
Stanford Heuristic Programming Project
Memo HPP-79-21

July 1979

Computer Science Department
Report No. ST AN-CS-7 9-754

(-ADA076873---- -----~'\

I 1111111111111111111111111111111 ;

Natural Language Understanding
with contributions by

Anne Gardner, James Davidson, and Terry Winograd

a section of the

Handbook of Artificial Intelligence

edited by

Avron Barr and Edward A. Feigenbaum

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

--j

ST AN FORD UNIVERSITY

\

'-nu---. S """:"d-oc;-um-e-=-:n \-;:h:-::as:-;bee;::::;!l;-;cn::;;:-,~p.romve;(dn
for public r~ 1 ~.C'_-:~. c::-d sole; lIB

di!> tribu ti ~'n. U! Ull:.lll'..i"I ed.

UNCLASSIFIED
SECURITY CL ASSI .ICATION 0. THIS PAGE (1171.n DMII l-:nte,od)'

4.:.. TITLE (an" Subtitle) - --~-.-'- / ==-=~'1 -- \...V~-S. TVPE-O·F-REPO'RT-e.-P'EJ6'15-D COVE-RED

/6' J J (to V Natural Language Understanding"" techn i ca I , July 1979

'V \,~- 6. PERFORMING ORG. REPORT !lUMBER

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Department of Computer Science r
Stanford University
Stanford, Cal ifornia 94305 USA

I I. CONTROLLING OFFICE NAME AND ADDRESS

Defense Advanced Research Projects Agency
Information Processing Techniques Office
1400 Wilson Ave., Arl ington, VA 22209

HPP-79~2l (STAN-CS-79-754)

- -'0. PROCn'IAM ELEMENT. PROJECf. TASK
AREA II WORK UNIT NUMBERS

). t ~J J u:GYJ/¥J7 9 7 ([£
-~ ~O..BT DIQE

13. NUMBER OF PAGES

93
14. MONITORING AGENCy NAME II ADDRESS(/f diflerenl f'O:71 ControllinS Office) IS. SECURITY CLASS. (of Ihls reporl)

Mr. Phil ip Surra, Resident Representative
Office of Naval Research, Durand 165 Unclassified
Stanford Uni vers i ty IS ... DECLASSIFICATION/DOWNGRADING

SCHEDULE

\6. DISTRIBUTION STATEMENT (of this Report)

Reproduct ion in whole or in part is permitted for any purpose of the
U. S. Gove rnmen t.

17. DISTRIBU, 10'1 STATEMENT (of the a!lstrael entered in Block 20, /I different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (ContInue on reverse slut'! j(necessary Dnd Identify by block number)

20. ABSTRACT (Continua on reverse side If nece.3lssty Dnd Irle:Hlly by brock number)

(see reverse side)

.ORM
1 JAN 73 EDITION OF 1 NOV 65 IS OBSOLETE

X
UNCLASSIFIED D'Cjtf 1 ~o rt]d' 1473 DD

SECURITY CLASSIFICATION OF THIS PAGE (Ilihen D"'a Enl, .. "d)

UNCLASSIFIED ...
SECURITV CLASSIF',ICI<TIOH OF THIS PAGE(Who," Dat .. Ent~r.d)

Those of us Involved In the creation of the Handbook of Artificial Intelligence, both
writers and editors, have attempted to make the concepts, methods, tools, and main results
of artificial Intelligence research accessible to a broad scientific and engineering audience.
Currently, AI work Is familiar mainly to Its practicing specialists and other Interested
computer scientists. Yet the field Is of growing Interdisciplinary Interest and practical
Importance. With this book we are trying to build bridges that are easily crossed by
engineers, scientists In other fields, and our own computer science colleagues.

In the Handbook we Intend to cover the breadth and depth of AI, presenting general
overviews of the scientific issues, as well as detailed discussions of particular techniques
and Important AI systems. Throughout we have tried to keep In mind the reader who Is not a
specialist In AI.

As the cost of computation continues to fall, new areas of computer applications
become potentially viable. For many of these areas, there do not exist mat~ematlcal "cores"
to structure calculational use of the computer. Such areas will Inevitably be served by
symbolic models and symbolic Inference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that It Is
urgent for AI to "go public" In the manner Intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of AI
and have attempted to help fill the vacuum. lay reviews, In particular Margaret Boden's
Artificial Intelligence and Natural Man, have tried to explain what is Important and
Interesting about AI, and how research In AI progresses through our programs; In addition,
there are a few textbooks that attempt to present a more detailed view of selected areff"
of AI, for the serious student of computer science. But no textbook can hope to descrihp. ill!

of the sub-areas, to present brief explanations of the Important Ideas and techniques, and to
review the forty or fifty most Important AI systems.

The Handbook contains several different types of articles. Key AI Ideas and techniques
are described In core articles (e.g., basic concepts In heuristic search, semantic nets).
Important Individual AI programs (e.g., SHRDLU) are described In separate articles that
Indicate, among other things, the designer's goal, the techniques employed, and the reasons
why the program Is Important. Overview articles discuss the problems and approaches in
each major area. The overview articles should be particularly useful to those who seek a"
summary of the underlying Issues that motivate AI research.

Eyentually the Handbook will contain approximately two hundred articles. We hope that
the appearance of this material will stimulate Interaction and cooperation with other AI
research sites. We" look forward to being advised of errors of omission and commission. For a
field as fast moving as AI, It Is Important that Its practitioners alert us to Important
developments, so that future editions will ref/ect this new material. We Intend that the
Handbook of Artificial Intelligence be a living and changing reference work.

The articles In this edition of the Handbook were written primarily by graduate students
In AI at Stanford University, with assistance from graduate students and AI professionals at
other Institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

This report, which contains the section of the Handbook on natural language
understanding research, has been drafted by numerous Stanford graduate students. Major
contributions to revising and editing It have been made by Anne Gardner, James Davidson,
and Terry Winograd. Others who contributed to or commented on earlier versions of this
section Include Jan Aikins, Daniel Bobrow, Rod Brooks, William Clancey, Paul Cohen, Gerard
Dechen, Richard Gabriel, Nell Goldman, No.rm Haas, Douglas Hofstadter. Andrew Silverman, Phil
Smith, Reid Smith, William Van Melle, and David Wilkins.

UNCLASS I F I ED
SECURITY CLASSIFICATION O'F THIS PAGE(Wh,," D", .. En/ .. ,,,d)

Natural Language Understanding
with contributions by

Anne Gardner, James Davidson, and Terry Winograd

a section of the

Handbook of Artificial Intelligence

edited by

Avron Barr and Edward A. Feigenbaum

This research was supported by both the Defense Advanced Research Projects Agency
(ARPA Order No. 3423, Contract No. MDA 903-77-C-0322) and the National Institutes of
Health (Contract NoJm:f.BF.I=.O.O.7.85!:06)" The views and conclusions of this document should
not be Interpreted as necessarily representing the official pOlicies, either express or Implied,
of the Defense Advanced Research Projects Agency, the National Institutes of Health, or the
United States Government.

Copyright Notice: The material herein Is copyright protected. Permission to quote or
reproduce In any form must be obtained from the Editors. Such permission is hereby granted
to agencies of the United States Government.

J

Natural Language

\
Table ofJcontentl~

- ---~--.-----.--.--

r"-"
~ __ '-"-~~"' _____________ '~.J~"_" .-•• --~- - •• --~ ------- .-~ •

A. ~.atural l,ang.l!.~g~ __ ~tO~Ss i ~!JL~~!.~_!\1U .
B ct~echaoJ~a trr~n.~ ~!.~~!l>~'
C '7I:!rammars~:.~. . • • . • • • •

*.YFOrmal Grammars, • • •
~. Transformational Grammar~ • ~
3. Systemic Grammar,) • • . • •
4. Case Grammars~. • . . • •

D. jParsj ng - '-_~ . • • . . • • • •
l'NOv'ervfew of Parsing TechniquesJ • •

J. Augmented Transition Net~ • • • •
..... _!h!.~~I)_~_a.ct.~Processor·D· •

E. e.xt_.G.enerat1on~ . . .-.-.-~- . •
F • 9Na t~r_a_LL~J!.g!!!ige __ PJ"9_CJl~~..!.':t.g_._Sys t~~~_:!:.)

... _~.---:-..._~.EClrlY-J!!ltural Language Syst-ems-, • • •
(~t0~~~ilks/S)HeChanical Translation System~
~ 3,' lUNAR~.. • • • • • • • • • •

~. SHRO[uJ • • • • • • • • • •

5. MARGIE... . .
{;. SAM and PAHy • l" LIFER.. .

References \ .

Index . .\
\

1
6

11
11
16
29
22
25
25
39
34
39
45
45
51
54
57
61
65

J 75

e9

98

I

Foreword

Those of us Involved In the creation of the Handbook of Artificial Intelligence, both
writers and editors, have attempted to make the concepts, methods, tools, and main results
of artificial Intelligence research accessible to a broad scientific and engineering audience.
Currently, AI work Is familiar mainly to Its practicing specialists and other Interested
computer scientists. Yet the field Is of growing Interdisciplinary Interest and practical
Importance. With this book we are trying to build bridges that are easily crossed by
engineers, scientists In other fields, and our own computer science colleagues.

In the Handbook we intend to cover the breadth and depth of AI, presenting general
overviews of the scientific Issues, as well as detailed discussions of particular techniques
and Important AI systems. Throughout we have tried to keep In mind the reader who Is not a
specialist In AI.

As the cost of computation continues to fall, new areas of computer applications
become potentially viable. For many of these areas, there do not exist mathematical "cores"
to structure calculational use of the computer. Such areas will Inevitably be served by
symbolic models and symbolic In'ference techniques. Yet those who understand symbolic
computation have been speaking largely to themselves for twenty years. We feel that it is
urgent for AI to "go public" In the manner Intended by the Handbook.

Several other writers have recognized a need for more widespread knowledge of AI
and have attempted to help fill the vacuum. Lay reviews, In particular Margaret Boden's
Artificial Intelligence and Natural Man, have tried to explain what Is Important and
Interesting about AI, and how research In AI progresses through our programs. In addition,
there are a few textbooks that attempt to present a more detailed view of selected arell'"
of AI, for the serious student of computer science. But no textbook can hope to descrihe .;lli

of the sub-areas, to present brief explanations of the Important Ideas and techniques, and to
review the forty or fifty most important AI systems.

The Handbook contains several different types of articles. Key AI Ideas and techniques
are described In core articles (e.g., basic concepts In heuristic search, semantic nets).
Important Individual AI programs (e.g., SHRDlU) are described In separate articles that
Indicate, among other things, the designer's goal, the techniques employed, and the reasons
why the program Is Important. Overview articles discuss the problems and approaches in
each major area. The overview articles should be particularly useful to those who seek a
summary of the underlying Issues that motivate AI research.

Eyentually the Handbook will contain approximately two hundred articles. We hope that
the appearance of this material will stimulate Interaction and cooperation with other AI
research sites. We look forward to being advised of errors of omission and commission. For a
field as fast moving as AI, It Is Important that Its practitioners alert us to important
developments, so that future editions will reflect this new material. We Intend that the
Handbook of Artificial Intelligence be a living and changing reference work.

The articles In this edition of the Handbook were written primarily by graduate students
In AI at Stanford University, with assistance from graduate students and AI professionals at
other Institutions. We wish particularly to acknowledge the help from those at Rutgers
University, SRI International, Xerox Palo Alto Research Center, MIT, and the RAND
Corporation.

This report, which contains the section of the Handbook on natural language
understanding research, has been drafted by numerous Stanford graduate students. Major
contributions to revising and editing it have been made by Anne Gardner, James Davidson,
and Terry Winograd. Others who contributed to or commented on earlier versions of this
section Include Jan Aikins, Daniel Bobrow, Rod Brooks, William Clancey, Paul Cohen, Gerard
Dechen, Richard Gabriel, Nell Goldman, Norm Haas, Douglas Hofstadter, Andrew Silverman, Phil
Smith, Reid Smith, William Van Melle, and David Wilkins.

Avron Barf Stanford University .
Edward Feigenbaum July, 1979

Handbook of Artificial Intelligence

Topic Outline

Volumes I and II

Introduction

The Handbook of Artificial Intelligence
Overview of AI Research
History of AI
An Introduction to the AI literature

Search

Overview
Problem Representation
Search Methods for State Spaces, AND/OR Graphs, and Game Trees
Six Important Search Programs

Representation of Knowledge

Issues and Problems In Representation Theory
Survey of Representation Techniques
Seven Important Representation Schemes

AI Programming Languages

Historical Overview of AI Programming Languages
Comparison of Data Structures and Control Mechanisms In AI Languages
LISP

Natural Language Understanding

Overview - History and Issues
Machine Translation
Grammars
Parsing Techniques
Text Generation Systems
The Early NL Systems
Six Important Natural Language Processing Systems

Speech Understanding Systems

Overview·' History and Design Issues
Seven Major Speech Understanding Projects

Applications-t1riented AI Research -- Part 1

Overview
TEIRESIAS - Issues In Expert Systems Design
Research on AI Applications In Mathematics (MACSYMA and AM)
Miscellaneous Applications Research

Applications-oriented AI Research -- Part 2: Medicine

Overview of Medical Applications Research
Six Important Medical Systems ..

Applications-oriented AI Research -- Part 3: Chemistry

Overview of Applications In Chemistry
Applications In Chemical Analysis
The DENDRAL Programs
CRYSALIS
Applications In Organic Synthesis

Applications-oriented AI Research -- Part 4: Education

Historical Overview of AI Research In EdUcational Applications
Issues In ICAI Systems Design
Seven Important ICAI Systems

Automatic Programming

Overview
Techniques for Program Specification
Approaches to AP
Eight Important AP Systems

T lie folloWing sections of lhe Handbook. are slUt in preparation and will appear in the third
volume:

Theorem Proving
Vision
Robotics
Information Processing Psychology
Learning and Inductive Inference
Planning and Related Problem-solving Techniques

A. Natural Language Processing Overview

The most common way that human beings communicate Is by speaking or writing In one
of the "natural" languages, like English, French, or Chinese. Computer programming
languages, on the other hand, seem awkward to humans. These "artlflclal" languages are
designed to have a rigid format, or s,ntax, so that a computer program reading and compiling
code written In an artificial language can understand what the programmer means. In addition
to being structurally simpler than natural languages, the artificial languages can express
easily only those concepts that are Important In programming: "00 this the"n do that," "See if
such and such Is true," etc. The things that can be expressed In a language are referred to
as the semantics of the language.

The research on understanding natural language described In this section of the
Handbook Is concerned with programs that deal with the full range of meaning of languages
like English. Computers that can understand what people mean when typing (or speaking)
English sentences will be easier to use clMd will fit more naturally Into people's lives. In
addition, artificial Intelligence (AI) research In natural language processing alms to extend our
knowledge of the nature of language as a human activity. Programs have been written that
are quite successful at understanding somewhat constrained Input: the user Is limited in
either the structural variation of his sentences (syntax constrained by an artificial grammar)
or In the number of things he can IImeanll (In domains with constrained semantics). Some of
these programs are adequate for many useful computer-Interface tasks and are available
commercially. But the fluent use of language as humans use It Is stili elusive. and natural
language (NL) processing Is an active area of research In AI.

This article presents a brief sketch of the history of natura.l language processing
research In AI. and It attempts to give some Idea of the current state of the art In NL and
related research In representing knowledge about the world within the language
understanding programs. The next article Is a historical sketch of the very earliest Ideas
about processing language with computers, to achieve mechanical translation of one language
Into another. It Is followed by two sections containing technical articles on some of the
grammars and parSing techniques that AI researchers have used In their programs. Then,
after an article on text generation. which Involves the creation of sentences by the program to
express what It wants to say. there are a half dozen articles describing some of the most
Important NL systems.

II
Two other sections of the Handbook are especially relevant to NL research. Speech

Underetending research attempts to build computer Interfaces that actually underst;and
spoken language. Speech and natural language understanding research have been closely
linked. Increasingly Inseparable from NL research Is the study of Knowledge Representation,
because AI researchers have come to believe that a very large amount of knowledge about
the world Is used In even simple dialogue. Research In the representation of knowledge
explores ways of making this world knowledg' accessible to the computer program by

" "representing II It In Internal data structures.

History "

Research In computational linguistics. the use of computers In the study of language,
started In the 1940s, soon after computers became available commercially. The machine's

2 Natural Language

ability to manipulate symbols was first used to compile lists of word occurrences (word lists)
and concordances (their contexts in written texts). Such surface-level machine processing
of text was of some value In linguistic research, but It soon became apparent that the
computer could perform much more powerful linguistic functions than merely counting and
rearranging data.

In 1949, Warren Weaver proposed that computers might be useful for "the solution of
the world-wide translation problem" (Weaver, 1949, p. 15). The resulting research effort,
called mechanical translation, attempted to simulate with a computer the presumed functions of
a human translator: looking up each word in a bilingual dictionary; choosing an equivalent
word In the output language; and, after processing each sentence, arranging the resulting
string of words to fit the output language's word order. Despite the attractive Simplicity of
the idea, many unforeseen problems arose, both In selecting appropriate word equivalences
and in arranging them to produce a sentence In the output language. Article B discusses the
history, problems, and current state of research on mechanical translation.

In the 1960s a new group of computer programs was developed that attempted to deal
with some of the more complex Issues of language that had led to the difficulties In the
mechanical translation efforts. These early natural language programs mark the beginning of
artificial intelligence work In understanding language. They no longer assume that human
communication Is it process of word manipulation. Instead, they view human language as a
complex cognitive ability Involving many different kinds of knowledge: the structure of
sentences, the meaning of words, a model of the listener, the rules of conversation, and an
extensive shared body of general information about the world. Several of these programs
are described briefly In Article Flo

The focus of modern work In natural language processing In AI Is "understanding"
language. Severar different tasks have been· used as the criterion for defining what
constitutes a demonstration that the program understands a piece of text; these tasks
Include paraphraSing, question answering, mechanical translation, and information retrieval. Many
design Issues depend ,on which type of task the program is to perform, but the general
approach has been to model human language as a knowledge-based system for processing
communications ,and to create a computer program that serves as a working model of this
system.

AI researchers In natural language processing expect their work to lead both to the
development of practical, useful language understanding systems and to a better
understanding of language and the nature of intelligence. The computer, like the human mind,
has the ability to· manipulate symbols In complex processes, Including processes that Involve
decision making based on stored knowledge. It Is an assumption of the field that the human
use of language Is a cognitive process of this sort. By developing and testing computer­
based models of language processing that approximate human performance, researchers'
hope to understand better how human language works.

Approaches to NL Processing

Natural language research projects have hlid diverse goals and used diverse methods,
making their categorization somewhat difficult. One coherent scheme, borrowed from
Winograd (1972), groups natural language programs according to how they represent and

, .
A Natural Language Processing Overview 3

use knowledge of their subject matter. On this basis, natural language programs can be
divided Into four historical categories.

The earliest natural language programs sought to achieve only limited results In
specific, constrained domains. These programs used ad hoc data structures to represent
"knowledge." Programs like BASEBALL, SAD-SAM, STUDENT, and ELIZA (see Article Fl)
searched their Input sentences, which were restricted to simple declarative and
Interrogative forms, for key words or patterns representing known objects and relationships.
Domain-specific rules, called heuristics, were used to derive the required Information from the
key words In the sentence and the knowledge In the database. Though they performed
relatively small tasks and avoided or Ignored many of the complexities In language, their
results and methods were the Impetus to dealing with more difficult problems.

The second category can be called text-based systems. These programs, such as
PROTOSYNTHEX I (Simmons, Klein, & McConlogue, 1964) and the Teachable Language
Comprehender, TLC (Quillian, 1969), attempted to expand beyond the limits of a specific
domain. The programs dealt with full English text as a base, rather than with key words or
phrases. Input text was Interpreted as a request to access a structured Information store,
and a variety of clever methods were used to Identify the proper response. Though more
general than their predecessors, these programs stili failed to deal with the underlying
meaning of the English language Input. They were able to give only responses that had been
pre-stored as data--they had no deductive power.

To try to deal with the problem of how to characterize and use the, meaning of
sentences, a group of programs was developed called limited logic systems. In systems like
SIR (Raphael, 1968), DEACON (Thompson, 1966), and CONVERSE (Kellogg, 1968), the
Information In the database Is stored In a formal, albeit ad hoc, notation, and mechanisms are
provided for translating Input sentences Into the same form. The function of the formal
notation Is to attempt to liberate the Informational content of the Input from the structure of
English. The overall goal of these systems was to accept complex Input Information (e.g.,
Information containing quantifiers and relationships), use It to perform Inferences on the
database, and thus realize answers to complex questions. Problems, however, arose from
the fact that the complexity of the stored Information was not really part of the database
but was built Into the system's routines for manipulating the database. PROTOSYNTHEX "
(Simmons, 1966; Simmons, Burger, & Long, 1966, for example, contained statements of the
form "A Is X" and "X Is B" and tried to answer "Is A B7", based on transitivity. The
deductive mechanism required for these Inferences was embedded In special-purpose
subroutines, rather than In the database as a "theorem," and thus was not available to be
used to perform more Involved Inferences, which require a longer chain of reasoning.

Representing Knowledge in NL Programs

The fourth approach to building language understanding programs might be called
knowledge-based systems and Is closely Intertwined with current research on the representation
of knowledge (see the Knowledge Representation section of the Handbook). Among the most
Important knowledge representation schemes explored In NL research have been: procedural
semantics, semantic networks, case systems, and frame systems.

In the early 1970s, two systems were built that attempted to deal with both syntactic

4 Natural Language

and semantic problems In a comprehensive way. William Woods's LUNAR system (Article F3)
answered questions about the samples of rock brought back from the moon, using a large
database provided by the National Aeronautios and Space Agency. It was one of the first
programs to attack the problems of English grammar using an augmented transition network
parser (Article 02). It used 8 notion of procedural semantics in which queries were first
converted In a systematic way Into 8 "program" to be executed by the retrieval component.
Terry Winograd's SHRDLU system (Article F4) carried on 8 dialogue with a user In which ~he
system simulated a robot manipulating a set of simple objects on a tabletop. The
naturalness of the dialogue, as well as SHRDLU's apparent reasoning ability, made It
particularly Influential In the development of AI Ideas. These two systems Integrate
syntactic and semantic analysis with a body of world knowledge about a iimited domain,
enabling them to deal with more sophisticated aspects of language and discourse than had
previously been possible.

Central to these two systems Is the representation of knowlege about the world as
procedures within the system. The meanings of words and sentences were expressed as
programs in a computer language, and the execution of these programs corresponded to
reasoning from the meanings. Direct procedural representations are often the most
straightforward way to Implement the specific reasonirig steps needed for a natural language
system. Most of the actual working systems that have been developed have made heavy
use of specialized. procedural representations, to fill In those places where the more
declarative representation schemes--those where the "knowledge" is encoded In passive
data structures that are Interpreted by other procedures--are Insufficient. (The
procedural/declarative controversy has been an Important focus in the history of AI. See Article
RepresentationB.)

Perhaps the most Influential declarative representation scheme Is the semantic network.
Semantic networks were first proposed by Quillian (1968) as a model for human associative
memory. They used the concepts of graph theory, representing words and meanings as a set
of linked nodes. By using II systematic set of link types, it was possible to program simple
operations (such as following chains of links) that corresponded to drawing· Inferences.
Another Important declarative scheme is the use of standard logic formulas (Article
Representation.Ct), which are subject to mathematical rules of deduction for drawing
In,ferences. The advantage of semantic networks over standard logic Is that some selected

, set of the possible Inferences can readily be done in a specialized and efficient way. If
these correspond to the Inferences that people make easily, then the system will be able to
do a more natural sort of reasoning than can be easily achieved using formal logical
deduction.

Semantic networks have been the basis for a number of systems, Including most of the
speech understanding systems (see Speech Understending). Recently there has been a good
deal of work on formalizing the network notions so that there Is a clear correspondence
between the graph operations and the formal semantics of the statements represented (see
Article Representation.C2).

Case representations extend the basic notions of semantic nets with the Idea of a case
frame, a cluster of the properties of an object or event Into a single concept (see Artlc.le
C4). There have been a large number of variations on this notion, some of which remain close
to the linguistic forms. Others such as conceptual dependenC'J are based on the notion of
semantic primitives, the construction of all semantic notions from a small set of "prlmltlve"

A Natural Language Processing Overview 5

concepts. The MARGIE sytem (Article F5), built In the early 1970s by Roger Schank and his
students, uses the conceptual dependency representation.

As with semantic networks, the advantage of case representations lies in their focus
on clustering relevant sets of relationships Into single data structures. The idea of
clustering structures In a coherent and efficient way has been carried much further in
representation schemes based on the notion of a frame (Minsky, 1975; see also Article
Representation.C6). Where case representations deal primarily with single sentences or
acts, frames are applied to whole situations or complex objects or series of events. In
analyzing a sentence, narrative, or dialogue, a language understanding system based on
frame representations tries to match the Input to prototypes for the objects and events in
Its domain that are stored In Its database.

For example, Roger Schank's SAM system (Article F6) makes use of simple, linear
scripts, which represent stereotyped sequences of events, to understand simple stories. It
assumes that the events being described will fit (roughly) Into one of the scripts in "Its
knowledge base, which it then uses to fill in missing pieces In the story. The GUS system
(Bobrow et al., 1977) Is a prototype travel consultant, carrying on a dialogue to help a
person schedule an air trip. It uses frames representing standard "trip plans. GUS uses the
experimental frame language KRL (Bobrow & Winograd, 1977; see also Article
Representation.C6).

The Important common element In all of these systems Is that the existence of
prototype frames makes it possible to use expectations In analysis. When a sentence or
phrase Is Input that Is ambiguous or underspeclfled, It can be compared to a description of
what would be expected based on the prototype. Assumptions can be made about what was
meant, If there is a plausible fit to the expectation. This expectation-driven proceSSing seems
to be an important aspect of the human use of language, where Incomplete or ungrammatical
sentences can be understood In appropriate contexts. Research on script- and frame-based
systems Is the most active area of AI research In natural language understanding at the
present time.

The current state-of-the-art in working (non-experimental) NL systems Is exemplified
by ROBOT (Harris, 1977), LIFER (Hendrix, 1977b), and PHLlQA1 (Landsberg en, 1976).

