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Abstract

Since 1965, the Stanford Computer Science Department has Tperiodically_ given “qualifying
examinations’ as one of the requirements of its graduate program. These examinations are given in
each of six subareas of computer science: Programming Languages and Systems, Artificial
Intelligence, Numerical Analysis, Computer Design, Theory of Computation, and Analysis of
Algorithms.  This report presents the questions from these examinations, and also the associated

reading lists.

The preparation of this report has been supported in part by NSF grant MCS 77-23738 and in part
by 1BM Corporation.






Foreword

This report complements the collection of “Comprehensive Examinations in Computer Science,
1972-1978" published last fall as Stanford Computer Science Report CS-677; it contains most of our
department’s qualifying examinations since they were first given in 1965.

Originaly each student was required to pass the “Systems Qual” plus two other area quals of
his or her choice. These quals were usualy written exams that lasted 3 or 4 hours. Since 1972 we
have changed the policy: now the requirement is to pass a “Comprehensive Exam” plus only one of
the area qualifying exams. Because of the fewer number of students taking each qual, they are now
often given oraly; some of these exams are not included in this report.

Since these examinations go back to the earliest days of computer science education, they have
consderable historical vaue. Can the computer scientists of 1979 solve the problems of 1965 more
easily or less easly than the students of 19657

But besides this obvious historica value, the questions in many cases gtill have considerable
relevance and interest; in fact, a lot of nice results appear on these pages, heretofore unpublished.
(For example, see the 1970 Systems Qual, question 4, or the 1971 Systems Qual, question 2.) |
believe every computer scientist will gain much from browsing in this book.

Unfortunately we do not have written answers to most of these exams, so the reader is on his
own. We have, however, included answers to the four take-home qualifying examinations in
Anaysis of Algorithms; if | may take the liberty to say so, these examinations and answers have
particular interest, since they represent subject matter that is taught somewhat differently at
Stanford than at most other departments of computer science.

The scope of the exams was roughly defined by reading lists that were given out periodicaly
in each area. The references from these lists are included at the end of the report, along with the
dates of the reading lists in which they appeared.

As with report CS-677, Frank Liang deserves enormous praise for his labors in collecting and
editing this materid.

Good reading!

D. E. Knuth
March 1979
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May 1965 Systems Qualifying Exam

1 Programming.

Construct an algorithm to determine the shortest path between any two points of a network, under
the constraint that this path consists of no more than a given number of legs, where aleg is the
direct path between two points. Note that the direct path between two points need not be the
shortest path.

Write the dgorithm as an ArcoL procedure for the B5500 computer, using the following procedure
heading:

PROCEDURE SHORTESTPATH (A, B, N, L);
VALUEN, L; INTEGER N, L; ARRAY A,B[1,1];

N denotes the number of points in the network. A istheNxN matrix such that A[ I, J] denotes the
distance of the direct path between points with indices | and J. The procedure must not alter A. B
is to represent the resulting NxN connection matrix whose elements B[ I, J] are the shortest paths
between points | and J with a number of legss L.

Note: Write your program on the coding paper supplied. It will be keypunched and tested on the
computer.

2. Algebraic linguistics.

LetG,T,P,S)beasmple phrase structure grammar, where ¥ is the vocabulary, T the terminal
vocabulary, P the set of productions, and S e¥. Suppose all productions have the form

U-ox
where Ue V-T, xeV* and U »x. (V* is the set of all strings composed of symbols of ¥, including
the empty string .
It is always possible to construct an equivalent grammar (¥, T, P’, S), such that
L(G") = L(G) - {¢}
and such that there is no production in P’ of the form
Uo>e

(@  For the following two examples find equivalent grammars with the properties described
above.

(1)§-4
A->aAd
A-Ab
A-c¢

<o



2 SYSTEMS QUALIFYING EXAM

(2)  <procedure heading> :-

<procedure identifier> <formal parameter part>;
<value part> <specification part>

<formal parameter part> ::=
<empty> | (<formal parameter list>)

<value part>::=
<empty> | value <identifier list>;

<specification part> :=
<empty> | <specifier> <identifier list>; |
<specification part> <specifier> <identifier list>

(b)  Why should a compiler designer be interested in finding such equivaent grammars?

(c)  Describe a generd method for constructing the discussed equivalent grammar.

3. Programming systems.

Construct an algorithm in ArcoL 60 to translate an arithmetic expression of Arcow 60 into an
equivalent reverse-polish string of operands and operators. For input and output use the primitive
procedures “insymbol” and “outsymbol”, and assume that identifiers and numbers are represented by
the symbol A. Do not consider the occurrence of conditiond expressions and function designators.

The Arcow report and the Report on Input-Output procedures “insymbol” and “outsymbol” are
available for consultation.

4. Switching circuit theory.

A diagram is given below of asimple sequential circuit. The input variables A and B are “pulse’
variables, that is, “no pulse” means false and “ pulse” means true. Input pulses appear on only one
lead at a time and are separated by a time interval greater than the resolution time of the circuit.
The flip flops are set-reset. (A pulse on R setsr to true and s to false, and a pulse on § sets s to

true and v to false.
\* ; ‘2

w .. output

input
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@)

Draw a state diagram (transition graph) which represents the above circuitry, showing the
relaionship between input pulses and dtate trangtions.

Give a short description of the relationship between input pulses and output pulses.

Storage and storage access.

It is possible to construct a random access memory out of a variety of materials and
components.  The mgority of basic organizational principles and problems of random access
memories are common to this wide range of technologies.

Using diagrams of memory elements and structures (including wiring) constructed from a
technology with which you are familiar, discuss the following:

(1)  The principles of operation of the memory element you have chosen.

(20  The basic organizationa principles and problems of a random access memory organized
at the bit level.

(3)  The basic organizationa principles and problems of a random access memory organized
a the multiple-bit (word) level.

(4)  The relative merits and demerits of the above two organizations.

(5)  The mgor factors limiting memory speed.

(6)  Other memory elements you know of (just list, you need not explain).

There are a growing number of Situations where it may not be possible or desirable to
maintain a user’s entire program in the “fast” main store of the computer and therefore it
becomes essential to make efficient use of a fast main store-secondary storage device
combination, such that machine speed is not degraded unnecessarily and the user can program
asif he had direct access to a single-storage device. Schemes to accomplish the above go
under various names, such as one-level-addressing, paging, and program segmentation.
Several such schemes have been proposed; some which you may be familiar with are the
techniques adopted by the designers of the Atlas, IBM 360, and B5000. Using appropriate
block diagrams of one of the schemes above or any other you are familiar with, discuss the
following:

(1)  The basic features and problems of such a memory organization.
(20 A method of protecting the memory so that one user cannot enter another’s program.

Access to the contents of a memory location may be gained from the information contained in
adataword either by specia hardware or by program. If the access is achieved by a search
technique by hardware, the term “content-addressable memory” is often used. Discuss the
organization of such a memory.

If the address is generated by the program as a function of the data, the term “hash coding” is
sometimes used. Discuss such a scheme and the type of situation in which it is useful.

Machines such as the KDF9 and B5000 make extensive use of what is often called implicit or
zero-addressing (although all other machines also use such a scheme to some extent). Discuss
briefly what is meant by such an addressing scheme and the storage device organization of a
machine such as the B5000 or KDF9 which alow its extensive use.
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6. Machine organization.

Although there are many differences in the way in which different computers are organized, there
are, nonetheless, certain common features. In particular the central processor of a machine must
contain or have access to certain registers for holding instructions and data while carrying out its
functions. This question deals with the dynamics of moving data into and out of the registers of a
machine, called MACHINE, described below.

Although the MACHINE is not completely specified, the parts essential to the question are described.
In fact, some of the descriptive material is not needed for this question.

It is possible to carry out the following fixed-point arithmetic, fetch, and store operations with two
machine instructions:

(1)Ac «C
20 B « (C + B) x A

where initially C is located at the symbolic address M(C), B is at M(6), and A is at M(A); Acis one of
the arithmetic registers described below, In executing these two instructions the MACHINE must go
through a sequence of events involving register clears and memory cycles. There are four types of
cycles through which the machine may go; these are described below.

Problem: Fill in the table on the next page showing the contents of each of the three control
registers, the three arithmetic registers, and the memory register at each stage of execution of the
operations indicated by (1) and (2) above. The table provides for all machine cycles whether called
for or not and leaves space for memory fetches. Draw a line through any of the cycles not called for.

Assume that the first instruction resides in the actual memory location ( 1818),o and has been
fetched to the Function Register to start the operations. When filling in the address portions of the
Function Register you may use the symbolic addresses M(C), M(B), and M(A). You may use decimal
addresses where actual addresses are called for. Assume A, B, and C are full register fixed point
numbers. You may use C( XXXX)o to indicate content of memory location at decimal XXXX. Mark

irrelevant contents by a dash. Let Fpg= 8 throughout.

Control Registers: FR, DR, CC
Arithmetic Registers: Ac, Qt,P
Memory Register: MR
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SYSTEMS QUALIFYING EXAM

The MACHINE

|8 314 7'8 11 12 15116 19|28 23124 27 28 3l|32 35136 39
B-ADDRESS ORDER TAG A-ADDRESS
Js,,ls5 Ss | S7| Ss| Se| S

SIGIT = SEXADECIMAL DIGIT (base 16)

6

BITS

SIGITS | 8 | S; | S
Word structure for instructions.
When

a MACHINE word is used as an instruction, it consists of two 3-sigit addresses, called the

B-address (bits 0-1 1) and the A-address (bits 28-39), a P-sigit order portion (bits 12-19), and a
2-sigit tag portion (bits 20-27). The order and tag portions specify precisely what operations are to
be performed when this instruction is obeyed. In this sense, the order-tag portion is an operation

code.

Each instruction is brought into the Function Register (FR) prior to being executed.

Consequently, the bits of an instruction are referred to as Fg through Fzq.

Among the common uses of the A-address are:

(n

(2)

(3)
4

(5)

(6)

Specifying the memory location of the multiplicand in multiplication, the divisor in division,
or of the subtrahend in subtraction.

Specifying the memory location of the addend in one type of add operation.
Specifying the number of shifts in a right or left shift operation.

Specifying the memory location into which results are to be stored in some types of store
operations.

Specifying the memory location from which the next instruction is to be obtained in some
jump operations.

Specifying the first memory location involved in the transfer of data in input-output
operations.

Among the common uses of the B-address are:

Specifying the memory location of the addend in one type of add operation (preliminary add).

Specifying the memory location from which the next instruction is to be obtained in one type
of jump operation (jump to 8).

Specifying the memory location to be used as an index register (B-box).

Specifying the memory location into which results are to be stored in one type of store
operation (results to B).
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The Control Registers

Function Register (FR)

The 40-bit Function Register contains the current instruction being executed. The FR is treated as
four registers, FRB, FRO, FRT, and FRA, holding the effective B-address, the order, the tag, and the
unindexed A-address, respectively.

Dispatch Register (DR)

The Dispatch Register is a I2-bit register used to hold the address of the most recent word
consulted in any memory cycle of an instruction.

Control Counter (CC)

The Control Counter, made up of 12 bits, holds 1 + the address of the instruction currently in FR.
It 8 normally increased by 1 at the end of the last cycle of an instruction, i.e. at the end of the Fetch
Cycle which brings in the next instruction. Jumps are treated specially but need not be considered
herein.

REGA STERS OF IMPORTANCE TO PROGRAMMER | N UNDERSTANDING MACHINE ARITHMETIC OPERATIONS

MERDEY

Memory .,

Reg ster ) )

Plusser (r)

< ' = | Quoti ent
’ Regi st er (at)

Accumulator (Ac

T |

Sinplified puta-flow Diagram for MACHINE Arithnetic
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Memory Register (MR)

The Memory Register is a 40-bit register which acts as a buffer unit, or transfer register, between
the magnetic core storage and the arithmetic and control units.

It is always the contents of MR that are sent to the memory when a Store or Input instruction is
executed, with the word(s) to be stored always initially sent to MR (one word at a time), then to the
memory. Likewise, each word recalled from the memory for use by the control, arithmetic, or output
unit is always sent first to MR, and from there to the unit or register. This word is not addressable.
However, several instructions are available which make use of the current contents of MR.

Accumulator and Quotient Registers (Ac and Qt)

All arithmetic operations and most store orders on the MACHINE require use of either the
Accumulator, the Quotient Register, or both. These registers are symmetric in all arithmetic
operations except multiplications and division, as well as in all store orders except 8 orders (not
considered herein). In general, one or two bits in the instruction determine which register will be

used.

Acand Qt are 41-bit registers (8,808, ...83g and GyQp . . .Ggg, respectively). As arithmetic registers,
either can be used to hold a summand and/or the sum. In multiplication, Qt holds the multiplier, MR
the multiplicand, and the product, a 79-bit number, is left in Ac Qt, with the 40 most significant bits

in Ac (8 ...83g). Also, 2739 times the original contents of Acis added to the product. In division,
Ac and Qt together form a 79-bit dividend (ag...839Gg . . .G3g), MR holds the divisor, Qt holds the
quotient and Acthe remainder. Ac or Qt may be used as a transfer register (to move a word from
one memory location to another) by adding the word to a cleared register (via the plusser) and
storing the result.

Ptusser (P)

In all MACHINE additions, the contents of MR and the contents of either Ac or Qt are added in the
Plusser and the sum returned to either Ac or Qt. The selection of Ac or Qtis determined by the
particular instruction being executed.

The Plusser is neither addressable nor usable at the programmer’s discretion, but is used by the
MACHINE in performing additions.
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Execution of the MACHINE " s instructions

The execution of any MACHINE order requires from one to four memory cycles:

(1) Preliminary Cycle (possibly preceded by preliminary clear)
(2) Operand Cycle

(3) Result Cycle

(4) Fetch Cycle

Every instruction involves a Fetch Cycle. The other three cycles occur when needed to implement
the particular instruction.

Preliminary Clear (PC 1)

Bit 23 in the Tag designates either the accumulator (bit 23 = 0) or the Quotient Register (bit 23 = 1)
as R1 (the register being used). At the beginning of an instruction, it is possible to clear Rl to zero,
to 27, or to 2-32 if desired. (The clears to 27! and 273% are useful when it is desired to increment
by one the B or A portion of some memory location.) Which clear, if any, is to be used 18 governed
by bits 21-22 of the Tag:

Fa1 Fa22

8 8 do not clear R1
8 1 clear R1 to zero
1 8 clear R1to 2-1!
1 1 clear Rl to 2738

The above table with the designated Rl may be written as follows:

Fa1 Faz Faa Rl

8 8 8 Ac  no preliminary clear
8 0 1 Qt  no preliminary clear
8 1 8 Ac clear Acto zero

8 1 1 Qt  clear Qt to zero

1 8 8 Ac clear Ac to 2"

1 8 1 Qt clear Qt to 27!

1 1 8 Ac  clear Ac to 238

1 1 1 Qt clear Qt to 2-3°
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Preliminary Cycle (PC)

A preliminary cycle occurs whenever either of the following is requested:

(1) A Preliminary Add (Fpg= 1)
(2) B-boxing (Fz¢= 1) (not needed in this discussion)

In either case, the following 40-bit number is brought into MR: the contents of memory location B,
where B is the three sigit B-address portion of the instruction. v

Preliminary Add: In the case of the preliminary add, the number which has just been brought into
MR from memory is added to the contents of Rl (Acif Fpg=8, Qt if Fp3=1), and the sum is placed

back in R1.

F2s

8 no preliminary add
1 C(R1)+C(xyz ) to Rqg, where xyz is the B address of the instruction

The table for these operations may be written as follows:

Fog Foz Rl

8 8 Ac no preliminary add
8 1 Qt  no preliminary add
1 8 Ac C(Ac) + C(xyz) to Ac
1 1 Qt C(Qt) +C(xyz)toQt

Exceptions: Preliminary add with multiply: Qt « C(R1)+ C(xyz); with divide: Ac « C(R1) +
C(xyz).

Operand Cycle (OC) (additions page 12 and multiplications page 13)

The execution of the fundamental operations of most instructions occurs during the operand cycle.
Only the Stop orders, the various Store orders, and the Jump orders omit the operand cycle, since
these operations by their nature must occur during another cycle (e.g. store order — result cycle, jump
order — fetch cycle). If the operand cycle uses the memory, the A address is consulted (or the
A-effective address, if B-boxing is indicated).
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Result Cycle (RC)

A result cycle writes the contents of Ac, Qt, or MR into the memory. If the contents of Ac or Qt are
being stored, they are first sent to MR; then MR (all or part of it) is stored into the memory as
prescribed in the instruction.

A result cycle may be obtained in one of two ways: (1) The particular order specified by the order
portion of the instruction may involve a store into memory; or (2) the results to B option may be
invoked by bit 24 in the Tag portion of the instruction. The former case is described under the

individual orders involved.

Result to B: The Fpq bit in the tag makes it possible to store the contents of one of the arithmetic
registers, Ac or Qt, into the memory without using a separate instruction for this purpose.

Normally, Foq= 1 causes the contents of the register containing the result of the operation performed

to be written into the memory at the location specified by the B-address portion of the instruction
(or by the B-portion of the B-box if Fpg= 1). F1g in the order indicates where the results is to be

found, i.e. Fjg= 8 implies that the result is in Ac;F;g= 1 implies that the result is in Qt.

Fetch Cycle (FC)

During the Fetch Cycle, the next instruction is brought into FR, ready to be executed. Thus, FC
always uses the memory and must occur in each instruction. if no jump is involved, the address
consulted comes from the control counter (CC) and hence is the address of the instruction located in
the memory immediately after the current instruction.
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2 orders (Add, Subtract) Sg=1

5354

18 Rl+ a = Ac

11 Rl + a =-Qt

12 Rl -a= Ac

13 Rl - a »Qt

14 R1 lal =+ Ac
15 Rl + Ja] = Qt
16 Rl ~-jal=+ Ac

17 R1 - |a} » Qt
18 RI + a = Ac,a
19 Rl+ a =»Qt,a
1A Rl ~a=+ Aca
1B Rl - a »Qt,a
1C Rl + |a] » Ac,a
1D Rl + |a] = Qt,a

+ +

1€ Rl - ja} = Ac,a

1F Rl - Ja] » Qt,a

Fz Rl Filg R2

8 Ac 8 Ac

1 Qt 1 Qt

Fz1 Fa2 Prelim Fa5 Prelim
Clear Add

8 8 Hold RI 8 none

8 1 8 =Rl 1 Ri+b » Rl

1 g 2l anpi

| 1 2% .np1

Fie Faq Main Operation

8 8 Rl Op a = R2

8 | Rl Op a + R2,b
1 8 Rl Op a =+ RZ,a
1 1 Rl1 Op a » R2,a
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norders Sg= 2

Result to A
no yes
Sa334 S35,

28 28 Full-precision unrounded multiply
21 29 Full-precision unrounded divide
22  2A Full-precision rounded multiply
23 2B Full-precision rounded divide

24 2C Half-precision unrounded multiply
25 2D Half-precision unrounded divide
26 2E Half-precision rounded multiply
27 2F Half-precision rounded divide

In full-precision multiplication, the multiplier (m) is assumed to be in Qt, the multiplicand () at the
A-effective address. The result in Ac Qt after multiplication is mq + 2-3% + 2'79q0 where p is the
contents of Ac before multiplication and qq is the O-bit of the multiplicand. Note that the result is
in (@pa; ...8390p. - - G3g) With ggg holding the sign-bit of the multiplier.

In all divide orders, the dividend is assumed to be the 79-place number in Ac Qt(=
8p8| ...a390g...q38). The divisor is at the A-effective address. After the completion of a

full-precision division order, Qt holds the 40-bit quotient, and Ac holds the true remainder.

Preliminary addition with n orders: Normally, the resuit of a preliminary addition is sent to R1.
Multiplication and division, however, deviate from this rule: In multiplication, the preliminary add
is c(R1) + ¢(B) to Qt. In division, it is c(R1)+c(B) to Ac.

Result to A: On 28, 2A,2C, and 2E orders, the most significant part of the product (Ac) is stored into
memory at the A-effective address, replacing the multiplicand. On 29, 28,2D, and 2F orders, the
quotient is stored into memory at the A-effective address, replacing the divisor.
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1. Logic circuits and switching theory.

(a) .
A < N 0
% R
R p
'——‘W\v ‘y— =~ 1 & fl
AW 1 K h
- - f
ho"] 2
Jui N 13X
- T » 'y B B c ¢ p D
Using the convention that +E = 1 and GROUND = 8, what functions are realized at f,, f;, and
f,?
(b)
) C ock
['PFAQ FFA o
82’ a2 al' al ac') ao
0
e I
_& 0O
= °1} logi ¢
el
1
R2 S2 Rl S:L Ro So
FF‘B2 FFBl FFBO
\

The box labeled “logic” is logic which will, depending on the state of flip-flops FFc, and
FFC,. transfer the contents of the 3-bit flip-flop register A into the 3-bit flip-flop register B
either unchanged, complemented, |eft-shifted one place, or right-shifted one place when a
signal appears on clock. The transfer is controlled by flip-flops FF¢, and FFc, as given in
the following table.

c; ¢ transfer

8 0 unchanged

8 1 complemented

1 0 left-shifted one bit

1 1 right-shifted one bit

15
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The flip-flops of register B cannot be assumed cleared at the time of transfer and are set-reset
flip-flops. Onaleft shift, flip-flop FFB, is reset; and on a right shift, flip-flop FFBy iS reset.

Write reasonably minimal logic equations for Ry, Sz, Ry S8y, Rg, Sp in terms of the input
variables.

(c)  The symbol below produces the exclusive-or function:

X — g

¥ —> XY + Xy

The symbol below indicates a unit delay

—} D ey

Given an input train of pulses on line | as shown in sequence S,, what sequence is produced
at frelative to the pulses on §;? Assume no delay in the exclusive-or gates.

[l

&
5
o

2. Machine _organization.

An algorithm for rapid binary multiplication is given below. You are not expected to have seen it
before. Do not spend time figuring out why it works. Draw a block diagram for a multiplication
unit which would perform this algorithm. The unit must have some correspondence with a unit
that might actually be built. Show blocks for the storage registers, execution control logic. Show
lines for the data flow.

(@  Describe the function each block performs. In the case of registers, specify their length, and in
the case of blocks performing control operations, describe the control signals generated.

(b)  Rewrite the agorithm in terms of the micro-operations of your unit.
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An daorithm for_binary multiplication of positive numbers using uniform shifts of two

(1)

(2)
(3)

)
(5)

(6)

(7

(8)

Assume the multiplier is divided into two-bit groups, an extra zero being added to the high
order end if necessary «produce an even number of bits.

The multiplier will be scanned from the low order Co high order end.

One addition or subtraction to or from the partial product will be made on each iteration for
each group and, using the low order hit in the group as reference, this addition or subtraction
will consist of either woor four times the multiplicand. These multiples of the multiplicand
may be obtained by shifting the position of entry of the multiplicand one or wo bits left of
the reference postion.

The first cycle may require specid handling as described below in (S).

The general ruleis that, following any addition or subtraction, the resulting partial product
will be ether correct or smaller than it should be.

The multiple of the multiplicand to add or subtract from the partia product a a given time is
determined by decoding the two bits of the current group and the low order bit of the next
higher order group. The multiple isgiven in the following table.

multiplier operation multiplier operation
low order current n xmultiplicand  low order current n xmultiplicand
bit next group bit next  group
high order high order
group group
O 0 ©O 0 1 0 O -4
0O 0 1 +2 1 0 1 -2
O 1 o0 +2 1 1 O -2
0 1 1 +4 1 1 1 0

Following the addition or subtraction, the partial product is shifted right mopositions. This
shift isa2’s complement right shift, assuming subtraction is accomplished by adding the 2’'s

complement.

On the first cycle, if the low order bit is a 1 enter the 2's complement of one times the
multiplicand into the adder as well as the multiple determined by the table above.

The above can present a design problem if the 2's complement is formed by bringing the I's
complement of the operand into the adder and adding a carry co the low order bit. itis thus
possible in this first cycle to require two low order carries. To avoid this problem the
following dodge on the first cycle can be used. Always decode the low order bit as a zero and
add the correct multiple from the above table and then use the true value of the low order bit
co determine whether or not »add the true value of the multiplicand aso.

Add if the low order bit isa 1. Do not add it if the low order bit is a O.
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(a)

(b)

(c)

.5
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Supervisory programs.

Describe in a few sentences the chief operating characteristics of (1) job-shop monitors, (2)
time-sharing monitors, and (3) red-time monitors.

(1) Diagram atransfer table co handle branching between program segments all of which are
located in main storage. Use three segments as an example. Show how the transfer table is
changed if one segment is relocated in core. Explain what must be done if some segments are
stored on auxiliary file memory.

(2) Using diagrams, describe the paging and dynamic relocation scheme for some particular
computer such as the ATLAS, SDS 940, GE 645, IBM 360/67, or CDC 3500.

Consider aroutine for scheduling tasks for processing by three resident programs, each at a
different priority level. Let HP be the program with highest priority, for example a real-time
control program. Let LP be a program with second highest priority, for example and on-line
data analysis program. Let BG be the program with lowest priority, for example a
background program. A program is permitted co complete each tasks and then it goes into a
waiting loop until the scheduler provides a new message (or data) co initiate a new task.
Construct a flow chart to show a scheduling routine for processing task sequences through
these three programs.

Data channels.

. What is the function of a data channel?

Early computers did not have data channels. How were the functions now performed by data
channels handled on early machines?

Show schematically how a data channel is related Co other functional units of a computer.
Show data paths by solid lines and control paths by dotted lines.

what are some of the scheduling problems that arise in the use of a data channe (both ends)?
What are the principa hardware features that are found in a data channel?

What is a multiplexor channel? How does it differ from other channels?

Procedure parameters in_programming: languages.

Describe (1) the meaning and (2) the mechanism used .implement

(a)
(b)
(©)

the ForTrAN SUDroutine parameter
the ALcoL name parameter
the ALcoL value parameter.

Compare and evaluate the three kinds of parameters in the light of their usefulness and the
complexity of the required mechanism.
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Syntax, ambiguity, and precedence relations.

Give a formal definition of each of the following terms: (1) language, (2) phrase structure
system, and (3) ambiguity.

Consider the syntax with the following production rules:

S:=A

A = B| AXB| CXA
B . =D|DYB
C::=CYD|D

D =UAV|Z

What language is generated? Is the system ambiguous? Give all possible parses of the
following string:

ZYZXZYZXZYZ

(c) Define a phrase structure system which generates the same language and which is

(d)

7.

unambiguous.

Define your phrase structure system in part (C) such that it is a ssmple precedence syntax.
Indicate the precedence relations between the symbol pairs in the form of a matrix.

“Critical _reading of publications’.

In a recent issue of the Communications of the ACM the following "ArcoL" program was published:

(a)

Boolean array ¥0;1) integer k,i,§
comment This IS the program for computer i, which may be
either O or 1, computer j i is the other one;
CO: b(i) := false;
Cl: ifk=i then begin
c2: if not b(f) then go to C2;
else k := i; go to C 1 end;
else critical section
b(i) := true;
remainder of program;
go to co;
end

Find and correct the forma errors.

It is claimed that if two computers execute this program concurrently, it is impossible for both
of them to enter the procedure “critical section” at the same time. Verify or disprove this
claim.

Note: The computers operate independently. It is assumed that in the procedure “remainder
of program” no reference is made to the variables k and b, nor that any other “shared”
variables exist.



(a)

(b)

(a)

(b)

(0

(a)
(b)

(©
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Programming languages.

Characterize the principal differences between so-called list processing languages and
agebraic languages like ALGOL and FORTRAN.

Describe the L1SP scheme in terms of an ALGOL program. In particular explain the basic
functions CAR, CDR, and CONS in the form of ALGOL procedures,

Syntax.

Give a precise formal definition of a context-free phrase structure grammar. Explain the
meaning of the attribute “context-free”. which part of your definition reflects this attribute?

In connection with analysis of sentences (parsing), the term “bounded context” is often used.
What does it mean, and how is this bound usually specified? What is the bound on the
following two grammars?

1) A:=B|C D u=xy
B = DE E e zuw
Cu=xFu F =92

(2 A:=B|yB|xC|C D u=xy
B:=D|BD E = yx
C:=E|CE

Construct an alternative grammar for the language defined by the second example. This
grammar must be unambiguous and have the property that it can be analyzed from left to
right without ever looking ahead more than one symbol.

Machine _organization.

Outline the essential characteristics of a “Von Neumann maching’.

Briefly explain the following statement: “The fundamental design of a Von Neumann
machine was dictated more by technological necessity than by logical necessity.”

Outline briefly (1) the areas in which these technological constraints have been relaxed since
1946, and (2) the variations in organization which are plausible as a consequence.

Since Von Neumann (with Burks and Goldstine) published the description of the proposed
Ingtitute for Advanced Study computer in 1946, our concepts of logica organization for the
central computer have slowly evolved. This evolution is illustrated by the 1BM 701-7090
series, since the 701 was very close to Von Neumann's 1946 ideas. List atleast three
significant aspects of the 7090 which did not appear in Von Neumann's original conception
(orinthe 701).

20
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5.

Logical design..

Define each of the following representations for decimal digits. Each has been used in one or
more automatic digital computers.

(1) binary coded decimal (I-2-4-8)
(2) 1-2-2-4

(3) biquinary

(4)  excess-3

(5) 2-out-of-5

Design a one-decimal-digit adder for the 1-2-4-8 representation. This adder should accept
two input digits A and B, and output a sum digit S8 and a carry digit C.

+

A=
S
=3

Present your solution as a block diagram using any or ail of the-following elementary logical
box es:

— —>
— 1 > N = VvV b
— —>
NoT AND OR
We suggest that you introduce a binary half-adder:

A — — S
H.A. a+b=2+S

B — —>C

as an intermediate step. Be sure to give the logical design of any such building-block circuits
you use.

Allocation _and scheduling.

Discuss in quantitative detail one of the two following questions.

(a)

(b)

Give the algorithm for dynamic storage allocation in some system which you know (for
example, the B5500, 360/67,360/91, or ATLAS). Explain what hardware features (e.g. stacks,
registers, and tables) are utilized to implement this algorithm and how they are utilized. Also
explain what special features in the software are utilized to implement this algorithm.

Discuss the problem of optimization of register allocation (either index or base registers).
Describe an algorithm for optimization of register allocation at compile time. How does this
method compare with any other method you might know?
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1 Logical circuit design.

Certain instructions of the IBM 360 computer contain an address with two index fields. In order to
form the effective address, the contents of two general registers are added to the instruction address
part (called displacement).

OP X|B D

n
d
3

\N -
: 2

8
A

N
e

0 8 16 24
s =d+x+Db

Problem: Design a parallel adder with three inputs yielding the required effective address.

Step 1. Consider bit positions 20-3 1. Design the adder as a series of one-bit-position adders.
Which are the inputs and which are the outputs of this circuit? Derive the Boolean expressions
defining the outputs in terms of the inputs. Explain clearly your method of derivation.

Step -2. Note that the instruction address only contributes to positions 20-31. No triple adder is
needed for positions 8-19. Repeat Step 1 for the design of a one-bit-position circuit to be used in
positions 8- 19.

Step 3. Draw a diagram showing the interconnections of the various one-bit-position circuits.

2. Languages and parsing.

(a) Give a concise formal definition of each of the following terms:

(1) phrase structure language

(2)  context free language

(3)  regular (or left or right linear) language
(4)  ambiguity

Define precisely the symbols used in your notation, and all intermediate notions you introduce.
(b)  Define an unambiguous syntax which generates expressions composed of the symbols
(denoting operands), ®,®, and & denoting binary operators. Use BNF notation. Allow for

parenthetical grouping of subexpressions using the symbols ( and ). Observe the following
rules:

® has precedence over @ and &
@ has precedence over &

22
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(c) Describe a parsing method applicable to your grammar defined in part (b). Either write a
parsing algorithm, or, if your method depends on tables, describe the method and list the table
values to be used for your grammar.

(d) Is it possible to define the expressions in part (b) in terms of a linear grammar? Explain
briefly.

3. Programming.

n
It is claimed that the following program computes S-El a;, if initially n is a positive integer and
i

!

ie1l
s &0

a;, ..., a, are real numbers.

S e—ai-l-s ieit+l

NO

YES

Give a convincing proof of this claim.

4, Programming systems.

Describe the principles of a storage allocation scheme used to implement Algol. How are variables
addressed and accessed? Indicate the motivations and reasons for the methods you describe.

Explain which ones are essential, and which ones are merely helpful in increasing efficiency.
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Syntax. (35 points)

Read the whole problem before answering any part of it.

@

(b)

Describe a parsing agorithm which will parse sentences of a subset of context-free grammars
using one of the following techniques. precedence, operator precedence, extended precedence,
bounded context, transition matrices, production language, direct reduction, LR().

Consder the following grammar:

<P> u= 1 <S> 1

<IC> :=|F EXP THEN

<S> u= <IC> <S>

<S> :=<IC>S1 ELSE <S>

<S> :=<IC>S1 ELSE s1 UNLESS EXP
<S> =Sl

Terminals 1, IF, EXP, THEN, ELSE, UNLESS, s1
Nonterminals <P>, <IC>, <S>
Start symbol <P>

Is this grammar acceptable to the parsing agorithm you described in part (a)? If not, change
it so that it is acceptable, without altering the language and with minimal changes in the
structure of the sentences. Then build the necessary tables and subroutines from the grammar
for your parsing algorithm.

Answer one of parts (c) and (d).

©

Consder the problem of compiling code for the language described in part (b). The meaning
of al constructs except “UNLESS’ should be clear; the conditiona statement

<IC>51, ELSE S1; UNLESS EXP
is equivalent to
<IC>S1, ELSE IF -eXxp THEN S1,

Augment your parser with “semantic routines’ to generate the test and transfer instructions for
the language. (You may use the grammar produced in part (b).) Specify precisely where each
routine would be caled and describe carefully what it would do. Generate only the following
instructions:

JMP A (Jump to label A)

CMP AEXP (Jump to label A if EXPistrue)
A: (the label A itsdlf)

S1 (statement S 1)

24
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(d)

(1)  Give the forma definition for the class of grammars whose sentences can be parsed by
the parser described in part (a).

(2)  Define ambiguity for a grammar and for a language.

(3)  Exhibit a nonambiguous context-free grammar which is not in the class defined in
question (1) above.

(4)  Exhibit a grammar in the class which is not a finite-state grammar.

Operating systems. (25 points)

Congder the three stages of development of operating systems,

(1)  What did the first primitive operating systems (e.g. FORTRAN MONITOR SYSTEM)
do for the user?

(2)  What characterizes the functions of the next phase of operating systems (e.g. IBSYS)?

(3)  What are the key features of a multiprogramming operating system (e.g. OS/360)?

Answer one of parts (b) and (c).

(b) Describe a functioning operating system, using diagrams where appropriate.  Include a

©

discussion of both function and implementation.

What analytical tools are being used to attack the problems of multiprogramming and
time-sharing operating systems? Discuss at least one such andytical study in terms of model,
technique, and conclusions of the study. You may choose one of the papers listed below or
some other study with which you are familiar.

Denning, P. J., “Memory Allocation in Multiprogrammed Computers’, MIT Project MAC
Computation Structures Group Memo 24, March 1966.

Gaver, D. P., Jr., “Probability Models for Multiprogramming Computer Systems’, JACM 14,
July 1967, p. 423.

Horwitt, L. P., Karp, R. M., Miller, R. E., and Winograd, S., “Index Register Allocation”,
JACM 13, January 1966, p. 43.

Karp, Richard M. and Miller, Raymond E., “Properties of a Model for Parallel
Computations’, SIAM Journal on Applied Mathematics 14, November 1966, p. 1390.

Kleinrock, Leonard, “Time-shared Systems: A Theoretica Treatment”, JACM 14, April 1967,
p. 242.

Krishnamoorthi, B. and Wood, Rodger C., “Time-shared Computer Operations with both
Interarrival and Service Times Exponentid”, J4CM 13, July 1966, p. 317.
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Nidlsen, Norman R, “A Simulation of Time-Sharing Systems’, c4AcMm 10, July 1967, p. 397.

Ramamoarthy, C. V., “The Analytical Design of a Dynamic Look-Ahead and
Program-Segmenting System for Multiprogrammed Computers’, Proceedings 21s¢ National
Conference of the ACM, 1966.

3 Logical design. (15 points)
Answer one of the following two parts.

(@  The three most common fixed-point number representations are one’'s complement, two’s
complement, and sign-magnitude.

(1)  Give the bit pattern in each representation of the quantities +25 and -62, assuming a
word length of 12 bits.

() Giveaflow chart or other brief description of addition in each representation, noting
how overflow is detected and how the sign of the result is determined.

(3)  State briefly the advantages and disadvantages of each representation, both from the
viewpoints of hardware design and ease of programming use.

