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Those of us Involved In the creation of the Handbook of Artificial Intelligence, both 
writers and editors, have attempted to make the concepts, methods, tools, and main results 
of artificial Intelligence research accessible to a broad scientific and engineering audience. 
Currently, AI work Is familiar mainly to Its practicing specialists and other Interested 
computer scientists. Yet the field Is of growing Interdisciplinary Interest and practical 
Importance. With this book we are trying to build bridges that are easily crossed by 
engineers, scientists In other fields, and our own computer science colleagues. 

In the Handbook we Intend to cover the breadth and depth of AI, presenting general 
overviews of the scientific issues, as well as detailed discussions of particular techniques 
and Important AI systems. Throughout we have tried to keep In mind the reader who Is not a 
specialist In AI. 

As the cost of computation continues to fall, new areas of computer applications 
become potentially viable. For many of these areas, there do not exist mat~ematlcal "cores" 
to structure calculational use of the computer. Such areas will Inevitably be served by 
symbolic models and symbolic Inference techniques. Yet those who understand symbolic 
computation have been speaking largely to themselves for twenty years. We feel that It Is 
urgent for AI to "go public" In the manner Intended by the Handbook. 

Several other writers have recognized a need for more widespread knowledge of AI 
and have attempted to help fill the vacuum. lay reviews, In particular Margaret Boden's 
Artificial Intelligence and Natural Man, have tried to explain what is Important and 
Interesting about AI, and how research In AI progresses through our programs; In addition, 
there are a few textbooks that attempt to present a more detailed view of selected areff" 
of AI, for the serious student of computer science. But no textbook can hope to descrihp. ill! 

of the sub-areas, to present brief explanations of the Important Ideas and techniques, and to 
review the forty or fifty most Important AI systems. 

The Handbook contains several different types of articles. Key AI Ideas and techniques 
are described In core articles (e.g., basic concepts In heuristic search, semantic nets). 
Important Individual AI programs (e.g., SHRDLU) are described In separate articles that 
Indicate, among other things, the designer's goal, the techniques employed, and the reasons 
why the program Is Important. Overview articles discuss the problems and approaches in 
each major area. The overview articles should be particularly useful to those who seek a" 
summary of the underlying Issues that motivate AI research. 

Eyentually the Handbook will contain approximately two hundred articles. We hope that 
the appearance of this material will stimulate Interaction and cooperation with other AI 
research sites. We" look forward to being advised of errors of omission and commission. For a 
field as fast moving as AI, It Is Important that Its practitioners alert us to Important 
developments, so that future editions will ref/ect this new material. We Intend that the 
Handbook of Artificial Intelligence be a living and changing reference work. 

The articles In this edition of the Handbook were written primarily by graduate students 
In AI at Stanford University, with assistance from graduate students and AI professionals at 
other Institutions. We wish particularly to acknowledge the help from those at Rutgers 
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND 
Corporation. 

This report, which contains the section of the Handbook on natural language 
understanding research, has been drafted by numerous Stanford graduate students. Major 
contributions to revising and editing It have been made by Anne Gardner, James Davidson, 
and Terry Winograd. Others who contributed to or commented on earlier versions of this 
section Include Jan Aikins, Daniel Bobrow, Rod Brooks, William Clancey, Paul Cohen, Gerard 
Dechen, Richard Gabriel, Nell Goldman, No.rm Haas, Douglas Hofstadter. Andrew Silverman, Phil 
Smith, Reid Smith, William Van Melle, and David Wilkins. 
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Foreword 

Those of us Involved In the creation of the Handbook of Artificial Intelligence, both 
writers and editors, have attempted to make the concepts, methods, tools, and main results 
of artificial Intelligence research accessible to a broad scientific and engineering audience. 
Currently, AI work Is familiar mainly to Its practicing specialists and other Interested 
computer scientists. Yet the field Is of growing Interdisciplinary Interest and practical 
Importance. With this book we are trying to build bridges that are easily crossed by 
engineers, scientists In other fields, and our own computer science colleagues. 

In the Handbook we intend to cover the breadth and depth of AI, presenting general 
overviews of the scientific Issues, as well as detailed discussions of particular techniques 
and Important AI systems. Throughout we have tried to keep In mind the reader who Is not a 
specialist In AI. 

As the cost of computation continues to fall, new areas of computer applications 
become potentially viable. For many of these areas, there do not exist mathematical "cores" 
to structure calculational use of the computer. Such areas will Inevitably be served by 
symbolic models and symbolic In'ference techniques. Yet those who understand symbolic 
computation have been speaking largely to themselves for twenty years. We feel that it is 
urgent for AI to "go public" In the manner Intended by the Handbook. 

Several other writers have recognized a need for more widespread knowledge of AI 
and have attempted to help fill the vacuum. Lay reviews, In particular Margaret Boden's 
Artificial Intelligence and Natural Man, have tried to explain what Is Important and 
Interesting about AI, and how research In AI progresses through our programs. In addition, 
there are a few textbooks that attempt to present a more detailed view of selected arell'" 
of AI, for the serious student of computer science. But no textbook can hope to descrihe .;lli 

of the sub-areas, to present brief explanations of the Important Ideas and techniques, and to 
review the forty or fifty most important AI systems. 

The Handbook contains several different types of articles. Key AI Ideas and techniques 
are described In core articles (e.g., basic concepts In heuristic search, semantic nets). 
Important Individual AI programs (e.g., SHRDlU) are described In separate articles that 
Indicate, among other things, the designer's goal, the techniques employed, and the reasons 
why the program Is Important. Overview articles discuss the problems and approaches in 
each major area. The overview articles should be particularly useful to those who seek a 
summary of the underlying Issues that motivate AI research. 



Eyentually the Handbook will contain approximately two hundred articles. We hope that 
the appearance of this material will stimulate Interaction and cooperation with other AI 
research sites. We look forward to being advised of errors of omission and commission. For a 
field as fast moving as AI, It Is Important that Its practitioners alert us to important 
developments, so that future editions will reflect this new material. We Intend that the 
Handbook of Artificial Intelligence be a living and changing reference work. 

The articles In this edition of the Handbook were written primarily by graduate students 
In AI at Stanford University, with assistance from graduate students and AI professionals at 
other Institutions. We wish particularly to acknowledge the help from those at Rutgers 
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND 
Corporation. 

This report, which contains the section of the Handbook on natural language 
understanding research, has been drafted by numerous Stanford graduate students. Major 
contributions to revising and editing it have been made by Anne Gardner, James Davidson, 
and Terry Winograd. Others who contributed to or commented on earlier versions of this 
section Include Jan Aikins, Daniel Bobrow, Rod Brooks, William Clancey, Paul Cohen, Gerard 
Dechen, Richard Gabriel, Nell Goldman, Norm Haas, Douglas Hofstadter, Andrew Silverman, Phil 
Smith, Reid Smith, William Van Melle, and David Wilkins. 

Avron Barf Stanford University . 
Edward Feigenbaum July, 1979 
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A. Natural Language Processing Overview 

The most common way that human beings communicate Is by speaking or writing In one 
of the "natural" languages, like English, French, or Chinese. Computer programming 
languages, on the other hand, seem awkward to humans. These "artlflclal" languages are 
designed to have a rigid format, or s,ntax, so that a computer program reading and compiling 
code written In an artificial language can understand what the programmer means. In addition 
to being structurally simpler than natural languages, the artificial languages can express 
easily only those concepts that are Important In programming: "00 this the"n do that," "See if 
such and such Is true," etc. The things that can be expressed In a language are referred to 
as the semantics of the language. 

The research on understanding natural language described In this section of the 
Handbook Is concerned with programs that deal with the full range of meaning of languages 
like English. Computers that can understand what people mean when typing (or speaking) 
English sentences will be easier to use clMd will fit more naturally Into people's lives. In 
addition, artificial Intelligence (AI) research In natural language processing alms to extend our 
knowledge of the nature of language as a human activity. Programs have been written that 
are quite successful at understanding somewhat constrained Input: the user Is limited in 
either the structural variation of his sentences (syntax constrained by an artificial grammar) 
or In the number of things he can IImeanll (In domains with constrained semantics). Some of 
these programs are adequate for many useful computer-Interface tasks and are available 
commercially. But the fluent use of language as humans use It Is stili elusive. and natural 
language (NL) processing Is an active area of research In AI. 

This article presents a brief sketch of the history of natura.l language processing 
research In AI. and It attempts to give some Idea of the current state of the art In NL and 
related research In representing knowledge about the world within the language 
understanding programs. The next article Is a historical sketch of the very earliest Ideas 
about processing language with computers, to achieve mechanical translation of one language 
Into another. It Is followed by two sections containing technical articles on some of the 
grammars and parSing techniques that AI researchers have used In their programs. Then, 
after an article on text generation. which Involves the creation of sentences by the program to 
express what It wants to say. there are a half dozen articles describing some of the most 
Important NL systems. 

II 
Two other sections of the Handbook are especially relevant to NL research. Speech 

Underetending research attempts to build computer Interfaces that actually underst;and 
spoken language. Speech and natural language understanding research have been closely 
linked. Increasingly Inseparable from NL research Is the study of Knowledge Representation, 
because AI researchers have come to believe that a very large amount of knowledge about 
the world Is used In even simple dialogue. Research In the representation of knowledge 
explores ways of making this world knowledg' accessible to the computer program by 

" "representing II It In Internal data structures. 

History " 

Research In computational linguistics. the use of computers In the study of language, 
started In the 1940s, soon after computers became available commercially. The machine's 
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ability to manipulate symbols was first used to compile lists of word occurrences (word lists) 
and concordances (their contexts in written texts). Such surface-level machine processing 
of text was of some value In linguistic research, but It soon became apparent that the 
computer could perform much more powerful linguistic functions than merely counting and 
rearranging data. 

In 1949, Warren Weaver proposed that computers might be useful for "the solution of 
the world-wide translation problem" (Weaver, 1949, p. 15). The resulting research effort, 
called mechanical translation, attempted to simulate with a computer the presumed functions of 
a human translator: looking up each word in a bilingual dictionary; choosing an equivalent 
word In the output language; and, after processing each sentence, arranging the resulting 
string of words to fit the output language's word order. Despite the attractive Simplicity of 
the idea, many unforeseen problems arose, both In selecting appropriate word equivalences 
and in arranging them to produce a sentence In the output language. Article B discusses the 
history, problems, and current state of research on mechanical translation. 

In the 1960s a new group of computer programs was developed that attempted to deal 
with some of the more complex Issues of language that had led to the difficulties In the 
mechanical translation efforts. These early natural language programs mark the beginning of 
artificial intelligence work In understanding language. They no longer assume that human 
communication Is it process of word manipulation. Instead, they view human language as a 
complex cognitive ability Involving many different kinds of knowledge: the structure of 
sentences, the meaning of words, a model of the listener, the rules of conversation, and an 
extensive shared body of general information about the world. Several of these programs 
are described briefly In Article Flo 

The focus of modern work In natural language processing In AI Is "understanding" 
language. Severar different tasks have been· used as the criterion for defining what 
constitutes a demonstration that the program understands a piece of text; these tasks 
Include paraphraSing, question answering, mechanical translation, and information retrieval. Many 
design Issues depend ,on which type of task the program is to perform, but the general 
approach has been to model human language as a knowledge-based system for processing 
communications ,and to create a computer program that serves as a working model of this 
system. 

AI researchers In natural language processing expect their work to lead both to the 
development of practical, useful language understanding systems and to a better 
understanding of language and the nature of intelligence. The computer, like the human mind, 
has the ability to· manipulate symbols In complex processes, Including processes that Involve 
decision making based on stored knowledge. It Is an assumption of the field that the human 
use of language Is a cognitive process of this sort. By developing and testing computer­
based models of language processing that approximate human performance, researchers' 
hope to understand better how human language works. 

Approaches to NL Processing 

Natural language research projects have hlid diverse goals and used diverse methods, 
making their categorization somewhat difficult. One coherent scheme, borrowed from 
Winograd (1972), groups natural language programs according to how they represent and 
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use knowledge of their subject matter. On this basis, natural language programs can be 
divided Into four historical categories. 

The earliest natural language programs sought to achieve only limited results In 
specific, constrained domains. These programs used ad hoc data structures to represent 
"knowledge." Programs like BASEBALL, SAD-SAM, STUDENT, and ELIZA (see Article Fl) 
searched their Input sentences, which were restricted to simple declarative and 
Interrogative forms, for key words or patterns representing known objects and relationships. 
Domain-specific rules, called heuristics, were used to derive the required Information from the 
key words In the sentence and the knowledge In the database. Though they performed 
relatively small tasks and avoided or Ignored many of the complexities In language, their 
results and methods were the Impetus to dealing with more difficult problems. 

The second category can be called text-based systems. These programs, such as 
PROTOSYNTHEX I (Simmons, Klein, & McConlogue, 1964) and the Teachable Language 
Comprehender, TLC (Quillian, 1969), attempted to expand beyond the limits of a specific 
domain. The programs dealt with full English text as a base, rather than with key words or 
phrases. Input text was Interpreted as a request to access a structured Information store, 
and a variety of clever methods were used to Identify the proper response. Though more 
general than their predecessors, these programs stili failed to deal with the underlying 
meaning of the English language Input. They were able to give only responses that had been 
pre-stored as data--they had no deductive power. 

To try to deal with the problem of how to characterize and use the, meaning of 
sentences, a group of programs was developed called limited logic systems. In systems like 
SIR (Raphael, 1968), DEACON (Thompson, 1966), and CONVERSE (Kellogg, 1968), the 
Information In the database Is stored In a formal, albeit ad hoc, notation, and mechanisms are 
provided for translating Input sentences Into the same form. The function of the formal 
notation Is to attempt to liberate the Informational content of the Input from the structure of 
English. The overall goal of these systems was to accept complex Input Information (e.g., 
Information containing quantifiers and relationships), use It to perform Inferences on the 
database, and thus realize answers to complex questions. Problems, however, arose from 
the fact that the complexity of the stored Information was not really part of the database 
but was built Into the system's routines for manipulating the database. PROTOSYNTHEX " 
(Simmons, 1966; Simmons, Burger, & Long, 1966, for example, contained statements of the 
form "A Is X" and "X Is B" and tried to answer "Is A B7", based on transitivity. The 
deductive mechanism required for these Inferences was embedded In special-purpose 
subroutines, rather than In the database as a "theorem," and thus was not available to be 
used to perform more Involved Inferences, which require a longer chain of reasoning. 

Representing Knowledge in NL Programs 

The fourth approach to building language understanding programs might be called 
knowledge-based systems and Is closely Intertwined with current research on the representation 
of knowledge (see the Knowledge Representation section of the Handbook). Among the most 
Important knowledge representation schemes explored In NL research have been: procedural 
semantics, semantic networks, case systems, and frame systems. 

In the early 1970s, two systems were built that attempted to deal with both syntactic 
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and semantic problems In a comprehensive way. William Woods's LUNAR system (Article F3) 
answered questions about the samples of rock brought back from the moon, using a large 
database provided by the National Aeronautios and Space Agency. It was one of the first 
programs to attack the problems of English grammar using an augmented transition network 
parser (Article 02). It used 8 notion of procedural semantics in which queries were first 
converted In a systematic way Into 8 "program" to be executed by the retrieval component. 
Terry Winograd's SHRDLU system (Article F4) carried on 8 dialogue with a user In which ~he 
system simulated a robot manipulating a set of simple objects on a tabletop. The 
naturalness of the dialogue, as well as SHRDLU's apparent reasoning ability, made It 
particularly Influential In the development of AI Ideas. These two systems Integrate 
syntactic and semantic analysis with a body of world knowledge about a iimited domain, 
enabling them to deal with more sophisticated aspects of language and discourse than had 
previously been possible. 

Central to these two systems Is the representation of knowlege about the world as 
procedures within the system. The meanings of words and sentences were expressed as 
programs in a computer language, and the execution of these programs corresponded to 
reasoning from the meanings. Direct procedural representations are often the most 
straightforward way to Implement the specific reasonirig steps needed for a natural language 
system. Most of the actual working systems that have been developed have made heavy 
use of specialized. procedural representations, to fill In those places where the more 
declarative representation schemes--those where the "knowledge" is encoded In passive 
data structures that are Interpreted by other procedures--are Insufficient. (The 
procedural/declarative controversy has been an Important focus in the history of AI. See Article 
RepresentationB. ) 

Perhaps the most Influential declarative representation scheme Is the semantic network. 
Semantic networks were first proposed by Quillian (1968) as a model for human associative 
memory. They used the concepts of graph theory, representing words and meanings as a set 
of linked nodes. By using II systematic set of link types, it was possible to program simple 
operations (such as following chains of links) that corresponded to drawing· Inferences. 
Another Important declarative scheme is the use of standard logic formulas (Article 
Representation.Ct), which are subject to mathematical rules of deduction for drawing 
In,ferences. The advantage of semantic networks over standard logic Is that some selected 

, set of the possible Inferences can readily be done in a specialized and efficient way. If 
these correspond to the Inferences that people make easily, then the system will be able to 
do a more natural sort of reasoning than can be easily achieved using formal logical 
deduction. 

Semantic networks have been the basis for a number of systems, Including most of the 
speech understanding systems (see Speech Understending). Recently there has been a good 
deal of work on formalizing the network notions so that there Is a clear correspondence 
between the graph operations and the formal semantics of the statements represented (see 
Article Representation.C2). 

Case representations extend the basic notions of semantic nets with the Idea of a case 
frame, a cluster of the properties of an object or event Into a single concept (see Artlc.le 
C4). There have been a large number of variations on this notion, some of which remain close 
to the linguistic forms. Others such as conceptual dependenC'J are based on the notion of 
semantic primitives, the construction of all semantic notions from a small set of "prlmltlve" 
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concepts. The MARGIE sytem (Article F5), built In the early 1970s by Roger Schank and his 
students, uses the conceptual dependency representation. 

As with semantic networks, the advantage of case representations lies in their focus 
on clustering relevant sets of relationships Into single data structures. The idea of 
clustering structures In a coherent and efficient way has been carried much further in 
representation schemes based on the notion of a frame (Minsky, 1975; see also Article 
Representation.C6). Where case representations deal primarily with single sentences or 
acts, frames are applied to whole situations or complex objects or series of events. In 
analyzing a sentence, narrative, or dialogue, a language understanding system based on 
frame representations tries to match the Input to prototypes for the objects and events in 
Its domain that are stored In Its database. 

For example, Roger Schank's SAM system (Article F6) makes use of simple, linear 
scripts, which represent stereotyped sequences of events, to understand simple stories. It 
assumes that the events being described will fit (roughly) Into one of the scripts in "Its 
knowledge base, which it then uses to fill in missing pieces In the story. The GUS system 
(Bobrow et al., 1977) Is a prototype travel consultant, carrying on a dialogue to help a 
person schedule an air trip. It uses frames representing standard "trip plans. GUS uses the 
experimental frame language KRL (Bobrow & Winograd, 1977; see also Article 
Representation.C6). 

The Important common element In all of these systems Is that the existence of 
prototype frames makes it possible to use expectations In analysis. When a sentence or 
phrase Is Input that Is ambiguous or underspeclfled, It can be compared to a description of 
what would be expected based on the prototype. Assumptions can be made about what was 
meant, If there is a plausible fit to the expectation. This expectation-driven proceSSing seems 
to be an important aspect of the human use of language, where Incomplete or ungrammatical 
sentences can be understood In appropriate contexts. Research on script- and frame-based 
systems Is the most active area of AI research In natural language understanding at the 
present time. 

The current state-of-the-art in working (non-experimental) NL systems Is exemplified 
by ROBOT (Harris, 1977), LIFER (Hendrix, 1977b), and PHLlQA1 (Landsberg en, 1976). 

References 

General discussions of natural language processing research In AI can be found in 
Boden (1977), Wilks (1974), Winograd (1974), Charniak & Wilks (1976), Schank & Abelson 
(1977), and Winograd (forthcoming). Waltz (1977) contains more than fifty brief summaries 
of current projects and systems. In addition, many historically important NL systems are 
described In Feigenbaum & Feldman (1963), Minsky (1968), Rustin (1973), Schank & Colby 
(1973), and Winograd (1972). COLING (1976), TINLAP-1 (1975), Bobrow & Collins (1975), 
and TINLAP-2 (1978) are proceedings of recent conferences describing current work In the 
field. 
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B. Mechanical Translation 

The concept of translation from one language to another by machine Is older than the 
computer Itself. According to Yehoshua Bar-Hillel, one of the early Investlg~tors In the field, 
the Idea was perhaps first conceived as early as the early 1930s by P. P. Smirnov­
Troyansky of the Soviet Union and G. B. Artsouni of France (see Bar-Hillel, 1960, p. 7). Their 
work apparently never received much attention, lying dormant until a decade later when the 
climate was much more favorable, due to the recent Invention of the digital computer. In 
certain quarters of the scientific world people Imagined--wlth some justification--that 
computers would lead to many entirely new and far-reaching Ideas about man and--perhaps 
less justlflably--that computers would help bring about a new world order. In short, there 
was tremendous excitement over the potential of these new thinking machines, as they were 
quickly dubbed. This was also the time when Claude Shannon was formulating his ideas on 
Information theory, when Norbert Wiener was devising the concept of cybernetics, and when 
Pitts and McCullough were developing their Ideas on neural nets and brain function. 
Moreover, computing had just passed its Initial tests, during the war, with flying colors--In 
such strategic tasks as breaking codes and calculating complicated nuclear cross sections. 

