~ h-"'

KNOWLEDGE ENGINEERING FOR MEDICAL DECISION MAKING:
A Review of Computer-Based Climcel Decision Aids

i BA074076

Edward H. Shortliffe, MD, PhD
Bruce G. Buchanen, PhD
Edward A Feigenbeum, PhD

STAN-CS-79-723
Feruary 1979

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

This document has besn appscved
fos pubic rel-ase and sck; its
distribution is unlimited.

9 09 18 210



UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS TAGE (When Date Fntersd)

REPORT DOCUMENTATION PAGE o e
- TRLPONT NUMFER | 2. COVT ACCESSIAN KO | 3. RECIPIENT'S CATALOG NUMBL A
W STAN-CS-79-723
& TITLE (»nd Sudtitle) | $. TYPE OF RICFORY & PEFUOC COVERED
1
4 JPONLEDGE _ENGINEERING FOR MEDICAL DECISION MAKING: technical, February 1979
/‘/ A Review of Computer-based Clinical Decision Aids, :
_'/)’_ 7/ 2 ’. } f’ €& PERFORAMING ORG. REPORY NUMHBER
STAN-CS-T79=723
Yy 8. CONTHACTY OR GRANT NUMBER(S)

| Edward H./Shortliffe, M= —4
,/) Bruce G.]Buchmm,.an’.:z’ 14 )mmﬁs-’.‘7-c-¢322’
_~“} Ekdward A. Eeigenba‘lﬂﬂ}‘h;b.
9. PERFORMING ORGANIZATION NAME AND Aoo.nsss 10. ::gii}A:oE‘_‘cssrTT.“l:‘l:‘o’Jé'(‘:;. TASK
Computer Sclence Dapartment
Stanford University
ctanford, California 9475
1 cou;uou.mc OFFICE ;An: AND ADDRESS _ 3 T° WEFORT BOAVE
Defense Advanced Research Projects Agency
information Pracessing Techniques ofg?ce _H nfe;%?‘z“
1400 Wilson Ave., Arlington, VA 22209 52
16 MONITORING AGENCY NAME 8 ADDRESS(!! dillerent from Centeolling Olfice) 19 SECURITY CL ASS. (o] ihls repart)
Mr. Philip Surra, Resident Representative
Office of Naval Research, Durand 165 tnclassified
Stanford University

132, DECLASSIFICATION/DOWNGRADING
SCHEDULE

16 OISTRIOUTION STATEMENT (of thin Repuri,

Reproduct ion in whole or In part is permitted for any purpose of the
U.S. Government.

17. DISTRIBU “1DN STATEMENT (of the adstrect entered in Biack 20, It ditterer? hon Report)

Q)Tt,t.ﬁr.,n\?:,g,l “f,‘T'; .

18. SUPPL EMEnNTARY HNOTES
/ . 5 3 ol
- /

b -
9. KEY WORDS (Continie on reverse side i noceasary and identily by bloch number)
70 ADLTRAACY (( mtinee en roverss slde if mesessary ond ite-rily by blech number) -

(see reverse side)

7 Ohee l ©o-

DD COITION OF ! NOV 6815 OBIOLETE R

Voan s W73 UNCLASS .FIED

SECUMTY CLASSIZICATION OF THIS PAGE (When Doata Entesed)

094 120



—_ UNCLASSIFIED

CCORITY CLASSIE IO ATION O THiL FFAGT (ithon Nata Tnrere )

\a?
{ Computer-based rwodels of medical decision making account fuor a large proportion

of clinicel computing efforts. This srticle reviews representative examples
from each of several major medical computing paradigms. Ihese include (1)
clinical algorithms, (2) clinical dntebanks that include snaly:ic functicns, (3)
thematicsi models of physicel processes, (4) pattern r=cognition, (5) bayesian
slatistics, {6) dacision analysis, and (7) symbolie reasoning or artificial
intelligence. hecause the techniques used in the veriouvs systems cannot be
examined exhaustively, the case studies in cach category are used as a basis tor
studying general strengths aud limitaticng. It is noted that no one method is
btest for all applications. However, emphesgis is given to the limitations of
early work that have made artificial intelligence techniques and nowleage
engineering research particularly attractive. We siress that considerable basic
research in medical computing remains to ve done and that powerful new
approaches may lie in the melding of two c: more established techniques.

UNCLASS IFIED

SECUMTY CLASMIFICAT.ON OF THIS PAGE(When Date Entorrd)




To Appear in the Proceedings of the IEEE
September 1979

KNOWLEDGE ENGINEERING FOR MEDICAL DECISION MAKING:
A Review of Computer-Based Clinical Decision Aids

Edward H. Shortliffe. MD, PhD
Bruce G. Buchanen, PhD
Ydwvard A. Feigenbsum, PhD

Heuristic Programming Project
Departoenis of Medicine and Computer Sclecce
Stanford University
Stanford, Californis 94305

*Please send reprint requests to Dr. Shortliffe at the following address:
Department of Medicine (General Internal Medicine)
Stanford University School of Medicine
Stanford, Californmia 94305



