts at the root
and traverses down the tree. At cach internal node a branching is made according
to the polynomial test at that node and when a leaf is reached the answer to the
question “Is 2 € W" must be given correctly.

Now let Cy¢(W) be the minimum height Ay for any d-th order decision tree
T (for the set W). Our key objective will be to obtain lower bounds on Cy(W),
and the bound given here will denend heavily on the topology of W.

By #*W we denote the number of (disjoint) connected components of W. Also
for any polynomial p(z;,23,...,2,) we set S, = {2 | p(2) # 0}, and for any
integers n,m > 0 we put f(m,n) = max{‘S, | p is s polynomial of n real
variables and of degree at most m }.

The following elementary result provides the skeleton of our method. (To
put flesh on the bones will require the bounds on A obtained in the next section.)

Theorem 3. Let W C R™ be an open set, and let T be a d-th order algebraic
decision tree for deciding if 2 € W. If W is the disjoint union of N open sets,
then the height Ay satisfies the inequality

2*rg(hrd,n) > N.

Proof. For each leaf £ of T let V, be the set of inputs 2 € R™ lerding t2 ¢
and let I, be the set of constraints resuiting from the tests. Let L be the set of
leaves ¢ such that /¢ consists only of strict inequalities and such that the answer
stored at ¢ is “yes”. One should note that each V; is an open set and V; C W.

We now write W = U, W; where each W; is a connected open 3et and
the W; are disjoint, and write V; = {2: p,,(2) < 0,p,, < 0,...,0,,(2) < 0}
where each p,, is a polynomial of degree not greater than d and where & <
hr. As a consequence of this representation, V; C {2 | q/2) % 0} = D
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where q¢(2) = ]| p,,(2) is » polynomial of degree at most Ard. Moreover, each
connected component of V; is contained in at most one component of D. Hence,
Vi has at most S(hrd, n) connected components Vi, Vyaa, ..

Since each leaf of T is correctly labeled, each Vi; has to be completely
contained in some W;. Since the number of such Vy; is st most S(Ard, n) and
there are only |L| values of £ which lead to “yes” the number of components N
of W is bounded by |L|f(hrd,n). Since 2*T > |L| the theorem follows. §



3. Counting Conueeted Components.

To use Theorem 2 one needs bouuds on S(m,n) and this is apparently no
easy matter. Foriunately, there is a bound due to Milnor [T] whici is ufficient
for some applications:

B(m,n) < (m+2)(m+ 1)1 (3.1)

The proof of Milnor's inequality rests on the several substantial results from Morse
theory and algebraic topclogy, but it is nevertheless possible to give a heurtistic
indication of an analogous result.

The only preliminary needed for the argument is Besout's Theorem which
says that any system of n algebraic cquations in n variable with degree d has
either infinitely many (complex) solutions or at most d™. For a classical approach
to the proof of Bezout’s Theorem one can consult Enriques [6], or, for the case
n = 2, there is a nice proof in Seidenberg [10].

To use Bezout’s Theorem we suppose that p is a real polynomial in n variables
with degree m, and we note that R can be chosen so that A = {p > 0} {q =
R?*—Y"_,z3 > 0} has as many bounded connected components as {p > O} has
connected components (bounded or unbounded). Since each bounded connected
component of A must contain a local maximum of pg, the number of bounded
components of A 1s majorized by the number of seros of the system Vpg = 0.
By Besout, this number is either infinite, or else bounded by (m <+ 1)™.

This finite bound is for our purposes almost as sharp as Milnor's '.oviid. T'he
real work comes in providing a rigorous perturbation argument whick ru'es out the
case when Besout gives nnly the trivial infinite bound. That is precisely the case
which causes all the trouble and presents this section from being self contained.

We should further remark that a recent exposition of R. Bott [2] provides an
intuitive introduction to Milnor [7], where inequality {3.1) is given as Theorem 3.
As it happens, the problem of determining S(m, n) is actually very deep and it is
intimately connected with Hilbert’s 16-th Problem, see Arnold [1].



4. Applications.

We now use Theorem 2 to derive lower bouads. Clearly, the function 2%5(zd, n)
is an increasing function of z. Let a(d,n,N) be the minimum z satisflying
2:6(zd,n) > N. Theorem 2 immediately yields the following formal bounds:

Any general upper bounds on S can be used to derive lower bounds on a and
bence Cq. In particular, Milnor's bound (3.1) gives the following result.

Theorem 3. For any real ¢,
CulW) 2 minfelogy N, S(N*F* — 1)}

when N = *#W.

Corollary. If #W = 0(n(*+4)") for some fixed § > O, then

C4(W) = {log(*W)).

Proof. Let £ = C4(W). Then 2*8(zd,n) > N. Hence by (3.1)
2*(zd+1)" 2 N.

Either 2* > N* or (zd+ 1)* > N'—¢, proving the theorem. B

The coroliary follows by writing #W = an(1+0(*)) and sesting ¢ = h—_{-_%
in the theorem.

