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Khachian's Algorithm for ILinhear Programming

Peter Gdecs and Laszlo Lovasz

Computer Science Department
Stanford University
Stanford, California 94305

Abstract,

L. G. Khachian's algorithm to check the solvability of a system
of linear inequalities with integral coefficients is described. The
running time of the algorithm is polynomial in the number of digits
of the coefficients. It can be applied to solve linear programs in

pclynomial time.
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L. G. Khachian [Doklady Akademii Nauk SSSR, 1979, Vol. 2Lk, No. 5,
1093-1096] published a polynomial-bounded algorithm to solve linear
programuing. These are some notes on this paper. We have ignored
his considerationg which concern the precision of real computations,
in order to make the underlying idea clearer, con the other hand, proofs
which are missing from his paper are given in an appendix.

Let
. n
(l) &ix < bi (l‘:l,...;m, aiEZ 3 biEZ)
be a gystem of strict linear inéqualities with integral coefficients. We
present an algorithm which decides whether or not (1) is solvable, and

ylelds a solution if it is.
Define
L = 2. log (laijl+'l) + 2 log (1bil*'l) + log nmtl
i,J i

T is the space needed to state the problem.

The Algorithm,

We define a sequence xo,xl,...e Rn and a sequence of symmetric
positive definite matrices AO,A.,... recursively as follows.
L .o .
X = 0, AO = 2°T . Assume that (xk?Ak> is defined. Check if X,
is a solution of (1), 1If it is, stop. If not, pick any inequality

in (1) which is violated:
8%z Py o

and set



Kpe1 T Fx T m1

n° o (ag)e(aa))?
B = 5 | AT T T e .

(Note that the multiplication of vector Akai with itself in the second
term results in an nyxn matrix,)

In practice, we will compute only certain approximations of X
and Ak by decimals of a certain precision. It can be shown that

approximations within exp(-lOnL) preserve the validity of the following

theorem,

Theorem,  If the algorithm stops, x_ 1s a solution of (1), 1If the

algorithm does not stop in 6n°L steps, then (1) is not solvable,

The first assertion 1ls, of course, Just a repetition of the stopping
rule for the algorithm, To prove the crucial second statement, we shall

need a serles of lemmas, along with a geometric description of what's

happening.

Let xO‘an and A a positive definite matrix., Then
(x—xo)TA-l(x-xO) < 1

defines an ellipsoid E = (x,A) with center x . Iet aeR , a#£ 0.

Then we shall denote by E- the ellipsoid (xé,A') » Where




n PR (Aa)(Aa)T
ng-l el aTAa

We shall denote the semi-ellipsocid

EN {x: (x—xo)a < 0}

1
Let us remark (although this is not needed in the proof) that
geometrically this construction means the following. Take a hyperplane

ax =d, d< Xy which is tangent to E at point ¥y . Then

a
Va:Aa

Now E° will be the (unique) ellipsoid which touches the hyperplane

ax = d al vy and intersects the hyperplane ax = Xy in the same
ellipsoid as E .

30 here came the lemmas. The first three are facts of number-
theoretic nature which probably are familiar to many people who have
investigated the complexity of algorithmic problems in linear algebra.
We use the notation \x]m = m?x X lxlg = Z] x? .

Lemma 1. Bvery vertex v of the polyhedren

aix S bl <i = l,...,m)
x > 0
. A L X . .
satisfies [vlm < 27/n, and its entries are rational numbers with denominator

at most EL .

Lemma 2. If (1) has a sclution, then the volume of its solutions inside

the cube |xi\ 5_2L is at least 2 7L |



TLemma 3. Suppose that the system

-L .
+ = s aa
a, X < bi 2 (i =1, sI)
has a sclution. Then
2,x < b, (1 = 140.,m)
has a solution.
1 a
Lemma U4, > Ea CE .
Lemma 5. AME® = c(nA(E) ,
where,
2 N (1/2(2+1))
n n -{1l/2(n+1l
C(n) = ( 5 —Iﬁ < e .
n -1

and A(X) dis the volume of the set X .

The proof of the theorem is quite casy now. Suppose that the
procedure does not stop after k = 6n2L steps, and yet (1) is solvable.
Then by Lemma 2, the set P of its solutions x inside Eo has

nL

AMP) >2 7. By Lemma L, Pc E_ . But by Lema 5,

ME}:) < e-(k/E(n+l)) }‘(Eo) < e-(k/E(n+l)) ;2 ,-nL

H

a contradicticn.

If one would like to decide the solvability of a system of the form

(2) a.x < b. (l = l,---,n)
then we mey consider instead the system

(3) re¥lax < r2Mle 1 (i=1,000,n) .



By Lemma 3, this is solvable iff (2) is solvable.

If we want to solve a linear programming problem

maximize ch
subject to Ax < D
x > 0

then consider the system of inequalities

oIx = bTy
A < b
x > 0
ATy > ¢
vy > 0 .

This is solvable iff the original program has a feasible sclution
a finite optimum, and for any solution (x,y) of this system, x

an optimal sclution of the program.

and

is



Appendix

Proof of Lemma 1. et v = (vl,...,vn) . By Cramer's rule,

can be expressed as

Vi = Di/D

2

where Di and D are determinants whose entries are 0 , 1,

Hence D and Di are
bl > 1,
o} < TT

< EL/nm <

and the same holds for the Di‘s.

