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Abstract.
Gven a set S of n distinct points {(Xi’yi)losi<n}’

the convex hull problemis to deternmine the vertices of the convex

hull H(S) . a1l the known algorithns for solving this problem have
a worst-case running time of cnlog n or higher, and enploy only

uadratic tests, i.e., tests of the form
q f(XO’yO’Xl’yl"“’xn-l’ 'Ynl)’

with f being any polynom al of degree not exceeding 2 . |, this

paper, we show that any algorithmin the quadratic decision-tree nodel

nust make cn log n tests for some input.

Keywor ds: conplexity, convex hull, decision tree, |ower bound,
quadratic decision-tree model, quadratic test.
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1. [ ntroduction.

Let S be a set of n distinct points in the plane. The convex

hull H(S), is the intersection of all convex sets which contain s .

It is well known (see e.g. [2]) that H(S) is a convex polygon with

all of its verticesinS. Infact, H.(S) , the set of vertices of

o
H(S) , is exactly {E\Ee S, D is not a convex conbi nationf/ of the

points in s-{;}} . W are interested in the follow ng convex hull problem

Gven a set S of n distinct points ;’;1"“’; in the plane,

nl
determne the set of integers Vg = (i lFieHO(s)} , I'n 1972, G aham [1]
gave a o(n log n) -tirr.ei/ algorithm for solving this problem  Since
then, many other algorithms have been proposed (see Shamps [2] for sone

of them), all of which also have a worst-case running time cn log n

or nore. An interesting open question is whether better algorithns

exist.  The purpose of this paper is to show that, in the quadratic

decision-tree nmodel, any algorithm for the convex hull problem nust use

at least cn log n operations in the worst case.

W remark that if, in addition, the set VS is also to be ordered

fnd

so that 7. ,r. ,. .., are the vertices of HS) in
1 1 1
1 2 t

consecutive cyclic order, then the sorting of n nunbers can be reduced

as il, i2,. o it

* . : o : - o -
x/ A point p is a convex conbination of the pointes Ty Tosyeees T i f

there exist u, >0 (i =1,2,...,m) such that 2 , =1 and
|
5 = Z “iFi :
|

Y W use 6(g(n)) to denote any function f(n) with the property that

clg(n) < f(n) < czg(n) for some positive constants c., c. and for

1’72
all sufficiently large n .



to essentially this problem (see [2]). The cn log n |ower bound for
sorting in rather general nodels is then inmediately a |ower bound to
that version of the convex hull problemi[2].

Note that we have restricted the input points to be all distinct.
This enables us to avoid choosing anong several possible definitions for
Vg when some of the FJ. may be identical. The lower bound derived in

this paper of course remains true independent of the choice,

In the quadratic decision-tree nodel, algorithms are ternary decision

trees enploying quadratic tests, i.e., tests of the form™" f(zl,zg,, CnZ )

m

with f being any quadratic polynomal of the input numbers 2 (see

Section 2 for nore details). To the author's know edge, all the known

convex hull algorithns can be properly nodeled as quadratic decision trees.

For exanple, several algorithns (including that of Gaham's [1]) use
basically primtive operations of the follow ng types (p1)-(p3). Let
?i = (x,y;), 0 <i <n, be the input points. (Pl) linear test of

the form" Z 8%, + Zbiyi +c: 0" (P2) generation of a new point
| i

D = z aiFi ; (P3) for any existing points (input points or those
|

generated by (P2)) o, , 52, 1’?5, atest "Is p, lying to the left of,

to the right of, or on the directed line from 52 to 53 ?" Mathematically,

(P3) is expressed as " A(gl’ﬁgﬁg : 0" where 4 is defined by

Pp; Ppp 1



with i& = (p;1> p;,) . As each f& in (P3) is a linear conbination of
the input points, it is easy to verify that tests of the type (P1) or
(P3) are quadratic tests. In these algorithns, operations of the type
(p2) are used only occasionally to generate points interior to the
convex hull by taking convex conbinations of input points. Thus, the

running time of the algorithms is properly accounted for if one only

counts quadratic tests.