Abatract

Computer-based models of medical decision makirg account for a large proportion
of clinical computing efforts. This article revi.ws representative examples
from each of several major medical computing pacadigms. These include (1)
clinical algorithms, (2) clinical dstabanks that include analytic functions, (3)
mathematical models of physical processes, (4) pattern recognition, (5) Bayesian
statistics, (6) decision analysis, and (7) symbolic ressoning or artificial
intelligence. Bgccause the techniques used in the various systems cannot be
examined exhaustively, the case studies in each category are used as a basis for
studying general strengths and limitations. It is noted that no one method is
best for all applications. However, emphasis 1is given to the limications of
errly work that have made artificial intelligence techniques and Imovledge
engineering research partfcularly attractive. We stress that cousiderable basic
research 1in wmedical romputing =:remains to ote done and that powerful new

approaches 3ay lie in the melding of two or more established techniques.
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KNOWLEDGE FNGINEERING FOR MEDICAL DECISION MAYING:
A Review of Computer-Based Clinical Decision Alids

I Introduction

As early as the 1950°s, physicians and computer scientists recognized
that computers could assist w.th clinical decision making [63] and began to
analyze medical diagnosis with a view to the potential role of automated
decision aids in that domain [611. Since that time a varicty of techniques have
been applied, accounting frr at least 800 references 1in the clinical and
computing literature (112'. 1In this article ve review several medical cecision
making paradigms and discuss some issues that account for both the multipliciey
of approaches and the limited clinical success of most systems developed to
date. Because other authors have reviewed computer-aided diagnosis
1471,192],(114] and the potential impact of computers in medical care [923], our
emphasis here {is somevhat differcnt. Ve will focus on the symbolic
representation and use of knowledge, termed "knowledge engineering,” and the
inadequacies of data-intensive techniques which have led to the exploration of

novel symbc!ic reasoning approaches during the last decade.

l.1 Reasons For Attempting Computer-Aided Medical Decision Making

Because of the accelerated growth in medicel knowledge, physicians have
tended to specialize and to become more dependent upon asslstance from other
experts vhen a patient presents with a complex problem outside one’s own ares of
axpertise. The primary care physician who first s~es a patient has thousands of
tests available with a wide range of costs (both fiscal and physical) and
potential benefits (i.e., arrival at a correct diagnosis or optimal therapeutic
management). Even the experts in a srecialized field may reach very different
decisions regarding the saragement of a specific case [131]. Diagnoses that are
made, and upon which therapeutic decisions ate based, have been shown to vary
wvidely in their accuracy (261,(831,([89]). Furthermore, medical students usually
learn about decivion making in an unstructured way, largely through ohservation
and by emulating the thought processes they perceive t. be used by their
clinical mentors [53).

Thus the sotivations for attempts to understand and automate the process
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of clinical decision makiag have been numerous [114]. They are directed both at
diagnostic models and at assisting with patient management decisions. Among the

reasons for introducing computers into such work are the following:

(1) To improve the accuracy of clinical diagnosis through approaches that are
systematic, complete, and ablec to i‘ncegrate data from diverse sources;

(2) To improve the reliability of clinical decisions by avoiiing unwarranted
influences of similar but not identical cases (a common source of bias among
physicians), and by making the criteria for decisions explicit, and hence
reproducible;

(3) To improve the cost efficiency of tests and therapies by balancing the

expenses of time, inconvenience, or funds against benefits and risks of

definitive actiona:

(4) To improve our understanding of the structure of medical knowledge, with the
associated development of techniques for identifying inconsistencies and
inadequacies in that knowledge; and

(5) To 1improve our understanding of clinical decision wmaking, in order to

improve medical teaching and to make computer programs more effective and

easier to understand.

1.2 The Distinction Between Data And Knowledge

The models on which computer systems base their clinical advice range
from data~intensive to knowledge-Intensive approaches. There are at least four
types of knowledge that may be distinguished from pure stutistical data:

(1) knowledge derived from data analysis (largely numerical);

(2) judgmental or subjective knowledge;

(3) scientific or theoreticsl kncwledge; and

(4) high-level strategic knowledge or "self-knowledge."

If there is a chronology to the field over the last 20 years, it {s that
there has been progressively less dependence omn "pure" observationsl data and
more emphasis on higher-level svabolic knowledge inferred from primary data. We
include with domain knowledge the category of '"judgmental knowledge" which
reflects the experience and opinicns cf an expert regarding an issue about which
the formal data may be fragmentary or nonexistent. Since many decisions made in
clinical wmwedicine depend ugon this kind of judgmental expertise, it 1is not
surprising that investigators should begin to look for ways to capture and use



1 Introduct-.on Page 3

the knowledge of experts in decision making programs. Another reason to move
away from purely data-intensive programs is that in medicine the primary data
available to decision makers are far from objective [20],(57]. They include
subjective reports from patients, and error-prone observations [27]). Also, the
terminology used in the reports is not standardized (7] and the classifications
often overlap. Thus decision making aids must be knowledgeable about the
unreliability of the data [57) as well as the uncertainty of the inference.

