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Abstract.

Given a set S of n distinct points { (xi'Yi) 1 0 5 i < n] 9

the convex hull problem is to determine the vertices of the convex

hull H(S) . All the known algorithms for solving this problem have

a worst-case running time of cn log n or higher, and employ only

quadratic tests, i.e.,
tests of �the form f(Xo�YO  ⌧19 Yl> l l l ☺ ⌧nBl� Y, 1> : 0

with f being any polynomial of degree not exceeding 2 . In this

paper, we show that any algorithm in the quadratic decision-tree model

must make cn log n tests for some input.

Keywords: complexity, convex hull, decision tree, lower bound,

quadratic decision-tree model, quadratic test.
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1. Introduction.

Let S be a set of n distinct points in the plane. The convex

hull H(S) is the intersection of all convex sets which contain S .

It is well known (see e.g. [2]) that H(S) is a convex polygon with

all of its vertices in S . In fact, HO(S) >

H(S) > is exactly {~\~eS,~is not a convex
-a

the set of vertices of

f*combination of the

points in S-{p}) . We are interested in the following convex hull problem:

Given a set S of n distinct points go,gl,...,Fn  1 in the plane,

determine the set of integers Vs = (i 1 gieHO(S))  , In 1972, Graham [l]

Q(n log n) -timef
+

gave a

then, many other algorithms

of them), all of which also

algorithm for solving this problem. Since

have been proposed (see Shamos [2] for some

have a worst-case running time cn log n

or more. An interesting open question is whether better algorithms

exist. The purpose of this paper is to show that, in the quadratic

decision-tree model, any algorithm for the convex hull problem must use

at least cn log n operations in the worst case.

We remark that if, in addition, the set Vs is also to be ordered

4
as il' 5 . . ., it

so that r'. ,r".
5 i2'

. . ..r.
It

are the vertices of H(S) in

consecutive cyclic order, then the sorting of n numbers can be reduced
-

-I* A point p is a convex combination of the pointes r' E;'
1' 2 :,***t r" if

m

there exist pi > 0 (i = 1,2,...,m)- such that c pi = 1 and
i

p" = c & .
i

-f+
We use 0(g(n)) to denote any function f(n) with the property that

Cl&-4 5 f(n) 1. cpgb-4 for some positive constants
c1' c2 and for

all sufficiently large n .
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to essentially this problem (see [2]). The cn log n lower bound for

sorting in rather general models is then immediately a lower bound to

that version of the convex hull problem [2].

Note that we have restricted the input points to be all distinct.

This enables us to avoid choosing among several possible definitions for

vS
when some of the r'

j
may be identical. The lower bound derived in

this paper of course remains true independent of the choice,

In the quadratic decision-tree model, algorithms are ternary decision

trees employing quadratic tests, i.e., tests of the form " f(zl,z2, . . ., z,): 0 'I

with f being any quadratic polynomial of the input nwnbers z
i

(see

Section 2 for more details). To the author's knowledge, all the known

convex hull algorithms can be properly modeled as quadratic decision trees.

For example, several algorithms (including that of Graham's [l]) use

basically primitive operations of the following types (Pl)-(P3).  Let

i?i = (xi,yi) , 0 < i < n , be the input points. (Pl) linear test of

the form ' x aixi + rbiyi + c : 0 "; (P2) generation of a new point
i i

p" = C a& ; (P3) for any existing points (input points or those
i

generated by (P2)) $ , g2 , p3 , a test "Is sl lying to the left of,

to the right of, or on the directed line from s2 to p"
3

?" MathematicaJly,

(P3) is expressed as *' A&j?,; ) : 0 " where
12 3

A is defined by

pll

det
p21

p31

p12

p22

‘32

1

1

1
:I

I ’

3



with pi = (pi,, pi2) l
As each ci in (P3) is a linear combination of

the input points, it is easy to verify that tests of the type (Pl) or

(P3) are quadratic tests. In these algorithms, operations of the type

(F'2) are used only occasionally to generate points interior to the

convex hull by taking convex combinations of input points. Thus, the

running time of the algorithms is properly accounted for if one only

counts quadratic tests.
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2. The Quadratic Decision-Tree Model.