Proof of Lemma 2. We

the polyhedron

(L)

has an interior point.

integers, and

(norms of row vectors)

EL/n s

may assume that (1) has a solution x

This implies the assertion,

0]

Since it contains no line, it also has

each v.
1

a.. Or
1d

>0 . 8o

a vertex

L L
v = (vl,...,vn) . By Iemma 1, we know that v, < 27/n < 127 . It

follows that the polyhedron (L) has an interior point x = (xl

with xj < LQLJ » and so the polytope

a.x < b,

i - i

(5) x > 0
L
x, < Lo

hag an interior point.

(i

(]

Hence, it has ntl wvertices v.,...,V
0 n

n

Lyean,m)

1,...50)

,..;,xn)

which



are not on a hyperplane. So (5) has volume at least

1 1 1

ﬁ%»det PR .
) v. V v
0 1 n

Here, by Lemma 1, we get that

v, = —u
i - D, i’
i

1 1

where ui is an integer vector and Di is an integer < EL/n . SO

1 1 1 Dl Drl
det v SR = ‘D [ [D l det w "' u
1 n 1V i7n 1 n
1 -n, _n
> > 2 en
= o Te. o7 =

since the determinant in the second expression is a non-zero integer.

. 1 . _
3o the volume of the polytope (5) is at least AT 2 nLnn > 2 nL .
Proof of Lemma 3. For xazRIl , set
Qi(X) = aix - bi .
n .
Let X € R~ be arbitrary.
Claim 1. There exists an xleR” such that
(1) Qi(xl) < max(0, Qi(xo)) (1 =15e0s,m)
and
(2) The vectcrs {ai: Qi(xl) > 0} span every other vector By

To prove the claim, it suffices toc show that 1f X does not

satisfy (2) then we can find a vector x, such that x; satisfies (1)

1
and Gi(xl) >0 holds, for more indices i than Qi(xo) > 0 . Repeating



this at most m times we must obtain an x, satisfying both (1)
and {2).
Let, say Ql(xo),...,gk(xo) >0, Qk+l(xo),...,%m(xo) <0 .

Suppose that a, (v > k) is not a linear combination of Agreeerfy .

Then the system of linear equations

a.y = 9] (i:l,...,k)

ay:l
1s solvable. Let Yo be a solution and consider

X = Xty o

where

t = max{seR: sajyoi-gj <0 (J=kl,...om)}

t is finite, in fact t < -Qv .

Then by the choice of t ,

= Qi(xo) if 1<i<k ,

tagyy + 9, (%)

VAN

0 if kl<i<m ,

and equality holds for at least one 1 < i <m . This proves the Claim.

Assume now that XO is such that

-L .
2, %X, < bi + 2 (i=1,...m) ...

Let, say a,x

:%0 > bi for i=1,.,.;k . Choose the labelling sc that

apreees8 are linearly independent but 342 s 8TE spanned by
them. By the Claim, we may assume that By qrrer @y are also spanned

by al,...,ar .



Now let 2z be a sclution of the system of linear eguations
8,2 = b, (1 =1,..057) .

i

We show that 2z satisfies

for every 1 <i1i<m. We know that

5
a., = A.a.
1 j=1 Jdd
with some real numbers kj . In fact by Cramer's rule we also know that
A, = D./D
J J/ ’

where Dj end D are determinants formed by some entries of the wvectors

2y and hence they are integers with absclute value less than EL/n . Now

r
D(a;z -b;) = j‘?l D@z - Db,

Ir
= 3 D.b. - Db,

Tc estimate the right hand side, use that

r
2, D.b. - Db, =

r
j=1 77 o d=

) Dj(ajxo-gj(xo)) - D(aixO-Q(xO )

r
= D8, (x.) - D.6_(x.)
170 5-1 J 30

AN
v
o
+
™

D2 < 1,
j=1

and since the left hand side is an integer,

r
2 Db, -Db. < O ,
j=1 29d 7

which proves the assertion.

10



Proof of Lemma 4. We may assume that Xy = 0, A=T1 (i.e., the

ellipsoid is the unit sphere about O ) and that a (-l,O,...,O)T ’
since the contents of the lemma is invariant under affine transformations

of the space.

Then

and
n° n® n°
A' = dia.g ) 3 5 ) - 2
(n+1) n -1 n -1
1 T .
Suppose xez E . Then |x12 <1, 1>g =-ax>0. Wehave to show
that
Toa-l,
(x—xo) A (x—xo) < 1 .,
But
S PN O s N 5% R S I
(x-xo) A (x—xo) = XA Tx-20A TX)F XA TXE)
3 ne—l x2 + 2nt2 2 5 nt+1 s 1
= T3 2 51 2 517 3
n n n n
ng—l 2 Zn+2
= n2 (X -l) + n—2 gl(gl-l) + 1 S 1.

Proof of Lemma 5. We may assume again that E is the unit sphere

about O and a = (l,O,,..,O)T s since affine transformations do not

change the proporticn of volumes. By a well-known formula,

S VAt AL gy = Wfaeta’ ME
(E™) N (E) (E)

2 \(n-1)/2
n—ni(‘;—) A(E) = e(m)enE) .

n -1

11



To estimate this factor use that

2 2
g = 1+ —éh— < el/(n -1)
n -1 n -1
and
n 1 -1/(n+1)
ntl L n+l < ¢ ‘

Substituting these bounds we get

c(n) < e-l/(E(n+l))