References

General discussions of natural language processing research In AI can be found in
Boden (1977), Wilks (1974), Winograd (1974), Charniak & Wilks (1976), Schank & Abelson
(1977), and Winograd (forthcoming). Waltz (1977) contains more than fifty brief summaries
of current projects and systems. In addition, many historically important NL systems are
described In Feigenbaum & Feldman (1963), Minsky (1968), Rustin (1973), Schank & Colby
(1973), and Winograd (1972). COLING (1976), TINLAP-1 (1975), Bobrow & Collins (1975),
and TINLAP-2 (1978) are proceedings of recent conferences describing current work In the
field.

6 Natural Language

B. Mechanical Translation

The concept of translation from one language to another by machine Is older than the
computer Itself. According to Yehoshua Bar-Hillel, one of the early Investlg~tors In the field,
the Idea was perhaps first conceived as early as the early 1930s by P. P. Smirnov­
Troyansky of the Soviet Union and G. B. Artsouni of France (see Bar-Hillel, 1960, p. 7). Their
work apparently never received much attention, lying dormant until a decade later when the
climate was much more favorable, due to the recent Invention of the digital computer. In
certain quarters of the scientific world people Imagined--wlth some justification--that
computers would lead to many entirely new and far-reaching Ideas about man and--perhaps
less justlflably--that computers would help bring about a new world order. In short, there
was tremendous excitement over the potential of these new thinking machines, as they were
quickly dubbed. This was also the time when Claude Shannon was formulating his ideas on
Information theory, when Norbert Wiener was devising the concept of cybernetics, and when
Pitts and McCullough were developing their Ideas on neural nets and brain function.
Moreover, computing had just passed its Initial tests, during the war, with flying colors--In
such strategic tasks as breaking codes and calculating complicated nuclear cross sections.

It would be well to bear In mind that, when machine translation work began, programming
was done by wiring boards and machine language was the only computer language available.
Such concepts as arrays and subroutines were still to appear, not to mention pushdown
stacks, complier languages, recursive procedures, and the like. Furthermore, no one had
heard of context-free and context-sensitive grammars, or of transformational grammars, or
augmented transition networks. At the forefront of computational linguistics, the application of
the computer to the study of language, were statistical experiments with language, such as
compiling matrices of letter frequencies and of transition frequencies between successive
letters. Such matrices could be used to produce Interesting samples of pseudo-language, by
producing words from randomly generated letters with the same characteristics as English
words. (Also, s~e the discussion of Yngve's random text generation system in Article E).

First Attempts

The real genesis of machine t~anslation dates from a series of discussions between
Warren Weaver and A. Donald Booth in 1946. Both men were familiar with the work on code
breaking by computers, based on letter-frequency and word-frequency tables. It seemed to
them that some of the same methods would be applicable to translation and that the principal
obstacle would be Incorporating a full dictionary of the two languages. Of course they
recognized that simply having a dictionary would not solve all problems. Some of the
remaining problems would be the following: (a) Many words have several translations,
depending upon context; (bl word orders differ from language to language; and (c) idiomatic
expressions cannot be translated word for word but must be translated in toto.
Nevertheless, It appeared plausible, at the time, that the major problem In translating
between two languages was simply that of vocabulary--and so at least· a large part of
translation seemed mechanlzable.

In 1947, Booth and D. H. V. Britten worked out a program for dictionary lookup. This
was a full-form dictionary, In that each variant of any basic word (e.g., love, loves, loving,
etc.) had to be carried as a separate entry In the dictionary. In 1948, R. H. Rlchens
suggested the addition of rules concernlng the Inflections of words, so that the redundancy

B Mechanical Translation 7

of the multiple dictionary entries could be eliminated. In 1949, Warren Weaver distributed a
memorandum entitled Translation to about two hundred of his acquaintances, and a
considerable wave of interest ensued. In addition to the Idea that all languages have many
features In common, three other Items from that memorandum are worth repeating .. The first
is the notion of a window through which one can view exactly 2N + 1 words of text; Weaver
suggests that when N Is sufficiently large, one will be able to determine. the unique, correct
translation for the word that sits In the middle of the window. He then points out that N may
be a function of the word, rather than a constant, and discusses the :Idea of choosing a value
of N such that, say, 95% of all words would be correctly translated 98% of the time. The
second is this Intriguing statement: "When I look at an article In Russian, I say, This is really
written in English, but it Itas been coded in some strange symbols. I will now proceed to decode." This
certainly carries to an extreme the concept that 'source text and translated text "say the
same thing. II In fact, It leads naturally to the third provocative Idea of the memorandum that
translating between languages A and B means going from A to an Intermediate "universal
language," or interlingua, that, supposedly, all humans share, and thence to B. This Idea, of
an Intermediate representation of the semantics or meaning of an utterance, appears often In
modern natural language processing work In AI under the heading representation Of knowledge
(see discussion In the Overview and In the Handbook Section on Knowledge Representation).

After Weaver's memorandum, work sprang up in several centers in the United States.
Erwin Relfler conceived the Idea of two auxiliary functions to be performed by human beings,
those of pre-editor and post-editor. The pre-editor would prepare the Input text to be as free
as possible of ambiguities and other sources of difficulty; the post-editor would take the
machine-translated text and turn It into grammatical, comprehensible prose.

A 1952 conference produced recommendations to Implement a. dictionary-lookup
program and to work towards the Invention, or discovery, of the hypothetical universal
language, called Maclzinese, which Weaver had proposed as an Intermediate language in
mechanical translation. .

A. G. Oettinger was one of the first to design a program that carried out word-far-word
translation of Russian text Into English. A very high percentage of the Russian words had
more than one possible translatlonj so all of them were listed in the output English, enclosed
In parentheses. Thus, a sample of English output text read as follows:

(In, At, Into, To, For, On) (last, latter, new, latest, lowest, worst) (time,
tense) for analysis and synthesis relay-contact electrical (Circuit,
diagram, scheme) parallel-(serles, successive, consecutive,
consistent) (connection, Junction, combination) (With, from) (success,
luck) (to be utilize, to be take advantage of) apparatus Boolean
algebra. (Oettinger, 1956, p. 65)

A ·cleaned-up version of this sentence reads: "In recent times Bootean algebra has .. been
successfully employed In the analysis of relay networks of the series-parallel type" (p. 58).
Readers of the translated text were expected to discern from the jumble of synonyms what
the· cleaned-up text really should be. Clearly, there was stili a long, long way to go toward
mechanical translation.

In the next year or two, most of the effort was directed toward devising ways to
handle different endings of inflected words and estimating the size of vocabulary needed for

8 Natural Language

translations of varying degrees of quality. In 1954 a journal of mechanical translation was
founded, called Mr. Machine translation received considerable public attention when a
group from IBM and Georgetown University made grand claims for a program that translated
from Russian to English, although this program was not particularly advanced over any others.
In any case, machine translation became an "In" thing and groups sprang up In many
countrIes.

Problems Encounter~d

Early attempts focusIng on syntactic information were able to produce only low-quality
translatIon and led eventually to extreme pessimism about the possibility of the endeavor. It
has since become clear that high-quality translation systems must In some sense understand
the Input text before they can reconstruct It In a second language. For the first time, It was
becoming apparent that much "world knowledge" Is used Implicitly when human beings
translate from one language to another. Bar-Hillel gave as an example the pair of sentences,
"The pen Is In the box," and liThe box Is In the pen. II Of this example he said, "I now claim
that no existing or imaginable program will enable an electronic computer to determine that
the word pen II In the second sentence has the meaning "an enclosure where small children
can play" (Bar-Hillel, 1960, p. 159). He goes on to remark that, to his amazement, no one had
ever pointed out that In language understanding there is a world-modeling process going on
In the mind of the listener and that people are constantly making use of this subconscious
process to guide their understanding of what Is being said. Bar-Hillel continues: •

A translation machine should not only be supplied with a dictionary but
also with a universal encyclopedia. This Is surely utterly chimerical
and hardly deserves any further discussion We know ... facts by
Inferences which we are able to perform ... Instantaneously, and It is
clear that they are not, In any serious sense, stored In our memory.
Though one could envisage· that a machine would be capable of
performing the same Inferences, there exists so far no serious
proposal for a scheme that would make a machine perform such
Inferences In .the same or similar circumstances under which an
Intelligent human being would perform them. (pp. 160-161)

Bar-Hillel despaired of ever achieving satisfactory machine translation. His sentiments
were not universally shared, but In 1966 they came to prevail officially in the so-called
ALPAC report (NRC, 1966). This report, made to the National Research Council after a year
of study by Its· Automatic Language Processing Advisory Committee, resulted in the
discontinuance of funding for most machine transatlon projects. The report stated:

"Machlne Translation" presumably means going by algorithm f.rom
machine-readable source text to useful target text, without recourse
to human translation or editing. In thIs context, there has been no
machine translation of general scientific text, and none Is in Immediate
prospect. (p. 19)

Examples of the output of several MT systems were included In the reportj they showed
little Improvement from the results Oettinger had obtained ten years before. Even wIth

B Mechanical Translation 9

postediting the output was found to be generally of poorer quality, and sometimes slower and
more expensive to obtain, than entirely human translation.

Current Status

The conclusions of the ALPAC report were directed only against funding for MT as a
practical tool. Support for computational linguistics, evaluated In terms of its scientific worth
rather than Its Immediate utility, was to be continued. It was also recognized that there had
been fundamental changes In the study of linguistics, partly due to cross-fertiliZation with
computational activities.

Both linguistics and computer science have made contributions relevant to the reVival
of MT research. A signal event was the publication in 1957 of Noam Chomsky's Syntactic
Structures, In which transformational grammars were Introduced., This book spurred many new
developments in the analysis of syntax. Concurrently, new computer languages and new
types of data structures were being explored by computer scientists, leading to the creation
(in 1960) of both ALGOL and LISP, with their features of lists, recursion, etc. These
languages were the first In a series of languages geared more toward symbol manipulation
than "number crunching," as discussed in the AI Programming Languages Section of the
Handbook. In artificial Intelligence, the 1960s saw considerable progress toward natural
language understanding, such as the development of programs that carried on a dialogue of
sorts with the user: BASEBALL, SAD-SAM, STUDENT, SIR, etc., which are described In Article
F1.

The early 1970s have seen some revival of interest In machine translation, partly
because some progress has been made in the internal representation of knowledge. The
programs of Wilks (Article Fa) and Schank (Articles F5 and F6) can both perform translation
tasks. They begin by translating input sentences Into internal data structures based on
semantic primitives, which are Intended to be "language Independent"--elements of meaning
that are common to all natural languages. The Internal representation can be manipulated
relatively easily by procedures that carry out inferences; It forms in effect an internal
language or interlingua for modeling the world. The data structure(s) derived from an input
sentence could be considered to be a translation of that sentence into Weaver's Machinese.
The reverse derivation (I.e., Machinese to, say, French) then Is a realization, on some level.
of Weaver's Idea (see Article E for research on the generation of text.)

It is difficult to evaluate the practicality of machine translation. In some applications It
is worthwhile to have even a very bad translation, if it can be done by a computer in a much
shorter time (or much more cheaply) than by humans. In others (such as the preparation of
Instruction manuals) It Is possible to deal with Input texts that use a specially restricted form
of the language, thereby making translation easier. There Is also the possibility of machine­
human Interactive translating, In which the output of the .computer Is used not by the ultimate
reader but by someone engaged in producing the final translation. The computer can be used
to do sub-tasks like dictionary lookup, or can produce more-or-Iess complete translations
that are then checked and polished by a human post-editor, who perhaps does not know the
original language.

At the current time, computers are being used in these ways in a number of translation
systems. There Is also a renewed Interest In fully automatic translation, based on some of

10 Natural Language

the the techniques for dealing with meaning described below. However, It Is not clear
whether we are yet ready to reattack the goal of "fully automatic high quality translation."
Much current work on language Is based on a belief that deep understanding of what is being
said Is vital to every language use. Applied to translation, this means that we must first
have a program that understands a subject before we can translate material about that
subject. Since our ability to model large areas of knowledge Is stili primitive, this places a
strong limit on the scope of material we might handle.

References

A brief, popular review of current work In mechanical translation can be found in Wilks
(1977a). For the earliest history, see the introduction to Locke & Booth (1955). Later
surveys Include Bar-Hillel (1960), Josselson (1971), and Hays & Mathias (1976).

See also Bar-Hillel (1964), Booth (1967), NRC (1966), Oettinger (1955), Schank
(1975), Weaver (1949), and Wilks (1973).

c Grammars 11

C. Grammars

A grammar of a language Is a scheme for specifying the sentences ·allowed in the
language, Indicating the rules for combining words Into phrases and clauses. In natural
language processing programs, the grammar Is used in parsing to "pick apart" the sentences
In the Input to the program to help determine their meaning and thus an appropriate response.
Several very different types of grammars have been used In NL programs and are described
In the articles which follow. '

C 1. Formal Grammars

One of the more important contributions to the study of language was the theory of
formal languages Introduced by Noam Chomsky In the 1950s. The theory has developed as a
mathematical area, not a linguistic one, and has strongly Influenced computer science in the
design of computer programming languages (artificial languages). Nevertheless, It Is useful In
connection with natural language understanding systems, both 8S 8 theoretical and a practical
tool.

Definitions

A formal language Is defined as a (possibly Infinite) set of strings of finite length formed
from a finite vocabulary of symbols. (For example, the strings might be sentences composed
from a vocabulary of words.) The grammar of a formal language Is specified in terms of the
following concepts:

1. The syntactic categories, such as <SENTENCE) and <NOUN PHRASE>. These
syntactic categories are referred to as nonterminal symbols or variables. Notationaliy, the
nontermlnals of a grammar are often Indicated by enclosing the category names In angle
brackets, as above.

2. The terminal symbols of the language, for example the words in English.' The
terminal symbols are to be concatenated Into strings called sentences (If the terminals are
words). A language Is then Just a subset of the set of all the strings that can be formed by
combining the terminal symbols In all possible ways. Exactly which subset Is permitted in the
language Is specified by the rewrite rules:

3. The rewrite rules or productions specify the relationships that exist between certain
strings of terminals and nonterminal symbols. Some examples of productions are:

<SENTENCE) -> <NOUN PHRASE) <VERB PHRASE)
<NOUN PHRASE> -> the <NOUN>

<NOUN> -) dog
<NOUN> -> cat

<VERB PHRASE> -) runs

The first production says that the (non-terminal) symbol (SENTENCE> may be "rewritten" as
the symbol (NOUN PHRASE) followed by the symbol <VERB PHRASE>. The second permits
<NOUN PHRASE) to be replaced by a string composed of the word the, which Is a terminal
symbol, followed by the nontermlnal <NOUN). The next two allow <NOUN) to be replaced by

o

12 Natural Language

either dog or cat. Since there are sequences of productions permitting <NOUN PHRASE> to
be replaced by the dog or the cat, the symbol <NOUN. PHRASE) Is said to generate these two
terminal strings. Finally, <VERB PHRASE> can be replaced by the terminal runs.

4. The start symbol. One nonterminal Is distinguished and called the "sentence" or
"start" symbol, typically denoted <SENTENCE) or §. The set of strings of terminals that can
be derived from this distinguished symbol, by applying sequences of productions, is called
the language generated by tile grammar. In our simple example grammar, exactly two sentences
are generated:

The cat runs.
The dog runs.

The Important aspect of defining languages formally, from the point of view of computational
linguistics and natural language processing, Is that If the structure of the sentences is well
understood, then a parsing algorithm for analyzing the Input sentences will be relatively easy
to write (see Section D1 on parsing). .

The Four Types of Formal Grammars

Within the framework outlined above, Chomsky delineated four types of grammars,
numbered 0 through 3. The most general class of grammar Is type 0, which has no
restrictions on the form that rewrite rules can take. For successive grammar types, the form
of the rewriting rules allowed Is Increasingly restricted, and the languages that are
generated are correspondingly simpler. The Simplest formal languages (types 2 and 3) are,
as it turns out, Inadequate for describing the complexities of human languages. (See Article
C2 for a fuller discussion.) On the other hand, the most general formal languages are difficult
to handle computationally. There Is ari intimate and interesting connection between the
theory of formal languages and the theory of computational complexity (see Hopcroft &
Ullman, 1969). The following discussion gives a formal account of the different restrictions
applied in each of the four grammar types.

formally, a. grammar G is defined by a quadruple (VN, VT, P, S) representing the
nontermlnals, terminals, productions, and the start symbol, respectively. The symbol ~, for
"vocabulary," Is used to represent the union of the sets VN and VT, which are assumed to
have no elements In common. Each production In E Is of the form

X -) Y

where ~ and y.. are strings of elements In ~, and ~ Is not the empty string.

Type O. A type-O grammar Is defined as above: a set of productions over a given
vocabulary of symbols with no restrictions on the form of the productions. It has been shown
that a language can be generated by a type-O grammar If and only if it can be recognized by
a Turing machine; that Is, we can build a Turing machine which will halt In an ACCEPT state
for exactly those Input sentences .that can be generated by the lang'uage.

Type 1. A type-O grammar Is also of type 1 If the form of the rewrite rules is
restricted so that, for each production X -> Yof the grammar, the right-hand side y.. contain~

o

C1 Formal Grammara 13

at least as many symbols as the left-hand side lS,. Type-1 grammars are also called context­
sensitive grammars. An example of a context-sensitive grammar with start symbol § and
terminals A, Q, and £ Is the following:

S -> aSBC
S -> aBC

CB -> BC
aB -> ab
b8 -> 'bb
bC -> be
eC -> ce

The language generated by this grammar Is the set of strings abc, aabbcc, aaabbbccc
This language, where each symbol must occur the same number of times and must appear In
the right position In the string, cannot be generated by any grammar of a more restricted
type (I.e., type 2 or type 3).

An alternate (equivalent) definition for context-sensitive grammars Is that the
productions must be of the form

uXv -> uYv

where lS, Is a single nontermlnal symbol; y and ~ are arbitrary strings, possibly empty, of
elements of ~; and y.. Is a non empty string over~. It can be shown that this restriction
generates the same languages as the first restriction, but this latter definition clarifies the
term context-sensitive: ~ may be rewritten as y.. only In the context of y and ~.

Type 2. Context-free grammars or type-2 grammars are grammars In which each
production must have only a single non-terminal symbol on Its left-hand side. For example, a
context-free grammar generating the sentences ab, aabb, aaabbb • .. Is:

S -> aSb
S -> ab

Again, it is not possible to write a context-free grammar for the-language composed of the
sentences abc, aabbcc, aaabbbccc ... --having the same number of £'s at the end makes
the language more complex. The simpler language here, In turn, cannot be generated by a
more restricted (type-3) grammar.

An example of a context-free grammar that might be used to generate some sentences
In natural language Is the following:

<SENTENCE> -> <NOUN PHRASE> <VERB PHRASE>
<NOUN PHRASE> -> <DETERMINER> <NOUN>
<NOUN PHRASE> -> <NOUN>
<VERB PHRASE> -> <VERB> <NOUN PHRASE>

<DETERMINER> -> the
<NOUN> -> boys
<NOUN> -> apples
<VERB> -> eat

In this example, the, boys, apples, and eat are the terminals In the language and
(SENTENCE> Is the start symbol.

14 Natural Language

An Important property of context-free grammars In their use in NL programs is that
every derivation can conveniently be represented as a tree, which can be thought of as
dl.splaylng the structure of the derived sentence. Using the grammar above, the sentence
lithe boys eat apples" has the following derivation tree:

<SENTENCE>

<NOUN PHR'SE) <~ERB
/ \ /

<DETERMINER) <NOUN) <VERB)
I I I

the boys eat

PHRASE>

<~OUN PHRASE)

<N6UN)
I

apples

Of course, lithe apples eat boys" Is also a legal sentence In this language. Derivation trees
can also be used with context-sensitive (type-1) grammars, provided the productions have
the alternate form uXv -) uYv, described above. For this reason, context-free and'context­
sensitive grammars are often called phrase-structure grammars (see Chomsky, 1969, pp. 143-
144, and Lyons, 1968, p. 236).

Type 3. Finally, If every production Is either of the form

x -> a Y or X -) a

where !:S. and yare single variables and ! Is a single terminal, the grammar Is a type-3 or
regular grammar. For example, a regular grammar can be given to generate the set of strings
of one or more ~s followed by one or more !!s (but with no guarantee of an equal number of
~s and Q.s):

S -> as
S -> aT
T -> b
T -> bT

Discussion: Language and Computational Algorithms

Because of the Increasingly restricted forms of productions In grammars of type 0, 1, 2,
and 3, each type Is a proper subset of the type above It in the hierarchy. A corresponding
hierarchy exists for formal languages. A language Is said to be of type i If it can be
generated by a'type-I grammar. It can be shown that languages exist that are context-free
(type 2) but not regular (type3)i context-sensitive (type 1) but not context-freei and
type 0 but not context-sensitive. Examples of the first two have been given above.

For regular and context-free grammars, there are practical parsing algorithms to
determine whether or not a ,given string Is an element of the language and, If so, to assign to
it a syntactic structure in the form of a derivation tree. Context-free grammars have
cons1derable application to programming languages. Natural languages, however, are not
generally context-free (Chomsky,1963i Postal, 1964), and they also contain features that
can be handled more conveniently, If not exclusively, by a more powerful grammar. An
example Is the requirement that the subject and verb of a sentence be both singUlar or both

;..

C1 Formal Grammar. 16

plural. Some of the types of grammars and parsing algorithms that have been explored as
more suitable for natural language are discussed In the articles that follow.

References

For a general discussion of the theory of formal grammars and their relation to automata
theory, see Hopcroft & Ullman (1969). Their use In NL research Is discussed in Winograd
(forthcoming).

Also of Interest are the works of Chomsky (especially 1956, 1957, and 1959), as well
as Lyons (1968), Lyons (1970), and Postal (1964).

16 Natural Language

C2. Transformational Grammars

The term transformational grammar refers to a theory of language introduced by Noam
Chomsky In Syntactic Structures (1 957). In the theory an utterance is characterized as the
surface manifestation of a "deeper" structure representing the "meaning" of the sentence.
The deep structure can undergo a variety of "transformations" of form (word order, endings,
etc.) on Its way up, while retaining Its essential meaning. The theory assumes that an
adequate grammar of a language'like English must be a generative grammar, that Is, that it
must be a statement of finite length capable of (a) accounting for the Infinite number of
possible sentences In the language and (b) assigning to each a structural description that
captures the underlying knowledge of the language possessed by an Idealized native user. A
formal system of rules Is such a statement; It "can be viewed as a device of some sort for
producing the sentences of the language under analysis" (Chomsky, 1957, p. 11). The
operation of the device Is not Intended to reflect the processes by which people actually
speak or understand sentences, Just as a formal proof in mathematics does not purport to
reflect the processes by which the proof was discovered. As a model of abstract knowledge
and not of human behavior, generative grammar Is said to be concerned with competence, as
opposed to performance.

The Inadequacy of Phrase-structure Grammars

Given that a grammar is a generative rule-system, It becomes a central task of
linguistic theory to discover what the rules should look like. In Syntactic Structures (1957)
and elsewhere (see Chomsky, 1963, Postal, 1964), it was shown that English is neither a
regular nor a context-free language. The reason is that those restricted types of grammars
(defined In Article el) cannot generate certain common constructions In everyday English,
such as the one using "respectively":

Arthur, Barry, Charles, and David are the husbands of Jane, Joan, Jill,
and Jennifer, respectively.

It was not determined whether a more powerful (I.e., context-sensitive) grammar could be
written to generate precisely the sentences of English; rather, such a grammar was rejected
for the following reasons. .

.. .

1. It made the description of English unnecessarily clumsy and complex--for
example, in the treatment required for conjunction, auxiliary verbs, and
passive sentences.

2. It assigned Identical structures (derivation trees) to sentences that are
understood differently, as In the pair:

The picture was painted by a new technique.
The picture was painted by a new artist .

C2 Transformational Grammar.

3. It provided no basis for Identifying as similar sentences having different
surface structures but much of their "meaning" In common:

John ate an apple.
Old John eat an apple?
What did John eat?
Who ate an apple?

17

The failure of phrase-structure grammar to explain such similarities and differences was
taken to Indicate the need for analysis on a higher level, which transformational grammar
provides.

Transformational Rules

In Syntactic Structures, Chomsky proposed that grammars should have a tripartite
organization. The first part was to be a phrase-structure grammar generating strings of
morphemes representing simple, declarative, active sentences, each with an associated
phrase marker or derivation tree. Second, there would be a sequence of transformational
rules rearranging the strings and adding or deleting morphemes to form representations of the
full variety of sentences. Finally, a sequence of morphophonemic rules would map each
sentence representation to a string of phonemes. Although later work has changed this
model of the grammar, as well as the content of the transformational rules, it provides a basis
for a simple Illustration.

Suppose the phrase-structure grammar Is used to produce the following derivation tree:

SENTENCE

NOUN PHRAS{ 'vERB

NP-SI~GULAR v{RB

DETERMINE' ~OUN AUx' 'v
I I I I

the boy TENSE eat

PHRASE

\OUN PHRASE

N~-PlURAL
DETERMINE' N6uN \

I I
the apple s

To generate "the boy ate the apples,1I one would apply transformations mapping IITENSE +
eat ll to lIeat + PAST"j a morphophonemic rule would then map "eat + PASTil to ate. To derive
"the boy eats the apples,1I the transformational rule used would select present tense and.
because the verb follows a singular noun phrase, would map "TENSE + eat ll to "eat + !." It is
noteworthy that the transformational rule must look at nontermlnal nodes In the derivation
tree to determine that "the boyll Is in fact a slngiJlar noun phrase. This example illustrates
one respect in which transformational rules are broader than the rules of a phrase-structure
grammar.

The transformations mentioned so far are examples of Obligatory transformations, insuring
agreement In number of the subject and the verb. To obtain lithe apples were eaten by the

18 Natural Language

boy," it would be necessary first to apply the optional passive transformation, changing a
string analyzed as

NOUN,.PHRASE-1 + AUX + V + NOUN-PHRASE-2
to

NOUN-PHRASE-2 + (AUX + be) + (en + V) + by + NOUN-PHRASE-1

In other words, this optional transformation changes lithe boy TENSE eat the apples" to "the
apples TENSE be (en eat) by the boy," and then forces agreement of the auxiliary verb with
the new plural subject. Further obligatory transformations would yield "the apples be PAST
eaten by the boy" (wh~re "be + PAST," as opposed to "be + §. + PAST," Is ultimately m'apped
to were). The ordering of transformational rules Is thus an essential feature of the grammar.