Consider the convex hull problem for a set S of n distinct input

points Ti = (xi,yi) , O<i<n. An algorithm T is a ternary

decision tree, with each internal node containing a quadratic test

f(⌧o�Yo�⌧l�Yl�  l  l  �⌧n~l�Yn-l)  : 0 where f may be any polynomial of

degree at most 2 . For any given input set S , the algorithm starts

at the root, performing tests and branching accordingly until a leaf

is reached, where the algorithm must be able to determine the set V
s l

We denote by cost(T) the maximum number of tests made for any input.

The complexity C(n) is defined to be the minimum of cost(T) for any

such algorithm T .
--

The main result of this paper is the following theorem.

Theorem 1. There exists a constant c > 0 such that, for all n > 3 ,-

C(n) 2 cn log2 n .



3. Proof of Theorem 1.

Let n > 3 be an integer, and T any algorithm for the convex hull-

problem with 2n input points. We shall prove that there are at least

n! distinct leaves in T . This will imply Theorem lby the following

argument. The height of T , i.e., cost(T) , then must be at least

log3(n!) . This proves C(n) 2 log3((n/2)!) 2 constant x n log2 n

for all even n > 6 , which impliesg- C(n) 2 C@L+J > 2 constant x

nlog n2
for all n > 6 . Observing that C(n) > 0 for ne {3,4,5] ,

we can obtain Theorem 1 by choosing c suitably.

The plan is as follows. Let c be any permutation of

(n,n+l, . . . . 2n-1) , i.e., a one-to-one mapping from In, n+l, ..* ' 2n-l}

onto itself. We shall associate with G a leaf LEAF(a) of T , and

derive some constraints on the inputs that lead to LEAF(a) . We then

show that LEAF(c) # LEAI? for any distinct 0 , CT' . Thus, there

are at least n! leaves.

3.1

and

Defining LEAF(a) .

For each 0 < j < n , let-

” j = (h 1 AC (l/4,3/4)1 '

with en > 0 to be specified later.

*
J C(n) is a non-decreasing function of n , since any algorithm for n+l

input points yields an algorithm of the same cost for n input points

by setting gn = i (To+ gl+ . ..+.
n-l

) .
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4 3
Let us regard any input S = {rot rl, . . ..g2. l) as an element

in E
4n

, the 4n-dimensional Euclidean space, and write it either as

(
3 3

r = r”ro~rlye-y 2n-1 > or r = (Xo~Yo+Yl~ .. ~~~~~~~~~~~~~~  l Define

I5 to be the set of inputs r = (~o,~l,...,~2n  1) which satisfy

and r" = hjgj + (l-h.)r‘ .
h+j > J (j+l)modn with hj EAj for all

O<j<n. Informally, each input in Ia has ~o,~l, r''**' n-1 as the

vertices of an approximate regular n-gon, and r'
Q+j >

on the line

connecting ?.
J and '(j+l)modn for each 0 < j < n- (see Figure 1).

Note that A(;
dn+J >

3(j+l)modn ,gj)=o for all re Ia , because of

the elementary identity A($+ (1-p)$ , G' , p') = 0 .

Choose an en > 0 so that the following properties are true for any

(
4 4
rOJrlJ.. ., r"2n-1) 'Ia '

Property I. All the 2n points ?
3

are distinct.

Property II. HO(S) = {~o,~l,...,' l} .

Property III. If a point p is a convex combination of r"
0�
p
1� l l � r�n-l �

then A(& r'(j+l)modn -'Gj)<O forall O < j < n .

I Property IV. If 0 5 L # j < n , then A(;
c(n+8) ' '(j+l)modn' 'j) # ' '

It is intuitively*-I obvious that these properties are satisfied provided

that en > 0 is small enough. A proof that such an en exists will be

given in the Appendix.