For example, data-intensive programs include medical record aystems which
accumulate large databanks to assist with decision making. There 1is little
knowledge per se in the databank, but there are large amounts of data which can
help with decisions and be analyzed to provide nev knowledge. A progranm that
retrieves a patient’s record for review, or even ome that 1dentifies and
retrieves the records of similar patients (matching some set of descriptors), is
performing a data management task with little reasoning involved [26],([86].
Although there is statistical "knowledge" contained {in the conditional
probabilities generated from such a databank and utilized for Bayesian analysis,
{t is all numeric. At the other extreme are systems that encode and use the kind
of expert knowledge which cannot be easily gleaned from databanks or literature
reviews [75],[102). Systems that model human reasoning or emphasize education of
users tend to fall towards this end of the data-knovledge continuum.

In addition to judgmeatal wnd statistical knowledge, there are other
forms of information that can play an important role in computer-based clinical
decision aids. For example, underlying scientific theories and relationships
are often ignored by diagnostic programs but provide the foundation for
decisions made by human experts. Coasider, for example, the potential vutility
of techniques that could effectively represent and use the basic knovledge of
biochemistry, biophysics, or detailed human physiology- Biomedical modeling
research offers some nmathematical techniques for encoding such knowledge in
certain domains, but symbolic apnroaches and clinically useful applications are
still largely unrealized.

Finally, there 1is another kind of knovledge used by human decisiocu
makers — an understanding of reasoning processes and strategies themselves.
This kind of "high-level” or '"meta-level™ kinowledge, 1if incorporated into
computer programs, may not only heighten their decision making performance but
also augment their acceptability to users by making them appear mor: aware of
thelr own power, strategies, and limitatious.
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We use the term "knowledge engineering,”

then, to refer to computer-based
synbolic reasoning issues such as knowledge representation, acquisitiorn,
explanation, and "self-awareness'" or self-modification [19]. It is along these
dimensions that knowledge-based programs differ most sharply from conventicnal
calculations. For example, they can solve problems by pursuing a line of
reasoning; the individuzl inference steps and che whole chain of reason.ng may
also form the basis for explanations of decisions. A major concern in knowledge
engineering is clear separation of the medical knowledge in a program from the
inference mechanism that applies that knowledge to the data of individual cases.
One goal of this paper is to identify, in the strengths and weaknesses of
earlier work, ti:ose issues which have motivated several current researchers to
investigate the automation of clinical decision aids through knowledge

engineering.

1.3 Parameters For Assessing Work In The Field

Barriers to successful implementation of computer-based diagnostic
systems have been analyzed on several occasions (7),[23),[106]) and need not be
reviewed here. However, in assessing programs it 1s pertineant to examine
several parameters that affect the success and scope of a particular system in
light of its intended users and application. Unfortunately, the medical
computing literaturs has few descriptions of systems for which all the following

issues can be assessed.

(1) How accurate is the program?!

(2) What 1s the nature of the knowledge in the sysiem and how is it generated or
acquired?

(3) How 1is the clinical knowledge rapresented, and how does it facilitate the
performance goals of the system described?

(4) Bow are knowledge and clinical data used and how does this impact on systea
performance?

(5) Is the system accepted by the users for whom it is intended? Is the
interface with the user sdequate? Doas the system function outside of a
research setting and {s it suitable for dissemination?

(6) What are the limitations of the approach?

IAlthough this is impor-ant it is not the only wmeasure of clinical
effectiveness. For example, the effects on morbidity, mortality, and leagth of
hospiral stay Il{ also be imrortant parameters. As we shall s few systams
have reached a stage of impleaentation vhere these parameters could be assassed.
NMoreover, because of the complexity of the interacting influences that affect
the usual weasures of outcome, it may be difficult ever to define the margiual
benefit of such systems.
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An issue we have chosen not to address {3 the cost of a system, including
the 3ize of the required computing resource. Not only 1s information on this
question scanty for most of the programs, but expenses generated in a research
and development environment do not realistically reflect the costs one expects

from a system once it is operating for service use.

1.4 Overview Of This Paper

An exhaustive review of computer-aided diagncsis will not be attempted in
11ght of the vastness of the field, and we have ther=fore chose:. to present the
prominent paradigms by discussing representative examples. In separate sections
we give au overview, example, and discussion of (1) clinical algcrithms, (2)
databank analysis, (3) mathematical models, (4) pattern recognition, (5)
Bayesian analysis, (6) decision theory, and (7) symbolic reasca'ng. We close
each section by identifying the range of applications for which the approu~h
appears most appropriate, the limitations of the approach, and the ways in which
symbolic reasoning techniques may strengthen the approach by improving its
performance or acceptabilircy.

The seven principal examples we have selected are not necessarily the
best nor the most successful; hovever, they illustrate the issues we wish to
discuss within the wajor paradigms. We have also referenced other closely
related systems, 80 the btibliography should guide the reader to more details on
particular topics. Any attempt to categorize programs In this way {s inherently
fraught with problems in that saveral systems draw upon more than one paradigm.
Thus we hsve occasionally felt obligated to simplify a topic for clarity in
light of the overall purposes of this review and the limitations of the space
available to us.