It would be well to bear In mind that, when machine translation work began, programming 
was done by wiring boards and machine language was the only computer language available. 
Such concepts as arrays and subroutines were still to appear, not to mention pushdown 
stacks, complier languages, recursive procedures, and the like. Furthermore, no one had 
heard of context-free and context-sensitive grammars, or of transformational grammars, or 
augmented transition networks. At the forefront of computational linguistics, the application of 
the computer to the study of language, were statistical experiments with language, such as 
compiling matrices of letter frequencies and of transition frequencies between successive 
letters. Such matrices could be used to produce Interesting samples of pseudo-language, by 
producing words from randomly generated letters with the same characteristics as English 
words. (Also, s~e the discussion of Yngve's random text generation system in Article E). 

First Attempts 

The real genesis of machine t~anslation dates from a series of discussions between 
Warren Weaver and A. Donald Booth in 1946. Both men were familiar with the work on code 
breaking by computers, based on letter-frequency and word-frequency tables. It seemed to 
them that some of the same methods would be applicable to translation and that the principal 
obstacle would be Incorporating a full dictionary of the two languages. Of course they 
recognized that simply having a dictionary would not solve all problems. Some of the 
remaining problems would be the following: (a) Many words have several translations, 
depending upon context; (bl word orders differ from language to language; and (c) idiomatic 
expressions cannot be translated word for word but must be translated in toto. 
Nevertheless, It appeared plausible, at the time, that the major problem In translating 
between two languages was simply that of vocabulary--and so at least· a large part of 
translation seemed mechanlzable. 

In 1947, Booth and D. H. V. Britten worked out a program for dictionary lookup. This 
was a full-form dictionary, In that each variant of any basic word (e.g., love, loves, loving, 
etc.) had to be carried as a separate entry In the dictionary. In 1948, R. H. Rlchens 
suggested the addition of rules concernlng the Inflections of words, so that the redundancy 
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of the multiple dictionary entries could be eliminated. In 1949, Warren Weaver distributed a 
memorandum entitled Translation to about two hundred of his acquaintances, and a 
considerable wave of interest ensued. In addition to the Idea that all languages have many 
features In common, three other Items from that memorandum are worth repeating .. The first 
is the notion of a window through which one can view exactly 2N + 1 words of text; Weaver 
suggests that when N Is sufficiently large, one will be able to determine. the unique, correct 
translation for the word that sits In the middle of the window. He then points out that N may 
be a function of the word, rather than a constant, and discusses the :Idea of choosing a value 
of N such that, say, 95% of all words would be correctly translated 98% of the time. The 
second is this Intriguing statement: "When I look at an article In Russian, I say, This is really 
written in English, but it Itas been coded in some strange symbols. I will now proceed to decode." This 
certainly carries to an extreme the concept that 'source text and translated text "say the 
same thing. II In fact, It leads naturally to the third provocative Idea of the memorandum that 
translating between languages A and B means going from A to an Intermediate "universal 
language," or interlingua, that, supposedly, all humans share, and thence to B. This Idea, of 
an Intermediate representation of the semantics or meaning of an utterance, appears often In 
modern natural language processing work In AI under the heading representation Of knowledge 
(see discussion In the Overview and In the Handbook Section on Knowledge Representation). 

After Weaver's memorandum, work sprang up in several centers in the United States. 
Erwin Relfler conceived the Idea of two auxiliary functions to be performed by human beings, 
those of pre-editor and post-editor. The pre-editor would prepare the Input text to be as free 
as possible of ambiguities and other sources of difficulty; the post-editor would take the 
machine-translated text and turn It into grammatical, comprehensible prose. 

A 1952 conference produced recommendations to Implement a. dictionary-lookup 
program and to work towards the Invention, or discovery, of the hypothetical universal 
language, called Maclzinese, which Weaver had proposed as an Intermediate language in 
mechanical translation. . 

A. G. Oettinger was one of the first to design a program that carried out word-far-word 
translation of Russian text Into English. A very high percentage of the Russian words had 
more than one possible translatlonj so all of them were listed in the output English, enclosed 
In parentheses. Thus, a sample of English output text read as follows: 

(In, At, Into, To, For, On) (last, latter, new, latest, lowest, worst) (time, 
tense) for analysis and synthesis relay-contact electrical (Circuit, 
diagram, scheme) parallel-(serles, successive, consecutive, 
consistent) (connection, Junction, combination) (With, from) (success, 
luck) (to be utilize, to be take advantage of) apparatus Boolean 
algebra. (Oettinger, 1956, p. 65) 

A ·cleaned-up version of this sentence reads: "In recent times Bootean algebra has .. been 
successfully employed In the analysis of relay networks of the series-parallel type" (p. 58). 
Readers of the translated text were expected to discern from the jumble of synonyms what 
the· cleaned-up text really should be. Clearly, there was stili a long, long way to go toward 
mechanical translation. 

In the next year or two, most of the effort was directed toward devising ways to 
handle different endings of inflected words and estimating the size of vocabulary needed for 
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translations of varying degrees of quality. In 1954 a journal of mechanical translation was 
founded, called Mr. Machine translation received considerable public attention when a 
group from IBM and Georgetown University made grand claims for a program that translated 
from Russian to English, although this program was not particularly advanced over any others. 
In any case, machine translation became an "In" thing and groups sprang up In many 
countrIes. 

Problems Encounter~d 

Early attempts focusIng on syntactic information were able to produce only low-quality 
translatIon and led eventually to extreme pessimism about the possibility of the endeavor. It 
has since become clear that high-quality translation systems must In some sense understand 
the Input text before they can reconstruct It In a second language. For the first time, It was 
becoming apparent that much "world knowledge" Is used Implicitly when human beings 
translate from one language to another. Bar-Hillel gave as an example the pair of sentences, 
"The pen Is In the box," and liThe box Is In the pen. II Of this example he said, "I now claim 
that no existing or imaginable program will enable an electronic computer to determine that 
the word pen II In the second sentence has the meaning "an enclosure where small children 
can play" (Bar-Hillel, 1960, p. 159). He goes on to remark that, to his amazement, no one had 
ever pointed out that In language understanding there is a world-modeling process going on 
In the mind of the listener and that people are constantly making use of this subconscious 
process to guide their understanding of what Is being said. Bar-Hillel continues: • 

A translation machine should not only be supplied with a dictionary but 
also with a universal encyclopedia. This Is surely utterly chimerical 
and hardly deserves any further discussion .... We know ... facts by 
Inferences which we are able to perform ... Instantaneously, and It is 
clear that they are not, In any serious sense, stored In our memory. 
Though one could envisage· that a machine would be capable of 
performing the same Inferences, there exists so far no serious 
proposal for a scheme that would make a machine perform such 
Inferences In .the same or similar circumstances under which an 
Intelligent human being would perform them. (pp. 160-161) 

Bar-Hillel despaired of ever achieving satisfactory machine translation. His sentiments 
were not universally shared, but In 1966 they came to prevail officially in the so-called 
ALPAC report (NRC, 1966). This report, made to the National Research Council after a year 
of study by Its· Automatic Language Processing Advisory Committee, resulted in the 
discontinuance of funding for most machine transatlon projects. The report stated: 

"Machlne Translation" presumably means going by algorithm f.rom 
machine-readable source text to useful target text, without recourse 
to human translation or editing. In thIs context, there has been no 
machine translation of general scientific text, and none Is in Immediate 
prospect. (p. 19) 

Examples of the output of several MT systems were included In the reportj they showed 
little Improvement from the results Oettinger had obtained ten years before. Even wIth 
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postediting the output was found to be generally of poorer quality, and sometimes slower and 
more expensive to obtain, than entirely human translation. 

Current Status 

The conclusions of the ALPAC report were directed only against funding for MT as a 
practical tool. Support for computational linguistics, evaluated In terms of its scientific worth 
rather than Its Immediate utility, was to be continued. It was also recognized that there had 
been fundamental changes In the study of linguistics, partly due to cross-fertiliZation with 
computational activities. 

Both linguistics and computer science have made contributions relevant to the reVival 
of MT research. A signal event was the publication in 1957 of Noam Chomsky's Syntactic 
Structures, In which transformational grammars were Introduced., This book spurred many new 
developments in the analysis of syntax. Concurrently, new computer languages and new 
types of data structures were being explored by computer scientists, leading to the creation 
(in 1960) of both ALGOL and LISP, with their features of lists, recursion, etc. These 
languages were the first In a series of languages geared more toward symbol manipulation 
than "number crunching," as discussed in the AI Programming Languages Section of the 
Handbook. In artificial Intelligence, the 1960s saw considerable progress toward natural 
language understanding, such as the development of programs that carried on a dialogue of 
sorts with the user: BASEBALL, SAD-SAM, STUDENT, SIR, etc., which are described In Article 
F1. 

The early 1970s have seen some revival of interest In machine translation, partly 
because some progress has been made in the internal representation of knowledge. The 
programs of Wilks (Article Fa) and Schank (Articles F5 and F6) can both perform translation 
tasks. They begin by translating input sentences Into internal data structures based on 
semantic primitives, which are Intended to be "language Independent"--elements of meaning 
that are common to all natural languages. The Internal representation can be manipulated 
relatively easily by procedures that carry out inferences; It forms in effect an internal 
language or interlingua for modeling the world. The data structure(s) derived from an input 
sentence could be considered to be a translation of that sentence into Weaver's Machinese. 
The reverse derivation (I.e., Machinese to, say, French) then Is a realization, on some level. 
of Weaver's Idea (see Article E for research on the generation of text.) 

It is difficult to evaluate the practicality of machine translation. In some applications It 
is worthwhile to have even a very bad translation, if it can be done by a computer in a much 
shorter time (or much more cheaply) than by humans. In others (such as the preparation of 
Instruction manuals) It Is possible to deal with Input texts that use a specially restricted form 
of the language, thereby making translation easier. There Is also the possibility of machine­
human Interactive translating, In which the output of the .computer Is used not by the ultimate 
reader but by someone engaged in producing the final translation. The computer can be used 
to do sub-tasks like dictionary lookup, or can produce more-or-Iess complete translations 
that are then checked and polished by a human post-editor, who perhaps does not know the 
original language. 

At the current time, computers are being used in these ways in a number of translation 
systems. There Is also a renewed Interest In fully automatic translation, based on some of 
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the the techniques for dealing with meaning described below. However, It Is not clear 
whether we are yet ready to reattack the goal of "fully automatic high quality translation." 
Much current work on language Is based on a belief that deep understanding of what is being 
said Is vital to every language use. Applied to translation, this means that we must first 
have a program that understands a subject before we can translate material about that 
subject. Since our ability to model large areas of knowledge Is stili primitive, this places a 
strong limit on the scope of material we might handle. 

References 
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C. Grammars 

A grammar of a language Is a scheme for specifying the sentences ·allowed in the 
language, Indicating the rules for combining words Into phrases and clauses. In natural 
language processing programs, the grammar Is used in parsing to "pick apart" the sentences 
In the Input to the program to help determine their meaning and thus an appropriate response. 
Several very different types of grammars have been used In NL programs and are described 
In the articles which follow. ' 

C 1. Formal Grammars 

One of the more important contributions to the study of language was the theory of 
formal languages Introduced by Noam Chomsky In the 1950s. The theory has developed as a 
mathematical area, not a linguistic one, and has strongly Influenced computer science in the 
design of computer programming languages (artificial languages). Nevertheless, It Is useful In 
connection with natural language understanding systems, both 8S 8 theoretical and a practical 
tool. 

Definitions 

A formal language Is defined as a (possibly Infinite) set of strings of finite length formed 
from a finite vocabulary of symbols. (For example, the strings might be sentences composed 
from a vocabulary of words.) The grammar of a formal language Is specified in terms of the 
following concepts: 

1. The syntactic categories, such as <SENTENCE) and <NOUN PHRASE>. These 
syntactic categories are referred to as nonterminal symbols or variables. Notationaliy, the 
nontermlnals of a grammar are often Indicated by enclosing the category names In angle 
brackets, as above. 

2. The terminal symbols of the language, for example the words in English.' The 
terminal symbols are to be concatenated Into strings called sentences (If the terminals are 
words). A language Is then Just a subset of the set of all the strings that can be formed by 
combining the terminal symbols In all possible ways. Exactly which subset Is permitted in the 
language Is specified by the rewrite rules: 

3. The rewrite rules or productions specify the relationships that exist between certain 
strings of terminals and nonterminal symbols. Some examples of productions are: 

<SENTENCE) -> <NOUN PHRASE) <VERB PHRASE) 
<NOUN PHRASE> -> the <NOUN> 

<NOUN> -) dog 
<NOUN> -> cat 

<VERB PHRASE> -) runs 

The first production says that the (non-terminal) symbol (SENTENCE> may be "rewritten" as 
the symbol (NOUN PHRASE) followed by the symbol <VERB PHRASE>. The second permits 
<NOUN PHRASE) to be replaced by a string composed of the word the, which Is a terminal 
symbol, followed by the nontermlnal <NOUN). The next two allow <NOUN) to be replaced by 

o 
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either dog or cat. Since there are sequences of productions permitting <NOUN PHRASE> to 
be replaced by the dog or the cat, the symbol <NOUN. PHRASE) Is said to generate these two 
terminal strings. Finally, <VERB PHRASE> can be replaced by the terminal runs. 

4. The start symbol. One nonterminal Is distinguished and called the "sentence" or 
"start" symbol, typically denoted <SENTENCE) or §. The set of strings of terminals that can 
be derived from this distinguished symbol, by applying sequences of productions, is called 
the language generated by tile grammar. In our simple example grammar, exactly two sentences 
are generated: 

The cat runs. 
The dog runs. 

The Important aspect of defining languages formally, from the point of view of computational 
linguistics and natural language processing, Is that If the structure of the sentences is well 
understood, then a parsing algorithm for analyzing the Input sentences will be relatively easy 
to write (see Section D1 on parsing). . 

The Four Types of Formal Grammars 

Within the framework outlined above, Chomsky delineated four types of grammars, 
numbered 0 through 3. The most general class of grammar Is type 0, which has no 
restrictions on the form that rewrite rules can take. For successive grammar types, the form 
of the rewriting rules allowed Is Increasingly restricted, and the languages that are 
generated are correspondingly simpler. The Simplest formal languages (types 2 and 3) are, 
as it turns out, Inadequate for describing the complexities of human languages. (See Article 
C2 for a fuller discussion.) On the other hand, the most general formal languages are difficult 
to handle computationally. There Is ari intimate and interesting connection between the 
theory of formal languages and the theory of computational complexity (see Hopcroft & 
Ullman, 1969). The following discussion gives a formal account of the different restrictions 
applied in each of the four grammar types. 

formally, a. grammar G is defined by a quadruple (VN, VT, P, S) representing the 
nontermlnals, terminals, productions, and the start symbol, respectively. The symbol ~, for 
"vocabulary," Is used to represent the union of the sets VN and VT, which are assumed to 
have no elements In common. Each production In E Is of the form 

X -) Y 

where ~ and y.. are strings of elements In ~, and ~ Is not the empty string. 

Type O. A type-O grammar Is defined as above: a set of productions over a given 
vocabulary of symbols with no restrictions on the form of the productions. It has been shown 
that a language can be generated by a type-O grammar If and only if it can be recognized by 
a Turing machine; that Is, we can build a Turing machine which will halt In an ACCEPT state 
for exactly those Input sentences .that can be generated by the lang'uage. 

Type 1. A type-O grammar Is also of type 1 If the form of the rewrite rules is 
restricted so that, for each production X -> Yof the grammar, the right-hand side y.. contain~ 

o 
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at least as many symbols as the left-hand side lS,. Type-1 grammars are also called context­
sensitive grammars. An example of a context-sensitive grammar with start symbol § and 
terminals A, Q, and £ Is the following: 

S -> aSBC 
S -> aBC 

CB -> BC 
aB -> ab 
b8 -> 'bb 
bC -> be 
eC -> ce 

The language generated by this grammar Is the set of strings abc, aabbcc, aaabbbccc .... 
This language, where each symbol must occur the same number of times and must appear In 
the right position In the string, cannot be generated by any grammar of a more restricted 
type (I.e., type 2 or type 3). 

An alternate (equivalent) definition for context-sensitive grammars Is that the 
productions must be of the form 

uXv -> uYv 

where lS, Is a single nontermlnal symbol; y and ~ are arbitrary strings, possibly empty, of 
elements of ~; and y.. Is a non empty string over~. It can be shown that this restriction 
generates the same languages as the first restriction, but this latter definition clarifies the 
term context-sensitive: ~ may be rewritten as y.. only In the context of y and ~. 

Type 2. Context-free grammars or type-2 grammars are grammars In which each 
production must have only a single non-terminal symbol on Its left-hand side. For example, a 
context-free grammar generating the sentences ab, aabb, aaabbb • .. Is: 

S -> aSb 
S -> ab 

Again, it is not possible to write a context-free grammar for the-language composed of the 
sentences abc, aabbcc, aaabbbccc ... --having the same number of £'s at the end makes 
the language more complex. The simpler language here, In turn, cannot be generated by a 
more restricted (type-3) grammar. 

An example of a context-free grammar that might be used to generate some sentences 
In natural language Is the following: 

<SENTENCE> -> <NOUN PHRASE> <VERB PHRASE> 
<NOUN PHRASE> -> <DETERMINER> <NOUN> 
<NOUN PHRASE> -> <NOUN> 
<VERB PHRASE> -> <VERB> <NOUN PHRASE> 

<DETERMINER> -> the 
<NOUN> -> boys 
<NOUN> -> apples 
<VERB> -> eat 

In this example, the, boys, apples, and eat are the terminals In the language and 
(SENTENCE> Is the start symbol. 
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An Important property of context-free grammars In their use in NL programs is that 
every derivation can conveniently be represented as a tree, which can be thought of as 
dl.splaylng the structure of the derived sentence. Using the grammar above, the sentence 
lithe boys eat apples" has the following derivation tree: 

<SENTENCE> 

<NOUN PHR'SE) <~ERB 
/ \ / 

<DETERMINER) <NOUN) <VERB) 
I I I 

the boys eat 

PHRASE> 

<~OUN PHRASE) 

<N6UN) 
I 

apples 

Of course, lithe apples eat boys" Is also a legal sentence In this language. Derivation trees 
can also be used with context-sensitive (type-1) grammars, provided the productions have 
the alternate form uXv -) uYv, described above. For this reason, context-free and'context­
sensitive grammars are often called phrase-structure grammars (see Chomsky, 1969, pp. 143-
144, and Lyons, 1968, p. 236). 

Type 3. Finally, If every production Is either of the form 

x -> a Y or X -) a 

where !:S. and yare single variables and ! Is a single terminal, the grammar Is a type-3 or 
regular grammar. For example, a regular grammar can be given to generate the set of strings 
of one or more ~s followed by one or more !!s (but with no guarantee of an equal number of 
~s and Q.s): 

S -> as 
S -> aT 
T -> b 
T -> bT 

Discussion: Language and Computational Algorithms 

Because of the Increasingly restricted forms of productions In grammars of type 0, 1, 2, 
and 3, each type Is a proper subset of the type above It in the hierarchy. A corresponding 
hierarchy exists for formal languages. A language Is said to be of type i If it can be 
generated by a'type-I grammar. It can be shown that languages exist that are context-free 
(type 2) but not regular (type3)i context-sensitive (type 1) but not context-freei and 
type 0 but not context-sensitive. Examples of the first two have been given above. 

For regular and context-free grammars, there are practical parsing algorithms to 
determine whether or not a ,given string Is an element of the language and, If so, to assign to 
it a syntactic structure in the form of a derivation tree. Context-free grammars have 
cons1derable application to programming languages. Natural languages, however, are not 
generally context-free (Chomsky,1963i Postal, 1964), and they also contain features that 
can be handled more conveniently, If not exclusively, by a more powerful grammar. An 
example Is the requirement that the subject and verb of a sentence be both singUlar or both 
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plural. Some of the types of grammars and parsing algorithms that have been explored as 
more suitable for natural language are discussed In the articles that follow. 

References 

For a general discussion of the theory of formal grammars and their relation to automata 
theory, see Hopcroft & Ullman (1969). Their use In NL research Is discussed in Winograd 
(forthcoming ). 
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C2. Transformational Grammars 

The term transformational grammar refers to a theory of language introduced by Noam 
Chomsky In Syntactic Structures (1 957). In the theory an utterance is characterized as the 
surface manifestation of a "deeper" structure representing the "meaning" of the sentence. 
The deep structure can undergo a variety of "transformations" of form (word order, endings, 
etc.) on Its way up, while retaining Its essential meaning. The theory assumes that an 
adequate grammar of a language'like English must be a generative grammar, that Is, that it 
must be a statement of finite length capable of (a) accounting for the Infinite number of 
possible sentences In the language and (b) assigning to each a structural description that 
captures the underlying knowledge of the language possessed by an Idealized native user. A 
formal system of rules Is such a statement; It "can be viewed as a device of some sort for 
producing the sentences of the language under analysis" (Chomsky, 1957, p. 11). The 
operation of the device Is not Intended to reflect the processes by which people actually 
speak or understand sentences, Just as a formal proof in mathematics does not purport to 
reflect the processes by which the proof was discovered. As a model of abstract knowledge 
and not of human behavior, generative grammar Is said to be concerned with competence, as 
opposed to performance. 

The Inadequacy of Phrase-structure Grammars 

Given that a grammar is a generative rule-system, It becomes a central task of 
linguistic theory to discover what the rules should look like. In Syntactic Structures (1957) 
and elsewhere (see Chomsky, 1963, Postal, 1964), it was shown that English is neither a 
regular nor a context-free language. The reason is that those restricted types of grammars 
(defined In Article el) cannot generate certain common constructions In everyday English, 
such as the one using "respectively": 

Arthur, Barry, Charles, and David are the husbands of Jane, Joan, Jill, 
and Jennifer, respectively. 