Keep in mind that the geometric interpretation of A(<,< p" )
1 2' 3 is the

signed "area" of the triangle clg2s3 , where the sign is determined by

the orientation of sly c2, p'3 ("plus" if counterclockwise).
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5

Figure 1. The configuration of Ti for an input

r= ( r'0' gl, l l “q2n-l)  E I5 l



Let Qa = s x Ql x . . . x Qnel x A0 x A, x . . . x An-, . One can regard

any input reId as, alternatively, an element qEQ5. This establishes

a one-to-one correspondence between the elements of I, and the elements

of Qa . For any function f on E4n , let us denote by ,[d the

function on Qa induced by f , i.e.' (X0� Yo� l l l � X&Y Y,,l�  ho� . l l � An-☺

is equal to r(xo~yo~~yYly  •.~~x2n-1~~2n-1) with

"o(n+j) = hjXj+ (‘-hj)“(j+l)  m&n md Y,(n+j) = hjYj+ (l-Xj)Y(j+l) modn

for O<j<n. Clearly, if f is a polynomial, so is ,[a3 , in

which case we shall regard ,[a1 as defined over the whole $n
.

Lemma1. There exists a leaf lo and a non-empty open set Q' c, Qa
-_

such that all inputs qc Q' will lead to
lo l

Proof. For each leaf 1 , denote by A(1) the set of inputs in Qa

that lead to R . Let L be the set of leaves 1 with A(R) # fi .

Clearly,

Q =
Q U A(l) .

1eL

Each A(1) can be written as

-
B(1) =

Q,nB(O) , where

.)=o, . ..' fi"i (q
' B

.> 0 &PI (9) >o=
' 1'1 ' l l l � gyi (9) > 01 l

� 0

The functions f bl 01
I i ' '1,j

are polynomials induced by the quadratic
'

polynomials fp i , g
' 14

used at internal nodes along the path from the

root to I . Some of the constraints fblI i(q) = 0 ,
'

g:!(q) > 0 in (1)
'

may be trivial in that they are satisfied by all qe E? n . We claim that,

after removing the trivial constraints from the formulas in (1)' there is



3

some B(Bo) (IOeL) that is defined only by inequalities. Otherwise,

all B(R) (REL) would be of measure zero, implying that the open set

Q5 = U A(R) c, U B(L) is of measure zero, which is impossible.
ReL BeL

Clearly NPO) = QnB(fo) is open and non-empty. The lemma follows

by choosing Q' = A(LO) . 0

Let us choose a leaf R. as in Lemma 1, call it LEAF(a) and

denote the open set Q' as Q; . Now every input set S = 1; r"
0' 11***, r"2n-1 3

corresponding to an input in Q'~ has Vs = (O,l,...,n-l] (by
4 4

Property II). It follows that all the input sets S = [ro,rl,...,~2n l}

that lead to LEAF(c) have Vs = (O,l,...,n-1) .

3.2 Constraints on the Inputs Leading to LEAF(~).

Let the set of constraints on the inputs leading to LEN(a) be

fi (xO’ YOY x1J YlY •"'X2n-~'Y2n-1 ) = 0

and

l<i<a ,- -

lLj<b .-

By the definition of Qb , we have, for each 1 < i < a ,- -

- f'"'(q) = 0
i for all qe QL .

The next lemma then implies that each fi can be written as a linear

combination of A(;a(n+j>  Y
r�
(j+l>  modn Y �;.)  Y 0 f j < n l TO simplify

notations, we shall write A[r'%jl for A(;
dn+j > ' '(j+l)modn'  'j)

from now on. Keep in mind that ah~yd =O forall reID.

Lemma 2. Let f(XO~Yo~X1~Yl~  •~~~X2n-1'y2n l) be a polynomial of at

most degree 2 . If f[Ol(q) = 0 for aU qe Qb , then

(2)

(3)

f = c xjA[r>(J,jI for some constants 5. .
O<j<n 3
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Proof. Write

f =
' ai3)x0(n+i)xG(n+j) + '

O<i<j<n Ozi,j<n
a!i)xG(n+i)yO(n+j)

- -

+ ' a~~'Y~(n+i)Y~(n+jj  + c b!l)Xo(n+j)Sj(Xo)YOY'*'YXn-~YYn-l)
O<i<j<n- - O<j<n J

+ XI b~2~Y~(n+j)tj(x~'y~'*..,Xn~~YYn~l)
O<j<n-

+ d(Xo�Yo�  l l �⌧n-l�Yn-l) � (4)

where t'jY j are linear f'unctions and d a polynomial of degree at

most 2 .