Because wa are only interested here in decision msking tools for use by
clinicians, we have chosen to disregard systems that are designed primarily for
use by researchers (39],(50]), [65],{90]. PFurthermore, we shall not discuss
biomedical engineering applications of computerc, such ss advanced automated
instrumentation techniquas (e.g., computeriszed to-o;nphyz) or sijnal processing
techniques (e.g., programs for IXC analysis (79] or patient wmonitoring [116])).
Because they do not explicitly wake inferences, we have also omitted programs
designed largely for data storage and retrieval with the actusal anslysis aud
dacision making left to the clinician [36),(58),[124). We have also chosen to

55.- Kak’s article in chis issue of the PROCEEDINGS.
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discuss working computer programs rather than unimplemented theories or early

reports of work in progress.

2 Clinical Algorithms and Automation

2.1 Overview

Clinical algorithus, or protocols, are flowcharts to which a
diagnostician or therapist can refer when deciding how to manage a patient with
a specific clinical problem [97]. Such protocols usually allow decisions to be
made by carefully following the simple branching logic, alrhough there are
buile-in safeguards whereby referrals to experts are wade if a patient is
unusually complex. The value of a protocol depends upon the infrequen.y with
which such referrals are made, so it s important to design algorittm: that
reflect an appropriate balance between safety and efficiency. In general,
algorithms have been designed by expert physiclans for use by paramedical
personnel who have been entrusted with the performance of cerf:ain routine
clinical-care tasks3. The methodology has been developed in part bLecause of a
desire to define basic medical logic concisely so that detailed training in
pathophysiology would not be necessary for ancillary practitioners. Experience
has shown that intelligent high school graduates, selected in large part because
of poise and warmth of personality, can provide excellent car2 guided by
protocols after only four to eight weeks of training. This care has been shown
tc be equivalent to that given by physicians for the same limited problems, and
to be accepted by physicians znd patients alike for such diverse clinical
situsticns as diabetes msnagement ([56],([66)1, pharyngitis (38], headache [37],
and other disease categorias {(104),[110].

The role of the computer in such applications has been limited, however.
In fact, several groups 1initially experimented with computer representationm of
the algorithms but have since abandoned the efforts and resorted to prepared
paper forms [56],([110). 1In these cases the computer had originally guided the
physician assistant’s collection of data and had specified precisely what
decisions should be made or actions taken, 1in accordance with the clinical
algori:hm. However, since the algoritheic logic is generally simple, and can

3clinical algorithms have alsc been prepared for use by physicians
themselves, but Grimm has found that thez are generally less well-accepted by
doctors [3‘]- He showed, however, t'iat physician performance couid improve vwhen
protocols were used in certain settings.
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often be repiesented on a g9ingle sheet of paper, the advantages of an autcmated

approach over a manual system Lave not been clearly demonstrated. In one study

Vickery showed that supervising ohysicians could detect no significant

difference between the performance of physicians® assistants wusi‘3 automated

versus manual systems, although the computer system entirely eliwinated errors

in data collection (since it demanded all relevant data at the appropriate time)

[110). Furthermore, the computer could not, of course, decide whether the actual
observations entered by the pu.vsicians’ assistant were correct; yet this kind of

inaccuracy was one of the most common reasons that supervisors found an

assistant’s performance unsatisfactory.

There are two other ways in vwhich the computer has been used in the
setting of clinical algorithms. First, mathematical techniques have been ussd
to analyze signs and symptoms of diseases and thereby to identify those that
should most appropriately be referenced 1in corresponding c¢linical algorithms
{30],(55],(113]. Tne process for distilling expert knowledge in the form of a
clinical algorithm can be an arduous and imperfect one [97]); formal techniques
to assist with this task may prove to be very valuable.

Some researchers in this area also use computers to assist with clinical
care audit by comparing actual actions taken by a physicians® assistant with
those recommended by the algoritim itself. Sox et al. [104] have described a
system in which the assistant’s checklist for a patient encounter was sent to a
central computer and analyzed for evidence of deviation frum the accepted
protocol. Computer—generated reports then served as feedback to the physicians’
assistant and to the supervising physician.

2.2 Exauple

We have selected for discussion a gproject that differs from those
previcusly cited in that (1) computer techniques are still being used, and (2)
the clinical algorithms are designed for use by primary care physicians
themselves. This 1s the cancer chemotherapy system developed in Alabama by
Mesel et al. [70]. The algorithms were developed to allow private
practitioners, at a distance from the regional tertiary-care center, to manage
the complex chemotherapy for their cancer patients without routinely referring
them to the central oncologists. Mgsel et al. have described a "consultant-
extender system" that ensbles the primary physician to treat patients with
Hodgkin‘s Disease under the supervision of a regional speclalist. Five
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oncologists developed a care protocol for the treatment of Hodgkin’s Disease,
and this algorithm was placed on-line. Once patients had agreed tc participste
in the study, their private physici-ns wuld prepare "encounter forms" at the
time of each office wvisit. These forms would document pertinent interval
histary, phyjsical findings, and lab data, as well as chemotherapy administered.
The form would then be sent to the regional center where it was aaalyzed by the
computer and a customized clinical algorithm was produced to assist the private
physician with the management of that patient during the next appointment. Thus
the computer program would take into account the ways in which the individual
patient’s disease might progress or improve and would prepare an appropriate
clinical algorithm. This protnzol was sect back te the physician in time for {t
to be available at the next office wvisit. The private practitioner was
encouraged to call the regional specialist directly 1{f the protocol seemed in
gsome way inadequate or additional 7uestions arose. The authors present data
suggesting that their system was well-accepted by physicians and patients, and
that excellent care was delivered®. Retrospective review of cases that were
treated at the referral center {itself, but without the use of the grutocols,
show:d a2 162 rate of variance from the management guidelines specified in the
algorithms; there was no such variance vhen the protocols were follcwed. Thus
algorithms may be effective tools for the administration of complex specialized

therapy in circumstances such as those described5.