It was not determined whether a more powerful (I.e., context-sensitive) grammar could be 
written to generate precisely the sentences of English; rather, such a grammar was rejected 
for the following reasons. . 

.. . 

1. It made the description of English unnecessarily clumsy and complex--for 
example, in the treatment required for conjunction, auxiliary verbs, and 
passive sentences. 

2. It assigned Identical structures (derivation trees) to sentences that are 
understood differently, as In the pair: 

The picture was painted by a new technique. 
The picture was painted by a new artist . 
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3. It provided no basis for Identifying as similar sentences having different 
surface structures but much of their "meaning" In common: 

John ate an apple. 
Old John eat an apple? 
What did John eat? 
Who ate an apple? 
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The failure of phrase-structure grammar to explain such similarities and differences was 
taken to Indicate the need for analysis on a higher level, which transformational grammar 
provides. 

Transformational Rules 

In Syntactic Structures, Chomsky proposed that grammars should have a tripartite 
organization. The first part was to be a phrase-structure grammar generating strings of 
morphemes representing simple, declarative, active sentences, each with an associated 
phrase marker or derivation tree. Second, there would be a sequence of transformational 
rules rearranging the strings and adding or deleting morphemes to form representations of the 
full variety of sentences. Finally, a sequence of morphophonemic rules would map each 
sentence representation to a string of phonemes. Although later work has changed this 
model of the grammar, as well as the content of the transformational rules, it provides a basis 
for a simple Illustration. 

Suppose the phrase-structure grammar Is used to produce the following derivation tree: 

SENTENCE 

NOUN PHRAS{ 'vERB 

NP-SI~GULAR v{RB 

DETERMINE' ~OUN AUx' 'v 
I I I I 

the boy TENSE eat 

PHRASE 

\OUN PHRASE 

N~-PlURAL 
DETERMINE' N6uN \ 

I I 
the apple s 

To generate "the boy ate the apples,1I one would apply transformations mapping IITENSE + 
eat ll to lIeat + PAST"j a morphophonemic rule would then map "eat + PASTil to ate. To derive 
"the boy eats the apples,1I the transformational rule used would select present tense and. 
because the verb follows a singular noun phrase, would map "TENSE + eat ll to "eat + !." It is 
noteworthy that the transformational rule must look at nontermlnal nodes In the derivation 
tree to determine that "the boyll Is in fact a slngiJlar noun phrase. This example illustrates 
one respect in which transformational rules are broader than the rules of a phrase-structure 
grammar. 

The transformations mentioned so far are examples of Obligatory transformations, insuring 
agreement In number of the subject and the verb. To obtain lithe apples were eaten by the 
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boy," it would be necessary first to apply the optional passive transformation, changing a 
string analyzed as 

NOUN,.PHRASE-1 + AUX + V + NOUN-PHRASE-2 
to 

NOUN-PHRASE-2 + (AUX + be) + (en + V) + by + NOUN-PHRASE-1 

In other words, this optional transformation changes lithe boy TENSE eat the apples" to "the 
apples TENSE be (en eat) by the boy," and then forces agreement of the auxiliary verb with 
the new plural subject. Further obligatory transformations would yield "the apples be PAST 
eaten by the boy" (wh~re "be + PAST," as opposed to "be + §. + PAST," Is ultimately m'apped 
to were). The ordering of transformational rules Is thus an essential feature of the grammar. 

Revisions to the Model 

In Aspects of the Theory of Syntax (1965), Chomsky made several revisions to the 
model presented In Syntactic Structures. The version outlined In the more recent ~ook has 
been called the "standard theory" of generative grammar and has served as a common 
starting-point for further discussion. fn the standard theory (as summarized In Chomsky, 
1971), sentence generation begins from a context-free grammar generating a sentence 
structure and Is followed by a selection of words for the structur~ from a lexicon. The 
context-free grammar and lexicon are said to form the base of the grammar; their output is 
called a deep structure. A system of transformational rules maps deep structures to sur/ace 
structures; together, the base and transformational parts of the grammar form It.s syntactic 
component. The sound of a sentence Is determined by Its surface structure, which Is 
Interpreted by the phonological component of the grammar; deep structure, Interpreted by the 
semantic component, determines sentence meaning. It follows that the application of 
transformatlcin~1 ruies to deep structures must preserve meaning: This was the Katz-Postal 
hypothesi~, which required enlarging the generative capacity of the base and revising many 
of the transformational rules suggested earlier (Katz & Postal, 1964). 

The place of the semantic component In the standard theory has been the major source 
of current Issues. For example, the following pairs of sentences have different meanings, 
but their deep structl:'res, In the standard theory, are the same. . 

Not many arrows hit the target. 
Many arrows didn't hit the target. 

Each C?f Mary's sons loves his brothers. 
His brother~ are loved by each at Mary's sons. 

Chomsky's response w8.s to revise the standard theory.so that both the deep structure of a 
sentence and Its subsequent transformations are input to the semantic component (Chomsky, 
1971). He exempllfi.e.s. jhe position of Interpretive semantics, which keeps the syntactic 
component an autonomous 'system.. The opposing view, called generative semantics, Is that 
syntax and semantics cannot be sharply separated and, consequently, that a distinct level 
of syntactic deep· structure doe.s not exist. (This Issue Is discussed In Charnlak& Wilks, 
1976.) .. .. 
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There have been a number of developments within the theory of transformational 
grammar since the work reviewed here, and current debates have called Into question many 
of the basic assumptions about the role of transformations In a grammar. For current 
discussions of these Issues, see AkmaJlan, Cullcover and Wasow (1977) and Bresnan 
( 1978). 
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C3, Systemic Grammar 

Systemic grammar, developed by Michael Halliday and others at the University of 
London, is a theory within which linguistic structure as related .to the function or use of 
language, often termed pragmatics, Is studied. According to Halliday (1961, p. 141), an 
account of linguistic structure that pays no attention to the functional demands we make on 
language is lacking in perspicacity, since It offers no principles for explaining why the 
structure Is organized one way rather than another. This viewpoint Is In contrast to that of 
transformational grammar, which has been concerned with the syntactic structure of an 
utterance apart from Its Intended use. 

The Functions of Language 

Halliday. distinguishes three general functions of language, all of which are ordinarily 
served by every act of speech. 

The ideational function serves for the expression of content. It says something about 
the speaker's experience of the world. Analyzing a clause in terms of its ideational function 
involves asking questions like: What kind of process does the clause describe--an action, a 
mental process, or a relation? Who Is the actor (the logical subject)? Are there other 
participants in the process, such as goal (direct object) or beneficiary (indirect object)? Are 
there adverbial phrases expressing circumstances like time and place? The organization of 
this set of questions Is described by what Halliday calls the transitivity system of the grammar. 
(This is related to the Ideas of case grammars discussed In Article C4.) 

The interpersonal function relates to the purpose of the utterance. The speaker may be 
asking a question, answering one, making a request, giving Information, or expressing an 
opinion. The mood system of English grammar expresses these possibilities In terms of 
categories such as statement, question, command, and exclamation. 

The textual function reflects the need for coherence In language use (e.g., how a given 
sentence Is related to preceding ones). Concepts used for. analysis in textual terms 
Include: (1) theme, the element that the speaker chooses to put at the beginning of a 
clausej and (2) the distinction between what Is new In a message and what Is glven--the 
latter being the point of contact with what the hearer already knows. 

Categories of Systemic Gramm.,. 

The model of a grammar proposed by Halliday has four primitive categories: 

1. The units of language, which form a hierarchy. In English, these are the sentence, 
clause, group, word, and morpheme. The "rank" of a unit refers to its position in the 
hierarchy. 

2. The structure of units. Each unit Is composed of one or more units at the rank 
below, and each of these components fills a particular role. The English clause, for example, 
Is made up of four groups, which serve as subject, predicator, complement, and adjunct. 
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3. The classification of units, as determined by the roles to be filled at the level 
above. The classes of English groups, for Instance, are the verbal, which serves as· 
predicator; the nominal, which may be subject or complement; and the adverbial, which fills 
the adjunct function. 

4. The sxstem. A system Is a list of choices representing the options available to the 
speaker. Since some sets of choices are available only If other choices have already been 
made, the relationship between systems Is shown by combining them Into networks, as In the 
simple example below: 

I 
imperative . 

independent -+ ' 
. '. - indicat ive _~Ideclarat ive 

clause -
dependent I interrogative 

The interpretation Is that each clause Is Independent or dependent; If independent, It is 
either imperative or Indicative; and If either Indicative or dependent, then it is either 
declarative or Interrogative. In general, system networks can be defined for units of any 
rank, and entry to a system of choices may be made to depend on any Boolean combination 
of previous choices. 

Conclusion 

Sys&mic grammar views the act of speech as a simultaneous selection from among a 
large number of Interrelated options, which represent the "meaning potential" of the 
language. If .ystem networks representing these options are suitably combined and carried 
to enough detail, they provide a way of writing a generative grammar quite distinct from that 
proposed by transformational grammar (see Hudson, 1971, 1976; McCord, 1975; and Self, 
1975). Furthermore, this formalism has been found more readily adaptable for use in natural 
language understanding programs In AI (see especially Winograd's SHRDLU system, Article 
F4). 
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C4. Case Grammars 

Case systems, as used both in modern linguistics and in artificial intelligence, are 
descendants of, the concept of case that occurs in traditional grammar. Traditionally, the case 
of a noun was denoted by an Inflectional ending Indicating the, noun's role in the sentence . 
. Latin. for example, has at least six cases: the nominative, accusative, genitive, dative, 
'ablative, and vocative. The rules for case endings make the meaning of a latin sentence 
almost Independent of word order: The function of a noun depends on its inflection rather 
than its position in the sentence. Some present-day languages, Including Russian and 
German, have similar Inflection systems, but English limits case forms mainly to the personal 
pronoun, as in 1, !!!y, me, and to the possessive ending 's. Case functions for nouns are 
indicated in English by usIng word order or by the choice of preposition to precede a noun 
phrase--as in "of the people, ~ the people, and for the people." 

The examples above describe what have been called "surface" cases; they are 
aspects of the surface structure of the sentence. Case systems that have attracted more 
recent attention are "deep" cases, proposed by Fillmore (1968) In his paper The Case for 
Case, as a revision to the framework of transformational grammar. The central Idea Is that the 
proposition embodied In a simple sentence has a deep structure consisting of a verb (the 
central component) and one or more noun phrases. Each noun phrase Is associated with the 
verb In a particular relationship. These relationships, which Fillmore characterized as 
"semantically relevant syntactic relationships," are caHed cases. For example, in the 
sentence 

John opened the door with the key, 

John would be the AGENT of the verb opened, the door would be the OBJECT, and the key 
would be the INSTRUMENT. For the sentence ' 

The door was opened by John with the key, 

the case assignments would be the same, even though the aurfaca structurahas changed. 

It was important to Fillmore's theory that the numb.r of possible case relationships be 
small and fixed. Fillmore (1971 b) proposed the following cases: 

Agent -:.. the instigator of the event. 
Counter-Agent -- the force or resistance against which the action Is 

carried out. 
Object 

Result 

Instrument 

Source 
Goal 
Experlencer 

-- the entity that moves or changes or whose position 
or existence Is In consideration. 

-- the entity that comes into existence as a result of 
the action. 

-- the stimulus or Immediate, physical cause of an 
event. 

-- the place from which something moves. 
-- the place to which something moves. 
-- the entity which receives or accepts or 

experiences or undergoes the effect of an Bctkln. 

,',1','1 •••. , 
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Still another proposal (Fillmore, 1971 a) recognizes 9 cases: Agent, Experiencer, Instrument, 
Object, Source, Goal, Location, Time, and Path. 

Verbs were classified according to the cases that could occur with them. The cases 
for any particular verb formed an ordered set called a case frame. For example, the verb 
"open" was proposed to have the case frame 

[OBJECT (INSTRUMENT) (AGENT)] 

Indicating that the object Is obligatory In the deep structure of the sentence, whereas it Is 
permissible to omit the Instrument ("John opened the door") or the agent ("The key opened 
the door"), or both ("The door opened"). Thus, verbs provide templates within which the 
remainder of the sentence can be understood. 

The Case for Case 

The following are some of the kinds of questions for which case analysis was intended 
to provide answers: 

1. In a sentence that Is to contain several noun phrases, what determines 
which noun phrase should be the subject In the surface structure? Cases 
are ordered, and the highest ranking case that Is present becomes the 
subject. 

2. Since one may say "Mother Is baklngll or "The pie Is baking," what is wrong 
with "Mother and the pie are baking"? Different cases may not be 
conjoined. 

3. What Is the preCise relationship between pairs of words like "buy" and 
"sell" or "teach" and "learn"? They have the same basic meaning but 
different case frames. 

One way of looking at deep cases is to view the verb as a predicate taking an 
appropriate array of arguments. Fillmore has extended the class of predicates to Include 
other parts of speech, such as nouns and adjectives, as well as verbs. Viewing warm as a 
predicate, for example, enabled case distinctions to account for the differences among the 
followi~g sentences: 

I am warm. 
This jacket Is warm. 
Summer is warm. 
The room is warm. 

The Representation of Case Frames 

[experiencer] 
[Instrument] 
[time] 
[location] 

In artificial Intelligence programs, such predicates and their arguments can readily be 
equated to nodes In semantic networks; and the case relations, to the kinds of links between 
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them. Systems making such Identifications Include those of Simmons (1973), Schank (1975), 
Schank & Abelson (1977), and Norman & Rumelhart (1975). Semantic nets and related work 
on semantic primitives and frames are discussed in the section on Knowledge Representation 
and In Articles F5 and F6 which describe the MARGIE and SAM systems. . 

Many other systems using case representations exist. As pointed out in an extensive 
survey by Bruce (1975), considerable variation exists In both the sets of cases adopted and 
the ways in which case representation is used. The number of cases used varies from four 
or five (Schank) to over thirty (Martin). Bruce's proposal on criteria for choosing cases, 
which departs significantly from Fillmore's original goal of finding a small, fixed set of 
relationships, is that: 

A case is a relation which Is "important" for an event In the context in 
which It Is described. (Bruce, 1975) 

Case notation has been used to record various levels of sentence structure. As 
Fillmore Introduced It, within the transformational grammar framework, deep cases were 
"deep" In the sense that "John opened the door" and "the door was opened by John" were 
given the same representation. They can also be viewed as relatively superficial, however, 
In, that "John bought a car from Bill" and "Bill sold a car to John" could have distinct 
representations since they have different verbs. At this level, cases have been used in 
parsing (Wilks, 1976; Taylor & Rosenberg, 1975); in the representation of English 
sentences, as opposed to their underlying meanings, as discussed above (Simmons, 1973); 
and In text generation (see Article E). 

Systems using case at the deepest level, on the other hand, may represent the 
meaning of sentences In a way that collapses buy and sell, for example, Into a single 
predicate (Schank, 1975; Norman & Rumelhart, 1975). A typical problem attacked by these 
systems Is paraphrasing, where Identifying sentences with the same deep structure Is the 
goal. Schank (1975) also requires that all cases be filled, even If the Information required 
was not explicitly given In the sentences represented. Charniak (1975) suggests that the 
appropr,iate use of case at this level of representation is In inferencing: The "meaning" of a 
case would thel) be the set of Inferences one could draw about an entity knowing only Its 
case. In the view of some writers, however, the function of case In natural language 
understanding systems Is usually only as a convenient notation (see Charnlak, 1975; Welln, 
1975). 
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D. Parsing 

D 1. Overview of Parsing Techniques 

Parsing Is the "dellnearization" of linguistic input, that Is, the use of syntax and other 
sources of knowledge to determine the functions of the words In the Input sentence in order 
to create a data structure, like a derivation tree, that can be used to get at the "meaning" of 

• the sentence. A parser can be viewed as a recursive pattern matcher seeking to map a string 
of words onto a set of meaningful syntactic patterns. For example, the sentence "John 
kissed Mary" could be matched to the pattern: 

SENTENCE 
SUBJE{T }REDICATE 

VER' ~BJECT 
The set of syntactic patterns used Is determined by the grammar of the Input language. 
(Several types of grammars are described In the articles In Section C.) In theory, by applying 
a comprehensive grammar, a parser can decide what Is and what Is not a grammatical 
sentence and can build up a data structure corresponding to the syntactic structure of any 
grammatical sentence It finds. All natural language processing computer systems contain a 
parsing component of some sort, but the practical application of grammars to natural 
language has proven difficult. 

The design of a parser Is a complex problem, both In theory and Implementation. The 
first part of the design concerns the specification of the grammar to be used. The rest of 
the parsing system Is concerned with the method of use of the grammar, that is, the manner in 
which strings of words are matched against patterns of the grammar. These considerations 
run Into many of the general questions of computer science and artificial Intelligence 
concerning process control and manipulation of knowledge. 

General Issues of Parser Design 

The design considerations discussed below overlap; that Is, a .declslon in one dimension 
affects other design decisions. Taken together they present a picture of the variety of 
issues Involved In natural language parsing. 

Uniformity. Parsers may represent their knowledge about word meanings, grammar, etc., 
with a single scheme or with specialized structures for specific tasks. The representation 
scheme affects the complexity of the system and the application of knowledge during 
parsing. If rules and processes are based on specialized knowledge of what the Input to the 
parser will contain, it Is possible to do things more quickly and· efficiently. On the other hand, 
if one has a simple uniform set of rules and a consistent algorithm for applying them, the job 
of writing and modifying the language understanding system is greatly simplified, since .all the 
knowledge In the system Is uniformly explicated. In general, there Is a trade-off between 
efficiency and uniformity; an algorithm specially designed for only one language can perform 
more efficiently than one that could uniformly handle any language. 



26 Natural Language 

Multiple Sources of Knowledge. Parsing, as originally developed (and still used in 
programming language compliers), was based purely on syntactic knowledge--knowledge 
about the form of sentences allowed in the language. However, it is possible to design 
systems In which syntax-based parsing is Intermixed with other levels of processing, such 
as word recognition and use of word meanings. Such methods can alleviate many of the 
problems of language complexity by bringing more information to bear. Present systems tend 
toward such intermixed structures, both for effective performance and more psychologically 
valid modeling of human language understanding (see, for example, Article F4 on SHRDlU and 
the extensive discussion of multiple sources of knowledge in Article Applicalions.C3 on the 
SOPHIE system and the blackboard model in the Speech Understanding section). 

Precision. Another major trade-off involved in parser design is precision vs. flexibility. 
Humans are capable of understanding sentences that are not quite grammatical; eyen if a 
person knows that a sentence Is "wrong" syntactically, he can often understand it and 
assign it a structure (and more importantly, a meaning). Some natural language processing 
systems, such as PARRY (Colby, Weber, & Hilf, 1971) and ELIZA (Article F1) have been 

. designed to incorporate this kind of flexibility. By looking for key words and using loose 
grammatical criteria, these systems can accept far more sentences than would a precise 
parser. However, these "knowledge-poor" flexible parsers lose many benefits of the more 
complete analysis possible with a precise system, since they rely on vaguer notions of 
sentence meaning than a precise system. While they reject less often, flexible systems 
tend to misinterpret more often. Many systems attempt to use additional knowledge sources, 
especially domain-specific knowledge, to Increase flexibility while retaining precision. 

Type of structure returned. As mentioned, parsing Is the process of assigning 
structures to sentences. The form of the structure can vary, from a representation that 
closely resembles the surface structure of the sentence to a deeper representation in which 
the surface structure has been extensively modified. Which form Is chosen depends upon 
the use to which the parse structure will be put. Currently, most work In natural language 
favors the deep structure approach. 

These four Issues--unlformlty, multiple knowledge sources, precision, and level of 
representation--are very general questions and are dealt with In different ways by different 
systems. In implementing a parser, after settling such general design questions, natural 
.Ia.nguage programmers run up against another. set of problems Involving specific parsing 
strategies. 

Parsing Strategies 

Backtracking versus parallel processing. Unfortunately for computational linguists, 
the elements of natural languages do not always possess unique meanings. For example, In 
going through a sentence the parser might find a word that could either be a noun or a verb, 
like "can," or pick up a prepositional phrase that might be modifying any of a number of the 
other parts of the sentence. These and many other ambiguities In natural languages force 
the parser to make choices between multiple alternatives as It proceeds through a sentence. 
Alternatives may be dealt with all at the same time, via parallel processing, or one at a time 
using a form of backtracking--backlng up to B previous choice-point In the computation and 
trying again (see Article AI Languages.8S on control mechanisms In AI programming languages). 
Both of these methods require a significant amount of bookkeeping to keep track of the 

'-
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multiple possibilities: all the ones being tried, In the case of parallel processing; or all the 
ones not. yet tried, In the case of backtracking. Neither strategy can be said to be Innately 
superior, though the number of alternatives that are actually tried can be significantly 
reduced when backtracking Is guided by "knowledge" about which of the choices are more 
likely to be correct--called heuristic knowledge (see Search.Overview). 

Top-down versus bottom-up. In deriving a syntactic structure, a parser can operate 
from the goals, that Is, the set of possible sentence structures (top-down proceSSing), or from 
the words actually In the sentence (bottom-up processing). A strictly top-down parser begins 
by looking at the rules for the desired top-level structure (sentence, clause, etc.); It then 
looks up rules for the constituents of the top-level structure, and progresses until a 
complete sentence structure Is built up. If this sentence matches the Input data, the parse 
Is successfully completed, otherwise, It starts back at the top again, generating another 
sentence structure. A bottom-up parser looks first for rules In the grammar to combine the 
words of the Input sentence Into constituents of larger structures (phrases and clauses), 
and continues to try to recombine these to show hawaII the words In the Input form a legal 
sentence In the grammar. Theoretically, both of these strategies arrive at the same final 
analysis, but the type of work required and the working structures used are quite different. 
The Interaction of top-down and bottom-up process control Is a common problem In AI and Is 
not restricted natural language programs (see, for example, the discussion In the Speecn.A). 