As fLUI = 0 for all qE Q; , we have

3Zf E 01
ahiahj  = 0

for all. 0 < i < j < n . We can also- -

(1)a.. x.-x( +
13 1 i+l >( xj-xj+l 1

(5)

calculate from (4) to obtain

(2)a. x.-x(lj i i+l) (Yjwyj+l)

if i<j,
I

(6)

if i=j ,

where we agree that xn = x0 , yn = y
0 in the above equation. It is easy

to see that, for (5) and (6) to be consistent for all qc Q; , one must have



ack) 0
ij =

for all i,j,k . (7)

Similarly, for all qE Qb , one has from (4) and (7)

0 = "['I- =
ahj

b;l)(xj-x(j+l)modn)s  (x ,...,y
3 0 n-l )

for each 0 < j < n . This implies the existence of constants 5. such- J

that

b (1)
3 ‘j CxOY ""Yn-l > = sj('( j+l) m&n - yj) '

and

b (2)
j

t .(x
J ()y"'yyn-~> = -!+j(�(j+l)  modnwXj)  l

Formulas (4)' (7) and (8) lead to

f = Ix
O<j<n

Ij[X (Ya(n+j) (j+l)modn -'j) -'~3(n+j)(~(j+l) modn-"5)'

+ Go’ Yo'
l � � �n-1�  yn,l

>

= c-
O<j<n

SjA[r,o,jI -I- ~O(X~YY~Y~~~YX~~~YY~~~)  Y
-

where dObO'Yo'  l l �⌧n-l�Yn~l)  = d(Xo�Yo�  l l �YXn-l�Yn-l)

z
O<j<n

(X(j+l)modnYj  -Y(j+l)modnxj)  l

-

(8)

Since f' a' (4 = 0 and A[r,$j] = 0 for all qe Q; , we must have

dO(xO,yO,...,xn-l,yn-l)  identically zero. This proves the lemma. 0
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We now state without proof an elementary fact, to be used in the

proof of L-a 3 as well as in the Appendix. Let m'P'~~'~2'
4

l **,Pn

be Points in the plane.

Fact 1. If P = ' Xi~i with c
l<i<n l<i<n

hi = 1 , then

- - a -

Lemma 3. For my input r = (~o,~l,...,~2n 1) E E 4n that leads to

LEAF(a) , A[r,%d = 0  forallO<j<n.-

Proof. By Lemma 2, the constraints (2) and (3) on inputs leading to-_

IJEw9 can be written as

c QjA[r,o,jI = 0 i = 1,2,...,a ,
O<j<n

and

gi(r) > O i = 1,2,...,b ,

where I.. are constants.
iJ

If the rank of the a by n matrix (Q,) is n , then the

constraints in (9) force all A[r,$ jl = 0 , and the lemma is true.

We thus assume that the rank of (sij) is less than n , in which

. case there exist a non-empty J c ~O,l,...,n-1) and constants 7..
iJ

such that (9) is equivalent to

(9)

00)

A[r,W.l = C ?Jijn[r> ‘9 JI for ie {O,l,...,n-1)-J  .
jeJ
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Let r = (~oy~l,...,~2n 1) be any input in I, . We shall construct

an input r' = (~~'~i'**#'G+';, 1) so that constraints (9)' (10) are

satisfied but HO(S') $1 (r~yriy...yrn-l] where S' = {~~'~i'...,~$, l] .

Thus the input set S' leads to LEAF(a) but Vs, # {O,l,...,n-l]  ,

which is a contradiction. The proof of the lemma is then complete.

For each 0 < j < n , let g be a point so that- j

A(~j' r"(j+l)modn' 'j) > ' '

Let 6 > 0 be a small nwnber to be specified. Define

A(~i' r"(i+l)mod
if ieJ ,

c T)j)/ A(gi, ~(i+l)modn, gi) if ie {O,l,...,n-13-J .
jeJ

Let r' = (Gb'ri' l e.'g$, 1) , where

I
r”l =
i

r”
i

for O<i<n,-

I-%(n+j) = ('-~j)~5(n+j) + Bj~j for O<j<n .

