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Khachian r S Algorithm for Linear Programming

Peter aacs and Laszlo Lovasz

Computer Science Department
Stanford University

Stanford, California 94305

Abstract.

L. G. Khachian's algorithm to check the solvability of a system

of linear ineQualities with integral coefficients is described. The

running time of the algorithm is polynomial in the number of digits

of the coefficients. It can be applied to solve linear programs in

polynomial time.
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L. G. Khachian [Doklady Akadernii Nauk SSSR, 1979, Vol. 244, No.5,

1093-1096J pUblished a polynomial-bounded algorithm to solve linear

programming. These are some notes on this paper. We have ignored

his considerations which concern the precision of real computations,

in order to make the underlying idea clearer, on the other hand, proofs

which are missing from his paper are given in an appendix.

Let

(1) a.x < b.
l l

(i = 1, ... , m ,
n

a. E Z , b. E Z)
l l

be a system of strict linear inequalities with integral coefficients. We

present an algorithm which decides whether or not (1) is solvable, and

yields a solution if it is.

Define

L = z= log (\aij\+l) + ~ log (\bi\+l) + log nm+l
i, j l

L is the space needed to state the problem.

The Algorithm.

We define a sequence and a sequence of symmetric

positive definite matrices Ao,Al , ••• recursively as follows.

L
~ = 2 I • Assume that is defined. Check if

is a solution of (1). If it is, stop. If not, pick any inequality

in (1) which is violated:

> b.
J.

and set

2



1 ~ai

~+l = xk - n+l
Ja~ ~ a.

~ ~

2

( ~ - n~l (~ai)·(~ai)T )~+l
n

= -2- T
n -1 a. ~a.

~ ~

(Note that the multiplication of vector ~ai with itself in the second

term results in an n X n matrix.)

In practice, we will compute only certain approximations of xk

and ~ by decimals of a certain precision. It can be shown that

approximations within exp(-lOnL) preserve the Validity of the following

theorem.

Theorem. If the algorithm stops, xk is a solution of (1). If the

algorithm does not stop in 6n2L steps, then (1) is not solvable.

The first assertion is, of course, just a repetition of the stopping

rule for the algorithm. To prove the crucial second statement, we shall

need a series of lemmas, along with a geometric description of What's

happening.

Let and A a positive definite matrix. Then

( T -1x-xo) A (x-xO) < 1

defines an ellipsoid E = (x,A) with center x. Let n
aER a f: 0 •

Then we shall denote by E
a

the ellipsoid (XO,A'), where

Xlo =
1 a

Xo - n+l A r:;-
'-J aTAa

3
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AI =
2n

2n -1

We shall denote the semi-ellipsoid

by ~ E
2 a

Let us remark (although this is not needed in the proof) that

geometrically this construction means the following. Take a hyperplane

ax = d, d < axa ' which is tangent to E at point y. Then

= A a

JaTAa

Now Ea will be the (unique) ellipsoid which touches the hyperplane

ax = d at y and intersects the hyperplane

ellipsoid as E.

in the same

So here came the lemmas. The first three are facts of number-

theoretic nature which probably are familiar to many people who have

investigated the complexity of algorithmic problems in linear algebra.

We use the notation Ix I = max x. ,
co i J.

Lemma 1. Every vertex v of the polyhedron

a.x < b.
J. J.

x > a

(i = 1, .•• , m)

satisfies Ivl < 2
L
jn , and its entries are rational numbers with denominat~r

co

at most 2
L •

Lemma 2. If (1) has a solution, then the volume of its solutions inside

the cube -nL
2

4



Lemma 3. SUppose that the system

-La.x < b. + 2
1. 1.

has a solution. Then

a.x < b.
1. 1.

has a solution.

(i = l, .•. ,m)

(i = l, ... ,m)

Lemma 4.

Lemma 5. ,

where

c(n)
= ( ~2 )(n-l)/2

n -l

n < e-(l/2(n+l))
n+l

and A(X) is the volume of the set X.

The proof of the theorem is quite easy now. Suppose that the

procedure does not stop after 2
k = 6n L steps, and yet (l) is solvable.

Then by Lemma 2, the set P of its solutions x inside EO has

,(p) > 2-nL . 41'- By Lemma , peEk' But by Lemma 5,

a contradiction.

If one would like to decide the solvability of a system of the form

(2) a.x < b.
1. 1.

(i = l, ... , n)

then we may consider instead the system

(i = l, ... ,n)

5



By Lemma 3, this is solvable iff (2) is solvable.

If we want to solve a linear programming problem

maximize

sUbject to

Tc x

Ax < b

x > 0

then consider the system of inequalities

.Ax < b

x > 0

y > 0

This is solvable iff the original program has a feasible solution and

a finite optimum, and for any solution (x,y) of this system, x is

an optimal solution of the program.