2.3 Discussion of the Methodology

Although clinical algorithms are smong the most widespread and best
accepted of the decision sids described in this article, the simplicity of their
logic makes it clear why the technique cam.s¢ be effectively appiied in wost
medical domains. Decision points in the algerithms are generally binary (i.e.,
a given sign or symptom is either present or sbsent), and there tend to be many
circumstances that can arise for which the user 1is advised to coansult the
supervising physicisn (or specialist). Thus the difficult decision tasks are
left to experts, and there is gemerally no formal algorithm for wanaging the
case from that point on. It ts precisely the simplicity of cthe algortthmic

4This 1s an interesting result in light of Grimm's experience mentioned
in footnote 3. One possible explanstion is thar physicians were wmore accepting
of the algorithmic nsproach in Mesel’s case because it allowed thes to perform
taska that they would previously not have ~een sbles to undertaka.

More recently the Alabama group has reported similar success
mlmtin! a consultant-extender system for adjuvant chemc*horipy 1in breast
carcinoma (129).
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logic, and the safeguard of the supervising expert, which has permitted many
algorithms to be represented on one or two sheets of paper and has obviated the
need for direct computer use in most of ~he systems. The contridbutions of
clinical algorithms to the distribution and delivery of health care, to the
training of paramedics, and to quality care audit, have been 1impressive and
substantial. However, the approach {s not suicable for extensfon to the complex

dacision tasks to be discussed in the following sections.

3 Databank Analysie for Prognosis and Therapy Selection

3.1 Overview

Automation of wmedical record keeping znd the development of computer-
based patient databanks have been msjor research concerns since the earliest
days of medical computing. Most such systems have atcempted to avoid direct
interaction betweer the computer and the physician recording the data, witl the
systems of Weed [1237.(124) and Greenes [)6] being notable exceptiouns. Although
the earliest systems were designed merely as record-keep!1p devices, there have
been several recant attempts to creste programs that could also provide analyses
of the information stored in the computer databank. Scwe early systems {23],152)
had retrieval wmodules that identified all patient records m=tching a Boolean
combination of descriptors; however, f{urther analyses of these records for
decision making purposes was left to the i‘nvestigator. Ueed his not strezsed an
analytica! component in his automated problem—oriented racord (124], but others
have developed decision aids which use mnedical record systems fashioned after
his [103).

The systems for datsbank analysis all depend on the development of a
complete and azcurste medical record system. Ouce such a system is developed, a
number of additional capsbilities canm bde provided: (1) correlstions smong
varisbles cam te calculated, (2) prognostic iedicators can Ss weasured, and (J)
the response to various therapies can be compared. A physicias faced with o
complex uanagement decision can look to such a system for assistance in
identilying patients in the past who had similer clinical problems and can then
see hov those patients responded to various tharapies. A ciimical imvestigator
keeping the records of his study patients on such a system can use the program’s
statistical capsbilities for dats analysis. HNence, although these applicatiocas
are inherently data-intensive, the kinds of “knovledge” geserated by specialized
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retrieval and statistical routines can provide valuable assistance for clinical
decision makers. For example, they help avoid the inherant biases of anecdotal
experience, such as occur vhen an 1individual practitioner bases decisions
Primarily on personal encounters with one or two patients having a rare disease
or complex of symptoms.

There are many excellent programs in this category, one of which (s
discussed {n some detail in the next section. Several others warrant mention,
however. The HELP System at the University of Utah [117},[119],[120] uses a large
data file on patients 1in the Latter-Day Saints flospital. Clinical experts
formulate specialized "HELP sectors” which are collections of logical rules that
define the criteria for a particular wedical decision. These sectors are
developed by an interactive process; the expert proposes important criteria for
a given decision and is provided wvith actual datu regarding that criterion
(based on relevant patients and controls from the computer databank). The
criteria in the sector are thus adjusted by the expert until adequate
discrimination is made to justify using the sector’s logic as a decision tool®.
The sectors are then used for a variety of tasks throughout the hospital.

Another syvcem of interest is that of Peinstein et al. at Yale ([21], in
wvhich physicians interact with the system to request assistance in estimating
progrosis and guiding managsment for patients with lung cancer. Simfilarly,
Rossti et al. have developed a system at Duke University which uste a large
databank oun patients who have undergone coronary arteriography (88]). Rey
pa:ients can be matched against those in the databank to help determine patient
prognosis under a variety of management alternatives.