Choose 6 > 0 small enough so that all Gi are distinct and that all the

inequalities in (10) are satisfied for r' . To show that all constraints

in (9) are satisfied, we need only check that all. equations in (9)' are

(13)

true for r' . For each 0 < i < n , we have

14



= (l-Bi)A[r,o,iI  + BiA(~i, r'(i+l)modn' 'i)

where we have used Fact 1 and the equalities A[r,qi] = 0 . For jeJ ,

this gives A[r',d,jl = 6 l For i E {O,l,...,n-1)-J , we have from (14)

and 0-a

Ah" 1,oy i = s c ~ij
jeJ

= z 'QijA[r',a,jl .
jcJ

This proves that rr satisfies (9)'.

We have proved that r' , defined by (13)' satisfies constraints (9)

and (10). To finish the proof of Lemma 3, it remains to show that

Ho(S') # {~~,~i,~**,~~ l] . Let jcJ . If HO(S') = {~~,~i,~..,~~ l] ,

then ?
ab+j >

must be a convex carabination  of r"T r" . . ..$
0' 1' n-l ' or

equivalently, a convex combination of r" r' ,...,T
0' 1 n-l ( since 2 r"

i= i
for 0 5 i < n ). By Property III, this implies

I

A(;'a(n+j) ' '(j+l) m&n' 'j) 5 ' '

-But, repeating the derivation of (14)' we obtain

A(;'o(n+j)' ;(j+l)modn' 'j) = ' ' ' '

which is a contradiction. This proves HO(S') # [$,~i,.~~,C~ l] a,nd

the lemma. 13
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3.3 Completing the Proof.

Lemma4. If G#O', then LEAF(a) # LEAF(V) .

Proof. Choose 0 < 1 # j < n such that o(n+j) = a'(n+1) . Let

( E;'04Y...' '2n-1) "0' be any input leading to LEAF@') . If

LEAF(a) = LEAF(@) , then by Lemma 3, we have

A(;a(n+j)' r"(j+l)modn' 'j) = ' '

i.e.,

A(r"al(n+a) ' '(j+l)modn' 'j' = ' '

But this contradicts Property TV for I,, , 0

We have demonstrated the existence of n! leaves in the algorithm T ,

This completes the proof of Theorem 1.
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4. Remarks.

We have proved a cn log n lower bound for the convex hull problem

in a reasonably general model, which includes all the known algorithms.

This seems to be a rare instance, in which a non-trivial lower bound is

obtained by exploiting the properties of quadratic tests ex@icitly.

We remark that quadratic or high order tests are needed to solve the

convex hull problem. In fact, there can not be any decision tree algorithm

for finding convex hulls that only use linear tests, This can be seen

from the fact that the set of equality constraints at LEAF(a) must not

be linear equations (according to Lemma 2).

It remains an open problem whether decision trees of height o(n log n)
-_

exist when high order polynomials are permitted in the tests. We conjecture

not, even if no restriction is put on the maximum degree of the polynomials

allowed.
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Appendix. A Proof for the Existence of en .

In this appendix, we will prove that there exists an E > 0 such
n

.4 4 4

that Properties I-IV are true for all (ro,rl,...,r2n 1)~ Ia . See

Section 3.1 for terminology. Remember that n > 3 .

Let ?.(0) =
(
cos 2, sin 2

)

v" zJ(w,u) , let iG\\ = Jti.

for 0 5 j < n . For any

vector We need to show the existence

4 4

0fa.n E, > 0 such that Properties I-IV are true for all (r,,r,, l **�
r�
2n-1 >

II

satisfying the following conditions:

(Al)

. (W

I\
--) -w,fr. -r.
J - 1 < en

for O<i<n,-

and, for each O<j<n,-

4

'G(n+j) = hj’j + (1-hj’;( j+l) modn for some hj' (1/4Y 3/4)

We need the following fact.