(b)  Draw a circuit diagram for a time pulse distributer. The circuit has one input which receives

a series of clock pulses. Whenever a pulse appears a the input, a pulse is to occur on one of

four output leads in the following fashion: output lead 1 should have an output pulse with

thelst, 5th, 9th,... input pulses; output lead 2 should have an output pulse with the 2nd,
6th,10th, ... input pulses, and so on.

4, Stack administration. (25 points)

On astack oriented machine (or interpreter) the stack may used as arepository for various kinds of
program information, such as those listed below.

(1) Storage for smple variables local to a scope (an Algol begin-end block, for instance).

(2)  Return address for procedure or subroutine calls.
(3)  Intermediate values obtained during expression evauation.
(4)  Pointers for locating variables loca to enclosing scopes.

Describe a single stack structure containing al of this information in a sufficiently genera form to
be usable for an implementation of Algol 60.

Describe the action of your stack on procedure entry and procedure exit. One way to do thisisto
draw before-and-after diagrams.
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L Syntax. (35 points)
Read the whole problem before answering any part of it.

(a) Describe a parsng algorithm which will parse sentences of a subset of context-free grammars
using one of the following techniques. precedence, operator precedence, extended precedence,
bounded context, transition matrices, production language, direct reduction, LR(k), or some
other smilarly powerful method.

(b) Congder the following grammar:
<p> = L<bes L
<be> = Db e <be> |<ae>=<ae>
<ae> u= A « <ae>|<at>
<at> u=<at> -~ <ap> | <ap>
<ap> u=a| (<ae>) | #(<be>)

where

<be> IS @ Boolean expression,
<ae> IS an arithmetic expression,
<at> is an arithmetic term,
<ap> is an arithmetic primary,

b is a Boolean identifier,

a is an arithmetic identifier.

To evaluate a Boolean expression b « <be>, one evaluates <be> and assigns the result to b.
The value of the Boolean expression is then the value of b. Similarly for the arithmetic
EXPression a « <ae>. The value of #(<be>) is 1 if <be> is true, O otherwise.

Isthis grammar acceptable to the parsing algorithm you described in part (@)? If not, change
it so that it is acceptable, without altering the language and with minimal changes in the

structure of the sentences.

(c)  Construct the necessary tables, subroutines, etc. for the parsing algorithm and grammar
described in parts (a) and (b). Assume you are writing a compiler for student use and that
therefore the syntactic error detection and recovery facilities are of first importance.

(d)  Write the best error message which your scheme could produce for the following invalid
programs.

() La)l

20 la-«b)1

(3) li=:=b:=1
(4) 1la#b):=al

27
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(e)

2.

SYSTEMS QUALIFYING EXAM

In parts (a) through (d) we assumed that there were distinct terminal symbols for arithmetic
and Boolean identifier (a and b). Suppose now that the language includes block structure and
declarations and that the following two productions were added.

b == <identifier>
a == <identifier>

How would you incorporate data-type handling thereby implied in the formal system used in
parts (a)-(d)? What general property of forma parsing schemes does this point out?

Symbol table. (20 points)

Considering a symbol table to be a place where a trandator stores identifiers and their associated
attributes, present three alternative methods of organizing such atable. For each method, answer
the following questions.

3

Detail the limitations each method imposes on the language trandated (does it handle block
dtructure, is there an upper bound on the length of identifiers, etc.?)

Discuss the method of searching, inserting, and deleting entries in the table.

Give space and time estimates for each kind of table manipulation in terms of the actual
number of identifiers in the table.

What is the behavior of the table as it becomes full?

Using one of the tables discussed above, give an explicit algorithm to discover, record, and
recover the address couple (nesting level and order number) for a block structured language.

Compiling. (25 points)

Consider a computer with a memory M and a set of genera registers R. M[i ] is the ith word of
memory and R[ i Jistheith genera register. Some of the instructions are defined below:

L R1, R2, A if R2 = 0 then R[R1] «M[A] else R[R1]«M[R[R2]+A]
S R1, R2, A if R2 = 0 then M[{A] « R[R1])else M[R[R2]+A] « R[R1]
A R1, R2 R[R1] « R[R1] + R[R2]

D R1, R2 RCR1] « R[R1] / R[R2]

SKIPE  R1, R2 iff RLR1] = R[R2] then skip one instruction

SKIPG  R1, R2 iff R[LR1] > R[ R2] then skip one instruction

B A branch unconditionally to the statement labelled A
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@

(b)

4.

Write an assembly language program to execute statements 3-5 of the following PL/I program
fragment:

DECLARE ﬂl N, @ B) (100)) FIXED; /% 1 %/
GET LIST (N, A, B); /% 2 %/
DOI= N2TON; /% 3 x/

A(I) = BQ) + I /* 4 %/
END ; /5 %/

Put an appropriate comment on each line of code. You may use any reasonable format for
your assembly language.

Assume the computer has one more instruction:

SKIPC  R1,R2 R[R1]«R[R1]+ 1, _ _
iff RLR1J <R[ R2] then skip one instruction

Assuming all instruction times are equal, write the fastest program you can to execute
statements 3-5. Give the run time as a function of N.

Outline a code emitting agorithm which approaches your result in part (b). Point out where
it will fall short, and why.

Operating systems. (20 points)

Answer one of the following two questions.

@

Describe and illustrate the important features of some time-sharing system, including such
features as

(1)  dynamic relocation of programs

(2) protection

(3) program switching

4)  interrupt structure and status preservation

§5; the agorithm for memory and processor scheduling

Develop a synchronization mechanism which will (1) avoid mutua excluson and (2) avoid
smultaneous execution of the critical sections of two otherwise pardle processes. Show a flow
chart or pseudo-Algol code which will carry outthe synchronization. If you utilize any
unusual meta-ingtructions, describe their implementation. The synchronization is to be
independent of the speeds of the processors carrying out the two pardlel processes.
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Programming languages. (60 minutes)

Do one of parts (a) and (b). .

(@)

A number of languages have facilities for defining structures or records, that is, sequences of
components which, in some cases, may themselves have components. FOr example, ALGoL W,
COBOL, PL/I, the language defined in “A contribution to the development of ALcoL” by
Wirth and Heare, and the language defined in Standish’s thesis. Discuss and compare these
facilities in three different languages. Some points you may want to consider are:

(1)  how the gtructure is defined

(2)  how components are referenced

(3)  how pointer variables affect the implementation

(4)  how much work must be done at runtime to implement the structures.

Consider PL/I-like structures with the following syntax for the declaration:

<structure dec> := DECLARE <component>;
<component> == <level number> <identifier> <attribute> |

<level number> <identifier>, <component list>
<component list> := <component> | <component list>, <component>
<level number> == integer
<attribute> := FIXED | FLOAT | CHARACTER

. Thus each component is a value with a simple type, or it consists of a sequence of

subcomponents.  We also require the main component to have level number 1; and if a
component has level number i al its subcomponents must have level number i+1.

Example: DECLARE 1 BOOK
2 AUTHOR
3 FIRSTNAME CHARACTER,
3 LASTNAME CHARACTER,
2 TITLE CHARACTER,
2 CALLNUMBER FIXED;

One references a component oOf a structure by the complete sequence of identifiers, leading
from the structure name (level 1) down to the desired component.

Example: BOOK. AUTHOR. LASTNAME ~ or  BOOK. TITLE.
Your problem is to discuss how a compiler would handle such structures.
(1)  Indicate, with diagrams, the format of each symbol table element, in general, and the

symbol table for the above example.

(2)  Explain what the semantic routines for the above productions (or other valid ones)
would do in order to parse a structure declaration and make up the symbol table
elements for it. Note: We are not interested in the parsing scheme, but in semantics.

(3)  Give the agorithm for finding a symbol table element for a component reference (like
BOOK. AUTHOR. NAME).

30
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2. Syntax. (40 minutes)

The smple precedence relations are defined for a BNF grammar as follows:

R=S if there is a production U ::=...RS...
R<S if thereisaproductionU:=...RW... whereW s*S.. .
R>S if (1) thereisaproductionU:=...VS...where¥ s*R..., or

(2) thereisa production U == . ..VW... whereV s*R...and W »*S.. .

A grammar G is asimple precedence grammar if (1) At most one relation holds between any pair of
ordered symbols (R, S) of G; and (2) No two productions have the same right part.

(@ How does condition (1) help us parse sentences of a simple precedence grammar?
(b)  How does condition (2) help us parse sentences of a smple precedence grammar?
(c)  Suppose we wished to parse in a right-to-left manner instead of left-to-right. Redefine the

relations so that the rightmost simple phrase will be detected at each step as we scan the
symbols from the end to the beginning.

3 Linking and loading. (50 minutes)

An important part of any system is the linkage editor and loader, which accepts object modules
(binary decks) from compilers and/or assemblers, links them with necessary subprograms, and loads
the complete program for execution. Discuss the form and content of the object module of some
fairly sophisticated system. Include in your discusson: entry points, externa references, relocation.
Specify briefly how the linkage editor goes about its business. Give diagrams and be concise.

4. Memory man agemen t. (30 minutes)

(@)  Describe in no more than two pages the memory mapping scheme for one of the following:
ATLAS supervisor, SDS 940 Timesharing Monitor, IBM 360/67 TSS, or some other
timesharing machine. Include a diagram.

(b)  Wha are the main categories of memory protection? Describe a system for providing memory
protection to physica addresses. Describe a system for applying protections to the logical
address space.

Do one of parts (c) and (d).

(c)  Briefly describe (with diagram) the cache memory organization on the IBM 360/85. What is
the key feature of programs that is essentia to the success of a cache?

(d) Describe two of the following schemes for handling collisions in hash coding: random
probing, linear probing, or direct chaining. What is the expected number of probes for
schemes you picked?
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5. Concurrency, paralelism, and scheduling. (20 minutes)

Do one of parts (a) and (b).

(a)  Describe accurately but briefly the Multi-level Scheduling Algorithm used in CTSS (MIT).
How did it function?

(b)  Describe with diagram one of the flow graph models of computations listed below.

Karp-Miller computation graph
Estrin-Martin-Turn directed acyclic graphs
Adams data flow graphs
What are the principal dementary components? What are the principal functiona properties?

What properties of computation have been studied by the model you pick? Could you derive
any of the mathematical properties of the modd in 20 minutes if you were asked to do s0?
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General programming. (60 minutes)

Consider the block labelled “MY STERY” in the following undocumented fragment of an
ALGoL W program. What effect does the execution of this block have on the global array A?
Do the dements A(l), A(2), . . ., A(n) satisfy any interesting relations when we reach FIN?

begin integer array A(1::10000); integer n;

MYSTERY:
begin integer i, j,k;

=1 je=mn

while true do

begin
while (i <j) and (A()) <0) doi:=i+ 1;
if i 2 jthen goto FIN;
while (i <j) and (4()20) do j :=j- 1;
if i 2 j then go to FIN;

XCH: k= A(j); AG) = A(i); A() = k;

i =i+l o= -1,
end;
end MYSTERY;
FIN: . ..
end.

Using the following instructions for a hypothetica computer, trandate the MY STERY block
into the “best possible” machine code program.  Write your program in an appropriate
symbolic assembly language, assuming that an appropriate environment for the MYSTERY
block has been set up. Give comments explaining the effect of each line of your program.
Assuming that each instruction takes one unit of time, give an approximate formula for the
running time of your program, as a function of n and the number of times the statement xcH
is executed. (Try to produce a short program with minimum execution time.)

The hypothetical computer has memory locations M[81,M[11,M[2],... and integer
registers R[8],R[1],R[2], ..., such that R[8] always contains 8. The computer’s
instructions are given below, where i, j, and k are nonnegative integer constants.

SET i,d,k  R[i1 :=R[]j]+k

LOAD i,d,k  R[i1 :=M[R[JI+k]

STORE  i,d,k  M[R[jJ+k] := R[1i]

ADD i,Jd,k  R[i] :=R[iJ+ (R[jI+k)

SUB i,d,k R[i1 = R[] - (R[j]+k) _
GEQ i,J,k ifR[i]28 then go to location R[ j]+k
LSS i,d,k ifR[1]<8 then go to location R[ | }+k

Instructions are executed sequentially unless GEQ or LSS causes a transfer of control. Example:
GEQ g8, 8,8 dways transfers control to location 8.

Describe briefly the types of code economization a compiler would have to perform if it were
clever enough to produce your program of part (b) from the source code in part ().
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2. Language design. (30 minutes)

(@  What is meant by “binding time” for symbols?
(b)  What are the advantages and disadvantages of early and late binding?

(¢  Give examples to illugtrate the possible binding times for symbols used in some programming
system with which you are familiar.

(d) What are the implications for a programming system of early and late binding?

3 Operating systems. (30 minutes)

(@  Discuss briefly the scheduling adgorithm used on a time-sharing system such as CTSS, SDS
940, or IBM/360 TSS.

(b)  One way to conduct research on operating systems (or many other aread!) is the following:

(1)  Give a precise definition of a problem.
(2)  Solve the problem.
(3)  Prove that the problem has been solved.

Some studies of operating systems have been performed using this approach. Discuss one
such study. State carefully the problem of interest and any fundamental assumptions. How
reasonable are those assumptions? Give the essentid ideas of how the problem was solved,
including a discussion of any algorithms which have been developed. What motivated the
discovery of this solution? How was it shown that the solution was correct?

4, Syntax analysis. (90 minutes)

One of the few notational conventions of mathematical logic which has not yet been widely adapted
to computer science isPeano’s parenthesis-free notation based on dots for grouping. This problem
considers the possibility of exploiting Peano’s notation.

We will define a language, called Ldot, of expressions in a single left-associative operator. The
operands are single lower-case letters and the operators are represented by concatenation; for
punctuation we use dots. We will be interested in trandating expressions in Ldot into equivalent
expressions in another parenthesis-free language Lpost, which is Polish postfix notation with the

won

operators represented by "x".

The punctuating effect of dots is as follows: The largest number of consecutive dots in any
expression divides the expression into its two principal subexpressions. Each subexpression is
evaluated using the same rule. Any “ties’ are broken by associating to the left. For example:
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Ldot Lpost
abc abxcx
a.bc abokx
a.b.c..d.ef  abkcxdefwxx
a..b. .c abxcx

(@  Write a program which tranglates expressions from Ldot to Lpost, by simulating a machine
with one pushdown stack. Use adialect of Algol (specify which dialect you are using). You
may assume, if you like, that the input and output strings are represented as arrays of integers.

()  Canyou write a BNF description of Ldot which could be used by a syntax-directed compiler
to carry out this trandation?

(¢ It is well known that BNF is equivalent to nondeterministic pushdown-store automata
(NDPA). How do you reconcile this fact with the results of parts () and (b)?

(d  What are some interesting problems related to dot notation which you think would be worth
exploring if you had time to do s0?
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(Take home exam - return in 5 days.)

Problem 1.

Consider the implementation of an incremental compiler for ALGOL 60 or a similar ALGOL-like
language. Assume the programmer is able to converse with the incremental compiler, and is able to
insert, delete, or alter statements in his program dynamically. Also assume that he may initiate
program execution.  Similarly, assume that he may make use of a “PAUSE” statement in his
program, which causes execution to be suspended when it is reached. Program execution can be
resumed from the point of suspension under programmer control. Thus, a programmer can create a
program, start it in execution, suspend it at any arbitrary point, modify the program, then resume
execution of the modified program at the point of suspension.

The design of the incremental compiler is such that the compiled program must be primarily, if not
entirely, executable machine code, rather than pseudo-code that is interpreted by a program.
Moreover, incremental changes in the source program must cause only incremental changes in the

compiled program.

(a)  For each of the facets of a compiler mentioned below, discuss the problems of implementation
given the constraints above. For each facet listed, discuss at least one implementation
technique which in your judgment best overcomes the problems your raise. Where pertinent,
indicate one or more alternative implementations which you believe are worthy of mention.

(1)  Assume that all statements are numbered by the programmer as they are entered. To
insert a statement between statement N and M, N <M, the new statement is given any
number in the interval N <x<M. To replace statement N, the new statement is
numbered N. To delete statement N, the empty statement is entered with a number N.
Consider the problem of maintaining a representation of the current state of the source

program.
(2)  Consider the effects of allowing declarations to be modified dynamically.

(3) How should the ALGOL nested scope feature be treated in an incremental environment?

(4) How should memory allocation of program variables be done? Consider the effects of
arbitrary modification of array bounds after array allocation has occurred.

(b) Find some other aspect of the incremental compiler which is nontrivial to implement, and
discuss it as in part (a) above.

36
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Problem 2.

@

The following algorithm describes a buffering scheme for an n-way merge of ordered files,
nx2. Your job is to give an informal but convincing proof that the algorithm works.
(Alternatively, if the agorithm is invalid, you should present an example or examples which
make it fail, suggest changes which fix things up, and prove the validity of the corrected
agorithm.)

Each of the input files is assumed to be stored on external memory, in blocks containing m
records each. Each record contains a numerical “key” value. The value of thej th key in a
block is less than or equal to the value of the (j+1)st key, for 1 <j s m, and the value of the
m th key is less than or equal to the value of the first key in the next block of the file. The
final block of the file has been filled with one or more “dummy” records; the key of a dummy
record is "«", avalue which is greater than all of the non-dummy keys. The output file
should adhere to the same conventions as the input files, and should contain all the
non-dummy records of the input files.

The computer is able to read, write, and compute smultaneoudly, but it can read a most one
block at a time and it can write at most one block at a time. The principa virtue of the
following agorithm is that, once it gets started, it maintains continuous reading and writing,
and essentially issues the read and write commands simultaneoudly.

The algorithm makes use of 2n input buffer areas, each one block long, denoted by /13,
1121, ..., I[2n) There are two output buffer areas, denoted by 0[0] and O[1]. We write

key [i, ]
for the value of the jth key in /[i], and
Olk, e Ili,{)
for the operation of moving the jth record of /il to the ith position of O[k].

The following auxiliary tables are used:

Name of table  Range of vaues Intended significance

Alil, 1 <i<on Oorl 0if /(i) is available for input,
| otherwise.
Blil,i<iz<n 1, n Buffer containing the last block

read so far from file .

cli) 1 Buffer currently being used for

the input to the merge from file i.

Value of last key read so far
from file .

IA

IA
>
=
=]

L[i],1<ix<

A
=]
S

]

PliJ, 1<iz<n 1, ..., mH The number of the record currently
being scanned in buffer /[C[i1].

sid, L<is2n 1, ..., n The buffer to use when /{i]
has been completely scanned,
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Step 1. (the initidization)

1.1 Do thefollowing for 1 <i < n:
111 Initiate reading the first block of file i into buffer /{i].
1.1.2 Set Ali}« 1, Ali+n)« O, Blil« i, Clil« i, Pli)« 1.
1.1.3 Wait for the input operation to be complete, then set L[i]« key [i, m].
1.2 Find ¢ such that Llgl= min {L[1],L[2], ..., Lnl}.
1.3Sett«0, ke« Nt 1. (¢ represents the current output buffer,
k the current buffer for input)
1.4 Initiate reading the next block from file ¢ into buffer /{z].

Step 2. (the merging)

2.1 do the following for ¢ = 1 to n:

211 If PliJ=mt 1 for somei, set P[i] « 1 and C[i] « S[C[i]] and A[C[i]) « O.

2.1.2 Find r such that key [C[r], P[r])= min {key(C[1], P[11], . . . , key [C[n], P[n]}}.
2.1.3 set O[¢, )« IlClr], Pr]].

21.4 Set PlrlePlr]t 1.

Step 3. (wait for input/output completion)

31 Wait if necessary until the previoudly initiated input and/or output is complete.
3.2 Set Alk])«1,S[Blgll« k, Blgl « k.
3.3 If LIg) =, set LIg] « key [k, ml.

Step 4. (the next input/output)

4.1 Find ¢ such that L{g)= min {L[1],L[2],.. ., Ln}}.

4.2 Find k such that A[x])=0 (such ak will exist).

4.3 Initiate writing from buffer O[t] to the output file.

4.41f Llg) = oo, initiate reading the next block from file ¢ into buffer /(k].

4.5 If the final key in buffer Ol¢] is o, stop; otherwise set ¢ « |-t and return to step 2.

Assume now that the computer can do two reads and two writes simultaneously. Design a
smilar agorithm which essentidly doubles the rate of input/output of the method in part (a),
by having two reads and two writes in progress most of the time (assuming very fast processor
speed and very large files). Your algorithm should not use more buffers than necessary to
ensure continuous operation; for example, the algorithm in part (a) would fail if there were
only 2n-1 buffers, so 2n are necessary in that case.

One solution to this problem would be sSimply to have 4n input buffers and 4 output buffers,
grouped in pairs, and to carry out the algorithm of part (a) almost as if m were 2m. But this
isnot saisfactory! Arrange instead to have only three output buffers; at a typica instant the
algorithm will be storing into one output buffer, doing the second half of a write from
another, and doing the first half of a write from the third. A similar technique should be
used for the input files, initiating each read when the previously initiated read is half
finished.

Give an informal but convincing proof that your algorithm is correct, and that it doesn’t
require too many buffers.
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Problem 3.

You are to design a system procedure, called the OPEN procedure, to initiate the processing of a
predefined user file. A file is acollection of records which are sequences of words. Assume a
multi-programmed environment with a single central processing unit and movable head disk
storage. When not being used, a file resides on disk storage. Files are not shared. At most one user
may be accessing afile at any instant. In this system, when a routine initiates a transfer to or from
the disk, the routine loses control of the central central processing unit until the disk transfer is
complete.

The following information must be maintained for each user file.
(1)  File identifier — a unique identifier is associated with each file.

(2)  File access control list — alist of al authorized users of the file. Each entry consists of (a) the
user identifier and (b) the access type. Examples of access types are read only, read/write only,
append only, delete only, execute only, or perhaps a combination of these such as “read and
append” access.

(3) File access history — alist of all successful and unsuccessful file access requests. For each
access request the user identifier, access type, file identifier, time of request, and success or
failure must be recorded.

(4) File status and location — an indication of whether the file is active, i.e. some user has
successfully called the OPEN procedure and the file is either wholly or partialy in main
memory; or inactive, i.e. the file is disk resdent and not currently in use.

As stated below, part of this problem is to decide where (disk or main memory) and how this
information should be stored. The file system maintains a file directory, which is at the minimum a
record of al files currently known to the system and an indication of the file location and status.
The file directory always resides in main memory. The file system maintains a file header as the
first record of each file on disk storage. The file header contents will be specified by you as part of
the solution of this problem. For each active file, a file control block is maintained. This control
block contains all information necessary to use the file data (location of file buffers, numbers of
records currently in main memory, €tc.).

(a) Give apseudo-ALGOL description of the OPEN procedure. This procedure has as input
parameters the file identifier, user identifier, and user access type. Assume al parameters are
of type INTEGER. The OPEN procedure checks the validity of the access request and if the
request is valid defines a file control block for the file. The OPEN procedure is responsible
for the maintenance of the file access history. In designing this procedure, keep in mind the
fact that disk transfers are slow and it is undesirable to require many transfers to open afile.
Also, use of main memory by the file system should not be excessive. Assume all disk
input/output is performed by system routines READDISK and WRITEDISK which return
when the transfer is completed. Assume all disk transfers are error-free.

(b)  Specify the contents of the file directory and file header required to implement the OPEN
procedure described above and describe the data structures you have selected. Justify briefly
your reasons for the sdlection of each data structure. Assume that individual entries may be
added and deleted from the access control list and that individual entries are added to but
never deleted from the access history.
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Giveformulas for

(1)  Main memory required for each file directory entry.

(2)  Disk memory required for each file header.

(3)  Any additional storage requirements (disk or main).

(4)  Execution time, ignoring disk transfer time, to open a file.

Show how (1)—~(4) depend on the size of the access control list and the access history.

Consider the following two file access methods.

(1)  Sequentid access method - file records must be accessed one after the other.
(2)  Random access method ~ file records may be accessed in any order.

What, if any, would be the effect on your answers to parts (a) through (c) if al accesses were

sequential? Random?
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Problem L (50 minutes)

Let G be a context-free grammar with initial symbol S, nonterminal alphabet {S, A, B}, terminal
alphabet {}, a, 6, -}, and the production rules shown below:

(d)

S - A4

A-a

A -»aAB

Bob

B - b4

Give a parse tree for the string l-aabaabi.

For what values of n, m 2 0 is the string Fa™*'ba™*1b"™*"~14 in L(G)?

Is this grammar ambiguous? Justify your answer.

Is this grammar LR(1)? Why or why not?

Problem 2.(25 minutes)

Consider a hypothetical computer with the following characteristics.

L
2.

(a)

(b)

The computer can support multiprogramming and shared re-entrant programs.

The computer has a relocation register and a program length register. The contents of the
relocation register are added to every memory address generated by the program, and every
valid address must be in the region delimited by the relocation register and the program
length register.

Programs other than the operation system operate ina “user” state in which the memory
protection is delimited by the relocation and bounds registers. Thus such programs must
occupy contiguous regions of memory, and their apparent address space runs from location 0
to location L-I where L is the program length. Re-entrant, shared programs must operate in
user state.

Discuss problems concerning the use of shared programs inthe computer environment
described above. Your answer should focus on the problems of communication between
programs and shared programs within the constraints placed on their address spaces and the
memory protection mechanism.

Invent some reasonable hardware mechanism to facilitate the use of shared programs on this
computer system. Your invention should not be a paging mechanism.

41
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Probl . (50 minutes)
Discuss the problem of writing an optimizing compiler for a paging machine. The source language

can be FORTRAN (easier) or ALGOL. The main issue to be addressed is the minimization of page
faults.

Problem 4. (50 minutes)

Below are two similar procedure bodies for performing a binary search of array A, from element
A[ 1] to dlement ALN ], for ITEM.

Low := O ; ww = 0;
H GH := N+1; H GH := N+1;

FOUND := fal se;

loop: if LON+ 1 2 migH then loop: if row + 12 HIGH then
go to notfound, go to exit;
PLACE := (LOW+HIGH) :2; PLACE := (LOW+HIGH) +2;

if 1TEM = A[PLACE] then

go to foundit;

if ITEM < A[PLACE] then if I'TEM < A[PLACE] then
H GH := PLACE H GH := PLACE
el se LOW:= PLACE, el se LOWN:= PLACE,
go to Yoop; go to loop;
foundit: FOUND := true; exit: FOUND := ITEM = A{LOW] ;
PLACE := LOW;
not f ound:
return, return;
PROCEDURE PROCEDURE
1 2

Note that Procedure 1 has an equaity check in the loop and that Procedure 2 does not.

Under the assumption that both procedures are correct determine if one procedure is preferable to
the other, and under what conditions. You may assume for convenience tha N is of the form 2"-1,



MAY 1972

43

To determine approximate timings for the procedures, assume that the language is compiled and
run on an IBM System 360 type of machine, and that the inner loops of the two procedures consist
of ingtructions selected from the set below, Each ingtruction takes one time unit.

LR

AR
ST

CR

B
BE

BL

Operation

LOAD
LOAD REGISTER
ADD

ADD REGISTER
STORE
COMPARE

COMPARE REGISTER

BRANCH
BRANCH IF EQUAL

BRANCH IF LOW

BH, BNL, BNH, BNE, . ..
. SRA SHIFT RIGHT

Description
Load an accumulaor from memory (may be indexed).
Load register.
Add memory to an accumulator.
Add an accumulator to an accumulator.
Store an accumulator into memory (may be indexed).

Compare an accumulator with memory, set the condition code
(may be indexed).

Compare an accumulator with another accumulator,
st the condition code.

Unconditiona branch.

Branch if the condition code indicates that the last comparison
was an equality.

Branch if the condition code indicates that the first operand
was less than the second for the last comparison.

All other possible variants of conditional branches.
Arithmetic right shift of a specified accumulator.
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TAKE HOME PROBLEMS

Problem 1.

Congder the problem of adding matrix arithmetic to ALGOL. The extensons should include the
matrix operations of addition, multiplication, equaity comparison, inverson, and transposition.

(a) You might want to add a new data type matrix. Discuss the advantages and disadvantages of
doing so. Write the additional BNF syntax needed for your solution.

(b)  You should be able to generate better code for matrix operations in your language than would
be possible with ordinary ALGOL. Discuss how to do it.

(¢ How would the difficulty of doing this addition depend on the origina implementation of
ALGOL? Choose some extensible compiler or other trandator writing system and describe
how you would carry out the extension in its framework.

Problem 2.

Read Chapter 6 of the Processor Handbook for the PDP-1 1/45 computer made by Digital
Equipment Corporation. The chapter describes the Memory Segmentation Unit available on the
11/45. A partia quote from Chapter 1 is given below.

The PDP-1 1/45 is a powerful 16-bit computer representing the large computer end of
the PDP-I 1 family of computers. It is designed as a powerful computationa tool for
... large multi-user, multi-task applications requiring up to 124K words of addressable

memory space.

Describe a memory management policy that an operating system might provide for a general
purpose multiprogrammed timesharing system in which a very large high-speed drum is avallable
as a backing store. Give attention to the main memory fragmentation problem and the management
of shared segments.
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Problem 3.

We wish to process a given sequence of integers. Processing consists of the application of one or
both of subroutines A and B iteratively. The order in which we apply subroutines A and B and
their parameters for each cdl are unknown ahead of time.

Subroutine A: Given an integer i, find the largest dlement of the first i elements in the sequence.

Subroutine B:  Given a integer i, and a datum n, insert n as the i th element of the sequence,
moving the previous i th element to position i+ 1, the i+1 & element to position i+2, and so on.

You must retain the values of the entire sequence in your data structure.

It is possible to design a data structure for which both subroutines A and B require a time
proportional to loga N in the worst case, where N is the length of the sequence at the time of the

subroutine call.

Example: position 12345678

dement value 46371258
Subroutine A returns:;

[ 12345678

retuned vaue 46677778

Call Subroutine B with i=5, n=

position 1
gdement vdue 4

Subroutine A returns:;

[ 123
returned value 466

Your answer should be based on the agorithm in Example 11.9 of Stone, Introduction to Computer
Organization and Data Structures). Describe precisely what modifications to the algorithm are
necessary to perform the required task. Y ou should indicate which lines of code have to be
changed, what additions are required to the data structure, and what additional Algol code is
required. Also, describe in English how your modified agorithm works.
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(This exam was given oraly. The following is a smplified version of the questions asked.)

Compilers.

Invent a small smple precedence language and show how to derive precedence tables for it.
What are the disadvantages of precedence languages?

What are precedence functions? Do they dways exist? Are they information lossy? How do
they hinder error protection?

What problems face alanguage designer who must implement a one-pass compiler? What
language features cause trouble? How can some of these problems be solved?

Discuss code optimization for one-pass or multi-pass compilers. What kinds of optimization
can be done?

Build a SW AP(A, B) procedure in ALGOL 60 (usng NAME parameters) which adways works.

. . Operating systems.

Describe some CPU scheduling methods and explain what each method is intended to
optimize.

Sketch response time versus CPU service time for first-come first-served and round-robin
scheduling.

What data structure would you use to maintain a queue of priority tasks in which each task
has a unique priority? Y ou must be able to select the highest priority task for running, and
aso be able to add and delete tasks quickly. Try to minimize the use of space.

Describe severa methods of building hash tables, and especidly discuss ways of resolving
collisions.

Describe a virtua machine and tell how it is implemented. What specid hardware features
are needed?
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Optimization.
What is interval analysis?

What is dead variable analysis?

Are recurson and iteration interchangeable?
How do you do register alocation?

Describe some methods of loop optimization.

How could expresson evaduation be optimized?

Language design.

What control structures are needed for goto-free programming?

What are the differences between typed and typeless languages? Advantages and
disadvantages?

What features do programming languages need for systems programming?

What is the difference between static and dynamic execution environment in block structured
languages?

Formalisms.
Show that {ww|weZ*} is not a finite state language.

Give a brief description of Hoare’s proof of correctness method.

Hashing / Searching / Sorting.

What are the worst case times for Quicksort? Heapsort?
What are twin primes used for in hashing methods?

What is the average insertion time in random trees? Deletion time?
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Data structures / Storage allocation.
What is a B-tree and what is it good for? How is it used?
What is a good data structure for a priority queue?

How do you do minimal space garbage collection for LISP-like environments?

Operating systems.

What are the advantages and disadvantages of virtual machines?

What is dynamic linking in MULTICS?

Why do termina users want multiple processes? Multiple cooperating processes?
What is the difference between lock-unlock and P-V?

What is a good job scheduler for an interactive time sharing system? For a batch system?
Give an example of a very bad time sharing job scheduling agorithm.

How do you fit dismountable disk packs into a hierarchica file system?

What fundamenta concepts must your operaing system implement for a multiprocessor system
like C.mmp?

(This exam was given oraly.)
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(The following is an outline of the topics covered in the oral exam.)

1
(a)
(b)

(9]
(d)
(e)

(f)

(a)
(b)
()
(d)

(e)
(f)
(g)

Compilers.

uvwxy theorem.

Give an example of an operator precedence grammar for parenthesized arithmetic
expressions.

Compare recursive descent with LR(k).
Explain hesp sort.

What is the basic abstract data structure needed for code optimization? What do you do with
it?

Give an example of a loop invariant. Explain the notion of weakest pre-condition.

Data structures.

Sorting and searching.

Program design and analysis.

Basic operating system principles,
Sdect a good systems programming language. What features should the language have?

Discuss the pros and cons of various synchronization methods.
Compare interrupts vs. polling as a scheduling discipline.

How do you allow users to share files? In a hierarchical file system? With dismountable
packs?

File mapping issues.
What makes a machine “virtualizable’?

Compare directly addressable scratch pad vs. cache memory.
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Operating Systems,

L

2.

Describe the concept of capabilities in an OS.

What are criteria to establish the upper and lower bounds for time slices In a time sharing
system?

Describe the working set algorithm for paging. When is a program’s working set the largest?

What are the possible states of processes outside of the set of processes which are actively
using memory (the balance set).

When processing requests from a disk, a one-way scan has been advocated (SCAN, Teory).
Why? Sketch the queue behavior. Estimate the required ratio of arrival rate (A) to service
rate (u) to avoid long term queue buildup.

Describe the principa components of an indexed-sequentia file.

Program Design and Analvss,

L

2.

Compare the advantages of macro vs. procedure cal in organizing a program.

Are there programs that can’'t be written without go to statements? How can you transform
an arbitrary program to eliminate go to’'s?

Isthe PL/I ON condition structured? Suggest a structured way of handling exceptions.

Define the concept of weskest pre-condition. What is wp(x:=2xx, x=y)? What is wp(if B
then §, P)?

What are desirable features in a high-level language for synchronization/communication
between paralel programs?

What are coroutines? Describe a problem where they would be useful.

Data Structures and Alnorithms.

L

(@ What are some of the different methods for organizing a table, if the operations
performed are (1) lookups and (2) insertions? Compare the time and space requirements
of these methods.

(b)  Describe methods for resolving collisions in hashing.

50
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2. How does the following program work, and what is its asymptotic running time?

/* Given input N, listalltheprimenumbers S N.#/
integer array A(1l:N); integer I, J, N;
read (N);
for I:=1 until N do A(I):=1;
for I:=2 until SQUAREROOT (N) do begin
J:=2;
while IxJ < N do begin
A(IxJd):=8;
JizJd+l
end
end;
for I:=1 until N do
if A(1) = 1 thenwrite (1);

3 Describe amethod of external sorting. Estimate its speed.

Compilers.

L Discuss theallocation of storage for arrays. What are two common methods? What are the
advantages and disadvantages of each method?

2. What is intermediate code (or internal form)? Why is it used? What types are there? What
are theadvantagesand disadvantages of each type?

8. (@ What is a left parsable (context free) grammar? Informally describe what a LL(k)
grammar IS.
(b) Consider S-Sa|b. IS it LL(k)? If so,whatiskand why? IS it |eft parsable? Why?
(¢ Answer part (b) for the grammar § - bAba, A= b | e.
(d) Aredl LL(k) grammars left parsable? And vice versa?
4, Describe the organization of acompiler-compiler. Describe how you would use one to

produce a compiler.  State some of the advantages or disadvantages of using a
compiler-compiler system as compared to writing the compiler directly.

5. Most programming languages are of what type? Is there an agorithm for determining if the
language generatedby a context-free grammar is empty? How and why does it work?

(This exam was given orally.)
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COMPILERS AND PROGRAMMING LANGUAGES

L Language design.

(a) Often language features are related. What language feature should be included in a
programming language if OWN variables are part of the design?

(b)  What does the term “dangling reference” refer to?

2. Optimization.

For integers A, 8, C, 0, E, F, and TEMP, when is the following transformation not valid for
optimization?

A := BxC+D; 3 TEMP := BxC;
E := F+B«C; A := TEMP +0;
E := F + TEMP;
3. Parsing.

(@ Compare the power of simple precedence, SLR(1), LALR(1), and LR( 1) parsersin terms of
languages and grammars.