Revisions to the Model

In Aspects of the Theory of Syntax (1965), Chomsky made several revisions to the
model presented In Syntactic Structures. The version outlined In the more recent ~ook has
been called the "standard theory" of generative grammar and has served as a common
starting-point for further discussion. fn the standard theory (as summarized In Chomsky,
1971), sentence generation begins from a context-free grammar generating a sentence
structure and Is followed by a selection of words for the structur~ from a lexicon. The
context-free grammar and lexicon are said to form the base of the grammar; their output is
called a deep structure. A system of transformational rules maps deep structures to sur/ace
structures; together, the base and transformational parts of the grammar form It.s syntactic
component. The sound of a sentence Is determined by Its surface structure, which Is
Interpreted by the phonological component of the grammar; deep structure, Interpreted by the
semantic component, determines sentence meaning. It follows that the application of
transformatlcin~1 ruies to deep structures must preserve meaning: This was the Katz-Postal
hypothesi~, which required enlarging the generative capacity of the base and revising many
of the transformational rules suggested earlier (Katz & Postal, 1964).

The place of the semantic component In the standard theory has been the major source
of current Issues. For example, the following pairs of sentences have different meanings,
but their deep structl:'res, In the standard theory, are the same. .

Not many arrows hit the target.
Many arrows didn't hit the target.

Each C?f Mary's sons loves his brothers.
His brother~ are loved by each at Mary's sons.

Chomsky's response w8.s to revise the standard theory.so that both the deep structure of a
sentence and Its subsequent transformations are input to the semantic component (Chomsky,
1971). He exempllfi.e.s. jhe position of Interpretive semantics, which keeps the syntactic
component an autonomous 'system.. The opposing view, called generative semantics, Is that
syntax and semantics cannot be sharply separated and, consequently, that a distinct level
of syntactic deep· structure doe.s not exist. (This Issue Is discussed In Charnlak& Wilks,
1976.)

C2 Transformational Grammar. 19

There have been a number of developments within the theory of transformational
grammar since the work reviewed here, and current debates have called Into question many
of the basic assumptions about the role of transformations In a grammar. For current
discussions of these Issues, see AkmaJlan, Cullcover and Wasow (1977) and Bresnan
(1978).

References

The classic references here are, of course, Chomsky (1957) and Chomsky (1966).
Chomsky (1971) Is a shorter and more recent discussion. Cullcover, Wasow, & Akmajtan
(1977) and Bresnan (1978) are the latest word on transformation theory.

Also see Akmajian & Heny (1975), Charniak & Wilks (1976). Chomsky (1956), Chomsky
(1959), Chomsky (1963), Harman (1974). Katz & Postal (1964), Lyons (1968), Lyons
(1970), Postal (1964), and Steinberg & Jakobovits (1971).

20 Natural Language

C3, Systemic Grammar

Systemic grammar, developed by Michael Halliday and others at the University of
London, is a theory within which linguistic structure as related .to the function or use of
language, often termed pragmatics, Is studied. According to Halliday (1961, p. 141), an
account of linguistic structure that pays no attention to the functional demands we make on
language is lacking in perspicacity, since It offers no principles for explaining why the
structure Is organized one way rather than another. This viewpoint Is In contrast to that of
transformational grammar, which has been concerned with the syntactic structure of an
utterance apart from Its Intended use.

The Functions of Language

Halliday. distinguishes three general functions of language, all of which are ordinarily
served by every act of speech.

The ideational function serves for the expression of content. It says something about
the speaker's experience of the world. Analyzing a clause in terms of its ideational function
involves asking questions like: What kind of process does the clause describe--an action, a
mental process, or a relation? Who Is the actor (the logical subject)? Are there other
participants in the process, such as goal (direct object) or beneficiary (indirect object)? Are
there adverbial phrases expressing circumstances like time and place? The organization of
this set of questions Is described by what Halliday calls the transitivity system of the grammar.
(This is related to the Ideas of case grammars discussed In Article C4.)

The interpersonal function relates to the purpose of the utterance. The speaker may be
asking a question, answering one, making a request, giving Information, or expressing an
opinion. The mood system of English grammar expresses these possibilities In terms of
categories such as statement, question, command, and exclamation.

The textual function reflects the need for coherence In language use (e.g., how a given
sentence Is related to preceding ones). Concepts used for. analysis in textual terms
Include: (1) theme, the element that the speaker chooses to put at the beginning of a
clausej and (2) the distinction between what Is new In a message and what Is glven--the
latter being the point of contact with what the hearer already knows.

Categories of Systemic Gramm.,.

The model of a grammar proposed by Halliday has four primitive categories:

1. The units of language, which form a hierarchy. In English, these are the sentence,
clause, group, word, and morpheme. The "rank" of a unit refers to its position in the
hierarchy.

2. The structure of units. Each unit Is composed of one or more units at the rank
below, and each of these components fills a particular role. The English clause, for example,
Is made up of four groups, which serve as subject, predicator, complement, and adjunct.

,..'_... '~,"

C3 Systemic Grammar 21

3. The classification of units, as determined by the roles to be filled at the level
above. The classes of English groups, for Instance, are the verbal, which serves as·
predicator; the nominal, which may be subject or complement; and the adverbial, which fills
the adjunct function.

4. The sxstem. A system Is a list of choices representing the options available to the
speaker. Since some sets of choices are available only If other choices have already been
made, the relationship between systems Is shown by combining them Into networks, as In the
simple example below:

I
imperative .

independent -+ '
. '. - indicat ive _~Ideclarat ive

clause -
dependent I interrogative

The interpretation Is that each clause Is Independent or dependent; If independent, It is
either imperative or Indicative; and If either Indicative or dependent, then it is either
declarative or Interrogative. In general, system networks can be defined for units of any
rank, and entry to a system of choices may be made to depend on any Boolean combination
of previous choices.

Conclusion

Sys&mic grammar views the act of speech as a simultaneous selection from among a
large number of Interrelated options, which represent the "meaning potential" of the
language. If .ystem networks representing these options are suitably combined and carried
to enough detail, they provide a way of writing a generative grammar quite distinct from that
proposed by transformational grammar (see Hudson, 1971, 1976; McCord, 1975; and Self,
1975). Furthermore, this formalism has been found more readily adaptable for use in natural
language understanding programs In AI (see especially Winograd's SHRDLU system, Article
F4).

Referene ••

Halliday ('9151) and Halliday (1970b) are the most general original referen'c~s.
WInograd (1972) dlscuHes the application of systemic grammar in an NL program.'

,i.'., .:.
. .

Also Bee Hautday (1967-68), Halliday (1970a), Hudson (1971), Hudson (1976), McCord
(1975), Mctnt08h & Halliday (1966), and Self (1976).

22 Natural Language

C4. Case Grammars

Case systems, as used both in modern linguistics and in artificial intelligence, are
descendants of, the concept of case that occurs in traditional grammar. Traditionally, the case
of a noun was denoted by an Inflectional ending Indicating the, noun's role in the sentence .
. Latin. for example, has at least six cases: the nominative, accusative, genitive, dative,
'ablative, and vocative. The rules for case endings make the meaning of a latin sentence
almost Independent of word order: The function of a noun depends on its inflection rather
than its position in the sentence. Some present-day languages, Including Russian and
German, have similar Inflection systems, but English limits case forms mainly to the personal
pronoun, as in 1, !!!y, me, and to the possessive ending 's. Case functions for nouns are
indicated in English by usIng word order or by the choice of preposition to precede a noun
phrase--as in "of the people, ~ the people, and for the people."

The examples above describe what have been called "surface" cases; they are
aspects of the surface structure of the sentence. Case systems that have attracted more
recent attention are "deep" cases, proposed by Fillmore (1968) In his paper The Case for
Case, as a revision to the framework of transformational grammar. The central Idea Is that the
proposition embodied In a simple sentence has a deep structure consisting of a verb (the
central component) and one or more noun phrases. Each noun phrase Is associated with the
verb In a particular relationship. These relationships, which Fillmore characterized as
"semantically relevant syntactic relationships," are caHed cases. For example, in the
sentence

John opened the door with the key,

John would be the AGENT of the verb opened, the door would be the OBJECT, and the key
would be the INSTRUMENT. For the sentence '

The door was opened by John with the key,

the case assignments would be the same, even though the aurfaca structurahas changed.

It was important to Fillmore's theory that the numb.r of possible case relationships be
small and fixed. Fillmore (1971 b) proposed the following cases:

Agent -:.. the instigator of the event.
Counter-Agent -- the force or resistance against which the action Is

carried out.
Object

Result

Instrument

Source
Goal
Experlencer

-- the entity that moves or changes or whose position
or existence Is In consideration.

-- the entity that comes into existence as a result of
the action.

-- the stimulus or Immediate, physical cause of an
event.

-- the place from which something moves.
-- the place to which something moves.
-- the entity which receives or accepts or

experiences or undergoes the effect of an Bctkln.

,',1','1 •••. ,

C4 Case Grammars 23

Still another proposal (Fillmore, 1971 a) recognizes 9 cases: Agent, Experiencer, Instrument,
Object, Source, Goal, Location, Time, and Path.

Verbs were classified according to the cases that could occur with them. The cases
for any particular verb formed an ordered set called a case frame. For example, the verb
"open" was proposed to have the case frame

[OBJECT (INSTRUMENT) (AGENT)]

Indicating that the object Is obligatory In the deep structure of the sentence, whereas it Is
permissible to omit the Instrument ("John opened the door") or the agent ("The key opened
the door"), or both ("The door opened"). Thus, verbs provide templates within which the
remainder of the sentence can be understood.

The Case for Case

The following are some of the kinds of questions for which case analysis was intended
to provide answers:

1. In a sentence that Is to contain several noun phrases, what determines
which noun phrase should be the subject In the surface structure? Cases
are ordered, and the highest ranking case that Is present becomes the
subject.

2. Since one may say "Mother Is baklngll or "The pie Is baking," what is wrong
with "Mother and the pie are baking"? Different cases may not be
conjoined.

3. What Is the preCise relationship between pairs of words like "buy" and
"sell" or "teach" and "learn"? They have the same basic meaning but
different case frames.

One way of looking at deep cases is to view the verb as a predicate taking an
appropriate array of arguments. Fillmore has extended the class of predicates to Include
other parts of speech, such as nouns and adjectives, as well as verbs. Viewing warm as a
predicate, for example, enabled case distinctions to account for the differences among the
followi~g sentences:

I am warm.
This jacket Is warm.
Summer is warm.
The room is warm.

The Representation of Case Frames

[experiencer]
[Instrument]
[time]
[location]

In artificial Intelligence programs, such predicates and their arguments can readily be
equated to nodes In semantic networks; and the case relations, to the kinds of links between

24 Natural Language

them. Systems making such Identifications Include those of Simmons (1973), Schank (1975),
Schank & Abelson (1977), and Norman & Rumelhart (1975). Semantic nets and related work
on semantic primitives and frames are discussed in the section on Knowledge Representation
and In Articles F5 and F6 which describe the MARGIE and SAM systems. .

Many other systems using case representations exist. As pointed out in an extensive
survey by Bruce (1975), considerable variation exists In both the sets of cases adopted and
the ways in which case representation is used. The number of cases used varies from four
or five (Schank) to over thirty (Martin). Bruce's proposal on criteria for choosing cases,
which departs significantly from Fillmore's original goal of finding a small, fixed set of
relationships, is that:

A case is a relation which Is "important" for an event In the context in
which It Is described. (Bruce, 1975)

Case notation has been used to record various levels of sentence structure. As
Fillmore Introduced It, within the transformational grammar framework, deep cases were
"deep" In the sense that "John opened the door" and "the door was opened by John" were
given the same representation. They can also be viewed as relatively superficial, however,
In, that "John bought a car from Bill" and "Bill sold a car to John" could have distinct
representations since they have different verbs. At this level, cases have been used in
parsing (Wilks, 1976; Taylor & Rosenberg, 1975); in the representation of English
sentences, as opposed to their underlying meanings, as discussed above (Simmons, 1973);
and In text generation (see Article E).

Systems using case at the deepest level, on the other hand, may represent the
meaning of sentences In a way that collapses buy and sell, for example, Into a single
predicate (Schank, 1975; Norman & Rumelhart, 1975). A typical problem attacked by these
systems Is paraphrasing, where Identifying sentences with the same deep structure Is the
goal. Schank (1975) also requires that all cases be filled, even If the Information required
was not explicitly given In the sentences represented. Charniak (1975) suggests that the
appropr,iate use of case at this level of representation is In inferencing: The "meaning" of a
case would thel) be the set of Inferences one could draw about an entity knowing only Its
case. In the view of some writers, however, the function of case In natural language
understanding systems Is usually only as a convenient notation (see Charnlak, 1975; Welln,
1975).

References

Fillmore (1968) Is the classic reference on case grammars. Bruce (1975) is a thorough
review of different approaches to case grammar.

Also see Charnlak (1975), Fillmore (19718), Fillmore (1971 bi, Norman & Rumelhart
(1975), Samlowskl (1976), Schank (1973), Schank (1975), Schank & Abelson (1977),
Simmons (1973), Taylor & Rosenberg (1975), Welln (1975), and Wilks (1976).

D Par,lng 25

D. Parsing

D 1. Overview of Parsing Techniques

Parsing Is the "dellnearization" of linguistic input, that Is, the use of syntax and other
sources of knowledge to determine the functions of the words In the Input sentence in order
to create a data structure, like a derivation tree, that can be used to get at the "meaning" of

• the sentence. A parser can be viewed as a recursive pattern matcher seeking to map a string
of words onto a set of meaningful syntactic patterns. For example, the sentence "John
kissed Mary" could be matched to the pattern:

SENTENCE
SUBJE{T }REDICATE

VER' ~BJECT
The set of syntactic patterns used Is determined by the grammar of the Input language.
(Several types of grammars are described In the articles In Section C.) In theory, by applying
a comprehensive grammar, a parser can decide what Is and what Is not a grammatical
sentence and can build up a data structure corresponding to the syntactic structure of any
grammatical sentence It finds. All natural language processing computer systems contain a
parsing component of some sort, but the practical application of grammars to natural
language has proven difficult.

The design of a parser Is a complex problem, both In theory and Implementation. The
first part of the design concerns the specification of the grammar to be used. The rest of
the parsing system Is concerned with the method of use of the grammar, that is, the manner in
which strings of words are matched against patterns of the grammar. These considerations
run Into many of the general questions of computer science and artificial Intelligence
concerning process control and manipulation of knowledge.

General Issues of Parser Design

The design considerations discussed below overlap; that Is, a .declslon in one dimension
affects other design decisions. Taken together they present a picture of the variety of
issues Involved In natural language parsing.

Uniformity. Parsers may represent their knowledge about word meanings, grammar, etc.,
with a single scheme or with specialized structures for specific tasks. The representation
scheme affects the complexity of the system and the application of knowledge during
parsing. If rules and processes are based on specialized knowledge of what the Input to the
parser will contain, it Is possible to do things more quickly and· efficiently. On the other hand,
if one has a simple uniform set of rules and a consistent algorithm for applying them, the job
of writing and modifying the language understanding system is greatly simplified, since .all the
knowledge In the system Is uniformly explicated. In general, there Is a trade-off between
efficiency and uniformity; an algorithm specially designed for only one language can perform
more efficiently than one that could uniformly handle any language.

26 Natural Language

Multiple Sources of Knowledge. Parsing, as originally developed (and still used in
programming language compliers), was based purely on syntactic knowledge--knowledge
about the form of sentences allowed in the language. However, it is possible to design
systems In which syntax-based parsing is Intermixed with other levels of processing, such
as word recognition and use of word meanings. Such methods can alleviate many of the
problems of language complexity by bringing more information to bear. Present systems tend
toward such intermixed structures, both for effective performance and more psychologically
valid modeling of human language understanding (see, for example, Article F4 on SHRDlU and
the extensive discussion of multiple sources of knowledge in Article Applicalions.C3 on the
SOPHIE system and the blackboard model in the Speech Understanding section).

Precision. Another major trade-off involved in parser design is precision vs. flexibility.
Humans are capable of understanding sentences that are not quite grammatical; eyen if a
person knows that a sentence Is "wrong" syntactically, he can often understand it and
assign it a structure (and more importantly, a meaning). Some natural language processing
systems, such as PARRY (Colby, Weber, & Hilf, 1971) and ELIZA (Article F1) have been

. designed to incorporate this kind of flexibility. By looking for key words and using loose
grammatical criteria, these systems can accept far more sentences than would a precise
parser. However, these "knowledge-poor" flexible parsers lose many benefits of the more
complete analysis possible with a precise system, since they rely on vaguer notions of
sentence meaning than a precise system. While they reject less often, flexible systems
tend to misinterpret more often. Many systems attempt to use additional knowledge sources,
especially domain-specific knowledge, to Increase flexibility while retaining precision.

Type of structure returned. As mentioned, parsing Is the process of assigning
structures to sentences. The form of the structure can vary, from a representation that
closely resembles the surface structure of the sentence to a deeper representation in which
the surface structure has been extensively modified. Which form Is chosen depends upon
the use to which the parse structure will be put. Currently, most work In natural language
favors the deep structure approach.

These four Issues--unlformlty, multiple knowledge sources, precision, and level of
representation--are very general questions and are dealt with In different ways by different
systems. In implementing a parser, after settling such general design questions, natural
.Ia.nguage programmers run up against another. set of problems Involving specific parsing
strategies.

Parsing Strategies

Backtracking versus parallel processing. Unfortunately for computational linguists,
the elements of natural languages do not always possess unique meanings. For example, In
going through a sentence the parser might find a word that could either be a noun or a verb,
like "can," or pick up a prepositional phrase that might be modifying any of a number of the
other parts of the sentence. These and many other ambiguities In natural languages force
the parser to make choices between multiple alternatives as It proceeds through a sentence.
Alternatives may be dealt with all at the same time, via parallel processing, or one at a time
using a form of backtracking--backlng up to B previous choice-point In the computation and
trying again (see Article AI Languages.8S on control mechanisms In AI programming languages).
Both of these methods require a significant amount of bookkeeping to keep track of the

'-

01 Overview of Parsing Techniques 27

multiple possibilities: all the ones being tried, In the case of parallel processing; or all the
ones not. yet tried, In the case of backtracking. Neither strategy can be said to be Innately
superior, though the number of alternatives that are actually tried can be significantly
reduced when backtracking Is guided by "knowledge" about which of the choices are more
likely to be correct--called heuristic knowledge (see Search.Overview).

Top-down versus bottom-up. In deriving a syntactic structure, a parser can operate
from the goals, that Is, the set of possible sentence structures (top-down proceSSing), or from
the words actually In the sentence (bottom-up processing). A strictly top-down parser begins
by looking at the rules for the desired top-level structure (sentence, clause, etc.); It then
looks up rules for the constituents of the top-level structure, and progresses until a
complete sentence structure Is built up. If this sentence matches the Input data, the parse
Is successfully completed, otherwise, It starts back at the top again, generating another
sentence structure. A bottom-up parser looks first for rules In the grammar to combine the
words of the Input sentence Into constituents of larger structures (phrases and clauses),
and continues to try to recombine these to show hawaII the words In the Input form a legal
sentence In the grammar. Theoretically, both of these strategies arrive at the same final
analysis, but the type of work required and the working structures used are quite different.
The Interaction of top-down and bottom-up process control Is a common problem In AI and Is
not restricted natural language programs (see, for example, the discussion In the Speecn.A).

Choosing how to expand or combine. With either a top-down or bottom-up technique,
It Is necessary to decide how words and constituents will be combined (bottom-up) or
expanded (top-down). The two basic methods are to proceed systematically In one direction
(normally left to right) or to start anywhere and systematically look at neighboring chunks of
Increasing size (this method Is sometimes called island driving). Both these methods will
eventually look at all possibilities, but the choice of how to proceed at this level can have a
significant effect on the efficiency of the parser. This particular feature is espeCially
relevant to language processing In the presence of input uncertainty, as occurs, for example,
In the speech understanding systems.

Multiple knowledge sources. As mentioned above, another important design decision
that was especially apparent In the speech understanding systems was the effective use of
multiple sources of knowledge. Given that there are a number of possibly relevant sets of
facts to be used by the parser (phonemic, lexical, syntactic, semantic, etc.), which do you
use when?

The Issues discussed here under parsing strategies are all questions of efficiency. They
will not In general affect the final result if computational resources are unlimited, but they
will affect the amount of resources expended to reach It.

Actual Parsing Systems

Every natural language proc~ssing program deals with these seven issues in its own
fashion. Several types of parsers have developed as experience with natural language
systems increses.

Template matching. Most of the early NL programs (e.g., SIR, STUDENT, ELIZA)
performed "parslng" by matching their Input against a series of predefined templ~tes--bindlng

\

28 Natural Language

the variables of the template to corresponding pieces of the Input string (see Article Fl).
This approach was successful, up to a point--glven a very limited topic of discussion, the
form of many of the Input sentences could be anticipated by the system IS designer who
Incorporated appropriate templates. However, these systems were ad hoc and somewhat
Inextenslble, and the template matching was soon abandoned In favor of more sophisticated
methods.

Simple phrase-structure grammar parsers. These parsers make use of a type of
context-free grammar with various combinations of the parsing techniques mentioned above.
The advantage of a phrase-structure grammar is that the structures derived correspond
directly to the grammar rules; thus, the subsequent semantic processing is simplified. By
using large grammars and skirting linguistic Issues that are outside their limitations (such as
some types of agreement), a phrase-structure grammar parser can deal with a moderately
large subset of English. Phrase-structure grammars are used primarily to produce systems
(like SAO';SAM) with useful performance on a limited domain, rather than to explore more
difficult language-processing Issues.

Transformational grammar parsers. These parsers attempt to extend the notions of
transformational grammar Into a parsing system. Transformational grammar Is a much more
comprehensive system than phrase-structure grammar, but it loses phrase-structure IS direct,
rule-to-structure correspondence. Moreover, methods that have been tried, such as analysis
by synthesis (building up all possible sentences until one matches the Input) and Inverse
transformations (looking for transformation rules that might have produced the Input), have
often failed because of combinatorial explosion--the proliferation of alternatives the system
must examlne--and other difficulties with reversing transformations. One of the major
attempts to Implement a transformational parser was that by Petrick (1973).

Extended grammar parsers. One of the most successful AI approaches to parsing yet
developed has been to extend the concept of phrase-structure rules and derivations by
adding mechanisms for more complex representations and. manipulations of sentences.
Methods such as augmented transition net grammars (ATNs) and cnarts provide additional
resources for the parser to draw on beyond the simple, phrase-structure approach (see
Arlicles 02 and 03). Some of these mechanisms have validity with respect to some linguistic
theory, while others are merely computationally expedient. The very successful systems of
Woods & Kaplan (1971), Winograd (1972), and Kaplan (1973), as described In the articles In
Section F, use extended grammar parsers. 1

Semantic grammar parsers. Another very successful modification to the traditional
. phrase structure grammar approach Is to change the conception of grammatical classes from
the traditional <NOUN>, <VERB>, etc., to classes that are motivated by concepts In the
domain being discussed. For Instance, such a semantic grammar for a system which talk~
about airline reservations might have grammatical classes like (DESTINATION), <FLIGHT>.
(FLIGHT-TIME), and so on. The rewrite rules used by the parser would descibe phrases and
clauses In terms of these semantic categories (see Article Applicationa.C3 for a more
complete discussion). The LIFER and SOPHIE systems (Articles F7 and Appliceticns.C3) use
semantic grammar parsers (Hendrix, 1 977a, and Burton, 1976).

Grammarless parsers. Some Nl system deSigners have abandoned totally the
traditional use of grammars for linguistic analysis. Such systems are sometimes referred to
as "ad hoc," although they are typically based on some loose theory that happens to fall

01 Overview of Parsing Techniques 29

outside the scope of standard linguistics. These "grammarless" parsers opt for flexibility in
the above-mentioned precision/flexibility trade-off. They are based on special procedures
(perhaps centered on Individual words rather than syntactiC elements) that use semantlcs­
based techniques to build up structures relevant to meaning, and these structures bear little
resemblance to the normal structures that result from syntactic parsing. A good example of
this approach can be found in the work of Rlesbeck (1975). .

Conclusion

Recent research In parsing has been directed primarily towards two kinds of
simplification: providing simplified systems for dealing with less than full English, and
providing simplified underlying mechanisms that bring the computer parsing techniques closer
to being a theory of syntax. Systems such as LIFER (Article F7) have been developed which
use the basic mechanisms of augmented grammars In a clean and easily programmable way.
Systems like these cannot deal with the more difficult problems of syntax, but they can be
used quickly and easily to assemble specialized parsers and are likely to be the basis for
natural language "front ends" for simple applications."

At the same time, there has been a reevaluation of the fundamental notions. of parSing
and syntactic structure, viewed from the perspective of programs that understand natural
language. Systems such as PARSIFAL' (Marcus, 1978) attempt to capture in their design the
same kinds of generalizations that linguists and psycholinguists posit as theories of language
structure and language use. Emphasis Is being directed toward the Interaction between the
structural facts about syntax and the control structures for Implementing the parSing
process. The current trend is away from simple methods of applying grammars (as with
phrase-structure grammars), toward more "integrated" approaches. In particular, the
grammar/strategy dualism mentioned earlier in this article has been progressively weakened
by the work of Winograd (1972) and Rlesbeck (1975). It appears that any successful
attempt to parse natural language must be based upon some more powerful approach than
traditional syntactic analysis. Also, parsers are being called upon to handle more "natural"
text, Including discourse, conversation, and sentence fragments. These Involve aspects of
language that cannot be easily described In the conventional, grammar-based models.

References

Again, much of this discussion Is borrowed from Winograd (forthcoming). Other general
surveys Include Charnlak & Wilks (1976), and Grishman (1976). For examples of recent
work, the proceedings of the TINLAP conferences (TINLAP-l, 1975 and TINLAP-2, 1978) are
recommended.

30 Natural Language

02. Augmented Transition Nets

Augmented transition networks (ATNs) were first developed by William Woods (1970)
as a versatile representation of grammars for natural languages. The concept of an ATN
evolved from that of a finite-state transition diagram, with the addition of tests and "side­
effect" actions 'to each arc, as described below. These additions resulted In the power
needed for handling features of English like embedding and agreement that could not be
conveniently captured by regular (or even context-free) grammars. An ATN can thus be
viewed as either a grammar formalism or a machine.

Many current language processors use an ATN-like grammar; in some ways, it may be
considered state-of-the-art, at least for actual working systems.