2. The Quadratic Decision-Tree Mbdel.

Consi der the convex hull problemfor a set S of n distinct input
poi nt's :?i = (xi,yi) , O0<i<n. AnalgorithmT is a ternary
decision tree, with each internal node containing a quadratic test
(X Vo %ys¥ys . . +s%,_15¥,_7): O where f may be any polynonial of
degree at nmost 2 . For any given input set S, the algorithmstarts
at the root, perfornmng tests and branching accordingly until a |eaf
is reached, where the algorithm nust be able to determine the set v
W\ denote by cost(T) the maxi num nunber of tests made for any input.
The conplexity C(n) is defined to be the mnimmof cost(T) for any
such algorithmT .

The main result of this paper is the following theorem

Theorem 1. There exists a constant ¢ > O such that, for all n >3,

C(n) > cn log, n .



3. Proof of Theorem 1.

Let n > 3 be an integer, and T any algorithmfor the convex hull
problem with 2n input points. W shall prove that there are at |east
nl  distinct leaves in T . This will inply Theoreml by the follow ng
argument. The height of T, i.e., cost(T) , then nust be at |east
1og5(nz) . This proves C(n) > 1og5((n/2):) > constant x n log, n
for all even n > 6, which impliesf/ C(n) > c(2Ln/2] ) > constant x
nl 0g, N for all n>6, Gbserving that ¢n) > 0 for ne {3,4,5} ,
we can obtain Theorem 1 by choosing ¢ suitably.

The plan is as follows. Let o be any pernutation of
(n,n+tl, . . . . 2n-1), i.e., a one-to-one mapping from{n, ntl, ..., 2n-1}
onto itself. W shall associate with ¢ a |eaf LrAF(o) of T , and
derive sone constraints on the inputs that lead to LEAF(a) . W then
show that LEAF(c) # LEAF(c') for any distinct o, o' . Thus, there

are at least n! |eaves.

3.1 Defining LEAF(a)

For each 0 <j <n, let

and
o= | ve (I/4,3/8)3 »

with €, > 0 to be specified |ater.

Y C(n) is a non-decreasing function of n , since any algorithmfor n+l
input points yields an algorithmof the same cost for n 1nput points

. — l — - Y
by setting r == (rj+r + . et )



Let us regard any input S = {rgr Tyr o Ty l} as an el enent

in E4n , the kn-dimensional Euclidean space, and wite it either as

- -

r = (rO’rl""’rEn-l> or r = (XO’yO’Xl’yl’ ) "XEn-l’an-l)'Defi ne

I, to be the set of inputs r = (rO,Fl,...,an 1) Wwhich satisfy

rye Q. and o(nty) = )\J.rj + (l-)\m.)r(jﬂ_) modn Yith A5 eAJ. for all

J
0<j<n. i i T 3ToyeeesT

j<n Informal ly, each input in I, has TgsTyseees L 1 @S t he
vertices of an approximte regular n-gon, and I«'U(mj) on the line

connecti ng rJ. and r(j+l) mod n

Not e t hat A(ro(mj )2 r(J + ) modn

for each 0 <j < n (see Figure 1).

,?J.) =0 for all re1 , because of

the el ementary identity a(yp+ (1-u)p', ', B) =0 .

Choose an €, > 0 so that the follow ng properties are true for any

(rO,rl,.. "rEn-l) eI_.

Property I. Al the 2n points I«'J. are distinct.
Property I1. HO(S) = {rgprp et 1.
Property Il1l. If a point p is a convex conbination of ;O’;l""’;n—l ,

then ap, r w Ty <0 forall O<j<n.

(j + ) rmod

—_ —_—

Property IV. If 0<t#]) <n, then A(rc(n+£)’r(,j+l)modn’rj) £ 0.

It is |ntu|t|vely-/ obvious that these properties are satisfied provided

t hat e, >0 is small enough. A proof that such an €, exists wll be

given in the Appendi x.