(b)  Qualitatively, how does the construction of SLR(1), LALR(1), and LR(1) parsers differ?

4. Garbage collection.

(@ What is“compactifying garbage collection”? What is the major implementation problem
involved in writing such a garbage collector?

(b)  Explain, using pictures, how to implement a compactifying garbage collector.

5. Formal langu age theory.

Are the following problems decidable or undecidable? Give some argument to justify your answer
(not necessarily a formal proof).

(@ DoesaPDA M accept the null string? (ee L(M))

(b) DoesaPDA M accept the empty language? (L(M) = &)

(c) DoesaPDA M accept an infinite language? (IL(M) | = )
(d) DoesaPDA M accept a regular language? (3R L(M) = R)
(6 Does a DPDA M accept a regular language? (3R L{M) = R)
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PROGRAMMING METHODOLOGY AND LANGUAGES

Explain the view of data types as demonstrated by Hoare in his axioms for data types (in
Pascal or Notes on Data Structuring).

(@  Explain the concept of data abstraction.

(b) How are the ideas of an object and a variable used to define the CLU abstraction
mechanism?

What is a generator? Give an example of its use. (A generator is a data abstraction which
computes sequences of values for an abstract type, It provides an initidization procedure and
a procedure to obtain the next value in the sequence.)

Explain the concepts of proving backwards (Hoare formalism) vs. proving forwards (Floyd
formalism).

What are guarded commands? What are they intended for? What type of formal rules are
applied to them?

EJG SYSTEMS QUAL QUESTIONS

L

The language Pascal requires all arraysto have constant dimensions. What simplifications
does this imply in the run time environment implementation? Pascal character strings are
amply linear arrays of single characters. Discuss restrictions this place on the programmer
which would be removed if arrays were dynamic. What desirable string operations would still
not be available in a straightforward implementation of dynamic arrays?

What is a “pipe’ as implemented in UNIX? Discuss some advantages and disadvantages of
having this as the only communication mechanism.

Discuss issues in machine independence of modern programming languages. What problems
are there in seeking true independence? What are some implications of machine
independence on language design? In particular, can you think of any impacts of machine
independence on design of an intermediate language?

Consider a simple binary search. Write an abstract algorithm on the blackboard (in English
or high level pseudo-Algol). What is a useful invariant of the main loop?

What are some means for avoiding deadlock? From a practica standpoint, discuss deadlock
recovery.
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DATA STRUCTURES AND ALGORITHMS

1. Describe a tree search technique for searching a fixed set of data When can you produce an
optimal search tree? What isit? What techniques are needed for a search tree organization

over varying data?

2. Describe a data structure for implementing a multiset with two operations. (1) add an element;
and (2) choose some element, remove it, and return its value. Is your solution best suited for
large or smdl data items? Give asolution for the other case.

3. Given an dgorithm for computing trangtive closure, how can it be used to get an agorithm
for finding path lengths in a graph?

4. Anadyze the order of execution time for the following recursive function in terms of n, m

f(m,n) = f(m,n,2)

f(m,n,i) = if m £ 1orn < i then nxm
else if nmod i = 8 and m mod 1 = 8
then ixg(m/i,n/i,1)
else g(m,n,i+l)

5.  Give an efficient method for finding a mod b without using divison (a, b are not necessarily
integers).
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OPERATING SYSTEMS

L Locks.

What is the objective of lock primitives that lock multiple resources with one invocation?

2. Queues.

(@  When is FIFO not appropriate for a timesharing scheduler?
b

Characterize the behavior of a queue when a transient load exceeds the maximum service
rate.

3 Confinement.

What strategy is used by a capability-based system to confine processes? What is the critical
mechanism? Are the remaining problems in confinement?

4. Virtua memory.
Why is segmentation desirable in addition to paging?

5. Network.

What services are required to let processes in distinct machines interact with each other?

(This exam was given orally.)
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Problem 1. (50 minutes)

Suppose that the Communications of the ACM were running a series of short expository articles on
various fields in the computer sciences. Each article contains a survey of: the history of the field;
general gpproach, theory, and rationale underlying the work; major projects attempted, successes and
falures, and how these fitted into the stream of the research effort; mgjor problems exposed and as
yet unsolved; and indicated paths for further research, with specific suggestions.

Y ou are now asked to produce aresonably detailed outline of an article for each of the following
fields:

(@ Heuristic programming
(b)  Mathematical theory of computation

(For problems 2-5, do one of parts (a) and (b).)

Problem 2. (40 minutes)

(@ A criticism that has often been levied against programs in advanced nonnumeric applications
areas (such as machine trandation of languages, information retrieval, or problem solvers) is
that the programs behave “without understanding”, that is, without a sense of the “meaning”
of the problem. Not infrequently, this criticism is made by sensitive and astute observers of
the scene. What do you make of the above criticism? What does it mean? In particular,
what types of research efforts are indicated to overcome the criticism? In carrying out this
research, what previous work is relevant as a foundation and basis for progress, and how so?
Try to be as concrete as you can in your anadysis and references.

(b) Artificia intelligence researchers have devoted a considerable amount of energy to the
problem of modeling and programming processes of deductive inference (e.g. theorem proving
programs, game playing programs). But what efforts have been made to study processes of
inductive inference for computers? If you know of any, name them, and for each describe the
task studied, the generd scheme of the program, and the results. In your answer, please state
what you mean by inductive inference (it is not the same as mathematical induction).

Problem 3. (30 minutes)

(@ One major issue in the design of list processing languages and trandlating systems is the
erasure problem. Different list processing systems treat the problem in different ways. What
is the erasure problem? How is it handled in LISP? SLIP? IPL-V?

(b) Let adirected graph be given by alist of lists. Each sublist gives first a vertex and then the
vertices that can be reached from it in one step. For example, the graph

57



58

ARTIFICIAL INTELLIGENCE QUALIFYING EXAM

is described by the list ((A B C) (B 4 D) (C B)(D B)).

Write M-expressions for a function distancelx; y; g} which gives the number of steps required
to go from vertex x to vertex y in the graph g. It should return the atom infinity if thereis

no path fromxto ying.

Problem 4. (30 minutes)

@

(b)

Discuss the problem of proving the correctness of an ALGOL translator. What relevant
concepts and techniques are available? What remains to be developed? Include a discussion
of the concept of “correctness’ you are using in your answer.
The reverse of alist may be computed by the function

reverse[x] = revix; NIL)

where
revlx; y] = if nulllx] then y else revlcdrix]; conslear{x]; y])

. For example, reverse[(AB C D)]=(D C B R).

Prove by recursion induction that for any list x,

reverselreverse[x]] = x.

Problem 5. (30 minutes)

@

Potentially one of the most powerful heuristic methods for problem solving programs is
planning. Illustrate briefly by example, in an abstract way, how planning can be a powerful
heurigtic device. Under what conditions is planning not a useful heuristic? Describe how the
planning method of the General P roblem Solver works.

(1)  In Feigenbaum’s article “The Simulation of Verba Learning Behavior” (in Computers
and Thought) he reports that two types of forgetting (so-called oscillation and
retroactive inhibition) are observed in the behavior of the EPAM mode in smulated
verba learning experiments even though there is no information decay or destruction
postulated in the model. What gives rise to the forgetting? (Explain in some detail.)

(2) What are the major similarities and differences between EPAM and Selfridge’s
PANDEMONIUM as models of pattern recognition decision processes?
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Problem 1.

(@  You have been given two papers. Both address themselves to present-day limitations and
inadequacies in the concepts and techniques used in heuristic programming.

What are the main issues being treated? What is your analysis and opinion of the contentions
of the authors?

(b) Newell explicitly brings up the issue of representation. What is the problem of
representation? Why is it important? Concrete examples will help your argument. What is
being done to attack the problem of representation and how do you think this attack should

proceed?

Problem 2.

Write the simplest program in LISP M-expressions that you can for determining whether
3-dimensiona tic-tat-toe (in a 4 x 4 x 4 cube) is a win, draw, or loss for the first player. Explain
carefully the role of each auxiliary function, giving examples if necessary.

Problem 3.

What is meant by an unsolvable class of problems? Give an example of such aclass, and outline a
proof that it is unsolvable.

Problem 4.

Write the statements that 3-dimensional tic-tat-toe is a win, loss, or draw for the first player as
sentences of firg-order logic. Give the intuitive meaning of any predicate or function letters that

you Use.

Problem 5.
(@  What is “hash addressing”?
(b) How might it be used in the implementation of a list processing language?

(¢ What kinds of facilities for using hash addressing capabilities at the source language level
might be made available in a symbolic computation language?
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Problem 6.

Let the concatenation xxy of two listsx and y be defined by
xxy = if n x then y else ax. [dxxy]

Let the length of the list x be defined by
l[x)= if n % then 0 else [i{dx]}’

Let addition be defined by

m+neifne0then melsem’ + n”

Prove that
Hxxy] = ix] + iy

Hint: The following aternative form of the recursive formula for addition may be useful.
plus[m;n)=if m= 0 then n else [plus(m’; n)}’
If you use this formula, prove it equivalent to the origina definition.

Problem 7.

What has been achieved so far in the heuristic program areain making programs learn from their
experience? What are the limitations of the methods used? What do you think should be done
next? What will be the limitations, if any, of the programs you advocate?

Problem 8.

(@ Each of the following examples has been discussed in connection with more than one
computer program. Discuss a least two approaches to theorem-proving by computer, using in
your discussion at least one of the examples.

() ~PvQo~P
(2)  (3x)(3y) (VX) (Fxy> FyzFzz) (FxyGxy > Gx2Gzz)
(3)  Inagroup, the existence of a right inverse follows from the other axioms.

(b) State (1) the completeness theorem for first-order predicate calculus and (2) Church’s theorem.
Discuss their relevance to theorem-proving by computer.



October 1966 Artilicial Intelligence Qualilying Exam

Problem 1. (60 minutes)

Answer 6 of the following 8 parts.

With suitable training, EPAM has no trouble recognizing TAE CAT as THE CAT and not
TAE CHT. Why?

What does “static evaluation” mean as used in the literature of game-playing programs?
Show by example how the aphabeta heuristic works.
What does “linear separability” mean, in the pattern recognition literature?

What steps does Bobrow’s STUDENT program go through in deriving an answer to an
agebra word problem?

What kinds of operators does the Uhr-Vossler pattern recognition program use? In what
ways does it get its operators?

In the mechanical trandation game, what in generd do parsing programs do and what is their
interaction with dictionaries? What is a context-free phrase structure grammar?

In CPS, what is the fundamenta problem with applying operators that led the researchers to
organize into a distinct and separate goal the apparently straightforward job of applying a
selected operator?

Problem 2. (60 minutes)
(1) Formal logic.

)

(@  Transform the following schema into an equivalent one which has disunction and
negation as its only truth-functional connectives:

~pelg)or
(b)  Determine which of the three schemata
(3x)(Fx> Gx); (3Ix)(3y) (Fx>Gy); (Ix) Fx > (3y) Gy
if any, are equivalent to each other. Show your reasoning.

(c)  Would it be possible to write a computer program to solve problems like part (8)? Like
part (b)? Explain briefly why or why not.

The printing problem is the genera problem of deciding for an arbitrary given Turing
machine and input tape whether or not the machine ever prints the symbol §,. Is the
printing problem solvable? Prove your answer.
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Problem 3. (60 minutes)

(n

It isalleged that list processing, abasic tool in artificial intelligence research, is hideously
inefficient on a “paged” virtual memory machine, such as the IBM 360/67. Why is this
alleged? Describe a method or methods for getting around the basic problem, and defend
your scheme.

Contrast a list processing language such as LISP with a language not having specific list
handling capabilities for use in: language trandation; character recognition; or compiling.

Problem 4. (60 minutes)

(1)

(2

Do you believe that heurigtics discovered in one field of intelligent activity, such as theorem
proving, can help us in some other field, for example language trandation? Justify your belief
by specific reference to cases, choosing any two fields with which you may be familiar.

In H. L. Dreyfus' recent critique of artificial intelligence research, he asserts that there are
three fundamental forms of human information processing (fringe consciousness,
essence/accident discrimination, and ambiguity tolerance) which he maintains are
systematicaly excluded from all atempts to analyze intelligent behavior in digital form. Give
evidence either to support or to deny this assertion. Pick one of these processes and outline a
method which you believe might work in order to program this form of human activity for a
computer.
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Problem 1. (60 minutes)

Answer 6 of the following 9 questions.

(1)

(2

Which of the six clauses of the following formula can be dropped as redundant?
pgvarv prvpgv prvgr

Isthe f @1owing formula vaid? Prove your answe.
(xXEy)Fxy v (xXEy)~Fyx

Last January, Dr. Nilsson of SRI described the “robot” project of his Artificial Intelligence
Group at SRI. In designing the robot they have done a great deal of computer simulation
work. They have simulated the robot, simulated the environment, and made the simulated
robot behave in the simulated environment. Those of you who have seen the movie of the
CRT displays of this know that these smulation results are quite impressive-so impressive
that they raise the question, “If you can prove out your basic ideas so handily by simulation
techniques, why bother to go through the annoying and tedious engineering work to actualy
build an eectromechanica robot?” From the point of view of the advancement of the art and
science of artificid intelligence, in your opinion what is the most cogent and plausible answer
that Dr. Nilsson could give to this question?

(4 The following are some characterizations of problem solving strategies. For each, describe

briefly what it is and illustrate by citing an example.

(&) breadth-first
(b) depth-first
(c) progressive deepening

This question relates to the Uhr-Vosder pattern recognition program described in Computers
and Thought.

(@  The program processes the input “retina’ with “5 x 5" operators (i.e. 25 cells). Discuss
briefly the ways in which it obtains these operators.

(b) Does the Uhr-Vosder scheme represent a significant departure from or advance over
previous efforts? Answer “yes’, “no”, or “yes and no”, and justify your answer.

Recdl that in the experiments done by Paige and Simon on human problem solving behavior
in algebra word problem tasks (experiments undertaken in the light of Bobrow’s STUDENT
program), the experimenters designed certain “impossible’ problems, for example in which the
answers were negative speeds or negative lengths. How would the STUDENT program
behave if presented with these algebra problems to solve? Justify your answer briefly.

Characterize in a few sentences the mgor similarities and differences between the following
two stimulus-classifying systems:

EPAM (Feigenbaum and Simon)
Pandemonium (Selfridge)
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(8) Inthe machine learning area, whatisthe credit assignment problem? How is credit
assgnment handled in the learning procedures of Samuel’s checker playing program?

(9  In heuristic programming, what is meant by the representation problem? How does McCarthy
propose to handle the representation problem for an Advice Taker?

Problem 2. (60 minutes)

Answer 2 of the following 5 questions.

(1)  What do you think of the prospects of proving programs correct and checking the proofs by
computer? State relevant results and discuss what remains to be done.

(2) Give an example of a theorem and its proof by recursion induction. Make sure that there are
no gaps in the statement of the theorem or in the list of hypotheses used.

(3) Take as adomain the set of all humans that ever were or will be and suppose them all
descended from Adam and Eve. Let Dxy mean x is the daughter of y and Sxy mean x is the
son of y. Write a complete set of axioms for these relationships, that is, such that any domain
and predicates D and § satisfying the axioms could be the set of al humans and such that the
st of al humans is guaranteed to satisfy the axioms.

(4) Let Lbe a context-free language. Let x be a terminal symbol and a be a variable over
- strings, and let
Dy={oa|xaxel}.
IsD, context-free? Prove your answe.

(5) Prove that a set of podtive integers is recursive if and only if it is recursively enumerable in
increasing order without repetitions.

Problem 3. (60 minutes)

Consider the problem of inferring, from a set of strings in a language, a grammar for that language.
For example, the strings

car, cdr , caar, cadr , caddr, cddar

could be part of the language generated by the following grammar:
<gring> == ¢ <middle> r
<middle> :=a|d|a<middle> |d <middle>

In trying to design a program to carry out such an inference, one would encounter many of the
central questions in Artificid Intelligence. Discuss one of the following aspects of the grammatical
induction problem. Be as precise and specific as possible. You may aso include a set of random
comments that occur to you while answering this question.
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(a)

(b)

(©

(d)

Representation. How would you represent the strings, the grammar, and any auxiliary
information? You have your choice of exigting languages. Is the representation likely to be a

crucid factor in this problem?

Generalization. A grammar may be regarded as a generalization of the set of strings. What
measures of generality would be appropriate here? Do the measures generaize?
Modes of tnference. TO what extent do the terms

deductive, inductive, abductive, hypothetico-deductive

apply to the problem of inferring a grammar?
Learning. How would you design a program which would learn a grammar through

interaction with the environment? Would you expect such a program to perform better than
a non-learning program requiring the same amount of effort to produce?
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Problem 1. (45 minutes)

Answer one of parts (a) and (b).

(@)  Suppose you are writing a literature review article entitled “Aurtificia Intelligence: Themes in
the Second Decade’.

Choose one “theme” out of the many that can be identified in the artificial intelligence
research area. Cite the key papers of the past six years bearing on the theme, which taken
together congtitute evidence that such a theme in fact exists. In approximately 500 words of
clear exposition, survey your selected theme, in the style of a literature survey article such as
might be acceptable for the CACM. For purposes of this question, only post-1962 articles are
relevant.

(b) Discussin detail the state of accomplishment of one of the following programs and how
further progress might be made in that area.

(1)  the Creenblatt chess program

(2) the Samue checker program

(3)  the Wos-Robinson work on theorem proving by resolution
(4)  the Stanford Al Project block stacker

(5)  thegenera area of question answering programs.

Problem 2.(15 minutes)

What are the prospects for using a general concept of similarity in heuristic programming (for
example: smilarity of chess positions, pictures of characters, or pictures of faces)? Give examples of
your proposed uses. In this connection you may discuss Dreyfus complaint that machines cannot
have “ambiguity tolerance’.

Problem 3. (30 minutes)

Answer one of parts (a) and (b).

(@ Give afirst-order logic axiomatization (using predicates, functions, and equality) of the
following problem:

A farmer has to cross ariver with awolf, a goat, and a cabbage in a boat that
can hold only one of them at a time besides himsdlf. Leaving the wolf aone with
the goat or the goat aone with the cabbage is disastrous. How should he cross?

The axiomatization should be such that the fact that the farmer can get across with his
charges is a theorem. Explain any predicates and functions used.

(b)  The “representation question” is a centrd one in artificia intelligence. Describe as many as
you can of the alternative representations of the game tic-tat-toe. For each representation,
describe the problem solving technique which seems most applicable.
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Problem 4. (30 minutes)

Using abstract syntactic and semantic definition of suitable source and object languages, define a
compiler for conditional arithmetic expressions. State formally a definition of its correctness. What

are the main ideas of the proof?

Problem 5. (15 minutes)

Answer one of parts () and (b).

@

(b)

Give a grammar for the language consisting of all well-formed formulas of the first-order
predicate calculus.

(1)  Does each of (Ex) (Fx = Cx) and (Ex)Fx = (Ex)Gx imply the other?

(2) Aretheformulas(x)(y) (Fxy > ~Fyx) and (x) (y) (~Fxy > Fyx) compatible?

In each part, show how you arrive at your answer.

Problem 6. (30 minutes)

Answer one of parts (a), (b), and (c).

(a)

(b)

(0

Let A be the set of all Godel numbers of Turing machines. Let K be the set of Godel
numbers of Turing machines which halt when given their own number as input. For each of
the three sets 4, K, and 4 - K answer the following questions and give brief proofs.

Is the set recursive?
Is the set recursively enumerable?

Let G, and G, be arbitrary context-free phrase structure grammars. Is L(G,) n L(G3) = &
decidable? Prove your answer,

Give two basicdly different formulations of the intuitive notion of effective process. Outline
aproof of their equivalence.
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Problem 1. (30 minutes)

(a) The move tree in Figure 1 is to be scanned from left to right on a depth basis using
aphabeta pruning. Whenever a node can be pruned, list the node a which the comparison
leading to the prune is made and the highest level node affected. For example, if a decison
at node B3 leads to the pruning of node €9, list B3-C9 and do not list node 020, nodes £28,
E29, E30 or nodes F43 through F48.

(b) The and/or tree (or sub-goal tree) illustrated in Figure 2 has been generated by a problem
solving process.  The numbers adjacent to the trimmed nodes represent an estimate of the
amount of effort required to solve the problems represented by these nodes. The problem
represented by the node marked A has just been converted into two alternative sub-problems.
In order to finish the remaining part of the problem with least amount of additional effort,
which sub-problem should be processed next and why?

LEVEK

FlGgurs

SCORES REFER TO TERMINATING ROARDS
AS VIZWID BY SIDF yO PLAY THIS TERMINATING S0ARD .

=167
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Problem 2. (90 minutes)

There has been much talk in artificia intelligence about the “representation problem”.

(@  Briefly discuss one paper on the subject.

(b)  Giveaspecific example from the above paper to illustrate the importance of representation in
a problem solving system.

Problem 3. (40 minutes)

(@)  The paper on “State of the Art of Pattern Recognition” by Nagy purportsto cover all that is
important about pattern recognition. Most of these are inadequate in dealing with machine

perception of vision and speech. Why?

(b)  Discuss the merits and demerits of syntax-directed recognition schemes in vision and speech.

Problem 4. (40 minutes)

Compare the models used by Colby, Green and Raphael, and Quillian in dealing with natural
language.
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Problem 5. (50 minutes)

Answer one of parts (a) and (b).

(@ In his paper “Heuristic Programming: Ill-structured Problems’, Newell has presented a

(b)

comprehensive study of heuristic programming. Describe the current state of knowledge on
the subject, giving specific examples to illustrate as many points as possible.

The “Towers of Hanoi” problem isto be axiomatized. Assume there are three pegs, P1, P2,
and P3, and three rings of decreasing size, rl, re, and r3. The three rings are originaly
stacked in decreasing order of size on P1 and we want to place them in decreasing order on
P2.

BEFORE r3 t
ré
rl

Pl P2 P3

AFTER r3
ré
rl i
Pl P2 P3

A legal move requires moving exactly one ring to another peg, with the restriction that the
ring may not be placed on a smaler ring.
Write a set of first-order logic axioms for this problem such that the following can be proved:
holds (on(P 1, lise(r3, 72,7 1)), on(P 2, null), on(P3, null), Sg) >
3x holds (on(P 1, null), on(P2, list(r3,r2,r 1)), on(P3, null), §)

The fourth position of the predicate “holds” is a state variable. Y ou might consider axioms
involving state-valued functions.

Problem 6. (30 minutes)

Extra question for students planning to do a thesis in the area of Artificid Intelligence:

What do you think are the “kernel ideas’ in the field of Artificia Intelligence?
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(Time limit: 7 hours)
The Primacy of Search

The history of the study of problem solving in artificial intelligence is primarily a history of the
study of search. From the earliest reports of problem solving programs in the mid-fifties to the most
recent synthesis (Nilsson), the centrd focus has been on the generation of solution spaces and the
heuristic control of search for solutions within these spaces. Nilsson reaffirms the “primacy of
search”.  Feigenbaum (/F 1P 68 paper) has referred to heuristic search as the central paradigm of
artificial intelligence research.

Problems 1 through 4 al relate, in one way or another, to this paradigm.

Problem 1.

Heuristic search has been characterized as follows:

“A tree of ‘tries (also caled subproblems, reductions, candidates, solution attempts, or
aternatives-and-consequences) is sprouted by a generator. Solutions exist at particular
depths along particular paths. To find one is a ‘problem’. For any task regarded as
nontrivial, the search spaceisvery large. Rules and procedures caled heuristics are
applied to direct the search, to limit the search, or to constrain the sprouting of the tree.”

Comment briefly on this characterization.

Problem 2.

List and briefly characterize particular techniques and methods for heuristic control of search that
have been studied to date. As a start, here is a list that should trigger appropriate associations:
Logic Theorigt, problem reduction, game-playing programs, MuTipLE, evaluation, minimum-cost
anaysis, bi-directional search, planning, DENDRAL.
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Problem 3.

Congder the role of task-specific information, as revealed by the following diaectic:

Thesis: The primacy of heuristic search,

Antithesis; The power of a particular problem solving program is a function of the quality and
quantity of task-specific knowledge and theory employed; heuristic search is an inefficient and risky
procedure employed by the ignorant.

You are to supply the synthesis in this diaectic.

Examples.  In the most recent DENDRAL work (on amines, unpublished), the spectral theory
employed in the Preliminary Inference Process is so good (i.e. powerful) that there is no work
remaining for the Structure Generator to do, that is, only one structural hypothesis is implied.

The Moses integration program differs from Slagle’ s program in that the former does almost no
search-it has the right method for every problem.

Problem 4.

If one considers each set of clauses to be the node of a tree, the resolution principle is a “legal move
generator” for the space of possible proofs-by-contradiction for theorems in the first-order predicate
calculus. By itsdf, it is of course an inefficient theorem prover in the same sense that a lega move
generator is, by itsdf, an inefficient chess or checker player. The quest for efficiency (and thereby
effectiveness in particular problems of interest) involves search dtrategies. Some smple ones have

been devised.

Name three such search strategies, and illustrate how they prune the tree and guide the search for a
contradiction.

What is not ample is to devise heuristic search strategies for exploiting task-gpecific information in
the domain of a problem that has been given a representation in first-order predicate calculus.

Present one such heuristic search strategy for some problem domain in which a resolution theorem
prover isto be used as a “general problem solver”, and illustrate how it would work to control
search.
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Problem 5.

(@  Give an axiomatitation of the “Missionaries and Cannibals’ problem in the formalism of
McCarthy and Hayes such that it follows from the axiomatitation that the missionaries can’
get safely across the river with the cannibals.

(b) What is the relation between this formdization of the M & C problem and that of GPS?

Problem 6.

A single monocular view of a scene is not, in general, sufficient to determine the position of objects
in the scene.

(@ State as precisely as possible why this is the case.
(b)  Describe briefly at least 6 ways in which people get complete scene descriptions.

(¢)  Pick one of the above methods and describe in detail how you would implement it on a
computer.

Problem 7.

The following set of gtrings is part of a finite-state language. Find the best finite state grammar for
this language. Explain, as precisely as possible, why your choice is the best one.

a bbaa
ba abba
bb baaa
aba aabb
aaba baba
abbb bbbba
bbba abaaa

Hint: There is a non-deterministic finite state grammar with three non-terminals which generates
this set of strings.

Problem 8.

Discuss the Frame problem.
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(Time limit: 7 hours)
Problem 1.

Let successors(p) be a function that gives a list of the immediate successor positions to a position p
in atree. Let the predicate iswin(v) be true if v is a won position. Write programs in LISP or some
other well-known language for

(@  depth-first search to a maximum depth »
(b) breadth-first search.

The output of the program should be a path through the tree from an initial vertex 8 to avertex
that satisfies the predicate iswin.

Problem 2.

Two blocks are on a table in front of a robot hand. The hand can move to any point in the
vicinity, and its fingers can close or open (to grasp or drop objects, respectively).

Given the following predicates:

At(x, p, ) object x is a position p in State s
~Hand(p, s)  the hand is a postion p in state s
Closed( s) the fingers are closed in state s
Open(s) the fingers are open in State s
Same(p, q) positions p and q are identicel

and the following functions:

grasp(s) the state gotten to from state s by closing the fingers

drop(s) the state gotten to from state s by opening the fingers

move(p, $) the state gotten to from state s by moving the hand to position ¢ (from any
other position)

on(p) a position in space just above position

We can describe these circumstances in first-order predicate calculus as follows:

The initia sate:

1. At(B1,Pl, SO)

At (B2, P2, SO)

Hand (P3, SO)

~Same (Pl, P2) A~Same (P2, P3) A Game (P 1, P3)

el AN

The effects of actions:

(Vp, s) Hand (p, move(p, s))

(Vs) Closed (grasp(s))

(Vs) Open (drop(s))

(VX, p,q, ) (Atlx, p, s) AHand(p, s) A Closed(s) 2 At(x, g, move(q, 5))

© ~N oo
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Predicates unaffected by actions (“frame” axioms):

9. (Vx,p,q.7,9) (Ailx, p, ) A Hand(r, 5) A ~Same(p, 1) 2 At(x, p, move(, 5)))
10.  (Vx, p, s) (Ae(x, p, s) o Atlx, p, grasp(s)) n At(x, p, drop(s)))
11 (Vp,s)(Hand(p,s)> Hand(p, grasp(s)) »Hand(p, drop(s)))

From the above axioms, it is possible to prove that the hand can stack the blocks and then be free
for further use.

(@  Consgtruct a proof by resolution of the following theorem:
(3s, p) (At (B1, P | 5) n At (B2, on(p), 5) A Open(s))
(b) Does your proof use any of the principal resolution strategies such as unit preference, set of

support, subsumption, or linear format? Discuss in general the role of such strategies, and
why they were or were not useful in this problem.

(c) Axiom 10 contains an obvious oversimplification. Describe the situation that is not
appropriately handled, and propose a substitute axiomatization that corrects this deficiency.

Problem 3.

One of the key problems of Artificid Intelligence is how to represent common knowledge about the
physica world by data structures in a computer's memory. For example, consder the following
information about a well-known object:

“A chair is a seat with four legs and a back, for one person to sit upon. It is an article
of furniture, frequently used in front of a desk, and is usualy made of wood or metal.”

(@  Show in detail how you could represent this information in each of the following ways.

(1) By a “semantic net” of word associations (as in the work of Quillian, Schank, or
Winston).

(2) By predicate caculus (cf. McCarthy, Green, Sandewall).
(3) By any other representation that differs from both (1) and (2) in some essentia way (e.g.
PLANNER).

(b)  For each of the aove two representations of the concept “chair”, discuss one use for which
that representation is clearly better suited than the other.
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Problem 4.

Discuss as concretely as possible what a reasoning program needs to know about what it and others
(e.g. travel agents) know in order to plan atrip to Timbuktoo. How do you propose to represent
thisinformation? What rules of inference and axioms will you provide? In this problem, you are
essentially on your own; there is hardly any relevant literature.

Problem 5.

(@ Compare the search procedures, generdity of techniques, task domains and goals of GPS and
Heuristic DENDRAL. What are the most severe limitations of each program?

(b) Tower of Hanoi problem.

In a temple in Hanoi, there are three diamond needles, and in the beginning, 64 gold disks of
64 different diameters were placed on one of the needles in such away that no disk is on top
of adisk of smaller diameter. The monks must move the disks from one needle to another
using al three needles and never placing a disk on top of a smdler one. The Tower of Hanoi
problem is to determine their strategy for moving the disks. When they finish, the world will
come to an end.

(1)  Ouitline in detall a CPS-like solution for the Tower of Hanoi problem (if there is none
carefully explain why).

(2)  Outline in detail a Heuristic-DENDRAL-like solution (if there is none carefully explain
why).

Problem 6.

Suppose that an exploratory robot vehicle is to be landed on Mars in 1980 with the following
characteristics:

(1) It has a suitably compact computer of approximately the performance of the Al project’s
PDP-10.

(2) It can transmit and receive 10® hits per second in communication with earth when it is facing
earth.

(3) Itislanded at atime when the round trip for signals is 15 minutes.

(4) It has televison cameras.

(5) It can move either on wheels or 6 legs provided you can program it.

With what Al vision and motion capabilities would you equip it and how would they be

programmed and used? Give as much detail as you can. What other equipment and programs
would you provide?
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(Time limit: 6 hours)

Problem 1.

(a) In terms of the quality of solutions found and the efficiency with which solutions are
produced, the Heuristic DENDRAL program is one of the most powerful heuristic programs in
existence. What is the primary source of this problem-solving power?

(b) In his paper on Heurigtic Programming, subtitled “11I-Structured Problems’, Newell introduces
concepts and terminology intended to categorize and describe heuristic programs. Use Newell's
concepts and terminology to describe Heuristic DENDRAL.

(¢)  What are the purposes of having a systematic generator (the DeENDRAL algorithm) at the
heart of Heuristic DENDRAL?

(d)  We use heuristic processes to achieve search reduction in administering the search for a
solution to aproblem. How does the heuristic process known as the Planner in Heuristic
DENDRAL contribute its heuristic power to search reduction? Illustrate by making reference
to some of the results in the results tables of the DENDRAL paper you were asked to read.
From a heuristic search point of view, how does “planning” in DENDRAL differ from
“planning” as this method has been discussed elsewhere in the A. I. literature (e.g. the
Planning Method of GPS, Hewitt's Planner, Robot Planning)?

(e)  You were asked to read a paper by Amarel in which he discusses representation of knowledge
and shift of representation. How has this problem been studied in the context of the task

environment of Heurisic DENDRAL? What are the results?

Problem 2.

The unbounded unit-preference drategy is. “Compute the resolvents of al unit clauses with every
clause before computing the resolvents of any pair of non-units.”

The input clause strategy is.  “Compute the resolvents of a pair of clauses only if one of them is a
member of the initid set of clauses (i.e. ah axiom or the negation of the theorem).”

(a)  Give examples showing that both of these strategies are logicaly incomplete.
A replacement rule of inference for equality may be defined as follows.

Let £ be the equality predicate and s,¢, u be terms. Let 4 and B be clauses with no variables in

common such that A contains a positive equality atom, either A = E(s,t) v A’ or A = E(t, s) v A,

and a term u occurs at least once in B. (Note: u may occur as a subterm,) Let s and 4 have a
common substitution instance, and suppose that a is a most general unifier such that s« = ua. Let
Bx be the result of replacing an occurrence of ua in B« by ta. Let C be the clause A’av Bx. Then
C may be inferred by replacement from 4 into B. Denote the set of such inferences by P(4, B).
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If A and B have common variables, these must be eliminated by a change of variables before the
rule is applied.

(b) Fordl A and B, isP(4, B)=P(B, A)? Prove your answer.
(c)  Let A be E(fix, 9(x)), ¢) and B be E(f(x, x), €). Compute P(4, B) aand P(B, A).

(d)  Prove: For any C that can be inferred by replacement from A and B thereisa C' satisfying
(1) ¢’ implies C and (2) C is obtained by a sequence of resolutions from the set consisting of
A, B, and the axioms for equality.

Problem 3.

After reading the speech report for inspiration, you have accepted a consulting job with the
linguistics department to predict the feasibility of a speech understanding system. You are given the
following vocabulary and grammar. You want a computer to recognize semanticaly and
syntacticdly lega sentences. The department did not specify the semantics but any reasonable
assumptions will do.

The vocabulary is.

programs, monkeys, termites,
search, climb, eat
trees, bits, bananas

The grammar is;

S - subject | verb | object

subject » programs| monkeys | termites
verb » search | climb | eat

object - trees| bits| bananas

(a)  First, assume a probability of correct recognition of one of the vocabulary words, when
isolated, to be.7. Suppose the lexical segmentation scheme is perfect. Without use of the
grammar what correct string recognition rate (all words correct) might be expected on 3-word
strings?

(b) Based on the results of the speech report, how might the probability of word-confusion error
depend on vocabulary size?

(¢)  Make areasonable assumption (either your answer to part (b) or some other guess) of the
effect of vocabulary size on recognition rate.  State your assumption. Now, using the
grammar, but still no semantics, what correct string recognition rate might be expected?
(Rough calculations are sufficient.)

(d)  Specify your assumed semantically meaningful strings. Show precisely why the recognition
rate is better. For extra credit, calculate an expected correct S-word string recognition rate
using both syntax and semantics.
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Problem 4.

Consder the following variant of the missionary and cannibas problem:

“Three missionaries andthreecannibals come toa river thatthey wishtacross. They
find a boat that holds two people and can be rowed by one or two. However, if one
person rows by himsdlf, he will be too tired to row by himself again. Besides that, if the
cannibals ever outnumber the missionaries on either bank of the river, the missionaries
will be eaten. How can they dl safely cross the river?’

(@  Write a LISP program to find a solution.
(b)  Write a micro-PLANNER program to find a solution.

() Write a Stuation-calculus description of the situation and the effects of actions from which it
follows that there is a solution. The “result” formalism of McCarthy and Hayes is
recommended.

(d) Discuss the problem of making a program that could go from the above English statement of
the missionary and cannibals problem to a LISP program for doing the tree search. Would
the PLANNER formalism or the McCarthy and Hayes formalism be suitable as intermediate
steps? Why or why not? Try to divide the overall problem into sub-problems which might
be solved independently.

Problem 5.

One of the central problems in the recognition of scenes involving plane-bounded objectsis the
segmentation problem. Falk, in his thesis, suggests improvements to Guzman's agorithm, Describe
Guzman’s and Falk’s algorithms.  Give an example different from those in Falk’s thesis where
Guzman's method fails and Falk’s succeeds. Give an example where they both fail.

For extra credit:

(@ Extend Fak's agorithm to cover the case you presented above. If the new agorithm doesn’t
cover dl cases, find a counterexample.