Preliminary Theoretical Concepts

A finite-state transition diagram (FSTD) Is a simple theoretical device consisting of a
set of states (nodes) with arcs leading from one state to another. One state is designated
the START state. The arcs of the FSTD are labeled with the terminals of the grammar (i.e.,
words of the language), Indicating which words must be found in the Input to allow the
specified transition. A subset of the states Is Identified as FINAL; the device Is said to acc.ept
a sequence of words If, starting from the START state at the beginning of the sentence, it
can reach a FINAL state at the end of the Input.

FSTDs can "recognize" only regular or type-3 languages (see the discussion of formal
languages In Article C1). To recognize a language, a machine must be able to tell whether an
arbitrary sentence Is part of the language or Is not. RegUlar grammars (those whose rewrite
rules are restricted to the form Y -> aX or Y -> a) are the simplest, and FSTDs are only
powerful enough to recognize these languages. In other words, It Is impossible to build an
FSTD that can dependably distinguish the sentences In even a context-free language.

For example, the following FSTD, in which the start state Is the left-most node and the
final state Is labeled ~, will accept any sentence that begins with the, ends with a noun, and
has an arbitrary number of adjectives In between.

(adjective>

n
D the D (noun) r::l

---+1 f-----... I -------.... 1 ~

Let's follow through the net with the Input sentence "the pretty picture." We start in the
START state and proceed along the arc labeled the, because that Is the left-most word in
the input string. This leaves us in the middle box, with "pretty picture" left as our string to
be parsed. After one loop around the adjective arc, we are again at middle node, but this
"tIme with the string "plcture ll remaining. Since this word Is a noun, we proceed to the FINAL
node, ~, and arrive there with no words remaining to be processed. Thus the parse Is
successful; In other words, our example FSTD accepts this string.

D2 Augmented Transition Nets 31

However, regular grammars are Inadequate for dealing with the complexity of natural
language, as discussed In Article C2. A natural extension to FSTDs, then, Is to provide a
recursion mechanism that Increases their recognition power to handle the more inclusive set
of context-free languages. These extended FSTDs are called recursive transition networks
(RTNs). An RTN Is a finite-state transition diagram In which labels of an arc may Include not
only terminal symbols but also nontermlnal symbols that denote the name of another
subnetwork to be given temporary control of the parsing process.

An RTN operates similarly to an FSTO. If the label on an arc Is a terminal (word or word
class), the arc may be taken (as In FSTOs) If the word being scanned matches the label. For
example, the word ball would match an arc labeled <noun> but not one labeled <adjective).
Otherwise, If the arc Is labeled with a nontermlnal symbol, representing a syntactic construct
(e.g., PREPOSITIONAL PHRASE) that corresponds to the name of another network, the current
state of the parse Is put on a stack and control Is transferred to the corresponding named
subnetwork, which continues to process the sentence, returning control when it finishes or
falls.

Whenever an accepting state Is reached, control is transferred to the node obtained
by "popping the stack ll (I.e., returning to the point from which the subnetwork was entered).
If an attempt Is made to pop an empty stack, and If the last Input word was the cause of this
attempt, the Input string Is accepted by the RTN; otherwise, It Is rejected. The effect of
arcs labeled· with names of syntactic constructs Is that an arc Is followed only If a
construction of the corresponding type follows as a phrase In the Input string. Consider the
following example of an RTN:

s:

---+~~ ___ NP ____ ~
'0
<adj>

NP: n
~ <det>

---+~----.... '0
PP:

<verb>

'0
PP

<noun>
n
IE]

~ <prep> 0 NP ~
---+~I-------~I ~------~I ~

pp

NP
n
IE]

Here NP denotes a noun phrase; PP, a prepositional phrase; det, a determiner; ~. a
preposition; and ~, an adjective. Accepting nodes are labeled~. If the input string is
nThe little boy in the swimsuit kicked the red ball," the above network would parse it into the
following phrases:

32

NP:
PP:
HP:

Verb:
HP:

Natural Language

The l1ttle boy in the sw1msu1t
in the swimsuit
the swimsuit
kicked
the red ball

Notice that any subnetwork of an RTN may call any other subnetwork, including itself; in
the above example, for Instance, the prepositional phrase contains a noun phrase. Also
notice that an RTN may be nondeterministic In nature; that is, there may be more than one
possible arc to be followed at a given point In a parse. Parsing algorithms handle
nondeterminism by parallel processing of the various alternatives or by trying one and then
backtracking If It falls. These general parsing Issues are discussed in Article 01.

Context-free grammars, however, are still insufficient to handle natural language. The
RTNs, then, must be extended, to provide even more parsing power.

ATNs

An augmented transition network (ATN) is an RTN that has been extended in three
ways:

1. A set of registers has been added; these can be used to store information,
such as partially formed derivation trees, between jumps to different networks.

2. Arcs, aside from being labeled by word classes or syntactic constructs, can
have arbitrary tests associated with them that must be satisfied before the arc
is taken.

3. Certain actions may be "attachedll to an arc, to be executed whenever It is
taken (usually to modify the data structure returned).

This addition of registers, tests, and actions to the RTNs extends their power to that of
Turing machines, thus making ATNs theoretically powerful enough to recognize any language
that might be recognized by a computer. ATNs offer a degree of expressiveness and
naturalness not found In the Turing machine formalism, and are a useful tool to apply to the
analysis of natural language.

The operation of the ATN Is similar to that of the RTN except that if an arc has a test
then the test Is performed first, and the arc Is taken only If the test Is successful. Also, if
an arc has actions associated with It, then these operations are performed after following the
arc. In this way, by permitting the parsing to be guided by the parse history (via tests on
the registers) and by allowing for a rearrangement of the structure of the sentence during
the parse (via the actions on the registers), ATNs are capable of building deep structure
descriptions of a sentence in an efficient manner. For a well-developed and clear example,
the reader Is referred to .woods (1970).

02 Augmented Transition Nets 33

Evaluation of ATNs and Results

ATNs serve as an computationally Implementable and efficient solution to some of the
problems of recognizing and generating natural language. Their computational power provides
the capability to embed different kinds of grammars, making them an effective testbed for
new Ideas. Two of the features of ATNs, the test and the actions on the arcs, make them
especially well suited to handling transformational grammars. The ability to place arbitrary
conditions on the arcs provides context sensitivity, equivalent to the preconditions for
applying transformational rules. The capability to rearrange the parse structure, by copying,
adding, and deleting components, provides the full power of transformations (see Article C2).

The ATN paradigm has been successfully applied to question answering in limited
(closed) domains, such as the LUNAR program, which Is described in Article F3. Also, ATNs
have been used effectively In a number of text generation systems. In addition, the BBN speech
understanding system, SPEECHLlS, uses an ATN control structure (see Article Speech.B3).

There are limitations to the ATN approach; In particular, the heavy dependence on
syntax restricts the ability to handle ungrammatical (although meaningful) utterances. More
recent systems (see especially Rlesbeck's work, Article F5) are oriented toward meaning
rather than structure and can thus accept mildly deviant Input.

References

The p~lnclpal references here are, of course, Woods (1970), Woods & Kaplan (1971),
and Woods (1973a). Also see Bobrow & Fraser (1969), Conway (1963), Matuzceck (1972),
and Winograd (1976).

34 Natural Language

03. The General Syntactic Processor

Ronald Kaplan's (1973) General Syntactic Processor (GSP) is a versatile system for
the parsing and generation of strings In natural language. Its data structures are intuitive
and the control structures are conceptually straightforward and relatively easy to implement.
Yet, by adjusting certain control parameters, GSP can directly emulate several other
syntactic processors, Including Woods's ATN grammar (Article 02), Kay's MIND parser (Kay,
.1973), and Friedman's text generation system (Article E).

GSP represents an effort both to synthesize the formal characteristics of different
parsing methods and to construct a unifying framework within which to compare them. In this
respect, GSP Is a "meta-system"--It is not In Itself an approach to language processing, but
rather It is a system in which various approaches can be described.

Data Structure: Charts

GSP gains much of Its power through the use of a single, basic data structure, the
chart, to represent both the grammar and the input sentence. A chart can be described as a
modified tree, which is usually defined as a set of nodes that can be partitioned into a root
and a set of diSjoint subtrees. A tree encodes two sorts of relations between nodes:
DOMINANCE, the relation between a parent and daughter node; and PRECEDENCE, the relation
between a node and its right-hand sister node. Figure 1 shows a tree representing a
particular noun phrase.

NP

DE!1 \N
I I· I the tall man

Figure 1 .. A tree for a noun phrase.

A chart Is basically a tree that has been modified In two ways:

1. The arcs of the tree have been rearranged to produce a binary tree, that is, a
tree in which each node has at most two dangling nodes (this rearrangement
Is described by Knuth [1973, p. 333] as the Itnatural correspondence"
between trees and binary trees).

2. The nodes and arcs have been Interchangedj what were previously nodes are
now arcs, and vice versa.

For example, Figure 2 Is the chart representation for the tree of Figure 1:

03 The General Syntactic Processor 35

NP
0

I OET AOJ N
0 '0 '0

I the I tall I man
0 '0 '0

Figure 2. A chart for a noun phrase.

The chart representation has a number of advantages, Including ease of access for certain
purposes. For example, In Figure 1 there Is no direct connection· from DET to ADJ. In Figure 2

. this connection has been made; that Is, the PRECEDENCE relationships have been made
explicit, and the DOMINANCE ones have been removed. This explicit encoding of pr~cedence
can be helpful In language processing, where the concept of one element following 'another is
a basic relation.

Also, the chart can be used to represent a "string of trees" or "forest"··that Is, a set
of disjoint trees. For example, Figure 3a shows 8 string of two disjoint trees, headed by NP
and Y... Note that these trees cannot be connected, except with a dummy parent node
(labeled 1). In Figure 3b, the equivalent chart representation Is shown.

? NP V

Np/ \ 0 '0

I DET N

DEI
\

I
0 '0

N I I I I the man walked
the man walked 0 '0 10

Figure 3a. Two disjoint trees. Figure 3b. The equivalent chart.

Finally, the chart provides 8 representation for multiple Interpretations of a given word
or phrase, through the use of multiple edges. The arcs In a chart are called edges and are
labeled with the names of words or grammatical constructs. For example, Figure 4
represents the set of trees for "I saw the log," Including the two Interpretations for the word
~.

PRO V DEl N
01---""0 .0----... 0-----+

1 I 1 " saw. .J the 1 log
o '0 see (past) 0----... 0---...... '" ,!'

Figure 4. A chart showing multiple Interpretations.

The chart allows explicit representation of ambiguous phrases and clauses, as well as of
words.

36 Natural Language

Note that ambiguity .could also be represented by distinct trees, one for every possible
Interpretation of the sentence. However, this approach is Inefficient, as It Ignores the
possibility that certain subparts may have the same meaning In all cases. With the chart
representation, these common subparts can be merged.

As defined earlier, the arcs In a chart are called edges and are labeled with the names
of words or grammatical constructs. The nodes are called vertexes. The chart can be
accessed through various functions, which enable orie to retrieve specific edges, sets of
edges, or vertexes.

At any given moment, the attention of the system Is directed to a particular point in the
chart called the CHART FOCUS. The focus Is described by a set of global variables: EDGE
(the current edge), VERTEX (the name of the node from which EDGE leaves), and CHART (the
current subchart being considered by the processing strategy). GSP's attention is
redirected by changing the values of these variables.

When the chart is initialized, each word in the sentence is represented by an edge in
the chart for each category of speech the word can take. Figure 4 is an example of an
initial chart configuration, preparatory to parsing. Each analysis procedure that shares the
chart is restricted to adding edges, which gives iater analyses the ability to modify or ignQre
earlier possibilities without constraining future interpretations. In this way, the individual
syntactic programs remain relatively independent while building on each other's work in a
generally bottom-up way.

It should be emphasized that the chart is just a data structure and is not directly
related to the grammar. It merely serves as the global blackboard upon which the various
pieces of the grammar operate. We still must specify the sorts of operations that use the
chart--that Is, the form of the grammar Itself.

Data StrJ,lcture: Grammatical Rules

Grammars for syntactic processing of language can be understood in terms of a
network model like Woods's ATN grammar. That is, a grammar Is viewed as a series of states,
with transitions between the states accomplished by following arcs (see Article 02).

The grammars encoded by GSP fit this description. What gives GSP Its power~i,
however, is the fact,that a grammar can be represented In the same way as a chart. That Is,·
we can use the chart manipulation mechanisms, already developed, to operate upon the.
grammar itself. There Is a difference, of course. The chart is merely a passive data store;
the grammar contains Instructions for: (a) acting on the chart--adding pieces and shifting
attentlonj and (b) acting on the grammar--shiftlng attention (I.e., moving from one grammar
state to another).

Control Structure

To handle the full complexity of grammars, GSP has some extra features. These
Include:

1. REGISTERS. As In ATNs, these are used as pointers to structures.

o

03 e The General Syntactic Processor

2. LEVELSTACK. This Is a stack used to implement recursion. The chart
focus, grammar focus (state), and register list are saved before a
recursive call.

3. NDLIST (nondetermlnlsm list). This Is a list of choice points In the
grammar. Whenever a choice Is made, the user can optionally save the
current configuration on NDLlST, to allow for backtracking.

4. PROCSTACK. This Is a list of suspended processes. GSP allows a co­
routining facility, under which processes can be suspended and resumed
(ATNs have no equivalent to this).

37

Features like recursion, backtracking, and movement of the pOinter through the Input sentence
must all be handled by the user within the general framework provided. This approach can
be beneficial, particularly with features such as backtracking: automatic backtracking can be
a tess-than-deslrable feature In a grammar (see the discussion In the AI Programming
Languages Section).

USing GSP

Note one facet of the approach outlined: All operations on the grammar and chart must
be explicitly stated. Thus, GSP has placed much power In the hands of the grammar deSigner,
with a corresponding cost In complexity.

GSP appears to be similar to an ATN, with three extensions:

1. The data structure used Is a chart, Instead of simply a string of words.

2. The grammar Is encoded In the same manner as the chart; thus It Is
accessible to the system.

3. Processes can be suspended and resumed.

ATNs do not fully demonstrate the power of GSP. Kaplan also used GSP to Implement
Kay's MIND parser (a context-free, bottom-up system) and Friedman's transformational
grammar text-generation system. The latter two made more extensive use of GSP's
capabilities, In particular: (a) the possibilities of multiple levels In the chart; (b) the ability to
suspend and restart processes; and (e) the ability to rearrange the chart, changing it as
necessary. The Kay algorithm, in particular, made extensive use of the ability to modify the
chart "on the fly," adding sections as required.

Conclusions and Observations

GSP provides a simple framework within which many language processing systems can
be described. It is not Intended to be a high-level system that will do many things for the
user; rather, It prov1des a "machine language" for the user to specify whatever operations
he wants. GSP's small set of primitive operations seems to be sufficient for representing
most desirable features of syntax-based parsing. The clean, uniform structure enables GSP
to be used as a tool for comparison (and possibly evaluation) of different systems.

38 Natural Language

The chart seems to be an effective data structure for representing the syntax of
natural language sentences. It provides convenient merging of common subparts (i.e., to
prevent re-scannlng known components), while permitting representation of various forms of
ambiguity. As Kay explained, the function of the chart is to lire cord hypotheses about the
phraseological status of parts of the sentence so that they will be available for use In
constructing hypotheses about larger parts at some later time" (Kay, 1973, p. 167).

The backtracking mechanism Is very general and thus can be inefficient if used too
enthusiastically. Kaplan points out that heuristic ordering of alternatives Is possible by
altering the function that retrieves configurations from the NDLlST, though compliers should In
any case attempt to minimize backtracking.

References

Kaplan (1973) Is the principal reference. See also Friedman (1971), Kay (1973),
Knuth (1973), and Woods (1970).

E Text Generation 39

E. Text Generatton

Text generation Is, In a sense, the opposite of natural. language understanding by
machlne--It is the process of constructing text (i.e., phrases, sentences, paragraphs) in a
natural language. Although this field has been pursued for fifteen years, few coherent
principles have emerged, and the approaches have varied widely. Attempts at generating
text have been made with two general research goals: (a) generating random sentences to
test a grammar or grammatical theory and (b) converting Information from an Internal
representation I")to a natural language.

Random Generation

This approach, the random generation of text constrained by the rules of a test
grammar, Is of limited Interest to workers In Artificial Intelligence, being oriented more toward
theoretical linguistics than functional natural lang.uage processing systems. The objective of
Implementing a generation system of this sort Is to test the descriptive adequacy of the test
grammar, as Illustrated by the following two systems.

Victor Yngve (1962) was one of the first researchers to attempt English text
generation; the work was seen as preliminary to a full program for machine translation (see
Article 8). Yngve used a generative context-free grammar and a random-number generator to
produce "grammatical" sentences: The system selected one production randomly from among
those that were applicable at each point In the generation process, starting from those
productions that "produced" <SENTENCE), and finally randomly selecting words to fill In the
<NOUN>, <VERB>, etc., positions. This Is an example of the text produced by the system:

The water' under the wheels In oiled whistles and Its
polished shiny big and big trains Is black.

Joyce Friedman's (1969, 1971) system was designed to test the effectiveness of
transformational grammars (Article C2). It operated by generating phrase markers (derivation
trees) and by performing transformations on them until a surfact structure was generated. ThO;
generation was random, but the user could specify an Input phrase marker and semantic
restrictions between various terminals In order to test specific rules for grammatical validity.

These two systems, while relevant to work In linguistics, are only perlphel"ally related
to recent work In Artificial Intelligence. The fundamental emphasis in AI text-generation work
has been on the meaning, as opposed to the syntactic form, of language.

Surface Realization of Meaning

The general goal of text-generation programs In the AI paradigm is to take some
Internal representation of the "meaning" of a sentence and convert It to surface structure
form, I.e. Into an appropriate string of words. There has been considerable variety among
such systems, reflecting differences both In the type of internal representation used and in
the overall purpose for which the text Is generated. Representation schemes have included
largely syntactic dependency trees, stored generation patterns ofdifterent degrees of
complexity, and several versions of semantic nets (see the Knowledge Representation section

40 Natural Language

of the Handbook). Purposes have Included automatic paraphrasing or mechanical translation of
an Input text; providing natural.-soundlng communication with the user of an interactive
program; and simply testing the adequacy of the Internal representation.

Sheldon Klein (1965) made a first step beyond the random generation of sentences,
by means of a program that attempted to generate a paraphrase of a paragraph of text via
an internal representation of that text (see also Klein & Simmons, 1963). The program used a
type of grammar called dependenc, grammar, a context-free grammar with word .. dependency
information attached to each production. That Is, the right-hand side of each rule In the
grammar has a IIdistingulshed symbol"; the "head" of the phrase associated with that rule is
the head of the phrase that Is associated with the distinguished symbol. All other: w.ord~ that
are part of the phrase associated with the productlof1 are said to depend on thi~ head.

For instance, given the following simple dependency grammar and the sentence lithe
fierce tigers In India eat meat," Klein's parser would produce both an ordinary phrase-
structure derivation tree (see Article cn and also the dependency tree shown below: .

s ~ NP.. + VP
NP ~ DET + ADJ + N* + PP
PP ~ PREPI' + NOUN
VP ~ VI' + OBJ

The symbols followed by ~ are the distinguished symbols In the productions. The dependency
trees from the individual sentences of the Input paragraph were bound together with IItW'O­
way dependency" links between similar nouns. For example, th~ Input paragraph .

. .

The man rides a bicycle. The man Is tall. A blcycl~ Is a vehicle with
wheels.

would yield the following dependency structure:

HAN ----------------, HAN

THE/ \RIDES THE/ \s
. "\ICYCLE....---. BICYCLE \ALL

/ .. /-
A A

One paraphrase generated from the given paragraph was:

The .tall man rides a vehicle with wheels.

The grammar used In generation was similar to the one used for analysis. Rule selection

E Text Generation 41

was random (as In Yngve's method) but with the added constraint that all dependencies
among the words that were generated must be derivable from the Initial dependency trees.
In the example above, vehicle could be generated as the object of rides because vehicle
depends on Is, Is on bicycle, and bicycle on rides. Two restrictions were Imposed on the
transitivity of dependency relations: Dependency did not cross verbs other than be or
prepositions other than of. Thus lithe man rides wheels" could not be generated.

The use of dependency trees was expected to Insure that the output sentences would
"reflect the meaning of the source text" (Klein, 1965, p. 74). A difficulty, however, was that
the trees encoded only the crudest of semantic relationships present In the paragraph. In
fact, the dependency relationship between words only indicates that some semantic relation
exists between them without really specifying the nature 'of the relationship.

Ross Quillian (1968), In contrast, emphasized the expression of semantic relationships
almost to the exclusion of concern for syntactic well-formedness. Quillian did pioneering
work In the representation of knowledge (see the Knowledge Repreeentation section of the
Handbook}) and was also one of the first to deal with the problems of text generation. His
system used a semantic net to represent the relations between words, which can be
interpreted as their meaning. The task the system was then to perform was to compare two
words, that Is, find some semantic relation between them, and then to express the
comparison In "understandable, though not necessarily grammatically perfect, sentences" (p.
247). For example:

Compare: Plant, Live

Answer: PLANT IS A LIVE STRUCTURE.

This relationship between the two words was discovered as a path In the net between the
nodes that represented the words. Although this was a primitive semantic net scheme, many
fundamental Issues were first raised by Quillian's system.

One important point was that paths In the semantic net did not necessarily correspond
to Input sentences. Instead, the discovery of paths between two nodes amounted to making
inferences on the knowleQge In memory. For example, another relationship the system found
between plant and live was:

PLANT IS STRUCTURE WHICH GET-FOOD FROM AIR. THIS FOOD IS THING
WHICH BEING HAS-TO TAKE INTO ITSELF TO KEEP LIVE.

In order to have found this connection, the system had to discover a connection between
PLANT and LIVE, by way of FOOD, that was not directly Input.

Although Quillian's semantic net system was limited, it strongly influenced much of the
later work in NL and the representation of knowledge In AI (see Article Representaticn.C2).
This Influence reflected Quillian's stress on the Importance of the semantic versus the
surface components of language:

As a theory, the program implies that a person first has something to
say, expressed somehow In his own conceptual terms (which Is what a
"path" is to the program), and that all his decisions about the

42 Natural Language

syntactic form that a generated sentence Is to take are then made in
the service of this Intention. (Quillian, 1968, p. 255)

This Is a strong statement about language, and this view, of a cognitive process manipulating
an Internal representation, Is perhaps tlie essence of the AI perspective.

Terry Winograd's blocks world program, SHRDLU (1972), contained several text­
generation devices. Their function was to enable the system, which Is described in Article
F4, to answer questions about the state of Its table-top domain and certain of the system's
Internal states.

The basic text-generation techniques used were "fill-in-the-blank" and stored
response patterns. For example, If an unfamiliar word was used, SHRDLU responded "I don't
know the word ... ". More complex responses were called for by questions asking why or
how an action had been done. For "why", the system answered with "because <event>", or
"in order to <event>," where <event> referred to a goal that the program had had when the
action was taken. For example, IIWhy did you clear off that cube?" might be answered by
"To put it on a large green cube." The program retrieved the appropriate event from Its
history list and then used a generation pattern associated with events of that type. For an
event of the type "(PUTON OBJ1 OBJ2)," the pattern would be:

«correct form of to put>, <noun phrase for OBJ1>, ON, <noun phrase for OBJ2».

Noun phrases In the pattern were generated by associating an English word with every
known object; adjectives and relative clauses were added until a unique object (within the
domain of discourse) was described.

The stilted text generated by this scheme was moderated by the (heuristic) use of
pronouns for noun phrases. For example, If the referent of a noun phrase had been
mentioned In the same answer or In the previous one, an appropriate pronoun could be
selected for It. SHRDLU's limited domain of discourse allowed It to exhibit surprisingly natural
di.alogue with such simple techniques.

Simmons and Slocum (1972) developed a naturai languag~ system that generated
sentences from a semantic network representation of knowledge, based on a case grammar (see
Article C4). The program produced surface structure from the network by means of an
augmented transition net, adapted for the purpose of generation rather than parsing (see
Article 02). The object of the work was to substantiate the claim that "the semantic
network adequately represents some Important aspect of the meaning of discourse"; if the
claim was true, then "the very least reqUirement" was that lithe nets be able to preserve
enough Information to allow regeneration of the sentences--and some of their syntactic
paraphrases--from which th~ nets were derived" (p. 903).

An Illustration of the capabilities of the system Is given by the paragraph below, which
was initially hand-coded Into semantic network notation. (for a later version of the program In
which the parsing was done automatically, see Simmons, 1973.)

John saw Mary wrestling with a bottle at the liquor bar. He went over
to help her with it. He drew the cork and they drank champagne
together.

E Text Generation 43

The network notation, in simplified form, Is Indicated by the following representation of "John
saw Mary wrestling":

Cl TOKEN (see) C3 TOKEN ~wrestlel
TIME PAST TIME ROGRESS VE PAST
DATIVE CZ AGENT C4
OBJECT C3

CZ TOKEN (John) C4 TOKEN (Mary)
NUMBER SINGULAR NUMBER SINGULAR

Here ~, C2, ca, and C4 are nodes In the network representing concepts which are tokens
of meanings of "see", "wrestle," "John", and "Mary". PAST and SINGULAR are also nodes.
TOKEN, TIME, OBJECT, and the like are types of arcs, or relations.

The representation shown was augmented by other relations, attached to verb nodes,
such as MOOD (indicative or Interrogative), VOICE (active or passive), and Information about
the relative times of events. USing this representation, the system was able to reconstruct
several versions of the original paragraph. One read:

John saw Mary wrestling with a bottle at the liquor bar. John went
over to help her with It before he drew the cork. John and Mary
together drank the champagne.

The actual generation was accomplished by an ATN In which the arcs were labelled with
the names of relations that might occur In the semantic net. The actual path followed
through the ATN--and thus the exact text generated--depended both on which relations
were actually present and on which node or nodes were chosen as a starting point.

Wong (1975) has extended this approach, Incorporating features to handle extended
discourse.

