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Lower Bauad, tor AI,ebnle DecadoD 'I'rH. 

J. Michael Steel,- and Andrew C. Yaot 

Ablt.ract. 

A t.opoloCicai mdbod i, giYeD for obt.aiDinC lower bouad, for \be bei,h\ of 

a1,ebraie deeilioD \reel. The met.hod i, applied t.o t.he knap.ack problem where 

I t:1ifnir bound il obt.aiDed for t.rees wit.h bounded-decree pol,nomial ".t.I, 'hut 
\xt.endiq t.he Dobkin-Lipt.oD relult. for liDear tor .... Appliea\ioD. t,o \be CODTeX 

hull problem aDd the: di.t.ind. elemeDt. problem are a1ao iDdicat.ed. Som. OpeD 
problem. are diacu.led. ",,' 

Kqworclll Alcebraie OedlioD t.rees, Be\t.i Number., Q)DDlded compo .... '. 
De1:i.ioD t.rea, InformaLieD t.beoreLic lower baud, Lower baud •. 

• Deput.ment. of St.at.ilt.iel, St.anrord UniTtrlit.1, St.anrord, Califonia 14305. Th. 
reseuch of \bi. aut.hor was lupport.ed iD part. b, OSee of Nanl Research 

cont.ract.· NOOO14·76-C-0475 (NR-042-28T). 

t CompuLer Science Depart.ment., St.uford UDiTtrlit.1, swarord, CaI'fomia "305. 
Tbe reseuch of t.bi. aut.hor was .upported in put. b1 NMio.d Scieace Fouad .. 

'iOD pant. MCS-T7·05313-AOl. 
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1. ID~rodudloD. 

Decilion t.reel are often used to model algorit.bm. ror combinatorial aDd 
leomet.rical problem I. While roc;t.inLion fa" t.hese modala nlt.1 primarily on t.heir 
leneralit.y &l\d cOi1cepLual simplicit.y, t.hey &\10 baTe t.h .. beneSt. of off'erinl at. 
pr.lent. t.he moat promiling prolpect. for proyin, wont. c~se lower bouDdl in many 
problems. 

For Ji!lear deci.ion t.reel leveral powerful Ltr,bDiques are known for boundiq 
t.he tree beicbt. rrom below, e.c. ReiDIold (91, Dobkin 13), DobkiD aDd Lipton 
(")(5), Yeo (13), and Yao aud Rifelt. 115). 

Much lell il known for ,eneral al,ebraic decilion t.reel. Beyond t.be nai·.,. in­
format.ioD bound, Rabin'l t.heorem (Rabin ISn and t.be conTex hull problem (Yeo 
(14» are apparent.ly t.be only known result.s. 

The purpose of Lbi. art.ic1e is 1.0 prOTide a ,eneral met.hOCl lor ert.ablishiq 
lower bounds for t.he wont. cue performance or al,orit.hml preacribeci by arbit.rafJ 
al,ebraic deci.ion t.ree •. Technically Lbil work extend. t.he r~lult.1 of DobkiD aDd 
Lip1.on /4)(5), but. Lhe 1.o01s put. to work bere prOTide nOD-t.riTial bound. ror a lar,e 
cJua of pre"ioully untouchable problem •. 

aefor. ,iTiD, .. he det.ailed computat.iODal mod.l it. MImi wort.hwhUe to meD­
t.iOD i!1tormally a concrete applicat.ioD. 

Tlleona 1. An, al,ebrl;c decision Cree or bounded Older wldd 101 .... Cbe ,,­
dimell.ioDaI kDlp.ac:t probJf:m mu.' bave bei,be Ie leu' 0(,,2). 

Thi. re.ult. extend. t.be knapsack bounds under t.he liD.ar decilion t. ... model 
due to Dobkin and Lipton 141 and .. he OCta log ta) re.u\t. or Dobkin 13J. 