3.2 Exsmple _

One of the most successful projects in this category is the ARAMIS systea
of Fries at Staaford University (24). The approach was designed originally for
use 1o an outpatient rheumatology climic, bdut then broadened to s general
clinical dacabase system, the Time-Orieanted Databamk (TOD) [126),[127], so that it
could be tramsferred to clinics in omcology, metabolic disease, cardiology,
endozrinology, and certaia pediatric subspecislties. All clinic records are
kept in a tabular format ia which a columm in a large table indicates a specific
clintic visit and the rows indicate the releveat clinical parameters that are

‘Thl..!tGCCII uight be seen as a techaique to assist vith the formulation
of clinical algorithms ss discwssed ia the previous section. Asother approach
using dstsbank amalysis for algorithm development is described in [30].
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being fcllowed over time. These charts are msaintained by the physicians seeing
the patient in clinir, and the new column of data is later transferred to the
computer databank by a transcriptiomist; in this way time-oriented data on all
patierts are kept current. The defined database (clinical parameters to te
followad) ias determined by clinical experts, and in the case of rheumatic
diseases has nov been standardized on a national scale [41].

The information i{n the databank can be used to create a prose summary of
the patient‘s curreut status, add there are graphical capabilities wvhich can
plot specific psrameters for a patient over time [126). Howsver, it is 1o the
snalysis of stored clinical exnerience that the system has {ts greatest
potential wutilicy [23]. In addition to perforaing search and statistical
functions such as those developed in databank systess for clinical investigation
{50), (65), ARAMIS offers a prognostic analysis for a nev patient vwhen a
mansgement decision is to be made. Using the consultative services of the
Stanford Ismunology Division, an individual practitioner may select clinical
indices for his patient that he would like matched against other patients in the
databank. It is imperative that such indices be seiscted wisely and hence with
expert advice; the Stanford immunologists have found that the best descriptors
for characterizing patients are often different from those that a novice chooses
to use. Based on two to five such descriptors, the computer locates relevant
prior patients and prepares a report autlining their prognosis with respect to a
variety of endpoints (e.g., death, development of renal failure, arthritic
status, pleurisy). Therapy recommendations are also generated on the basis of a
response index that {is calculated for the matched patients. A prose case
analysis for the physiclan’s patient can also be gsusrated; this readable
document summarizes the relevant data from the databank and explains the basis
for the therapeutic recommendation.

The rheumatologic databank generated under ARAMIS has now been expanded
to iovolve a national netwvork of {mmunclogists who are accumulating time-
oriented data on their pstienta. This natiomal project seeks in part to obtain
enough data so that groups of retrieved patients will be sizable, thereby
controlling fur scue observer variadbility and making the system’s
recommendations more statistically defensible.

3.3 Discussion of the Methodology
Datsbank anslysis systems have powerful capabilities to offc. to the



7 Datsbank Analysis for Prognosis and Therapy Selection Page 12

individual clinical decision maker. Furthermore, medical computing researchers
recognize the potential value of large databanks in supporting many of che other
decision waking approaches discussed in subseque.. sectiomns. Thete are

{mportant additional issues regarding databank systems:

{1) Data acquisition remains a major problem. Many systems have avoided direct
physician-compute. interaction but have then been faced with the expense and
errors of transcription. The developers .f one well-accepted record system
st1ll erxpress their desire to implement a direct interface with the
physician for these reasons, although they recognize the difficulties
enccuntered in ercouraging direct use of a computer system by doctors (1071.

(2) Analysis of data in the system can te complicated by missing values that
{requently occur, outlying values, and poor reproducibility of data across
time and among physicisns. Conversely, the system can itself be used to
identify questionable values of tests or observations.

(3) The decision aids provided tend to emphssize patient management rather than
diagnosis. PFeinstein’s aystem [21] is only useful for patients vith lung
cancer, for example, and the ARAMIS prognostic routines, which are designed
for patient mansgement, assume that the patieat’s rheumatologic d* agnosis 1is
already known.

(4) There is no formal correlation betwesen the way expert physiclans spproach
patient management decisions and tha way the _ vograms arrive at
recommendations. PFeinstein and Koss felt that the acceptadbility of their
system would be limited by a purely statistical approach, and they therefore
chose to mimic human reasoning processes to a large extemt /59], but their
approach appears to be an exception.

(5) Data storage space requirements can be large since the decision aids ot
course requira a comprshensive medical record system as a basic compdnent.

Slamecka has distinguished berwaen structured end empirical spproaches to
clinical consulting systems (103], pointing out taat datsbanks provide a largely
empirical basis for advice whereas structured spproaches tely o judgmental
knovledge elicited frow the litersture or {from experts. It s importaat to
note, however, that judgmental Tknowledge 1is itself based on empirical
information. Even cn axpert’s "intuitions” are based om observatious and "dats
celisctivn” over yaars of experience. Thus ome might argue that large,
coxplets, and flexib.e dJatabanks could form the basis for large smowmta of
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judgmental knowledge that we now have to elicit from other sources. Some
researchers have {ndicated a desire to experiment with methods for the automatic
generation of medical decision rules from databanks, and one compouent of the
research on Slamecke’s MARIS system 1is apparently pointed ic that direction
{103]. 1Indead, some of the most exciting and practical uses of large databanks
may be found precisely at the interface with those knovledge engineering tasks

that have mont confounded researchers in medical symbolic reasoning (S].