Fact 2. Let 0 < i,j < n- and ii (j, (j+l)modn}  l Then

A(;(') , ;(O) 'r"(0)i (j+l)modn j ) < ' l

Proof. Let 8 = 2fl/n . Then

Cos iQ sin iQ 1

A(;(') , ;(O)
i (j+l) modn' cos (j+l)Q sin (j+l)0 1

cos jQ sin j0 1

cos i0 sin i.0

= det cos (j+l)Q sin(j+l)0

cos j0 sin jQ

18



= det

i

cos 8

1

/ cos (i-j)Q sin (i-j)Q 1

sin 8 1

0 1 1

(sin 8 >( cos (i-j)@ -1) - (sin (i-j)Q)(cos Q-1

( 2

Q . . 2

= sin 2 cos 2 N -2 ( sin$k >
2

>

+ 2 sin($J Q)cos($J 812 sin2 g

= 4(sins)2(sin$JQ)2(-  cot:+ cot(+J)) .

Using the properties of cot and the facts 0 < i,j < n , i { 13, (j+l> modn) ,

one can show that

< cot;

cot; .

Note also that (sin ;I;(sin($JQ,)'  > 0 l Fact 2 follows easily. Q

Observing Fact 2 and the continuity property of the function A , we

can choose a sufficiently small en > 0 such that, if g ,r"
4

0 1' ..*,r
n-l

satisfy (Al), then the following conditions are true.

19



( >i all g. (0 < i < n) are distinct,
1 -

(ii) for 0 < i,j < n- and i{ {j, (j+l)modn} , &, r" G)<o.
(j+l)modn' j

4 3

We will now prove that, for this choice bf en ' any (ro,rl,
l �*�

r�
2n-1 >

that satisfies (Al) and (A2) must have Properties I-IV. We shall freely

use Fact 1 (in Section 3.2) in the ensuing arguments.

Property IV. Let 0 < L 4 j < n . Then,

A(;a(n+a) ‘G ‘+
(J 1 )modn' 'j

3 -b

> = AIA(rp' r(j+l)modn'

+ ('-‘1)'('(P+l)modn
r'(j+l)modn' 'j)

because of condition (ii), the fact n 2 3 , and the fact both h1 , (1-Q >

are positive. This verifies Property IV.

Property I. The points Fo,Fl,...,?n 1 are distinct by condition (i).

Property IV, together with the equalities A(;o(n+j)' '(j+l)modn' 'j) = '

for O<j<n, ensures that the points gn,?n+l,...,$2n 1 are all

distinct. That, for each 0 < j < n , g- dn+j)
is distinct from all

4
ray r"lyo-y~n-l Y follows from the fact r"G(n+j) f r"

j ' '(j+l)modn

and Property IV. This verifies Property I.

Property II. Because of (A2), one has HO(S) c {f,,gl,...,yn  l] . We-

now claim that each gieHO(S) , 0 5 i < n , Otherwise, we can write

20



F = r"pi+1 (i+l)modn
+

i L
OFj<n

jfi, (i+l)modn

4

Pjrj

for some pj ,> 0 and 2 pj = 1 . As gi # ;(i+l) modn by condition (i),
j

at least some
b

> 0 with j # i, (i+l)modn . This, together with

condition (ii), leads to

A(;i' '(i+l)modn' ;i) =

4 4
Z

O<j<n
;"jo('j ' '(i+l) m&n' 'i)

j#b (i+l)modn

<o.

But this is impossible as A(Ti, r" r". )(i+l)modn'  1
should be 0 . Thus,

every F: must be in
Ho(S)  l

This proves HO(S) = { o'r" r'1, l **,&) .
I

Property III.

We have, using conditions (ii),

Let p"= C r'
O<i<n Fi. i with pi > 0 and z pi = 1 .

i

3 3,

'(" '(j+l)modn Fj) = L ; -3
O<i<n

;"iA(~i Y (j+l)modn' rj

= L i”iA(~i Y r” b
O<i<n

(j+l)modn' j

if j, (j+l)modn

< 0 ’-

for each 0 < j < n , This verifies Property III.

We have thus verified Properties I-IV for all (~o,~l,~..,~2n-l) that

satisfy (Al) and (A2). This completes the proof for the existence of an

En > 0 with the desired property.
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