Choosing how to expand or combine. With either a top-down or bottom-up technique, 
It Is necessary to decide how words and constituents will be combined (bottom-up) or 
expanded (top-down). The two basic methods are to proceed systematically In one direction 
(normally left to right) or to start anywhere and systematically look at neighboring chunks of 
Increasing size (this method Is sometimes called island driving). Both these methods will 
eventually look at all possibilities, but the choice of how to proceed at this level can have a 
significant effect on the efficiency of the parser. This particular feature is espeCially 
relevant to language processing In the presence of input uncertainty, as occurs, for example, 
In the speech understanding systems. 

Multiple knowledge sources. As mentioned above, another important design decision 
that was especially apparent In the speech understanding systems was the effective use of 
multiple sources of knowledge. Given that there are a number of possibly relevant sets of 
facts to be used by the parser (phonemic, lexical, syntactic, semantic, etc.), which do you 
use when? 

The Issues discussed here under parsing strategies are all questions of efficiency. They 
will not In general affect the final result if computational resources are unlimited, but they 
will affect the amount of resources expended to reach It. 

Actual Parsing Systems 

Every natural language proc~ssing program deals with these seven issues in its own 
fashion. Several types of parsers have developed as experience with natural language 
systems increses. 

Template matching. Most of the early NL programs (e.g., SIR, STUDENT, ELIZA) 
performed "parslng" by matching their Input against a series of predefined templ~tes--bindlng 

\ 
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the variables of the template to corresponding pieces of the Input string (see Article Fl). 
This approach was successful, up to a point--glven a very limited topic of discussion, the 
form of many of the Input sentences could be anticipated by the system IS designer who 
Incorporated appropriate templates. However, these systems were ad hoc and somewhat 
Inextenslble, and the template matching was soon abandoned In favor of more sophisticated 
methods. 

Simple phrase-structure grammar parsers. These parsers make use of a type of 
context-free grammar with various combinations of the parsing techniques mentioned above. 
The advantage of a phrase-structure grammar is that the structures derived correspond 
directly to the grammar rules; thus, the subsequent semantic processing is simplified. By 
using large grammars and skirting linguistic Issues that are outside their limitations (such as 
some types of agreement), a phrase-structure grammar parser can deal with a moderately 
large subset of English. Phrase-structure grammars are used primarily to produce systems 
(like SAO';SAM) with useful performance on a limited domain, rather than to explore more 
difficult language-processing Issues. 

Transformational grammar parsers. These parsers attempt to extend the notions of 
transformational grammar Into a parsing system. Transformational grammar Is a much more 
comprehensive system than phrase-structure grammar, but it loses phrase-structure IS direct, 
rule-to-structure correspondence. Moreover, methods that have been tried, such as analysis 
by synthesis (building up all possible sentences until one matches the Input) and Inverse 
transformations (looking for transformation rules that might have produced the Input), have 
often failed because of combinatorial explosion--the proliferation of alternatives the system 
must examlne--and other difficulties with reversing transformations. One of the major 
attempts to Implement a transformational parser was that by Petrick (1973). 

Extended grammar parsers. One of the most successful AI approaches to parsing yet 
developed has been to extend the concept of phrase-structure rules and derivations by 
adding mechanisms for more complex representations and. manipulations of sentences. 
Methods such as augmented transition net grammars (ATNs) and cnarts provide additional 
resources for the parser to draw on beyond the simple, phrase-structure approach (see 
Arlicles 02 and 03). Some of these mechanisms have validity with respect to some linguistic 
theory, while others are merely computationally expedient. The very successful systems of 
Woods & Kaplan (1971), Winograd (1972), and Kaplan (1973), as described In the articles In 
Section F, use extended grammar parsers. 1 

Semantic grammar parsers. Another very successful modification to the traditional 
. phrase structure grammar approach Is to change the conception of grammatical classes from 
the traditional <NOUN>, <VERB>, etc., to classes that are motivated by concepts In the 
domain being discussed. For Instance, such a semantic grammar for a system which talk~ 
about airline reservations might have grammatical classes like (DESTINATION), <FLIGHT>. 
(FLIGHT-TIME), and so on. The rewrite rules used by the parser would descibe phrases and 
clauses In terms of these semantic categories (see Article Applicationa.C3 for a more 
complete discussion). The LIFER and SOPHIE systems (Articles F7 and Appliceticns.C3) use 
semantic grammar parsers (Hendrix, 1 977a, and Burton, 1976). 

Grammarless parsers. Some Nl system deSigners have abandoned totally the 
traditional use of grammars for linguistic analysis. Such systems are sometimes referred to 
as "ad hoc," although they are typically based on some loose theory that happens to fall 
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outside the scope of standard linguistics. These "grammarless" parsers opt for flexibility in 
the above-mentioned precision/flexibility trade-off. They are based on special procedures 
(perhaps centered on Individual words rather than syntactiC elements) that use semantlcs­
based techniques to build up structures relevant to meaning, and these structures bear little 
resemblance to the normal structures that result from syntactic parsing. A good example of 
this approach can be found in the work of Rlesbeck (1975). . 

Conclusion 

Recent research In parsing has been directed primarily towards two kinds of 
simplification: providing simplified systems for dealing with less than full English, and 
providing simplified underlying mechanisms that bring the computer parsing techniques closer 
to being a theory of syntax. Systems such as LIFER (Article F7) have been developed which 
use the basic mechanisms of augmented grammars In a clean and easily programmable way. 
Systems like these cannot deal with the more difficult problems of syntax, but they can be 
used quickly and easily to assemble specialized parsers and are likely to be the basis for 
natural language "front ends" for simple applications." 

At the same time, there has been a reevaluation of the fundamental notions. of parSing 
and syntactic structure, viewed from the perspective of programs that understand natural 
language. Systems such as PARSIFAL' (Marcus, 1978) attempt to capture in their design the 
same kinds of generalizations that linguists and psycholinguists posit as theories of language 
structure and language use. Emphasis Is being directed toward the Interaction between the 
structural facts about syntax and the control structures for Implementing the parSing 
process. The current trend is away from simple methods of applying grammars (as with 
phrase-structure grammars), toward more "integrated" approaches. In particular, the 
grammar/strategy dualism mentioned earlier in this article has been progressively weakened 
by the work of Winograd (1972) and Rlesbeck (1975). It appears that any successful 
attempt to parse natural language must be based upon some more powerful approach than 
traditional syntactic analysis. Also, parsers are being called upon to handle more "natural" 
text, Including discourse, conversation, and sentence fragments. These Involve aspects of 
language that cannot be easily described In the conventional, grammar-based models. 
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02. Augmented Transition Nets 

Augmented transition networks (ATNs) were first developed by William Woods (1970) 
as a versatile representation of grammars for natural languages. The concept of an ATN 
evolved from that of a finite-state transition diagram, with the addition of tests and "side­
effect" actions 'to each arc, as described below. These additions resulted In the power 
needed for handling features of English like embedding and agreement that could not be 
conveniently captured by regular (or even context-free) grammars. An ATN can thus be 
viewed as either a grammar formalism or a machine. 

Many current language processors use an ATN-like grammar; in some ways, it may be 
considered state-of-the-art, at least for actual working systems. 

Preliminary Theoretical Concepts 

A finite-state transition diagram (FSTD) Is a simple theoretical device consisting of a 
set of states (nodes) with arcs leading from one state to another. One state is designated 
the START state. The arcs of the FSTD are labeled with the terminals of the grammar (i.e., 
words of the language), Indicating which words must be found in the Input to allow the 
specified transition. A subset of the states Is Identified as FINAL; the device Is said to acc.ept 
a sequence of words If, starting from the START state at the beginning of the sentence, it 
can reach a FINAL state at the end of the Input. 

FSTDs can "recognize" only regular or type-3 languages (see the discussion of formal 
languages In Article C1). To recognize a language, a machine must be able to tell whether an 
arbitrary sentence Is part of the language or Is not. RegUlar grammars (those whose rewrite 
rules are restricted to the form Y -> aX or Y -> a) are the simplest, and FSTDs are only 
powerful enough to recognize these languages. In other words, It Is impossible to build an 
FSTD that can dependably distinguish the sentences In even a context-free language. 

For example, the following FSTD, in which the start state Is the left-most node and the 
final state Is labeled ~, will accept any sentence that begins with the, ends with a noun, and 
has an arbitrary number of adjectives In between. 

(adjective> 

n 
D the D (noun) r::l 

---+1 f-----... I -------.... 1 ~ 

Let's follow through the net with the Input sentence "the pretty picture." We start in the 
START state and proceed along the arc labeled the, because that Is the left-most word in 
the input string. This leaves us in the middle box, with "pretty picture" left as our string to 
be parsed. After one loop around the adjective arc, we are again at middle node, but this 
"tIme with the string "plcture ll remaining. Since this word Is a noun, we proceed to the FINAL 
node, ~, and arrive there with no words remaining to be processed. Thus the parse Is 
successful; In other words, our example FSTD accepts this string. 
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However, regular grammars are Inadequate for dealing with the complexity of natural 
language, as discussed In Article C2. A natural extension to FSTDs, then, Is to provide a 
recursion mechanism that Increases their recognition power to handle the more inclusive set 
of context-free languages. These extended FSTDs are called recursive transition networks 
(RTNs). An RTN Is a finite-state transition diagram In which labels of an arc may Include not 
only terminal symbols but also nontermlnal symbols that denote the name of another 
subnetwork to be given temporary control of the parsing process. 

An RTN operates similarly to an FSTO. If the label on an arc Is a terminal (word or word 
class), the arc may be taken (as In FSTOs) If the word being scanned matches the label. For 
example, the word ball would match an arc labeled <noun> but not one labeled <adjective). 
Otherwise, If the arc Is labeled with a nontermlnal symbol, representing a syntactic construct 
(e.g., PREPOSITIONAL PHRASE) that corresponds to the name of another network, the current 
state of the parse Is put on a stack and control Is transferred to the corresponding named 
subnetwork, which continues to process the sentence, returning control when it finishes or 
falls. 

Whenever an accepting state Is reached, control is transferred to the node obtained 
by "popping the stack ll (I.e., returning to the point from which the subnetwork was entered). 
If an attempt Is made to pop an empty stack, and If the last Input word was the cause of this 
attempt, the Input string Is accepted by the RTN; otherwise, It Is rejected. The effect of 
arcs labeled· with names of syntactic constructs Is that an arc Is followed only If a 
construction of the corresponding type follows as a phrase In the Input string. Consider the 
following example of an RTN: 

s: 

---+~~ ___ NP ____ ~ 
'0 
<adj> 

NP: n 
~ <det> 

---+~----.... '0 
PP: 

<verb> 

'0 
PP 

<noun> 
n 
IE] 

~ <prep> 0 NP ~ 
---+~I-------~I ~------~I ~ 

pp 

NP 
n 
IE] 

Here NP denotes a noun phrase; PP, a prepositional phrase; det, a determiner; ~. a 
preposition; and ~, an adjective. Accepting nodes are labeled~. If the input string is 
nThe little boy in the swimsuit kicked the red ball," the above network would parse it into the 
following phrases: 
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NP: 
PP: 
HP: 

Verb: 
HP: 

Natural Language 

The l1ttle boy in the sw1msu1t 
in the swimsuit 
the swimsuit 
kicked 
the red ball 

Notice that any subnetwork of an RTN may call any other subnetwork, including itself; in 
the above example, for Instance, the prepositional phrase contains a noun phrase. Also 
notice that an RTN may be nondeterministic In nature; that is, there may be more than one 
possible arc to be followed at a given point In a parse. Parsing algorithms handle 
nondeterminism by parallel processing of the various alternatives or by trying one and then 
backtracking If It falls. These general parsing Issues are discussed in Article 01. 

Context-free grammars, however, are still insufficient to handle natural language. The 
RTNs, then, must be extended, to provide even more parsing power. 

ATNs 

An augmented transition network (ATN) is an RTN that has been extended in three 
ways: 

1. A set of registers has been added; these can be used to store information, 
such as partially formed derivation trees, between jumps to different networks. 

2. Arcs, aside from being labeled by word classes or syntactic constructs, can 
have arbitrary tests associated with them that must be satisfied before the arc 
is taken. 

3. Certain actions may be "attachedll to an arc, to be executed whenever It is 
taken (usually to modify the data structure returned). 

This addition of registers, tests, and actions to the RTNs extends their power to that of 
Turing machines, thus making ATNs theoretically powerful enough to recognize any language 
that might be recognized by a computer. ATNs offer a degree of expressiveness and 
naturalness not found In the Turing machine formalism, and are a useful tool to apply to the 
analysis of natural language. 

The operation of the ATN Is similar to that of the RTN except that if an arc has a test 
then the test Is performed first, and the arc Is taken only If the test Is successful. Also, if 
an arc has actions associated with It, then these operations are performed after following the 
arc. In this way, by permitting the parsing to be guided by the parse history (via tests on 
the registers) and by allowing for a rearrangement of the structure of the sentence during 
the parse (via the actions on the registers), ATNs are capable of building deep structure 
descriptions of a sentence in an efficient manner. For a well-developed and clear example, 
the reader Is referred to .woods (1970). 
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Evaluation of ATNs and Results 

ATNs serve as an computationally Implementable and efficient solution to some of the 
problems of recognizing and generating natural language. Their computational power provides 
the capability to embed different kinds of grammars, making them an effective testbed for 
new Ideas. Two of the features of ATNs, the test and the actions on the arcs, make them 
especially well suited to handling transformational grammars. The ability to place arbitrary 
conditions on the arcs provides context sensitivity, equivalent to the preconditions for 
applying transformational rules. The capability to rearrange the parse structure, by copying, 
adding, and deleting components, provides the full power of transformations (see Article C2). 

The ATN paradigm has been successfully applied to question answering in limited 
(closed) domains, such as the LUNAR program, which Is described in Article F3. Also, ATNs 
have been used effectively In a number of text generation systems. In addition, the BBN speech 
understanding system, SPEECHLlS, uses an ATN control structure (see Article Speech.B3). 

There are limitations to the ATN approach; In particular, the heavy dependence on 
syntax restricts the ability to handle ungrammatical (although meaningful) utterances. More 
recent systems (see especially Rlesbeck's work, Article F5) are oriented toward meaning 
rather than structure and can thus accept mildly deviant Input. 

References 
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03. The General Syntactic Processor 

Ronald Kaplan's (1973) General Syntactic Processor (GSP) is a versatile system for 
the parsing and generation of strings In natural language. Its data structures are intuitive 
and the control structures are conceptually straightforward and relatively easy to implement. 
Yet, by adjusting certain control parameters, GSP can directly emulate several other 
syntactic processors, Including Woods's ATN grammar (Article 02), Kay's MIND parser (Kay, 
.1973), and Friedman's text generation system (Article E). 

GSP represents an effort both to synthesize the formal characteristics of different 
parsing methods and to construct a unifying framework within which to compare them. In this 
respect, GSP Is a "meta-system"--It is not In Itself an approach to language processing, but 
rather It is a system in which various approaches can be described. 

Data Structure: Charts 

GSP gains much of Its power through the use of a single, basic data structure, the 
chart, to represent both the grammar and the input sentence. A chart can be described as a 
modified tree, which is usually defined as a set of nodes that can be partitioned into a root 
and a set of diSjoint subtrees. A tree encodes two sorts of relations between nodes: 
DOMINANCE, the relation between a parent and daughter node; and PRECEDENCE, the relation 
between a node and its right-hand sister node. Figure 1 shows a tree representing a 
particular noun phrase. 

NP 

DE!1 \N 
I I· I the tall man 

Figure 1 .. A tree for a noun phrase. 

A chart Is basically a tree that has been modified In two ways: 

1. The arcs of the tree have been rearranged to produce a binary tree, that is, a 
tree in which each node has at most two dangling nodes (this rearrangement 
Is described by Knuth [1973, p. 333] as the Itnatural correspondence" 
between trees and binary trees). 

2. The nodes and arcs have been Interchangedj what were previously nodes are 
now arcs, and vice versa. 

For example, Figure 2 Is the chart representation for the tree of Figure 1: 
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NP 
0 

I OET AOJ N 
0 '0 '0 

I the I tall I man 
0 '0 '0 

Figure 2. A chart for a noun phrase. 

The chart representation has a number of advantages, Including ease of access for certain 
purposes. For example, In Figure 1 there Is no direct connection· from DET to ADJ. In Figure 2 

. this connection has been made; that Is, the PRECEDENCE relationships have been made 
explicit, and the DOMINANCE ones have been removed. This explicit encoding of pr~cedence 
can be helpful In language processing, where the concept of one element following 'another is 
a basic relation. 

Also, the chart can be used to represent a "string of trees" or "forest"··that Is, a set 
of disjoint trees. For example, Figure 3a shows 8 string of two disjoint trees, headed by NP 
and Y... Note that these trees cannot be connected, except with a dummy parent node 
(labeled 1). In Figure 3b, the equivalent chart representation Is shown. 

? NP V 

Np/ \ 0 '0 

I DET N 

DEI 
\ 

I 
0 '0 

N I I I I the man walked 
the man walked 0 '0 10 

Figure 3a. Two disjoint trees. Figure 3b. The equivalent chart. 

Finally, the chart provides 8 representation for multiple Interpretations of a given word 
or phrase, through the use of multiple edges. The arcs In a chart are called edges and are 
labeled with the names of words or grammatical constructs. For example, Figure 4 
represents the set of trees for "I saw the log," Including the two Interpretations for the word 
~. 

PRO V DEl N 
01---""0 .0----... 0-----+ 

1 I 1 " saw. .J the 1 log 
o '0 see (past) 0----... 0---...... '" ,!' 

Figure 4. A chart showing multiple Interpretations. 

The chart allows explicit representation of ambiguous phrases and clauses, as well as of 
words. 
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Note that ambiguity .could also be represented by distinct trees, one for every possible 
Interpretation of the sentence. However, this approach is Inefficient, as It Ignores the 
possibility that certain subparts may have the same meaning In all cases. With the chart 
representation, these common subparts can be merged. 

As defined earlier, the arcs In a chart are called edges and are labeled with the names 
of words or grammatical constructs. The nodes are called vertexes. The chart can be 
accessed through various functions, which enable orie to retrieve specific edges, sets of 
edges, or vertexes. 

At any given moment, the attention of the system Is directed to a particular point in the 
chart called the CHART FOCUS. The focus Is described by a set of global variables: EDGE 
(the current edge), VERTEX (the name of the node from which EDGE leaves), and CHART (the 
current subchart being considered by the processing strategy). GSP's attention is 
redirected by changing the values of these variables. 

When the chart is initialized, each word in the sentence is represented by an edge in 
the chart for each category of speech the word can take. Figure 4 is an example of an 
initial chart configuration, preparatory to parsing. Each analysis procedure that shares the 
chart is restricted to adding edges, which gives iater analyses the ability to modify or ignQre 
earlier possibilities without constraining future interpretations. In this way, the individual 
syntactic programs remain relatively independent while building on each other's work in a 
generally bottom-up way. 

It should be emphasized that the chart is just a data structure and is not directly 
related to the grammar. It merely serves as the global blackboard upon which the various 
pieces of the grammar operate. We still must specify the sorts of operations that use the 
chart--that Is, the form of the grammar Itself. 

Data StrJ,lcture: Grammatical Rules 

Grammars for syntactic processing of language can be understood in terms of a 
network model like Woods's ATN grammar. That is, a grammar Is viewed as a series of states, 
with transitions between the states accomplished by following arcs (see Article 02). 

The grammars encoded by GSP fit this description. What gives GSP Its power~i, 
however, is the fact,that a grammar can be represented In the same way as a chart. That Is,· 
we can use the chart manipulation mechanisms, already developed, to operate upon the. 
grammar itself. There Is a difference, of course. The chart is merely a passive data store; 
the grammar contains Instructions for: (a) acting on the chart--adding pieces and shifting 
attentlonj and (b) acting on the grammar--shiftlng attention (I.e., moving from one grammar 
state to another). 

Control Structure 

To handle the full complexity of grammars, GSP has some extra features. These 
Include: 

1. REGISTERS. As In ATNs, these are used as pointers to structures. 
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2. LEVELSTACK. This Is a stack used to implement recursion. The chart 
focus, grammar focus (state), and register list are saved before a 
recursive call. 

3. NDLIST (nondetermlnlsm list). This Is a list of choice points In the 
grammar. Whenever a choice Is made, the user can optionally save the 
current configuration on NDLlST, to allow for backtracking. 

4. PROCSTACK. This Is a list of suspended processes. GSP allows a co­
routining facility, under which processes can be suspended and resumed 
(ATNs have no equivalent to this). 
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Features like recursion, backtracking, and movement of the pOinter through the Input sentence 
must all be handled by the user within the general framework provided. This approach can 
be beneficial, particularly with features such as backtracking: automatic backtracking can be 
a tess-than-deslrable feature In a grammar (see the discussion In the AI Programming 
Languages Section). 

USing GSP 

Note one facet of the approach outlined: All operations on the grammar and chart must 
be explicitly stated. Thus, GSP has placed much power In the hands of the grammar deSigner, 
with a corresponding cost In complexity. 