Neil Goldman's (1975) program generates surface structure from a database of
conceptual dependency networks, as the text-generation part of Roger Schank's MARGIE
system, described in Article F5. The conceptual dependency (CD) knowledge representation
scheme, discussed further In Article F6 on Schank's SAM system, is based on semantic
primttives (Article Representation.C5) and Is therefore language Independent, so the actual
word selection for output must be performed by Goldman's text-generation subsystem, called
BABEL. This Is accomplished by means of a discrimination net (a kind of binary decision tree-­
see Article Information Processing Psychology.C) that operates on a CD network that is to be
verbalized. This discrimination net is used to select an appropriate verb sense to represent
the event specified by the CD. (A verb sense Is a meaning of the verb: DRINK, for example
has two senses, to drink a fluid and to drink alcohol.) Essentially, there are only a small
number of possible verbs that can represent the event, and a set of predicates determines
which one to use. For Instance, DRINK can be used to describe an INGEST event If the
<object> has the property FLUID. The section of the discrimination net that handles DRINK
might look like this:

44

•

Natural Language

(EQ (ACTION) INGEST)
(PROP (OBJECT) FLUID)

• I' (EQ (OBJECT) ALCOHOL) I
F/

DRINKI
\T

DRINK2

Once a verb sense has been selected, an associated framework Is used to generate a
case-oriented syntax net, which Is a structure similar to the semantic net of Simmons and
Slocum. These frameworks Include Information concerning the form of the net and where in
the conceptualization the necessary information Is located. After the framework has been
filled out, other language-specific functions operate on the syntax net to complete it
syntactically with respect to such things as tense, form, mood, and voice. Finally, an ATN is
used to generate the surface structure, as In the Simmons and Slocum program.

Yorick Wilks (1973) has developed a program that generates French from a semantic
base of templates and paraplates. This Is part of a complete machine translation system
described In Article F2.

Discussion

The key point is that, as the richness and completeness of the underlying semantic
representation of the Information has Increased, the quality of the resulting paraphrase has
improved. like other areas of AI, the basic problem Is to determine exactly what the salient
points are and to obtain a good representation of them; progress in generation seems to be
closely tied to progress in knowledge representation. Future work in generation will also
have to address areas such as extended discourse, styUstics, etc. In this direction, Clippinger
(1975) has looked at psychological mechanisms underlying discourse production, and
Perrault, Allen, & Cohen (1978) have studied the planning of speech acts for communication
in context. .

References

See Clippinger (1975), Friedman (1969), Friedman (1971), Goldman (1975), Klein &
Simmons (1963), Klein (1966), Perrault, Allen, & Cohen (1978). Quillian (1968). Quillian
(1969), Simmons & Slocum (1972). Simmons (1973), Wilks (1973), Winograd (1972), Wong
(1975), and Yngve (1962).

.'

F Natural Language Processing Systems 45

F. Natural Language Processing Systems

F1. Early Natural Language Systems

Early work on machine processing of natural language assumed that the syntactic
information In the sentence, along with the meaning of a finite set of words, was sufficient to
perform certain language tasks--In particular, answering questions posed In English. Several
of Jhese early natural language programs are reviewed here: their techniques, their
successes, and their shortcomings. These programs were restricted to dialogues about
limited-knowledge domains In simple English and ignored most of the hard grammatical
problems In the complex constructions found In unrestricted English. Through work with
programs of this genre, It became apparent that people constantly use extensive world­
kn'owledge In processing language and that a computer could not hope to be competent
without "understanding" language. These programs bridge the gap between the early
mechanical translallon attempts of the 1950s and current, semantics-based natural language
systems (see the Overview Article, Article B, and the Articles on recent Nl systems In this
section).

)

SAD-SAM

!
SAD-SAM (Syntactic Appraiser & Diagrammer - Semantic Analyzing Machine) was

programmed by Robert LIndsay (1963a) at Carnegie Institute of Technology In the IPL-V list­
processing language (see Article AI Languagas.A). The program accepts English sentences
about kinship relationships, builds a database, and answers questions about the facts It has
stored.

It accepts a vocabulary of Basic English (about 1,700 words) and follows a simple
context-free grammar. The·SAD module parses the input from left to right, builds a syntactic
tree structure, and passes this structure on to SAM, which extracts the semantically
relevant (kinship-related) Information to build the family trees and find answers to questions.

Though the s~bset of English processed by SAD is quite Impressive in volume and
complexity of structure, only kinship relations are considered by SAMj all other semantic
Information Is Ignored. SAM does not depend on the order of the input for building the family
trees; If a first Input assigns offspring ft and ~ to ~, and offspring Q and ~ to y, two "family
units" will be constructed, but they will be collapsed Into one If we learn later that ~ and ~
are siblings. (Multiple marriages are Illegal.) However, SAM cannot handle certain
ambigultiesj the sentence "Joe plays In his Aunt Jane's yard" Indicates that Jane Is either
the sister or sister-In-law of Joe's father, but SAM assigns one and only one connection at a
time and therefore cannot use the ambiguous information: The structure of the model permits
storing definite links but not possible tn/erences.

BASEBALL

Also In the early 1960s, Bert Green and his colleagues at lincoln labs wrote a program
called BASEBAll (Green et al., 1963), again using the IPl-V programming language. BASEBAll

46 Natural Language

Is essentially an information retrieval program, since its database of facts about all of the
American League games during one year Is not modified by the program. Acceptable Input
questions from the user must have only one clause, no logical connectives (and, or, not), no
comparatives (highest, most), and no facts about sequences of events; and most words must
be .recognized by the (extensive) dictionary.

Tlie parsing system uses 14 categories of parts of speech and right-to-left scanning to
structure the Input question Into functional phrases. Using this structure and the key-words
found In the question, the Input Is transformed Into a specification list that Is the canonical
expression for the meaning of the questiOn. For example, the question "How many games did
the Yankees play In July?" becomes:

TEAM = YANKEES
MONTH = JULY
GAMES (number of) = ?

The answer is found by searching the database for data items matching the specification list,
storing them on a "found" list, and eventually processing and outputting them.

The size of the dictionary and the heuristics used for resolving syntactic ambiguities
(~ can be a. verb or a noun; Boston, a place or the name of a team) make BASEBALL able
to answer most reasonable English questions about the games stored In the database.
However, BASEBALL does not return to the user for clarification of semantic ambiguities. It
simply falls to parse the sentence and asks for a rephrasing of the question. Though the
database Is not modified by the program, BASEBALL exhibits deductive abilities In parsing
questions and processing the "found-list."

SIR

SIR (Semantic Information Retrieval) was written In LISP by Bertram Raphael (1968) as
part of his thesis research at MIT. It Is a prototype "understanding" machine sinc~ It can
accumUlate facts and then make dedUctions about them In order to answer questions.

SIR accepts a restricted subset of English. It matches sentences against 24 matching
patterns of the following sort:

• Is •
• Is part of •
Is • • ?
How many • does • have?
What Is the • of • ?

where the elements matched against ~ are nouns, possibly modified by a "quantifier" such
85: ~,the, every, each, or a number. The match with a rule triggers the appropriate action In
the program. A sample conversation might look like this:

Every boy Is a person
I UNDERSTAND

A finger Is part of a hand

F1 Early Natural Language Systems

I UNDERSTAND

There are two hands on each person
I UNDERSTAND

How many fingers does John have?
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

(has as parts)
I DON'T KNOW WHETHER FINGER IS PART OF JOHN

John Is a boy
I UNDERSTAND

How many fingers does John have?
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

(has as parts)
HOW MANY FINGERS PER HAND?

Every hand has 5 fingers
THE ABOVE SENTENCE IS AMBIGUOUS BUT I ASSUME (has) MEANS

(has as parts)
THE ANSWER IS 10

Who Is President of the United States?
STATEMENT FORM NOT RECOGNIZED

47

SIR's world Is concerned with only a small group of relations between objects, as
specified by the 25 matching patterns. Declarative Input statements are used to build the
mode.!, and the patterns have been chosen to express concepts that commonly occur in
human conversation: set Inclusion, spatial relationship, etc. The program has certain built-in
knowledge (like transitivity of set Inclusion) that enables It to answer questions about some
facts not explicitly stated during Input. SIR can also Interact with the user to gather more
Information or to resolve ambiguities.

STUDENT

STUDENT Is another pattern-matching natural language program, written by Daniel
Bobrow (1968) as his doctoral research project at MIT. STUDENT Is able to read and solve
hlgh-school-Ievel algebra story problems like the following:

If the number of customers Tom gets Is twice the square of 20 per
cent of the number of advertisements he runs, and the number of
advertisements he runs Is 45, what Is the number of customers Tom
gets?

The entire subset of English recognized by STUDENT is derived from the following set of
basic patterns:

48 Natural Language

(WHAT ARE Il AND Il)
(WHAT IS Il)
(HOW MANY 111 IS Il)
(HOW MANY Il DO Il HAVE)
(HOW MANY Il DOES Il HAVE)
(FIND Il)
(Il (1l1 IVERB) Il AS MANY Il AS Il (1l1 IVERB) Il)

(FIND Il AND Il)
(Il IS MULTIPLIED BY Il)
(Il IS DIVIDED BY Il)
(Il IS Il)
(Il (1l1/VERB) 1t1 Il)

A ~ sign indicates a. string of words of any length, ~ Indicates one word, and (1l1 IVERB)
means the matching element must be recognized as a verb by the dictionary.

To construct the algebraic equations that will lead to the solution, the problem
statement Is scanned, first for linguistic forms associated with the equality relation (such as
[It IS It]), then for algebraic operators. STUDENT then builds a list of the answers required,
the units Involved In the problem, and a list of all the variables in the equations. Then
STUDENT Invokes the SOLVE module with the set of equations and the desired unknowns.

If SOLVE fails, STUDENT applies heuristics such as: expanding Idioms, Identifying two
previously "slightly different" variables, or Invoking the REMEMBER module that contains
speplal facts like: -

(FEET IS THE PLURAL OF FOOT)
(ONE HALF ALWAYS MEANS .5)
(SUCCESSFUL CANDIDATES SOMETIMES MEANS STUDENTS WHO
PASSED THE ADMISSTIONS TEST)
(DISTANCE EQUALS SPEED TIMES TIME)
(ONE FOOT EQUALS 12 INCHES)

If all else falls, STUDENT can request more Information from the user.

Each time a heuristic succeeds In finding a new equation, the augmented set Is sent to
SOLVE. STUDENT finally prints the solution (using the pattern "variable IS value") or reports
Its Inability to solve. In the example, STUDENT would print

(THE NUMBER OF CUSTOMERS TOM GETS IS 162) .

STUDENT's Simple pattern-matching scheme, combined with its small set of well-chose",
heuristics, does an Impressive Job of parsing typical high-school algebra word problems. The
program can be tricked easily ("Bill has 3 apples, 2 pears, and one dog" would be parsed Into
two clauses); but as Implemented, It solved the problems submitted as fast as humans could
(In one case, several times faster than an MIT graduate student who was not using the
special "age problem" heuristics). A slightly modified version was found to be a good model
for human problem solving. In a study conducted by Paige & Simon (1966).

ELIZA

Perhaps the most famous of these "pattern-matching" natural language programs was
ELIZA, written by Joseph Welzenbaum (1966) at MIT. This program assumes the role of a
Rogerian or "non-dlrective" therapist In Its dialogue with the user. Although ELIZA's dialogue

,

, .

F1 Early Natural Language Systems 49

with the user appears surprisingly realistic, the program uses no more Intelligent mechanisms
than those described above. Rather, the nature of therapist-patient dialogue lends Itself to
simulation In this manner. A sample dialogue might look like this (with ELIZA In caps):

Men are all alike.
IN WHAT WAYS

. They're always bugging us about something or other.
CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.
I AM SORRY TO HEAR THAT YOU ARE DEPRESSED

It's true. I'm unhappy.
DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY

I need some help, that much seems certain.
WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

Perhaps I could learn to get along with my mother.
TEll ME MORE ABOUT YOUR FAMILY

WHAT ELSE COMES TO MIND WHEN YOU THINK OF YOUR FATHER

Bullies.
DOES THAT HAVE ANYTHING TO DO WITH THE FACT THAT YOUR

BOYFRIEND MADE YOU COME HERE

ELIZA Is programmed In the SLIP language (Symmetric List Processor), developed by
Weizenbaum (1963). An offline script composed of keyUsts specifies the nature of the Input
language by specifying for each keyword a set of patterns to look for and the possible
transformations associated with each pattern. For example, assuming the keyword Is me, 8

pattern used for matching might be

(0 YOU 0 ME)

and one of the transformation rules associated with this pattern might be

(WHAT MAKES YOU THINK I 3 YOU)

where Q in the pattern matches any string of words, and ~ in the transformation rule
deSignates the third element matched (In this case, everything between YOU and ME). The
input is scanned from left to right for a keyword; a systematic hashing procedure very
quickly eliminates words that cannot be keywords. ELIZA deletes the part of text preceding
a punctuation delimiter If no keyword has been found; otherwise, the part following it
(Insuring thus that the transformation will be applied to one single phrase or sentence). If

60 Natural Language

several keywords are found, they are stored in turn in a "keystack ll according to the rank of
precedence associated with each of them; then the input Is matched against each
decomposition rule In turn. These patterns can be ordered in the keylist so that the more
complex ones are tried firstj for the keyword "IR the pattern

(0 I 0 DEPRESSED 0)

Is hard to match, but If a match Is achieved, the answer can be more spectacular than the
transformations for the "general match" pattern

(0 I 0) .

When a match Is found, ELIZA generates a response, using the reassembly rules for this
decomposition rule In a cyclic manner. If no decomposition rule matches for a given keyword,
the keystack Is popped and the pattern-matching procedure Is repeated for the new
keyword. If the keystack Is empty, a response like "Please go on," "I see," or "Very
Interesting" wilt always do.

Several other tricks--lIke substituting for keywords in Its response, associating
keywords with a class or situation (Mother Implies family), and remembering these keyword
affiliates over the course of the conversatlon--help enhance the illusion of Intelligent
dialogue.

Conclusions

None of these early natural language systems dealt with the syntax of language In any
sophisticated way. In these early programs, the semantic knowledge needed to respond to
the user was Implicit In the patterns and the ad hoc rules used for parsing. Modern natural
language programs maintain large databases of explicit world-knowledge that 'they use to
assist In parsing the sentenc,e as well as In Interpreting It.

References

For general reference, see Boden (1977), for lucid discussions of several of these
systems; also, Simmons (1965), Simmons (1970), and Winograd (1974). The collections in
Feigenbaum & Feldman (1963) and Minsky (1968) contain much of the original material.

F2 Wilks's Mechanical Translation System 61

F2. Wilks's Mechanical Translation System

Current work In machine translation of languages Is exemplified by Wilks's system
(1973), which can produce good French from small English paragraphs. The system Is entirely
semantics based; that Is, no use Is made of conventional linguistic syntax In either the
analysis or the generation stages. The Input English text Is first converted to a semantic
representation and then converted to the final translated text. (The use of an intermediate
representation bears some similarity to the Weaver's idea of interlingua, discussed in Article
S.) Wilks stresses that his semantic representation is designed for mechanical translation
and may not be appropriate for other NL tasks like question answering. The rationale for this
Is that an explicit representation of the logical implications of a sentence, which is
necessary for some tasks. may not be necessary for translation: If the two languages are
similar. an appropriate target sentence with the same Implications can often be found In a
more straightforward way.

Wllks's system first fragments the Input text Into substrings of words; it then matches
the fragments against a set of standard templates. that Is, deep semantic forms that try to
pick out the meaning conveyed by the Input-text fragments. The output of this stage Is a
first approximation to a semantic representation of each of these fragments. The system
then tries to tie together these representations to produce a more densely connected
representation for the complete text. When this process has been compieted, the
generation of the output text Is accomplished by unwinding the interlingual representation
using functions that Interpret it in the target language.

The Interlingual representation is based on semantic primitives (see Article
Asprsssntation.C5) that Wilks calls elements. Elements express the entities, states. qualities,
and actions about which humans communicate. In the system as reported in Wilks (1973),
there were 60 of these elements, which fall Into 6 classes, as shown In the following
examples.

1. Entitles:

2. Cases:

3. Sorts:

4. Type Indicators:

6. Actions:

MAN (human being),
PART (parts of things),
STUFF (substances).

TO (direction),
IN (containment).

CONT (being a container),
THRU (being an aperture).

KIND (being a quality),
HOW (being a type of action).

CAUSE (causes to happen),
BE (exists),
FLOW (moving as liquids do).

The elements are used to build up "formulas," which each represent one sense of. a word.
The verb drink, for example, is represented by the following formula:

52 Natural Language

«'tAN I SUBJ)
«(FLOW STUFF) OBJE)
«!tANI IN) «(THIS (!tANI (THRU PART») TO) (BE CAUSE»»)

Drink is thus an action, (BE CAUSE), done by animate subjects, (!tANI SUBJ), to liquids, «FlOW'
STUFF) OBJE). It causes the liquid to be in the animate object, (!tANI IN), via a particular
aperture of the animate object, «THIS (!tANI (THRU PART») TO).

Formulas are understood as expressing preferences rather than absolute requirements.
in the formula for drink, for example, It Is only a preference that the agent be animate and
the object liquid; the system could accept a sentence about cars that drink gasoline .. The
function of preferences, nevertheless, Is to help determine the correct word-senses in the
input text. In "John drank a whole pitcher," the preference for a liquid object would select
the formula for pitcher as a container of liquid rather than the one for a baseball player.

The system's dictionary contains formulas for all the word-senses paired with
stereotypes for producing the translated words In the target language.The following is an
example of two stereotypes for the word advise (into French):

(ADVISE (CONSEILLER A (FN1 FOLK MAN»
(CONSEILLER (FN2 ACT STATE STUFF»)

The two functions, FN 1 and FN2, are used to distinguish the two possible constructions in
French Involving consellier: conseiller a ... and simply conseiller The first would be used
In translating "I advise John to have patience"; the second, for "I advise patience."
Functions like these in stereotypes are evaluated by the generation routines. Each function
evaluates either to NIL, in which case the stereotype falls, or to words that will appear In the
output text. The stereotypes serve the purpose of a text generation grammar, providing
complex context-sensitive rules where required, without search of a large store of such
rules. This is an example of procedural representation of knowledge (see Article
Repreaentation.C4).

Analysis of an English sentence by the system proceeds in several stages. First the
text Is separated Into fragments, where the fragment boundaries are determined by
punctuation marks, conjunctions, prepositions, and so on.

For each word in the fragment, the dictionary may contain several word-sense
formulas; therefore one of many possible sequences of formulas must be selected to
represent the fragment For this purpose, the formula sequences are matched against a
built-in list of templates, which are networks of formulas based on a basic actor-action-o'bject
triple called a bare template. Examples of such triples are MAN CAUSE THING and MAN DO
T,HING. Special forms of templates are available to match fragments like prepositional
phrases. It is assumed that It Is possible to build up a finite inventory of bare templates that
would be adequate for the analYSis of ordinary language. The Inventory for the system has
been determined empirically and Is easily modified.

At the initial stage of template matching, some senses of the words in the fragment can
be rejected for failure to match any bare template, but more than one candidate template
may remain. For example, If the fragment is "the policeman interrogated the crook," there
will still be two possible templates, MAN FORCE MAN and MAN FORCE THING, which tak.e
"crook" to be a person and a shepherd's staff, respectively.

F2 Wilks's Mechanical Translation System 53

At the next stage of the analysis, called expansion, a more detailed matching algorithm
Is used. The principle Is that the template representation chosen for a fragment Is the one In
which the most preferences are satisfied. In the example, the preference of "Interrogate"
for an object representing a human being Is decisive. The result of this stage Is a full
template (a network of formulas) for each fragment, In which semantic dependencies among
the formulas have been noted. The overall goal of semantic densit,--that Is, of maximizing the
Interdependence of formulas--Is one of the key Ideas In Wilks's work and produces a good
~olutlon to many problems of ambiguity.

In the succeeding stage of analysis, the templates for Individual fragments are tied
together with higher level dependencies, expressed in terms of paraplates, or patterns that
span two templates. The use of paraplates Is to resolve prepositional or case ambiguities
(see Article C4). For example, the fragments "he ran the mile" and "In four minutes" would
be tied together by a paraplate for the TlMELOCATION case; had the second fragment been
"In aplastic bag," a CONTAINMENT case paraplate would have matched Instead. A similar
technique Is used to resolve simple problems of pronoun reference, as In "I bought the wine,
sat on a rock, and drank It." In both cases, the chief preference of the system Is for
semantic density.

Finally, the system uses some commonsense inference rules to deal with situations In
which more explicit world-knowledge Is required to resolve pronoun references than formulas,
templates, and para plates provide. At the completion of this analysis, the input text has
been replaced by an Interllngual representation with suitable markers, and other information
Is used by the generation routines In a relatively straightforward manner to produce the final
output text.

References

This description of Wilks's work Is based primarily on Wilks (1973). Other descriptions
Include Wilks (1975a), Wilks (1975b), Wilks (1976c), Wilks (1977b), and Wilks (1978).

Also of Interest: Charniak & Wilks (1 976) and Schank (1 975).

64 Natural Language

F3. LUNAR

LUNAR is an experimental, natural language information retrieval system designed by
William Woods at BBN (Woods, 1973b; Woods, Kaplan, & Nash-Webber, 1972) to allow
geologists to access, compare, and evaluate chemical-analysis data on moon rock and soli
composition obtained from the Apollo 11 mission (see Article Applications.F4 for a discussion
of AI Information retrelval systems). The primary goal of the designers was research on the
problems involved in building a man-machine interface that would allow communication in
ordinary English. A, "real-world" application was chosen for two reasons: First, It tends to
focus effort on the problems really In need of solution (sometimes this Is implicitly avoided in
"toy" problems); second, the possibility of producing a system capable of performing a
worthwhile task lends some additional Impetus to the work.

LUNAR operates by translating ,a question entered in English into an expression in a
formal query language (Codd, 1974). The translation is done using an augmented transition
network parser coupled with a rule-driven semantic Interpretation procedure, which is used to
guide the analysis of the question. The "query" that results from this analysis Is then
applied to the database to produce the answer to the request. The query language is a
generalization of'the predicate calculus (Article Representation.en. Its central feature Is a
quantifier function that Is able to express, In a simple manner, the restrictions placed on a
database-retrieval request by the user. This function' Is used In concert with special
enumeration functions for classes of database objects, freeing the quantifier function from
~xplicit dependence on the structure of the database. LUNAR also served as a foundation
for the early work done on speech understanding at BBN (see Article Speech.B3).

Detailed Description

The following list of requests Is Indicative of the types of English constructions that
can be handled by LUNAR (shown as they would actually be presented to the system):

1. (WHAT IS THE AVERAGE CONCENTRATION OF ALUMINUM IN
HIGH ALKALI ROCKS?)

2. (WHAT SAMPLES CONTAIN P205?)
3. (GIVE ME THE MODAL ANALYSES OF P205 IN THOSE SAMPLES)
4. (GIVE ME EU DETERMINATIONS IN SAMPLES WHICH CONTAIN ILM)

LUNAR processes these requests In the following manner:

Syntactic analysis using an augmented transition network parser and
heuristic information (including semantics) to produce the most likely derivation
tree for the request;

Semantic Interpretation to produce a representation of the meaning of the
request In a formal query language; and

Execution of the query language expression on the database to produce the
answer to the request.

LUNAR's language processor contains a grammar for a large subset of English, the

F3 LUNAR 55

semantic rules for Interpreting database requests, and a dictionary of approximately 3,500
words. As an Indication of the capabilities of the processor, it Is able to deal with tense and
modality, some anaphorlc references and comparatives, restrictive relative clauses, certain
adjective modifiers (some of which alter the range of quantification or Interpretation of a
noun phrase), and embedded complement constructions. Some problems do arise In parsing
conjunctive constructions and In resolving ambiguity In the scope of quantifiers. Emphasis
has been placed on the types of English constructions tactually used by geologists so that
the system knows how they habitually refer to the objects In Its database.

The Query Language

The formal query language contains three types of objects: "designators," which name
classes of objects In the database (Including functionally defined objects); "propositions,"
which are formed from predicates with designators as arguments; and "commands," which
Initiate actions. Thus, If S 10046 is a designator for a particular sample, OLiV Is a designator
for the minerai olivine, CONTAIN Is a predicate, and TEST is a truth-value testing command.
then "(TEST (CONTAIN S10046 OLlV»" Is a sample expression In the query language. The
primary function In the language Is the quantifier function FOR, which Is used in expressions
of the following type:

(FOR QUANT X I CLASS: PX ; QX)

where QUANT Is a quantifier like each or every, or a numerical or comparative quantifier; ~ is
a variable of quantification; CLASS determines the class of objects over which the
quantification is to range; PX specifies a restriction on the range; and QX Is the proposition
or command being quantified. FOR is used with enumeration functions that can access the
database. Thus, FOR itself Is independent of the database structure. As an example (taken
from Woods, 1973b), If SEQ Is an enumeration function used to enumerate a precomputed list,
and if PRINTOUT Is a command that prints a representation for the designator given as Its
argument, then I

(FOR EVERY X1 I (SEQ TYPECS) : T ; (PRINTOUT X1))

prints the sample numbers for all type-C samples. In this case there Is no restriction on the
range of quantification In that PX = T, the universally true proposition.

A fuller example of the operation of LUNAR (simplified slightly from the same source) is
shown below.

Request:
(DO ANY SAMPLES HAVE GREATER THAN 13 PERCENT ALUMINUM)

Query Language Translation (after parsing):

(TEST (FOR ,SOME X1 I (SEQ SAMPLES) : T j (CONTAIN X1
(NPRIl X2 I 'AL203) (GREATERTHAN 13 PCT»»

Response:
YES

66 Natural Language

LUNAR is perhaps the best operational example of a finely tuned ATN parsing system
applied to a real-world problem. Since the system has limited performance goals (j.e.,
facilitating database inquiry as opposed to holding an interesting conversation),many of the
complications inherent In language understanding are avoided.

References

See Codd (1974), Woods (1973b), Woods & Kaplan (1971), and Woods, Kaplan, &
Nash-Webber (1972).

F4 SHRDLU 57

F4. SHRDlU

SHRDlU was written by Terry Winograd (1972) as his doctoral research at MIT. It was
written In LISP and MICRO-PLANNER, a LISP-based programming language (see Article AI
Lenguages.C2). The design of the system Is based on the belief that to understand
language, a program must deal In an Integrated way with syntax, semantics, and reasoning.
The basic viewpoint guiding Its Implementation Is that meanings (of words, phrases, and
sentences) can be embodied In procedural structures and that language Is a way of
activating appropriate procedures within the hearer. Thus, Instead of representing
knowledge about syntax and meaning as rules In a grammar or as patterns to be matched
against the Input, Winograd embodied the knowledge In SHRDLU In pieces of executable
computer code. For example, the context-free rule saying that a sentence Is composed of a
noun phrase and 8 verb phrase,

S -) NP VP

Is embodied In the MICRO-PLANNER procedure:

(PDEFINE SENTENCE
«(PARSE NP) NIL FAIL)

«PARSE VP) FAIL FAIL RETURN»)

When called, this program, called SENTENCE, uses Independent procedures for parsing a noun
phrase followed by a verb phrase. These, In turn, can call other procedures. The process
FAILs if the required constituents are not found. With such special procedural representations
for syntactic, semantic, and reasoning knowledge, SHRDLU was able to achieve
unprecedented performance levels In dialogues simulating a blocks world robot.