(b)  Discuss the segmentation problem for curved objects.
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(Time limit: 6 hours)

Problem 1. (60 minutes)

@

Briefly describe each of the following concepts and discuss how it would be useful in a system
working in the blocks world. This question isintended to test your understanding of the
mechanisms and not of the blocks world.  If one or another of the mechanisms is not
particularly suited to the blocks world, then you should discuss it in the context of another
domain. Also, you may want to make note of how some of the concepts are interrelated.

(1) “procedura embedding” of knowledge

(2)  declarative representations (e.g. assertions, predicates)
(3) automatic backtracking

(4)  dternative “worlds’ of data contexts

5  “demons’

26) pattern matching.

Define each of the following problem-solving paradigms and give a short description of the
sort of problem domain to which it is applicable. (For instance, “table lookup” might be
defined as the selection of data elements from an information structure by processing keys
associated with the data. It would be applicable in situations where the set of possible answers
is explicit, there are appropriate keys and selection functions, and the number of eements is
small enough to allow the storage and retrieval to be reasonably efficient.)

(1)  dphabeta pruning

(2) generate-and-test

(3)  heurigtic search (e.g. A* or branch-and-bound)
(4) hill climbing

(55 meansend anaysis.

Problem 2. (JO minutes)

Give brief descriptions of the Heuristic DENDRAL and Meta-DENDRAL programs. Identify the
major components and contrast the purposes of the two programs.  Specifically tell how
Meta-DENDRAL makes the “big switch” in Heuristic DENDRAL powerful.

Problem 3. (JO minutes)

Describe the representation of knowledge in the MYCIN system (Shortliffe, et. a.). Describe how the
set of rules is organized to alow for flexibility in changing the rules. Contrast this representation

with a decison tree representation.
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Problem 4. (60 minutes)

Knowledge has been called the key to high performance of Al programs and has been suggested as
a mgor topic for new research in the coming years. Among the many dimensions of this research
are the representation, use, and acquisition of knowledge in Al programs.

(@  Discuss the representation of knowledge in the Carnegie-Mellon HEARSAY system. In
particular, what is the organization of the system, what knowledge is represented, and how
does the system dedl with multiple representation of knowledge?

(b)  Discuss the use of dtatic and dynamic world knowledge in the STRIPS robot system, especially
in planning. Be sure to mention dependency conditions in plans. How does STRIPS know if
aplan if applicable once there is a change in the world?

(c  One way of acquiring new knowledge is by induction. Describe the methods of acquiring
knowledge, and the types of knowledge acquired, in Meta-DENDRAL, STRIPS, and Winston's
arch finder. (These are three programs which can be said to do induction.)

Problem 5. (45 minutes)

In natural language, words have severa different aspects of meaning. Among these, we might
include reference (their connection to objects in the red world), inference (their connections to other
information implied by their use), connotation (the other associations they provide for the hearer,
often attitudinal or emotional), and appropriateness conditions (the contextual conditions under
which they can appropriately be used). For each of the four words ‘dog”, “throw”, “angry”, and
“dways’, discuss the different aspects of meaning they convey, and the way they might be handled
in different systems (particularly those of Schank, Colby, Wilks, and Winograd).

Your answer should include:

(1) A discussion of the use of primitives, as in Schank. Describe how they are applicable to some
of the four words, and what problems there are in extending the idea to handle others.
Describe how conceptual dependency might handle some of the connotative meaning of
1 angryﬂ .

(2) Different approaches to representing the “essentia” meaning of “dog”. What would it look
like in a BLOCKS-world? What components of its meaning describe its preference semantics?

(3)  The various inferences that can be drawn from a use of the word ‘throw”, and how they
would be handled in the inference components of various systems.

(4)  The problem of handling time adverbs like “always’, and ways they might be integrated
where not present now in various systems.

(5)  The kinds of patterns which might be present in a Colby-like system containing these words,
and how they would be used. What aspects of their meaning are brought out?

For extra reinforcement, consider any of the other possible combinations of word, meaning type, and
system. Use the specific words as starting points to discuss which aspects of meaning are and are
not handled by the various programs, and to compare the ways each program deals with the same
aspect of meaning.
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Problem 6. (30 minutes)

It has often been noted that there are many similarities between the process of understanding a
spoken utterance and “understanding” a visua scene. Clearly, the acoustic wave form corresponds to
the pattern of intensities on the retina, phonemes correspond to lines, vertices, etc., and the
S-dimensiona description of the scene is in some sense the “meaning”.

The following statements are made in an (imaginary) proposal for anew vision system. For each
statement, identify a particular natura language system which has made significant use of the same
basic idea and aso tell how the idea has been applied in actud vison systems. If the idea has not

been used, suggest where it might.

(@ Many of the system’s responses do not require analyzing the entire scene, but depend on
reactions to particular features. If a furry beast is jumping at us through the air, we want to
give the appropriate response without worrying about whether it is a lion or a tiger.

(b)  We expect to see objects in familiar configurations. For example, we expect to see a handset,
abody, and adial associated in a particular relationship when we look at atelephone. The
system uses simple heuristics to group visua features into prospective objects, then applies its
vocabulary of templates for plausible objects to each of these seeing if a fit can be found. If
there is more than one possible match, we can weight the preference of each one by checking
whether the individual components are of the right type for the template.

(c)  Thesystem must make use of al levels of information in aflexible way. At times we may
want to use the fact that a particular object is hypothesized to look more carefully for some
line. At other times, a particular configuration of lines and vertices may suggest a possible

object.

(d) In order to describe complex shapes, we need a smal vocabulary of basic shape-congtituents,
such as “plane”, “sphere”, “rod”, etc. We can then define more complex shapes as
combinations of these linked with spatial relations like “above’, “inside’, etc.

()  When we walk into a room we have a set of expectations for particular elements which need
to befilled in, e.g. walls, floor, ceiling. This“frame”’ determines the way in which we will

interpret the elements we see.

Problem 7. (30 minutes)

Consider the game tree shown below, and let moves from any vertex be generated from top to
bottom. Subtrees are to be named by giving the letters attached to their termina vertices. We will

use the a-g heuristic.

(@  What subtree isvisited if initially a = -» and g = «? What does it tell us about the value of
the game?

(b)  What subtree is visited if initily a= 1.5 and g = 2.51

() What subtree is visited if initially a= 3 and 8 = »? What does it tell us about the value of
the game?
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(d) Reorder the subnodes so that by using an «-B depth-first, top-to-bottom search, the smallest
number of terminal verticesisvisited. There may be many such re-orderings; you need find
only one.

min

(S R g

Vi

(R

i &

(Do any two of problems8, 9, and 10.)
Problem 8. (60 minutes)

Consider the interactive Program-Writing System in Floyd's 1971 IF 1P paper Toward Interactive
Design of Correct Programs’. Recall that there are two parts of the system, which are referred to
respectively as “man” and “computer” in the imaginary dialogue. In the following problems, you are
to show in some detail what “mechanizable’ reasoning along with what necessary facts would lead to
each of the desired results. You may use any plausible formalism or pseudo-formalism such as
Floyd's, firg-order logic, or micro-planner. As asuggestion, first sketch out the reasoning in any
language you wish, such as conventional mathematical language and English. Then reduce it to a
formalism.  You will receive most of the credit if your reasoning is complete even if you can’'t
express it in a known formalism.

(@  On the second page of the paper, “computer” states that the antecedent of P, does not follow
from the antecedent of P, and the iteration-non-terminated condition. “Computer” also
implies that the iteration is not initialized. Show how these two conclusions can be reached.

(b) In the next interchange, “computer” states that the consegquent of P,, with the iteration
termination condition, does not “seem” to imply the consequent of ;. Sketch out the
reasoning and information necessary to reach this conclusion. What added facts or inferences
would be necessary to “prove” that the consequent of Py is not implied by the consequent of
Py

(c)  Just before the end of the dialogue, the computer asks the man to design the initidization of
the sub-program P,. Suppose we want “computer” to design the initidization itself. Show

how “computer” might deduce the correct initialization.
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Problem 9. (60 minutes)

Read the paper “A Semantics-Based Decision Theory Region Analyzer” by Yakimovsky and
Feldman (3rd 1JCAI, 1973). Consider the problem of applying their region andyzer to the blocks
world.

(@  What would you do to try it?
(b)  What results would you expect?

(¢)  Now think about adding the vertex classification system of Waltz. What changes in the
abstract description of the Y & F system and what changes in the program organization would
be needed? How well would this system work?

(d)  What does your answer suggest in general about vision research?

Problem 10. (60 minutes)

For a position u in tic-tat-toe, winnable(u) asserts that the player whose turn it is to move can force
a win.  Write sentences of predicate calculus axiomatizing winnable(u). Assume the standard
interpretation of the usual set theoretic and arithmetic predicates and operations so these don't have
to be axiomatized. Use the following initid definitions.

Board ={1,2, 3) x {1,2, 3}

VU u € Positions = 3xyz U = <x, <y,2>> A
x ¢ {"x","0"} A y € Powerset(Board) A z € Powerset(Board) A y N z = {}

In this formula, x is the player whose turn it is, y is the set of squares occupied by "x", and z is the
set of squares occupied by "o".

Use car and cdr to extract elements of ordered pairs so that
Vxy car (<x, y>) = x A cdr(<x,y>) =y

Hint: Use a predicate won(u) that is true if the player that last moved has three in a row.
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Select one of the following problems. It should not be in your area of A. . specialization. Spend a
few days on the problem (about 10 hours atogether), and turn in a copy of your work. Your written
work will serve as the basis for the discussion at the ord exam.

All papersreferred to below are from the Proceedings of the Third International Joint Conference
on Artificia Intelligence (31 JCAI).

Problem 1.

Read Pohl (p. 12) and Harris(p. 23).

(@  Pohl doesn’t distinguish between time exhaustion and space exhaustion kinds of Type-|
catastrophes, but hints that there might be some things to say about them. Can you think of
anything? How can their frequency be minimized by more careful planning while a system is
being designed7 What are some ways one might detect an imminent collapse? Once detected,
how could its impact be minimized?

(b)  Propose a simple problem which might lead to an unending search unless Pohl’s dynamic
weighting scheme is used. Could Harris bandwidth constraint solve this problem as well?

(¢)  Harris and Pohl both use the Travelling Salesman problem to illustrate their techniques. Why
isthis an apt choice? Does it facilitate comparing the two techniques? (Warning: If it does,
then compare them!)

()  Given a resolution theorem-prover, might these techniques be applied to advantage?

Problem 2.

Read Bledsoe (p. 56). The system described is deding with a domain (topology) but does not seem
to possess much knowledge in aformat suited to that domain. For example, humans rely on visud
intuitions about space and continuity quite frequently while attempting proofsin this field. How
might analogicd models like Gelernter's or Bundy’s (p. 130) be employed by the system?

In 1973, Bledsoe seemed to expect his system to prove new topology theorems any day. If today, two
years later, thisisn’'t so, how can you account for this? That is, how could it be that a system was
able to prove hard but known theorems, yet not asingle “new” interesting one?

Problem 3.

Read Woods (p. ZOO) and aHEARSAY article. Describe how incremental smulation might have
been effectively employed for some non-speech projects (e.g. the Dendral task or a large
theorem-prover). Why are so many different experts used in Woods project? How do these experts
correspond to the modules in HEARSAY (Reddy et d, p. 185, p.194)? How might you organize an
incremental simulation of a system to maintain and draw inferences from Conceptua Dependency
nets (Schank, p. 255)? To what extent has the basic idea permeated Al research? Consider, for
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example, the “pre-processed” format for input assumed by Winston’s ARCH-learning system. Is
incremental smulation meaningful for an individual doing research? Is there a “flaw” in the idesg;
can you think of a situation where it might be detrimenta to a final project?

Problem 4.

Read Darlington and Burstall (p. 479) and Boyer and Moore (p. 486). Could Boyer and Moore's
system be programmed using the transformation schemata concept of Darlington and Burstall?
Write one schema for a particular induction problem (e.g. proving that eppend is associative), and
indicate how it would be applied. Is this feasable for the entire range of Boyer and Moore's system’s
abilities? Consider how one might automate the acquisition of new program transformation
schemata. For example, consider how META-Dendral automates rule acquisition for Dendral (see
Buchanan, p. 67, or Buchanan et a in the references list).

Problem 5.

Read about Waltz's work; aso, look at Stefanuk (p. 612). Stefanuk and others seem to argue for the
use of local processing to solve problems. Give a few examples where this is essentid, and a few
where only a global attack can get anywhere easily. How might one characterize the class of
problems which need a particular level of scrutiny? How does this mirror the problem of using
semantic vs. syntactic knowledge?

Draw an analogy between loca/global knowledge and the use of phonetic/semantic knowledge in
speech systems. Consider how a successful speech system uses the different levels of knowledge
synergeticaly (eg. HEARSAY). Using your andogy, how might one intermix loca and globa kinds
of knowledge of the kind used by Waltz? That is, use your analogy to propose a new design for
Wadtz's system.

Problem 6.

Sketch out a program to play tic-tat-toe in one of the Al languages (micro-planner, conniver, QA4).
Thisis not a programming problem. Y ou are not expected to run the program. What isimportant
is a discussion of the basic representations you use and the tradeoffs involved in the way the
program is designed. In particular discuss how your design would differ if the program were for
3-D 4 x 4 tic-tat-toe.

Problem 7.

The first paper in 31 JCAI describes a method for searching “additive and/or graphs’. Find some
real Al search problem (where “real” means in a specific problem domain like game playing,
syntactic parsing, or scene analysis) to which this approach might be applied. Discuss why the
algorithm would be useful, and the tradeoffs involved in the different choices (like top-down vs.
bottom-up). If you can find two domains with different characteristics, dl the better.
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Problem 8.

Read Koffman & Blount, “Artificial Intelligence and Automatic Programming in CAl” (p. 86).
Assume you wanted to write a program which would take the role of the STUDENT (i.e. the other
participant in a dialog with their program). Discuss the basic issues you would need to handle, and
the ways in which your result would be the same (or different) as a general automatic programming
system.

Problem 9.

DENDRAL takes the results of a complex interactive event and tries to deduce what components
went into it. Consder applying the same techniques to a “de-compiler” which takes machine code
and tries to deduce the higher level language code which produced it. Pick your own favorite
machine and higher level language, but assume that the system will have to handle the output of
aribtrary compilers (all correct, but some involving optimitations and other such complications).
Describe what the resulting system would look like, in particular pointing out which DENDRAL
features seem useful and which don’t. Reminder: Thisis a thought problem, not a programming
problem — don't try to build the whole thing, but spend your time figuring out what the significant
issues are.

Problem 1O.

John Seeley Brown has a paper on “ Steps toward automatic theory formation” (p. 121). It discusses
atask involving learning names for kinship relations. Describe how Winston's learning program
would have to be modified to handle the learning of kinship relation names. Discuss the problems
in designing an appropriate training sequence. Discuss the relationship between these and other
“concept formation” programs which might be set the same task.

Problem 1 1.

Harry Pople (“On the mechanization of abductive logic”, p.147) describes a formalism for abductive
reasoning in the context of medical diagnosis. Describe a production system-based method for doing
the reasoning. How could it be fit into MYCIN?

Problem 2.

Three papers in 31 JCAI disucss problem solvers in the domain of moving objects from room to
room in a smple flwrplan (Siklossy & Roach, p. 383; Sacerdoti, p. 412; and Siklossy & Dreuss, p.
423). Describe the relative advantages and disadvantages of each (in particular look for things one
system advertises doing which would be difficult or impossible for the others, and analyze why).
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Be prepared to discuss the following questions orally.

One computer program says about another, “It knows | want to use the telephone line to Boston,
and it is deliberately holding on to it in order to prevent my using it.”

|8

English asde, how would you represent such an assertion as a LISP, PLANNER, or first-order
logic data structure?

What semantics would you give this assertion, that is, in what states of the world would you
regard it as true?

How would you axiomatize the concepts involved, what rules of inference would you use,
and/or what MICROPLANNER “theorems’ involving them would you give a program that
must generate such a statement and use it?

From what evidence might the computer deduce such a statement? E.g. from what externa
observations?

When if ever would it be important for a computer program to be able to use such assertions?
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Problem 1.

In five minutes or less, state how you would go about locating the most accurate published decimal
approximation of 1/n, where n= 3.14 159.. . .

Problem 2.

: 12 .
Suppose we want to numerically evaluate fo e* dx with an error provable to be less then 10-1°,

We are able to generate values of e* 2 for any x in[0,1] to any desired accuracy. We decide to use
the trapezoidal method (with no acceleration) with nt1 abscissas. Assume ordinary rounded
floating-decimal arithmetic, with s significant decimal digits for the mantissas. We may use any
integer vaues of nand s that we need, but we must not waste resources with values that are much

too large.
(@  Approximately what values of nand s are large enough to do the job?
(b)  For some reasonable pair of vaues n, 5, show that the error is indeed less than 10719,

(¢  What error would you expect to actually occur in a computation with this n and s?

Problem 3.
Suppose that the equation x2 + a;x + a, = 0 with real coefficients possesses rea roots a, 8. Show
that, if x4 is chosen sufficiently close to a, the iteration

a\%XkE + as
Xk

Xhel = =

convergesto aif |a]>|8}; the iteration
az
Xk + @)

convergesto aif laj<|g8} and the iteration

Xkhoy = —

al

converges to a if 2a|<|a+g8}
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Problem 4.

Let X(h) be a function of 4. Assume that
X(h) = X(0) + ah%/3 + 42 + o(h?) ash -0,

where a and b are unknown constants. Assume further that the values of A(%) are known for 4 =
1710, 1/20, ..., 1/90,1/100. Describe an extrapolation to the limit algorithm which makes use of the

assumed information to estimate A{0).

Problem 5.

Let A be ared n xn matrix with eigenvalues |A;|2 |2zl 2... 2|2, Let Az;=A;2;. Consider the
agorithm which generates the following sequence of vectors:
y(io'l) - AxD
lisl) I yten
I y(lol )”
where x© is an arbitrary real vector with unit norm (we use the Euclidean norm).

(8  Under what conditions will " converge to z;?

() 1f A= pe'®, A, = pei®, and A, > |Agh describe amethod for computing A ; and A,, using only
real arithmetic.

(c)  Describe ways of improving the rate of convergence of the above algorithm when || and
|A,] are close.

(d)  Briefly mention the advantages and disadvantages of the power method over other methods.

Problem 6.

The following agorithm has been used to generate circles on the CRT display of the PDP-1.
Given xg, yo, and 4, let

Xpey = Xp + Ay

Inet =In = Axpyy.

(Note particularly that the “new” value of x is used to obtain the new value of ¥.) The points(x,,
9y are displayed as they are calculated and appear to have an almost constant distance from the

center of the screen. In practice, 4 is of the form 27, but this is irrdlevant here.
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Express the agorithm in the form

Zp,y = A(h) z,,, wherez, = (5:,,)’

In

for some matrix A(h). Use this to show that the agorithm works by proving that there is a constant
c so that for al n,

1
" [ zoll < 1zl < ¢ N zoll,
where ||z|l is the Euclidean vector norm. You may ignore roundoff errors.

If the origind agorithm is changed to

Xna1 = Xp + Mn
Inat = In = Xy,
then we obtain an expanding spird instead of a circle. Why?

Make a few brief comments relating the above observations to the numerical solution of ordinary
differential  equations.

Problem 7.

Congder the ordinary differential equation problem of determining y(x) so that

Lefx ), 50 = 0. M
In the Milne-Simpson method of approximately solving (1), we solve the difference equation
Iner = In-1 + g(f(xn-lv?n-l) + 4f00, ) + fna1s Jnar) (2

where x,, = nh and y,,is an approximation to y(x,). The actual methods of getting y,; and solving
the implicit equation (2) for y,,; are irrlevant here.

(@  In spite of the universal success enjoyed by the Milne-Simpson method with desk calculators,
it has not been popular with automatic computers, Why?

(b)  As explicitly as you can, find the solutions of (2) for the two cases flx,y) =y and fix,y) =~ .
Explain the relevance to part (a).
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Problem 8.

In one hour, discuss in depth one of the following areas of numerical analyss.

(D

2
(3)
(4)
(5)
()
7
(8)
(9)

Numerical solution of ordinary differential equations, including discretization error and
stability.

Numerica solution of dliptic partial differentia equations.
Numerical solution of hyperbolic partia differential equations,
Numerical solution of parabolic partia differential equations.
Round-off error.

Approximation of functions.

Computational methods in linear agebra

Numerical integration.

Monte Carlo methods.

Include in your discussions as many of the following subjects as seem to be appropriate.

@
(b)
(c)

(d)

(e)

The important problems in the area.
The most important results.

Generd literature which would provide an introduction to the field for a person who wanted
to learn about the area. Also some of the more recent literature in which important results are

given.

The pragmatics of solving problems in the field on an automatic digital computer. Also give
sources of routines or agorithms for solving the common problems of the field;

Some unsolved problems in the field.
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Problem 1.

You are required to evaulate

w/ ! __ 1 “ax
oV Ins)in(X-1) (w2 x

You may use any quadrature programs you want, and up to two minutes of time on the B5500.
Spend 20 minutes now, with closed book, to outline what you propose to do and why. Execute your
proposal this afternoon and hand in your result together with supporting documentation and an
explanation of any deviation from the plan you propose now.

Your grade will depend upon

(1)  The accuracy you achieve.

(2) The strength of the evidence or argument which you supply to support your claims to
accuracy.

(3 The total amount of computer time (debug+compilet+execute) consumed. You will be
penalized for computer time consumed in excess of two minutes.

Do two of Problems 2-6 (20 minutes each).

Problem 2.
Let {x;} be a sequence of red numbers converging to a. Let 2; be a sequence defined by
e (%i.1 = %)

Xie2 = 2xiol + %

(a) Cdculatez; if
X, - a =K (Xi=-a),
for some K, where|K|< 1.

(b) Let x;,,-a=(K+0){x;-8) for some|K|< 1, and where ¢; + 0. Prove that
lim il
tac0 ¥ =

(¢)  What hypotheses on ¢; would enable you to conclude that
lim =
100 (x'- - q)z

exists? Prove your assertion.
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Problem 3.

Describe what is meant by “ingtability” in relation to the numerical solution of differentia equations.

Find the grestest step length 4 such that the initial value problem
9"’ +ay’ + by =0, where 0 <a<2vh

may be solved without instability, using
o1 = In + An

to perform the integrations.

Problem 4.
Congder the following ALGOL procedure:

real procedure lg{x) value x; real ;
comment /g(x) = log{ 1+x) to within a few unitsin its last decimal place,

provided the ALGOL function in(y) = log,{y) to within a unit or two
in its last decimd place for al y> 0.

The smple statement
lg = in(1+x)

was rejected because it produces inaccurate results when ¥ is near zero.;
begin

if y=1then lg:=x
ese lg=xxin(y)l(y- 1)
end

Explain why the rejected statement produces inaccurate results and show that the procedure does
work as accurately as claimed when run on a computer, like the 85500 or IBM 7090, which
normalizes sums and differences of floating-point numbers before rounding.
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Problem &
Congder the following ALGOL procedure:

real procedure rufsqre (X, a, b); value x, a, b; redl , a, b;
begin

red

t:axx+D;

rufsqre = (x/t t t) % 0.5
end

Let £(x,a b)=(s/vx)- 1 be the relative error with which s = rufsqre(x, a, b) approximates vx. Let
E@a,b)= max |E(x,a b)l.
1/4sxs4
Prove that
E(a, b) = Eb, a) 2 E(“—;-". “—;‘—”)

and hence that the values of a and b which minimize £(a, b) are equal.

Problem 6.

Read the paper “Note on the inversion of symmetric matrices by the Gauss-Jordan method,,, by R.
DeMeersman and L. Schotsmans (see /CC Bull 3 (1964), pp. 152-155).

The authors claim that their algorithm will work for any symmetric non-singular matrix, but it
won't. Supply a 2 x2 counter-example.
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Do two of Problems 7-12 (60 minutes each).

Problem 7.

(@ Let
« -1 0 0\
-1 o -1 0 0

Cla) =

0 0 -1 o -1 0
0 ., 0 -1 o -1
0 0 -1 a /

be ared nxn tridiagona matrix.

Give a smple condition on a for C(a) to be (1) non-singular and (2) positive definite, citing
reasons for your answer.

For parts (b)-(f), consider the rea n x n tridiagona matrix

(b)
()

(d)

(e)

(f)

(g

ey -1 0 ceoo 0\
-1 « -1 0 0
A=
0 0 -1 ap -1 0
0 0 -1 ay, -I
0 0 -1 «a

Answer part (a) for the matrix A.

If A isnon-singular how would you propose to solve Rx = b? Give more than one method,
giving reasons when each method is applicable.

The inverse of A sometimes has only positive entries. When is this true for a non-singular A?
Why is this knowledge useful?

Show that if 4-! exists and has nonnegative entries then A has at least one nonnegative
eigenvalue and eigenvector with nonnegative entries.

Suppose that o;2 2 and |b;-¢;|s E for é=1,2,...,n Let x and y be the respective
solutions of Rx = b and 4y = ¢. Find an estimate for max |y;-x;l
Consder the problem

(= p(x) 0 (x)), + fix) ¢(x) = g(x)
o(a) = ¢4, 8(b) = ¢y

where p(x)2 a> 0, ix)2 0, asxsbh

Discuss the solution of this problem by finite-difference techniques.
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Problem 8.

@

The coefficients e, and 5, are related by Horner’s recurrence

by =a,, and forr=n-I,n-2,...,1, 0,
| b, =xb.,, +a,.

B:
Show that the polynomias

n n
A =D e, and B(z)= ) bya™!
r-o Tel

satisfy

A(x) & (z-X) B(2)tbg.
The recurrence g can be implemented as an ALGOL program which, given computer numbers
n, %, and a,., generates the coefficientss,. However, rounding errors will prevent the stored

values b, from satisfying recurrence g precisely. To appraise these errors, assume that the
ALGOL dtatement

s=utv
when executed, produces a number s satisfying
|u+v-silis|so
and that
pi=uUxVv
produces a number p satisfying
I wep fluv | <nm,
where ¢ and n are small numbers (of the order of 10-'! on the B5500). Then show that the
computed value of b, satisfies the following quite close bound:
| A(x)-bg | < (a+n)eg - |boln, Where

ep=layin/lo+n), and for r= n-l, n-2, . . .. 1, O,

€:
| e = |x|ep,; + |6y

If you cannot prove this, give another reasonably close bound for | A(x) - bol.

Now think about an ALGOL program which uses, say Newton's iteration to compute a zero of
the polynomial A(r), and which includes both recurrences g and ¢, the latter to provide an
error-bound for the former. Discuss the suitability of the following criterion for stopping
iteration, in the light of practica considerations:

“If | bol s (a+n)eg = | bolm, then x is an acceptable approximation to a zero of A(r).”
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Problem 9.

For the solution of systems of linear equations Ax =b by Gaussian elimination, discuss the
motivation for and the consequences of various pivot-seection strategies most widely used. Explain
how these strategies can be carried out in a program for solving linear equations. Discuss any other
operations on the system which might be relevant in the pivot-selection dtrategies. What inferences,
if any, can be drawn from the sizes of the pivots7

You may wish to illustrate the points of your discusson’by means of numerica examples ether of
your own choosing or from the following:

(1)
1 a A -1
0 1 1 . . . . .0 8y =1 .
6 Q@ 1.1, . . . . -1 oy =l A Y
A X e ) 8 =0 1) .
U
°© . . . . . . 0 1 o
(11)
S o o o 1~
-1 b3 o . . . . O 1 8,y = 1 except
S R N T I S 6060 " 2 .
. LT . 6, = -13f 8>3
Ay = . - . 13
* .o . .:lj e 0 if i<J except
1 0 1
; N =1 if 1<60 .
B e L T 1,60
R -1 -1 e_J -~
(111)
r—1/2 — I
Yy
1/8 .
2-58
o=l b
2799 L Uk .55

(The last diagonal elements deviate from the geometric progressions. )



MARCH 1966 99

Problem 10.

Discuss the role that the concept of the order of an iteration function plays in the theory of
root-finding. You might want to consider some of the following points in your discussion:

(1)  Definition of order.

2)  Methods for generating iteration functions of arbitrary order,

3)  When order is integra and when it is not.

4)  Effects of multiple zeros on order.

5  Derive the order of a number of iteration functions.

6) The convergence properties of iteration functions of linear or superlinear order.

7)  The pros and cons of using high-order methods in practice.

8)  The relation between the order of an iteration function and the function evaluations it
requires.

(
(
(
(
(
(
(

Problem 11.
Let #(x, y) be a solution of

3% d%
Do =223 2% = flx,9)¢ - gx,9), 20
ot ay? flx.9)e - g9, f

for ¢ in an L-shaped region (a square with a quarter of the square removed), where the value of ¢
on the boundary is given. Assumef and g are smooth.

(@  Discuss the approximation of this problem by finite difference techniques.
(b)  Discuss severa schemes for solving the resulting approximation.

()  What role can the maximum principle play in the analysis of this problem and the
approximation problem?

(d)  Explain how an estimate for the difference between the anaytic and approximate solutions
may be obtained.

Problem 12.
(@  Discuss the properties and tests relevant to a good random number generator.

(b)  Propose a numerical problem for which Monte Carlo methods offer the only reasonable
approach and describe how you would use them to solve It. How do you estimate the accuracy
of your result?
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Problem 1.

Let
Quix) = x" +a, 2™+ .+ gy

‘be apolynomial of degree n with leading coefficient 1. A polynomia P ,_;(x) of degree n-l is
desired such that the maximum of the error |Q,(x) = Py.i(x)| is minimized on the closed interval
(-1,1] Let

En,(x) - Qn(x) - Pn-l(x>-
Give a characterization of £,(x) and P,,_;(x). What is the value of

max | E,(x)|?
-1sxs1

Problem 2.

In many mathematical applications it is necessary to compute the eigenvalues of matrices. Describe
an agorithm for each one of the following problems:

(1)  Find al the eigenvalues of a real symmetric matrix.
(2)  Find the largest three eigenvalues and associated eigenvectors of a sparse matrix of order 500.
(3)  Find dl the eigenvalues of an arbitrary real matrix.

Give reasons why the algorithm chosen is especialy applicable to the corresponding problem.
Briefly, what modifications would you recommend if an auxiliary storage is to be used?

Problem 3.

Let]j+|| be avector norm defined in n-dimensional real vector space (n isfinite). The least upper
bound norm lub(A4) of areal n x n matrix A with respect to ||+J| is defined as

lub(4) = max 4%l
xdo lx]l .

(@  For which matrices A islub(4)=0?
(b)  What islub(4) with respect to |jx || = max (|x,l, . . ., |*%,] for
5 1
4- (3 -4) ?

(c)  We could define cond(4) by

if A issingular

o0
cond(4) = {|ub(,4) lub(4-1)  if A is nonsingular.

100
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What range of values can cond(4) assume?

(d) Condder the system of linear equations Ax = b, where A is aknown n x n rea matrix, the red
vector b is known, and the vector % is unknown. We want to check the sensitivity of the

solution x to changesin &. If
A(X+AX)=b + Ab,

derive an expression for an upper bound for the relative change || Ax I/ ||x ]l inx (with respect
to ||+|) in terms of cond(4) and the relative change || A6 ||/]jb ] inb.

(e) What does the phrase “to scale the matrix A” mean? How may it help the problem of
decreasing the sengitivity of the solution x to perturbations in é, as described in part (d)?

(f)  Suppose we want to solve the system Ax = b for x with a particular computer algorithm. The
computer, however, works with the approximations A + AAto Aandb + Abtos, that is, it
attempts to solve the system (A + A4)x=b + Ab. In a few sentences, describe what one means
by abackward error analysis of the agorithm in question and state when the agorithm will

produce a suitable solution.

Problem 4.

Describe the role of orthogonal polynomials in the derivation of quadrature formulas of the
Gaussiantype. Determine by this method or any other method the weights and points for the
two-point  formula

fol 213 flx) dx ~ w flx;) + woflx,)

which is exact for cubic polynomials.

Problem 5.

One of the calculations which arises frequently in statistics is

n n

- %]

S=> (x-%?, where¥=) —.
’.-1 i-l n

A short manipulation shows that
n
S => x% - n#2.
=l

Give advantages and disadvantages of these formulas for computing §, with emphasis on data
handling, number of operations, and numerica accuracy.

Suppose that the relative error in addition, subtraction, multiplication, and division is bounded by a
positive number e, e.g. fl(a+b) = (a+b)(1+¢,),|¢,] ¢ where fl(a+b) indicates the floating-point sum

of aand 6. Determine a bound for the relative error in the computed mean fi(%) when x; 2 0.



102 NUMERICAL ANALYsIS QUALIFYING EXAM

Problem 6.

(a) Explain what is meant by the order of a convergent iteration method.

(b) Give condicns sufficient for the convergence of the iteration
Xiel 'f(xi)
-to areal root of the equation x - f{x) = 0, given x,.

() Itis proposed to use the iteration sequence
X, =ox; + (1-e)f(x;)

to determine a root of the above equation, where it is known only that the derivative off lies
in the range

~GsP(X)$0,(G> 0).

Show that a safe choice of a, considering the most unfavorable valuesthat f’(x) can attain,
minimizes the maximum value of

[ + (1=a) f/(x) |
and the minimum is achieved when

o ™ —

G+2’

Problem 7.

Consder the differential equation

y' = fix,9)
with y(a) = a. Euler’s method for the numerica solution is defined by

o1 = + ~flxy, yp)
Xpna=%, + R,

forn-0, 1, 2, . . . . with 59 = «, % = a.
(@  Explain briefly how this agorithm is obtained.

(b) Assume

(1)  9’’(x) is continuous for asx<b
(2 Ifix,9) = flx,y*IsL|y-y*| for any x¢[a, b).
Let &= (b-a)/N. Show that y(b) - yy+ 0 asN - .

Problem 8.

(This problem is the same as Problem 8 of the May 1965 Exam.)
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Problem 1.
(@ Explain the fundamental ideas behind the Romberg integration method.
(b)  If one tries to apply the Romberg method to the evduation of the integral

]
j; V¥ cos x dx

one finds that the method converges dowly if a al. Explain why this difficulty arises. What
can be done to eiminate this difficulty?

()  The idess of the Romberg integration can be applied to the approximation of the value a 4=
0 of afunction of 4 which can be calculated for a set of values of 4> 0. Suppose that

X(h) = X(0) +ah3/2 + bh2 t o(h?) ash - O

where a and b are unknown constants. Assume that values of X(h) have been caculated for 4
=1/10,1/20,1/40,1/80. Describe an algorithm based on the same ideas of the Romberg
integration agorithm which makes use of the caculated information to estimate A(0).

Problem 2.

We wish to determine error bounds for some of the basic complex single precision floating-point
operations, Assume

fl(@xb)=(azxbdll+e,)
Sl(@axb)=ab (1 +ey)
fl@a+b)=ab(1l+ey)
fl(a'?) = a'?(1 + ¢)

where
lex s lexclh lesl, leg| s e
Let z;=x; +iy; and zp = x, + iy, Wwhere x;, ¥;,9;,92 ae single precison floating-point numbers.
Determine a bound for each of the following quantities.
(@)  |flz + 29) - (2, + 23) |
(b)  |flz; x 25) - 2;2,|
© 1flzyl) =zl
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Problem 3.

In the Newton-Raphson method for finding aroot a of an equation fix) =0 we start with z, and
calculate the sequence {z;} using the recurrence relation

Rzp)

ka1 = 2k~ Gy

[
If z; - a, the convergence is known to be of second order.

(a) In order to save the labor of caculating the derivative at each step, it has been proposed to
replace f'(z;) Dy f'(zo) in @l steps. In this method the recurrence relation is

fzp)
Zhey = 2k — },—(z;-)'
Show that if zx » a, this method has convergence of first order. Obtain a condition, involving
derivatives of f, which is necessary for convergence.

(b)  In order to obtain more rapid convergence than in part (a) and still reduce the labor of
caculating the derivatives, it has been proposed that the derivative be caculated every other
step. This method is described by the recurrence relations

Rzap)
22kl = 22k = f_F(Z_zk_)

f(szol)

Z2ke2 ™ Z2ke1 — F@'

Assume that z;» a and find the order of convergence of this method.

Problem 4.

Consder the following numerical integration methods for solving an ordinary differential equation
of theform y’ = fix, y).

(M = %?n - %yn-l + g(2y,', + Yn-1)
@) Yuer=9n .« A (h -5 (predictor)
Ine1=In+ g(y{m + 90 (corrector)
(3)  Same as (2) but using the corrector only once for each step.

(@  What is meant by the condition of consstency for a numerical integration formula? Which of
the above formulas satisfy this condition?

(b)  Suppose we wish to solve the differential equation problem

y +Ky=0, K>0

%0) =1
by a numerica integration method. Explain what is meant by the stability of such a method.
For what values of K, if any, are the methods (1), (2), (3) above stable?
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Problem 5.