The met.hod used here rest.. crit.icall, on , result. frOID nel .... bralc POIDe\fJ 
due to Milnor 111. SiDce .. be machinery used by Milnor may DOt. be familiar 1.0 

workers in complexit.y. we baTe t.ried to lift an expoait.ory of t.be buic faet.l 
Dee •• suy for makiDg t.bi. work self·tont.ained. The bound. dilCuued here Ihould 
prOTe useful iD maDY related problems. 

JD t.he Dext. sect.ioD we rigo,.ousl1lpecify t.be computatioDal model aDd out.liDe 
t.he lower bound met.hod. The .. bird aec:tiOD expoaih Milnor's inequalit.1 and liYe' a 
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beuril~ic ariameD&' which &.riel \0 piDpoiDt. t.he Declllit., ror t.h. mor. IOphllt.lcaW 
t.ooll. 

The rourt.h aect.ioD il deYOted t.o applicat.ionl aDd in part.icular t.o t. ... proof 
or t.he relult. OD t.he knaplack problem (Theorean 1) which wu IIlnt.lo.tel a ... 

The flDal MC\ion ment.iODI 10m. open problem I ud lugelt. • Ii.I or MUCk 
which ir lulicient.l, dey.loped mi,ht. add lipiBcuti1 \0 t.be power or "la. "....t. 
met.hod. 
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2. Computat.loDai Model the Gentral Method. 

Let. W ~ /l" be Iny let. A (d-tlJ order) deci.iol ttM T for toeltinl if 

! E W il I t.ernary t.ree wit.h eacb int.ernal node cont.aininl I t.elt. of Lbe form 

P(ZI' Z2,' .. , ZIt) : D, wbere pill polynomill of decree It. mOlt. tl. Eacb lear of T 
cont.ainl ·yel· or a ·no· answer. For ID input. I, t.be procedure It.art.1 It. t.be root. 

and t.raveraes down t.be t.ree. AI. cach int.erDal Dode a branc:biDI is made accordiDI 

t.o t.he pollDomial Lest. at. t.hat. node and when a leaf' il reacbtd t.be anlwer t.o t.h, 

quelt.ion -Is! E W· mUIt. be giTcn correct.ly. 

Now let. C4(W) be t.he minimum height. liT for any tl-t.b order decision t.ree 

r (for t.he let W). Our Jeey object.iye will be t.o obt.ain lower boundl on C4(W), 
and t.he bound liven here will de!>tDd he,,,ill on t.be tapoto" of W. 

By *W we denote t.be number or (diljoint.) connect.f!d component.. of W. Also 

for any poly nom lal p{z I, Z2, ... ,z ... ) we set. 5, = {! I PC!) :I- O}, and lor an1 
iDtelera ft, m > 0 we put fJ(m., n) = max{ * 5, I , il a pol,nomial or " real 

TBriablel and 01 delree at mOIl. m}. 
The followinl elementary relult. provide, t.he ,hleton 01 our met.hod. (To 

put. Besh on t.he bonea will rflquire t.he bounds on ~ obt.&ined iD t.he nut. sect.ion.) 

Theorem 2. Let W ~ R." be an open .et, and let T ". a 4-'11 oral alpblaic 
dec.,ioD 'rn lor decidin, if ! E W. If W i. ",e di.joia' uDioa 01 N OpeD leU, 

'hen the h£;,ht h.,. ,a'ian .. the inequa,j" 

Prool For eacb leaf l of T Itt. Vi be t.be set 01 inpuu ! E R" ler..diuc til t 
aDd let I" be t.he se" of constraints resultine from thl \IIU. Le\ L be t.he let. of 

lea'Yel l luch "ha" I, conlist.s only 01 I"riet. iDequaJit.i., ud lach 'lIa' ~b. ulWlr 