SHRDLU operates within a small "toy" domain so that it can have an extensive model of
the structures and processes allowed in the domain. The program simulates the operation of
a robot arm that manipulates toy blocks on a table. The system maintains an interactive
dialogue with the user: It can accept statements and commands as well as answer questions
about the state of Its world and the reasons for Its actions. The implemented system
consists of four basic elements: a parser, a recognition grammar for English, programs for
semantic analysis (to change a sentence into a sequence of commands to the robot or into a
query of the database), and a problem solver (which knows about how to accomplish tasks in
the blocks world).

Each procedure can make any checks on the sentence being parsed, perform any
actions, or call on other procedures that may be required to accomplish Its goal. For
example, the VERB PHRASE procedure called above contains calls to functions that establish
verb-subject agreement by searching through the entire derivation tree for other
constituents while still being in the middle of parsing the VP. SHRDLU's knowledge base
Includes a detailed model of the blocks world It manipulates, as well as a simple model of its
own reasoning processes, so that it can explain Its actions.

Reasoning In SHRDLU

SHRDLU's model of the world and reasoning about It are done In the MICRO-PLANNER

68 Natural Language

programming language, which facilitates the representation of problem-solving procedures,
allowing the user to specify his own heuristics and strategies for a particular domain.
Knowledge about the state of the world Is translated Into MICRO-PLANNER assertions, and
manipulative and reasoning knowledge Is embodied In MICRO-PLANNER programs. For
example, the Input sentence "The pyramid is on the table" might be translated Into an
assertion of the form:

(ON PYRAMID TABLE)

SHRDLU's problem solver consists of a group of "theorems" about the robot's
environment and actions, represented as MICRO-PLANNER procedures. In operation, the
theorem prover manipulates the state of the domain by running MICRO-PLANNER programs
that perform the actions requested by the user.

The philosophy and Implementation of PLANNER are described In the AI Programming
Languages section of the Handbook, but a brief discussion here will Illustrate Its use In
SHRDLU. The main Idea of PLANNER Is to solve problems using specific procedures built Into
the problem statements themselves, as well as using general problem-solving rules. The
advantage of using these problem-specific rules or heuristics is that they can radically
increase the efficiency of the process. Furthermore, the problem statements are programs
and thus can carry out actions In the problem-solving process. Thus, to put one block on
another, there might be a MICRO-PLANNER program of the form:

(THGOAL (ON ?X ?Y)
(OR (ON-TOP ?X ?Y)

(AND 1CLEAR-TOP ?Xl CLEAR-TOP ?Y
PUT-ON ?X ?Y »)

This means that, if X is not already on Y, that state can be achieved by clearing off
everything that is stacked on top of X (so that the robot can move X), clearing off Y (so that
X can be placed on top of Y) and then putting X on Y. The procedure resembles a predicate
calculus theorem, but there are Important dlfference·s. The PLANNER procedure Is 8 program,
and Its operators carry out actions. The THGOAL procedure finds an assertion In the
database or proves It using other procedures, AND and OR are logical connectives. The
crucial element Is that though PLANNER may end up doing a proof, It does so only after
checking some conditions that may make the proof trivial, or Impossible, and It only performs
the proof on relevant arguments, rather than checking all entities In the database as a blind
theorem prover might. Moreover, no sharp distinction Is drawn between proof by showing
that a desired assertion Is already true and proof by finding a sequence of actions
(manipulating blocks) that will make the assertion true. In addition to the article on PLANNER
(AI Languages.C2), the reader is referred to the Knowledge Representation section for a
general discussion of these Issues.

, Grammar, Syntax, and Semantics

SHRDLU's grammar Is based on the notion of systemic grammar, a system of choice
networks that specifies the features of a syntactic unit, how the unit functions, and how It
Influences other units, discussed In Article C3. Thus, a systemic grammar contains not only
the constituent elements of a syntactic group but also higher level features such as mood,
tense, and voice.

F4 SHRDlU 59

In order to facilitate the analysis, the parsing process looks for syntactic units that
play a major role In meaning, and the semantic programs are organized Into groups of
procedures that are applicable to a certain type of syntactic unit. In addition, the database
definitions contain semantic markers that can be used by the syntactic programs to rule out
grammatical but semantically Incorrect sentences such as liThe table picks up blocks. II
These markers are calls to semantic procedures that check for restrictions, such as that only
animate objects pick up things. These semantic programs can also examine the context of
discourse to clarify meanings, establish pronoun referents, and Initiate other semantically
guided parsing functions.

Parsing

To write SHRDLU's parser, Winograd first wrote a programming language, embedded in
LISP, which he called PROGRAMMAR. PROGRAMMAR supplies primitive functions for building
systemically described syntactic structures. The theory behind PROGRAMMAR Is that basic
programming methods, such as procedures, Iteration, and recursion, are also basic to the
cognitive process. Thus, a grammar can be Implemented In PROGRAMMAR without additional
programming paraphernalia; special syntactic Items. (such as co!"junctlons) are dealt with
through calls to special procedures. PROGRAMMAR operates basically In a top-down. left-to­
right fashion but uses neither a parallel processing nor backtracking strategy In dealing with
multiple alternatives (see Article 01). PROGRAMMAR finds one parsing r.ather directly, since
decisions at choice-points are guided by the semantic procedures. By functionally
integrating Its knowledge of syntax and semantics, SHRDLU can avoid trying all choices in an
ambiguous situation. If the choice made does fail, PROGRAMMAR has primitives for returning
to the choice-point with the reasons for the failure and Informing the parser of the next best
choice based on these reasons. This "directed backup" Is far different from PLANNER's
automatic backtracking In that the design philosophy of the parser Is oriented toward making
an original correct choice rather than establishing exhaustive backtracking.

The key to the system's successful operation Is the Interaction of PLANNER reasoning
procedures, semantic analysis, and PROGRAM MAR. All three of these elements examine the
input and help direct the parsing process. By making use of. this multiple-source knowledge
and programmed-in "hints" (heuristics), SHRDLU successfully dealt with language issues such
as pronouns and referents. The reader is referred to Winograd's Understanding Natural
Language (1972), pages 8-16, for an illustrative sample dialogue with SHRDLU.

:~

Discussion

SHRDLU was a significant step forward In natural language processing research
because of its att-empts to combine models of human linguistic and reasoning methods in the
language understanding process. Before SHRDLU, most AI language programs were
linguistically simple; they used keyword and pattern-oriented grammars. Furthermore, even.
the more powerful grammar models used by linguists made little use of Inference methods and
semantic knowledge in the analysis of sentence structure. A union of these two techniques
gives SHRDLU Impressive results and makes It a more viable theoretical model of human
language processing.

SHRDLU does have Its problems, however. Like most existing natural language

60 Natural language

systems, SHRDLU lacks the ability to handle many of the more complex features of English.
Some of the problem areas are agreement, dealing with hypotheses, and handling words such
as the and and.

Wilks (1974) has argued that SHRDLU's power does not come from linguistic analysis
but from the use of problem-solving methods In a simple, logical, and closed domain (blocks
world), thus eliminating the need to face some of the more difficult language issues. It
seems doubtful that If SHRDlU were extended to a larger domain, it would be able to deal
with these problems. Further, the level at which ,SHRDLU seeks to simulate the intermixing of
knowledge sources typical of human reasoning is embedded in its processes rather than
made explicit In its control structure, where It would be most powerful. Lastly, its problem
solving Is still highly oriented to predicate calculus and limited In Its use of inferential and
heuristic data (Winograd, 1974, pp. 46-48) . .
References

Winograd (1972) Is the principal reference on SHRDLU. The original version of the
, thesis Is Winograd (197.1). A convenient summary Is given In Winograd (1973). Boden

(1977) also presents a clear and concise discussion of the system.

Also of Interest are Sussman, Winograd, & Charniak (1970), the MICRO-PLANNER
manual; Wilks (1974); Winograd (1974); and Winograd (forthcoming).

• I

F6 MARGIE 61

F5. MARGIE

MARGIE (Meaning Analysis, Response Generation, and Inference on English) was a
program developed by Roger Schank and .hls students at the Stanford AI lab (Schank, 1975).
Its Intent was to provide an Intuitive model of the process of natural language understanding.
More recent work by Schank and his colleagues at Yale on story understanding and conceptual
dependency theory are described In Article F6 on their SAM and PAM systems.

Conceptual Dependency Theory

The central feature of the MARGIE system was the use of a knowledge representation
scheme called Conceptual Dependency. Conceptual dependency Is Intended to represent
meaning In a sufficiently deep manner so that all ambiguity Is eliminated. Every sentence
maps Into a canonical form, and any two. sentences with the same "meaning" will have the
same representation.. This goal was approached by designing a graph-structure formalism
based on a set of primitive concepts. There are 6 basic types of concepts: things, actions,
attributes of things, attributes of actions, times, and locations (the first four correspond
roughly to nouns, verbs, adjectives, and adverbs). Relations among concepts are called
dependencies, and there are 15 types of these. Among them are case relationships such as
those between an act and Its object, Its direction, or its recipient and donor (see Article C4
on case grammars). Graphically, each type of dependency Is denoted with a special arrow
symbol (link), and each concept Is denoted by a word representing It. For example, "John
gives Marya book" would be expressed as: '

o --t;'Mary
John (===> ATRANS ~ book .

, John

where John, book, and Mary are concept nodes. Also, the concept node ATRANS (abstract
transfer--i.e., transfer of possession) Is one of a small set of primitive verbs (about twelve)
from which all actions must be built up. Other primitives Include PTRANS (physical transfer-­
i.e., movement) and PROPEl (apply a force). The complicated, three-pointed arrow labeled B
indicates a recipient-donor dependency between Mary and John and the book, since Mary
got the book from John. The arrow labeled Q indicates an "objective II dependency; that Is,
the book Is the object of the ATRANS, since It is the thing being given. Dependency links
may link concepts or other conceptual dependency networks.

Another example,"John eats the Ice cream with a spoon," would be represented as:

0, ~ John
John (===) INGEST ~ ice cream

spoon

I John

- M!!E
ice ~ream i

CONTAIN ~ ("':p-o-o-n -) ---.;.----; 5:1"" 1
ice cream' mouth

62 Natural Language

where the Q and! arrows Indicate DIRECTION and INSTRUMENT, respectively. Notice that in
this example, "mouth" has entered the diagram as part of the conceptualization, even though
it was not In the original sentence. This Is part of the fundamental difference between
conceptual dependency networks and the syntactic tree that a grammar may produce In
parsing a sentence. John's mouth as the recipient of the ice cream is inherent In the
"meaning" of the sentence, whether it Is expressed or not. In fact, the diagram can never be
finished, because we could add such details as "John INGESTed the ice cream by TRANSing
the Ice cream on a spoon to his mouth, by TRANSlng the spoon to the Ice cream, by GRASPing
the spoon, by MOVing his hand to the spoon, by MOVing his hand muscles," and so on. Such
an analysis is known to both the speaker and the hearer of the sentence and normally would
not nee.d to be expanded. (However, if we were actually designing a robot to perform such
an action, we would want access to a more detailed network that would represent the
robot's procedural knowledge about eating.)

For some tasks, like paraphrasing and question answering, this style of representation
has a number of advantages over more surface-oriented systems. In particular, sentences
like

Shakespeare wrote Hamlet
and

The author of Hamlet was Shakespeare ,

which in some sense have the same meaning, map into the same deep structure. They can
thus be seen to be paraphrases of each other. Another Important aspect of conceptual
dependency theory Is its Independence· from syntax; in contrast with earlier work in the
paradigms of transformational grammar or phrase-structure grammar, a "parse" of a sentence in
conceptual dependency bears little relation to the syntactic structure. Schank (1975) also
claims that conceptual dependency has a certain amount of psychological validity, In that It
reflects Intuitive notions of human cognition.

MARGIE

The MARGIE system, programmed In LISP 1.6, was divided Into three components. The
first, written by Chris Rlesbeck, was a conceptual analyzer, which took English sentences and
converted them Into an Internal conceptual dependency representation. This was done
through a system of "requests," which were similar to demons or production systems. A request
Is essentially a piece of code that looks for some surface linguistic construct and takes a
specific action If It Is found. It consists of a "test condition," to be searched for In the Input,
and an "action," to be executed If the test Is successful. The test might be as specifiC as a
particular word or as general as an entire conceptualization. The action might contain
Information about: (a) what to look for next In the Input, (b) what to do with the Input just
found, and (c) how to organize the representation. The flexibility of this formalism allows the
system to function without depending heavily on syntax, although it Is otherwise quite similar
to the tests and actions that make ATNs such 8 powerful parSing mechanism.

The middle phase of the system, written by Chuck Rieger, was an Inferencer designed
to accept a proposition (stated In conceptual dependency) and deduce a large number of
facts from the proposition In the current context of the system's memory. The motivation for
this component was the assumption that humans "understand" far more from a sentence than

-::. "~

F6 MARGIE 63

is actu.ally stated. Sixteen types of Inferences were Identified, Including "cause," "effect,"
"specification," and IIfunctlon.lIlhe Inference knowledge was represented In memory In a
modified semantic net. Inferences were organized Into "molecules," for the purpose of
applying them. An example of this process might be:

John hit Mary.

from which the system might Infer (among many other things):

John was angry with Mary.
Mary might hit John back.
Mary might get hurt.

The module does relatively unrestricted forward Inferenclng. which tended to produce large
numbers of Inferences for any given Input.

The last part of the system was a text generation module written by Nell Goldman. This
took an Internal conceptual dependency representation and converted It Into English-like
output, In a two-part process:

1. A discrimination net was used to distinguish between different word-senses.
This permitted the system to use English-specific contextual criteria for
selecting words (especially verbs) to IInameli conceptual patterns.

2. An ATN was used to linearize the conceptual dependency representation into a
surface-like structure.

The text generation module is also discussed In Article E.

MARGIE ran in two modes: inference mode and paraphrase mode. In inference mode, it
would accept a sentence and attempt to make Inferences from that sentence, as described
above. In paraphrase mode, it would attempt to restate the sentence in as many equivalent
ways as possible. For example, given the input

John killed Mary by choking her.

it might produce the paraphrases

John strangled Mary.
John choked Mary and she died because she was unable to breathe.

Discussion

MARGIE is not, and was not Intended to be, a "finished" production-level system.
Rather, the goal was to provide a foundation for further work In computational linguistics. Of
particular Interest In MARGIE was the use of conceptual dependency as an interlingua, a
language-Independent representation scheme for encoding the meaning of sentences. Once
the sentence was processed, the surface structure was dropped and all further work was
done with the conceptual dependency notation. This method has certain beneficial effects

64 Natural Language

on the control structure: All Interprocess communication can be done through conceptual
dependency, without the need to resort to the surface level, although the more subtle
Information In the surface structure may be lost. Since the Intermediate representation is
"Ianguage-free, II It should facilitate translation of the original sentence Into another
language, as Weaver Indicated In his original discussion of Machinese (see Article B). As
mentioned above, the existence of a unique representation for any fact should also facilitate
tasks like paraphrasing and question answering.

References

Conceptual dependency theory and all three parts of the MARGIE system are described
In detail In Schank (1975). Since the version described In this article, the theory has
evolved considerably, and several new systems have been built using the CD formalisms, all
described very well In Schank & Abelson (1977). Other references for MARGIE Include
Schank (1973) and Schank et al. (1973).

1_

(.

Fe SAM and PAM 65

F6. SAM and PAM

Story Understanding

SAM (Script Applier Mechanism) and PAM (Plan Appller Mechanism) are computer
programs developed by Roger Schank, Robert Abelson and their students at Yale to
demonstrate the use of scripts and plans In understanding simple stories (Schank et aI.,
1975; Schank & Abelson, 1977). Most work In natural language understanding prior to 1973
Involved parsing Individual sentences In Isolation; It was thought that text composed of
paragraphs could be understood simply as collections of sentences. But just as words are
not formed from the unconstrained juxtaposition of morphemes, and sentences are not
unconstrained collections of words, so paragraphs and stories are not without structure. The
structures of stories have been analyzed (Propp, 1968; Rumelhart, 1975; Thorndyke, 1977),
and it Is clear that the context provided by these structures facilitates sentence
comprehension, Just as the context provided by sentence structure facilitates word
comprehension (see the Overview; also, the Speech.A article discusses top-down processing In
speech understanding research). For example, If we have been told In a story that John Is
very poor, we can expect later sentences to deal with the consequences of John's poverty,
or steps he takes to alleviate It.

Different researchers have very different Ideas about what constitutes the structure
of a story. Some story grammars are rather "syntactic"; that Is, they describe a story as a
collection of parts like setting, characters, goal Introduction, and plans, determined by their
sequential position In the story rather than by their meaning. The work of Schank and
Abelson reported here has a more semantic orientation. They propose an underlying
representation of each phrase in a story which Is based on a set of semantic primitives. This
representation, called conceptual dependency, is the theoretical basis for more complex story
structures such as scripts, plans, goals, and themes. The SAM and PAM programs understand
stories using these higher level structures. (Article F5 describes the early work on
conceptual dependency theory, and Articles RepresentationC5 and Representation.C6
discuss related representation schemes.)

Parsing: A Brief Introduction to Conceptual Dependency

Prior to his work with stories, Schank (1973) developed conceptual de~endency feD)
for representing the meaning of phrases or sentences. The "basic axiomtl of conceptual
dependency theory Is:

For any two sentences that are Identical In meaning, regardless of
language, there should be only one representation of that meaning in
CD. (See Schank & Abelson, 1977, p. 11.)

Schank thus allies himself with the early machine translation concept of interlingua, or
intermediate language (see Articles B and Overview), and has In fact done some mechanical
translation research In conjunction with the story understanding project. A second important
Idea Is: .

Any information In a sentence that Is Implicit must be made explicit in

66 Natural Language

the representation of the meaning of that sentence. (Schank &
Abelson, 1977, p. 11)

.This idea is the basis for much of the sophisticated Inferential ability of SAM and PAM: We
shall see a sense In which the fact that "John ate food" Is Implicit In the sentence "John
went to a restaurant," and how the former sentence can be Inferred at the time that the
program reads In the latter.

A third Important Idea Is that conceptual dependency representations are made up of a
very small number of semantic primitives, which include primitive acts and primitive states
(with associated attribute values). Examples of primitive acts are:

ACTS:
PTRANS The transfer of the physical location of an

object. For one to AgO· is to PTRANS oneself.
nPuttingn an object somewhere is to PTRANS it
to that place.

PROPEL The application of physical force to an object.

ATRANS The transfer of an abstract relationship. To
"given is to ATRANS the relationship of possession
or ownership.

MTRANS The transfer of mental information between people
or within a person. nTelling" is an HTRANS between
people; nseeing· is an HTRANS within a person.

MBUILD The construction of new information from old.
"Imagining,· "inferring," and "deciding" are HBUILDs.

In the most recent version of CD theory (1977), Schank and Abelson Included 11 of these
primitive acts.

Examples of primitive states include:

STATES:
Mary HEALTH(-18)
John MENTAL STATE(+18)
Vase PHYSICAL STATE(-18)

Mary is dead.
John is ecstatic.
The vase ;s broken.

The number of primitive states In conceptual dependency theory Is much larger than the
number of primitive actions. States and actions can be combined; for example, the sentence

John told Mary that Bill was happy

can be represented as

John MTRANS (Bill BE MENTAL-STATE(6» to Mary.

An important class of sentences Involves causal chains, and Schank and Abelson have
worked out some rules about causality that apply to conceptual dependency theory. Five
Important rules are:

F6 SAM and PAM 67

1. Actions can result in state changes.
2. States can enable actions.
3. States can disable actions.
4. States (or acts) can initiate mental events.
5. Mental events can be reasons for actions.

These are fundamental pieces of knowledge about the world, and conceptual dependency
theory Includes a shorthand representation of each (and combinations of some) called causal
links.

Conceptual dependency representation Is, In fact, the Interlingua that is produced
when SAM or PAM parses sentences. The parser which Is used by these programs is an
extension of the one developed by Chris Riesbeck (1975) for the MARGIE system (Article
F5). As this program encounters words, it translates them Into conceptual dependency
representationj but, In addition, it makes predictions about what words and linguistic
structures (verbs, prepositions, etc.) can be expected to occur and what conceptual
dependency structures should be built In that eventuality.

Conceptual dependency Is the underlying representation of the meaning of sentences
upon which SAM and PAM operate. We turn now to higher level knowledge· structures:
scripts, pians. goals. and themes. Schank and Abelson make a distinction between scripts
and plans that must be clear before the differences between SAM and PAM become
apparent.

Scripts

A script is a standardized sequence of events that describes some stereotypical
human activity. such as going to a restaurant. Schank and Abelson's assumption is that
people know many such scripts and use them to establish the context of events. A script is
functionally similar to a frame (Minsky, 1975) or a schema (Bartlett. 1932j Rumelhart, 1975),
in the sense that It can be used to anticipate the events it represents. For example, the
RESTAURANT script (see Figure 1) involves going to a restaurant, being seated, consulting
the menu, and so on. People who are presented with an abbreviated description of ttlls
activity, e.g., the sentence "John went out to dinner," Infer from their own knowledge about
restaurants that John ordered, ate, and paid for food. Moreover, they. anticipate from a
sentence which fills part of the script ("John was given a menu") what sort of sentences are
likely to follow, e.g., "John ordered the lamb." Scripts attempt to capture the kind of
knowledge that people use to make these inferences. (Article Represenlalion.C6 discusses
scripts, frames and related representation schemes.)

68 Natural Language

Players: customer, server, cashier

Props: restaurant, table, menu, food, check, payment, tip

Events:

1. customer goes to restaurant
2. customer goes to table
3. server brings menu
4. customer orders food
5. server brings food
6. customer eats food
7. server brings check
8. customer leaves tip for server
9. customer gives payment to cashier

18. customer leaves restaurant

Header: event

Main concept: event 6

Figure 1. Restaurant Script

Two components of scripts are of special importance. We will discuss iater how the script
header Is used by SAM to match scripts to parsed sentences. The second important
component Is the main concept or goal of the script. In the resfaurant script the goal is to eat
food.

The scripts used in SAM grew out of Abelson'S (1973) notion of scripts as networks of
causal connections. However, they do not depend on explicit causal connections between
their events. In hearing or observing events that fit a standard script, one need not analyze
the sequence of events in terms of causes, since they can be expected just from knowing
that the script applies. The identification of events as filling their slots in the script gives us
the intuition of "understanding what happened.n

Scripts describe everyday events, but frequently these events (or our relating at
them) do not run to completion. For example:

I went to the restaurant. I had a hamburger.
Then I bought some groceries.

This story presents several problems for a system like SAM that matches scripts to input
sentences. One problem Is that the restaurant script is "left dangling" by the introduction of
the last sentence. It is not clear to the system whether the restaurant script. (a) has
terminated, and a new (grocery shopping) script has startedj (b) has been distracted by a
"fleeting" (one-sentence) grocery script; or (c) is Interacting with a new grocery script

Fe SAM and PAM 69

(e.g., buying groceries in the restaurant). Another thing that can happen to everyday scripts
is that they can be thwarted, as in:

I went to the gas station to fill up my car.
But the owner said he was out of gas.

This is called an "obstacle ll
•

Scripts describe rather specific events, and although It Is assumed that adults know
thousands of them, story comprehension cannot be s'imply a matter of finding a script to
match a story. There are just too many possible stories. Moreover, there are clear cases
where people comprehend a story even though it does not give enough Information to cause
a program to Invoke a script, as in

John needed money. He got a gun and went to a liquor store.

Schank and Abelson point out that even if the program had a script for Robbery, this story
offers no basis for Invoking It. Nonetheless, people understand John's goals and his intended
actlons~

Plans

There must be relevant knowledge available to tie together sentences
that otherwise have no obvious connection. . .. The problem Is that
there are a great many stories where the connection cannot be made
by the techniques of causal chaining nor by reference to a script. Yet
they are obviously connectable. Their connectability comes from these
stories' implicit reference to plans. (Schank & Abelson, 1977, p. 75)

Schank and Abelson introduce plans as the means by which goals are accomplished, and
they say that understanding plan-based stories involves discerning the goals of the actor and
the methods by which the actor chooses to fulfill those goals. The distinction between

, script-based and plan-based stories is very simple: In a script-based story, parts or all of
the story correspond to one or more scripts available to the story understander; in a plan­
based story, the understander must discern the goals of the main actor and the actions that
accomplish those goals. An understander might process the same story by matching it with a
script or scripts, or by figuring out the plans that are represented in the story. The
difference Is that the first method Is very specialized, because a script refers to a specific
sequence of actions, while plans can be very general because the goals they accomplish are
general. For example, In

John wanted to go to a movie. He walked to the bus-stop.

we understand that John's immediate goal (called a delta-goal because it brings about a
change necessary for accomplishment of the ultimate goal) is to get to the movie theater.
Going somewhere is a very general goal and does not apply just to going to the movies. In
Schank and Abelson's theory, this goal has associated with It a set of planboxes, which are
standard ways of accomplishing the goal. Planboxes for going somewhere include riding an
animal, taking public transportation, driving 8 car, etc.

70 Natural Language

Obviously, a story understander might have a "go to the movies" script In its repertoire,
so that analysis of John's goals would be unnecessary--the system would just "recognize"
the situation and retrieve the script. This script would be the standardized Intersection of a
number of more or less general goals and their associated planboxes. It would be a
"routinized plan" made up of a set of general subplans: Go to somewhere (the theater),
Purchase something (a ticket), Purchase something (some popcorn), etc.

A routinized plan can become a script, at least from the planner's
personal point of view.