4 Mathematical Models of Physical Processes

4.1 O erview

Pathophyniclogic pracesses can be well-described by mathemati.al formulae
in a limited number of clinical problems areas. Such domains tave lent
themselves wall to the development of computer~-based decision aids since the
issues are generslly well-defined. The actual techniques used by <cuch programms
tend to reflect the details of the individual applications, the wmost celebrated
of wvhich have been in pharmacokinetics (specifically digitalis dosing), acid-
base/electrolyta 4isorders, and respiratory care [69].

It is important that cooperating experts assist with the definition of
pertinent varimbles and the mathemstical characterization of the relationships
smong them. The computer program requests the relevunt data, makas the
appropriate cowputations, and provides a clinical analysis or recommendation for
therapy. Some of the programs have also involved branched-chain logic to guide
deciaious sbout what further data are needed for adequate mly.iﬂ.

Programe to aseist wvith digitalis dosing hsve graduslly ir.croduced
broader medical knowledge over the last ten Yyears. The earliest wvork was
Jalliffe’s (48) snd was bsved upon his considersble experience otudying the
pharuacokinetics of the cardiac glycosides. His computer program used
mathematical formuvlations based on perameters such as therspeutic gosals (e.g.,
desired predicted blood levels), body weight, rezal function, and route of
administration. In oune study he showed that computer vecommsndations reduced
the frequemncy of adverse digitalis res:tions from 3I5% to 122 [49). later,

""l:nclnd-cluu" '.oﬁc refers to mecheniswe ty which portioms of a
decision network cem bde convidered or ignored depandiag upon the dats om s givea
cass. Yor example, in an acid-base program the saion uut;ht ba calculated
and & branch~poiat could the:. determine whether the pathway for mly:iaou
slevated sniom P would be rr.quired. If the gap ware not elevated, that le
portion of the logic metwork could be skipped.
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auother group revised the Jelliffe model to permit a feedback loop in which the
digitalis blood levels cbtained with initial doses of the drug were considered
in subsequent therapy recommendations [78),[96). More recently, a third group
{n Boston, noting the insensitivity of the first two approaches to the kinds of
nonnumerical observations that experts tend to use in modifying digitalis
therapy, augmentad the pharmacokinetic model with a patient-specific model of
clinical status {35]. Running thelr system in a monitoring mode, 1in parallel
with actual clinical practice on a cardinlogy service, they found that each
patieit in the trial in whom toxicity developed had received more digictalis than

would have been recommended by their program.

4.2 Example
Perhaps the best known program in this category is the interactive system

developed at BJoston’s Beth Tsrael Hospital by Bleich. Originally designed as a
program for assessment of acid-base disorders (2], it was later expanded to
cmsider electrolyce abnormalities as well ([3},[4]. The knowledge 1in Bleich’s
program 1s a distillation of his own expertise regarding acid-base and
electrolyte disorders. The system begins by collecting initial laborstery data
fros the physician seeking asdvice on a patient’s managewent. Sranched-chain
logic s triggered by asboormalities in the initial daca g0 that only the
pertineat sections of the extensive decision pathways created by Bleich are
explored. The approach is therefore similar to the flowcharting techniques used
by the clinical algorithms of Sectfon 2, but {it iaovolves more complex
mathematical relutionships than algorithms typically do. Essentially all
questions asked by the program sre numerical laboratory values or "yeas-no"
questions (e.g., "Does the patient have pitting edema?”). Depending upom the
complexity and ssverity Jf the case, the program eventuslly generates an
evalustion note that may vary ia lcnggh from a few lines to several pages.
Included are suggestions regarding possible ceuses of the observed abnormalities
and suggestions for correcting thea. Literature re’nrences are also provided
with -he recommendations.

Although the program was made available at several East Coast
institutions, few physicisas accepted it as an ongoing clinical tool. Bleich
poiants ocut that part of the reason for this was the system’s inherent
educaticual impact; physiciass simply began to anticipate its sualysis after
they had used 1t a fow times (318,

_—Inoto receatly he has been ll:ﬂtillltl with the progras opcra:in' as a
mcaitoriag system, theveby avoiding direct ianteractiom with the physician.
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The system’s lack of sustained acceptance by physicians is probably due
to mcre than its educational impact, however. For example, there is no feedback
in ths system; every patient is seen as a nev case and the program has no
concept of following a patient’s reaponse to prior therapy. Furthermore, the
program generates differential diagnosis lists but does not pursue specific
etiologies; this can be particularly bothersome when there are wmultirle
coexistent disturbances in a patient and the program sizply suggests parallel
lists of etiologies without noting or pursuing the possible interrelationships.