Let f(x) be a continuous function on the closed interval (g, b). Let p},(x) be the unique polynomial
of degree n for which

ar?% |f(x) = () | < :;::b |fx) = pnlx) |

where p,(x) is any polynomia of degree n. We cal p)(x) the Chebyshev approximation of f{x).

(@) Let e(x, p) = flx) - pu(x). Characterize «(x,p*), that is, what conditions must e(x, p) satisfy
when p = p*?

(b)  Letg(x) = Ax) +q,-(x) where g,-(x) is a polynomial of degreer and r < n. Given that p}(x) is
the Chebyshev approximation to fix), determine the Chebyshev approximation to g(x).
(c)  Congder the function

f(x)-x_lkforxe[—l,ll, where A> 1.

The coefficients of pj(x) can be calculated explicitly so that

n .
* = dx
Pn <o i

Let g(x) = xk*1/(x=A) where k s n. Then us ng parts (a) and (b), determine the Chebyshev
approximation of degree nto g(x) for x<[- 1, 1]

Problem 6.

Let A bearea mx m matrix of rank m. Consider the matrix iteration formula
Xn,]-Xn (2I-AXn): Xo arbl'[l’ary
This method can be used to compute 4-! (for an appropriate choice of Xo).

(@  Show that if AXg= X4, then (x) AX;=X;Afor al i20.
In parts(b) and (c), assume that (x) holds.

(b) Let E;= A” -~ X, Show that E;, ;= AE;2 fori=0, 1, ..., and thus E; = APE,9. (You
must determine  and ¢ as functions of i.)

(¢ Assume A isa red symmetric positive definite matrix with 0<asai{4) <. Furthermore, let
Xo=cl, cascalar.

(1)  For what range of values of ¢ will the iteration converge?
(20 What choice of ¢ will minimize the spectral norm of 4Eq?
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Problem 7.

Let fix) bea real-valued continuous function on the closed interva [a, 6] and suppose fla) and f(b)
are of opposite signs.

(@ Assuming an agorithm is known for evaluating f{x) show how the method of bisection can be
used to locate a zero in the interval [a, b).Is it necessary for fix) to be differentiable? Does
the agorithm work if fix) has a number of rootsin [a, bJ?

(b) The following iterative agorithm (referred to as “successive interpolation”) is proposed for
finding a zero of fix):

Xrel = (xrfr-l - xr-Lfr)/(fr-l - fr) where fr = f(xr)-
Assuming flx) has a continuous third derivative and that x, does indeed converge to a single
zero x = 3, discuss the asymptotic behavior of x, - a.

Show by means of an example that even when f, and f, have opposite signs, the agorithm is
not necessarily satisfactory for finding a root between x; and x,.

(¢ The following algorithm rot represents a combination of the bisection algorithm and
successive interpolation.  Describe in general terms how it works; use diagrams if needed.
What is the purpose of the conditional statement labeled “iteration”?

The procedure root returns aroot of fx = 0 between a and b, where fx is ared function of x
taking different signs at a and é. Iteration continues until a zero has been found with a
tolerance s abs(xxe 1) + €2. Here ¢l and €2 are prescribed relative and absolute errors.

Rounding errors are not considered.

real procedure rot(x,ab, fX, el, €2);
value g, b;red X, a, b, IX, €, €2
begin rea c, fa, fb, fc, tol;
x = @; fa = fX; x:= b; fb:= fx; go toO initial;
iteration: if abs(a-b) <to/ then a := b+sign(c—b)xtol;
comment decide whether to take interpolated point or bisection point;
if sign(a-x) = sign(b-a) then x := a;
a:= bfa=pfo b= x fo = fx;
com ment make sure fic) and f(b) have opposite signs,
if sign(fc) = sign(fb) then
initial: begin c := a; fc := fa end,;
comment make sure that |f(8) | < |fe)|;
if abs(fd) > abs(fc) then
begin a :=b;fa:= fb;b:=¢; fb:= fc; c := a; fc := fa end,;
x = (b+c)/2;
a:=if fb-fa # O then (axfdo-bxfa)/(fo-fa) else x;
tol := abs(bxe 1)+€2;
if abs(x-b) > tol then go to iteration;
root =X
end root;
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Problem 1.

It isdesired to evaluate f{x) = log (1+x) for |%|s1/2 in t-digit (wheret is to be determined) rounded
floating-decimal arithmetic with an error less than 10715, using a truncated power series

n k
un(x) - Z ("l)’hl Ek_
kel
(@ What is the smallest value of n’ for which you can prove that the truncation error
| fx) = up(x) | <107177

(b)  For the value of n found in part (a) and for any floating-decimal number x with|x|s1/2,
describe some reasonable method of evauating F,(x) = fi(up(x)).

(¢)  Givean expression for the round-off error F,(X)- u,(x) in terms of .

(d)  Give a reasonable bound for the tota error | F,(x) = fix)| in terms of .

(6  What is the least value of t which will guarantee that | F,(x) - fx)|< 10715

. Problem 2.

The XYZ Corporation is designing a new line of digital computers. They seek your advice on the
needs of numerical analysts, that is, persons who need to get good numerical results from
mathematical algorithms easily, together with provable error bounds.

State in considerable detail what the operational characteristics of the arithmetic unit should be,

including the number representation, the mathematica nature of the arithmetic instructions, and the
high-speed registers. Point out which considerations are vital and which are debatable.

Problem 3.

A newly forming library of practica mathematical programs for the 360/67 needs algorithms.
Suggest one broadly useful algorithm for each of the following applications, either naming it or
describing it, or giving its source well enough to identify it roughly. If you can't do better, say where
to look for a good agorithm, Justify your answer in a sentence or two.

(1)  Solve alinear equation system with a dense, stored matrix.

(2)  Find al the eigenvaues of a dense, stored, symmetric matrix.

(3)  Find one eigenvalue largest in modulus of a dense, stored matrix.

(4)  Solve a linear agebraic system with avery large, sparse matrix.
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(5)

(6)

8

(9)
(10)

(1)

(12)
(13)
(14)

(18)

NUMERICAL ANALYSS QUALIFYING EXAM

Find al the zeroes of a polynomia with rea coefficients.
Solve an ordinary differentid equation dy/dx = f(x, ¥).
Solve a system of ordinary differential equations.

Solve a boundary-vaue problem for Laplace's equation in two dimensions, with the function
vaues prescribed on the boundary.

Integrate a smooth function of one variable over afinite red interva (g, b).
Find a crude estimate of such integrals as

j: fol \]: fo‘ J: flx, %3, %3, %4, X5) dx | dxpdxzdxsdxg
where 0 < flx;, ..., xg) s 1.

Interpolate values of a smooth function of one variable given at equally-spaced vaues of the
independent variable.

Find a loca maximum of a smooth function of n real variables.
Generate pseudo-random numbers uniformly distributed on the interval (0,1).

Minimize the linear functional b,"x, subject to inequaities of the form

x; 20, i=1,2,....m
bTx20; i=1,2,...,m.
Herebg, ..., b, ,x are column vectors in El,, with n>>m, and the «; are scaars.

Find a real solution of asystem of 20 nonlinear equations in 20 real unknowns, where a
reasonable estimate of the solution is given.

Do three of Problems 4-9.

Problem 4.

Consder the ordinary differentia equation problem

a .

7 = fx9) 50) = 5. (1
In Milne's method for the approximate solution of (1), the corrector formula

Iner®= In-1* :{[ﬂxnohynol) + 400, 3n) + %10 Ine1d, (2)
wheren=1,2, .. .. is used in conjunction with a suitable predictor formula. Here x, = nh and ¥,

is an approximation to y(x,). The corrector formula (2) is applied repeatedly until no further
change in y,,; occurs and so the particular predictor used is irrelevant.
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Derive a formula for the truncation error which arises in a single step from x,, to x,,,; when
using this formula.

(b)  Suppose that this corrector formula with suitable predictor is used to find an approximation
to the solution of the problem p’ = tp, (0)= 1. Derive an approximate formula for the
truncation error which arisesin N steps. Assume that yo = %(0) = 1 and that y, = (#) has been
caculated exactly by some other method (e.g. Taylor's series).

(c)  Suppose that we use as a predictor for (2) the formula

9;.1 = =4y, + 59,1 + 22 [2f(xy,, ) t fxny [ %)) (3)
and that we use (2) only once (no iteration as in parts (a) and (b)). Show that for the
differentid equation problem

y ==y, H0) =1
this scheme is stable. Is the predictor (3) stable?

Problem 5.

Let A beared m x n matrix with mz n. Then it is known that

A=UZVT,

where U,V are orthogona sguare matrices and X is the diagonal matrix of singular values o {A). It
is well known that

Il Allz = o max(4).

We define

cond() = { 141RNA"ll, it 400

where A+ isthe pseudo-inverse of A.

@

(b)

(c)

Show that if b# 0, x = 4*6, and p = A*(b+8), and rank(A) = n with |8 ]l/116 llz s € then

nx-plk

< ¢ cond(4).
[l *ll2

Let B= AH where H isan n xk matrix and HTH = I;. Show that o max(B) s o max(4).

Let 4 beam xk matrix made up of any k columns of A. Using the result of part (), show
that omax(Z) s cmax(l‘).

Extending the results of parts (b) and (c), Show that cond(4) s cond(4).
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Problem 6.

(@ How would you recognize that you have obtained the nth degree polynomial that is the
minimax (Chebyshev) approximation to a function fix) in Cla, b} (Cla, b] is the class of
functions continuous on [a, 4]

(b)  Use your answer to part (a) to find the straight line that is the best Chebyshev approximtion
to the function ax?tbx t cin[-1,1].

()  Find the answer to the problem in part (b) by expanding the function ax? + bx + ¢ inaseries
of Chebyshev polynomials Tofx)= 1, T (x) = x, To(x) = 2x% - 1. State the general theorem
you are using.

(d) Prove that

Slx) = (2 — 2 ) = %) -+ (2 = %)
where the x; are @ your disposal, is minimized in the maximum norm in [-1,1] by choosing x,
= cos [(2r - 1)n/2n].

Problem 7.

Suppose that one wishes to find a solution of the system

flx, ) =22+ 92 - 4x = 0
gx,9) =92+ 2x-2=0
by an iterative method. It is known that there is a solution close to x = 0.5, p = 1.

(@ It is proposed that the following iteration be used:
2 2
net) _ (¥n\ _ (=15 1/5\ (¥n* In ~
G- G- (e o) ooy

starting with xo = 0.5, yo= 1. Prove that this sequence converges linearly to the solution of
the system.

(b)  Write down explicitly the formulas needed to solve this system by Newton’'s method. What is
the order of convergence of this method? Give reasons for your answer.

(¢)  What isthe relation of the method proposed in part (a) to Newton's method?
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Problem 8.

Let fx)be a given function and {x;}},; be a sequence of points for which fix;) is known. We
assume that x;<xp<...<x,

Let Py(x) be an sth-degree polynomial, and let
P={Px)| Plx;)2 fix), i=1,2 ... 1}
We wish to determine P(x) a® such that
Px;) - flx;) 2 Py(x;) - fix;) for al Pyx) <.

(@  Show that the coefficients of A(x) solve a linear programming problem.

(b)  Give the dud form of the problem developed in part (a).

(0 What special computational devices may be used for solving the dua problem to take
advantage of the specia form of the matrix?

Problem 9.

The well-known Horner scheme for evaluating polynomias

x"4a, x4 g, x4 L tax+ag
= ( - e ((X t an_‘)x t an_z)xt .. ‘)x t ao

evaluates a normaized polynomia (leading coefficient = 1) inn - 1 multiplications and n additions,
and any polynomid in n multiplications and n additions. It isaso known that thisis not the best
possible method (counting operations) if one is willing to do some preprocessing on the coefficients.
In this casg, it is possible to reduce significantly the number of multiplications.

(a) Illustrate areduction in number of multiplications on a general normalized polynomial of
order 4. Devise a computation scheme that would require only 2 multiplications.

(b)  Try to devise a scheme for computing agenera normalized polynomia of order 5 using only
3 multiplications.

(c) Edimate the lowest number of operations required for computing a polynomia of order n.
Give a plausible argument for your estimate.

(d) What else do you know on this subject? Are you familiar with any effective algorithms for
carrying out this reduction in the general case?
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Problem 1.

For a linear programming application it is desired to compute np where n=vB-I. The components
of the column vector p =(p;, Pz, . .., Pm), FOW Vector ¥ =(v;,¥a,...,7p), and m x m non-singular

matrix B =[b; j] are known without error. How accurately must the components of B-!= [ﬁ;j] be
computed to guarantee that the maximum error of computing np iss10°%?

Problem 2.

Consider five-point Lagrange interpolation of a function fix) based on equally spaced abscissas with
spacing 4. Show that if 43[f®Xx)| does not exceed 32 units in the last place to be retained, then the

truncation error cannot exceed one unit in that place, and also that 4%|f*(x)| may be as large as 84
units if the interpolation is effected only between the second and fourth of the five successive

abscissas.

Problem 3.

(a) How would you recognize that you have obtained the nth degree polynomial that is the
minimax (Chebyshev) approximation to a function f{x) in Cla, 6] (Cla, b] is the class of
functions continuous on [a, b))

(b) Provethat if fx)isan even function of x, then the minimax approximation on any interval
(-a,al is an even function of x.

(c)  Determine the values of a 6, ¢ and d in the polynomial P(x) = ax3 t bx? + cx + d which
minimize

max |P(x) -|x|].
-18xs1

Problem 4.
The matrix
1 0l -01 .0l
A= .01 2 04 3
-02 .01 L |

30 -2 4

has eigenvalues A;= 1,2, % 2, A3= 3, and a4 = 4.
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(a)  Show that 0.97 <A;s 1.03.
(b) Itisvery easy to give much tighter bounds for A;. Give the best bound you reasonably can.
()  Give areasonably low upper bound for the spectral norm
max || Ax ||
Bl 1
where |j+|| is the Euclidean length.
Problem 5.

Consder the system of differentid equations

y =z

2" = -69 -az

with %(x) = 9o and z(xe) = 25, and where aand 6 are real.

(a)
(b)

(c)

Give the andytic solution of this system of equations in exponentia form.

Assume 0 < a<2vb, 6> 0. Show that the solution of the system remains bounded for all yq
and 2.

Give Euler's method for solving the system of equations.

What is the largest step length # for which all solutions of the corresponding difference
equation are bounded?

Problem 6.

A sguare matrix A, a column vector ¢, and arow vector r are all given. Let B= A + ¢r, and assume
that B-! exists.

(a) Prove that

(b)

(x) B'=A’t7p,
where « is a column vector and p is a row vector.

Give expressons for v and p.

Suppose that a lower triangular matrix L and an upper triangular matrix U are also given
such that LU = A, and that a column vector d is also given. Make use of (x) to give an
efficient agorithm to solve Bx = d.
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Open Book Computing Problem.

A continuous curve p = fix) is defined for x 2 0 by the differential  equation
a9 . 3

X X+9

and the initial condition x =0, p =1/2.

(a)  Show that the curve p = f{x) has a vertical asymptote at x = a, for some finite a > 0. (Hint:
Look at dyldx = %°)

(b)  Find f1) as accurately as you can.
(¢ Find f£1.107) as accurately as you can.
(d)  Find 6 such that f(b) = 28 as accurately as you can.

(e)  Find the abscissa a of the vertical aymptote as accurately as you can.
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Open Book Computing Problem.

A chemigt is studying some reactions and he knows that the concentrations of two components in his
experiment obey the ordinary differential equations

‘ai-% w—kythyb - 29 - 2)z
ax_ _ - 29 -a-p-2)-9
T kot + halb- 29 —2)a=-p -2) 7
where the k; are unknown positive constants, and a and 6 are known positive constants.
The following experiment was made:
L Att =0, thevauesof a 6, p(O), and z(0) were st to
a=10, 6=20, 90)=.25 20)=.50.

2. The vdues of p(t) and z(¢) were sampled a various times. The following data was gathered.
¢ 5(t) (1)

0 .250 .500
.333 301 .403
672 324 .362
1.012 .335 .345

© .345 .332

By ¢ = o the chemist means a sufficiently long time so that the system has become stable (i.e. dy/dt =
dz/dt= 0). In this case it was certainly stable by ¢= 100.

From physica consderations the chemist knows that the %; should be close to one. What vaues of
k; can you caculate for him?

Your answer will be graded on the accuracy of the results, the reasonableness of the methods and
the amount of computing used,
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Computer Problem.

Y ou have about six days to work on the following computer problem. Y ou will be assigned an
account number and expected to use only that number when working on the problem. The total
charges accumulated will be taken into account in the grading.

You may use any computer language you wish. You are encouraged to use any appropriate
subprograms available to you through various libraries, friends and relatives, or past projects of
your own. Please identify the source of any such programs.

It is hoped that you will learn something while working on this problem.

Let
N =10,
M =20,
(6) = 1/ max (cos 8, sin 6), 0s6<n/2,
2n-2/3, n even,
n = {271—4/3, N ooom n= 1’ o 00 N’
mn
== =1 .... M,
am N2 ’ m 11
Tm = r(am)' m=l, +o0t M,
J(«, X) = the a-th order Bessel function of x, scaled so that
o~ E o
j(d.x)~(2) for small x,
amnfA) = J(ay, VX1y) sn(a&), m=1 ... M,n=1 ... N,

A(x) = the M x N matrix with elements @y n(A),
{I*}= the Euclidean vector norm.

Your problem is to find a value of A between 9 and 10 so that the columns of A(h) are nearly
linearly dependent and find the coefficients in that dependence. Specificdly, find a scdar A and an
N-vector ¢ which give

min min || AX)c ||
9SAS 10 J|c)j = |

Note: This problem is derived from two papers: Fox, Henrici and Moler, SAM J. Numer. Anal. 4,
1967, pp. 89-102; and Moler, Stanford Report No. CS 121, 1969. You may want to refer to these
papers for background and hints, although it iS not necessary to understand them in detail.
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Computer Problem.

For any a> 0, let z(A) be the least positive zero of the function y(t) that solves the ordinary
differentid equation problem

9ty + 15+ 2/10=0
3(0) =0, 5(0) = A

where Io(t) iS the zeroth order modified Bessel function (see Abramowitz and Stegun, Handbook of
Mathematical Functions, National Bureau of Standards, AMS 55, pp. 374-375).

The graph' of the solution (¢} is approximately as shown below.

YA slope M

0 - z(})

(a) Find Apax, the unique value of A such that z(A) is a maximum.
(b) Find z(A\pax)

()  Give atable of values of y(z) for ¢ = 0{0.1)z(Apax), fOr the ) which maximizes z(a), that is,
for y(¢) satisfying $"(0) = Amax-

(d) Give adiscussion of the accuracy of your results.
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Computer _Problem.

Congder the Fredholm integral equation of the first kind,
S Koylt, ) 2l ds = 30), 051, (1)

where

1 -2
1+ 92 - 2y cos (2n(t+s))
#(t) = cos(2ne).

The object is to find a numerical approximation to x(s), i.e., values for x(sj) for points s; € [o,11.
We decide to use the following method.

K‘y(t, 5)-

Collocation: Let¢;=(i-21/2)/n,i=1,2,..., a andreplace (1) by then eguations
S Kyt ) ) ds =3t , i=1,2,.. .. n. @)
Quadrature: Replace (2) by

I§ Kyt s)) x(Sj) wj + )=, i=1,2, ..., n, (3)

where ¢; is the quadrature error, and w; are quadrature weights at points s;, f=1,2, ..., n.

This produces a matrix system

Ax+e=y, (4)
where the vectors x, y, and ¢ are defined by xj= x(sj), 9= y(tj). and €= e(tj), and the matrix A is
defined by ajj= Kyltj, sj)w;.
(@  Solve for x from (4) assuming e= O for the following twelve combinations of parameters:

y= (0.75, 0.25)
n ={10, 20, 40)

forward rectangular (s; = (j-1)/n)

quadrature « {midpoint (s;=1))

Given that the true solution is x4(s) = (1/7) cos(2ns), construct a table (with twelve entries)
n

showing the actual error {21 (xj - xT(,j»z}l/Z_ Also congtruct a table showing the residua
[l Ax - 3]l for your calculated solutions. Comment on your results.
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(b)

()

Suppose we are given an extra piece of information, namely that
|

I %7(s) llz = —=

and that this is approximated by

xTx m %y = v
TR
Congtruct an agorithm to solve the mathematica programming problem

minimize || AX - y i, over al x such that ||x||2-ﬁ-2 ?
¥

Hint: Use Lagrange multipliers.
Use your algorithm and available matrix subroutines to calculate solutions for the twelve

parameter values of part (a). Construct tables for the error and the residual as in (a).
Comment on these solutions.

Find error estimates for your solutions to (5), that is, find an expression B(c) which is a
function of the quadrature error, such that
I = x7ll s Ble)

where x is the solution to (5) and x; has elements with values being the true solution
evaluated at Sj,j-l, 2, ..., I
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Problem 1.

You are to describe a system for incorporating a push-down stack store into a computer system by
utilizing a portion of the main core memory, three registers, and some logic and flip flops as
necessary. Specify the details of a “push” operation (inseting a new word in the top of the stack).

Problem 2.

Design a network having as inputsw, x, y, z and as outputsf and g, where

fw,x,9,2)=2(3,7,11,12,13, 14, 15)

gw,x,y,2)=2(1,2,3%,5,6,7,9, 10, 11).
Use NAND gates only. Use as few gates as you can (6 are sufficient) assuming double-rail inputs, i.e.
the complements of the inputs are available.

Problem 3.

Consider a computer system in which signed (algebraic) numbers are represented in memory as
sgned two's complements.  Since obtaining the magnitude of a number in such a system is
non-trivid, it is desrable to be able to carry out multiplication with numbers ill in signed two's

complement form. Describe a scheme for doing this.

Problem 4.

Most digital systems have their sequencing of operations controlled by a central timing source or
“clock”. It isalso possible to design systems in which the completion of an operation is explicitly
detected and this information is then used to initiate the next operation. One scheme for doing this
involves using two leads to represent each single variable and encoding the variable as follows.

Original variable Encoded version

A

0

l
variable not available yet
unused combination

Wy

RPOpROS
Roor

Initidly all signals are set to 0 and then the inputs are set to the desired encoded vaues, completion
is detected when the outputs each change from 00 to either 10 or O1.

(@ Let A and Bbeinputs and let C = 4+B. You are to fill in (with O's, I's, and d’s) the following
map for acircuit to have encoded versons of A and B as inputs and have an encoded version

of C asits outputs.
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UpWp

88
81
11
18

88

VW4
11 18

81

Ve

(b)  Write expressions for vcand w.

(c)  Draw acircuit for v and we using AND gates and OR gates.

COMPUTER DESIGN QUALIFYING EXAM

(d) Draw a circuit with the encoded version of A as input and the encoded version of A’ as

output.

Problem 5.

An efficient technique for converting a binary integer to a BCD (8421) integer can be based on the
fact that binary "1"equals BCD "1"and shifting a binary number left one position is equivalent to
multiplying it by 2. The binary integer is shifted left bit by bit into a BCD register and the
contents of the BCD register are doubled after each shift.

Example:

Binary number
Shift left (binary side)
Double (BCD side)
Shift left (binary side)
Double (BCD side)
Shift left (binary side)
Double (BCD side)
Shift left (binary side)

1,
1,

)1

818

1,010
18,010
16,18

168,10

11,8
6068,8
8868,

BCD ,

binary

Design the clocked sequential circuitry necessary to perform the binary to BCD conversion as

indicated above.

By

Ag

Aq

Az

A

BCD Register

¢

C;

C3

Binary Register
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Fill in the following table and complete the design to obtain flip flop excitation equations for JK
flip flops. (That is, determine the necessary J and K inputs for the flip flops of the BCD register.)

Tims n Tine n+l
Docimal hghy bty Byshighydoh) | pectmad
0 0
3 2
2 4
3 6
4 8
5 10
6 12
7 1
8 16
9 18

Problem 6.

() Discuss briefly with the aid of Sketches the characteristics (advantages and disadvantages) of
different magnetic core memory organizations (3D, 2D, 2.5D).

(b)  Describe the output signal which appears on a sense line when a*zero” is read and when a
“on€’ is read from a core.

(c) How many drive and sense amplifiers are required for a memory of 4096 words of 16 bits per
word for: (1) 3D organization and (2) 2D organization.

(d) Design a minima complete decoding network to address 64 lines (using 2 or 3 input gates).
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Problem 7.

One novel approach to the construction of error-correcting codes is through the use of geometric
notions.  The simplest of these is that described here:  row and column parity checks in a
rectangular array.

Suppose we define a particular binary group of n= 16 bits (9 information plus 7 parity check bits)
by inggting that any code word fits into the 4 x4 square shown below, where every row contains an
even number of ones, and every column contains an even number of ones.

blcec]t

e | flu

a
d
gl h|]il]wv
W

X Y Z

(@  Express the check digits¢t,u, v, w, x,9,z in terms of the information digits a, b, c, d,
e, fi g h i

(b)  What is the minimum Hamming distance between any two digtinct code words? If an error
pattern is undetectable with this code what is the smallest number of digits that could be in
error? Give an example of such a pattern.

()  Explain how to use the code for correction of single errors.

(d). Give an example of an error pattern containing four errors that is detectable. Are any error
patterns with more than four errors detectable?

Problem 8.

This problem is about unit-distance codes. It is desired to encode the eight (analog) quantities: O, 1,

2,3,4,5, 6, 7 (mod 8) into binary code words of four bits each such that the following two

properties are satisfied:

Pl:  Andog quantities that differ by 1 (mod 8) are to be encoded into binary words differing in
exactly 1 hit.

P2: If an error of any one bit occurs in the transmission of a four-bit code word, then the
resulting error in the analog quantity must not exceed 1 in magnitude, or must result in
detection of the fact that an error has occurred.

(@ Doeseither of P1or P2 imply the other? State which, if they are not independent. Are they
equivalent?

(b) Find an encoding that satisfies these conditions. This is called a unit-distance error-checking
code.
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Problem 9.

It is desired to encode an alphabet of six symbols A, B, C, D, E, and F, for transmission over a
noiseless hinary channel. The code strings to be assigned to these symbols may be of different
lengths. We want the average length of the string sent over the channel to be minimized, where the
source symbols (A through F) are used with the following probabilities:

Symbol Probability Coding string

0.500 ?
0.250
0.125
0.100
0.015
0.010

TmoOwW>

— F
(a) What is the lower bound to the average length, L = 2,4 L;P(i), where L; is the length of string
la
used to encode the i-th source symbol?

(b) Find avariable-length encoding that gets as close to this lower bound as possible. What is
the efficiency of this encoding?

() If weingg tha this encoding be uniquely decipher&e (that is, it is assumed that the channel
carries a continuous stream of binary digits without spaces or other demarcation between the

strings representing separate consecutive symbols), what is the average length L attainable?
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Problem 1.

Design a circuit redizing
flw, %9, 2)=2(1,2,4,7,8,11,13,14)
using threshold gates with postive and negative weights dlowed, Use as few gates as you can.

Problem 2.

In a certain 4-digit mixed-radix number system, the radices (by position) of a number dadad,d, are
5, 4, 3, and 2, respectively. A convention must be defined for representation of negative numbers in
this system, without using an extra sign bit.

(@  Define a complementation algorithm for this number system based on (B-1)’s complement
representation. What are the most positive and most negative numbers representable? What
are their representations?

(b)  For the representation scheme of part (a), how can a test for positive sign be implemented?

() Define a complementation agorithm based on B’s complement representation. What are the
most positive and most negative numbers representable7 What are their representations?

problem 3.

In addition to its normal capabilities, a sequential machine A has an input 4; which may be
connected to test a copy of itself, machine B. Machine A aso has a specia output Ay which is 1" if
the tested machine B is functioning properly and “0” if B has failed. If, however, machine A has
failed, the output 47 is invalid and may be "1" or “0" regardless of the condition of B.

A falure or a set of falures is “detected” if one can determine with certainty that not all machines
are functioning properly. A failureis“diagnosed” if one can determine that a particular machine

has failed.

(@  Assume two machines A and B are testing each other, as shown below.

Ay —1 A —f—’{a_;;,BT
I

Can single failures (faillures of machine A or B but not both) be detected by observing A7 and
B;? Can single falures be diagnosed? Can double failures be detected or diagnosed? Justify

your answers.

126



MAY 1969 J27

(b) Assumewe have aring of R machines, each testing the next machine in the ring, as shown

below.
ATIT
A
171 —
/ By Ao
ARI+-—~ Ag l
|
\ A1 fan
\ /7
~ 7
-~ _ -~

Is there a value of R which will alow diagnosis of single failures (assuming multiple failures
cannot occur)? If so, what is the minimum such value? Explain.

Problem 4.

A mythica computer manufacturer produces systems with no "I/O wait” cycles due to their superb
I/0 system architecture. Careful statistica sampling of programs executed on this machine show
that, on the average, the following distribution of memory cycles occurs for each executed
~instruction:

Memory cycles Purpose
| Instruction fetch

1/4 Indirect addressing
112 Operand fetch or operand store
2 Input-output
3 %4 Total average cycles per executed instruction

The memory architecture for this system employs a single bank of 64K words, each 16 bits, with a |
usec cycletime. The run time for a typical program would thus be estimated at 3.75 usec per
executed ingtruction. Cynics have noted that this memory is the bottleneck of the system, noting that
a speed increase in memory will be matched by a proportional increase in the throughput of the
system. A faster memory is, however, prohibitively expensive. Describe a scheme for substantialy
increasing the throughput of the system by changing the memory architecture, but not the memory
speed. Estimate the average time per executed instruction in your scheme.
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Problem 5.

The network shown below has 6 inputs A,B, C, b, E, and F. Two Internal points 6 and H are
labelled for reference. Connections to a +V voltage source, ground, and the OUTPUT point are
labelled.

T ; =
A e 5__*‘____”

5 ¢ e L o) E
Cr———l{}—-—G ‘ H———‘h——ﬂ—.——..¢ F

H

= OUTPUT

(@ Draw thevoltage at 6 asa function of the input voltages at A, B, and C shown below.

i {j+zv ‘\\\\j

W

L2V
c 0
L av

(b) Assume now that inputs A through F always carry either +V or 6ND voltage and assume a
positive logic convention. What logic function is performed a G? At H? At the OUTPUT?

Problem 6.

(@  Give the mathematicd definition of a regular expression.
(b)  What is the relation of regular expressions to sequential machines?
(c)  Show that the complement of a regular expression is a regular expression.
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Problem 7.

An n-variable switching function is said to be symmetric if and only if the value of the function
depends only on the number of arguments that have the value 1. *We use the notation S("’ to

denote the n-variable function which takes the value 1 if i of its arguments are 1 or if § of its
arguments are 1, etc.

a@  Fillinthetruth tables for §{, §), and s,
b Sie

@ @) @
Si Siz Sia

X
®
N

X
0
|
0
!
0
!
0
|

(b)  Prove that, for any n, the n-variable symmetric switching functions form a Boolean algebra
with the operations . and + (AND and OR).

(c)  What are the atoms of this Boolean algebra?

Problem 8.

The IBM 1 130 uses the following code for disk recording. Each block of data consists of 20 bits, 16
information bits and 4 check bits. The encoder computes the check bits by using a rule that
guarantees that the total number of I’sin ablock will be a multiple of 4. The decoder counts the
number of I's per block and signals that an error has occurred if the count is not a multiple of 4.

(@  What is the minimum Hamming distance of this code? Prove your answer.

(b) What is the fewest number of check digits for 16 information digits that will yield a code of
the same minimum distance? Prove.

(¢)  What is the fewest number of check digits for 16 information digits that will yield a code with
minimum distance 3?

(d)  Show how to congtruct the code of part (c) and describe a decoding agorithm that can be used
for error correction.
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Problem 9.
(@ Find aHuffman coding for the alphabet of six symbols given below with their respective
probabilities of transmission.
Symbol Probability
5 .20
$2 .195
$3 175
Sq .15
35 .14
3¢ 14
(b)  Use your code to prove or disprove the following:
Given aHuffman code H, let H* be the code formed by associating with each symbol the
reversal of its codeword in H. Henceif s;iscoded by 1101in H it will be coded by 1011 in
H* The code words of H* may not be uniquely decodable symbol by symbol, but every
coded string of symbols can be decoded by a decoder with arbitrarily large memory if the end
of the string is known to the decoder.
Problem 10.

An AN is a code that is used to check addition operations in computers. in this code the integer iis
represented by the integer 4« where A is a fixed constant.

Assume that we are to use an AN code in a computer which performs addition modulo M.

(a)

(b)

()

Prove that the set of coded integers forms a commutative group under addition if and only if
M is a multiple of A.

Let A4 = Aer. Show that the addition of coded integers modulo M is equivalent to the
addition of uncoded integers modulo r.

The arithmetic weight of an integer is defined to be the number of non-zero coefficients in its
binary representation. For example, weight( 16) = 1 and weight(7) = 3.

Prove that an AN code has minimum arithmetic distance 3 or greater if and only if the
residues of +2/ modulo A are distinct and non-zero for al § such that 2/ < M, where M is the
modulus of arithmetic.
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Problem 1.

(@ Draw alogic gate diagram for the circuit whose schematic diagram is shown below. Assume
+5V islogical 1 and 8 V islogical 8.

<
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&
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| shadiadia gl J0 T
4
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I
!
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(b)  Giveaminimal product of sums Boolean expression for the output signal z as afunction of
the input signals x;,%,, . . ., %
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Problem 2.

(@ Contrast the Quine-McCluskey method with the iterative consensus method for finding al of
the prime implicants of switching functions. In particular, contrast the initial inputs to the

agorithms and the strategies used in the computations.

(b)  Give an estimate of the number of computational steps required by each agorithm in its worst
case. The growth of this number with respect to some parameter is desired; constant
coefficients are unimportant. You may wish to use the following parameters.

(1) w=the number of true minterms (weight of the function)

(2)  p= the number of prime implicants

(3)  t=the number of terms in an initialy specified algebraic expression for the function
(4 n=the number of variables

(¢ Which of the two methods is preferable from a computational point of view? State your
assumptions.

Problem 3.

A non-zero eement m of a Boolean dgebra is caled minimal iff for every element x of the agebra,
if x+me=mthen x=mor x=0.

(@  Show that mis minimal iff x.m=m or xm = O for every x in the agebra

(b)  The following statement is a theorem:
All finite Boolean dgebras are isomorphic iff they have the same number of eements.
It is aso well-known that the set of switching functions of n variables forms a Boolean
agebra and the subsets of a set with n elements form a Boolean agebra. Are these algebras
isomorphic?

(c)  Condder the Boolean agebra of P-variable switching functions.
(1)  How many elements does this agebra have?
(2) Wha are the minima eements?

(3) What isthe O of this Boolean algebra?
What is the 1 of this Boolean agebra?
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Problem 4.

(a)

(b)

(o)

Let ¢ be the maximum number of errors correctable by a binary block code, and let d be the
minimum Hamming distance between two code words, Derive the relation between ¢ and d.

A linear block code is defined as follows. Let G be ak x n matrix, n 2 k. If uisak-tuple
information vector, then it is encoded by the n-tuple » where

Vv = u[G]
Show that the minimum distance of a linear code is equa to the minimum Hamming weight
of a code word.

A two-dimensional block code is alinear code such that each code word is a & dimensional
matrix as shown below.

Information row
checks

checks
Column checks

on
checks

Each row contains code vectors from a linear code and each column contains code vectors
from a linear code, not necessarily the same as the row code.

Suppose the lengths, number of information bits, and minimum distances of the row and
column codes are ny, k;, d; and nyp, ky, da, respectively. Find a formula for the minimum
distance of the two-dimensiona code in terms of these parameters, and indicate the correctness
of your formula



134 COMPUTER DESIGN QUALIFYING EXAM

Problem

Let M be the machine given below. M is assumed to operate in clock pulse mode so that a single
transition occurs in the presence of a clock.

8 Y 1
A D,8 E,0
B A,8 F,l
¢ B,1 H,1
D c,1 6,0
E G,0 Al
F E,1 B,0
G H,1 D,1
H F,1 c,8

next state, output
Machine M

We wish to construct M from the parallel connection of two machines M; and My with 2 and 4 states,
respectively. The structure of the parallel connection is shown below.

y f
> Ml r————— ) )
Combinational
function

g(f;,f2,f3,x) output
 —
f2
e
— M fa
ey
X
The state table for M;is
Y
8 1
v [ ue [ wv,1 |
v v u,e |

next state, f,
Machine M;
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Fill in the tables below.

x X > N

next state, f,, f3

Machine M,

output

—4

)

[

D - D -~

D O ~t -

— et i -

=l pd e -y
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Problem 6.

High speed addition may be achieved by dividing an n-bit adder into n/g groups of g bits each.
One such scheme employs groups whose sum outputs are valid at time 3g, but whose carry output is
valid 3 time units after the group inputs are valid. This is the "carry by-pass’ approach.