Thus, plans are where scripts come from. They compete for the same
role in the understanding process, namely as explanations of
sequences of actions that are intended to achieve a goal. (Schank &
Abelson, 1977, p. 72)

The process of understanding plan-based stories involves determining the actor's goal,
establishing the subgoals (delta- or O-goals) that will lead to the main goal, and matching the.
actor's actions with planboxes associated with the O-goals. For example, In

John was very thirsty. He hunted for a glass.

we recognize the O-goal of PTRANSing liquid, and the lower level goal (specified in the
planbox for PTRANSlng liquid) of finding a container to do It with.

Goals and Themes

In story comprehension, goals and subgoals may arise from a number of sources. For
example, they may be stated explicitly, as in

John wanted to eat;

they may be nested in a planbox; or they may arise from themes. For example, If a LOVE
theme holds between John and Mary, It is reasonable to expect the implicit, mutual goal of
protecting each other from harm: "Themes, In other words, contain the background
Information upon which we base our predictions that an Individual will have a certain goal'"
(Schank & Abelson, 1977, p. 132).

Themes are rather like production systems In their situation-action nature. A theme
specifies a set of actors, the situations they may be In, and the actions that will resolve the
situation in a way consistent with the theme. The goals of a theme are to accomplish these
actions. Schank and Abelson have proposed seven types of goals; we have already
considered 0-goaI5. Other examples are:

A- or Achievement-goals. To desire wealth is to have an
A-Honey goal.

P- or Preservation-goal. To protect someone may be a P-Health
or P-Hental State goal.

C- or Crisis-goal. A special case of P-goals, when action
is immediately necessary.

-I

F6 SAM and PAM

The LOVE theme can be stated in terms of some of these goals:

X is the lover; Y is the loved one; Z is another person~

SITUATION
Z cause Y harm

not-Love(Y,X)

General goals:

or

ACTION
A-Health(Y) and possibly
cause Z harm
C-Health(Y)

A-Love(Y,X)

A-Respect(Y)
A-Harry(Y)
A-Approval(Y)

71

To summarize the knowledge-structures we have discussed, we note their
Interrelationships:

SAM

Themes give rise to goals.

A plan is understood when Its goals are Identified and Its actions are consistent
with the accomplishment of those goals.

Scripts are standardized models of events.

Scripts are specific; plans are general.

Plans originate from scripts.

Plans are ways of rep-resenting a person's goals. These goals are Implicit in
scripts, which represent only the actions.

A script has a header, which is pattern-matched to an Input sentence. Plans do
not have headers, but each plan Is subsumed under a goal.

Both SAM and PAM accept stories as Input; both use an English-to-CD parser to
produce an internal representation of the story (in conceptual dependency). Both are able
to paraphrase the story and to make intelligent Inferences from it. They differ with respect
to the processing that goes on after the CD representation has been built.

SAM understands stories by fitting them Into one or more scripts. After this match is
completed, It makes summaries of the stories. The process of fitting a story into a script has
three parts, a PARSER, a memory module (MEMTOK), and the script applier (APPLV). These
modules cooperate: The parser generates a CD representation of each sentence, but APPL V
gives it a set of Verb-senses to use once a script has been Identified. For example, once
the restaurant script has been established, APPL V tells the parser that the appropriate
sense of the verb "to serve" Is "to serve food" rather than, for example, "to serve in the
army."

72 Natural Language

The parser does not make many Inferences; thus It does not realize that lIitll refers to
the hot dog In liThe hot dog was burned. It tasted awful." This task is left to MEMTOK. This
module takes references to people, places, things, etc., and fills In Information about them. It
recognizes that the "Itll In the sentence above refers to the hot dog, and lIinstantlatesll the
"Itll node In the CD representation of the second sentence with the IIhot dog" node from the
first sentence.· Similarly, In a story about John, MEMTOK would replace IIhe" with IIJohnll

where appropriate, and would continually update the "Johnll node as more information became
available about him.

The APPLY module has three functions. First, it takes a sentence from the parser and
checks whether it matches the current script, a concurrent (interacting) script, or an, script
In the database. If this matching Is successful, it makes a set of predictions about likely
Inputs to follow. Its third task Is to Instantiate any steps In the current script that were
"skipped over" In the story. For example, if the first sentence of a story is IIJohn went to a
restaurant,lI APPLY finds a match with the script header of the restaurant script In its
database (see Figure 1). APPLY then sets up predictions for seeing the other events In the
restaurant script in the Input. If the next sentence Is "John had a hamburger," then APPLY
successfully matches this sentence Into the restaurant script (event 6). It then assumes
events 2-5 happened, and instantiates structures In Its CD representation of the story to
this effect. Events 7-10 .remain as predictions.

When the whole story has been mapped into a CD representation in this manner, the
SAM program can produce a summary of the story, or answer questions about it. (See
Schank & Abelson, 1977, pp. 190-204, for an annotated sample protocol with the program.)
Consistent with the idea of Interlingua, SAM can produce summaries In English, Chinese,
Russian, Dutch, and Spanish. An example of a SAM paraphrase follows; note the powerful
Inferences made by Instantiating intermediate script steps:

ORIGINAL:

PARAPHRASE:

John went to a restaurant. He sat down. He got mad.
He left.

. JOHN WAS HUNGRY. HE DECIDED TO GO TO A RESTAURANT.
HE WENT TO ONE. HE SAT DOWN IN A CHAIR. A WAITER
DID NOT GO TO THE TABLE. JOHN BECAME UPSET. HE
DECIDED HE WAS GOING TO LEAVE THE RESTAURANT. HE
LEFT IT.

SAM inferred that John left the restaurant because he did not get any service. The basis for
this inference is that In the restaurant script, event 3 represents the waiter coming over to
the table after the main actor has been seated. SAM knows that people can get mad if their
expectations are not fulfilled, and Infers that John's anger results from the nonoccurrence of
event 3. .

PAM

. Wilensky's (1978) PAM system understands stories by determining the goals that are
to be achieved in the story and attempting to match the actions of the story with the
methods that It knows will achieve the goals. More formally:

The process of understanding plan-based stories Is as
follows:

F6 SAM and PAM

a) Determine the goal,

b) Determine the D-goals that will satisfy that goal,

c) Analyze Input conceptualizations for their potential realization of one of the
planboxes that are called by one of the determined D-goals. (Schank &
Abelson, 1977, p. 76)

73

PAM utilizes two kinds of knowledge structure In understanding goals: named plans and themes.
A named plan Is a set of actions and subgoals for accomplishing a main goal. It is not very
different from a script, although the emphasis In named plans Is on goals and the means to
accomplish them. For example, a script for rescuing a person from a dragon would Involve
riding to the dragon's lair and slaying It--a sequence of actlons--but a named plan would be
a list of subgoals (find some way of getting to the lair, find some way of killing the dragon,
etc.) and their associated planboxes. When PAM encounters a goal In a story for which it
has a named plan, It can make predictions about the O-goals and the actions that will follow.
It. will look for these O-goals and actions In subsequent Inputs. Finding them Is equivalent to
understanding the story.

Themes provide another source of goals for PAM. Consider the sentences:

a) John wanted to rescue Mary from the dragon.
b) John loves Mary. Mary was stolen away by a dragon.

In both of these cases, PAM will expect John to take actions that are consistent with the
goal of rescuing Mary from the dragon, even though this goal was not explicitly mentioned In
(b). The source of this goal In (b) Is the LOVE theme mentioned above, because In this
theme, If another actor tries to cause harm to a loved one, the main actor sets up the goal of
Achieving-Health of the loved one and possibly harming the evil party. (it Is assumed that
the dragon stole Mary In order to hurt her.)

PAM determines the goals of an actor by (a) their explicit mention in the text of the
story, (b) establishing them as O-goals for some known goal, or (c) inferring them from a
theme mentioned In the story. To understand a story Is to "keep track of the goals of each
of the characters In a story and to Interpret their actions as means of achieving those goals"
(Schank & Abelson, 1977, p. 217). The program begins with written English text, converts it
into CD representation, and then Interprets each sentence In terms of goals (predicting 0-
goals and actions to accomplish them) or actions themselves (marking the D-goals as
"accomplished"). When this process is completed, PAM can summarize the story and answer
questions about the goals and actions of the characters.

Summary

Scripts, plans, goals, and themes are knowledge structures built upon conceptual
dependency theory. SAM is a program for understanding script-based stories. It matches
the Input sentences of a story to events In one or more of the scripts In Its database. As
such, It processes Input based on expectations It has built up from the scripts. PAM
understands plan-based stories by determining the goals of the characters of the story and
by Interpreting subsequent actions In terms of those goals or subgoals that will achieve

74 Natural Language

them. A great deal of inference can be required of PAM simply to establish the goals and
sub goals of the story from the Input text.

Schank and Abelson argue that human story understanding is a mixture of applying
known scripts and Inferring goals (where no script Is available or of obvious applicability).
They are experimenting with Interactions of SAM and PAM, In particular, with using SAM to
handle script-based sub-stories under the control of PAM.

References

The recent book by Schank & Abelson (1977) Is the most complete and readable
source on both of these systems and on the current state of Conceptual Dependency theory.
For the whole truth about PAM, see the doctoral dissertation by Wilensky (1 978a).

Also of Interest: Abelson (1973), Bartlett (1932), Minsky (1975), Propp '(1968),
Riesbeck (1975), Rumelhart (1976), Schank (1973), Schank et al. (1976), Thorndyke
(1977), and Wilensky (1978b).

F7 LIFER 76

F7. LIFER

The natural language systems described In the preceding articles fa" into two
categories: those built to study natural language processing Issues In general and those built
with a particular task domain In mind. In contrast, LIFER, built by Gary Hendrix (1977a) as
part of the Internal research and development program of SRI International, is designed to be
an "off-the-shelf" natural language utility available to system builders who want to
Incorporate an Nl front-end Interface to Improve the usability of their various applications
systems. The bare LIFER system is a system for generating natural language interfaces; the
Interface builder can augment LIFER to fit his particular application, and even the eventual
users can tailor the LIFER-supported front-end to meet their Individual styles and needs.

Language Specification and Parsing

The LIFER system has two major components: a set of interactive functions for
specifying a language, and a parser. Initially It contains neither a grammar nor the semantics
of any language domain. An Interface builder uses the language specification functions to
define an application language, a subset of Eng"sh that is appropriate for interacting with his
application system. The LIFER system then uses this language specification to inter p, ef

natural language Inputs as commands for the application system.

The interface builder specifies the language primarily In terms of grammatical rewrite
rules (see Article e1). LIFER automatically translates these into transition trees, a simplified
form of augmented transition networks (Article O~). Using the transition tree, the parser
interprets Inputs In the application language. The result Is an Interpretation in terms of the
appropriate routines from the applications system, as specified by the interface builder. The
parser attempts to parse an input string top-down and left to right (see Article 01) by
nondeterminlstlcally tracing down the transition tree whose root node is the start symbol
(known as <loT.G.> for "LIFER top grammarll

). For example, suppose the Interface builder has
specified the following three production rules as part of his application language:

<loT.G.> -) WHAT IS THE (ATTRIBUTE> OF (PERSON> I el
<loT.G.> -> WHAT IS (PERSON> (ATTRIBUTE> I e2
(loT.G.> -> HOW (ATTRIBUTE> IS (PERSON) I e3

If an input matches one of these patterns, the corresponding expression (el, e2, or e3) Is
evaluated--these are the appropriate Interpretations that the system Is to make for the
corresponding Input. The transition tree built by the language specification functions would
look like this:

/---THE--<ATTRIBUTE> OF <PERSON> I el

I -WHAT IS
\---<PERSON> <ATTRIBUTE> I e2

<l.T.G.>

~----- HOW <ATTRIBUTE> IS (PERSON> I e3

Sentences such as:

What Is the age of Mary's sister?

76 'Natural Language

How old Is Mary's sister?
What Is John's height?
How tall Is John?

might be parsed using this simple transition tree, depending on how the nonterminal 'symbols
or meta-symbols, <ATTRIBUTE> and <PERSON>, are defined. (The Interface builder can supply
a preprocessing function which Is applied to the Input string before LIFER attempts to parse
It. Typically the preprocessor strips trailing apostrophes and s's so that LIFER sees "John's"
as "John".)

During parsing, LIFER starts at the symbol <L.T.G.> and attempts to move toward the
expressions to be evaluated at the right. The parser follows a branch only If some portion at
the left of the remaining Input string can be matched to the first symbol on the branch.
Actual words (such as what or of In the above example) can be matched only by themselves.
Meta-symbols (such as (ATTRIBUTE> or (PERSON» can be matched In a number of ways,
depending on how the Interface builder has defined them: .

(a) as a simple set (for example, (PERSON) = the set {Mary, John, Bill});

(b) as a predicate that :Is applied to the string to test for satisfaction (for
example, some meta-symbol used In a piece of grammar to recognize dates
might test whether the next string of characters Is a string of digits, and
thus a number); or

(c) by another transition tree which has this meta-symbol as Its root node.

The above example is' typical:' A large amount of semantic Information is embedded in
the syntactic description of the application language. JOHN and HEIGHT are not defined as
instances of the single meta-symbol (NOUN> as they would be In a more formal grammar, but
rather are separated Into the semantic categories Indicated by the meta-symbols (PERSON)
and <ATTRIBUTE>. The technique of embedding such semantic Information In the syntax has
been referred to as semantic grammar (Burton, 1976), and It greatly Increases the
performance of LIFER's automatic spelling correction, ellipsiS, and paraphrase facilities,
described below.

Applications

LIFER has been used to build a number of natural language Interfaces, Including a'
medical database, a task scheduling and resource allocation system, and a computer-based
expert system. The most complex system built with a LIFER Interface Involved a few man­
months of development of the natural language front-end: The LADDER system (Language
Access to Distributed Data with Error Recovery) developed at SRI, which provides real-time
natural language access to a very large database spread over many smaller databases In
computers scattered throughout the United States (Sacerdotl, 1977; Hendrix et aI., 1978).
Users of the system need have no knowledge of how the data is organized nor where it is
stored. More Importantly, from the point of view of this article, users do not need to know 8

data query language: They use English, or rather a subset that Is "natural" for the domain of
discourse and which Is usually understood by the LIFER front-end. The Interpretations of the
Inputs by LIFER are translations Into a general database query language, which the rest of

'..,

F7 LIFER 77

the LADDER system converts to a query of the appropriate databases on the appropriate
computers (see Article Applications.F4 on AI In Information retrieval systems).

Another interesting system to use a LIFER front-end was the HAWKEYE system (Barrow
et aI., 1977), also developed at SRI. This Is an Integr'ated Interactive system for cartography
or Intelligence, which combines aerial photographs and generic descriptions of objects and
situations with the topographical and cultural Information found In traditional maps. The user
queries the database and Invokes image-processing tasks via a LIFER natural language
Interface. A unique feature of this Interface Is the combination of natural language and
nontextual forms of Input. For Instance, using a cursor to point to places within an Image, the
user can ask questions such as "What Is this?" and "What Is the distance between here and
here?" The Interpretation of such expressions results In requests for coordinates from the
subsystem providing graphical Input, which are then handed to subsystems that have access
to the coordinates-to-obJect correspondences.

Human Engineering

LIFER Is Intended as a system which both facilitates an Interface builder In describing
an appropriate subset of a language and Its Interpretation In his system, and also helps a
non-expert user to communicate with the application system In whatever language has been
defined. For this reason, olose attention was paid to the human engineering aspects of
LIFER. Experience with the system has shown that, for some applications, users previously
unfamiliar with LIFER have been able to create usable natural language Interfaces to their
systems In a few days. The resulting systems have been directly usable by people whose
field of expertise Is' not computer science.

The Interface builder. Unlike PROGRAMMAR (In SHRDLU, Article F4), there is no
"compilation" phase during which the language specification Is converted into a program.
Instead, changes are made Incrementally every time a call to the language specification
functions Is made. Furthermore, it Is easy (by typing a prefix character) to intermix
statements to be Interpreted by the specification functions, statements to be parsed using
the partially specified grammar, and statements to be evaluated in the underlying
Implementation language of LIFER, namely INTERLISP (see Article AI Languages.e1). Thus, the
interface builder can define a new rewrite rule for the grammar or write a predicate for some
meta-symbol and test It Immediately, which leads to a highly Interactive style of language
definition and debugging. A grammar editor allows mistakes to be undone. The abi,!i{y~ to
intermix language definition with parsing allows the Interface user to extend the int!'!rface
language to personal needs or taste during a session using the application system. This
extension can be done either by directly Invoking the language specification functions, or, if
the Interface builder has provided the facility, by typing natural language sentences whose
Interpretations Invoke the same language specification functions.

The interface user. LIFER provides many features to ease the task of the user typing
in sentences to be understood by the system. First of all, it provides feedback indicating
when LIFER is parsing the Input sentence and when the applications software is running.
When LIFER falls to parse a sentence, It tries to give the user useful Information on how it
failed. It tells the user how much of the Input was understood and what It was expecting
when it got to the point where It could no longer understand. Interactions with the user are
numbered, and the user can refer back to a previous question and specify some substitution
to be made. For Instance:

78

12.

PARSED!

Natural Language

How many minority students took 28 or more units of credit last
Quarter?

. 87

13. Use women for minority in 12
PARSED!

156

Notice the "PARSED!" printed by LIFER to indicate parsing success. This facility can be used
to save typing (and more errors), both when similar Questions are being asked and when
errors in previous inputs are being corrected. The user can simply specify synonyms to be
used. for Instance:

28. Define Bill like William

will cause LIFER to treat the word BILL the same as WILLIAM. LIFER also allows for easy
Inspection of the language definition, which is useful for both interface builders and
sophisticated users.

There are three more sophisticated aspects of LIFER designed to make interactions
easier for the user--the spelling correction, ellipsis, and paraphrase mechanisms. Spelling
correction is attempted when LIFER fails to parse an Input. When the parser is following
along a branch of a transition tree and reaches a point where it can go no further, it records
Its failure in a failure list. If the input is eventually parsed correctly, the failure list is
forgotten. However, if no successful parse can be found, the parser goes back to the last
(rightmost) fa/l point and attempts to see if a misspelling has occurred. (Fail points to the
left in the sentence are at first assumed not to be caused by spelling errors, since at least
one transition using the word must have been successful to get to the fail point further to
the right. This is not foolproof, however, and sometimes LIFER will fail on a spelling mistake).
The INTERLISP spelling correction facility is used to find candidate words that closely match
the spelling of the suspect word. The use of semantically significant syntactic categories
(such as (PERSON» greatly restr,icts the allowable word susbstltutions and Improves the
efficiency of the spelling corrector:

While Interacting with an applications system, the user may want to carry out many
.similar tasks (for example, In a database Query system, one often asks several questions
alJout the same object). The LIFER system automatically allows the user to type Incompletf!
Input fragments and attempts to Interpret them In the context of the previous input (i.e., the
Interface builder need not consider this Issue). For Instance, the following three questions
might be entered successively and understood by LIFER: '

42. What is the height of John
43. the weight
44. age of Mary's sister

If an input fails normal parsing and spelling correction, LIFER tries emptic processing. Again,
because languages defined In LIFER tend to encode semantic Information In the syntax
definition, similar syntactic structures tend to have similar semantics. Therefore LIFER
accepts any Input string that Is syntactically analogous to any contiguous substring of words

F7 LIFER 79

in the last input that parsed without ellipsis. The analogies do not have to be in terms of
complete subtrees of the syntactic tree, but they do have to correspond to contiguous
words in the previous Input. The elliptical processing allows for quite natural and powerful
interactions to take place, without any effort from the interface builder.

The paraphrase facility allows users to define new syntactic structures In terms of old
structures. The user gives an example of the structure and Interpretation desired, and the
system builds the most general new syntactic rule allowed by the syntactic rules already
known. The similarity between the semantics and syntax Is usually sufficient to ensure that a
usable syntax ,rule Is generated. The following example assumes that the Interface builder
has Included a rule to Interpret the construction shown to Invoke a call to the language
specification function PARAPHRASE with appropriately bound arguments. After typing

!li

63. Let "Describe John· be a paraphrase of ·Print the height, weight
and age of John·

the user could expect the system to understand the requests

64. Describe Mary
65. Describe the tallest person
66. Oeser 1 be Mary's sister

even with a fairly simply designed LIFER grammar. (In the context of the earlier examples,
this example assumes that "the tallest person" can correspond to the meta-symbol
'(PERSON).) The method used to carry out paraphrase (which, as can be seen, Is a much more
general form of synonymic reference) Is quite complex. Basically It Invokes the parser to
parse the model (the second form of 63) that is already understood. All proper subphrases
(I.e., subphrases that are complete expansions of a sy.ntactlc category) of the model that
also appear in the paraphrase are assumed to play the same role. A new syntactic rule can
then be written, and the actions Invoked by the model can be appropriately attached to the
paraphrase rule.

Conclusions

Although grammars constructed with LIFER may not be as powerful as specially
constructed grammars, LIFER demonstrates that use,ful natural language systems for a wide
variety of domains can be built simply and routinely without a large-scale programming effort.
Human engineering features and the ability of the naive user to extend the system's
capabilities are important issues In the usefulness of the system.

References

Hendrix (1977a), Hendrix (1977b), and Hendrix (1977c) all describe the LIFER system.
The LADDER information retrieval application Is described In Hendrix et al. (1978) and
Sacerdotl (1977). Barrow et al. (1977) describes. the HAWKEYE system.

so Natural Language

References

Abelson, R. The structure of belief systems. In R. Schank & K. Colby (Eds.). Computer
Models of Thought and Language. San Francisco: W. H. Freeman, 1973.' Pp. 287-
339.

AkmaJlan, A., & Heny, F. An Introduction to the Principles of Transformational
Syntax. Cambridge: MIT Press, 1975.

Bar-Hillel, Y. The present status of automatic translation of languages. In F. l. Alt (Ed.),
Advances in Computers (Vol. r). New York: Academic Press, 1960. Pp.91-163.

Bar-Hillel, Y. Language and Information. Reading, Mass.: Addison-Wesley, 1964.

Barrow, H. G., Bolies, R. C., Garvey, T. D., Kremers, J. H., lantz, K., Tenenbaum, J. M., & Wolf,
H. C. Interactive aids for cartography and photo interpretation. In l. S. Baumann (Ed.),
Image Understanding: Proceedings of a Workshop held at Palo Alto, California,
October 20.-21, 1977. Rep. No. SAI-7S-656-WA, Science Applications, Inc. Pp. 111-
127.

Bartlett, F. C. Remembering: A Study In Experimental and Social
Psychology. Cambridge: Cambridge University Press, 1932.

Bobrow, O. G. Natural language Input for a computer problem-solving system. In M. Minsky
(Ed.), Semantic Information Processing. Cambridge: MIT Press, 1968. Pp. 146-226.

Bobrow, D. G., & Collins, A. (Eds.). Representation and Understanding. New York: Academic
Press, 1976.

Bobrow, O. G., & Fraser, B. An augmented state transition network analysis procedure. IJCAI
1, 1969, 667-667.

Bobrow, D. G., Kaplan, R. M., Kay, M., Norman, D. A., Thompson, H., & Winograd, T. GUS, a
frame-driven dialog system. Artificial Intelligence, 1977, 8, 166-173.

Bobrow, D. G., & Winograd, T. An overview of KRl, a knowledge representation language.
Cognitive Science, 1977, 1, 3-46.

Boden, M. Artificial Intelligence and Natural Man. New York: Basic Books, 1977.

Booth, A. O. (Ed.). Machine Translation. Amsterdam: North-Holland, 1967.

Bresnan, J. A realistic transformational grammar. In M. Haile, J. Bresnan, & G. A. Miller
(Eds.), Linguistic Th.eory and Psychological Reality. Cambridge, Mass.: MIT Press,
1978. Pp. 1-69.

Bruce, B. Case systems for natural language. Artificial Intelligence, 1976, 6, 327-360.

References 81

Burton, R. R. Semantic grammar: An engineering technique for constructing natural
language understanding systems. BBN Rep. 3453, Bolt Beranek & Newman Inc.,
Cambridge, Mass., December 1976.

Burton, R. R., & Brown, J. S. Toward a natural-language capability for computer-assisted
instru~tlon. In H. O'Neil (Ed.), Procedures' for Instructional Systems
Development. New York: Academic Press, 1 979. Pp. 273-313.

Chafe, W. L Discourse structure and human knowledge. In R. O. Freedle & J. B. Carroll
(Eds.), Language Comprehension and the Acquisition of Knowledge. Washington,
D. C.: V. H. Winston, 1972. Pp. 41-69.

Charnlak, E .. Toward a model of chlldren'l Itory comprehenllon. AI TR-266, AI Lab, MIT,
.' 1972.

Charniak, E. A brief on case. Rep. 22, Institute for Semantic and Cognitive Studies,
Castagnola, Switzerland, 1975.

Charnlak, E., & Wilks, Y. Computational Semantics: An Introduction to Artificial
Intelligence and Natural Language Comprehension. Amsterdam: North-Holland, 1976.

Chomsky, N. Three models for the description of language. IRE Transactions on
Information Theory, 1956, 2, 113-124. (Also In R. Luce, R. Bush, & E. Galanter
(Eds.), Readings In Mathematical Psychology (Vol. 2). New York: John Wiley & Sons,
1965. Pp. 105-124.)

Chomsky, N. Syntactic Structures. The Hague: Mouton & Co., 1957.

Chomsky, N. On certain formal properties of grammars. Information and Control, 1959, 2,
137-167. (Also In R. Luce, R. Bush, & E. Galanter (Eds.), Readings In Mathematical
Psychology (Vol. 2). New York: John Wiley & Sons, 1965., Pp. 125-155.)

Chomsky, N. Formal properties of grammars. In R. Luce, R. Bush, & E. Galanter
(Eds.), Handbook of Mathematical Psychology (Vol. 2). New York: John Wiley & Sons,
1963. Pp. 323-418.

Chomsky, N. Aspects of the Theory of Syntax. Cambridge: MIT Press, 1965.

Chomsky, N. Deep structure, surface structure, and semantic Interpretation. In D. Steinberg
& L. Jakobovits (Eds.), Semantics. Cambridge: Cambridge University Press. 1971.
Pp. 183-216.

Clippinger, J. H., Jr. Speaking with many tongues: Some problems In modeling speakers of
actual discourse. TINLAP-1, 1975. Pp. 78-83.

Codd, E. F. Seven steps to rendezvous with the casual user. In J. W. Klimbie &
K. L. Koffeman (Eds.), Data Base Management. Amsterdam: North-Holland, 1974.
Pp. 1 79-200.

Cohen, P. R. On knowing what to say: Planning speech acts. Tech. Rep. 118, Department of
Computer Science, University of Toronto, January 1 978.