GSP appears to be similar to an ATN, with three extensions: 

1. The data structure used Is a chart, Instead of simply a string of words. 

2. The grammar Is encoded In the same manner as the chart; thus It Is 
accessible to the system. 

3. Processes can be suspended and resumed. 

ATNs do not fully demonstrate the power of GSP. Kaplan also used GSP to Implement 
Kay's MIND parser (a context-free, bottom-up system) and Friedman's transformational 
grammar text-generation system. The latter two made more extensive use of GSP's 
capabilities, In particular: (a) the possibilities of multiple levels In the chart; (b) the ability to 
suspend and restart processes; and (e) the ability to rearrange the chart, changing it as 
necessary. The Kay algorithm, in particular, made extensive use of the ability to modify the 
chart "on the fly," adding sections as required. 

Conclusions and Observations 

GSP provides a simple framework within which many language processing systems can 
be described. It is not Intended to be a high-level system that will do many things for the 
user; rather, It prov1des a "machine language" for the user to specify whatever operations 
he wants. GSP's small set of primitive operations seems to be sufficient for representing 
most desirable features of syntax-based parsing. The clean, uniform structure enables GSP 
to be used as a tool for comparison (and possibly evaluation) of different systems. 
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The chart seems to be an effective data structure for representing the syntax of 
natural language sentences. It provides convenient merging of common subparts (i.e., to 
prevent re-scannlng known components), while permitting representation of various forms of 
ambiguity. As Kay explained, the function of the chart is to lire cord hypotheses about the 
phraseological status of parts of the sentence so that they will be available for use In 
constructing hypotheses about larger parts at some later time" (Kay, 1973, p. 167). 

The backtracking mechanism Is very general and thus can be inefficient if used too 
enthusiastically. Kaplan points out that heuristic ordering of alternatives Is possible by 
altering the function that retrieves configurations from the NDLlST, though compliers should In 
any case attempt to minimize backtracking. 

References 
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E. Text Generatton 

Text generation Is, In a sense, the opposite of natural. language understanding by 
machlne--It is the process of constructing text (i.e., phrases, sentences, paragraphs) in a 
natural language. Although this field has been pursued for fifteen years, few coherent 
principles have emerged, and the approaches have varied widely. Attempts at generating 
text have been made with two general research goals: (a) generating random sentences to 
test a grammar or grammatical theory and (b) converting Information from an Internal 
representation I")to a natural language. 

Random Generation 

This approach, the random generation of text constrained by the rules of a test 
grammar, Is of limited Interest to workers In Artificial Intelligence, being oriented more toward 
theoretical linguistics than functional natural lang.uage processing systems. The objective of 
Implementing a generation system of this sort Is to test the descriptive adequacy of the test 
grammar, as Illustrated by the following two systems. 

Victor Yngve (1962) was one of the first researchers to attempt English text 
generation; the work was seen as preliminary to a full program for machine translation (see 
Article 8). Yngve used a generative context-free grammar and a random-number generator to 
produce "grammatical" sentences: The system selected one production randomly from among 
those that were applicable at each point In the generation process, starting from those 
productions that "produced" <SENTENCE), and finally randomly selecting words to fill In the 
<NOUN>, <VERB>, etc., positions. This Is an example of the text produced by the system: 

The water' under the wheels In oiled whistles and Its 
polished shiny big and big trains Is black. 

Joyce Friedman's (1969, 1971) system was designed to test the effectiveness of 
transformational grammars (Article C2). It operated by generating phrase markers (derivation 
trees) and by performing transformations on them until a surfact structure was generated. ThO; 
generation was random, but the user could specify an Input phrase marker and semantic 
restrictions between various terminals In order to test specific rules for grammatical validity. 

These two systems, while relevant to work In linguistics, are only perlphel"ally related 
to recent work In Artificial Intelligence. The fundamental emphasis in AI text-generation work 
has been on the meaning, as opposed to the syntactic form, of language. 

Surface Realization of Meaning 

The general goal of text-generation programs In the AI paradigm is to take some 
Internal representation of the "meaning" of a sentence and convert It to surface structure 
form, I.e. Into an appropriate string of words. There has been considerable variety among 
such systems, reflecting differences both In the type of internal representation used and in 
the overall purpose for which the text Is generated. Representation schemes have included 
largely syntactic dependency trees, stored generation patterns ofdifterent degrees of 
complexity, and several versions of semantic nets (see the Knowledge Representation section 
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of the Handbook). Purposes have Included automatic paraphrasing or mechanical translation of 
an Input text; providing natural.-soundlng communication with the user of an interactive 
program; and simply testing the adequacy of the Internal representation. 

Sheldon Klein (1965) made a first step beyond the random generation of sentences, 
by means of a program that attempted to generate a paraphrase of a paragraph of text via 
an internal representation of that text (see also Klein & Simmons, 1963). The program used a 
type of grammar called dependenc, grammar, a context-free grammar with word .. dependency 
information attached to each production. That Is, the right-hand side of each rule In the 
grammar has a IIdistingulshed symbol"; the "head" of the phrase associated with that rule is 
the head of the phrase that Is associated with the distinguished symbol. All other: w.ord~ that 
are part of the phrase associated with the productlof1 are said to depend on thi~ head. 

For instance, given the following simple dependency grammar and the sentence lithe 
fierce tigers In India eat meat," Klein's parser would produce both an ordinary phrase-
structure derivation tree (see Article cn and also the dependency tree shown below: . 

s ~ NP.. + VP 
NP ~ DET + ADJ + N* + PP 
PP ~ PREPI' + NOUN 
VP ~ VI' + OBJ 

The symbols followed by ~ are the distinguished symbols In the productions. The dependency 
trees from the individual sentences of the Input paragraph were bound together with IItW'O­
way dependency" links between similar nouns. For example, th~ Input paragraph . 

. . 

The man rides a bicycle. The man Is tall. A blcycl~ Is a vehicle with 
wheels. 

would yield the following dependency structure: 

HAN .... ----------------, HAN 

THE/ \RIDES THE/ \s 
. "\ICYCLE....---. BICYCLE \ALL 

/ .. /-
A A 

One paraphrase generated from the given paragraph was: 

The .tall man rides a vehicle with wheels. 

The grammar used In generation was similar to the one used for analysis. Rule selection 
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was random (as In Yngve's method) but with the added constraint that all dependencies 
among the words that were generated must be derivable from the Initial dependency trees. 
In the example above, vehicle could be generated as the object of rides because vehicle 
depends on Is, Is on bicycle, and bicycle on rides. Two restrictions were Imposed on the 
transitivity of dependency relations: Dependency did not cross verbs other than be or 
prepositions other than of. Thus lithe man rides wheels" could not be generated. 

The use of dependency trees was expected to Insure that the output sentences would 
"reflect the meaning of the source text" (Klein, 1965, p. 74). A difficulty, however, was that 
the trees encoded only the crudest of semantic relationships present In the paragraph. In 
fact, the dependency relationship between words only indicates that some semantic relation 
exists between them without really specifying the nature 'of the relationship. 

Ross Quillian (1968), In contrast, emphasized the expression of semantic relationships 
almost to the exclusion of concern for syntactic well-formedness. Quillian did pioneering 
work In the representation of knowledge (see the Knowledge Repreeentation section of the 
Handbook}) and was also one of the first to deal with the problems of text generation. His 
system used a semantic net to represent the relations between words, which can be 
interpreted as their meaning. The task the system was then to perform was to compare two 
words, that Is, find some semantic relation between them, and then to express the 
comparison In "understandable, though not necessarily grammatically perfect, sentences" (p. 
247). For example: 

Compare: Plant, Live 

Answer: PLANT IS A LIVE STRUCTURE. 

This relationship between the two words was discovered as a path In the net between the 
nodes that represented the words. Although this was a primitive semantic net scheme, many 
fundamental Issues were first raised by Quillian's system. 

One important point was that paths In the semantic net did not necessarily correspond 
to Input sentences. Instead, the discovery of paths between two nodes amounted to making 
inferences on the knowleQge In memory. For example, another relationship the system found 
between plant and live was: 

PLANT IS STRUCTURE WHICH GET-FOOD FROM AIR. THIS FOOD IS THING 
WHICH BEING HAS-TO TAKE INTO ITSELF TO KEEP LIVE. 

In order to have found this connection, the system had to discover a connection between 
PLANT and LIVE, by way of FOOD, that was not directly Input. 

Although Quillian's semantic net system was limited, it strongly influenced much of the 
later work in NL and the representation of knowledge In AI (see Article Representaticn.C2). 
This Influence reflected Quillian's stress on the Importance of the semantic versus the 
surface components of language: 

As a theory, the program implies that a person first has something to 
say, expressed somehow In his own conceptual terms (which Is what a 
"path" is to the program), and that all his decisions about the 
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syntactic form that a generated sentence Is to take are then made in 
the service of this Intention. (Quillian, 1968, p. 255) 

This Is a strong statement about language, and this view, of a cognitive process manipulating 
an Internal representation, Is perhaps tlie essence of the AI perspective. 

Terry Winograd's blocks world program, SHRDLU (1972), contained several text­
generation devices. Their function was to enable the system, which Is described in Article 
F4, to answer questions about the state of Its table-top domain and certain of the system's 
Internal states. 

The basic text-generation techniques used were "fill-in-the-blank" and stored 
response patterns. For example, If an unfamiliar word was used, SHRDLU responded "I don't 
know the word ... ". More complex responses were called for by questions asking why or 
how an action had been done. For "why", the system answered with "because <event>", or 
"in order to <event>," where <event> referred to a goal that the program had had when the 
action was taken. For example, IIWhy did you clear off that cube?" might be answered by 
"To put it on a large green cube." The program retrieved the appropriate event from Its 
history list and then used a generation pattern associated with events of that type. For an 
event of the type "(PUTON OBJ1 OBJ2)," the pattern would be: 

«correct form of to put>, <noun phrase for OBJ1>, ON, <noun phrase for OBJ2». 

Noun phrases In the pattern were generated by associating an English word with every 
known object; adjectives and relative clauses were added until a unique object (within the 
domain of discourse) was described. 

The stilted text generated by this scheme was moderated by the (heuristic) use of 
pronouns for noun phrases. For example, If the referent of a noun phrase had been 
mentioned In the same answer or In the previous one, an appropriate pronoun could be 
selected for It. SHRDLU's limited domain of discourse allowed It to exhibit surprisingly natural 
di.alogue with such simple techniques. 

Simmons and Slocum (1972) developed a naturai languag~ system that generated 
sentences from a semantic network representation of knowledge, based on a case grammar (see 
Article C4). The program produced surface structure from the network by means of an 
augmented transition net, adapted for the purpose of generation rather than parsing (see 
Article 02). The object of the work was to substantiate the claim that "the semantic 
network adequately represents some Important aspect of the meaning of discourse"; if the 
claim was true, then "the very least reqUirement" was that lithe nets be able to preserve 
enough Information to allow regeneration of the sentences--and some of their syntactic 
paraphrases--from which th~ nets were derived" (p. 903). 

An Illustration of the capabilities of the system Is given by the paragraph below, which 
was initially hand-coded Into semantic network notation. (for a later version of the program In 
which the parsing was done automatically, see Simmons, 1973.) 

John saw Mary wrestling with a bottle at the liquor bar. He went over 
to help her with it. He drew the cork and they drank champagne 
together. 
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The network notation, in simplified form, Is Indicated by the following representation of "John 
saw Mary wrestling": 

Cl TOKEN (see) C3 TOKEN ~wrestlel 
TIME PAST TIME ROGRESS VE PAST 
DATIVE CZ AGENT C4 
OBJECT C3 

CZ TOKEN (John) C4 TOKEN (Mary) 
NUMBER SINGULAR NUMBER SINGULAR 

Here ~, C2, ca, and C4 are nodes In the network representing concepts which are tokens 
of meanings of "see", "wrestle," "John", and "Mary". PAST and SINGULAR are also nodes. 
TOKEN, TIME, OBJECT, and the like are types of arcs, or relations. 

The representation shown was augmented by other relations, attached to verb nodes, 
such as MOOD (indicative or Interrogative), VOICE (active or passive), and Information about 
the relative times of events. USing this representation, the system was able to reconstruct 
several versions of the original paragraph. One read: 

John saw Mary wrestling with a bottle at the liquor bar. John went 
over to help her with It before he drew the cork. John and Mary 
together drank the champagne. 

The actual generation was accomplished by an ATN In which the arcs were labelled with 
the names of relations that might occur In the semantic net. The actual path followed 
through the ATN--and thus the exact text generated--depended both on which relations 
were actually present and on which node or nodes were chosen as a starting point. 

Wong (1975) has extended this approach, Incorporating features to handle extended 
discourse. 

Neil Goldman's (1975) program generates surface structure from a database of 
conceptual dependency networks, as the text-generation part of Roger Schank's MARGIE 
system, described in Article F5. The conceptual dependency (CD) knowledge representation 
scheme, discussed further In Article F6 on Schank's SAM system, is based on semantic 
primttives (Article Representation.C5) and Is therefore language Independent, so the actual 
word selection for output must be performed by Goldman's text-generation subsystem, called 
BABEL. This Is accomplished by means of a discrimination net (a kind of binary decision tree-­
see Article Information Processing Psychology.C) that operates on a CD network that is to be 
verbalized. This discrimination net is used to select an appropriate verb sense to represent 
the event specified by the CD. (A verb sense Is a meaning of the verb: DRINK, for example 
has two senses, to drink a fluid and to drink alcohol.) Essentially, there are only a small 
number of possible verbs that can represent the event, and a set of predicates determines 
which one to use. For Instance, DRINK can be used to describe an INGEST event If the 
<object> has the property FLUID. The section of the discrimination net that handles DRINK 
might look like this: 
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(EQ (ACTION) INGEST) 
(PROP (OBJECT) FLUID) 

• I' (EQ (OBJECT) ALCOHOL) I 
F/ 

DRINKI 
\T 

DRINK2 

Once a verb sense has been selected, an associated framework Is used to generate a 
case-oriented syntax net, which Is a structure similar to the semantic net of Simmons and 
Slocum. These frameworks Include Information concerning the form of the net and where in 
the conceptualization the necessary information Is located. After the framework has been 
filled out, other language-specific functions operate on the syntax net to complete it 
syntactically with respect to such things as tense, form, mood, and voice. Finally, an ATN is 
used to generate the surface structure, as In the Simmons and Slocum program. 

Yorick Wilks (1973) has developed a program that generates French from a semantic 
base of templates and paraplates. This Is part of a complete machine translation system 
described In Article F2. 

Discussion 

The key point is that, as the richness and completeness of the underlying semantic 
representation of the Information has Increased, the quality of the resulting paraphrase has 
improved. like other areas of AI, the basic problem Is to determine exactly what the salient 
points are and to obtain a good representation of them; progress in generation seems to be 
closely tied to progress in knowledge representation. Future work in generation will also 
have to address areas such as extended discourse, styUstics, etc. In this direction, Clippinger 
(1975) has looked at psychological mechanisms underlying discourse production, and 
Perrault, Allen, & Cohen (1978) have studied the planning of speech acts for communication 
in context. . 
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F. Natural Language Processing Systems 

F1. Early Natural Language Systems 

Early work on machine processing of natural language assumed that the syntactic 
information In the sentence, along with the meaning of a finite set of words, was sufficient to 
perform certain language tasks--In particular, answering questions posed In English. Several 
of Jhese early natural language programs are reviewed here: their techniques, their 
successes, and their shortcomings. These programs were restricted to dialogues about 
limited-knowledge domains In simple English and ignored most of the hard grammatical 
problems In the complex constructions found In unrestricted English. Through work with 
programs of this genre, It became apparent that people constantly use extensive world­
kn'owledge In processing language and that a computer could not hope to be competent 
without "understanding" language. These programs bridge the gap between the early 
mechanical translallon attempts of the 1950s and current, semantics-based natural language 
systems (see the Overview Article, Article B, and the Articles on recent Nl systems In this 
section). 

) 

SAD-SAM 

! 
SAD-SAM (Syntactic Appraiser & Diagrammer - Semantic Analyzing Machine) was 

programmed by Robert LIndsay (1963a) at Carnegie Institute of Technology In the IPL-V list­
processing language (see Article AI Languagas.A). The program accepts English sentences 
about kinship relationships, builds a database, and answers questions about the facts It has 
stored. 

It accepts a vocabulary of Basic English (about 1,700 words) and follows a simple 
context-free grammar. The·SAD module parses the input from left to right, builds a syntactic 
tree structure, and passes this structure on to SAM, which extracts the semantically 
relevant (kinship-related) Information to build the family trees and find answers to questions. 

Though the s~bset of English processed by SAD is quite Impressive in volume and 
complexity of structure, only kinship relations are considered by SAMj all other semantic 
Information Is Ignored. SAM does not depend on the order of the input for building the family 
trees; If a first Input assigns offspring ft and ~ to ~, and offspring Q and ~ to y, two "family 
units" will be constructed, but they will be collapsed Into one If we learn later that ~ and ~ 
are siblings. (Multiple marriages are Illegal.) However, SAM cannot handle certain 
ambigultiesj the sentence "Joe plays In his Aunt Jane's yard" Indicates that Jane Is either 
the sister or sister-In-law of Joe's father, but SAM assigns one and only one connection at a 
time and therefore cannot use the ambiguous information: The structure of the model permits 
storing definite links but not possible tn/erences. 

BASEBALL 

Also In the early 1960s, Bert Green and his colleagues at lincoln labs wrote a program 
called BASEBAll (Green et al., 1963), again using the IPl-V programming language. BASEBAll 
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Is essentially an information retrieval program, since its database of facts about all of the 
American League games during one year Is not modified by the program. Acceptable Input 
questions from the user must have only one clause, no logical connectives (and, or, not), no 
comparatives (highest, most), and no facts about sequences of events; and most words must 
be .recognized by the (extensive) dictionary. 

Tlie parsing system uses 14 categories of parts of speech and right-to-left scanning to 
structure the Input question Into functional phrases. Using this structure and the key-words 
found In the question, the Input Is transformed Into a specification list that Is the canonical 
expression for the meaning of the questiOn. For example, the question "How many games did 
the Yankees play In July?" becomes: 

TEAM = YANKEES 
MONTH = JULY 
GAMES (number of) = ? 

The answer is found by searching the database for data items matching the specification list, 
storing them on a "found" list, and eventually processing and outputting them. 

The size of the dictionary and the heuristics used for resolving syntactic ambiguities 
(~ can be a. verb or a noun; Boston, a place or the name of a team) make BASEBALL able 
to answer most reasonable English questions about the games stored In the database. 
However, BASEBALL does not return to the user for clarification of semantic ambiguities. It 
simply falls to parse the sentence and asks for a rephrasing of the question. Though the 
database Is not modified by the program, BASEBALL exhibits deductive abilities In parsing 
questions and processing the "found-list." 

SIR 

SIR (Semantic Information Retrieval) was written In LISP by Bertram Raphael (1968) as 
part of his thesis research at MIT. It Is a prototype "understanding" machine sinc~ It can 
accumUlate facts and then make dedUctions about them In order to answer questions. 

SIR accepts a restricted subset of English. It matches sentences against 24 matching 
patterns of the following sort: 

• Is • 
• Is part of • 
Is • • ? 
How many • does • have? 
What Is the • of • ? 

where the elements matched against ~ are nouns, possibly modified by a "quantifier" such 
85: ~,the, every, each, or a number. The match with a rule triggers the appropriate action In 
the program. A sample conversation might look like this: 

Every boy Is a person 
I UNDERSTAND 

A finger Is part of a hand 
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I UNDERSTAND 

There are two hands on each person 
I UNDERSTAND 

How many fingers does John have? 
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS 

(has as parts) 
I DON'T KNOW WHETHER FINGER IS PART OF JOHN 

John Is a boy 
I UNDERSTAND 

How many fingers does John have? 
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS 

(has as parts) 
HOW MANY FINGERS PER HAND? 

Every hand has 5 fingers 
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS 

(has as parts) 
THE ANSWER IS 10 

Who Is President of the United States? 
STATEMENT FORM NOT RECOGNIZED 

47 

SIR's world Is concerned with only a small group of relations between objects, as 
specified by the 25 matching patterns. Declarative Input statements are used to build the 
mode.!, and the patterns have been chosen to express concepts that commonly occur in 
human conversation: set Inclusion, spatial relationship, etc. The program has certain built-in 
knowledge (like transitivity of set Inclusion) that enables It to answer questions about some 
facts not explicitly stated during Input. SIR can also Interact with the user to gather more 
Information or to resolve ambiguities. 

STUDENT 

STUDENT Is another pattern-matching natural language program, written by Daniel 
Bobrow (1968) as his doctoral research project at MIT. STUDENT Is able to read and solve 
hlgh-school-Ievel algebra story problems like the following: 

If the number of customers Tom gets Is twice the square of 20 per 
cent of the number of advertisements he runs, and the number of 
advertisements he runs Is 45, what Is the number of customers Tom 
gets? 

The entire subset of English recognized by STUDENT is derived from the following set of 
basic patterns: 
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(WHAT ARE Il AND Il) 
(WHAT IS Il) 
(HOW MANY 111 IS Il) 
(HOW MANY Il DO Il HAVE) 
(HOW MANY Il DOES Il HAVE) 
(FIND Il) 
(Il (1l1 IVERB) Il AS MANY Il AS Il (1l1 IVERB) Il) 

(FIND Il AND Il) 
(Il IS MULTIPLIED BY Il) 
(Il IS DIVIDED BY Il) 
(Il IS Il) 
(Il (1l1/VERB) 1t1 Il) 

A ~ sign indicates a. string of words of any length, ~ Indicates one word, and (1l1 IVERB) 
means the matching element must be recognized as a verb by the dictionary. 

To construct the algebraic equations that will lead to the solution, the problem 
statement Is scanned, first for linguistic forms associated with the equality relation (such as 
[It IS It]), then for algebraic operators. STUDENT then builds a list of the answers required, 
the units Involved In the problem, and a list of all the variables in the equations. Then 
STUDENT Invokes the SOLVE module with the set of equations and the desired unknowns. 