,toored as. l il -yes-. One Ihould not.e Lba" tub V, il u Open lid aDd V, ~ W. 
We no", writ.e W = U:"'_l Wi wber. each Wi il a CODMCt.ed OpeD .. ad 

the Wi are disjoint., and write V" = {I: p",(!) < 0, p" < 0, ... ",.(1) < O} 
where each p" is & polYDomial or degree no" Ifeat.er til .. ~ ud wben , S 
hr. AI a conaequeDce or i.hil reprelen"&i.ion, V, S; {I I '1,(1) :JI: O} == D 

.( 



where q(!) = II I'4(!) ia a polynomial of dell'" at. mOlt. Ia,.~. NOrlon" tach 
CODDett.ed cOIb;.'ODent. of Vt il cont.aincd in at. mOlt. ODe component. of D. H'Dee, 
V( bas at. mOlt. ,,(lard, n) connect.ed component.a Vu I Va, ... . 

Since each lear or T ia correct.ly labeled. each VlJ has t.o be eompl.t.ely 
cODt.ained in lOme Wi. Since t.he Dumber or'luch VlJ il at. mOI\ ,,(lard, n) and 
t.here art only ILl Yaluel or t which lead to -yel- t.he number of cOllllpoDeDt.1 N 
01 W il bouDded by ILI,,(lard, n). Since 2~T ~ ILl t.ht t.btortm 101l0'n .• 
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3. Count.lnl Con fleeted Componentl. 

To ule Theorem 2 one needl bounds on IJ(m, n) and t.hil b apparent.ly no 
ealY mat.t.er. ForLunat.ely, t.here is a bound due t.o Milnor 17) whic" ~. ;ulBcient. 
tor lome appJ:cat.ions: 

IJ(m, n) ~ (m + 2)(m + 1)"-'. (3.1) 

The proof of Milnor'. inequalit.y rests on t.he several lublt.antial relults trom Moue 
t.heory and algebraic topology, but. it. is neverthe:esa possible t.o live a heurtilt.ic 
iudieat.ion of an analogous result.. 

The only preliminary needed for t.he argument. il Delout'l Theorem which 
lay I t.hat. aDy syst.em of n algebraic equat.ions in n nriable with decree d hu 

eit.her iDfinit.ely many (complex) solutions or at. mo~t. ,r. For a c1anical approach 

to t.he proof of BCJout.'s Theorem one can consult. Enrique. 16), or, for the cue 

n = 2, t.here i~ a nice proof in Seidenberg 110). 
To use Belout'. Theorem we suppose that. p is a real polynomial in n nriable. 

with degree m, and we not.e t.hat. R can be cbosen so t.hat A = {p > O} n{q = 
R2 - E~l ~~ > O} bas as many bounded connected component.s as {p > O} hu 

eonnect.ed components (bounded or unbouDded). SiDce each bounded eonnect.ed 
component or A must. cont.ain a local maximum or pq, t.he number or bounded 

compoDeDts of A I~ majorized by the number of leros or t.he sYltem Vpq = O. 
By Belout., tbi. number i. either infinit.e, or else bounded by (m + 1)". 

Thil finite bound il for our purposes almost. as Iharp as Milnor', l,,,\lud. 'l'he 
real work comes in providing a rigorous pert.urbation arlument. which rulel out. the 
cue wben Belout gives nnly the trivial infinit.e bound. That. il precisely the cue 
which caules all the trouble and presents t.his section from beinl self cont.ained. 

We Ihould rurt.her remark that a recent. expolit.ion of R. Bot.t 12) prOYidll an 

intuit.il'e introduct.ion to Milnor 17), where inequality (3.1) il liYeD U Theorem 3. 

AI it. happenl, the problem of determininc l1(m, n) is actually 1'Iry deep and it. il 

intimately connected wit.h Hilbert.'1 1S-t.h Problem, see Arnold 11). 
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4. ApplieatioDI. 