*/
~ Keep in nind that the geonetric interpretation of A(%’E'EB) is the

signed "area" of the triangle 515255 , Where the sign is determned by
the orientation of 5’1, 1'52, 53 ("plus" if counterclockw se).
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Let Q) = QX @ X oo x Qg XAy XAy xoeoxh g One can regard

any input rel as, alternatively, an element gqeQ_. This establishes

a
a one-to-one correspondence between the elenents of |, and the elenents
of q_ . For any function f on Elm, et us denote by f[c] the
. . . , [o]
function on q_induced by f , i.e. R C IS T RUOPE SRS SNRPRNURS WD

is equal to f(XO’yO’X'.L’yl’ “"x2n-l’y2n—l> with

Folmeg) = N3 E(30) moan B Vo(meg) = A3¥5 T (22y)¥(5i1) nodn

for O<j<n. dearly, if f is a polynomial, SO isS , in

whi ch case we shall regard f[c] as defined over the whole B .

Lemma 1. There exists a leaf ¢, and a non-enpty open set Q' c Qg

0

such that all inputs qge @ wWll lead to £y

Proof . For each leaf s, denote by A(1) the set of inputs in Qg

that lead to ¢. Let L be the set of leaves 7 with AR # 0 .
Cearly,

W * fgL M)

Each A(1) can be witten as q_nB(z) , where

_ n, fol, [o] (o] (o]
B(l) - {q ‘ qEEB > fz,l(q)—o’ v ff;al(q')ﬂ gnl-\ 1(q) >O) o o . ,gf,,bf(q)>o} .
(1)

. [o] o] . . )

The functions ff P8y are polynomals induced by the quadratic
) )
pol ynom al s fz i 9, j used at internal nodes along the path from the
2 2

(@) =0, ggfg(q) >0 in (1)

may be trivial in that they are satisfied by all quBn. Ve claimthat,

. 1
root to ¢ . Some of the constraints fggi
)

after removing the trivial constraints fromthe formulas in (1), there is



sone B(zo) (zOeL) that is defined only by inequalities. Qherw se,
all B(R) (f£eL) would be of nmeasure zero, inplying that the open set

Q = UA(R cuB(L) is of neasure zero, which is inpossible.
9 ety feL

Cearly A(2.) = QﬂB(lzo) is open and non-enpty. The lema follows

o)
by choosing q' = A(/ZO) . O

Let us choose a leaf ¢, as in Lenmma 1, call it LEAF(0) and

0
denote the open set q'as g . Now every input set S = {rg Tyreeerrs 13
corresponding to an input in Q has Vg = {0,1,...,n-1} (by

-

Property 11). It follows that all the input sets S = {ro,rl,...,rgn 1}

that |lead to LEAF(o) have VS = {0,1,...,n-1} .

3.2 Constraints on the Inputs Leading to LEAF(o).

Let the set of constraints on the inputs |eading to LEAF(o) be

£ (K Yoo Xpp Ty oe 0¥ 1oV ) = O tsica, (@)

and

1<

IN
o
o

gJ <X0J yo) Xl) yl) LA "XEn-l’ yen_l) > O
By the definition of @', we have, for each 1 <i < a,

f-gc](q) = 0 for all qe Q) .

The next | emma then inplies that each £, can be witten as a linear

-

combi nation of (¥

To(n+d) ? T(5+1) modn * T3) » 0 £ 3 < n . To simplify

5 7 )

notations, we shall wite aA[r,o0,3] for A<r0(n+j>’r(j+l)modn’ ;

fromnow on. Keep in mind that alr,0,j] = 0 for all rel .

Lenme 2. Let f(xg»¥y%s¥ps «eesXy 15¥,, 1) be a polynonial of at
most degree 2 . |f f[c](q) =0 for all qe QL t hen
f = 2 g.alr,0,3] for sone constants g, .

O<j <n J

10



Pr oof . Wite

f = Z .(].-)X X . Z (2) .
Ogi_<_j<?11‘j o(n+i) o(nt+j) +O£i,,j<n 81 3 0(n+1)yc(n+j)
+ Z (5) . N b(l)
O<i <j <1H Yo(mi)Vo(mg) * o<JZ<n j ontd) J( R
(@)
t O<§<n bj yd(n+j)tj(xo’yo,"’an_l,yn_l)
d(XO’yO’ .. "Xn-l’yn—l) ’ ()

wher e T tj are linear functions and d a polynonmi al of degree at
nost 2 .