(@  Assume all group inputs, except carry inputs from previous groups, are valid at time 0. When
is the output of such an n-bit carry by-pass adder valid (assume nis a multiple of g)?

(b)  Derive the vadue of g which produces the fastest addition for a 36-bit adder.

(¢)  How long does this fastest addition take?

Another scheme employs groups whese sumand carry outputs are both valid at time 3 after the
group inputs are valid. This scheme is certainly more expensive than the carry by-pass scheme if
the same size groups are used.

(d) Ifthegroupsare A bits each, how fast is an n-bit addition (assume n is a multiple of A)?
(e)  What size groups must be used for a 36-hit adder as fast as in part (c)?

(f)  Give arough cost comparison of the costs of the adders of parts (c) and (e).

Problem 7.

A computation isto be performed on n independent sets of data. The computation is realized by
the six instruction sequence: I,,I, 13,14 I;,I, The four distinct instructions share no hardware

in the machine. Operands generated by each instruction are used by the next. Each instruction
takes 1time unit.

(@ If paralle computation is possible but no hardware duplication is allowed, how quickly can
the computation be performed? Sketch your strategy for achieving this result.

(b)  Answer part (a) alowing two copies of each of the four instruction calculators.
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Problem 1.

A certain computer uses instruction opcodes that areencoded in fields of severa different widths.
Let ¢;, ¢z, ..., ¢, bethe opcodes and assume that it is known that each opcode is used with

probability p;, 1sisn. LetL; bethe number of bitsin the code for ¢;.

We wish to find a binary encoding of opcodes that satisfies the following criteria

(1)  Theencoding of any opcode cannot be the prefix of the encoding of any other opcode.

(2)  Theencoding must minimizeL =Z%,piLi. (The minimization is over al encodings that
satisfy (1).)

Prove that an encoding that satisfies properties (1) and (2) must aso satisify the following properties.

(@) If pi>p; then LisL;

(b) LetLmax bethelength of the longest opcode. Then there are at least two opcodes of length
Lax that differ only in their rightmost bit.

Problem 2.

The IBM System/360 tape drives use an encoding scheme smilar to the one shown in the diagram
below. Each row in the record is an eight bit character with a parity check on all eight bis. Each
column contains a column parity check a the end of the record. Information bits in the diagram

are represented as b's and parity bits as ps.

bbbbbbbbp first character
bbbbbbbbp second character
bbbbbbbbp last character
PPPPPPPPP column parity checks

Recall that a burst error of length L is an error pattern L bits long that begins and ends with a 1.
The decoding scheme for the code above is designed to correct burst errors that are contained
entirely within one column.

(@) Consider an error which is contained entirely within column 1, starts at the first character,
and is aburst of length L in that column. How many burst patterns are there of this type?
How many of these patterns are correctable with the parity checks shown above?

(b)  Assume that there exists a mechanism by which we can identify the column containing a burst

error. Give aburst error decoding procedure that uses this mechanism. What is the longest
burst that is correctable in this case?

A37
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Problem 3.

Consider a rotating magnetic disk storage device with a large number of concentric tracks of
information and a read/write head which must be moved into position over a track in order to

access the information which the track contains.

rotating //;zr I//f"‘~\\\

magnetic disk /

typical trac

of informatio
movable read/write head

One of the major considerations in evaluating the performance of such a device is the expected
distance which the head must move between successive track accesses.

(@ Derive an expression for this expected distance under the assumption that track accesses are
independent and uniformly distributed. Let L be the distance the head must move to go from

the outermogt track to the innermost track.

(b) Give upper and lower bounds on the average head movement for the case in which head
accesses are not distributed independently, and indicate track access distributions for which

these bounds are achieved.
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Problem 4.

Consider signed-digit number representations such that d,, d,_; . . .d>d\dqy represents the value

%o d;b', where the base is b 2 3 and the signed digits d; satisfy —b < d; < +b. Note that non-zer o
values do not in general have a unique representation in this system. The fth stage of an adder for
signed-digit numbers can be viewed as having three inputs and two outputs:

V Gy

d;’! —

I

where d; and d;’ are the ith signed digits of the two numbers to be added, C;_, is the signed carry
from the previous stage of the adder, §; is the ith signed digit of the sum of the two numbers, and
C; is the signed carry out of the i-th stage. Also =1 s C; s + 1for i 20, and C_; = 0. It is possible
to design such an adder so that the carry out C; is independent of the value of the carry in C;_,,
thus eliminating much of the carry propagation time of the adder.

(a) For b = 3 show sum and carry functions for a stage of a signed-digit adder. Make C;
independent of C;_,.

d; + d;’ C; S; when C;_; = -1 S;whenC; =0 $; when C;_) = +1
! ! -1 ?

(b)  Give a general formula for the sum and carry functions of a signed-digit adder for arbitrary
base b.
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Problem 5.

The partial ordering relation “divides-evenly” defines a Boolean algebra on the set {1, 2, 3, 5, 6, 10,
15, 30}.

(@ What are the operations "+" and "+* in this algebra?
(b)  Identify the complement of each element in the dgebra

(c)  Consider the logical operator ® defined by the Boolean function below. Prove or disprove
the following: A set of logic gates redlizing this function forms a complete set.

uv u@v
80 1
81 1
18 8
t11 1

Problem 6.

@
()

What is a master-dave flip-flop?
Why is such a flip-flop useful?

Problem 7.

@

(b)
©

(d)
C)

Define the following terms.

(1) satic 0 hazard
(2) tatic 1 hazard

State necessary and sufficient conditions for the existence of a static 1 hazard.

Find the O sets and 1 sets of the following network.

-

AW
vV

S

\

y J
o

Specify dl static hazards in this network.

Draw a NAND network for the function realized by the network in part (c) that does not

contain any static hazards.
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Problem 8.

(@ Giveastatetransition diagram, aflow table, and an excitation table for a clocked sequential
circuit with clock input ¢, alevel input %, and pulse output 2. The circuit is operated in pulse
mode and must produce al output if and only if the input sequence recognized for the x
input is contained in the following regular set:

(onN*11

Example:

e A A A A A .

? o N

(b)  Does the excitation table of part (a) contain any critical races? Explain briefly.
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Problem 1.

Define and give an example of each of the following techniques for speeding up binary
multiplication In a pardlel arithmetic unit.

(a) multiplier recoding

(b) cary save addition

Zroblem
(@  Define an execute ingtruction.

(b)  What modifications would be necessary to add an execute instruction to the HP 2116
computer?

(c)  Write an execute indtruction microprogram for the HP 2116 with the modification of part (b).

(d) Now do parts (a)-(c) for arepeat ingtruction.

Problem 3.

Congder the following circuit:

142
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(@ Tomakethiscircuit act like a read-only memory, what should be connected to each of the,
labelled points? Note: The connection to the C line may be present or missing at each cell.

(b) Explain your addressing scheme. Discuss polarity of address lines and associate binary
addresses with the memory cells shown.

(c)  What voltage appears on the output line if the selected cell is connected? If the cell is not
connected?

(d)  How can this memory be expanded to a 16 location, 4 bit word memory?

Problem 4.

(@  For the machine M; shown below, how many components (at most) might be useful in a
composite realization? How many states (at least) would each component have?

State transitions for M

(Outputs are, for the moment, unspecified, but it should be assumed that there are no
equivalent states.)

(b) Draw alogic gate diagram redizing the above machine.
(0  Machine M, is to be used to correct the output of an unreliable single output machine M.

M, attempts to repeat each output symbol in its output string for four consecutive time
periods. At most one of these 4 will be wrong. The output of M, drives the input to M.
Assign outputs to the transitions of M so that the M; output accompanying every fourth M,
output will be correct.

(d)  For the purpose that M serves in part (c), can you design a better machine than M ? If o,
draw its logic gate diagram.



144

Problem 5.
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A control timing unit for a navigation system computer is to be designed to generate the output
sequences on lines A, B, and C. The sequences are to repeat after the 100 clock pulse times shown

below.

(b)

Clock time

1,
10,
12,
22,
24,
35,

37, ..

49,

1’

23

sy

36

50

51, ...

62,
64,
73,

75, ...

87,

89, ..

99,

63

9

21

34

48
61

.12

7

88

100

86

98

A

O — O

—

Output

O e e == e e OO0 OO OO O—

Discuss the design of a clocked sequentid network which will redize the desired performance
using OR gates, AND gates, and RS flip-flops. How might the minimization of gates and

flip-flops be accomplished?

Obtain a solution using counters and read-only memories. Contrast the hardware complexity
of this solution with that of part (a).
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Problem 6.

In an N-valued logic (i.e. variables can take on thevalues 0, 1, 2, . .., N-I), let
m(x; , %z) = minimum of %, and x,

x+1 forx e N-1,
C(x)'{o forx = N-I.

Prove that m and C form a functionally complete set of operations for N 2 2.

Problem 7.

The following is a generating matrix of a linear code over GF(3).

100
0101
001

(a)  Give a check matrix for this code.
(b)  How many words are in the code?
(¢)  What is the minimum distance of the code?

. (d) If this cade is transmitted through a ternary symmetric channel with channel matrix

I-p  pI2  pI2
pl2 1p p/2
pI2 pI2 1-p

what is the probability that the decoder will make a mistake?

Problem 8.

Specify a sequentia state machine with 2 different $. P. partitions (preserved cover partitions) n;
and np, such that Mp, = My,

Note: The states of My, correspond to the blocks of n;.
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Problem 1.

Let S§ a denote the result of substituting the term ¢ for ail free occurrences of the variable x in the
wif a.

Definition: Let K be afirst order theory and let £ be a binary predicate of K. We say that K isa
first order theory with equality, with £ as equality predicate, if the following are theorems of K:

(1)  Vx E(x, x)

(2)  VXVy{E(x,y)>[(Sia)> (S; )]}, where ais any wff such that the individual variables x and
y are free for the individual variable z in a (that is, no free occurrences of z in alie within
the scope of any quantifier (x) or (y)).

Your problem is to show that the equality relation in a first order theory is unigue in an
appropriate sense. That is, suppose there is a first order theory K with binary predicates £, and E,
such that K is simultaneously afirst order theory with equality with £, as equality predicate and
with E, as equality predicate. Exhibit a wff or set of wffs which expresses within K the assertion
that £, and £, are the same. Then show that this wff must be provable in K.

Problem 2.

Determine whether or not the following well formed formulas of first order logic are (1) satisfiable
and (2) valid. Justify your answers by an appropriate rigorous argument.

(a)  Vz3x Vw Vy {[F(x, 2) A F(z, w)] 3 [F(y, 2) > F(z, )]}
(b)  Ix Vy (F(x) m [Fly) v F(x)]]

Problem 3.

Suppose R is a regular set of symbol strings over an dphabet 2, and § is an arbitrary set of strings
over Z. Define T to be the set of strings x such that for some y €8, xy belongs to R; that s,

T ={x]|3y such that xy aR}.
Prove that T isaregular set.

Problem 4.

State (without proof) the equivalence (s), inclusion(c), and non-inclusion (¢) relations you know of
among classes of forma languages, and classes of languages defined in various ways (generation,
accept ance, recognition) by various kinds of automata, finite or infinite, deterministic or
non-deterministic. Draw adiagram using the above symbols to indicate relations. Y ou need not
show relations which follow by trangtivity from other relations.

147
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Problem S
Consder a progamming language L defined as follows:

<variable>  u= <letter>| <varigble> <digit>
<expression> := O[<variable>| (<expresson> + l)
<statement> := <variable>:= <expresson> |
for <expression> times do <statement> |
begin <statement>; <statement> end
<program> := <Satement>

The form for £ times do s means that £ is evaluated once, giving a numerical value e, and that S is
then repeated e times.

(@  Show that for any primitive recursive function fix,,%,, ..., X,), thereis a program of L
which sets X0= f(/,,l5,...,Iy), Wherel,, .. ., |, aretheinitial valuesof X1,..., Xn.

(b)  Show that for every program in L, the final value of X0 is a primitive recursive function of
the initid values of al the variables.

Problem 6.

Let A, B,C, D, E be ground clauses and R(4, B) denote the set of ground resoivents of A and B.
Provethat if Disaclausein R(R(A, B), C) then thereisaclause £ in R(R(C, B), A) u R(R(C, A), B)
uR(R(C, B), R(C, A)) such that E ¢ D. Give an example to show that it is not always true that
there is an £ such that £ = D.

Problem 7.

Congder the genera recursive definition
Slx) = if P(x) then g(x) else A(fk(x))),

where the predicate P and the functions g, 4, and & are understood to be primitives, and total.
Express in terms of first order logic (including the ideas of validity, satisfiability, etc.) the
proposition that for ail ® such that R(X) istrue, fix) is defined and satisfies the relation S(x, f(x)).
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(Time limit: 41/2 hours)
Problem 1. (20 points)

Let O(x, 9) be a binary predicate symbol. Consider the two wffs A and B given by

A Yx 3y Xx, 9
B:  [Vx ((3y Kx, 9) > Qx, x)] > V¥ Kx, x).

Which of the following is true?

@ FA>B
b I-B>A

If true, give a proof (using any standard derived rules of inference and metatheorems desired).
Otherwise, give an interpretation as a counterexample.

Problem 2. (20 points)
For any language L ¢ {0,1}*, let
L'={yxX|xyeL,xe (0, 1}*,9¢ (O, 1}*}

(@ Provethat if Lisaregular language, then so isL’.
(b)  Find a counterexample to show that the converse of (@) is not true.

Problem 3. (JO points)
Suppose P and Q are predicate symbols, § is a set of clauses, k5 denotes deducibility by resolution,
and

{P)} v § Fp Q
Q) v § Fp O

Show constructively that
{Px) v Q) v § Fp O Bad
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Problem 4. (15 points)

Congder the following LISP functions operating on lists:

xxy = if nx then y else ax.[dxxy]
reverse[x] = revlx; nil}
revlx; 9] = if nx then y else revldx; ax.y)

Prove that for any listsx and y,

reverselx x y] = reversely Jx reverse(x].

Problem 5. (10 points)

The following program computes the remainder m mod n.

a if m<nthen go to done;
m:=m- n;
gotoa;

done:

Write a wff of first order logic with one free predicate letter ¢ whose truth for all interpretations of
qis equivalent to the convergence of the above program.

Problem 6. (25 points)

The following ALGOL 60 program is intended to find the smallest postive integer expressble as
the sum of two cubes of postive integers in two different ways given that there issucha number

less than 8000.

begininteger array o[ 1: 160003,
for i := | step 1 until 16000 do ali] := 0;
for i = 1 step 1 until 20 do
for j:= | step 1untilido
alit3 + j13) :m alit3 + j13]41;
for ¢ := 1 step 1 until 8000 do
if ali]>1then go to done;
done:
ecrd,

We want to use Floyd's formalism to prove this program correct (ignoring the question of
termination) but first we must replace the for statements by ordinary loops. The modified program
isshown on the next page.
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begin integer array al 1: 16000};

i =

6: if i > 16000 then go to c;
alil:= 0;
iw=i+1;
go to b,

cth= 1

g: if i> 20 then Qo tO d;

j =1

f if j>ithengotog
alit3 + j13]) ;= alit3 + j13) + 1;
Je=g+l;
goto f;

e im=i+ |l
go to g;

di:= [

A:if i > 8000 then go to done;
if ali)> 1 then go to done;
i=1i+1
go to A;
done:
end

151

In answering the following questions, attach labels g1, 2, etc. to appropriate points in the program.

@

(b)

(0

What assertion expresses the overal correctness of the program and to what point is it to be

attached?

How does the declaration integer array af1:16000] affect the assertion to be proved?

Attach the appropriate Floyd assertions to the appropriate points in the program. Remember
that the truth of each assertion must follow from those that immediately precede it in the flow

of control.
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(Time limit: 7 hours)

Problem 1.

A professor of logic at Holy Smoke U. announces to the class one day that he has a new formal

system for the first order predicate calculus. The wffs are the same, the axioms consist of all
instances of tautologies, and the rules of inference are modus ponens and “p-constituent substitution”
(see below). Heenthusiastically begins to prove some lemma about the system when a student
interrupts him and proves the professor's system is incomplete.

The professor rushes from the room but returns fifteen minutes later to state that he has now
repaired the trouble. By adding a certain non-tautologous axiom he now has a complete logic
system. Before he can even write down the axiom, another student jumps up and proves that now
the system not only yields valid wffs as theorems but all wffs as theorems. (It is rumored the
professor now teaches Sociology in a junior college somewhere in the deep South.)

What are the proofs the two students gave? Be precise.

Definition:  An occurrence of a wff B in awff Aisap-constituent occurrence of Bin Aif this
occurrence of Bisin the scope of no quantifier of A, and B is atomic or B consists of a quantifier

and its scope.

P-constituent Substitution Rule: Let A, B, and C be wffs such that B is atomic or B consists of a
quantifier and its scope. Let D be the result of replacing al p-constituent occurrences of Bin A by
occurrences of C. Then from 4 one may infer D.

Problem 2.

Use the resolution method to determine whether the following wffs are valid.
(@ 3x 3y[MxyAVr~Gxr] ., ¥s Vt 3z[~Mst v Gtz v [Gsz A »Miz]]
(b)  3x y[Mxy A Yr~Gxr]v Vs Vt 3z[~Mst v Gzt v [Gsz A ¥Mtz]]
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Problem 3.

Prove that the above program computes the minimum of A,,;, A"'f{ ..., Aan.y leaving the result
in 4y, and leaving Ay, through Az, undisturbed. Use the method of assigning predicates to
flowchart arcs.
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Problem 4.

Define
reverselu) « reviu, nil)

where
revlu, vl « if nu then v else revldu, au.v).

Prove that for any list u,
reverse[reverselul] = u.

Note The notations nx,ax, dx, and x.y stand for nulllx), carlx], cdrlx]), and consix, y],
respectively.

Problem 5.

The programming languages Lo, L;,L,,L3 &l permit the use of integer variables and constants,
and the operators +,-, x. They al permit assgnments of expressions to variables, and combining
commands into blocks. Lg has no other operations. The other languages have the additional

commands described below.
(1) L, dlows the command

forEtimesdo S

where E is an expression and S is a command. The expression is first evaluated, giving a
vaue g, and then Sis executed |e¢| times.

(2) L, dlows the command

call n

where nis apositive integer constant. If g isthe block associated with the n-th begin in the
program, the call command is executed by executing .

(3)  Lj has both of the above commands,

For each pair (i, §) such that L; can compute a function not computable by L;, give an example of
such a function. justify your answers.
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Problem 6.

Let 2 be afinite set of symbols and let £* denote the set of ail finite length strings of symbols from
2 including the string of zero length e. Suppose we are given A ¢ Z* and C ¢ Z*.

(@  Under wha conditions does there exist a unique set X satisfying the equation
X=AX+C
where AX ={xy|xeA ye X }and + is set union?

(b) Find all sd W'ions to the equation in part (a).
Let 4;; and C;,1si<n,1s j<nbe subsets of £*. Consider the simultaneous equations
n
X;= E‘A;]‘Xj + C;.

(¢  Give an dgorithm for finding a solution.

(d  What can be said about the solution found in part (c) when the A,‘j,s and C;’s are regular sets,
context-free languages, recursive sets, or recursively enumerable sets? Justify your statements.

Problem 7

Imagine that we write a “queue-processing” language over a set A of atoms. Think of a queue as a
finite sequnce of aoms. The primitives are:

null(x), which tests whether a queue x is the empty sequence;

¢(x, «), which adds the atom a at the right of the queue x;

h(x), which yields the leftmost atom of x; and

t(x), which yields the queue x with the leftmost atom removed.

Give a set of axioms for the queues which are sufficient for proofs about queue programs, in a
manner analogous to LISP axioms (e.g. cdr(cons(x, y)) = %, car(cons(x, y)) = X). The only functions
and predicates you should use are the queue primitives, set membership, and equdity. Justify the
appropriateness of your axioms.



April 1971 Theory of Computation Qualifying Exam

(Time limit: 7 hours)
Problem O.

State briefly, without proofs:

(1)  Kleene's recurson theorem (the fixed-point theorem of recursive function theory).

(20 Manud Blum's “speedup” theorem concerning the computational complexity of recursive
functions.

(3)  The Krohn-Rhodes theorem on agebraic decomposition of finite automata.
(4)  The completeness and decidability properties of second-order logic.
(5)  The function of paramodulation and hyper-resolution in mechanica theorem proving.

(6)  The meaning of “libera” and “progressive,, as applied to schemata.

Problem 1. (20 points)

The language L is recognizable by an on-line Turing machine, that is, a Turing machine with
initially blank tape, connected to an input unit from which it can bring in the string to be
recognized, one character at atime, from left to right. The machine, on inputs of length n, never
uses more than fin) squares of its tape, where lim,,,, fin)/log(n) = 0. Show that L is a regular (type
3) language. For definiteness, you may assume that the input operation writes the input character
on the current tape square.

Problem 2. (20 points)

Suppose that the predicates P and Q satisfy the verification condition ¥ of a command S, so that if
we start with P true and execute §, we finish with Q true. In Hoare’s notation, P{s}Q. Floyd
asserts, in his paper “Assigning Meanings to Programs’, that one can infer

(1)  (Vx P){S}(¥x Q)
(20 @xP){S}@Ex Q).
Scott pointed out an error in one of these. Give ether proofs or counterexamples for (1) and (2).
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Problem 3. (15 points)

In examples of resolution, one often sees the associative law stated by the two clauses

(1.1) P(u,v,%)v P, w,y) v Pu,y,2) v P(x,w,2)
(1.2)  P(u,v,x)v P(v,w,y) v P(x,w,2) v P(u,y,2)

instead of

(2) Afu,v), w) = flu, fv, w))
in order to avoid the definition and use of the equality predicate. (In the above, P(x,y,2) is
intended to signify fx, y) =2.)

We could first transform (2) into

()  (fu, v) =xAfly, W) =y) 2 (Ax,w) =28 flu,y)=2)

and thence to (1.1) and (1.2). In the following we concentrate on the second stage of this
transformation.

Suppose a set of clauses contains the usua axioms for the equality predicate (regarding x =y asan
abbreviation for E(x, y)), and a function symbol f occurs only in iiterais of the form

f(€|, 62) = €3 Of f(e,.ez) ¥ €3.
Systematically replace these literals by new iiterais
Pf(e| , €2, €3) OF ?f(e Is €2, €3)

where Py is a new predicate symbol. What is the relation between the satisfiabiiity of the origina
set of clauses and that of the transformed set? Justify your answer.

Problem 4. (20 points)

Define a counter-input Turing machine as a Turing machine, with an initidly blank tape, to which
is attached a counter C containing the input to the machine.

The possible values of the counter are the non-negative integers, and a specia vaue caled c. The
only operations available on C arel

(1) Test whether C = 0.
(2) DecreaseChyl:Ce«C=+ 1, where 0 +1=0, 0+ |=0o, and otherwise x| =x - 1.

Define S, as the set of counter-input machines which halt for ail possible initial values of C.
Define §; as the set of counter-input machines which halt for ail possible integer (not o) values of
C.

Prove that (a) one of the above setsis recursively enumerable, and (b) that the other is not. (One
can show recursive enumerability by showing that the set of Godel numbers of machines in the
given class is recursively enumerable, or by describing a program which prints the descriptions of
the machines in the class))
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Problem 5. (25 points)

The parenthesis language P is defined by the context-free grammar § - €1(S)| §S. It consists of
strings of matched parentheses, such as
(COMCONO)

Consider an arbitrary grammar G which generates a language Lg ¢ P. For example, G might be
S+ (A A= (()A) a-)

Define the weight of a string of parentheses by
w("(M =1

w(")) = 1
wixy) = W(X) + w(y).

Define a nest of parentheses as a string x, such that for every decomposition x = yz, w(y) = —w(z) 2 0.
The depth of such anest is the maximum w(y) such that x = yz.

In a sentence (with accompanying derivation) of a context-free language, a phrase is a substring
derived from a single non-terminal symbol. Show that there is a number n=n(G) such that if uvw
is a sentence of G, and v is a nest of parentheses of depth greater than n, then some substring of v
contains a phrase of uvw.

To summarize the above in intuitive form: If a context-free language contains only properly nested
parentheses, then every sufficiently deep nest of parentheses contains a least one phrase.

Problem 6. (21 points)

A Scott schema is a (lanov schemarlike) monadic functional schema which consists of one individual
variable x, monadic function variables F;, where Fy is designated as the roor function, monadic

function constants g;, and monadic predicate constants ;.

For example,

Fo(x) « if py(x) then if pp(x) then F,(x)
else F (g ,(x))
else x

F |(x) & if pg(x) then Fog,(x)) else g(x)
We use F, as the “divergence function”, always defined by
F(x) € F(x).
An interpretation of a Scott schema is defined in the usual way, including assgnment of an element

of the domain as the initial value of x. The definitions of termination, divergence, freedom, and
equivalence are extended in the natura way from flowchart schemas to Scott schemas.

Discuss the termination, divergence, freedom, and equivalence properties (decison problems) for
Scott schemas.  If you cannot find an answer for the general class of Scott schemas, define
appropriate subclasses and discuss their decison problems. Justify your arguments.



October 1971 Theory of Computation Qualifying Exam

(Time limit: 6 hours)
Problem 1.

Consder the recursive schema P defined by
F(x) « if p(X) then x else F(&F(a(x)))) ,
where p is a unary predicate symbol and a and 4 are unary function symbols.

It is an open problem whether this recursive schema can be trandated to an equivaent flowchart
schema. However, it can be translated if we add extra features to our class of flowchart schemas,
such as counters, pushdown stacks, equality tests, or arrays.

Discuss clearly and in detail the translation of the recursive schema P to three such flowchart
schemas.

Problem 2.

(@  Define modified algorithms for resolution and unification, incorporating an associative law for
a particular function f of two arguments. Concretely, the new law of resolution must be such
that for any set § of clauses, {}€ R(S), i.e. the empty clause can be obtained from § by
resolution, if and only if § is not satisfiable by any interpretation for which

(Vx, 9, 2) [f{flx, 9), 2) = flx, fiy, D).
(b)  Sketch a proof that your adgorithms achieve this god.
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Problem 3.

Ackermann's function F(x,y) is defined recursively over the natura numbers as follows:

F(x,9)«ifx=0theny+1
elseif y=Othen F(x~1, 1)
elseF(x- 1, F(x, y- 1)).

The following is an “Algol” program for computing F(M, N) for any pair of natural numbers M
and N. The value of F(M, N) is obtained in A[1] where A is an infinitely long integer array.

start: AL1J e M;
Al2] « N;
| «2;
a If 1 =1then go to halt;
if Al/- 1 J=0then begin Ali-1]« Al 1; 1 «1-1; goto« end;
if AL1]=0then begin 4l/-1)« Alll-1;1« 1; gotoaend;
All+1Je ALI-1;
Alll « AlI-1);
All-1] « Al1-1)-1;
| «l+1;
goto g
halt:

(@)  Attach an appropriate inductive assertion at point a and show partial correctness of the
program.

(b)  Prove that the program terminates for any pair M and N of natura numbers.

Problem 4.

Suppose that the function ¢(P) is an effective measure of the computationd cost of a parameterless
program P depending monotonically on the size and running time of P. We require that c(P) be
defined if P terminates, but it need not be defined if P does not terminate. Give the weakest
conditions you can on the function ¢, such that a program of least cost having given output can be
effectively congtructed. Assume some fixed definite machine by which programs are executed.
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Problem 5.

A lion and a Chrigtian are released at points a and & respectively in an arena and move aternately,
the Christian first. If it is the Christian’s turn and she is a point x, she can go to her choice of
points cl(x), ¢2(x), and ¢3(x). If it isthe lion’sturn and it is at point x, it has a choice of 1(x), 12(x),
and {3(x).

Let £ be a sentence of first order logic that axiomatizes whatever properties we wish to specify of a,
b, thec’'s, and the/'s.

Strategies for the Christian and the lion may be specified by giving predicates pcl(x, y), pc2(x, y)
and pli(x,y), pl2(x, y) that give the conditions for the Christian or lion to make move 1 or 2 when
the Christian and lion are at positions x and y respectively.

If the positions of the Chrigtian and lion are ever the same, the chase terminates with the lion eating
the Christian.

Let F be a sentence of first order logic that axiomatizes whatever properties we wish to specify
about the predicates pcl, pe2, pi1, and p2. (It may include a, b, the C's, and the !’s.)

(@  Write a sentence of first order logic that is provable if and only if the lion will catch the
Chrigtian in dl interpretations of the constants, predicates, and functions satisfying £ and F.

(b)  Writeasentence of first order logic that is provableif and only if there is a strategy for the
lion that will catch the Christian independently of what the Christian does in all
interpretations of the constants, predicates, and functions satisfying E.

Problem 6.

Let PC stand for first order predicate calculus without equality, and let PCE stand for first order
predicate calculus with equaity. In PCE we allow atomic formulas of the form ¢=u, where ¢t and u
are any terms.

Herbrand's theorem for PC can be stated as follows: A set § of clauses is unsatisfiable if and only if
there is a finite unsatisfiable set §' of ground instances of clauses of §.

(@  Prove Herbrand's theorem for PC.
(b)  Give a counterexample to show that the theorem does not hold for PCE.

()  Suggest a modified Herbrand's theorem for PCE and proveit.






May 1974 Analysis of Algorithms Qualilying Exam™

Problem 1.

The following recurrence relation recently arose in connection with the analysis of a certain paging
agorithm:

2
ne-1 ntl
Aysy = a, +

n2+1 n2+1
Find the asymptotic value of a,, asn-«, to terms O(n-2). (You need not relate constants appearing
in your answer to “known” ones, but you should at least indicate how such constants could be
computed.)

nzl

Problem 2.
When n < N, the following procedure computes a random permutation a[1]...a[n] of a random
combination of n thingsfrom1,2,..., N, i.e. a random one-to-one mapping from (1, . . ., n} into

{1,...,N):

for j« 1 step 1 until N do M[j]« j;
for j« 1 step 1 until » do begin
7« unif(j, N);
aljl « MlrJ; Mr) « M[jJ;
end.

Here unif(a, b) is a procedure that computes a random integer in the closed interval (e, b], each with
probability 1/(b+ 1-a).

However, when N is large it is desirable to do the computation in O(n) cells of memory. The two
agorithms shown on the next page have been proposed for this problem.

*All of the Analysis of Algorithms quals were take-home exams, which students had about one
week to work on.
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Program A:

for j« 1 step 1 until n do begin
rlj] « unif(j, N);
k « 1(f);
for i « J1 step-1until 1 do
if rlil=kthenke i;
aljl « k;
end.

Program B:

for j« 1 step 1 until n do b{f] « /;
for j« 1 step 1 until n do begin
rlj] « unifyy, N);
if r<n then begin alf] « b{r]; b(r] « bf] end
else begin
alflenkel;
whilealk Jur do k « k+ 1,
if k ¢ f then begin alf] « b{k]; b(k] « b[j] end
end
end.

For example, suppose N = 9, n= 7 and suppose the unif procedure returns successively the values 3
97 96 709; then dl three programs will setall1J...a[7Jt0 397261 4

The purpose of this problem is to andyze Program A and Program B. On a particular computer it
has been found that Program A takes 44n + ¥V + 5W + 2 units of time, while Program B takes 54n +
3X +9Y + 42 + 3 units, where

V= number of times "k« i” is performed in Program A;

W = number of times “if r[i]=&" is tested in Program A;

X = number of times "alj]«br]" is performed in Program B;
Y = number of times "alf] «b[k)" is performed in Program B;
Z = number of times "k « k+ 1" is performed in Program B.

Determine the minimum and maximum running time of each program, and also determine the
average values of ¥, W, X, Y, and Z, as functions of n and N. Express the average values
exactly, and aso find the asymptotic behavior when n/N has a fixed value a< 1 asn - «. Note:
when determining the maximum and minimum running times you may assume that N 2 2n.
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Problem 3.

Let n=n{1]n[2]...nln] be a permutation of {I,2, ..., n}, and consider the following agorithm:

begin integer array All:n}; integer &;
(A1, ... Aln)) « (nl1], . .., nlnd)
loop: print (A(1), ..., Alnd)
ke All};
if k=1 then go to finish;
(All, ..., Alk)) « (AlR], . .., A[1));
go to loop;

finish: end.

For example, when n= 9 and n= 314592687, the agorithm will print

314592687
413592687
531492687
94 1352687
786253149
135268749

and then it will stop.

Let m= m(n) be the total number of permutations printed by the above algorithm. Prove that m
never exceeds the Fibonacci number F,,,. In particular, the algorithm aways halts.

Extra_credit problem.

Let M, = max (m(n) |n a permutation of (1, . . ., n}. Find the best upper and lower bounds on M,,
that you can.



tMay 1975 Analysis of Rlgorithms Qualilying Exam

This entire exam is based on an interesting way to represent priority queues as a special kind of
linked forest. Each node of the forest contains a KEY field, and when the forest is traversed in
preorder P P,... P, we have

KEY(P;) S KEY(P,) s . . . SKEY(Py).
Furthermore, the rightmost member of every family will be sonless. In particular, if the forest is
nonempty its rightmost tree will consist of a root alone.

The forest is represented in the “natural” way as a binary tree, so that each node has two link fields
LSON (pointing to the leftmost son of this node, if any) and RBROTHER (pointing to the node's next
brother to the right, if any).

~ KEY
LSON |RBROTHER

For convenience in describing the algorithm, we shall assume that there are two header nodes,
pointed to by HEAD and HEAD’, where

KEY (HEAD) = -, KEY(HEAD’) = +w,

LSON ( HEAD) = pointer to root of leftmost tree,
RBROTHER(HEAD) = HEAD',

LSON( HEAD') = RBROTHER(HEAD’) =A.

HEAD: - HEAD': +00

e[ j——[A]A

root of leftmost tree

If the priority queue is empty, LSON(HEAD)= A. Actudly it turns out that the algorithm never looks
at any of these fields except LSON(HEAD), so the other values (e.g. -») heed never be stored in
memory, and the HEAD’ node doesn’'t need to be present a al! However, it's easer to explain the
agorithm (see top of next page) if we assume that these two artificial nodes exist.

We shall attempt to analyze the behavior of the algorithm when it is applied to the successive
insertion of ndistinct keys in random order. In particular, if a;a,...a, iS a permutation of {1, 2,

.., n), wewill consider the behavior of Algorithm I when a, isinserted, assuming that a,, ...,
a,,., have previoudy been inserted (in that order) into an initialy empty forest.

Let A be the number of times step 12 is performed, and let B be the number of times step 14 is
performed. Let (T, T, T5) be (1,0,0),(0,1,0), or (0,0,1) according as the agorithm terminates
because of the respective conditionsQ= A ini3, or X < KEY(Q) in 13, or RBROTHER(Q) = A in 14.
Then the running time of the agorithm on most computers will be a4+ BB+ T,T)+ ToT 2+ T3T 3

+ v for some constants a, 8,7, T, T2, Ta.
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Algorithm | (Insert into priority queue). This agorithm inserts a new node, which will contain a
given key X, into the forest. If there are other nodes with key X, the new node will precede them in
preorder.

Il.  [Create new node and initidlize] Set R + AVAIL, KEY(R) « X, LSON(R) « A. Also set P~
HEAD.

I12.  [Preparetoinsert into family.] (At this point we haveKEY(P) < X SKEY( RBROTHER( P)),
and we want to insert X among the descendants of node P preserving the preorder condition.)
Set Q« LSON(P).

13, [Insert at left of family?] If @ = A or X £ KEY(Q), set LSON(P) + R, RBROTHER(R) « Q, and
terminate the agorithm.

14.  [Loop on sons of P.J (Now KEY(Q) < X.) If RBROTHER(Q) = A, go to 16.

I5. [Correct son found?] If X s KEY ( RBROTHER(Q) ), set P« Q and return to step 12. Otherwise
st Q + RBROTHER( Q) and return to step 14.

16.  [Insert at right of family.] Set RBROTHER(Q) + R, RBROTHER(R) « A, and terminate. i

Problem 1. (10 points) Find a simple relation between the forest obtained from the permutation
a,a;.. . a, and the forest obtained from the permutation (n+ 1-a;Xn+1-a5)...(n+1-a,).

Problem 2.(10 points) Find the generating function g,,(z) in which the coefficient of 2k is the
probability that the forest constructed from a,a,.. .a, has exactly k trees.

Problem 3. (20 points) Let x, y be integers with 1 <x<y<n. Find the probability that the forest
constructed from a,a,. .. a,, contains the keysx and y on level 0 in the roots of adjacent trees. (For
example, let n=4, x=1,9 = 3. Then the permutations which make 1 and 3 appear in adjacent
roots are 1324, 1342, 3124, 3142, 3412, 4312; and the probability is 1/4 in this case.)