6



Proof of Lemma 1.

can be expressed as

Appendix

By Cramer's rule, each v.
1

v. == D./D
1 1

where D. and D are determinants whose entries are o , 1 , a .. or b. .
1 lJ 1

Hence D and D. are integers, and
1

\D\ > 1

ID\ < n (norms of row vectors)

and the same holds for the D. 1 s. This implies the assertion.
1

Proof of Lemma 2.

the polyhedron

a.x < b.
1 1

(4)
x > 0

We may assume that (1) has a solution Xo > o. So

(i == 1, •.. , m)

has an interior point. Since it contains no line, it also has a vertex

v == (Vl, .•• ,vn). By Lemma 1, we know that vi < 2
L/n < L2

LJ • It

follows that the polyhedron (4) has an interior point x == (~, ••• ,xn)

with L
x. < L2 J , and so the polytope

J

(5 )

a.x < b.
1 1

x > 0

(i == 1, .•. , m)

(j == 1, •.• ,n)

has an interior point. Hence, it has

7
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are not on a hYIlerplane. So (5) has volume at least

1 C1 :J-, det ...n.
Vo vl

Here, by Lemma 1, we get that

v.
l

=
1

-D u.
. l
l

where u. is an integer vector and D.
l l

det (1 ... 1)
v

l
v

n
=

1

Lis an integer < 2 In .

det (:~ ••• :: )

So

1
>~

-nL n> 2 .n

since the determinant in the second expression is a non-zero integer.

So the volume of the polytope (5) is at least 1 -nL n -nL
nl 2 n > 2 •

Proof of Lemma 3. For
nx E R , set

Let

g. (x) = a. x - b.
l l l

n
X o E R be arbitrary.

Claim 1. There exists an such that

(1)

and

(i = 1, ••• , m)

(2) The vectors span every other vector a. .
l

To prove the claim, it suffices to show that if Xo does not

satisfy (2) then we can find a vector ~ such that satisfies (1)

8



this at most m times we must obtain an xl satisfying both (1)

and (2).

Let, say gl (Xo)'·· ·,gk(XO) 2: 0, gk+l (XO),·· ·,gm (XO) < 0 •

Suppose that a~ (~> k) is not a linear combination of ~, .•• ,ak'

Then the system of linear equations

aiy :;;: 0

a y :;;: 1
~

(i:;;:l, ••• ,k)

is solvable. Let Yo be a solution and consider

where

t :;;: max[sER: sa.YO+g. < 0 (j:;;: k+l, •.• ,m)}
J J

t is finite, in fact t < -g
~

k+l < i < ill

Then by the choice of t,

:;;:

if

if

1 < i < k ,

and equality holds for at least one 1 < i < m. This proves the Claim.

Assume now that is such that

< b. + 2-L
l

(i :;;: l, ... ,m) " •

Let, say aixO 2: bi for i:;;: l, ••• ,k. Choose the labelling so that

al , ••• ,ar are linearly independent but ar+l"."~ are spanned by

them. By the Claim, we may assume that ~+l' .•. , an are also spanned

9



Now let z be a solution of the system of linear equations

a.z = b.
~ ~

(i = 1, .•. , r)

We show that z satisfies

a.z < b.
~ ~

for every 1 < i < m. We lmow that

a.
~

=
r
L:

j=l
!-..a.

J J

with some real numbers !-... In fact by Cramer! s rule we also lmow that
J

!-.. = D./D
J J

where D. and D are determinants formed by some entries of the vectors
J

a.
~

and hence they are integers with absolute value less than L
2 In . Now

D(a.z -b.) =
~ ~

=

r
6 D.a.z - Db.

j=l J J ~

r
L: D.b. - Db.

j=l J J ~

To estimate the right hand side, use that

r
6 D. (a ,xo - Q. (xo)) - D(ai Xo - Q(xo))

j=l J J J

r
= D.Q.(XO)- 6 D.Q.(x

O
)

1. . 1 J J
J =

r
< D·2-

L + ~ \D.\2-
L < 1

. 1 JJ =

and since the left hand side is an integer,

r
~ D.b. - Db. < 0

j=l J J 1.

which proves the assertion.

10
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elli~soid is the unit s~here about 0) and that

Proof of Lemma 4. We may assume that X o = 0 , A = I (i.e., the

T
a = (-1,0, ••. ,0) ,

since the contents of the lemma is invariant under affine transformations

of the s~ace.

Then

and

A' = diag
2

n
'-2-'···'

n -1
2 )n

-2-
n -1

su~~ose

that

1
XE- E

2 a
Then T

1 > Sl = -a x > 0 • We have to' show

But

=

=

T '-1 2 TAI-l ,+ ,TA,-lx 'x A x - x Xo Xo 0

2n -1 2 + 2n+2 1:2 _ 2 n+1 1
-2- x 2 ~1 2 Sl + ""2

n n n n

Proof of Lemma 5 • We may assume again that E is the unit s~here

about 0 Tand a = (1,0, ... ,0) , since affine transformations do not

change the ~ro~ortion of volumes. By a well-known formula,

~det AI
= • ;'(E)

~det A
= ~detA' ;'(E)

=
n

n+l (
n2 )(n-l) /2

-2- . ;'(E)
n -1

11
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To estimate this factor use that

and

2
n
2n -1

2
< e1/(n -1)

n
n+1

= 1 - n~l < e-1/(n+1)

SUbstituting these bounds we get

c(n) < e-1/(2(n+1))
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