As f[c](q) = 0 for all qe Q. , we have

= 0 (5)

for all. 0 <i <j <n. W can also calculate from (4) to obtain

( Ay 0y Xy Gy, ) a2 X))
v ol Oy ) 03y ) o) 0y v ) i 1<,
o - o ©
za(i)(xi“xi+1)2 ¥ 2a§§)(xi-xi+l)(yi-yi+l)
\ (5)(y y1+1) if i=3,

where we agree that X =Xy, ¥, = yO in the above equation. 1t is easy

to see that, for (5) and (6) to be consistent for all qe Q. » One nust have



) _ g for all i, 3,k . (7)

Simlarly, for all ge Q' , one has from(4) and (7)

[o]
df (1)
0 = 8)\3 = bj (xj~x(j+l)modn)sj(XO""’yn-l)

(@)
F Y (541  moan) 5 o2 e o pg)

for each 0 <j <n . This inplies the existence of constants & such
t hat
(1) =
bj Sj (XO"“’yn—l) = gj(y( j+1) modn -yj) ’
and ©
(2) = -
D77t 5 (Xgp e eesyy ) = §j(x(j+1) modn ~ *3)

Formul as (4), (7) and (8) lead to

f = 2

o<t <n 3350t W+ ) modn Y5 “Vo(arg) (g1 moan =75

+ d(xo’ yo’ L ) xn_l’ yn_l)

.= L §J-A[I')Oyj] + dO(XO’yO""’Xn-—l’yn—l> ’

where dO(XO’ Io? - - "xn-l’yn—l) d(XO’yO’ .. "Xn-l’yn—l)

0<j<n (341)moans =Y (3+1) moan¥y) .

Si nce el O"J(q) = 0 and A[r,o0,j] = 0 for all qe Qy , We nust have

do(xo,yo,...,xn_l,yn_l) identically zero. This proves the lemma. O

12



Ve now state wi thout proof an elementary fact, to be used in the
proof of Lemma 3 as well as in the Appendix. Tet 5’,5',5",51,52, 0 **’En
be Points in the plane.

Fact 1. 1If P z xii')'i With 2y =1, then
<n

<i
ppop'sp") = L aa(pPtsP")

Lenma 3. For any input r = (;O’;l"“’;en 1) € Elm that leads to

LEAF(0) |, Alr,0,3] =0 for all 0< j<n.

Proof . By Lemma 2, the constraints (2) and (3) on inputs leading to

LEAF(oc) can be witten as

O<jZ:<n §ijA[r:g;J'] = 0 I = 1’2)"0}8' ’ (9)
and
g.(r) > 0 i = 1,2,...,b , (10)

1

wher e g5 are constants.

[f the rank of the a by n matrix (gij) is n, then the
constraints in (9) force all aAlr,o,j]= 0 , and the lemma is true.
W thus assume that the rank of (gij) is less than n, in which
case there exist a non-enpty Jc {0,1,...,n-1} and constants M3
such that (9) is equivalent to

Mrsoi] = X, alr, 0, 3] for ie {0,1;...,0-1}-J . (9)!
jed J

13



Let r = (rgry5...5r, ;) be any input in 1 . V€ shall construct
an input r'-= (FB,F},...,FEH 1) SO that constraints (9), (10) are
satisfied but H(S") # {rgpris-eeor) 13 Where §' = {ro,ri,..ry 4}
Thus the input set s' leads to LEAF(a) but VS‘¥ {0,1,...50-1} ,

which is a contradiction. The proof of the lemma is then conplete.

For each 0 <j <n, let é'j be a point so that

- —

Let 5 > 0 be a smal|l number to be specified. Define
5/A(ei’ I.(i+l)modn’ ri) T ied
B, = (12)
(5 jE;rnij)/ A(ei, r(i+l) mod n? ri) if ie {0y1,...,0-1}-J .
Let r' = (r6’£i7 ' e.'g$, l) ’ wher e
rt o= T for 0<i<n ,
(13)
L Fotmrg) =@ Tomy) * 5% for 0<a<n.