If SOLVE fails, STUDENT applies heuristics such as: expanding Idioms, Identifying two 
previously "slightly different" variables, or Invoking the REMEMBER module that contains 
speplal facts like: -

(FEET IS THE PLURAL OF FOOT) 
(ONE HALF ALWAYS MEANS .5) 
(SUCCESSFUL CANDIDATES SOMETIMES MEANS STUDENTS WHO 
PASSED THE ADMISSTIONS TEST) 
(DISTANCE EQUALS SPEED TIMES TIME) 
(ONE FOOT EQUALS 12 INCHES) 

If all else falls, STUDENT can request more Information from the user. 

Each time a heuristic succeeds In finding a new equation, the augmented set Is sent to 
SOLVE. STUDENT finally prints the solution (using the pattern "variable IS value") or reports 
Its Inability to solve. In the example, STUDENT would print 

(THE NUMBER OF CUSTOMERS TOM GETS IS 162) . 

STUDENT's Simple pattern-matching scheme, combined with its small set of well-chose", 
heuristics, does an Impressive Job of parsing typical high-school algebra word problems. The 
program can be tricked easily ("Bill has 3 apples, 2 pears, and one dog" would be parsed Into 
two clauses); but as Implemented, It solved the problems submitted as fast as humans could 
(In one case, several times faster than an MIT graduate student who was not using the 
special "age problem" heuristics). A slightly modified version was found to be a good model 
for human problem solving. In a study conducted by Paige & Simon (1966). 

ELIZA 

Perhaps the most famous of these "pattern-matching" natural language programs was 
ELIZA, written by Joseph Welzenbaum (1966) at MIT. This program assumes the role of a 
Rogerian or "non-dlrective" therapist In Its dialogue with the user. Although ELIZA's dialogue 

, 

, . 
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with the user appears surprisingly realistic, the program uses no more Intelligent mechanisms 
than those described above. Rather, the nature of therapist-patient dialogue lends Itself to 
simulation In this manner. A sample dialogue might look like this (with ELIZA In caps): 

Men are all alike. 
IN WHAT WAYS 

. They're always bugging us about something or other. 
CAN YOU THINK OF A SPECIFIC EXAMPLE 

Well, my boyfriend made me come here. 
YOUR BOYFRIEND MADE YOU COME HERE 

He says I'm depressed much of the time. 
I AM SORRY TO HEAR THAT YOU ARE DEPRESSED 

It's true. I'm unhappy. 
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY 

I need some help, that much seems certain. 
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP 

Perhaps I could learn to get along with my mother. 
TEll ME MORE ABOUT YOUR FAMILY 

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER 

Bullies. 
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR 

BOYFRIEND MADE YOU COME HERE 

ELIZA Is programmed In the SLIP language (Symmetric List Processor), developed by 
Weizenbaum (1963). An offline script composed of keyUsts specifies the nature of the Input 
language by specifying for each keyword a set of patterns to look for and the possible 
transformations associated with each pattern. For example, assuming the keyword Is me, 8 

pattern used for matching might be 

(0 YOU 0 ME) 

and one of the transformation rules associated with this pattern might be 

(WHAT MAKES YOU THINK I 3 YOU) 

where Q in the pattern matches any string of words, and ~ in the transformation rule 
deSignates the third element matched (In this case, everything between YOU and ME). The 
input is scanned from left to right for a keyword; a systematic hashing procedure very 
quickly eliminates words that cannot be keywords. ELIZA deletes the part of text preceding 
a punctuation delimiter If no keyword has been found; otherwise, the part following it 
(Insuring thus that the transformation will be applied to one single phrase or sentence). If 
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several keywords are found, they are stored in turn in a "keystack ll according to the rank of 
precedence associated with each of them; then the input Is matched against each 
decomposition rule In turn. These patterns can be ordered in the keylist so that the more 
complex ones are tried firstj for the keyword "IR the pattern 

(0 I 0 DEPRESSED 0) 

Is hard to match, but If a match Is achieved, the answer can be more spectacular than the 
transformations for the "general match" pattern 

(0 I 0) . 

When a match Is found, ELIZA generates a response, using the reassembly rules for this 
decomposition rule In a cyclic manner. If no decomposition rule matches for a given keyword, 
the keystack Is popped and the pattern-matching procedure Is repeated for the new 
keyword. If the keystack Is empty, a response like "Please go on," "I see," or "Very 
Interesting" wilt always do. 

Several other tricks--lIke substituting for keywords in Its response, associating 
keywords with a class or situation (Mother Implies family), and remembering these keyword 
affiliates over the course of the conversatlon--help enhance the illusion of Intelligent 
dialogue. 

Conclusions 

None of these early natural language systems dealt with the syntax of language In any 
sophisticated way. In these early programs, the semantic knowledge needed to respond to 
the user was Implicit In the patterns and the ad hoc rules used for parsing. Modern natural 
language programs maintain large databases of explicit world-knowledge that 'they use to 
assist In parsing the sentenc,e as well as In Interpreting It. 
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F2. Wilks's Mechanical Translation System 

Current work In machine translation of languages Is exemplified by Wilks's system 
(1973), which can produce good French from small English paragraphs. The system Is entirely 
semantics based; that Is, no use Is made of conventional linguistic syntax In either the 
analysis or the generation stages. The Input English text Is first converted to a semantic 
representation and then converted to the final translated text. (The use of an intermediate 
representation bears some similarity to the Weaver's idea of interlingua, discussed in Article 
S.) Wilks stresses that his semantic representation is designed for mechanical translation 
and may not be appropriate for other NL tasks like question answering. The rationale for this 
Is that an explicit representation of the logical implications of a sentence, which is 
necessary for some tasks. may not be necessary for translation: If the two languages are 
similar. an appropriate target sentence with the same Implications can often be found In a 
more straightforward way. 

Wllks's system first fragments the Input text Into substrings of words; it then matches 
the fragments against a set of standard templates. that Is, deep semantic forms that try to 
pick out the meaning conveyed by the Input-text fragments. The output of this stage Is a 
first approximation to a semantic representation of each of these fragments. The system 
then tries to tie together these representations to produce a more densely connected 
representation for the complete text. When this process has been compieted, the 
generation of the output text Is accomplished by unwinding the interlingual representation 
using functions that Interpret it in the target language. 

The Interlingual representation is based on semantic primitives (see Article 
Asprsssntation.C5) that Wilks calls elements. Elements express the entities, states. qualities, 
and actions about which humans communicate. In the system as reported in Wilks (1973), 
there were 60 of these elements, which fall Into 6 classes, as shown In the following 
examples. 

1. Entitles: 

2. Cases: 

3. Sorts: 

4. Type Indicators: 

6. Actions: 

MAN (human being), 
PART (parts of things), 
STUFF (substances). 

TO (direction), 
IN (containment). 

CONT (being a container), 
THRU (being an aperture). 

KIND (being a quality), 
HOW (being a type of action). 

CAUSE (causes to happen), 
BE (exists), 
FLOW (moving as liquids do). 

The elements are used to build up "formulas," which each represent one sense of. a word. 
The verb drink, for example, is represented by the following formula: 
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«'tAN I SUBJ) 
«(FLOW STUFF) OBJE) 
«!tANI IN) «(THIS (!tANI (THRU PART») TO) (BE CAUSE»») 

Drink is thus an action, (BE CAUSE), done by animate subjects, (!tANI SUBJ), to liquids, «FlOW' 
STUFF) OBJE). It causes the liquid to be in the animate object, (!tANI IN), via a particular 
aperture of the animate object, «THIS (!tANI (THRU PART») TO). 

Formulas are understood as expressing preferences rather than absolute requirements. 
in the formula for drink, for example, It Is only a preference that the agent be animate and 
the object liquid; the system could accept a sentence about cars that drink gasoline .. The 
function of preferences, nevertheless, Is to help determine the correct word-senses in the 
input text. In "John drank a whole pitcher," the preference for a liquid object would select 
the formula for pitcher as a container of liquid rather than the one for a baseball player. 

The system's dictionary contains formulas for all the word-senses paired with 
stereotypes for producing the translated words In the target language.The following is an 
example of two stereotypes for the word advise (into French): 

(ADVISE (CONSEILLER A (FN1 FOLK MAN» 
(CONSEILLER (FN2 ACT STATE STUFF») 

The two functions, FN 1 and FN2, are used to distinguish the two possible constructions in 
French Involving consellier: conseiller a ... and simply conseiller . . .. The first would be used 
In translating "I advise John to have patience"; the second, for "I advise patience." 
Functions like these in stereotypes are evaluated by the generation routines. Each function 
evaluates either to NIL, in which case the stereotype falls, or to words that will appear In the 
output text. The stereotypes serve the purpose of a text generation grammar, providing 
complex context-sensitive rules where required, without search of a large store of such 
rules. This is an example of procedural representation of knowledge (see Article 
Repreaentation.C4 ). 

Analysis of an English sentence by the system proceeds in several stages. First the 
text Is separated Into fragments, where the fragment boundaries are determined by 
punctuation marks, conjunctions, prepositions, and so on. 

For each word in the fragment, the dictionary may contain several word-sense 
formulas; therefore one of many possible sequences of formulas must be selected to 
represent the fragment For this purpose, the formula sequences are matched against a 
built-in list of templates, which are networks of formulas based on a basic actor-action-o'bject 
triple called a bare template. Examples of such triples are MAN CAUSE THING and MAN DO 
T,HING. Special forms of templates are available to match fragments like prepositional 
phrases. It is assumed that It Is possible to build up a finite inventory of bare templates that 
would be adequate for the analYSis of ordinary language. The Inventory for the system has 
been determined empirically and Is easily modified. 

At the initial stage of template matching, some senses of the words in the fragment can 
be rejected for failure to match any bare template, but more than one candidate template 
may remain. For example, If the fragment is "the policeman interrogated the crook," there 
will still be two possible templates, MAN FORCE MAN and MAN FORCE THING, which tak.e 
"crook" to be a person and a shepherd's staff, respectively. 
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At the next stage of the analysis, called expansion, a more detailed matching algorithm 
Is used. The principle Is that the template representation chosen for a fragment Is the one In 
which the most preferences are satisfied. In the example, the preference of "Interrogate" 
for an object representing a human being Is decisive. The result of this stage Is a full 
template (a network of formulas) for each fragment, In which semantic dependencies among 
the formulas have been noted. The overall goal of semantic densit,--that Is, of maximizing the 
Interdependence of formulas--Is one of the key Ideas In Wilks's work and produces a good 
~olutlon to many problems of ambiguity. 

In the succeeding stage of analysis, the templates for Individual fragments are tied 
together with higher level dependencies, expressed in terms of paraplates, or patterns that 
span two templates. The use of paraplates Is to resolve prepositional or case ambiguities 
(see Article C4). For example, the fragments "he ran the mile" and "In four minutes" would 
be tied together by a paraplate for the TlMELOCATION case; had the second fragment been 
"In aplastic bag," a CONTAINMENT case paraplate would have matched Instead. A similar 
technique Is used to resolve simple problems of pronoun reference, as In "I bought the wine, 
sat on a rock, and drank It." In both cases, the chief preference of the system Is for 
semantic density. 

Finally, the system uses some commonsense inference rules to deal with situations In 
which more explicit world-knowledge Is required to resolve pronoun references than formulas, 
templates, and para plates provide. At the completion of this analysis, the input text has 
been replaced by an Interllngual representation with suitable markers, and other information 
Is used by the generation routines In a relatively straightforward manner to produce the final 
output text. 
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F3. LUNAR 

LUNAR is an experimental, natural language information retrieval system designed by 
William Woods at BBN (Woods, 1973b; Woods, Kaplan, & Nash-Webber, 1972) to allow 
geologists to access, compare, and evaluate chemical-analysis data on moon rock and soli 
composition obtained from the Apollo 11 mission (see Article Applications.F4 for a discussion 
of AI Information retrelval systems). The primary goal of the designers was research on the 
problems involved in building a man-machine interface that would allow communication in 
ordinary English. A, "real-world" application was chosen for two reasons: First, It tends to 
focus effort on the problems really In need of solution (sometimes this Is implicitly avoided in 
"toy" problems); second, the possibility of producing a system capable of performing a 
worthwhile task lends some additional Impetus to the work. 

LUNAR operates by translating ,a question entered in English into an expression in a 
formal query language (Codd, 1974). The translation is done using an augmented transition 
network parser coupled with a rule-driven semantic Interpretation procedure, which is used to 
guide the analysis of the question. The "query" that results from this analysis Is then 
applied to the database to produce the answer to the request. The query language is a 
generalization of'the predicate calculus (Article Representation.en. Its central feature Is a 
quantifier function that Is able to express, In a simple manner, the restrictions placed on a 
database-retrieval request by the user. This function' Is used In concert with special 
enumeration functions for classes of database objects, freeing the quantifier function from 
~xplicit dependence on the structure of the database. LUNAR also served as a foundation 
for the early work done on speech understanding at BBN (see Article Speech.B3). 

Detailed Description 

The following list of requests Is Indicative of the types of English constructions that 
can be handled by LUNAR (shown as they would actually be presented to the system): 

1. (WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN 
HIGH ALKALI ROCKS?) 

2. (WHAT SAMPLES CONTAIN P205?) 
3. (GIVE ME THE MODAL ANALYSES OF P205 IN THOSE SAMPLES) 
4. (GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM) 

LUNAR processes these requests In the following manner: 

Syntactic analysis using an augmented transition network parser and 
heuristic information (including semantics) to produce the most likely derivation 
tree for the request; 

Semantic Interpretation to produce a representation of the meaning of the 
request In a formal query language; and 

Execution of the query language expression on the database to produce the 
answer to the request. 

LUNAR's language processor contains a grammar for a large subset of English, the 
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semantic rules for Interpreting database requests, and a dictionary of approximately 3,500 
words. As an Indication of the capabilities of the processor, it Is able to deal with tense and 
modality, some anaphorlc references and comparatives, restrictive relative clauses, certain 
adjective modifiers (some of which alter the range of quantification or Interpretation of a 
noun phrase), and embedded complement constructions. Some problems do arise In parsing 
conjunctive constructions and In resolving ambiguity In the scope of quantifiers. Emphasis 
has been placed on the types of English constructions tactually used by geologists so that 
the system knows how they habitually refer to the objects In Its database. 

The Query Language 

The formal query language contains three types of objects: "designators," which name 
classes of objects In the database (Including functionally defined objects); "propositions," 
which are formed from predicates with designators as arguments; and "commands," which 
Initiate actions. Thus, If S 10046 is a designator for a particular sample, OLiV Is a designator 
for the minerai olivine, CONTAIN Is a predicate, and TEST is a truth-value testing command. 
then "(TEST (CONTAIN S10046 OLlV»" Is a sample expression In the query language. The 
primary function In the language Is the quantifier function FOR, which Is used in expressions 
of the following type: 

(FOR QUANT X I CLASS: PX ; QX ) 

where QUANT Is a quantifier like each or every, or a numerical or comparative quantifier; ~ is 
a variable of quantification; CLASS determines the class of objects over which the 
quantification is to range; PX specifies a restriction on the range; and QX Is the proposition 
or command being quantified. FOR is used with enumeration functions that can access the 
database. Thus, FOR itself Is independent of the database structure. As an example (taken 
from Woods, 1973b), If SEQ Is an enumeration function used to enumerate a precomputed list, 
and if PRINTOUT Is a command that prints a representation for the designator given as Its 
argument, then I 

( FOR EVERY X1 I (SEQ TYPECS) : T ; (PRINTOUT X1) ) 

prints the sample numbers for all type-C samples. In this case there Is no restriction on the 
range of quantification In that PX = T, the universally true proposition. 

A fuller example of the operation of LUNAR (simplified slightly from the same source) is 
shown below. 

Request: 
(DO ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALUMINUM) 

Query Language Translation (after parsing): 

(TEST (FOR ,SOME X1 I (SEQ SAMPLES) : T j (CONTAIN X1 
(NPRIl X2 I 'AL203) (GREATERTHAN 13 PCT»» 

Response: 
YES 



66 Natural Language 

LUNAR is perhaps the best operational example of a finely tuned ATN parsing system 
applied to a real-world problem. Since the system has limited performance goals (j.e., 
facilitating database inquiry as opposed to holding an interesting conversation),many of the 
complications inherent In language understanding are avoided. 
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F4. SHRDlU 

SHRDlU was written by Terry Winograd (1972) as his doctoral research at MIT. It was 
written In LISP and MICRO-PLANNER, a LISP-based programming language (see Article AI 
Lenguages.C2). The design of the system Is based on the belief that to understand 
language, a program must deal In an Integrated way with syntax, semantics, and reasoning. 
The basic viewpoint guiding Its Implementation Is that meanings (of words, phrases, and 
sentences) can be embodied In procedural structures and that language Is a way of 
activating appropriate procedures within the hearer. Thus, Instead of representing 
knowledge about syntax and meaning as rules In a grammar or as patterns to be matched 
against the Input, Winograd embodied the knowledge In SHRDLU In pieces of executable 
computer code. For example, the context-free rule saying that a sentence Is composed of a 
noun phrase and 8 verb phrase, 

S -) NP VP 

Is embodied In the MICRO-PLANNER procedure: 

(PDEFINE SENTENCE 
«(PARSE NP) NIL FAIL) 

«PARSE VP) FAIL FAIL RETURN») 

When called, this program, called SENTENCE, uses Independent procedures for parsing a noun 
phrase followed by a verb phrase. These, In turn, can call other procedures. The process 
FAILs if the required constituents are not found. With such special procedural representations 
for syntactic, semantic, and reasoning knowledge, SHRDLU was able to achieve 
unprecedented performance levels In dialogues simulating a blocks world robot. 

SHRDLU operates within a small "toy" domain so that it can have an extensive model of 
the structures and processes allowed in the domain. The program simulates the operation of 
a robot arm that manipulates toy blocks on a table. The system maintains an interactive 
dialogue with the user: It can accept statements and commands as well as answer questions 
about the state of Its world and the reasons for Its actions. The implemented system 
consists of four basic elements: a parser, a recognition grammar for English, programs for 
semantic analysis (to change a sentence into a sequence of commands to the robot or into a 
query of the database), and a problem solver (which knows about how to accomplish tasks in 
the blocks world). 

Each procedure can make any checks on the sentence being parsed, perform any 
actions, or call on other procedures that may be required to accomplish Its goal. For 
example, the VERB PHRASE procedure called above contains calls to functions that establish 
verb-subject agreement by searching through the entire derivation tree for other 
constituents while still being in the middle of parsing the VP. SHRDLU's knowledge base 
Includes a detailed model of the blocks world It manipulates, as well as a simple model of its 
own reasoning processes, so that it can explain Its actions. 

Reasoning In SHRDLU 

SHRDLU's model of the world and reasoning about It are done In the MICRO-PLANNER 
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programming language, which facilitates the representation of problem-solving procedures, 
allowing the user to specify his own heuristics and strategies for a particular domain. 
Knowledge about the state of the world Is translated Into MICRO-PLANNER assertions, and 
manipulative and reasoning knowledge Is embodied In MICRO-PLANNER programs. For 
example, the Input sentence "The pyramid is on the table" might be translated Into an 
assertion of the form: 

(ON PYRAMID TABLE) 

SHRDLU's problem solver consists of a group of "theorems" about the robot's 
environment and actions, represented as MICRO-PLANNER procedures. In operation, the 
theorem prover manipulates the state of the domain by running MICRO-PLANNER programs 
that perform the actions requested by the user. 

The philosophy and Implementation of PLANNER are described In the AI Programming 
Languages section of the Handbook, but a brief discussion here will Illustrate Its use In 
SHRDLU. The main Idea of PLANNER Is to solve problems using specific procedures built Into 
the problem statements themselves, as well as using general problem-solving rules. The 
advantage of using these problem-specific rules or heuristics is that they can radically 
increase the efficiency of the process. Furthermore, the problem statements are programs 
and thus can carry out actions In the problem-solving process. Thus, to put one block on 
another, there might be a MICRO-PLANNER program of the form: 

(THGOAL (ON ?X ?Y) 
(OR (ON-TOP ?X ?Y) 

(AND 1CLEAR-TOP ?Xl CLEAR-TOP ?Y 
PUT-ON ?X ?Y ») 

This means that, if X is not already on Y, that state can be achieved by clearing off 
everything that is stacked on top of X (so that the robot can move X), clearing off Y (so that 
X can be placed on top of Y) and then putting X on Y. The procedure resembles a predicate 
calculus theorem, but there are Important dlfference·s. The PLANNER procedure Is 8 program, 
and Its operators carry out actions. The THGOAL procedure finds an assertion In the 
database or proves It using other procedures, AND and OR are logical connectives. The 
crucial element Is that though PLANNER may end up doing a proof, It does so only after 
checking some conditions that may make the proof trivial, or Impossible, and It only performs 
the proof on relevant arguments, rather than checking all entities In the database as a blind 
theorem prover might. Moreover, no sharp distinction Is drawn between proof by showing 
that a desired assertion Is already true and proof by finding a sequence of actions 
(manipulating blocks) that will make the assertion true. In addition to the article on PLANNER 
(AI Languages.C2), the reader is referred to the Knowledge Representation section for a 
general discussion of these Issues. 