82 Natural Language

, Colby, K., Weber, S., & Hilf, F. Artificial paranoia. Artificial Intelligence, 1971, 2, 1-25.

COLlNG76. Preprlnts of the 6th International Conference on Computational linguistics.
Ottawa, Ontario, Canada, June 1976.

Conway, M. E. Design of a separable transition-diagram compiler. CACM, 1963, 6, 396-408.

Cullcover, P. W., Was ow, T., & AkmaJlan, A. Formal Syntax. New York: Academic Press,
1977.

Feigenbaum, E., & Feldman, J. (Eds.). Computers and Thought. New York: McGraw-Hili,
1963.

Fillmore, C. The case for case. In E. Bach' & R. Harms (Eds.), Universals In Linguistic
Theory. New York: Holt, Rinehart, & Winston, 1968. Pp. 1-88.

Fillmore, C. Some problems for case grammar. In R. J. O'Brien (Ed.), Report of the Twenty­
Second Annual Round Table Meeting on Linguistics and Language
Studies. Monograph Series on Languages and linguistics, No. 24. Washington:
Georgetown University Press, 1971. Pp. 35-56. (a)

Fillmore, C. Types of lexical Information. In D. Steinberg & L. Jakobovlts (Eds.), Semantics.
, Cambridge: Cambridge University Press, 1971. Pp. 370-392. (b)

Friedman, J. Directed random generation of sentences. CACM, 1969, 12, 40-46.

Friedman, J. A Computer Model of Transformational ,Grammar. New York: American
Elsevier, 1971.

Goldman, N. Conceptual generation. In R. Schank, Conceptual Information
Processing. Amsterdam: North-Holland, 1975. Pp. 289-371.

Green, B. F., Jr., Wolf, A. K., Chomsky, C., & Laughery, K. BASEBALL: An automatic question
answerer. In E. Feigenbaum & J. Feldman (Eds.), Computers and Thought. New York:
McGraw-Hili, 1963. Pp. 207-216.

Grishman, R. A survey of syntactic analysis procedures for natural language. American
Journal of Computational Linguistics, Microfiche 47, 1976 .

. Halliday, M. A. K. Categories of the theory of grammar. Word, 1 9~1, 17, 241-292.

Halliday, M. A. K. Notes on transitivity and theme In English. Journalof Linguistics, 1967, 3,
37 -81, 199-244; Journal of Linguistics, 1968, 4, 179-215.

Halliday, M. A. K. Functional diversity In language as seen from a consideration of modality
and mood In English. Foundations of Language, 1970,6,322-361. (a)

Halliday, M. A. K. Language structure and language function. In J. Lyons (Ed.), New
Horizon. In Linguistic.. Ha.rmondsworth: Penguin Books, 1970. Pp. 140-165. (b)

References 83

Harman, G. (Ed.). On Noam Chomsky: Critical Essays. Garden City, New York: Anchor
Books, 1974.

Harris, L. R. ROBOT: A high performance natural language processor for data base
" query. SIGART Newsletter, No. 61, February 1977, pp. 39-40.

Hays, D. G., & Mathias, J. (Eds.). FBIS seminar on machine translation. American Journal of
Computational Linguistics, Microfiche 46, 1976.

Heidorn, G. E. Automatic programming through natural language dialogue: A survey. IBM
Journal of Research and Development, 1976, 20, 302-313.

Hendrix, G. G. Human engineering for applied natural language processing. IJCAI 6, 1977,
183-191. (a)

Hendrix, G. G. LIFER: A natural language Interface facility. SIGART Newsletter, No. 61,
February 1977, pp. 25-26. (b)

Hendrix, G. G. The LIFER manual: A guide to building practical natural language
Interfaces. Tech. Note 138, Artificial Intelligence Center, SRI International, February
1977. (c)

Hendrix, G. G., Sacerdotl, E. D., Sagalowlcz, D. & Slocum, J. Developing a natural language
Interface to complex data. ACM Transactions on Database Systems, 1978, 3, 105-
147.

Hendrix, G. G., Thompson, C., & Slocum, J. Language processing via canonical verbs and
semantic models. IJCAI 3, 1973, 262-269.

Hopcroft, J. E., & Ullman, J. D. Formal Language. and Their Relation to Automata. Reading,
Mass.: Addison-Wesley, 1969.

Hudson, R. A. English Complex Sentences: An Introduction to Systemic Grammar.
Amsterdam: North-Holland, 1971.

Hudson, R. A. Arguments for a Non-transformational Grammar. Chicago: University of
Chicago Press, 1976.

Josselson, H. H. Automatic translation of languages since 1960: A lingUist's view. In M. C.
Yovlts (Ed.), Advances In Computers (Vol. 11). New York: Academic Press, 1971. Pp.
1-58.

Kaplan, R. M. A general syntactic processor. In R. Rustin (Ed.), Natural Language
Processing. New York: Algorlthmlcs Press, 1973. Pp. 193-241.

Katz, J. & Postal, P. An Integrated Theory of Linguistic Descriptions. Cambridge: MIT
Press, 1964.

Kay, M. The MIND system. In R. Rustin (Ed.), Natural Language Processing. New York:
Algorlthmics Press, 1973. Pp. 155-188.

, .

84 Natural Language

Kellogg, C. A natural language compiler for on-line data management. AFIPS Conference
Proceedings, 33, 1968 Fall Joint Computer Conference. Washington: Thompson Book
Co., 1968. Pp. 473-492.

Klein, S. Automatic paraphrasing In essay format. Mechanical Translation, 1965, 8, 68-83.

Klein, S., & Simmons., R. F. Syntactic dependence and the computer generation of coherent
discourse. Mechanical Translation, 1963, 7, 50-61.

Knuth, D. The Art of Computer Programming (Vol. 1): Fundamental Algorithms (2nd
ed.). Reading, Mass.: Addison-Wesley, 1973.

Landsber-gen, S. P. J. Syntax and formal semantics of English In PHlI0A1. In L. Steels (Ed.),
Advances In Natural Language Processing. Antwerp: University of Antwerp, 1976.

Lindsay, R. K. Inferential memory as the basis of machines which understand natural
. language. In E. Feigenbaum & J. Feldman (Eds.), Computers and Thought. New

York: McGraw-Hili, 1963. Pp. 217-233. (a)

Lindsay, R. K. A program for parsing sentences and making inferences about kinship
relations. In A. C. Hoggatt & F. E. Balderston (Eds.), Symposium on Simulation Models:
Methodology and Applications to the Behavioral Sciences. Cincinnati: South­
Western Publishing, 1963. Pp. 111-138. (b)

Locke, W. N., & Booth, A. D. (Eds.). Machine Translation of Languages. New York:
. Technology Press of MIT and John Wiley & Sons, 1955.

Lyons,J. Introduction to Theoretical Linguistics. london: - Cambridge University Press,
1968.

Lyons, J. Noam Chomsky. New York: Viking Press, 1970.

Marcus, M. A computational account of some constraints on language. TINLAP-2, 1978,
pp. 236-246.

Matuzceck, D. An Implementation of the augmented transition network system of
Woods. As revised by J. Slocum. Department of Computer Sciences and CAl
Laboratory, University of Texas, Austin, October 1972.

McCord, M. On the form of a systemic grammar. Journal of LingUistics, 1976, 11, 195-212.

McDermott, D. Asslmtlatlon of new Information by a natural language-understanding
system.. AI TR-291, AI lab, MIT, February 1974.

Mcintosh, A., & Halliday, M. A. K. Patterns of Language. Bloomington: Indiana University
Press, 1 966.

Minsky, M. (Ed.) Semantic Information Processing. Cambridge: MIT Press, 1968.

Minsky, M. A' framework for representing knowledge. In P. Winston (Ed.), The Psychology
ot Computer Vision. New York: McGraw-Hili, 1976.

References 85

Nash-Webber. B. Semantics and speech understanding. BBN Rep. 2896, Bolt Beranek &
Newman Inc .• Cambridge, Mass., October 1974.

National Research Council. Automatic Language Processing Advisory Committee. Language
and Machines: Computers In Translation and linguistics. Publication 1416. National
Academy of Sciences, National Research Council. Washington. D. C .• 1966.

Norman, D., &~ Rumelhart, D. Explorations In Cognition. San francisco: W. H. freeman, 1975.

Oettinger, A. G. The design of an automatic Russian-English technical dictionary. In W. N.
Locke & A. D. Booth (Eds.), Machine Translation of Languages. New York:
Technology Press of MIT and John Wiley & Sons, 1955. Pp. 47-65.

Paige. J. M.. & Simon, H. A. Cognitive processes In solving algebra word problems. In
B. Klelnmuntz (Ed.), Problem Solving. New York: John Wiley & Sons, 1966. Pp. 61-
119. '

Perrault, C. R., Allen, J. F., & Cohen, P. R. Speech acts as a basis for understanding dialogue
coherence. TINLAP-2, 1978, pp. 125-132.

Petrick, S. R. Transformational analysis. In R. Rustin (Ed.), Natural Language Processing.
New York: Algorlthmlcs Press. 1973. Pp. 27-41.

Plath. W. REQUEST: A natural language question-answering system. IBM Journal of
Research and Development. 1976. 20. 326-335.

Postal. P. Limitations of phrase structure grammars. In J. A. fodor & J. J. Katz: The
Structure of Language. Englewood Cliffs. N.J.: Prentice-Hail, 1964. Pp.137-161.

Propp, V. Morphology of the Folktale. 2nd edition, translated by L. Scott. Austin: University
of Texas Press. 1968.

Quillian. M. R. Semantic memory. In M. Minsky (Ed.). Semantic Information Processing.
Cambridge: MIT Press, 1968. Pp. 227-270.

Quillian. M. R. The teachable language comprehender: A simulation program and theory of
language. CACM. 1969. 12, 459-476.

Raphael, B. SIR: A computer program for semantic Information retrieval. In M. Minsky (Ed.),
Semantic Information Processing. Cambridge: MIT Press, 1968. Pp. 33-145.

,

Rieger, C. Conceptual memory and Inference. In R. Schank. Conceptual Information
Processing. Amsterdam: North-Holland. 1976. Pp. 167-288.

Rlesbeck. C. Conceptual analysis. In R. Schank, Conceptual Information
Processing. Amsterdam: North-Holland. 1975. Pp. 83-156.

Rumeihart. D. Notes on a schema for stories. In D. G. Bobrow & A. Collins (Eds.).
Representation and Understanding. New York: Academic Press. 1976. Pp. 211-236.

Rustin. R. (Ed.). Natural Language Processing. New York: Algorithmlcs Press, 1973.

86 Natural Language

Sacerdoti, E. D. Language access to distributed data with error recovery. IJCAI6, 1977,
196-202.

Samlowski, W. Case grammar. In E. Charnlak & Y. Wilks (Eds.), Computational Semantics.
Amsterdam: North-Holland, 1976. Pp. 55-72.

Scha, R. J. H. A formal language for semantic representation. I.n L. Steels (Ed.), Advances
in Natural Language Processing. Antwerp: University of Antwerp, 1976.

Schank, R. Identification of conceptualizations underlying natural language. In R. Schank &
K. Colby (Eds.), Computer Models of Thought and Language. San Francisco: W. H.
Freeman, 1973. Pp. 187-247. F

Schank, R. Conceptual Information Processing. Amsterdam: North-Holland, 1975.

Schank, R., & Abelson, R. P. Scripts, Plan., Goals, and Understanding. Hillsdale, N. J.:
Lawrence Erlbaum Assoc., 1977.

Schank, R., & Colby, K. (Eds.). Computer Models of Thought and Language. San Francisco:
W. H. Freeman, 1973.

Schank, R., Goldman, N., Rieger, C., & Riesbeck, C. MARGIE: Memory, analysis, response
generation, and Inference on English. IJCAI 3, 1973, 255-261.

Schank, R., & Yale AI Project. SAM -- A story understander. Research Rep. 43, Department
of Computer Science, Yale University, August 1975.

Searle, J. Speech Acts. Cambridge: Cambridge University Press, 1969.

Self, J. Computer generation of sentences by systemic grammar. American Journal of
Computational Linguistics, Microfiche 29, 1975.

Simmons, R. F. Answering English questions by computer: A survey. CACM; 1965, 8, 53-70.

Simmons, R. F. Storage and retrieval of aspects of meaning In directed grap~ structures.
CACM, 1966,9,211-214.

Simmons, R. F. Natural language question-answering systems: 1969. CACM, 1970, 13, 15-
30.

Simmons, R. F. Semantic networks: Their computation and use for understanding English
sentences... In R. Schank & K. Colby (Eds.), Computer Models of Thought and
Language. San Francisco: W. H. Freeman, 1973. Pp. 63-113.

Simmons, R. F., Burger, J. F., & Long, R. E. An approach toward answering English questions
from text. AFIPS Conference Proceedings, 29, 1966 Fall Joint Computer
Conference. Washington: Spartan Books, 1966. Pp.357-363.

Simmons, R. F., ,Burger, J. F., & Schwarcz, R. M. A, computational model of verbal
understanding. AFIPS Conference Proceedings, 33, 1968 Fall Joint Computer
Conference, Washington: Thompson Book Co., 1968., Pp. 441-456.

References 87

Simmons, R. F., Klein, S., & McConlogue, K. Indexing and dependency logic for answering
English questions. American Documentation, 1964, 16, 196-204.

Simmons, R. F., & Slocum, J. Generating English discourse from semantic networks. CACM,
1972,16,891-906.

Steinberg, D., & Jakobovlts, L. Semantics. Cambridge: Cambridge University Press, 1971.

Sussman, G., Winograd, T., & Charniak, E. MICRO-PLANNER reference manual, AI Memo 203.
AI Lab, MIT, July 1970.

Taylor, B., & Rosenberg, R. S. A case-driven parser for natural language. American Journal
of Computational Linguistics, Microfiche 31, 1976.

Thompson, F. B. English for the computer. AFIPS Conference Proceedings, 29, 1966 Fall
Joint Computer Conference. Washington: Spartan Books, ,1966. Pp. 349-356.

Thorndyke, P. W. Cognitive structures In comprehension and memory of narrative discourse.
'Cognitive Psychology, 1977, 9, 77-110.

TINLAP-1. Schank, R., & Nash-Webber, 8. (Eds.). Theoretical Issues In Natural Language
Processing: An Interdisciplinary Workshop In Computational Linguistics, Psychology,
Linguistics, and Artificial Intelligence. June 1976.

TlNLAP-2. Waltz, D. L. (Ed.). Theoretical Issues In Natural Language Processing-2. New
York: Association for Computing Machinery, 1978.

Waltz, D. L. Natural language Interfaces. SIGART Newsletter,' No. 61, February 1977, pp.
16-64.

Waltz, D. L. An English Language Question Answering System for a Large Relational Data
Base. In press, 1979.

Weaver, W. Translation (1949). In W. N. Locke & A. D. Booth (Eds.), Machine Translation
of Languages. New York: Technology Press of MIT and John Wiley & Sons, 1955. Pp.
15-23.

Welzenbaum, J. Symmetric list processor. CACM, 1963, 6, 624-644.

Welzenbaum, J. ElIZA--A computer program
communication between man and machine.

for the study of natural
CACM,1966,9,36-46. \

language

Welzenbaum, J. Computer Power and Human Reason: From Judgment to
Calculation. San Francisco: W. H. Freeman, 1976.

Welln, C. W. Semantic networks and case grammar.
linguistics, University of Stockholm, May 1976.

Publication 29, Institute of

Wilensky, R. Understanding goal-based stories. Research Rep. 140, Department of
Computer Science, Yale University, September 1978. (a)

{

88 Natural Language

Wilensky, . R. Why John married Mary: Understanding stories involving recurring
goals. Cognitive Science, 1978, 2, 236-266. (b)

Wilks, Y. An artificial Intelligence approach to machine translation. In R. Schank & K. Colby
(Eds.), Computer Models of Thought and Language. San Francisco: W. H. Freeman,
1973. Pp.114-151.

Wilks, Y. Natural language understanding systems within the AI paradigm: A survey and some
comparisons .. AI Memo 237, Stanford AI Lab, December 1974. (Also In A. Zampolli
(Ed.), LingUistic Structures Processing. Amsterdam: North-Holland, 1977. Pp. 341-
398.)

Wilks, Y. An Intelligent analyzer and understander of English. CACM, 1975, 18, 264-274.
(a)

Wilks, Y. Preference semantics, In E. L Keenan (Ed.), Formal Semantics of Natural
Language. Cambridge: Cambridge Un Iv. Press, 1976. Pp. 329-348. (b)

Wilks, Y. A preferential, pattern-seeking semantics for natural language Inference. Artificial
Intelligence, 1976, 6, 63-74. (c)

Wilks, Y. Processing case. American. Journal of Computational Linguistics, Microfiche 66,
1976.

Wilks, Y. Time flies like an arrow. New Scientist, 1977, 76, 696-698. (a)

Wilks, Y. What sort of taxonomy of causation do we need for language understanding?
Cognitive Science, 1977, 1,236-264. (b)

Wilks, Y. Making preferences more active. Artificial Intelligence, 1978, 11, 197-223.

Winograd, T. Procedures as a representation for data In a computer program for
understanding natural language, AI TR-17, AI lab, MIT, February 1971.

Winograd, T. Understanding Natural Language. New York: Academic Press, 1972.

Winograd, T. A procedural model of language understanding. In R. Schank & K. Colby
(Eds.), Computer Models of Thought and Language. San Francisco: W. H. Freeman,
1973. Pp. 162-186.

Winograd, T. Five lectures on artificial Intelligence. AI Memo 246, Stanford AI lab,
September 1974. (Also in A. Zampolll (Ed.), Linguistic Structures
ProceSsing. Amsterdam: North-Holland, 1977. Pp.399-620.)

Winograd, T. Parsing natural language via recursive transition net. In R. Yeh (Ed.), Applied
Computation Theory: Analysis, DeSign, Modeling. Englewood Cliffs, N.J.: Prentlce­
Hall, 1976. Pp.461-467.

Winograd, T. Language as a Cognitive Process. Book In preparation, Addison-Wesley,
1980.

Referencea 89

Wong, H. K. Generating English sentences from semantic structures. Tech. Rep. 84,
Department of Computer Science, University of Toronto, August 1975.

Woods, W. A. Transition network grammars for natural language analysis. CACM, 1970, 13,
591-606.

Woods, W. A. An experimental parsing system for transition network grammars. In R. Rustin
(Ed.), Natural Language Proceaslng. New York: AlgorlthmlcsPress, 1973. Pp. 111-
154. (a)

Woods, W. A. Progress In natural language understanding: An application
geology. AFIPS Conference Proceedings, 42, 1973 National
Conference. Montvale, N. J.: AFIPS Press, 1973. Pp. 441-450. (b)

to lunar
Computer

Woods, W. A., & Kaplan, R. The lunar sciences natural language Information system. BBN
Rep. 2266, Bolt Beranek & Newman Inc., Cambridge, Mass., 1971.

Woods, W. A., Kaplan, R., & Nash-Webber, B. The Lunar Sciences Natural Language
Information System: Final report. BBN Rep. 2378, Bolt Beranek & Newman Inc.,
Cambridge, Mass., June 1972.

Yngve, V. Random generation of English sentences. 1961 International Conference on
Machine Translation of Languages and Applied Language Analysis. National
Physical Laboratory, Symposium No. 13. London: Her Majesty's Stationery Office,
1962. Pp. 66-80.

90 Natural Language

Abelson, Robert 65
ad hoc parsers 50
ad hoc representation 3
agreement 30
ALGOL 9
anaphoric references t;)5
application language 76
Artsouni, G. B. 6
ATN 3,6,28,30-33,34,36,42-44,64-

56,62,63,75
augmented transition network 32

BABEL 43
backtracking 26, 32, 37, 59
Bar-Hillel, Yehoshua 6, 8
BASEBALL 3, 9, 45-46
blackboard 26, 36
blocks world 42, 57
Bobrow, Daniel 5,47
Booth, A. Donald 6
bottom-up processing 27,36
Britten, D. H. V. 6
Burton, Richard 76

case 53, 61
case frame 4, 23
case grammar 20, 22-24, 42
causal chain 66
causal links 67
chart 28, 34-36
Chomsky, Noam 9,11,16
co-routining. 37
Codd, E. 64
combinatorial explosion 28
competence vs. performance 16
computational linguistics 1, 6, 63'
conceptual analyzer 62
conceptual dependency 4,43-44,61-62,

66-67
concordances 2
context-free grammar 6, 13'-14, 16, 18,

28,30,39,40,45

Index

context-sensitive grammar 6, 12-13, 16
control mechanisms 26
CONVERSE 3
cybernetics 6

DEACON 3
declarative representation of knowledge 4
deductive mechanism 3
deep structure 18, 32
demons 62
dependency grammar 40
derivation tree 14, 16, 17, 26, 32, 39, 54,

57
dictionary 6
discrimination net 43, 63

early NL programs 2-3,9, 26, 27, 45-50
ELIZA 3,26,27,48-50
ellipsis 78
embedding 30
expectations 5
extended discourse 44
extended grammar 16-24
extended grammar parsers 28

Fillmore, C. 22
finite-state transition diagram 30
formal grammar 11-15
formal languages 11 -15, 30
frame 5, 24, 67
Friedman, Joyce 34, 39
FSTD 30,31

generative grammar 16, 18
generative semantics 18
goal 65, 68, 70-71
G~dman,Nell 43,63
grammar 1, 6, 11-24, 25, 28, 30, 54, 58,

75
grammarless parsers 27, 28

•

11

Green, Bert 46
GSP 34-38
GUS 6

Halliday, Michael 20
hashing 49
HAWKEYE 77
Hendrix, Gary 76
heuristic 3, 27, 38, 42, 46, 48, 64, 57, 58,

69,60
human engineering 77
human problem solving 48

Ideational function 20
Inference 3, 8, 9, 24, 41, 45, 63, 62, 63
information retrieval 2, 46, 64, 76
Interllngua 7, 9, 61,62,63,66
INTERLISP 78
Interpersonal function 20
Interpretive semantics 18
IPL-V 45-46
Island driving 27

Kaplan, Ronald 28, 34
Katz-Postal hypothesis 18
Kay, Martin 34
Klein, Sheldon 40
knowledge-based systems 3
KRL 6

LADDER 76
lexicon 18
LIFER 6, 28, 29, 76-79
limited logic systems 3
Lindsay, Robert 45
LISP 9, 46,67, 62
IIst-processl.ng languages 45-60
logic 4
LUNAR 3, 33, 64-66

Index

Machlnese 7, 9, 51, 64
MARGIE 5,24, 43, 61-64, 67

91

mechanical translation 1, 2, 6-10, 39, 40,
44,46,61-63,63,66

MICRO-PLANNER 67-68
MIND 34,37
mood system 20
morpheme 17
multiple sources of knowledge 25, 59

named plan 73
natural language 1
nondetermlnism 32, 59
nonterminal symbols 11

obligatory transformations 1 7
Oettinger, Anthony G. 7
optional transformation 18

PAM 61,66,72-73
parallel processing 26, 32, 69
paraphrasing 2, 24, 40, 62, 63, 79
pafaplates 44, 63
PARRY 26
parser 54, 69, 67, 76
parsing 1, 11, 12, 14, 25-29, 46, 48, 50,

57,62
parsing strategies 26
pattern matching 27, 46-60
Petrick, S. 28
PHLlQAl 6
phonemes 17
phonological component 18
phrase marker 17,39
phrase-structure grammar 6, 12-16, 16-

17,28,29,62
plan 65, 69-70
PLANNER 67-58
pragmatics 20
predicate calculus 64, 68, 60
problem solving 47,57

92 Natural Language

procedural representation of knowledge 3,
52,57-58,62

procedural semantics 4
procedural/declarative controversy 4
production systems 62
productions 11
PROGRAMMAR 59, 77
PROTOSYNTHEX 3
pseudo-language 6

quantifier 54
query language 54
question answering 2, 45, 61, 67, 62
Quillian, Ross 3, 41

random text generation 6, 39
Raphael, Bertram 3, 46
recursive patt~rn matcher 25
recursive transition networks 31
regular grammar 14, 16, 30
Reifler, Erwin 7
representation of knowledge 1, 2-6, 7, 9,

23-44,52,57-58,61,65-70 '
representation· of knowledge ,39
rewrite rules 11, 28, 75
Rlchens, R. H. 6
Rieger, Chuck 62
Rlesbeck, Chris 62,67
ROBOT 5
RTN '30-32

SAD-SAM 3,9,28,45
SAM 5, 24, 43, 61, 65, 71..,72
Schank, Roger 5,9,23,43,61,66
schema 67 ' '.
script 5, 65, 67-69, 71
semantic component 18
semantic density 53
'semantic grammar 28, 76
semantic markers 59
semantic net 4, 23, 41,42, 6~

, semantic primitives 4,9,24,43, 51, 61,
65,66

semantics 1, 7, 50, 75
SHRDLU 3,21,26,28,42,67-60,77
Simmons, Robert 3, 42
SIR 3,9,27,46-47
SLIP 49
Slocum, J. 42
Smirnov-Troyansky, P. P. 6
SOPHIE 26, 28
speech understanding 1, 4, 26, 27, 33, 64,

65 '

SPEECHLIS ~3, 54
spelling correction 78
start symbol 1 2
stereotypes 52
story grammars 65
story understanding 5, ~ 1, 65
STUDENT 3, 9, 27, 47-48
styllstlcs 44
surface structure 18, 22, 39, 42
syntactic categories 11
syntactic component 1 8
syntax 1
systemic grammar 20-21, 68

template matching 27
templates 23, 44, 51, 52
terminal symbols 11
text generation 1, 9, 24, 33, 34, 37, 39-

44,52,63 ' .
text-based systems 3
textual function 20
theme 65, 70-71, 73
theorem prover 58
TLC 3
top-down processing 27, 65 I

transformational grammar 6, 9, 16-19, 20,
21,22,28,33,39,62

transformational grammar parsers 28
transformational rules '7-'8
transition trees 76
.transltlvlty system 20

,<
/

/

i

tree 34
Turing machine 12, 32

verb sense 43

Weaver, Warren 2, 6, 9, 51, 63
Welzenbaum, Joseph 48
Wilensky, Robert 72
Wilks, Yorick 9, 44, 51
Winograd, Terry 3, 5, 21, 28, 42, 57
:Wong, H. K. 43
Woods, William 3, 28, 30, 54
world knowledge 1, 4

Yngve, Victor 6, 39, 40

Index 93

~
\,/',-.J

\.

''\.