Choose 3 > 0 small enough so that all ;i are distinct and that all the
inequalities in (10) are satisfied for r*. To show that all constraints
in(9) are satisfied, we need only check that all. equations in (9)' are

true for r*. For each 0 <i < n, we have

14



- - o~ —

A((l'ai)ro(n+i) TBies *(i+1) mod n’ T3)

Alr',0,1]

—_

(1-B5)alr, 055 + BiA(e:i.’ T(i+1) modn’ r;)

- —

B85 5 T 51y modn ? ¥1) 2

1]

where we have used Fact 1 and the equalities A[r,0,i] = 0 . FoOr jeJ ,
this gives alr',0,j] = 8.For i « {0,1,...,n-1}-J , we have from (14)
and (12)

5 2 M
jed

Alr',o,i]

1J
= Z/ m. .A[I", 0’j]
Jed 1
This proves that r' satisfies (9)'.

Ve have proved that r', defined by (13), satisfies constraints (9)

and (10). To finish the proof of Lemma 3, it remains to show that

Hy(8') # {?6,5'i,...,£'r'1 1} - Let jeg . If H(s') = {Fé,?i,...,?r'l 1}
t hen ;c'i(n+j) nust be a convex combination of F}Of.' o ";ﬁ-l , or
equivalently, a convex conbination of ;0' ;‘1""’;n-l (since ;i = ’I'
for 0 <i <n). By Property IIl, this inplies

-" - —
A(ro(n+j) ? I‘(‘j+j]_) modn’ rj) < 0.

"But, repeating the derivation of (14), we obtain

= - — :
A(ro(n+‘j)’r(j+:|_)modn" rj) =5 >0

which is a contradiction. This proves Ho(sv) # {rc')’ri""’rfl 1} and

the lemma. O

15



3.3 Conpl eting the Proof.

Lemma4. If o# o', then LEAF(a) # LEAF(c') .

Pr oof . Choose 0 < ¢ # ) < n such that o(ntj) = o' (n+g) . Let

- -

(ro,rl,...,an_l) eI, be any input leading to LEAF(c') . If

LEAF(a) = LEAF(@ , then by Lemma 3, we have

A(rc(n+j)’r(j+l) mod n ’ rj) =0
i.e.,

A(ra'(nﬂl) ? r(j+l) mod n’ rj) =0
But this contradicts Property 1v for I,, , O

W have demonstrated the existence of n: leaves in the algorithmT ,

This conpl etes the proof of Theorem 1,

16



4.  Remarks

W have proved a cn log n | ower bound for the convex hull problem
in a reasonably general nodel, which includes all the known algorithns.
This seens to be a rare instance, in which a non-trivial |ower bound is
obtai ned by exploiting the properties of quadratic tests explicitly.
W remark that quadratic or high order tests are needed to solve the
convex hull problem In fact, there can not be any decision tree algorithm
for finding convex hulls that only use linear tests, This can be seen
fromthe fact that the set of equality constraints at LEAF(a) nust not
be linear equations (according to Lemma 2).

It remains an open probl em whet her decision trees of height o(n log n)
exi st when higﬁ order polynonials are permitted in the tests. V& conjecture
not, even if no restriction is put on the maxi mum degree of the polynomals

al | owed.

17



Appendi x. A Proof for the Existence of €,

In this appendix, we will prove that there exists an e > 0 such

that Properties I-1V are true for all (ro,rl,“.,rgn l)e I, - See
Section 3.1 for termnology. Renenber that n > 3.

Let Fg)> = ( cos gﬂi, sin 24 \ for 0 <j <n . For any

J n nJ -

vector ¥ = (wu), let ||¥v| = wo+u- . W need to show the existence
of an e > 0 such that Properties I-1V are true for all (r,,ry,, %o, 1)
satisfying the follow ng conditions

H; -;(O)HE < € for 0<i<n (AL)

J-"1 n = ?

and, for each 0< 3<n,

- — -

= A.r. Hl-r.)r

r“(n"‘j) 3 3’7 (3+1) modn for some Xje (I/%, 3/4%) . (22)

Ve need the follow ng fact.