, Grammar, Syntax, and Semantics 

SHRDLU's grammar Is based on the notion of systemic grammar, a system of choice 
networks that specifies the features of a syntactic unit, how the unit functions, and how It 
Influences other units, discussed In Article C3. Thus, a systemic grammar contains not only 
the constituent elements of a syntactic group but also higher level features such as mood, 
tense, and voice. 
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In order to facilitate the analysis, the parsing process looks for syntactic units that 
play a major role In meaning, and the semantic programs are organized Into groups of 
procedures that are applicable to a certain type of syntactic unit. In addition, the database 
definitions contain semantic markers that can be used by the syntactic programs to rule out 
grammatical but semantically Incorrect sentences such as liThe table picks up blocks. II 
These markers are calls to semantic procedures that check for restrictions, such as that only 
animate objects pick up things. These semantic programs can also examine the context of 
discourse to clarify meanings, establish pronoun referents, and Initiate other semantically 
guided parsing functions. 

Parsing 

To write SHRDLU's parser, Winograd first wrote a programming language, embedded in 
LISP, which he called PROGRAMMAR. PROGRAMMAR supplies primitive functions for building 
systemically described syntactic structures. The theory behind PROGRAMMAR Is that basic 
programming methods, such as procedures, Iteration, and recursion, are also basic to the 
cognitive process. Thus, a grammar can be Implemented In PROGRAMMAR without additional 
programming paraphernalia; special syntactic Items. (such as co!"junctlons) are dealt with 
through calls to special procedures. PROGRAMMAR operates basically In a top-down. left-to­
right fashion but uses neither a parallel processing nor backtracking strategy In dealing with 
multiple alternatives (see Article 01). PROGRAMMAR finds one parsing r.ather directly, since 
decisions at choice-points are guided by the semantic procedures. By functionally 
integrating Its knowledge of syntax and semantics, SHRDLU can avoid trying all choices in an 
ambiguous situation. If the choice made does fail, PROGRAMMAR has primitives for returning 
to the choice-point with the reasons for the failure and Informing the parser of the next best 
choice based on these reasons. This "directed backup" Is far different from PLANNER's 
automatic backtracking In that the design philosophy of the parser Is oriented toward making 
an original correct choice rather than establishing exhaustive backtracking. 

The key to the system's successful operation Is the Interaction of PLANNER reasoning 
procedures, semantic analysis, and PROGRAM MAR. All three of these elements examine the 
input and help direct the parsing process. By making use of. this multiple-source knowledge 
and programmed-in "hints" (heuristics), SHRDLU successfully dealt with language issues such 
as pronouns and referents. The reader is referred to Winograd's Understanding Natural 
Language (1972), pages 8-16, for an illustrative sample dialogue with SHRDLU. 

:~ 

Discussion 

SHRDLU was a significant step forward In natural language processing research 
because of its att-empts to combine models of human linguistic and reasoning methods in the 
language understanding process. Before SHRDLU, most AI language programs were 
linguistically simple; they used keyword and pattern-oriented grammars. Furthermore, even. 
the more powerful grammar models used by linguists made little use of Inference methods and 
semantic knowledge in the analysis of sentence structure. A union of these two techniques 
gives SHRDLU Impressive results and makes It a more viable theoretical model of human 
language processing. 

SHRDLU does have Its problems, however. Like most existing natural language 
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systems, SHRDLU lacks the ability to handle many of the more complex features of English. 
Some of the problem areas are agreement, dealing with hypotheses, and handling words such 
as the and and. 

Wilks (1974) has argued that SHRDLU's power does not come from linguistic analysis 
but from the use of problem-solving methods In a simple, logical, and closed domain (blocks 
world), thus eliminating the need to face some of the more difficult language issues. It 
seems doubtful that If SHRDlU were extended to a larger domain, it would be able to deal 
with these problems. Further, the level at which ,SHRDLU seeks to simulate the intermixing of 
knowledge sources typical of human reasoning is embedded in its processes rather than 
made explicit In its control structure, where It would be most powerful. Lastly, its problem 
solving Is still highly oriented to predicate calculus and limited In Its use of inferential and 
heuristic data (Winograd, 1974, pp. 46-48) . . 
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F5. MARGIE 

MARGIE (Meaning Analysis, Response Generation, and Inference on English) was a 
program developed by Roger Schank and .hls students at the Stanford AI lab (Schank, 1975). 
Its Intent was to provide an Intuitive model of the process of natural language understanding. 
More recent work by Schank and his colleagues at Yale on story understanding and conceptual 
dependency theory are described In Article F6 on their SAM and PAM systems. 

Conceptual Dependency Theory 

The central feature of the MARGIE system was the use of a knowledge representation 
scheme called Conceptual Dependency. Conceptual dependency Is Intended to represent 
meaning In a sufficiently deep manner so that all ambiguity Is eliminated. Every sentence 
maps Into a canonical form, and any two. sentences with the same "meaning" will have the 
same representation.. This goal was approached by designing a graph-structure formalism 
based on a set of primitive concepts. There are 6 basic types of concepts: things, actions, 
attributes of things, attributes of actions, times, and locations (the first four correspond 
roughly to nouns, verbs, adjectives, and adverbs). Relations among concepts are called 
dependencies, and there are 15 types of these. Among them are case relationships such as 
those between an act and Its object, Its direction, or its recipient and donor (see Article C4 
on case grammars). Graphically, each type of dependency Is denoted with a special arrow 
symbol (link), and each concept Is denoted by a word representing It. For example, "John 
gives Marya book" would be expressed as: ' 

o --t;'Mary 
John (===> ATRANS ~ book . 

, John 

where John, book, and Mary are concept nodes. Also, the concept node ATRANS (abstract 
transfer--i.e., transfer of possession) Is one of a small set of primitive verbs (about twelve) 
from which all actions must be built up. Other primitives Include PTRANS (physical transfer-­
i.e., movement) and PROPEl (apply a force). The complicated, three-pointed arrow labeled B 
indicates a recipient-donor dependency between Mary and John and the book, since Mary 
got the book from John. The arrow labeled Q indicates an "objective II dependency; that Is, 
the book Is the object of the ATRANS, since It is the thing being given. Dependency links 
may link concepts or other conceptual dependency networks. 

Another example,"John eats the Ice cream with a spoon," would be represented as: 

0, ~ John 
John (===) INGEST ~ ice cream 

spoon 

I John 

- M!!E 
ice ~ream i 

CONTAIN ~ ("':p-o-o-n -) ---.;.----; 5:1"" 1 
ice cream' mouth 
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where the Q and! arrows Indicate DIRECTION and INSTRUMENT, respectively. Notice that in 
this example, "mouth" has entered the diagram as part of the conceptualization, even though 
it was not In the original sentence. This Is part of the fundamental difference between 
conceptual dependency networks and the syntactic tree that a grammar may produce In 
parsing a sentence. John's mouth as the recipient of the ice cream is inherent In the 
"meaning" of the sentence, whether it Is expressed or not. In fact, the diagram can never be 
finished, because we could add such details as "John INGESTed the ice cream by TRANSing 
the Ice cream on a spoon to his mouth, by TRANSlng the spoon to the Ice cream, by GRASPing 
the spoon, by MOVing his hand to the spoon, by MOVing his hand muscles," and so on. Such 
an analysis is known to both the speaker and the hearer of the sentence and normally would 
not nee.d to be expanded. (However, if we were actually designing a robot to perform such 
an action, we would want access to a more detailed network that would represent the 
robot's procedural knowledge about eating.) 

For some tasks, like paraphrasing and question answering, this style of representation 
has a number of advantages over more surface-oriented systems. In particular, sentences 
like 

Shakespeare wrote Hamlet 
and 

The author of Hamlet was Shakespeare , 

which in some sense have the same meaning, map into the same deep structure. They can 
thus be seen to be paraphrases of each other. Another Important aspect of conceptual 
dependency theory Is its Independence· from syntax; in contrast with earlier work in the 
paradigms of transformational grammar or phrase-structure grammar, a "parse" of a sentence in 
conceptual dependency bears little relation to the syntactic structure. Schank (1975) also 
claims that conceptual dependency has a certain amount of psychological validity, In that It 
reflects Intuitive notions of human cognition. 

MARGIE 

The MARGIE system, programmed In LISP 1.6, was divided Into three components. The 
first, written by Chris Rlesbeck, was a conceptual analyzer, which took English sentences and 
converted them Into an Internal conceptual dependency representation. This was done 
through a system of "requests," which were similar to demons or production systems. A request 
Is essentially a piece of code that looks for some surface linguistic construct and takes a 
specific action If It Is found. It consists of a "test condition," to be searched for In the Input, 
and an "action," to be executed If the test Is successful. The test might be as specifiC as a 
particular word or as general as an entire conceptualization. The action might contain 
Information about: (a) what to look for next In the Input, (b) what to do with the Input just 
found, and (c) how to organize the representation. The flexibility of this formalism allows the 
system to function without depending heavily on syntax, although it Is otherwise quite similar 
to the tests and actions that make ATNs such 8 powerful parSing mechanism. 

The middle phase of the system, written by Chuck Rieger, was an Inferencer designed 
to accept a proposition (stated In conceptual dependency) and deduce a large number of 
facts from the proposition In the current context of the system's memory. The motivation for 
this component was the assumption that humans "understand" far more from a sentence than 
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is actu.ally stated. Sixteen types of Inferences were Identified, Including "cause," "effect," 
"specification," and IIfunctlon.lIlhe Inference knowledge was represented In memory In a 
modified semantic net. Inferences were organized Into "molecules," for the purpose of 
applying them. An example of this process might be: 

John hit Mary. 

from which the system might Infer (among many other things): 

John was angry with Mary. 
Mary might hit John back. 
Mary might get hurt. 

The module does relatively unrestricted forward Inferenclng. which tended to produce large 
numbers of Inferences for any given Input. 

The last part of the system was a text generation module written by Nell Goldman. This 
took an Internal conceptual dependency representation and converted It Into English-like 
output, In a two-part process: 

1. A discrimination net was used to distinguish between different word-senses. 
This permitted the system to use English-specific contextual criteria for 
selecting words (especially verbs) to IInameli conceptual patterns. 

2. An ATN was used to linearize the conceptual dependency representation into a 
surface-like structure. 

The text generation module is also discussed In Article E. 

MARGIE ran in two modes: inference mode and paraphrase mode. In inference mode, it 
would accept a sentence and attempt to make Inferences from that sentence, as described 
above. In paraphrase mode, it would attempt to restate the sentence in as many equivalent 
ways as possible. For example, given the input 

John killed Mary by choking her. 

it might produce the paraphrases 

John strangled Mary. 
John choked Mary and she died because she was unable to breathe. 

Discussion 

MARGIE is not, and was not Intended to be, a "finished" production-level system. 
Rather, the goal was to provide a foundation for further work In computational linguistics. Of 
particular Interest In MARGIE was the use of conceptual dependency as an interlingua, a 
language-Independent representation scheme for encoding the meaning of sentences. Once 
the sentence was processed, the surface structure was dropped and all further work was 
done with the conceptual dependency notation. This method has certain beneficial effects 
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on the control structure: All Interprocess communication can be done through conceptual 
dependency, without the need to resort to the surface level, although the more subtle 
Information In the surface structure may be lost. Since the Intermediate representation is 
"Ianguage-free, II It should facilitate translation of the original sentence Into another 
language, as Weaver Indicated In his original discussion of Machinese (see Article B). As 
mentioned above, the existence of a unique representation for any fact should also facilitate 
tasks like paraphrasing and question answering. 

References 

Conceptual dependency theory and all three parts of the MARGIE system are described 
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F6. SAM and PAM 

Story Understanding 

SAM (Script Applier Mechanism) and PAM (Plan Appller Mechanism) are computer 
programs developed by Roger Schank, Robert Abelson and their students at Yale to 
demonstrate the use of scripts and plans In understanding simple stories (Schank et aI., 
1975; Schank & Abelson, 1977). Most work In natural language understanding prior to 1973 
Involved parsing Individual sentences In Isolation; It was thought that text composed of 
paragraphs could be understood simply as collections of sentences. But just as words are 
not formed from the unconstrained juxtaposition of morphemes, and sentences are not 
unconstrained collections of words, so paragraphs and stories are not without structure. The 
structures of stories have been analyzed (Propp, 1968; Rumelhart, 1975; Thorndyke, 1977), 
and it Is clear that the context provided by these structures facilitates sentence 
comprehension, Just as the context provided by sentence structure facilitates word 
comprehension (see the Overview; also, the Speech.A article discusses top-down processing In 
speech understanding research). For example, If we have been told In a story that John Is 
very poor, we can expect later sentences to deal with the consequences of John's poverty, 
or steps he takes to alleviate It. 

Different researchers have very different Ideas about what constitutes the structure 
of a story. Some story grammars are rather "syntactic"; that Is, they describe a story as a 
collection of parts like setting, characters, goal Introduction, and plans, determined by their 
sequential position In the story rather than by their meaning. The work of Schank and 
Abelson reported here has a more semantic orientation. They propose an underlying 
representation of each phrase in a story which Is based on a set of semantic primitives. This 
representation, called conceptual dependency, is the theoretical basis for more complex story 
structures such as scripts, plans, goals, and themes. The SAM and PAM programs understand 
stories using these higher level structures. (Article F5 describes the early work on 
conceptual dependency theory, and Articles RepresentationC5 and Representation.C6 
discuss related representation schemes.) 

Parsing: A Brief Introduction to Conceptual Dependency 

Prior to his work with stories, Schank (1973) developed conceptual de~endency feD) 
for representing the meaning of phrases or sentences. The "basic axiomtl of conceptual 
dependency theory Is: 

For any two sentences that are Identical In meaning, regardless of 
language, there should be only one representation of that meaning in 
CD. (See Schank & Abelson, 1977, p. 11.) 

Schank thus allies himself with the early machine translation concept of interlingua, or 
intermediate language (see Articles B and Overview), and has In fact done some mechanical 
translation research In conjunction with the story understanding project. A second important 
Idea Is: . 

Any information In a sentence that Is Implicit must be made explicit in 
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the representation of the meaning of that sentence. (Schank & 
Abelson, 1977, p. 11) 

.This idea is the basis for much of the sophisticated Inferential ability of SAM and PAM: We 
shall see a sense In which the fact that "John ate food" Is Implicit In the sentence "John 
went to a restaurant," and how the former sentence can be Inferred at the time that the 
program reads In the latter. 

A third Important Idea Is that conceptual dependency representations are made up of a 
very small number of semantic primitives, which include primitive acts and primitive states 
(with associated attribute values). Examples of primitive acts are: 

ACTS: 
PTRANS The transfer of the physical location of an 

object. For one to AgO· is to PTRANS oneself. 
nPuttingn an object somewhere is to PTRANS it 
to that place. 

PROPEL The application of physical force to an object. 

ATRANS The transfer of an abstract relationship. To 
"given is to ATRANS the relationship of possession 
or ownership. 

MTRANS The transfer of mental information between people 
or within a person. nTelling" is an HTRANS between 
people; nseeing· is an HTRANS within a person. 

MBUILD The construction of new information from old. 
"Imagining,· "inferring," and "deciding" are HBUILDs. 

In the most recent version of CD theory (1977), Schank and Abelson Included 11 of these 
primitive acts. 

Examples of primitive states include: 

STATES: 
Mary HEALTH(-18) 
John MENTAL STATE(+18) 
Vase PHYSICAL STATE(-18) 

Mary is dead. 
John is ecstatic. 
The vase ;s broken. 

The number of primitive states In conceptual dependency theory Is much larger than the 
number of primitive actions. States and actions can be combined; for example, the sentence 

John told Mary that Bill was happy 

can be represented as 

John MTRANS (Bill BE MENTAL-STATE(6» to Mary. 

An important class of sentences Involves causal chains, and Schank and Abelson have 
worked out some rules about causality that apply to conceptual dependency theory. Five 
Important rules are: 



F6 SAM and PAM 67 

1. Actions can result in state changes. 
2. States can enable actions. 
3. States can disable actions. 
4. States (or acts) can initiate mental events. 
5. Mental events can be reasons for actions. 

These are fundamental pieces of knowledge about the world, and conceptual dependency 
theory Includes a shorthand representation of each (and combinations of some) called causal 
links. 

Conceptual dependency representation Is, In fact, the Interlingua that is produced 
when SAM or PAM parses sentences. The parser which Is used by these programs is an 
extension of the one developed by Chris Riesbeck (1975) for the MARGIE system (Article 
F5). As this program encounters words, it translates them Into conceptual dependency 
representationj but, In addition, it makes predictions about what words and linguistic 
structures (verbs, prepositions, etc.) can be expected to occur and what conceptual 
dependency structures should be built In that eventuality. 

Conceptual dependency Is the underlying representation of the meaning of sentences 
upon which SAM and PAM operate. We turn now to higher level knowledge· structures: 
scripts, pians. goals. and themes. Schank and Abelson make a distinction between scripts 
and plans that must be clear before the differences between SAM and PAM become 
apparent. 

Scripts 

A script is a standardized sequence of events that describes some stereotypical 
human activity. such as going to a restaurant. Schank and Abelson's assumption is that 
people know many such scripts and use them to establish the context of events. A script is 
functionally similar to a frame (Minsky, 1975) or a schema (Bartlett. 1932j Rumelhart, 1975), 
in the sense that It can be used to anticipate the events it represents. For example, the 
RESTAURANT script (see Figure 1) involves going to a restaurant, being seated, consulting 
the menu, and so on. People who are presented with an abbreviated description of ttlls 
activity, e.g., the sentence "John went out to dinner," Infer from their own knowledge about 
restaurants that John ordered, ate, and paid for food. Moreover, they. anticipate from a 
sentence which fills part of the script ("John was given a menu") what sort of sentences are 
likely to follow, e.g., "John ordered the lamb." Scripts attempt to capture the kind of 
knowledge that people use to make these inferences. (Article Represenlalion.C6 discusses 
scripts, frames and related representation schemes.) 
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Players: customer, server, cashier 

Props: restaurant, table, menu, food, check, payment, tip 

Events: 

1. customer goes to restaurant 
2. customer goes to table 
3. server brings menu 
4. customer orders food 
5. server brings food 
6. customer eats food 
7. server brings check 
8. customer leaves tip for server 
9. customer gives payment to cashier 

18. customer leaves restaurant 

Header: event 

Main concept: event 6 

Figure 1. Restaurant Script 

Two components of scripts are of special importance. We will discuss iater how the script 
header Is used by SAM to match scripts to parsed sentences. The second important 
component Is the main concept or goal of the script. In the resfaurant script the goal is to eat 
food. 

The scripts used in SAM grew out of Abelson'S (1973) notion of scripts as networks of 
causal connections. However, they do not depend on explicit causal connections between 
their events. In hearing or observing events that fit a standard script, one need not analyze 
the sequence of events in terms of causes, since they can be expected just from knowing 
that the script applies. The identification of events as filling their slots in the script gives us 
the intuition of "understanding what happened.n 

Scripts describe everyday events, but frequently these events (or our relating at 
them) do not run to completion. For example: 

I went to the restaurant. I had a hamburger. 
Then I bought some groceries. 

This story presents several problems for a system like SAM that matches scripts to input 
sentences. One problem Is that the restaurant script is "left dangling" by the introduction of 
the last sentence. It is not clear to the system whether the restaurant script. (a) has 
terminated, and a new (grocery shopping) script has startedj (b) has been distracted by a 
"fleeting" (one-sentence) grocery script; or (c) is Interacting with a new grocery script 
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(e.g., buying groceries in the restaurant). Another thing that can happen to everyday scripts 
is that they can be thwarted, as in: 

I went to the gas station to fill up my car. 
But the owner said he was out of gas. 

This is called an "obstacle ll
• 

Scripts describe rather specific events, and although It Is assumed that adults know 
thousands of them, story comprehension cannot be s'imply a matter of finding a script to 
match a story. There are just too many possible stories. Moreover, there are clear cases 
where people comprehend a story even though it does not give enough Information to cause 
a program to Invoke a script, as in 

John needed money. He got a gun and went to a liquor store. 

Schank and Abelson point out that even if the program had a script for Robbery, this story 
offers no basis for Invoking It. Nonetheless, people understand John's goals and his intended 
actlons~ 

Plans 

There must be relevant knowledge available to tie together sentences 
that otherwise have no obvious connection. . .. The problem Is that 
there are a great many stories where the connection cannot be made 
by the techniques of causal chaining nor by reference to a script. Yet 
they are obviously connectable. Their connectability comes from these 
stories' implicit reference to plans. (Schank & Abelson, 1977, p. 75) 

Schank and Abelson introduce plans as the means by which goals are accomplished, and 
they say that understanding plan-based stories involves discerning the goals of the actor and 
the methods by which the actor chooses to fulfill those goals. The distinction between 

, script-based and plan-based stories is very simple: In a script-based story, parts or all of 
the story correspond to one or more scripts available to the story understander; in a plan­
based story, the understander must discern the goals of the main actor and the actions that 
accomplish those goals. An understander might process the same story by matching it with a 
script or scripts, or by figuring out the plans that are represented in the story. The 
difference Is that the first method Is very specialized, because a script refers to a specific 
sequence of actions, while plans can be very general because the goals they accomplish are 
general. For example, In 

John wanted to go to a movie. He walked to the bus-stop. 

we understand that John's immediate goal (called a delta-goal because it brings about a 
change necessary for accomplishment of the ultimate goal) is to get to the movie theater. 
Going somewhere is a very general goal and does not apply just to going to the movies. In 
Schank and Abelson's theory, this goal has associated with It a set of planboxes, which are 
standard ways of accomplishing the goal. Planboxes for going somewhere include riding an 
animal, taking public transportation, driving 8 car, etc. 
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Obviously, a story understander might have a "go to the movies" script In its repertoire, 
so that analysis of John's goals would be unnecessary--the system would just "recognize" 
the situation and retrieve the script. This script would be the standardized Intersection of a 
number of more or less general goals and their associated planboxes. It would be a 
"routinized plan" made up of a set of general subplans: Go to somewhere (the theater), 
Purchase something (a ticket), Purchase something (some popcorn), etc. 