Problem 4. (30 points) Determine the average values of A, B, T, T, and T3 when a, is inserted.
(Hints: Use the results of Problems 1, 2, and 3 to deduce appropriate recurrence relations. Try to
find “closed form” expressions which solve the recurrences. It can be done)

Problem 5. (10 points) The running time of Algorithm | on a certain computer is74 + 6B + 2T, +
5T, + T3 + 6 units. What is the exact value of the maximum time it will take to insert a,, over all
permutations a;a,. .. a,,, on this computer? (Give the answer as afunction of n, for all n2 1. Note
that asin problem 4 only the time to insert the one key a, is being considered here, not the total
time to build the entire tree from a,4,.. .a,.)

Problem 6. (10 points) Find a smple formula for the generating function

F(z) = Eof,,,z" el+2+2+28+429+925+, .,
n2
where f), is the number of forests on n dements having the “serile rightmost” rightmost property.

Problem 7. (10 points) Continuing Problem 6, determine the asymptotic value of f", with relative
error 1/vA, that is, find an explicit function ¢(n) such that f,, = ¢(n) + O(e(n)/vn).
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Problem 1. (20 points)

Let B be the set of all 2" n-tuples of O'sand I's. A k-cube or clause C over B™ is asubset of 2
n-tupies having specified values in n-k components; for example, if n=5and & = 2, the clause C =
0% 10x is the set (00100, 00101, 01100, 01 101}. Given a subset ¥ ¢ B™, aprime implicant of V isa
clause C ¢ ¥ such that no clause properly containing C is contained in ¥. The purpose of this
problem is to show that an algorithm which computes prime implicants of a given set ¥ in time
proportiona to the number of clauses contained in ¥ will have average running time amost, but not

quite, linear in the length of its output, when ¥ contains 2"-! dements.

Suppose ¥ is a randomly chosen subset of B™ having m elements, where al such subsets are equally
likely. Let e(n, m) be the average number of clauses contained in ¥, and let p(n, m) be the average

number of prime implicants contained in ¥.

(a) Find exact expressions for ¢(n, m) and p(n, m). (These formulas need not be summed in
“closed form”.)

v
(b)  Prove that ¢(n, 2" ) p(n,2"1)»¢e when n= 22" and v is an integer, v » 0. Hint: Show that
amogt al of the clauses contributing to c(n, 2"-!) and p(n, 2"™") are v-cubes.

()  Prove that the ratio e(n, 2" ')/p(n,2"") is 0(10? Io'; loZn) '

(d)  Prove that there exist integers n such that the ratio e(n, 2™")/ p(n, 2"1) is arbitrarily large, in
spite of the fact that the limit in (b) exists.

Problem 2.(10 points)

Let G=(V, E) be a directed graph. G is strongly connected if, for every pair of vertices v and w,
thereisapath in G from v to w and a path in G from w to ». Suppose G is strongly connected. A
minimum equivalent digraph G’ is asubgraph of G which (i) contains all the vertices of G, (ii) is
strongly connected, and (iii) contains a minimum number of edges among al graphs with properties
(i) and (ii). Note that a minimum equivaent digraph need not be unique’

Show that the following problem is NP-complete:

Input: A strongly connected graph G and an integer k.

Question: Does G have a minimum equivaent digraph containing & or fewer edges?
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Problem 3. (20 points)

Let A =(a;;) be an nx nnon-singular real-valued matrix. That is, A has a non-zero determinant.
We wish to permute the rows of A and independently permute the columns of A so that the
permuted matrix A’ has the form

" 2

A = f2
0
where the submatrices 4,,4,, ..., Ay ae square and lie on the main diagona of A ', al eements
of A’ below 4,, ..., A} are zero, and the eements above 4y, . . ., 4; can have any vaue.

Of course, the origind matrix A has the desired form with k= 1, but we wish to make & maximum.

(@  Provethat if k is maximum, A’ is unique in the following sense. If

= =
0 Ix

is another rearrangement of A, then the set of rows in each submatrix 4;” consists of the
union of the sets of rows in one or more submatrices A ip e A i and the set of columnsin

A;’ consists of the union of the sets of columns in Ajn. .. 4, Thus A’ is unique up to
permutations of rows and columns belonging to the same submatrix A4;.

g

|

(b)  Describe an efficient algorithm for finding a permuted matrix A’ with maximum value of k.
What is the worst-case running time of your agorithm?
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Problem 4. (20 points)

Consider nrecords with keysK <K, <. .. < K,, and access frequencies py, p2, ...) py, where Z;
pi: = 1. We wish to store them in a data structure with fast average retrieval time. The problem
calls for the study of the following scheme, which is a mixture of sequentia files and search trees.

Consider any subset of I-1 keys S={Ki<Kiy<.., <Ky } It divides the rest of the keysinto?
subfiles; the j-th subfile consists of keys between K. and K;.. As shown in Figure 1, a structure

called I-file can be obtained by linking these I-1 keys and the ! subfiles together, where each subfile
is organized as a sequential file. Note that for ¢ > 2, severa distinct I-files can be formed even for
the same S (see Figure 2). For an I-file L, the procedure to search for akey K in thefileisto start
a the root, comparing keys and branching accordingly down the tree until a subfile is encountered;
then a sequential search is performed. The process halts whenever the key K is located. Let C;(K)

be the number of keys examined before locating K. The average cost for L is then Cp = Z j<i<n
pi*C(K;). In this problem, you are asked to design algorithms for computing Afpy, 2, . . ., pn) the
minimum average cost for any I-file, where | is fixed.

(@  Give an O(n log n)-time agorithm for computing Az
(b)  Give an O(n®)-time agorithm for computing 4.

© Let p;{"™ =1fieH,, where H, = 12 1Ji is the nth harmonic number.
S1sn
(1)  Prove that, for each I, the limit

n) , _(n) (n)

al-lim AI(PI ’pz "--’P’l )
nao n/in n

(2)  Find a recurrence equation for determining g/ Evaluate @,, a3, and a,.

exists .

Fague 1. A 5-Tile,
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Problem 5. (20 points)

The Stanford boxing team is going to meet the USC boxing team next month. Let ¥;>x,>...>
xy, be the linear ranking of the n members on the Stanford team among themselves, and y;> y, >
. > 9, the ranking of members of the USC team. If the two teams had never met before, it would

be fair to assume that all(znn) rankings of the 2n members taken together are equally likely. It

would then be straightforward to compute P(i, §), the probability that x; can beat yj in the opening
match this year. For example, P(1,1)= 1/2. However, since the two teams have met, and in all
contests Stanford has won (the number of the contests, and the matches can be arbitrary), intuitively
x; would have a chance greater than or equal to P, §) over yj- Proveit.

Remark 1. A formulafor P(i, §) can be found on p. 191 of Knuth, Vol. 3, but it is not necessary to
know this.

Remark 2. First try to prove it for i= 1,j= 1. Of course, any particular method may not generalize
easly to other i and j. Partid credit will be given to solutions of specia cases.

Remark 3. Assume boxers skills satisfy trangitivity, and do not improve or deteriorate with time.
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Problem 1. (20 points)

Lt U, be afully balanced binary tree of height n, and §,, its set of internal nodes. For any integer
m> 0, an m-storage hashing scheme is a function # from S, into {1, 2, . .., m}; let H(m,n) denote
the set of all such 4’s. For any subset F ¢ §,, we can use 4 to store the elements of F by organizing
al the dements that are hashed to the same location as a balanced tree. Assuming that each element
of Fisequally Iikely to be retrieved, we define the retrieval cost of 4 on F by

clh, F) = Zn: Ig(n +1), where nj =|{v | veF, A(v) = j}I.

IFI 1<jem

In this problem, we are interested in the efficient storage of a particular family of subsets of S,. Let
,, be the family of n-node subtrees of U,, that contain the root (see Figure 1). The efficiency of 4
is measured by its worst-case retrieval cost for any TeTy, i.€,

Sh) = Tn::;)_c” (h, T).

(We have identified T with its set of nodes in the above definition.)

(@ (5 points) A hashing scheme Aq € H(n, n) is defined as follows. For each v € Sy, let i(v) be the
binary sequence of length n~1 or less associated with v as shown in Figure 2. Let Ay(v) =
[{-k| + 1, where! and k are respectively the number of O's and I's in i(v). Determine the
order of magnitude of f{ke) for large n.

(b) (15 points) Let e> O be any fixed number. Prove that, if nis sufficiently large, then there
exists an A€ H(n, n) such that f(k) < 4+¢.(Hint: Almost al 4 will do.)

En TR AV AN

Figure 1. The famly T, for n=3

00 01 10 11

Figure 2. The tree v, for n = 3 . The sequence
i{v) is shown for each node v , with

i(root) == enpty string .

A72
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Problem 2. (20 points)

Consider sorting networks constructed from comparator modules as discussed in Section 5.3.4 of

Knuth, where a comparator module can be represented functionally asin Figure I(a). Let S(n) be
the minimum number of comparators needed in any sorting network for N inputs.

Suppose we are given a bunch of comparators, but among them one comparator may be faulty, in
the sense that this comparator works as in Figure 1(b) instead of Figure [(@). Our problem is to
investigate methods of constructing valid sorting networks without locating the faulty comparator.

Formally, aI-fault tolerant sorting network is a network of comparators such that it remains avalid

sorting network if exactly one of its comparators is faulty. Let § 1(n) be the minimum number of
comparators needed for such a network with N inputs.

@ (5 points) Determine §(3).
(b) (15 points) Show that §,(n) s S(n) + N - 1.

(Unfortunately, the intended proof for part (b) of this problem was incorrect. Perhaps the reader
can supply a proof or disproof of this result.)

X —> >—— min(x,y) x F o >— X
y—> S>—— max(x,y) y—> >y
(a) a conparator (v) a faulty comparator

Fi gurel
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Problem 3. (20 points)

Congder the following scheduling problem. We wish to carry out a number of tasks whose memory
requirements are to be satisfied from a large block of storage consisting of m memory locations.
Each task T; requires a contiguous block of s; storage locations out of the m.

We wish to schedule the tasks into the memory in an on-line fashion using the following rule:
When a new task T'; requiring s; memory locations is to be carried out, it is assigned to the first

block of 5; contiguous storage locations which are currently empty.

Note that the firgt tasks to be scheduled will be packed densdly into the first part of the memory, but
that as tasks are completed the free memory will consist of “holes’ separated by occupied aress.

(@ (10 points) Describe a data structure to implement this scheduling rule, assuming that the tota
amount of avallable memory is infinite (m = 0). Y our data structure should allow each of the
following operations to be executed in O(log #) time, where nis the number of tasks currently
occupying the memory.

(i)  Given anew task, assign it to the first block of memory into which it will fit, and
modify the data structure accordingly.

(i)  Given a task which has just been completed, modify the data structure to represent the
freeing of the storage previoudy occupied by the task.

(b) (10 points) Suppose the total amount of memory (m) is finite. We wish to modify the data
structure to include a waiting list of tasks till to be scheduled but which will not currently fit
into the memory. When storage becomes freed as a task is completed, the task which has been
waiting for the longest time and which now fits into the memory is scheduled. Modify your
data structure so that the following operations each take the indicated amount of time.

(i)  Givenanew task, assign it to the first block of memory into which it fits. If it will fit
nowhere, add it to the waiting list. (O(log n) time.)

(i)  Given a completed task, free the storage it occupied previousy and schedule the task
which now fits and has been waiting the longest. Continue scheduling tasks from the
waiting list until no more will fit. (O(log ») time plus O(log n) time per task scheduled,)
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Problem 4. (20 points)

Suppose we are given a collection of rectangles which we wish to put in non-overlapping fashion
into arectangular bin which is open at the top. One side of each of the rectanglesis parallel to the
bottom of the bin and the rectangles may not be rotated. The height of a packing is defined to be
the distance from the bottom of the bin to the top of the block which sticks up the farthest. We
wish to minimize this height. See Figure 1 below.

A
da A
a C
L
b 3 d b
a ¢
v v
yacking of better packing
Ixl, 1xl,1x2 ,
and 2 x2
Figure 1

(@  Prove that it is NP-complete in generd to determine whether a given collection of blocks can
be packed into a given hin to satisfy a given upper bound on height. '

The next three partsinvolve heuristics for packing the bin using the following fist scheduling rule.
First, we construct a list of dl the rectangles, ordered in some fashion. Next, we pack the rectangles
one at a time from the list. To pack a rectangle, we place it into the position of lowest height in
which it fits, breaking ties by placing the block as far left as possible. Note that Figure 1 gives
packings which could have been obtained according to this rule from lists a, b, ¢, d and &, b, 3,

C, respectively.

(b) Give aclass of examples to show that if the list can be in arbitrary order, the ratio of the
height of the computed packing to that of a best packing can be arbitrarily large.

The decreasing width heuristic consists of arranging the blocks in decreasing order by width,
bresking ties arbitrarily, and applying the list scheduling rule.

(c)  Show that the height of any packing generated by the decreasing width heuristic iswithin a
factor of 3 of the height of a best packing.

(d) Give aclass of examples to show that for any ¢ the decreasing width heuristic can generate a
packing with a height at least (3-c) times the height of a best packing.

Note: In parts (c) and (d), if you can't prove a factor of three, give the best upper and lower bounds
you can on the worst-case ratio of the height of a decreasing width packing to the height of abest
packing.
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Problem 5. (20 points)

You are using aparallel computer. You have divided your problem into N subproblems, one for
each processor. The running times for each are independent, with common mean M and variance V
(VV << M), and are (very nearly) normally distributed. The program is complete when al N
subproblems are done. Estimate the mean and variance of the running time, for large N. What
does the distribution of running times look like?

Problem 6. (20 points)

Consider (1) binary trees and (2) LISP S-expressions, with N internal nodes, and with B bits of
data stored at each external node. In each case, what is the information content of such atree,
given N, and assuming al N-node trees or S-expressions are equaly likely? (Note: In an
S-expression, a single copy of a sub-expression may be pointed to from several places within an
expression.) Do conventional list representations approach optimal storage efficiency as N -+ oo? If
not, suggest improvements.

Problem 7. (20 points)

N points are chosen uniformly from the unit cube. We say that point P dominates point Q if Py >
Qx, Py>Qy, and P,>Q,. A point is maximal if no other point dominates it. Describe an efficient
(say, polynomial time) agorithm to compute the expected number of maxima points as a function of
N. Generdlize to D dimensions,



Answers

SOLUTIONS TO ALGORITHMICS QUAL PROBLEMS -- 1974,

(These solutions were prepared by the professor in charge before the test was given and are presented unchanged
from his sketched answers. Remarks in brackets [ ] are sane of the alternatives and refinements found b
students taking the exam.)

Problem 1

After applying a summtion factor we have a = 'Ll H ) for n >2 , where
i>n

1 1
b o= L = 1+—— = f(k) +H where f(k) = 1+.__) )
B 1<k<n® J>k ) 1<k<n k n-1’ ;j>k

21 o)1 = kt+ox?) . (Note that

f\
+
(o]
2
W‘
B
—
]
p
[l
o
g
x.
1
n'
1

1 (&) _ 1 1-a , 1 -8 a -a-1
kEn_ka_ ¢(a) N 5Pt Bon + ... , cf. ex. 6.1-8.) Therefore
Z %f(k) C - Z)-f(k) =cent s %n'2+o(n'3) where C = Z %f(k) is a constant;
1<k<n k>n* k>1

b o=H +C + %n'2+ om™) . Now TT[ 1+ -13) = exp( T %+ 0(n'5)> = expn™t + 107 + o))
i2n J j2n g

=1+nt+n2s o(n'3) » 80 a = (1+ onle 3n'2)(}{n+c + % n'2)+ o(n'3 log n)

= H +C + 2n']7{n+ 2cn s 3n'2ﬂn+ (3¢ + %)n’2+0(n'3 log n) . [The constant C seens to be equal to - .7665... .

Anot her approach is to rewite the recurrence as & = z —?‘L -2 Z ;‘-— and to prove that e
l1<k<n X1  1<k<n k+1 "

has the form Z (e, In n+ds)n"+o(n't log n) by induction on t. Then the constants cs and ds

0<s<t
can be evaluated for s = 12,... in terms of ¢, =1 and d) = C+7 .]
Probl em 2

Cearly W= ('2') , S0 Program A depends only on V. The chance that r[i] =k for each i and | is

1/(N-1+1) , since k is always in the range (i,N . Hence the average value of Vis
L z 1/(N-i+1) = n - (N+1l-n) (HyHy ) [Let (x ,,-. -»k)) be the respective values of k which
<i<j<n

n-l .

are compared t0 r{1l] in Progrem A, it can be shown that each of the (N-1)~  possible (n-1) -pernutations

of f{2,3,. . .,N} occurs equally often as (k _,,.--,k)) . Hence the generating function satisfies
, _ n-1 . )
Vn,N(z) = Vn-l,N-l(z)( & (z l)+1) , for n>1, and the variance of V cones to

(r-002) Gy i) - (oo 2) ) )

Simlarly in Program B the probability that r <nis (n+1-3)/(N+1-3) , hence the average val ue of x

is z (n+1-3)/ (N+1-3) = n—(N-n)(}{N-HN ) . Let Y, be the average contribution to Y for a particular j ;
1<) <n - J

then YJ Js the probability that ry € (a[l],..., a[3-11} times the probability that rJ >n, since

afl] . . . alj-1] is a random permutetion (assuming that Program B is correct). Hence Yj = j,\]l- I\"\i‘lrlj s

177
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N-n : .
yave=(n-n)(HN.x-yN_n)-n-—N—.F| nally Zy 4s j-1 4f X, =Y, =0 ;it1s O if xj =1, otherwise

3 J
3 is equally likely to be Ol,...,j-2 ; hence
N-n O+ 1+...+ (j-2
ZJ‘('H)(m'YJ)*—““J.TL)Yf(N-%J)YJ ;
_1Nn 1
Zye TB W n(n-1) + 5 (v l)Yave :
1 -1
If n =aoN then He-H o= In( 1) +0o{n ") and we have
_ 1-a 1 _ 2
Vave -n(l -5 ln(ﬁ)) +0(1) = nQ/Q + 0(an)
1 1 2
Xqve = n(l --—;3 I’-E)) +0(1) = naf2 + o(a"n)
1 1
Yave = n( a-|+ -&-Eln(ﬁ)) +0(1) - na/2 +0 (on)
2 (1l n 1 1 2 2
Zaves T T)+ 5 Yave* O(M) = (5 % Q)n +0((12n )
as n-e and a -0 . | xn,N(z) = vn+l,N(z) A
For the mininum running time of both programs it is easy to see that reer = N2 . ..n yields

V,X,Y,Z = 0,n-1,0,0 which has ninimum tine. But the maximue running time is not obvious in either program
To maximize V we may note that Vf is the number of tinmes the final value of a[j] was noved to the
right in the marray of the original program It can therefore be shown that if we were to continue the |oop

of Program A all the way to j =N, using =r{j] =j forall j>n , the total value of V would be exactly

equal to n minus the nunber of j < n with r{j} =] . Consequently V < n-l ; this value is achieved,
e.g. when L .rn:N. N

In Program B the contribution to the running time for fixed j is jxj+gyJ+th,. whenj = 1 this
is3ifxl=1, otherwise zero; when j =2 it is 3 if x2=1, or 4 if zgzl, or 9 if Y, = 1.
Wien j > 3 there are several cases: (a) z‘j =j-1, Yj = xJ =0, total kj-b . (b) zJ= -2, Yj =1,
Xy = 0, total L3+l ; case (a) nust have occurred for j-I . (c) % =j-3, Y, = 1, Xy = 0, total Lj-3;
case (a) nust have occurred for j-2 . (a) zJ. < j-3 ; we can always achieve a greater total by choosing ry
to be a 'new' value, without affecting other costs. A dynamic programmng approach is now suggested: Let
c, = max (X, +Y.+ z,-bs+ 4) |2, =]-I . Then cl =3, ¢, =3,c, =5,¢, =8, and for k > 5
k {lfjfkj 3 J j 2 3 L
we have

o - max(O+c, |, 54¢, 5. 14 5+e 5)

correspondi ng respectively to cases (a), (b), (c). The solution to this recurrence is easily seen to be

L (43-4) + shn+ 3

L. [g (k-l)-l , for k >2 . The maximumrunning time of ProgramBis c . + 1<j<n

= 2n2+5hn+}+ Izrﬂ_ , which is achieved by the sequence n,n+l,n+l,...,n+t,n+t for n = 2t+1 and by the
sequence n+l,n+l, . . .,n+t,n+t for n o= 2t | ‘

Further notes: To prove that Program B works, let ' be the contents of Mafter j iterations of the
second loop of the original program Then after j iterations of the second loop of Program B we have
ik} = M Hk) for | <k <nj; and blk] = W alk]i for 1<k <] if alkl>n. (This ‘invariant’ is
easily checked, once written down.)

Thus a different search method woul d convert Progrem B INto an n log n algorithm

Simlarly for Program a, the invariant is that a{j} = Mi[k] during the loop on i
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Probl em 3
If array element A[1] takes on k distinct values during the (possibly infinite) execution of the

algorithm we will showthat m< F (hence mis finite). This is obvious for k = 1, since k =1 can

k+l
occur only when «f1) = 1 .

If k>2, let the distinct values assumed by A[1] be 4 <g <L < Suppose that A[1] = 4 -
occurs first on the r-th pernutation, and let t = n[dk] . Then the (1) -st pernutation will have
Afl} =t and A[dk] =4 . Al'l subsequent pernutations will also have A[d'k] =4 (they leave A[j]
untouched for j > dy ), hence at nost k-1 values are assuned by A[l] after the r-th permutation has been

passed; By induction, mr <F somis finite anddlzl.

k
| nt er changi ng 4 with 1 in x produces a pernutation =' such that m(x') = r , and for which the

val ues d . and t never appear in position A[1] unless t =1 . If t =1 we have r < B since A[1)
assunes at nost k-1 values when processing =' , hence m = H1—<Fk+l - If £>1we have r <F, , since
A[1) assunes at nost k-2 values when processing ' (note that ¢t = dj for j < k ) hence

mg F#r <

Three hours of further concentration on this problem lead to the hypothesis that it is difficult either

to prove or to disprove the conjecture Moo= Q'n) ; the upper bound F is exact only for n <5 .

[ The upper bound applies nore generally to any algorithm that sets (a[i],...,Alk]) - (A[k],A[pe],...,A[p
(al1],...,Alk]) =~ (A[k],A[pE],...,A[pk_l],A[l}) when », ... P, is an arbitrary pernutation of
{2,...,k-1} .

Conputer cal cul ations show that M = 11, M7 =17, Mg = 23, M9 =31, S0 M, -M maypossi bly
increase without limt. This search is speeded up slightly by restricting consideration to pernutations
without fixed points.

The |ong-w nded permutations on 7, 8, 9 elenments are 3146752 , 4762153 ; 61578324 ; 615972834 .

Wen n >3 and 1 <k <3, exactly (n-I)! pernutations n satisfy m(n) = k . It is conjectured

that exactly (n-1)! permutations = will satisry “A[1] = n at some stage.?
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ANSWERS t O ANALYSIS OF ALCORITHMS QUAL, June 1975 D. Knuth

[The subject matter for this examnation is based on a forthcom ng paper by Arne Jonsssen and Ole-Johan Dahl,
who first proved nost of the facts below, earlier this year. The following notes were witten before grading
the exans. ]

A forest Fis either enpty or has the form

for some m> 1 and sone forests FppeonFp The sterile-rightnmost forests (SRFs) are characterized by the

additional property that Fy,...,F are SRFs and F is enpty. For convenience we shall identify nodes and
keys, so that X denotes both the root of a forest and the key stored there. Since r is empty we can
adopt the notation (xlFl .o Fm_lxm) for nonempty SRFs.

Now the insertion algorithmon distinct keys can be described in the follouing recursive manner:

Insertion of x into an enpty SRF produces (x) . Insertion of x into (xlFl...Fm_lxm) produces
. . . . . .
(xxlFlu. Fm—lxrA if x <xI j or (xl...xiFixi+l...xm) if X <X <Xy for some i , 1 <i <m,
where F. is the result of inserting x into P, ; or (x;F, . ..F _x x)if x >x . This recursive
i i 11 mlm m

description of the algorithm guarantees that the keys of the SRF are always increasing in preorder; in particular

X< and the value of i is uniquely defined above.

Let n=a; . ..a be a pernutation of the distinct keys {al,...,a.n} and let F(n) denote the SRF
obtained by successive insertion of e ...a . It follows easily fromthe above recursive definition that,
when. n >1, we have F(n) ;(xlpl, L Fm-lxm) wher e {xl,, . .,xm} are the left-to-right extrema (LRXs) of the
pernutation x, i.e., those a.j such that aJ = min(al,...,aj) or a.Jz max(a 1...,a.J) . Furthernore
Fj = F(bl - --b) where b, . ..b, is the pernutation obtained from « by deleting all elements <%y and
2% Let us call this the pernutation =N (x.J,xj+l) (These facts are readily proved by induction on n ).

Now we are ready to tackle the problens on the exam
(1) If v is an SR¥, let ¥ be its "reflection" defined as follows: |f F is empty, then F is enpty,
if #=(qgF . . F _x), then F= (imf-‘m_l. o f‘lil). vor exanple, if F = (a(b(cd)e(f)g)h) then
F = (h(g(F)a(dc)5)a) . If the nodes of F are {a},.--ya ) the nodes of F are {aj,-.,a} .

Now et x = 8 - -8 and x = 8y a be permutations such that a < f iff a, > a,. I'n particular
if a . ..a is a pernutation of (1,...,n} we my let EJ, - n+I-a‘j . Then F(x) = F(n)

Proof: The LRxs of x are the LRxs of x, and if Xj <4 are consecutive LRXs of x then ’-‘j 4 <§j

are consecutive Lrxs of n and ?xn(;“l,ij) = nﬁ(xj Yy . The formula

X,
T+

F(n) - (%, F(;n(im,im_l)) ...F(;n(ie,il))il) = (im F( nnﬁm_l,xm)) e F( nﬂ(xl,xe) );’cl) =F(r) follows by

induction on the length of = -
(2) The numser of LRXs for permutations of length n has the probability generating function defined by

2z + n-2
gl(z) =z gn(“) = gn_l(z)( _n—) for n>1,
since a, iy always an LRX, and a, is an IR with probabi Iity")’; i ndependently of the other 8- Thus,

ba(2) =2(22) (22r)) . - (2zemR)/mt
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and the probnbility of m [Ris i S the coefricient or =" , rumely

2’“'[2;: /nt

by Eg. 1.2.9-27.

(3) Gven consecutive LRXs x<y. If x was inserted after y , it nust be a left-to-right mnimm (not
maxi nun), hence y being the smallest preceding element nust also be a left-to-right mininum Conversely,
these conditions will make x <y consecutive LRts. Considering only the elenents <y , we are requiring
y to appear first (probability I/y ) and x to appear next (probability 1/(y-1)), hence the probability
of such permutations is 1/y(y-1) . If x was inserted after y , a similar argument (or a dual one using
the correspondence of question (1)) shows that the probability for this case is 1/(m+1-x)(n-x) . The

desired probability is the sum of these two.

(4) The average cost for inserting n elenents is obtained by recurrences corresponding to the recursive

formulation of the algorithm nanely the average cost on the first level plus the average cost incurred by

involving the recursion. The latter is

Z L_x( . 1 (average cost of inserting y-x elements)
n\ y(y-1) © (n-x)(n-T-X)
1<x<y<n-1

since a, lies between the x-th and y-th largest of T with probability (y-x)/n , and they are

consecutive LRXs with probability 1/y(y-1) + 1/(n-x)(n-1-x) . The general formof recurrence that arises is

therefore
» = ) X 1 1
‘n Hm o+<xzy <n " (y(y'l) + (n-x) (n-x-1) .) Cyx
= f(n) + Z K, C
1<d<n-2 d d
wher e
K. = > y-x 1
d ! n \ y(y-1} + (N-X)&X-T) )

O <x<y<n
y-x=d

2,5 ()

O0<x<y<n
y-x=d

by symmetry (replacing (x,y) by (n-y,n-x) ). Now

1
(—J_‘—l--) = %-ﬁ , for l<d<n-2 |,
O<x<y<ny y
y-x =d
since it is a telescoping series, therefore the general recurrence takes the form
2 d
¢ =f(n +:2 z 1--)c , for n > 1
n n 1<d<n-l n-1/7d =

The first step is to eliminate the £ fromthis recurrence:

n(n-1)¢ = n{n-1)f(n) + 22 (n-1-d)c + 2¢
1<d<n

(n+1) nC o, = (M) nf(ml)+2 ISESU (n-d) 4
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(n+2) (n+1)C

o (m2) (1) f(me2) + 2 . 32 (ne1-d)c,

<n

,'.rx(n-l)Cn -2(n+l) ncml+ (mz)(ml)cme = g(n) + 2Cn for n >1,

where g(n) = n(n-1)f(n) -2(n+1) n £(n+l) + (n+2) (m+1)f(n+2) .
I'n generating function form with c(z) = Z an" and G(z) = Z g(n)z"l , this is
(1-2)2¢"(z) = (z)+2¢(z)

if welet ¢, =0 and g(0) =2 [See exercises 5.2.2-28, 29,55 for a simlar case.]

0 2
Let P be the differential operator defined by Pf(z) = (1-z)£'(z) . Then

F1(z) = (1-2) (£ (2) + (1-2)£"(2))
= (1-2)%£"(2) - (1-2)£' (2)
and our generating function satisfies the differential equation
6(z) = (FP+ P-2)C(z) = (P2)(P-1)C(2)
W solve this in two steps, first solving
G(z) = (P+2)D(2)
for D, then solving
D(z) = (P-1)C(z)
for C. The coefficients of these equations satisfy respectively
g(n) = (n+tl)p ., -nD +2D,

Dn = (n*l)le-nCn-Cn

Thus g(2) =30y g(3) = hDh‘”} , etc.; the values p for n >3 are i ndependent of g(0) and g(1) .

The recurrence for C, In terms of Dy tel escopes imediately.

c-c+D3'+ ~%'—1-—c+-73 z——YDk

n >0 B 3 3<k<n kel
To solve for b we have

(p+1)n(n-1)D_,, = n(n-1)(n-2)D_+ n(n-1)g(n) ,
hence

1
R CEVECE) . Z  x(k-1)g(k) for n>3.
<k <n
Now | et us particularize the equations. For T1 we have f(n) =6, , hence g(n) -- 0 ;D =0 and
Tl = le for n >3 . For T2, we have T2, = T3, by symmetry (problem 1), and TL +T2 +T3 = 1, hence
1y 1 ] = = e ?'

T2, = T3 -3 (l-TLn) . For A, we have f(n) =1, hence g(n) = 2, and D 5
AL - A,_‘ t —) {n, -Hb) for n >3 .

Finally for B, we note that the first-level cost for 8) oo plus the first-level cost for 5.1.-.§n

equals  m, the number of trees in F(a; . ..8 By symmetry therefore, the average first-level cost f(n)

m)'

for B is the average value of Elm ; and this is H_ - %‘ , by the result of problem2. 1In this cas.

g(n) n(n-l)}[n -2(n+1)n}{n+l+ (n+2)(n+1)Hmz -l=aH 42y hence for n >3
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D= i + n,—_:jT'_—,)- Z k{k-1)H, = ;H + ,E)
n nin-1){n-2 0<k<n X >'n 9
by Ez. 1.2.7-0. The reculs ¢f exercise 1.2.7-1L ives us the sum z }!.\_,"(k+1) . hence we obtain the followins
formulas:
n Tl T2, 5, A, B
1 1 3 o] 1 o
1 1 1
0 z 2 L 2
1 1 1 L
B = = 7 1
5 P 5 3
M 1 1 2 pyYd
P > 2 12
2 1 1 1 2 1 1.2, 4 1 (2) 13
22 3 Z 3 3t | 5thtgt 3o 3
The average totel nunber of key conparisons to insert a, is A +B -T1 -T3 ; note that this is order
(log n)e. [The fornmula for B s not the sort of thing one would guess easily by looking at a table of

values; in fact it isn't even easy to prove it by induction fromthe recurrence relation!]

(5) Cearly the. maximum time My is nondecreasing in n . W use 'dynamic programmng' (approximte for

recursive al gorithms): Let f(A,B,Tl,Te,T}) = 7A+6B+2’I‘l+ 5'r2+T5+6 ; then M, = £(1,0,1,0,0) = 15,
and My - max(£(1,0,0,1,0) , £(1,1,0,0,1)) = 20 . For n >3 we have
M, = max(£(1,9,0,1,0) , f(i,n-1,9,0,1) , £(1,n-2,0,0,0) - 6»,141, £(1,n-3,0,0,0) - 6+M2 .o £(3,1,0,0,0) - 64 Mn’z) :

here the teem £(1,k,0,0,0) -,f+z'zn_l_k is the maxinmum time attainable when the first-level B value is k ,
for 1<k <n-z. W findu, - max(20, 26, 13+M)) =28 , M) = max(20, 32, 19+ M, , 13+ M) = 34 ,

M5 =max(?), 25, 25+ Mys 19+t 1.3+M5) = 41, and by induction

f, = tn+ in/20 +8-5n9

(6) The nunber of sres with n nodes and mtrees is § =2 {f . .f_ |n+. ..+n = n-n} = coef. of 2
m n, 11 1 m-1
in zr:;i:\,:)m-l_ Hence F(z) = ]_Q;n)l z"‘p(z)"'"] = 1 + z/(1-2F(z)) . The solution of this quadratic with
: I D S SN S
F(0) finite is ¥(z) = 5 + 57 - 57 Y1-22-32

Let

N b

(7) Now we write 1-22-32° - (1-%z)(1+z) and work on the singularity nearest the origin, at =z =

w = 52 , we want to tind the coefficient of w" in

«/,(1-,,-)(1 + g )‘ = 'j(l-w)(l + 57- 1 (l—w)§/2 (1 + % + AL+ %) . Since 1/(«/1+‘—5' + . lg) = Z cnw“

7 z
g pl

n -
converges for |w| <3, we have limsup ‘”Cnl = % , and ¢ is certainly o(2 ™). It follows that the
coefficient o £ w' QN (1-».-)5/2 z cnwn is O(( 5{12)) = o(n"’/e) . Thus the coefficient of w" in
p—————— /—‘ o _ ”. -1
Vot 5 2 B o™ wow (M) 23 0™ rte + )/ T(3) T(md) =

- < - . .
ot l/-. l2m” t G{n 5/2) by Stir .ing's formula. Going back to our original problem we have
oo (V % f“/n”‘)(nou/n)) .

[Mote: This exan seems t o cover seven fundamental paradigns of algorithmc analysis.]
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SOLUTIONS to Analysis of Algorithms qual -- Spring 19/7.
Problem 1.
ny,n-k . . . . . Aok of
(a) There are (k):' k-cubes, each ot which is contained in V with probability ( "
m-2 m

By Inclusion-exclusion, each k-cube is a prine imylicant of V with probability

(( \ (n - ( -2 Ek\ (" k\( "2 \/{ \, since ( -2“12:‘ ) is the number of

l/\ -2?“ ?/\ -5’—“/ //\ m-27-j2
sets V containing a given k-cube together with a given set of J§ of its n-k "neighbors". For exanple,
the neighbors of 0 *10* are 1*»10x, 0°00”") O0*)1x ; a clause contained in V is prime if and

only if none of its neighbors is contained in V. Henee

n \n-k/ p"-oK 2" )
ctm) = Z (%) ()/() : @
my e S [0k a-k\ (_1,J oMo (ge1)e® 2N\
p(m) %: (k)2 2; ( J )( Y (m—(Jvl)Qk )/( m ‘ (2)

(b) First we make some estimates useful later., By Stirling's approxi mation

n X x ln X & . 0 + x° +0 X 3)
= - aY Ay T T~ - - ’

X=x)? XX T g2y mxe x}

a formula useful when X grows more slowy then X . Now ve can deduce that

.n ok

(: -2 ) k

K 0Ky, ol 2k

S0 S BN CLE LTI (_m_) o O(z ) . ®)
2 (m-27) : 271

(7)

There 4s @ unique value of k , call it k =v, such that

AV
n-1 2 v
<4/3 o 0 o/
n /3 < d = o Eh
= o

lg,lgn+lg§<v§lglgn+lg% ‘ (6)

It follows that

W can now use (h) t0 obcerve that the terms of (1) increase witil k = v or w1 , then they decrease.

Let t,(n,m) be the k-th termof the sun, and let « = 2~ , m=2""1 . Then
k n
t 2
z {oom) = 0 S 0 N = of deglogn n
K=y tvin,m; A in,m - W - nl 3 ‘
n

Furthermore

1 (n,m) 2V

wtl 4 _ n-y Pl .

tv(n,mT A C15)) l‘n(l * 0( m )) ’ (8

and for k > 0 we have
2 ..k
t  (n,m) ok k -2 (0-1)
V 2

since
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vtk
m! ("o ! : 2Mavys
oK 2 2 _ me !‘ !f.’ ): m
(m-2¥" ") 2% (m-2¥): ol ot

Thus
c{n,m n-y n-y)(n-y-1 log 1« 2
= 1+ DG T
tvzﬂ:mi v %at TR (’2 ' 0( Y . (9)
(3

Now let us consider (b). In this case y = x and aun'l,hence
n

( :) 2‘:“ (1 + O(R‘é_ioﬂ)) . (10

Since al most all the contribution comes fromk .y =y consider first which v-cubes arc prine implicants.