We now use Theorem 2 to derive lower bounds. Clearly, tbe runction 2s JJ(zel, n) 

is an increasing fUDct.ioD of z. Let o(d, n, N) be tbe minimum z satidying 

2s JJ(zel, n) ~ N. Tbeorem 2 immedi~t.ely yields tbe rollowing formal bounds: 
Any general upper bounds on {J can be used to derive lower bounds OD Q and 

hence CIII.' In particular, Milnor'l bound (3.1) Civel the followin, relult.. 

Theorem 3. For any real (, 

C~(w) ~ min{llog2 N, ~(N~ -In 

when N = *W. 

Coro1l8l7. It *W = O(n(1+')") tor some lixed 6 > 0, 'lieD 

Proo/. Let % = Ccl(W). Then 2s{J(zd, n) ~ N. Hence by (3.1) 

Either 2- > Ne or (sel + 1)" ~ Nl-I, provine the t.beorem. ! 

The corollary follows by writing *W = nll(I+,(II» and .. ~t.iDC f = ll.:f.~,,) 
in the t.heorem. 

Thul, Theorem 3 giTeI a loftr bound nonlinear in" when *W crOWl at leut. 
u tast. as n(I+1)". Tbi. il aliI) necelSary lince tbe t.heorem only lift' a lower 

bound O(n) when *W = O(n"). 
In t.he first example liven below, 'W ~ 2i,,1 thus ... haft a pod lower 

bound. The other two examples have 'W ~ nil, and Theorem 3 does no\ lift 
7 



nonlinear boundl. However, Theorem 2 (or, (4.1)) il It.ilI t.rue for t.hele lat.er 
examplel, and a bet.ter determinat.ion in the fut.ure may relult in an improved 
bound. 

Example I. The Knaplack Problem. Given real numbers %1, %2, •.. , %", decide if 
t.here exilt.1 some subset. S ~ {I, 2, ... , n} sueb t.bat EiES %i = 1. 

In this case, W = {(XII X2,"" x,,) I nS(EiES Xi - 1) =F ·O}. It was shown 
in Dobkin'. and Lipton (1978) HW ~ 21,,1. Thus, C.,(W) = 0(n2) for any fixed 

tl. Tbis generalizes the result of Dobkin and Lipton where theYlhowed CI(W) = 
0(n2). 

Example 2. Element Diltinctnell. Given %1,%2,.' .,1" E Il, il t.here a pair i,; 
with i :F; and Zi = zi! In this case, 

W={(Xt.Z2, ... ,x,,)1 ll(Xi-Xi)=FO}C Il" 
i~j 

It is easily shown that *W = n! since each region {(Zl, %2, ... , Z,,) I Xa{l) < 
Z,,(2) < ... Za(,,)} is a maximal connect.ed component. of W for each permut.at.ion 
(1. One t.hererore has C4(W) ~ a(d, n, n!). 

E:nmple 3. Extreme Polntl. Given n point.s on the plane does t.he convex hull 
formed by t.h~m possess n vert.ices? 

Here W cannot. be expressed by an easy algebraic relation but. it. is st.i11 
polsible t.o .how *W ~ (n - I)!. Obviou.ly, W is an open set. in (Il a)". For 

any configuration {Zl,X2, . .. ,x,,} in W C (1l2)", we have a cyclical ordering t1 

of t.he point., {Zi 11 ~ i ~ n} which is gival'! uniquely by t.aking t.he point.s in 
cyclical order. Clearly, any or the (n -I)! cyclical permut.ationl can arise in t.his 

way so all t.bat. remainl il t.o Ihow t.hat if f1 =F rI t.hen t.he configurat.ions which 
give rise t.o ·t.hese permutations are in disjoint components of W. 