A routinized plan can become a script, at least from the planner's 
personal point of view. 

Thus, plans are where scripts come from. They compete for the same 
role in the understanding process, namely as explanations of 
sequences of actions that are intended to achieve a goal. (Schank & 
Abelson, 1977, p. 72) 

The process of understanding plan-based stories involves determining the actor's goal, 
establishing the subgoals (delta- or O-goals) that will lead to the main goal, and matching the. 
actor's actions with planboxes associated with the O-goals. For example, In 

John was very thirsty. He hunted for a glass. 

we recognize the O-goal of PTRANSing liquid, and the lower level goal (specified in the 
planbox for PTRANSlng liquid) of finding a container to do It with. 

Goals and Themes 

In story comprehension, goals and subgoals may arise from a number of sources. For 
example, they may be stated explicitly, as in 

John wanted to eat; 

they may be nested in a planbox; or they may arise from themes. For example, If a LOVE 
theme holds between John and Mary, It is reasonable to expect the implicit, mutual goal of 
protecting each other from harm: "Themes, In other words, contain the background 
Information upon which we base our predictions that an Individual will have a certain goal'" 
(Schank & Abelson, 1977, p. 132). 

Themes are rather like production systems In their situation-action nature. A theme 
specifies a set of actors, the situations they may be In, and the actions that will resolve the 
situation in a way consistent with the theme. The goals of a theme are to accomplish these 
actions. Schank and Abelson have proposed seven types of goals; we have already 
considered 0-goaI5. Other examples are: 

A- or Achievement-goals. To desire wealth is to have an 
A-Honey goal. 

P- or Preservation-goal. To protect someone may be a P-Health 
or P-Hental State goal. 

C- or Crisis-goal. A special case of P-goals, when action 
is immediately necessary. 

-I 
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The LOVE theme can be stated in terms of some of these goals: 

X is the lover; Y is the loved one; Z is another person~ 

SITUATION 
Z cause Y harm 

not-Love(Y,X) 

General goals: 

or 

ACTION 
A-Health(Y) and possibly 
cause Z harm 
C-Health(Y) 

A-Love(Y,X) 

A-Respect(Y) 
A-Harry(Y) 
A-Approval(Y) 
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To summarize the knowledge-structures we have discussed, we note their 
Interrelationships: 

SAM 

Themes give rise to goals. 

A plan is understood when Its goals are Identified and Its actions are consistent 
with the accomplishment of those goals. 

Scripts are standardized models of events. 

Scripts are specific; plans are general. 

Plans originate from scripts. 

Plans are ways of rep-resenting a person's goals. These goals are Implicit in 
scripts, which represent only the actions. 

A script has a header, which is pattern-matched to an Input sentence. Plans do 
not have headers, but each plan Is subsumed under a goal. 

Both SAM and PAM accept stories as Input; both use an English-to-CD parser to 
produce an internal representation of the story (in conceptual dependency). Both are able 
to paraphrase the story and to make intelligent Inferences from it. They differ with respect 
to the processing that goes on after the CD representation has been built. 

SAM understands stories by fitting them Into one or more scripts. After this match is 
completed, It makes summaries of the stories. The process of fitting a story into a script has 
three parts, a PARSER, a memory module (MEMTOK), and the script applier (APPLV). These 
modules cooperate: The parser generates a CD representation of each sentence, but APPL V 
gives it a set of Verb-senses to use once a script has been Identified. For example, once 
the restaurant script has been established, APPL V tells the parser that the appropriate 
sense of the verb "to serve" Is "to serve food" rather than, for example, "to serve in the 
army." 
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The parser does not make many Inferences; thus It does not realize that lIitll refers to 
the hot dog In liThe hot dog was burned. It tasted awful." This task is left to MEMTOK. This 
module takes references to people, places, things, etc., and fills In Information about them. It 
recognizes that the "Itll In the sentence above refers to the hot dog, and lIinstantlatesll the 
"Itll node In the CD representation of the second sentence with the IIhot dog" node from the 
first sentence.· Similarly, In a story about John, MEMTOK would replace IIhe" with IIJohnll 

where appropriate, and would continually update the "Johnll node as more information became 
available about him. 

The APPLY module has three functions. First, it takes a sentence from the parser and 
checks whether it matches the current script, a concurrent (interacting) script, or an, script 
In the database. If this matching Is successful, it makes a set of predictions about likely 
Inputs to follow. Its third task Is to Instantiate any steps In the current script that were 
"skipped over" In the story. For example, if the first sentence of a story is IIJohn went to a 
restaurant,lI APPLY finds a match with the script header of the restaurant script In its 
database (see Figure 1 ). APPLY then sets up predictions for seeing the other events In the 
restaurant script in the Input. If the next sentence Is "John had a hamburger," then APPLY 
successfully matches this sentence Into the restaurant script (event 6). It then assumes 
events 2-5 happened, and instantiates structures In Its CD representation of the story to 
this effect. Events 7-10 .remain as predictions. 

When the whole story has been mapped into a CD representation in this manner, the 
SAM program can produce a summary of the story, or answer questions about it. (See 
Schank & Abelson, 1977, pp. 190-204, for an annotated sample protocol with the program.) 
Consistent with the idea of Interlingua, SAM can produce summaries In English, Chinese, 
Russian, Dutch, and Spanish. An example of a SAM paraphrase follows; note the powerful 
Inferences made by Instantiating intermediate script steps: 

ORIGINAL: 

PARAPHRASE: 

John went to a restaurant. He sat down. He got mad. 
He left. 

. JOHN WAS HUNGRY. HE DECIDED TO GO TO A RESTAURANT. 
HE WENT TO ONE. HE SAT DOWN IN A CHAIR. A WAITER 
DID NOT GO TO THE TABLE. JOHN BECAME UPSET. HE 
DECIDED HE WAS GOING TO LEAVE THE RESTAURANT. HE 
LEFT IT. 

SAM inferred that John left the restaurant because he did not get any service. The basis for 
this inference is that In the restaurant script, event 3 represents the waiter coming over to 
the table after the main actor has been seated. SAM knows that people can get mad if their 
expectations are not fulfilled, and Infers that John's anger results from the nonoccurrence of 
event 3. . 

PAM 

. Wilensky's (1978) PAM system understands stories by determining the goals that are 
to be achieved in the story and attempting to match the actions of the story with the 
methods that It knows will achieve the goals. More formally: 

The process of understanding plan-based stories Is as 
follows: 



F6 SAM and PAM 

a) Determine the goal, 

b) Determine the D-goals that will satisfy that goal, 

c) Analyze Input conceptualizations for their potential realization of one of the 
planboxes that are called by one of the determined D-goals. (Schank & 
Abelson, 1977, p. 76) 

73 

PAM utilizes two kinds of knowledge structure In understanding goals: named plans and themes. 
A named plan Is a set of actions and subgoals for accomplishing a main goal. It is not very 
different from a script, although the emphasis In named plans Is on goals and the means to 
accomplish them. For example, a script for rescuing a person from a dragon would Involve 
riding to the dragon's lair and slaying It--a sequence of actlons--but a named plan would be 
a list of subgoals (find some way of getting to the lair, find some way of killing the dragon, 
etc.) and their associated planboxes. When PAM encounters a goal In a story for which it 
has a named plan, It can make predictions about the O-goals and the actions that will follow. 
It. will look for these O-goals and actions In subsequent Inputs. Finding them Is equivalent to 
understanding the story. 

Themes provide another source of goals for PAM. Consider the sentences: 

a) John wanted to rescue Mary from the dragon. 
b) John loves Mary. Mary was stolen away by a dragon. 

In both of these cases, PAM will expect John to take actions that are consistent with the 
goal of rescuing Mary from the dragon, even though this goal was not explicitly mentioned In 
(b). The source of this goal In (b) Is the LOVE theme mentioned above, because In this 
theme, If another actor tries to cause harm to a loved one, the main actor sets up the goal of 
Achieving-Health of the loved one and possibly harming the evil party. (it Is assumed that 
the dragon stole Mary In order to hurt her.) 

PAM determines the goals of an actor by (a) their explicit mention in the text of the 
story, (b) establishing them as O-goals for some known goal, or (c) inferring them from a 
theme mentioned In the story. To understand a story Is to "keep track of the goals of each 
of the characters In a story and to Interpret their actions as means of achieving those goals" 
(Schank & Abelson, 1977, p. 217). The program begins with written English text, converts it 
into CD representation, and then Interprets each sentence In terms of goals (predicting 0-
goals and actions to accomplish them) or actions themselves (marking the D-goals as 
"accomplished"). When this process is completed, PAM can summarize the story and answer 
questions about the goals and actions of the characters. 

Summary 

Scripts, plans, goals, and themes are knowledge structures built upon conceptual 
dependency theory. SAM is a program for understanding script-based stories. It matches 
the Input sentences of a story to events In one or more of the scripts In Its database. As 
such, It processes Input based on expectations It has built up from the scripts. PAM 
understands plan-based stories by determining the goals of the characters of the story and 
by Interpreting subsequent actions In terms of those goals or subgoals that will achieve 
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them. A great deal of inference can be required of PAM simply to establish the goals and 
sub goals of the story from the Input text. 

Schank and Abelson argue that human story understanding is a mixture of applying 
known scripts and Inferring goals (where no script Is available or of obvious applicability). 
They are experimenting with Interactions of SAM and PAM, In particular, with using SAM to 
handle script-based sub-stories under the control of PAM. 
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F7. LIFER 

The natural language systems described In the preceding articles fa" into two 
categories: those built to study natural language processing Issues In general and those built 
with a particular task domain In mind. In contrast, LIFER, built by Gary Hendrix (1977a) as 
part of the Internal research and development program of SRI International, is designed to be 
an "off-the-shelf" natural language utility available to system builders who want to 
Incorporate an Nl front-end Interface to Improve the usability of their various applications 
systems. The bare LIFER system is a system for generating natural language interfaces; the 
Interface builder can augment LIFER to fit his particular application, and even the eventual 
users can tailor the LIFER-supported front-end to meet their Individual styles and needs. 

Language Specification and Parsing 

The LIFER system has two major components: a set of interactive functions for 
specifying a language, and a parser. Initially It contains neither a grammar nor the semantics 
of any language domain. An Interface builder uses the language specification functions to 
define an application language, a subset of Eng"sh that is appropriate for interacting with his 
application system. The LIFER system then uses this language specification to inter p, ef 

natural language Inputs as commands for the application system. 

The interface builder specifies the language primarily In terms of grammatical rewrite 
rules (see Article e1). LIFER automatically translates these into transition trees, a simplified 
form of augmented transition networks (Article O~). Using the transition tree, the parser 
interprets Inputs In the application language. The result Is an Interpretation in terms of the 
appropriate routines from the applications system, as specified by the interface builder. The 
parser attempts to parse an input string top-down and left to right (see Article 01) by 
nondeterminlstlcally tracing down the transition tree whose root node is the start symbol 
(known as <loT.G.> for "LIFER top grammarll

). For example, suppose the Interface builder has 
specified the following three production rules as part of his application language: 

<loT.G.> -) WHAT IS THE (ATTRIBUTE> OF (PERSON> I el 
<loT.G.> -> WHAT IS (PERSON> (ATTRIBUTE> I e2 
(loT.G.> -> HOW (ATTRIBUTE> IS (PERSON) I e3 

If an input matches one of these patterns, the corresponding expression (el, e2, or e3) Is 
evaluated--these are the appropriate Interpretations that the system Is to make for the 
corresponding Input. The transition tree built by the language specification functions would 
look like this: 

/---THE--<ATTRIBUTE> OF <PERSON> I el 

I -WHAT IS 
\---<PERSON> <ATTRIBUTE> I e2 

<l.T.G.> 

~----- HOW <ATTRIBUTE> IS (PERSON> I e3 

Sentences such as: 

What Is the age of Mary's sister? 
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How old Is Mary's sister? 
What Is John's height? 
How tall Is John? 

might be parsed using this simple transition tree, depending on how the nonterminal 'symbols 
or meta-symbols, <ATTRIBUTE> and <PERSON>, are defined. (The Interface builder can supply 
a preprocessing function which Is applied to the Input string before LIFER attempts to parse 
It. Typically the preprocessor strips trailing apostrophes and s's so that LIFER sees "John's" 
as "John".) 

During parsing, LIFER starts at the symbol <L.T.G.> and attempts to move toward the 
expressions to be evaluated at the right. The parser follows a branch only If some portion at 
the left of the remaining Input string can be matched to the first symbol on the branch. 
Actual words (such as what or of In the above example) can be matched only by themselves. 
Meta-symbols (such as (ATTRIBUTE> or (PERSON» can be matched In a number of ways, 
depending on how the Interface builder has defined them: . 

(a) as a simple set (for example, (PERSON) = the set {Mary, John, Bill}); 

(b) as a predicate that :Is applied to the string to test for satisfaction (for 
example, some meta-symbol used In a piece of grammar to recognize dates 
might test whether the next string of characters Is a string of digits, and 
thus a number); or 

(c) by another transition tree which has this meta-symbol as Its root node. 

The above example is' typical:' A large amount of semantic Information is embedded in 
the syntactic description of the application language. JOHN and HEIGHT are not defined as 
instances of the single meta-symbol (NOUN> as they would be In a more formal grammar, but 
rather are separated Into the semantic categories Indicated by the meta-symbols (PERSON) 
and <ATTRIBUTE>. The technique of embedding such semantic Information In the syntax has 
been referred to as semantic grammar (Burton, 1976), and It greatly Increases the 
performance of LIFER's automatic spelling correction, ellipsiS, and paraphrase facilities, 
described below. 

Applications 

LIFER has been used to build a number of natural language Interfaces, Including a' 
medical database, a task scheduling and resource allocation system, and a computer-based 
expert system. The most complex system built with a LIFER Interface Involved a few man­
months of development of the natural language front-end: The LADDER system (Language 
Access to Distributed Data with Error Recovery) developed at SRI, which provides real-time 
natural language access to a very large database spread over many smaller databases In 
computers scattered throughout the United States (Sacerdotl, 1977; Hendrix et aI., 1978). 
Users of the system need have no knowledge of how the data is organized nor where it is 
stored. More Importantly, from the point of view of this article, users do not need to know 8 

data query language: They use English, or rather a subset that Is "natural" for the domain of 
discourse and which Is usually understood by the LIFER front-end. The Interpretations of the 
Inputs by LIFER are translations Into a general database query language, which the rest of 

'.., 
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the LADDER system converts to a query of the appropriate databases on the appropriate 
computers (see Article Applications.F4 on AI In Information retrieval systems). 

Another interesting system to use a LIFER front-end was the HAWKEYE system (Barrow 
et aI., 1977), also developed at SRI. This Is an Integr'ated Interactive system for cartography 
or Intelligence, which combines aerial photographs and generic descriptions of objects and 
situations with the topographical and cultural Information found In traditional maps. The user 
queries the database and Invokes image-processing tasks via a LIFER natural language 
Interface. A unique feature of this Interface Is the combination of natural language and 
nontextual forms of Input. For Instance, using a cursor to point to places within an Image, the 
user can ask questions such as "What Is this?" and "What Is the distance between here and 
here?" The Interpretation of such expressions results In requests for coordinates from the 
subsystem providing graphical Input, which are then handed to subsystems that have access 
to the coordinates-to-obJect correspondences. 

Human Engineering 

LIFER Is Intended as a system which both facilitates an Interface builder In describing 
an appropriate subset of a language and Its Interpretation In his system, and also helps a 
non-expert user to communicate with the application system In whatever language has been 
defined. For this reason, olose attention was paid to the human engineering aspects of 
LIFER. Experience with the system has shown that, for some applications, users previously 
unfamiliar with LIFER have been able to create usable natural language Interfaces to their 
systems In a few days. The resulting systems have been directly usable by people whose 
field of expertise Is' not computer science. 

The Interface builder. Unlike PROGRAMMAR (In SHRDLU, Article F4), there is no 
"compilation" phase during which the language specification Is converted into a program. 
Instead, changes are made Incrementally every time a call to the language specification 
functions Is made. Furthermore, it Is easy (by typing a prefix character) to intermix 
statements to be Interpreted by the specification functions, statements to be parsed using 
the partially specified grammar, and statements to be evaluated in the underlying 
Implementation language of LIFER, namely INTERLISP (see Article AI Languages.e1). Thus, the 
interface builder can define a new rewrite rule for the grammar or write a predicate for some 
meta-symbol and test It Immediately, which leads to a highly Interactive style of language 
definition and debugging. A grammar editor allows mistakes to be undone. The abi,!i{y~ to 
intermix language definition with parsing allows the Interface user to extend the int!'!rface 
language to personal needs or taste during a session using the application system. This 
extension can be done either by directly Invoking the language specification functions, or, if 
the Interface builder has provided the facility, by typing natural language sentences whose 
Interpretations Invoke the same language specification functions. 

The interface user. LIFER provides many features to ease the task of the user typing 
in sentences to be understood by the system. First of all, it provides feedback indicating 
when LIFER is parsing the Input sentence and when the applications software is running. 
When LIFER falls to parse a sentence, It tries to give the user useful Information on how it 
failed. It tells the user how much of the Input was understood and what It was expecting 
when it got to the point where It could no longer understand. Interactions with the user are 
numbered, and the user can refer back to a previous question and specify some substitution 
to be made. For Instance: 
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12. 

PARSED! 

Natural Language 

How many minority students took 28 or more units of credit last 
Quarter? 

. 87 

13. Use women for minority in 12 
PARSED! 

156 

Notice the "PARSED!" printed by LIFER to indicate parsing success. This facility can be used 
to save typing (and more errors), both when similar Questions are being asked and when 
errors in previous inputs are being corrected. The user can simply specify synonyms to be 
used. for Instance: 

28. Define Bill like William 

will cause LIFER to treat the word BILL the same as WILLIAM. LIFER also allows for easy 
Inspection of the language definition, which is useful for both interface builders and 
sophisticated users. 

There are three more sophisticated aspects of LIFER designed to make interactions 
easier for the user--the spelling correction, ellipsis, and paraphrase mechanisms. Spelling 
correction is attempted when LIFER fails to parse an Input. When the parser is following 
along a branch of a transition tree and reaches a point where it can go no further, it records 
Its failure in a failure list. If the input is eventually parsed correctly, the failure list is 
forgotten. However, if no successful parse can be found, the parser goes back to the last 
(rightmost) fa/l point and attempts to see if a misspelling has occurred. (Fail points to the 
left in the sentence are at first assumed not to be caused by spelling errors, since at least 
one transition using the word must have been successful to get to the fail point further to 
the right. This is not foolproof, however, and sometimes LIFER will fail on a spelling mistake). 
The INTERLISP spelling correction facility is used to find candidate words that closely match 
the spelling of the suspect word. The use of semantically significant syntactic categories 
(such as (PERSON» greatly restr,icts the allowable word susbstltutions and Improves the 
efficiency of the spelling corrector: 

While Interacting with an applications system, the user may want to carry out many 
.similar tasks (for example, In a database Query system, one often asks several questions 
alJout the same object). The LIFER system automatically allows the user to type Incompletf! 
Input fragments and attempts to Interpret them In the context of the previous input (i.e., the 
Interface builder need not consider this Issue). For Instance, the following three questions 
might be entered successively and understood by LIFER: ' 

42. What is the height of John 
43. the weight 
44. age of Mary's sister 

If an input fails normal parsing and spelling correction, LIFER tries emptic processing. Again, 
because languages defined In LIFER tend to encode semantic Information In the syntax 
definition, similar syntactic structures tend to have similar semantics. Therefore LIFER 
accepts any Input string that Is syntactically analogous to any contiguous substring of words 
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in the last input that parsed without ellipsis. The analogies do not have to be in terms of 
complete subtrees of the syntactic tree, but they do have to correspond to contiguous 
words in the previous Input. The elliptical processing allows for quite natural and powerful 
interactions to take place, without any effort from the interface builder. 

The paraphrase facility allows users to define new syntactic structures In terms of old 
structures. The user gives an example of the structure and Interpretation desired, and the 
system builds the most general new syntactic rule allowed by the syntactic rules already 
known. The similarity between the semantics and syntax Is usually sufficient to ensure that a 
usable syntax ,rule Is generated. The following example assumes that the Interface builder 
has Included a rule to Interpret the construction shown to Invoke a call to the language 
specification function PARAPHRASE with appropriately bound arguments. After typing 

!li 

63. Let "Describe John· be a paraphrase of ·Print the height, weight 
and age of John· 

the user could expect the system to understand the requests 

64. Describe Mary 
65. Describe the tallest person 
66. Oeser 1 be Mary's sister 

even with a fairly simply designed LIFER grammar. (In the context of the earlier examples, 
this example assumes that "the tallest person" can correspond to the meta-symbol 
'(PERSON).) The method used to carry out paraphrase (which, as can be seen, Is a much more 
general form of synonymic reference) Is quite complex. Basically It Invokes the parser to 
parse the model (the second form of 63) that is already understood. All proper subphrases 
(I.e., subphrases that are complete expansions of a sy.ntactlc category) of the model that 
also appear in the paraphrase are assumed to play the same role. A new syntactic rule can 
then be written, and the actions Invoked by the model can be appropriately attached to the 
paraphrase rule. 

Conclusions 

Although grammars constructed with LIFER may not be as powerful as specially 
constructed grammars, LIFER demonstrates that use,ful natural language systems for a wide 
variety of domains can be built simply and routinely without a large-scale programming effort. 
Human engineering features and the ability of the naive user to extend the system's 
capabilities are important issues In the usefulness of the system. 
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