1

e(n, 2™

)

V¢ have

m

v \IE
_ 5[ nv 37 m \2 (3+1) n- 2Y(IM) 290402
FOP)(E) T () (F) T B

2V
n-v 2 2 n 2
= ol-a) + o(n o (uan) 2"_'1)

2V 2.
Z n;“) (-l)d(aln) (3+2) exp 0(-—(*L—L? ’ ’12)

and the remminder term is exponentially small. The contribution From k §visnegligible since it is at

-1 R -
most  c(n,2" )-t“(n,zll 1) = 0(c(n,2" 1)/log log n) | hence

p(n, an-l) - ( :) z‘:;“( 1+ O(Rg—}m )) (1)

oV ) )
when n«= 2 and v is an integer.

(c) Simlarly we have in general (cf. (9))

n-1
M = _ wpy — A n-y) (n-y-1 ) ) 1 e
; (n,?"'l) exp(-na ) o) exp(-n o) 4 -sl—(v—.é-(m‘-;l (zl)l exp(-n «))+ 0 _(_.og_.’:lr.;%_n_L
v n

c(n, ?n~1)
n-1
tv(n, 257

=

1) .
+ Q1) (12)

Gse 1, nxy <1ny-1nlny. Then consider only the k = y term of p

Mn,an'l! . iny (1 . 0(" log v))
n ¢

t .(n,zn'l) = v
v
Pase ny >Inv-1nldny . Then consider only the k = ytl term,
n-1
p(n,2777) n-y (ln v -1nlny )( In
— > Bl — 1 0(."__‘!) .
t,(n, 2" 1) v " "

In both cases we have, by (15) and {9),

n-1 n-1 -
cSnz?. ! -1 4 c!n,? __l _ p(n,?n 1)
,n-1
tv(n, 27

p(n, 2" 1) t(n, "1 tv(n,:‘"_l)

0(1::'\4 ) : (15)
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oV
(d) Let na L(ln v-1n 1n y)2° §. 'Then

'
-2 lny-1lnlny . (1)

2 = W = an
WE f£ind, by (1) and (1),

c(n, gn-l)

t (n 2n-1) V 2v V
N 2] .
hence
) 2 v (), o Leglozy (15)
t (n n“'l) =3 v 1og v .
e
Problem 2.

Show that Lhe following problem 1s NP-complete:
Input: A strongly connected graph ¢ and an integer K
foection: G have & mini num equival ent digraph containing k or fewer edges?

(u) The MED problem s in Nb':
al gorithm (1) 11" k ~n answer ye::. Olhcrwi se,
(ii) euess a set of K edges in o ;
(iii) test whether this sct of edges defines a strongly connected graph containing
all vertices of @ .

(b) . e directed liamiltonianeycle problem (known Lo beNp-complete)is  reduci bl e to the MED probl em
A dirceted graph ¢ with n > 2 vertices contain:: a lamilton cycle iff' the M problem
has answer "yes" for this graph with k = n .
Proof': (1) A llamilton cyele defines n strongly conmected gpunni ng subgreyh With k = n edges.

(ii) A strongly connected spunning subgraph containe at least one edge into and out of each
vertex and thus containg at leact n edges, if n > 2 . A strongly connected spanning
subgraph Wi th N edges containg exactly one edge into aud out of each vertex and thus
consicts of a set of cycles, To be ctrongly connected, such a subgraph nust consist of
exactly one cyele, which ic a Hamilton cycle.

JSroblem
A transversal of' A is a setof n non-zero entries, N0 two in the same row or the same colum.  Since
A ix non-ringular, it must contrin ab least one Lranaversad,  let A,...,Ap be the block:: of any deconposition.

(a) -Thm: |f A 15 4 non-zero clement i N some trancverssl, then row 1 and column j are in the sane

block A;
lroof.  Buppose the theorem i talse.  Piek L transversal cOntaining a non-zero el ement which viol ates
the theorem nnd let Ay be the transversal element W th minimum i violating the theorem (I assune
the mumbering of rOWS end columns corresponds t0 a permulation defining the bl ocks Afseees Ay ) Let
row i be in block 1\[‘) ad colwn J be in block A - Since A‘:‘\f 0, p<aq. The colums of A'P
contain exactly n eclement: of the trancversnl.  Only

n-1 of theue

can be inclde block A'  uince cach TOW in A
)
/\' L.

A\l')cun contain only element of the transversal and the 8 P4 1J
izoutuide the bl ock AI.' .

element in row . i (A,

1_))

Thus somC column o' A’ contains a transversal clement
p

out s i de A"‘ . This transvercal clement cannol be helow
bl ock A‘p vince a2l el enents bel ow A"_, are zero, and A
q

it cannot be above AI" since 1 wns chosento be wminimum.

Thi ¢ contradictlon proves the theorem.



ANALYSIS OF ALGORITHMS 187

By the theoram, any transversal lien entirely withinuny set ot blocks Ai""'A)'( . By row and colwrn
permutations Wi t hi n t he blocks 1wy, ey such trunsversnleanbe pluced on the madn diuvgonal of
AW thout atfecting the bl ock decompocition Ai"""\l'( . It follows that it any trunsversal is permuted
onto the main diagonal of A, all poszible bl ock decompositions ave defined DY subsequent simultaneous
row and column pernutations.

W can thus assume Without loss of gencrolity that thediagonul of A iz non-zero and restrict our
attention to sinultaneous row and col Um permutations. Let G be the directed greph with vertex szet
ve {1,2,...,n) and edgeset E = {(i,J) |1 # ] mna Ai.j £0) . The strongly connect ed components of ¢
correspond to the blocks of a maximmm-k bl oCk decompozition of G, und two rows whose vertices
are in the same strongly connected component of G muszt be in the same block of amy block decomposition.

(The latter fact inmediately iwplies the former,)

To prove this, suppose that 17 - ..) Ay it any block decomposition. Gince only zero:: appear bel ow
the blocks, no edge in G leads from a vertex corresponding to a row inp/\' to a vertex corresponding

toarowin A;l’ if p>q. It follows that no strong conponent of G can contain vertices correspondi ng
to rows in two or nore blocks of Ajs-ees Ay . Purthemmore, St the strong compouents of ¢ are sorted
in topological order, they correspond t0 a block decomposition of A .

N\,
(b) The algorithm is:
(1) Find a transversal of A , using the bipartitematching:dgorithmof Hoperoft andKarp;jul the

transversal on the diagonal.
(a) Find the strong components of the graph G corresponding to Lhe permutation of A |, sort the

components topologically, and detemmine the corresponding blocks.
Step (1) requi res O(nl/2 m time if A iz nyxn wend has mnon-zero::. Step (2) requires O(ntm)

time. The total time required is oO(n /2 m

Problem 4.

Part 1. The usual sequential file will be considered ay a |-file. Inun optimal 21-file, it 1s well known
that the keys are arranged in the order of decreasing frequency. V@ shell denote by D(Q ihe average cost
of an optimal 1-file ¢ , then

p(¢) = X wmp (1)
1<m<t 471
where p, >p; 2> >p are the trequencicsolkeysin G«
3, 20,2 2Ty,

A 2-file F is specified by a key K, (1 <d<n); the two ;;ubr'jle::l.dand l(dcon:;istofkeysless

than Ky and greater than K, . respectively. For ¥ to be optimal, clearly Ly nnd R, arcoptimal
|-files thenselves; furthernore, in this case,

Cp = 1+ D(Ld)+ D(Rd) . @)
If we can conpute the 2n numbers D(Ld) and D(Rd) tar 1 . ¢ <11 in o(n l0og n) steps, then equati on (2)

enables us to conpute Cp for n pousible F in Q(n) time. Wethen linndly compute A, = min Cp in
2 ¥

Qn) additional steps. Thiswould solve the probl emin O(nlog n) steps.  Below we give an :dgorithm
conputi ng D(Ld) for 1 <d < nin o(n log n) tim; the c(vm):utingm'l)(l(d):l::idcnt'icu.l, and will not
be repeated.

The obvious way to conpute D(['d) is to sort L, eccording 10 frequency nd compute D(L,;) b y it
definition. But this would take Q(n log n) for cuch d , and ofu' log n) overall. To do belter, we cbuerve

that L, is obtained fromr by deleting K, wnd move all keys with dower frequencies (benceloceated

d+l
"under" Ky ) up one location. This leuds to
D(Ly) = D(Ly, ;) - g . (1 A(Q)) - W(Q) (3)

where A(d) is the number of | 's with (j < d) A (]'j - l’ll) and

Wd) = T opy
j<d
I’J (I)d
The followi ng al gorithm first computes A(d) , Wd) ror ¢ « n,u-1,...,1 succcssively, then uses (3) to
compute all the D(Ld) .
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A gorithm ror Conputing o(t,) (1 < « < n)

[Initinlization]
A. Sort  (}ysPuyseso b4} iNtO decreasing order p. >p. >... >p .
12 n-1 =74, dp-1

B. Duild a balanced tree with all leaves in the lowest two levels (or one level if n-1 is a power of 2 ).
Nunber the leaves fromleft to right as |l | m@@@‘j‘é i

C. Associate t0 ecach internal node v, two fields (a(v), w(v)) where a(v) is initialized to be the nunmber

of leaves descendent from v, and W(V) iz Initialized as Zpd with j summing over all descendent-
J

leaves of v .
[an example of an initialized tree is shown in Figure 1.1

Figure 1. An Initialized tree with 11 =7 and Py 2 b5 2Py > Py > B 2Py -

D. [Conputing A{d) , Wd) for d = n-1 to 1.]
for d:=n-1 step -1 until 1 do
[eanpute A(d) , Wd)]

A(d) = 03 Wd) := 0;
{let v, = leaf d)

truce a path vy v, v . . . vy fromleaf d up to the root v
Ad) = z a(lcl‘t::on(v‘j));
J
Vi = r'lght.::nn(vJ)
Wid) := = w(right.;mn(v‘}));
J
VJ+1= ll:l't.;mn(VJ)

luplate a(v) , w(v)l
for cach vV, on the path,
“(VJ) = a(v].)-l;

MOSIEERTCR
. Comput.c: D(L") = 2 i ]IJ
1<iend i
F.  Uze(3)ilocompute D(Ld) for d = n-1,n-2,...,1 successively.

In step D, when theloop paramecter i o d and A(d) , wW(d) are being conputed, the values of a(v),w(v)

for any node Voare given by

a(v) = |s(v)| wv) = 2, P
i s(v)
when £1(v) = {J | i1 & descendant lewt of Vi j -2 d} . 1t is not difficult to see that A(d) , Wd) are
correctly compuled. ‘The updatingoperstion keeps the interpretation of n(v) , w(v) valida for d-1 . The

rest of the program is obviously correct,
To count. the cost:  Tnltializatlon takes: O(n log n) ; in step D, it takes Qk) = 0(log n)  steps for
cach d , henee O(u log n) iz tolad time. fteps ¥ and 1" can DC done in 0(n) tine. Therefore, this algorithm

computes D(L,) for 1 < d 2 n in o(n log n)
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Part 2.
This part is solved by dynam c progreming. For any t-file, the key: to the left form a g-fide (for
some 1 < g < t-1) , and the keys 10 the right a (L-g)-rile.  The dmportant, vbuervation J ¢ thal forthe t-41e
to be optimal, the associated g-file end (L-g)-tile aloo hove Lo be optimal,  jet
cost of optimal t-file tor keys  {K ’Kiil""’KUJ-l.};

S(t,i,j) =
(», if no t-file exists or itj-1l > n).

The previous remark implies that, for t > 2,

s(t,1,3) = min min (1+ s(qi,J') ¢ c{t-qird’, J-3')) . (4)
1<qst-l 15759

Therefore, if s(qi,3) are known for all g <t , curd a1 i, j, then u(t,i,J) can be computed in
o{t-j)e Q(tn) timefor each i, §. The following progrum computes s(t,i,J) for all 1+t <1,
1<4,j<n. In particular, it conputes 4, = s(1,1,n) .

Al gorithm for Al

A [compute =(1,1,3) vi,J)
for each 1 (1 < i < n), compute s(1,i,n),5(1,1,n-1),...,5(1,i,5) by the nethod in part 1 for
conputing Ld (d = n-2,n-2,...,1) . (This iz ponsible because |-file:: are Just cequentiud files.)

B. for t := 2 until ¢ do
for each 1< 4,j <n , conpute s(t,1,3) using (3);

C A, = s(1,1,n) ;

cost anal ysis: cost for A =n<0(nlog n) = O(n? log n)
cost for B = % nQ.Cth) = O(I;;lf) .
2<t <!

Therefore, the algorithm works in O(n}) time.

Fart 3.

(a) We shall abbreviate A‘{;J‘j ,1(13),...,1-‘5")) as A z(“) . The idea J::: With the present frequency
distribution, the cost of an f-file is dominated by they subfiles regarded as vequential files; thus,
we can concentrate on, instead of Al(n) , the cost of sequential tiles which havs zimpler analytic
expressions. Formally, let us define

i 3 -3
: 1.1 1 1 2 271
g, {n;i,i,e.ayi, ) = —'—b...'.—-)* - ' =+ ...+ )
1 1’72 1-1 1 2 1.1 llPl 11*8 i2
1 » nl g ) g
oot e 2 ‘ )
(1,_101 11_1!2 n

Expression (5) is essentially n times the totulcost Of the £ vubfiles formed by breuking the set
of keys at positions 11,12,...,:1‘_1 . Let
fl(n) = L<i <3 <mn < < g‘(n;il,i“, .,,l‘_])
=71 "2 " 1-1—=
The following lemma showsthat we can study ﬁl,—l ("(n) inctend of At(") .

Lema 1. |a,(n) - 7 £,(0)] <t

Proof,
(A) Consider anoptimal f-file using [K. < K). L Ki } s the set of keys uzed in the dnlernal
‘1 o -1
nodes. The contribution Lo the cost fromkeyeincequential subliles is at least
n-1
1 IR s -1 1 s .
}": gl(n’ll,lﬁ,.”’ll—l) - n ) o _,!{ (ﬁ,('lyllt'--ﬂ~|,_l)‘l) .

Therefore

Afn) > ,—,l; (r,(n)-1) . ()

189
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(B) Let 1y-i,<. besuch that !'l(n) = gl(n 3 i Choove any f-file with

1’12""’11-1)
a: keys iN dinternal nodez, and sort the subfiles according to decreasing

. il-l
(Ko K yeeesK, ]

) 1
frequency. As the internalkeys andthe first record in each sequential subfile iSs at nost

f-distance away from the root, w have an f-file with cost less than —l-.f,(n) + t . Therefore,

Hy

1.
CLE () B IR W CO I ()]
n
Formulas (¢) and (7) inply the Lemma. (O
) £, (n)
Lemma 2. For cuch fixed ¢, there cxists a conctuat a, such that |im m =a,.
n—-o
. 0 i i i i
Proof.  Define i;(n) = I 41,-; P & g =N . Wcprove the lemma by induction. The induction
hypothesis is: YOr ecacht~ 1 |, there exist:: a constant 0 < a, <1 such that
t () =an+ Q1) . (8
The (1) term In (0) may depend on f .
The induction hypothesi o is obwviously true tor £ = 1 . Nowsuppose we have proved it for -1,
we shall prove |t ror ¢ . We need the followi ng tact :
fact Lot = “1)k - a ca, <
ac Lebh (k) nr(alll)k kln ¢ (v a,, 1)
T8
Then h(k) > (-0 " 7)n for n >k >1, and
-a -
n(rne 1y - @-e ™YHni1 o).
-,
(A) Proot thuat ('l(n) > (1-c o o(l) ¢ Let ippdgs . .,il .k be such that
- « -
J‘l(n) = [:l(n : jl’ii’""’ll-—.’" k) . ptrom the detinition of g
. - . ; : 1 2 n-k
tl(n) = gl_l(k HE DS SPR 11-;))+mlil—§} L+ =
Sinee 1t (k) = min v we st have 1 (n) oo (k) b= 2 , -k Usi th
ine -1 ,o L sLohiave 1 = BT Rt eae == . Using the
Tppdsees
induction hypolbhesic for -1 , we oblain
t'l(n) > e,k 0@ (S A=k
k<J<n J
n
=u, jkin-k-klngr a1)
-a
> (1-¢ "l)nl 0(1) by fact.
_"l—.l.
(B) Yrool that l‘l(n)s (1-L° M 0(1) : We nced only prove it for all sufficiently | arge n .
-n
Suppose  n salisfles the condition K =[ne -1 I'>f-1 . We choose il’ i vy "il~2 such
that p_’_l(k : jl’ii"""il—f‘) = l"_l(k) . Then
. L . - 1 o n-k
U < gy n s gy oiy ok 20 0V T Sl - Y
Lo gkt @R - kln-{%' o@)
"Y1
By fact, ihi s i ¢ leas than  (1-c Jnr o@)
e,y
Let n, = 1-e , clearly o < u, 21 . 'he dinduclion hypothesis for ¢ is now established
This completes the proof for Lenma . O
Now, Lemma 1 implies
(e 1)a,(n) t (n)
Tt lnn ot - l-’:]n n (9)

n W n -
n
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f,(n)
Since 1im ln = 8, (Lemma 2), |im l—ﬁ—-ﬂ 2 1, and lim -'-“ln n » 0, cquation (9) implies that
n-w n—o n n e
A!(n) !‘!(n)
1lim = lim = & .
hewo D 1n n s n !

(b) In (a), we have actually proved

-a

a, = 1l-e -1 , 122
31 =1 ,
Thus,
8.2 = l-e-l ,
-1
-1
53 w l-e ’
N -1
e l_1 .
&h e l-e -
Probl em 5.

Let X = {xl >%Xy > eee >x ) and Y= {y >¥, >eee >y} . The set of rclations R between X ond

Y can be written as R ={ SY, X >Y .. esXy by, }wheredy < i, < .. . <1 and
SR R P A e 0T 1o r

31<¥ <. <J, . Let p(R denote the probability that X >y, under R . If we can show that
?(R) > p(R") (1)

where R' = R—{xi >y. }, then the problem issolved by induction.
1 "1

Let us use A, to denote the number Of permutation: of XUY consistent with R'U{yklsxi>yk],
1

and & the probability that X > yJ knowing R' U [yk_] .~1xi> yk) . ‘Then

z
1<k<y,

p(R) = Z— ’ )
1<kgd,

z A
(r") 19532"* ' (
p(R") = ——= 3)
b

1<k<y,
Equations (2) and (5) will imply (1) i1 we can show the rollowing 1 cmme.
Lema 1. &) > a, > ... 28,y -

1

Indeed, (1) follows from Equations (2), (3), Lemna 1, undt the Collowing simple algebradc tuct:

Monotonicity Lemma. 1f E» F?,...,Hu arce posi tive mumber:,and Gy e, > then the funetion
7 e k.
I<i<t M1
(t) =
Z B
1<i<t

is nen-increasing in t for 1 <t <wu.

191

To prove Lerma 1, we first show a reluted lemsn.  Consider partial m-&3- \ on X= (><1 >x, 2. > xm]

and Y = [yk Yy e e yn] W th relations K = {”1‘1) le' cees xir >er

} . (rigwre 1. ) Let b, be

the probability that X, > \./) in Q , and bk-l the probubility that x. Y in Oy (i.vey the jpartial

order with the same X  and k, but an additional clement Y Aeminat ing Yy )
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Lemna 2,

W prove
relation R (t

k t-ktl

I nduction step:

and

(See Figure 3 .

Thrn

Similarly, Let

b, = LKL G55

-1 %
Vi *1
[
_--1"
1< -
e
}'J Py
1‘/ x
m
,,
Figure 1

thic lemma by induction on m.
= ntl Iif R e fB) . From Figure

1n clther case the

Suppose the claim i: true for

¢ = the number of permutations

H

¢, = the probab tlity that x5

2 . ¢, ('l
k<s< i
bk = .
z c,
k<rzd,
(:', and C'l bue the correzpondl

For m= 1 , we have J(i =X .

k
lemma 3o true.

Yx
//' !
Y3 /
7/

¥y v
yn

Figure 2
ml| , we will prove it for m . Let

ot XUY, consistent with Q A (y‘_l x> y‘) ,

yJ under QA (y'_l > x> y‘) .

figure 3

ng quantitics tor ey 1hen

Let {x;, > y;}bethe
2y we seethat clther b = 1 (if t <)) o r

ANSWERS
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z Cl ¢
k-1<1<dy
b =
k-1 P> ) .
k-1_<_1<Jl
Clearly, C' = C‘l and c‘ = c; forkg t £ Jl « Therefore
z AN
k<1<y,
bk - —
z c .
k<1<,
Now, consider two cases. Case 1) x; = x|l . Then ¢, = 1 for t<j and €, - 0 for ¢t »-j . So <,

is non-increasing. Case 2) xg ¢ x; - Then <, for £ <] is equal to the probability that X > y.1 in
the partial order of Figure L, hence non-increasing by induction hypotheuiz., Moreover cl = 0 wvhen 2 > |
Thus, in both cases, bk—l > b, by the Monotonicity Luma. Thic completes the induction step.

= 'k
Y‘ p
f *2
— -
p &
/7
v n
3
v b
Figure b
Proof of Lemma 1.
Case 1) 1 >i; . For k >j , w have a = 0. For l<k <}, uy jz the zame a:: the probubility

for x; >yJ under the partial order of Figure j. By Iemma 2, & is non-increacing.

Case 2) 1=1 weha.veak=l if kf.d'“"“"k=° if k>j .

3 -
Case 3) i< il .
3 > J. Now, & = 1 for k<J. For k>J, a is equal to the probability that x > ¥y

Ir jl < J , then 8 = 1 for all k , and the lemma Qs true. We conglder Lhe case

under the partial order of Figure 6. By Lemma 2, a is non-increasing.

This completes the proof of Lemma 1, and hence equation (1).

¥x 1%, Y 9 o
< 1 4
[ /l < x’1
Y e Yy
J J
' x. <
1
q LT
e —— ‘ 11 1
Yk-1

Figure 5 Figurc 6



194 ANSWERS

ANALYSIS OF ALGORITHMS - SOLUTIONS - Spring 1978

Problem 1.
(a) Consider the set of n nodes T = {§,0,01,010,0101,01010,... }, Then half of them arc harhed into

(1))

. 1
location 0 , and half into location 1 . ‘'lhus, forth ic T , (,'(hO,T) = = (;—:13(5—: 3 1) v

o

lg n + 0(1) . This proves f(ho) > 1lg n + 0(1) .
On the other hand, from the definition of ¢{h,T) , we have for any T ,
c(bg,T) < la(ntl) iz ny = lg(n+l)
Thus, f(ho) < lg n + 0(1) .

We have proved f(ho) = 1g n + 0o(1) .

(b) Let m = n+l . We shall prove the following theorem.
Theorem. let € > 0 be any fixed constant. Then a random hashing scheme he H(n,n) will, with probability

1l - const. x % » satisfy

£(n) < (1+§)1g(1+

L
n+l

1]

1
) + o lg |j’n| + c
As |yn| = (Qn“) < K (knuth, 2.3.4.Lk), we have for a random h , t(h) < 4 ¢+ 0(1/n) . This
would solve our problem.

We start the proof of the theorem with two simple lemmac.

Lemma 1. For any positive integer x , x! > e'x(x+l)x .

Proof. We prove by induction. For x = 1 , the lemma is true az 1 > e'l +2 . For x >1 , we have by

-(x-l)xx-l 1

induction hypothesis (x-1)! > e This implies x! > XX | (l + ;)'xe"x()ﬁl)x > e M (x1)

where we have used e > (1 + l)x This completes the induction. (3

Lemma 2. Let t(myn) be the number of integer solutions (nl,n?,...,nm) to the equation b3 n =n
1<i<m

with n, > 0 . Then t(mn) = ("’”I:‘l) .

Proof. t(myn) is the coefficient of 2 in the expansion of (1+ XEX - _)m = (1-):)-m . Therefore

tmn) = (D) = (™2 [wtn 1.2.6.07)]. O

Now, for any Tej’n and any positive a , let 3(a,T) be the proportion of h< H(m-1,n) such that

c(h,T) > a. We are going to show that, abbreviating m/n by b ,
Az(a, T) < constant x (i (1 + l)bﬂ)" . (1)
- 2& b

let us first show that (1) implies the theorem. We use )\(a,j'n) to denote the proportion of h in H(m-1, nN)

such that f(h) > a . Then }‘(a,j’n) < 20 ala,T) . By (1), we have
TeT

a(a,7 ) < constant lTnl'(—lg (1+ %)bq)n . @
2
When a = (1+b) 1g( 1 + 1y,1 1g lT l + ¢, (2) implies
- b n n SER T
k(a:Tn) < constant A
oh

But this is exactly the theorem!
It remains to prove (1). Let g(nl,n,,...,nm) be the proportion of he [iuw-1,n)  uch that

[{x | xeT, n(x) = iy] = n (L < i< m. Clearly, when 3 n. = n ,
- - 1

1
g(nl’n?""’nm) = —ri T . (3)
m s e m
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Let A(a) be the set of integer m -tuples (“l’n’c‘""’"n) suticflying

(0 20,1 =12..,m,

Z hi = N (n’
‘ 1<i<m
Z n, 1lg (nj+1) > an .
1<i<m
\ .
Then
A1) = P oy o 0 @50 )

(nyyn,,...on) eA(a)

n! on_-an

Jemma  If (nl,n2,. - -onp) e Ala) 5 then g(nyny,..oon) < €2 .
n

n
Proof. Formula (4) implies n (ni*l) s 2™, mic means, from Lemma 1,
i
i % " ny
T () > e T (1) * > e Mt
1 i
Thus, from (3),
g(nl,nz,...,nm) < :T;; " | g
Now, from (5) and Lemma 3,
! -
Ma) < B 2™ a(a)] . (6)
m

But |A(a)| < t(myn) from definitions. Using Lemma 2 and (G), we have

Aa,T) < L eMpen(mal,

- n
m 1 n m+n
S constantvm (—2_8.—)?1. (l +E)

A
8
3
w
o
1
o
~
Pp |
P
o
+
o't
N’
4
v
\_/:’

This preves (1). [The “constant” is anabsolute constant. ]

we have completed the proof of the theorcem.
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Problem 3.

To solve this problem, we need a data structurc with the tollowing propertics:

(1) entries consist of a value and a uize;

(11) the entries are sorted by value and can de ¥celfssed by valueeasily;
(1i1) it is easy to insert or delete an entry;

(iv) it is easy to locate the smallest value of a givensize or larger.

Various kinds of balanced trees can be adapted for such a data structure; we use 2-3 trees (see Aho, loperoft
and Ullman, pp.146ff.). Two examples appear in Figurck.2G. lntries are stored in order by value in the
external nodes. Each internal node contains the largest value in its left subtree and the largest value in

its middle subtree (if it is a 3-node). In addition, each internal node contains the largest size in its subtree.

D 29
OO (-2 )
OO OO OO OO OO

Fig. 4.26 2-3 tices.

Insertions and deletions work exactly as described in AHU except that we must update the vize information
on internal nodes along the path fram the root to the inserted or deleted node. The time for either an
insertion or a deletion is O(log n) , where n is the total number of values.

To carry out a locate given a size, say s , we search down from the root, always taking the leftmost
branch which leads to & node having size s or larger. Eventually we end up at the leftmost intcrnal node
with size s or larger. This operation also take: O(log n) time.

(a) Our data structure consists of the one deceribed above, with onc eniry corresponding tc each Iree
block of memory. The value of the entry is the starting point of the block and the size of the entry is the
size of the block. Initially the structure contains one entry corresponding to the entire memory.

To schedule a task of length s , we locatc the leftmost entry with size at least s . We delete thic
entry fram the data structure, and insert a new entry corrcuponding to what is lelt of the memory block if
the new task does not entirely fill it. Thus scheduling one tack requires a location,adcletion, and possibly
an insertion, for a total of 0(log n) time.

To free the memory corresponding to a teck, we look up the tree block:s immediately to iL:lefl and vipht.
We delete the entries corresponding to thesc blocks and add one, two, or three new entriec depending upon
whether the freed block is contiguous with the left block or right block or botli. This requires two look-ups,
two deletions, and at most three insertions, for a total of 0(log n) time.

(b) To solve this part we use in addition to the data structure used in part (a), a similar data structure
to represent the set of waiting tasks. 1nthe second ctructure cach entry is a tack,whoie valuc ic the time
it first became available for scheduling and whose size is the amount of memory it requires.

We schedule a task as before, except if it does not fit immediately, we insert it into the waiting list.
Tnhis takes O(log n) time. We free memory as before, except after freeing a block of memory and updating the
data structure representing the free block:, we check 1o seeiranytaskinthewndtingg List wild £t dnto the
new memory block created. 1f so, we chooce the tack whicharrived carlicst andscheduldit.  We repeal unt |
no more tasks on the waiting list can be scheduled. This operation requires onc location and one deletion in
the waiting list, and one scheduling operation in the data structure formemory, for each task scheduled, and
thus requires 0(log n) time.

Note : To get the time bounds right, we must reinterpret n as the totalnumber of jobs currently in memory and

in the waiting list; this point was not spelled out in the problem description.
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Problem 4,

(a) To chow thut the problemig NP-complel® we rusl firsl phrase L 3s 3 yes-no preblem, Go let us
assume that a height iz given and we ask "Can the rectangles be packed within height h 2" Yo chow that the
problem is in NP, suppose the dimensionsof all the rectangles, the widthof thc bin, w:l h , are integers,
It is easy to guess a packing (by specifying, say, the coordinates of the lower left corncr of wauchblock
and to test whether it works, in time polynomial in the mmber ol digits nceded Lo writ < down (A1 thenunbers
(Note that we need only consider integer co-ordinates.)

The problem is in NP even if we allow rational numbers, since we can miltiply all the fraction: by the
least cammon multiple of their denominators and thus convert everything to integers, while omly getting &
polynomial blow-up in the total number of digits.

(If we allow arbitrary real numbers, then the problem isn't in NP, cince we have no rearonable way of
representing arbitrary recal number:.)

To show that the problem is NP-complete, we reduce the knapsack problem to it.  One vergion ol ithe
knapsack problem known to be NP -complete-is the following. Glven k intcger:, 11,...,1k y with cum §
is there a subset with sum s/2 ? We construct a corresponding packing problem with bin width 2 and k
blocks, the i-th dlock of height Ii and width 1 . Then the knapsack problem ha: a colution if and only
if there is a packing of height 5/2 .

Although the knapsack problem is solvable in polynomial time if th e hwmbers are small, the bin—pacl;.irg
problem is NP-complete in the strong sense; the three-partition problem canbe reduced to bin-packing (see
GCarey and Johnson's manuscript on NP-completeness for a definition ol strong Nl'=completenesc and the three-
partition problem).

(b) The basic BL (bottom-up, left-justified) algorithm, using a poorly ordered list L , can perform
arbitrarily badly relative to an optimization algorithm. Acsimple example illustrating this fact iz chowm
in Figure 1. The rectangles in the list L = (Pl’PQ""’pn) altcrnate between vertical and horizontal slabs.
In particular, let p, = (xi,yi) , where

(e,2+3c) if i odd

(xi’yi) =
(w,€) if i even.

The height of the BL packing is [n/21 + O(n€) whereas an optimum packing can @ :asily beseentohavenheight
of 1+ 0(ne) . Thus, the ratio of packing height: can be made as large as desived.

pn
| pn-l
' . :
s
By
n,
e — Je—
P
¥, N
(O
Py

Figure 1. A Bad B[, Packing.
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Problem S.
without loss of generality, let the distribution have meanoand variance: 1 . The denzity function
2 2,
then n(x) = 1 e /2 , with dictributionfuction N(%) = 1 .- /2 @ . (reller, pe. 178, ) vor large
\72! T;n .

x , the approximation (ibid)

n(x)(li - 3—3-) <1 - N(x) < ﬁxﬂ

is useful. Let P (not N ) be the number of processors.
A ruming time x has chance N(x)P of being > the maximm. This is pnegligible if N(XJI‘ << 1, i,

it (1 - Egl)P <«<1l, or P n(x)/x >> 1 . We can find where it becomes negligible by roughly equating

P n{x)/x to 1;

-x2/2 2
> X = _P;e___._ s oOr -’-‘;- = 1n H
on ! x yi'n
x = J?(lnl’-lnx-%(ln?+1nn))

x e ¥2InP-2Inx-1n2-1n x

P9 \[21!\1’-21111}2111]‘ ~In2-1n=x

=2 InP-1In? - 1nln ) -Ind-lux

= V2N P-1nIn?D - In (bn) .

Since the density of running times falls off faster than exponentially for larger vidues of 2 , und the
likeljhood of a ruming time being the maximum falls ofl cxponentially with :maller values of x , the maximum

must with high probability be very near 42 In P - 1n 1n P - constant .

We can bound the standard deviation by considering the rates at which the denzitics Fadl oty on cither

of the estimated mean. The dencity of rwnning times drope al leact by a factor of @ i 1 weincrgasc by
o
provided that (x+ Ax)?.‘_xi‘ =1 ; AE2xAX = L 3 A ™ —2];)‘ ~ —BA— . In the other direction, the
In?

1ikelihood of a running time being the maximum drops by at lcast a factor of e if we decrease v n(x)/x

by 1 ; that is, if we increase n(x) by a factor of sbout 2 . This gives rise to a ax of th- same ordgv

1
O .
ln P
Together, this suggests:

meann\lQlﬂP"O(lﬂP) »

variance & ((ln-:l—P-) R

A more rigorous proof can probably be extracted from pp. 202 - 208 of Feller. A quick and dirty one is

obtained by saying that the likely range of the maximum is around N(x) = l/P ,» and allowing N(x) to vary

by a factor of 2 or so.

Another epproach to the variance: themcanof themax tor N numbers is about J2 Inn. Now take Lhe

max of two such sets, Sl anda & , of N numbers, the expecled value is about
<

\,’2 n(on) = \[?. Ilun 2 1lne = '122 lnnt2n? . 1 __ i \/;—]n n &_2 A

22 100 z e

1 R R .
One can make a plausible argument that the extra o( l___ ) term js lipearly related Lo the viriance.
JInn
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Problem 6.

The number of binary trees with N internal, and WNtl1 cxternal, node:s, ic found by writing names for the trccs
in Polish prefix notation: the symbol I muct appear N times, & must appear N+l , and the cumulative
number of I 's must exceed the number of E's until the end. The latter condition is true of exactly one cyelic
permutation of any string of N E's and M1 I's. So the total number of trces ic

(21;*1)/(2‘”1) = N:Zgulil:S: .

The information intent of the structure ic the base 2 log , which by Stirling's approximation i: about

2N + constant, or 2 bits per internal node. Conventional list representotions use ((log N) bits per
internal node. The smaller mumber can be achieved by using prefix notation, where each node has cne bit to
mark it as internal or external, followed by B data bits if external.

How many dags are there with N internal nodes? They can have at most N+1 external nodes, vhich we will
call Vl cee vN+l .
mst be pointed to by some other node. By ordering the nodes correctly, the first such pointer can be a short
(2 bit) address. Put the root node in location 1 . Addresses contain 1 bit to distinguish internal fram
external nodes. External nodes have their B-bit values stored in the address field pointing to them. If an
internal node has not been referred to before, it is allocated the first free address, and a single bit pointer
suffices. If it has been referred to before, one bit says so, and is followed by a lg(N) bit pointer.

Of the 2N addresses, exactly N-1 are of 1 bit. The other N+l are of length B+l or lg N+ 2 .
Assuming B > 1g N+1 , we find the total storage is at most N-1+ (M+1)(Btl) = N(B+2) + B , or B¢2 bitg per

intermal node. Again, conventional reprccentation: uce much more.

To write a dag in an efficient notation, observe that each internal node except the root

To show a comparable lower bound, consider dags in which the left branches form a chain. There are more
than N! different arrangements of the right branches, so the total number of bits required is at least lg(N!) )
or 1lg N-constant bits per node. (Thanks to Dun fleator.)

Problem 7.
Let f(D,N) be the expected number of maximal points out of N points in D dimensions. Consider the
points Pi = (xl,xe,...,xn) in order of dcercaving X . Then ry it modmal in b dimenciong i £f it is

maximal among Pl...P , restricted to D-1 dimensions, so  f(D,N) = [(D,N-1) + l—‘”;‘ﬂl , with boundary

i
conditions f(D,1) = f(1,N) = 1. A routine array calculation, using min(N,D) cellc, computes f in time

o(N-D) .
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