For each configuration in W we consider the (;) element. array A giTen 
by A(ZiZjZl) where 1:1 is the signed area of t.he t.riangle formed by the 3-set. 
{ZiZjZl} C {z., Z2," ., z,,}. If t.he conflguration corresponding to tI is con­
tinuously deformed in any way to the configuration for rI t.hen Ao is t.ransformed 
cont.inuously into A.". Since (1 and 0' difTer there il some t.riple {ZiZjZ,} for 

which 4(Zi%jZl) has difTcring lignl in A. and A.". By t.he int.ermediat.e value 
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theorem t.bere i. t.b.rerore 10m. um. dariD, Lb, eODt.iDuOU. d.rorlDat.ioD .bea 

A(~i%izAl) = O. Tbi. say. t.bat Ii, ~i' IAI are t.beD co-liDear ad a~ ~ba" point. 
there are at most " - 1 ext.reme poinu iD t.be eODfi,uriUoD. Thi. prons .. ha .. 

aDY pa.sage from iT &.0 u' must go out or W, 10 tI and'" correlpoDd to dUrereat. 
componeDt •. 

Tbe main consequence of tbe precOOin, bouDd is t.hat 

and it. wa. orieinally boped t.hat. "hi' would be 'UmeiID" too ,rot. a cODject.ure of 

Yao 114] that any algebraic decision t.ree or order d ror the ex"rtme poin" problem 
mUIt. have heigbt O(nlogn). Tbe Milnor bound in "bi. cue i. DO\ .utlleien\l, 
sharp to obt.ain tbe cesired bound. We indicate in t.be next aect.iOD a bouad .)licb 

would be sufficient.. 

Wbile t.hese last t.wo examples are disappoint.ing in that. t.h.y do Dot.,iYe t.he 

conjecLured non-linear lower-bounds, one should nou t.bat. .inc. oDly • ye.-DO 

answer is required tbere is a logical necessity of only 2 t.erminu leaTe.. So, t.he 

informat.ion t.heoretic bound in these t.wo cue. gi1'el only "he ablurd bouDd locI 2. 
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Sur.ly tb. mOIL inter'ILiDC and import.&Dt proW-al pi.. a.w~L lacliac 
Iharper boundl on ~(m, n). IL il cODceinbie tbat. '(., tI) = 2~·"-+·) .~ 
could imply by Tbeorem 2 .. hat. C,,(W) = OU(IOCa N - .)). Tlaia IlOdd woUII 
,ield a O(n loe n) lower bound iD Examples 2 and 3 for bed ~. 

In rad, a somewbat. weaker relult will luaiee for t.lail purpose. IA\. '(~, fill, .) 
. , 

be t.h. maximum of 1# S, for an1 P of .. he form Il':" ,.~~1' Z, .... ,z.) willa lac. 
Pi or decree not. creaLer t.han ... Clearl, ~(4, la', n) ~ ~(~.', .). Tt, l\:."'" OM 

really needl in Examplel 2 and 3 i. ,(4, ra', II) = 20(-'+·). Cu C;~ pron 
better boundl on ,(4, ",', n) "ban aD '(Ia, .)1 H ........ tJ.a\ it. it .cA Urd 
to see .. haL 

~(J, m', n) 5 t ("'.') , 
i-O , II ~.' (5.1) 

since ,(1, m', n) jUlt equail t.be Dumber of recioDI or R- wlaicla CD be part.iUoMd 

b, ",' b,perplanel. (Tbil il praYed in S1.einer (1826) (11) wlaida il ia UM am. 
yolumn of Crelle'l J. Reint An,. M.'h. aad wbich il blUer rea •• bend for 
conLainiD, be 'aDdament.al papers or N. H. Abel. For model'D t.naUMIIt. 01 (5.1) 
see WeLlel [121 aDd tbe refreDces CiTeD t.her •. ) 

A more modesL approach to Lhe problemll ..... t.ecI by luapla 2 .... 3 
relL on obLaininc boundl ror aD1 Imall talues or tl ~ 2. IL is kMwa (y1IO (14)) 
LhaL Ca(W) = 0(.10, .. ) in Example 3, but. "ben are 80'" Dowa ... u-r 
lower bounds e .. 11 in t.he cue Ii = 3. 
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