Fact 2. Let 0 <i,j<n and if¢ (j, (jtl)modn}.Then

2(0) | 2(0) ~(0)
My T ymoan? Ty SO
Proof . Let 6 = 2x/n .  Then
cos 10 sin ie 1
=(0) = =(0) 2(0)y _ . - o
A(ri T(3+1) modn’ I‘J, ) = det cos (j*l)e sin (j*l)e 1
coSs jo sin je 1
cos ie sin ie 1 cos jo =-sin je O
= det cos (j+l)e sin(j+l)e 1 sin je6 cos jo O
cos je sin je 1 0 0 1
-

18



cos (i-j)e sin (i-j)e 1
= det cOoS © sin e 1

1 0 1

(sin ¢)(cos (i-j)o -1) - (sin (i-3)8)(cos Q1)

. . 2
(2 sinécosz)(-Z(sin-lé—J@) )

+ 2 sin{ £< o) cos 1—"19)23in2g
2 2 2

2 .. 2
.9 i-] o i-j
h(s:me) (sm == O) (- cot§+ cot(——g—G))

Using the properties of cot and the facts 0 < i,j<n, i¢{j, (§+1) modn}

I

one can show that

i-J
cot( 5 G)

cot((—i——néj-lz)

cot gir
n

IA

14
< cot;l—

= ’L’d’u%

2 o 2
Note also that (sin —g-) (sin(gé—JG)) >0 . Fact 2 follows easily. O

(oserving Fact 2 and the continuity property of the function a, we

can choose a sufficiently small S 0 such that, if TG eees T

satisfy (Al), then the following conditions are true.

19



(iy all F.l(o <i < n) are distinct,

(ii) for 0<i,3<n and if {j, (j+1)modn} , a(r;, ;(j+l)modn’ij:

rEn-l)
that satisfies (Al) and (A2) nust have Properties I-1V. W shall freely

Ve will now prove that, for this choice of €, » any (ro,;l, . oo

use Fact 1 (in Section 3.2) in the ensuing argunents.

Property IV. Let 0 <z43<n. Then,

- - —

AT (nrg) T prr)modn T3 = 22T T(5i1) moan? Ty)

— -

()8 g1y moan? T(j + ) modn )

< 0 ,

because of condition (ii), the fact n >3, and the fact both VK (l-x”

are positive. This verifies Property IV.

—

Property I.  The points rO,Fl,...,Fn ; are distinct by condition (i).
Property 1V, together with the equalities A(rg(nﬂ.), r(j+l)modn’ rj) =0
for O<j<n, ensures that the points roT qseeerly  ArE all
distinct. That, for each 0 <j <n, ?0(n+j) is distinct from all
ro»pTyseeesT, 1 » follows fromthe fact T o (n+3) # T Flil)modn

and Property IV. This verifies Property 1.

Property 1I1. Because of (42), one has HO(S)_C {ro,rl,...,rn l} . Ve

now claimthat each ?ieHO(S), 0<i <n, Qherwise, we can wite

20
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T ¥ 2 bl
| i+17 (i +l) modn 0<ji<n i3
jfi, (i+l)modn
for sone by > 0 and ? by = 1. Asr,# T(1+1) mod n by condition (i),
at |east sone by >0 withj #£i, (i+1)modn . This, together wth
condition (ii), leads to
b=; 2 T(341) modn’ 1) T o5§<n B35 T(501) moan Tr)
j#1i, (itl) modn
< 0
But this is inpossible as A(Fi, ;(i+1) nod 0’ Fi) should be 0 . Thus,
every I:i nust be in HO(S) . This proves HO(S) = {;O’;l’ . Q)
Property I1l. Let $= 2 4% wthy >0and 2y =1.
0<i<n |
W have, using conditions (ii),
i O<%<n #18075 2 T (41 ) modn' 5+
if j, (j+1)modn
< 0
for each 0 <j <n, This verifies Property III.
W have thus verified Properties I-1V for all (?O,?l,...,?gn_l) t hat

satisfy (Al) and (a2). This conpletes the proof for the existence of an
€, > 0 with the desired property.
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