Thus, Theorem 3 gives a lower bound nonlinear in n when #1/ grows at least
as fast as n{1+#)"  This is also necessary since the theorem only gives a lower
bound O{n) when *W = O(n").

In the first example given below, ¥W s 24" thus we have a good lower
bound. The other two examples have #W < n", and Theorem 3 does not give
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nonlinear bounds. However, Theorem 2 (or, (4.1)) is still true for these later
examples, and a better determination in the future may result in an improved

bound.

Example 1. The Knapsack Problem. Given real numbers z;,23, ..., Z,, decide if
there exists some subset S C {1,2,...,n} such that 2.-65 z; = 1.

In this case, W = {(2,23,...,2a) | [Is(¥cs 2i — 1) # 0}. It was shown
in Dobkin’s and Lipton (1978) ¥W > 2in®, Thus, C4(W) = (n?) for any fixed
d. This generalizes the result of Dobkin and Lipton where they showed C,(W) =
(n?).

Example 2. Element Distinctness. Given z;,23,...,2, € R, is there a pair 1, 5
with ¢ 7 j and z,; = z,? In this case,

W= {(31.32,---.%“ ]I(Z.—zj)¢0} C Rn
i#)

. It is easily shown that #W = n! since each region {(z;,2z,...,2.) | Zo(1) <
Zo(2) < ...Zo(n)} is a maximal connected component of W for each permutation
0. One therefore has Cy4(W) > a(d, n,n!).

Example 3. Extreme Points. Given n points on the plane does the convex hull
formed by them possess n vertices?

Here W cannot be expressed by an easy algebraic relation but it is still
possible to show *W > (n — 1)!. Obviously, W is an open set in (R3)*. For
anj configuration {z,2a,...,2,} in W C (R?)", we have a cyclical ordering o
of the points {z; | 1 < i < n} which is given uniquely by taking the points in
cyclical order. Clearly, any of the (n — 1)! cyclical permutations can arise in this
way so all that remains is to show that if ¢ 7 ¢' then the configurations which
give rise to these permutations are in disjoint components of W.

For each configuration in W we consider the (3) element array A given
by A(z;zjzx) where A is the signed area of the triangle formed by the 3-set
{zizjzx} C {z1,22,...,z,}. If the configuration corresponding to o is con-
tinuously deformed in any way to the configuration for o' then A, is transformed
continuously into A,r. Since o and ¢’ differ there is some triple {z;z;z,} for
which A(ziz,;z) has differing signs in A, and A,s. By the intermediate value
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theorem there is therefore some time during the continuous deformation when
A(z;zjzy) = 0. This says that z;, 2;, zx are then co-linear and at that point
there are at most n — 1 extreme points in the configuration. This proves that
any passage from o to o' must go out of W, so o and o' correspond to different
comporents.

The main consequence of the preceding bound is that
C‘(W) 2 0(‘, 2n, (’l - l)!)

and it was originally hoped that this would be sufficient to nrove a conjecture of
Yao [14] that any algebraic decision tree of order d for the extreme point problem
must have height Q(nlogn). The Milnor bound in this case is not sufficiently
sharp to obtain the desired bound. We indicate in the next section a bound which
would be sufficient.

While these last two examples are disappointing in that they do not give the
conjectured non-linear lower-bounds, one should note that since only a yes-no
answer is required there is a logical necessity of only 2 terminal leaves. So, the
information theoretic bound in these two cases gives only the absurd bound log, 2.



S. Open Problems and Directions.

Surely the most interesting and important problems pivot atuut finding
sharper bounds on A(m,n). It is conceivable that A(m,n) = 2°¥=+%) which
could imply by Theorem 2 that C4(W) = 0(}(logy N — m)). This ound would
yield a f}(nlog n) lower bound in Examples 2 and 3 for fixed 4.

Ia fact, a somewhat weaker result will suffice for this purpose. Le. S{d, w', n)
be the maximum of *# 5, for any p of the form [l;l"_" pi21,232....,%,) with each
p; of degree not greater than d. Clearly 8(d,m',n) < S(dm’,n). Tk rco~it one
really needs in Examples 2 and 3 is f(d,m',n) = 20(ém’+9)  Cap ¢aa prove
better bounds on S(d, m',n) than on S(m,n)? Here we note that it is not hard
to see that . ,

Bl1,m',n) < Z("f), nsm (5.1)
jmo \J
since A(1,m', n) just equals the pumber of regions of R* which can be partitioned
by m' hyperplanes. (This is proved in Steiner (1826) [11] which is in the first
volumn of Crelle’s J. Reine Ang. Math. and which is better remembered for
containing five fundamental papers of N. H. Abel. For modern treatmest of (5.1)
see Wetsel [12] and the refrences given there.)

A more modest approach to the problems suggested by Examples 2 and 3
rest on obtaining bounds for auy small values of d 2 2. It is known (Yao [14])
that C3(W) = Qi{nlogn) in Example 3, but there are no other knowa noe-linear
lower bounds even in the case d = 3.
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