Finally, the system is “iighly individualizad in that it contalns only the
parsmeters and relationships that Bleich specifically thought were important to
include in the 1logic network. Of course human consdultants also give
personalized advice which may differ from that obtained from other experts.
However, a group of researchers in Britain ({85] who compared Bleich’s program %o
four other acid-base/electrolyte systems, found total agreement among the
programe in only 207 of test cases vhen the;e systems vere askad to define the
acid-base disturbance and the degree of compensation presemt. Their analysis
does not reveal which of the programs reached the correct decision, however, and
it may be that the results are more an indictment of the other four programs

than a valid criticism of the advice from Bleich’s acid-base component.

4.5 Discussion of the Methodologies

The programs mentioned in this section differ from one another in several
respects, and each tends to overlap with cther paradigess we have discussed.
Bleich’s program, for example, 1s essentially a complicated clinical algoritim
incerfaced with mathematical forwulations of electrolyte and acid-base
pathophysiology. As such 1t suffers from the weasknesses of all algorithmic
approaches, most importantly its highly structured and inflexible logic which is
unable to comtend with circumstances not specifically anticipated 1in the
sigoritim. The digitalis dosing programs all drav on wmathematicsl techniques
from the field of biomedical wodeling (40), but have recently shown more
reliance on methods from other areas as well. In particular these have included
symbolic reasoning methods that allowv clinical expertise to be encoded and used
in conjunction with wmathemstical techniques [35]. The Boston group that
developed this wmost recent digitalis program 1is <‘anterested in similarly
developing an acid-base/eslectrolyte system so that judgmental knowledge of
expsrts can be interfaced with the mathematical models of pathophyuiolo.y’.

grhil project vas dascribed by Prof. Peter Ssolovits, of MIT’s clinical
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There is also a large research community of mathematicians who attempt to
understand and characterize physical processes by devising simulation models
[40]. Although such models are largely empirical and have generally not found
direct application in clinical medicine, their research role may eventually be
broadened to provide practical decision aids through interfaces with the other
paradigms described in this review.

The major strength of mathematical models 1is their ability to capture
mathematically sound relationships in a concise and efficient computer program.
However, the major limitation, ar *~ith moret of the paradigmas discussed here, is
that {ew areas of medicine are amenable to firm, quantitative description.
Because the accuracy of the results depend on correct ldentification of relevant
parameters, the precision and certainty of the relationships among them, and the
accuracy of the technigques for measuring them, mathematical models have limited
ipplicabiity at present. Furthermore, those domains that do lend themselves to
mathematical description may still benefit from 1interactions with symbolic
reasoning techniques, ss has been demonstrated in the digitalis therapy adviser
(35].

b) Stat{stical Pattzrn Recognition Techniques

Se.l Ovarview

Pattern recognition techniques define the mathematical relatioaship
between wneasurable features and ciassifications of obtjects [151,(51). 1Ia
medicine, the presence or absence of each of several siguns and symptoms 1in a
patient may be definitive for the classification of the patient as "sbnormal” or
into the category of a specific disease. They are also used for prognosis {l],
or predicting disease duration, time course, and outcomes. These techniques
have been applied to a variety of medical Zomains, such as image proceseing and
signal analysis, in addition to computer-sssisted diagnosis.

In order to find the diagnostic pettern, or discriminant function, the
sethod requires a training set of objects, for which the corract classification
is already known, as well as reliable values for their messured features. If
the form and parsmeters are not known for the statistical distributioms
underlying the festures, them they sust be estimated. Parametric techniques

decision maki roup, dur a worhshop on artificial incelligence 1im medicine
at the Univot:!t; of *bkyo‘tg November !97!.
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focus on learning the parameters of the probability density functions, while

non-parametric (or "distribution-free") techniques make no assumptions about the

form of the distributions. After training, themn, the pattern can be compared to
new, unclassified objects to aid 1in deciding the category to which the new
object belongllo.

There are numerous variations on this general approach, most notably in
the mathematical technigues used to extract characteristic measurements (the
features) and to find and refine the pattern classifier during training. For
exsuple, linear regression analysis is a commonly used technique for finding the
coefficients of an equation that defines a recurring pattern or category of
diagnostic or prognosti: interest. A class of patieats can be described ty a
feature vector X = I[x;, X3, <«-s, Xp] (vhere xy i3 one of n descriptive
variables). The goal 1is to produce an equation relating the posterior
ptobabilitiul1 of each diagnostic class to the feature vector through a set of

n coefficients (11)12:
P(DyIX) = a)x] + a3x3 + <o + apxy

Recent work emphasizes structural relatioaships among sets of [eatures more than
statistical ones.
Three of the best known training criteria for the discriminant function

are:

(x) least-squared-error criterion: choose the function that wminimizes the
squared differences between predicted and observed measurement values;

(b) clustering criterion: choose the function that produces the tightest
ciusters;

(c) Bayes’ criterion: choose the function that has the minimum cost assoclated
with iacorrect dia'uolall3-

101e 1o possible to detect patterns, even without a known claasification
for objects in the trninia% set, with so-called "ynsupervised” learni
techniques. Also, it i{s poasible to woirx with both numerical and non-numerica
measurements .

llthe posterior probability of a diagoostic class, represented as
(D Iia; 1s the probability that a patient falls in diagnostic category Dg given
that ¢! feature vector X has been observed.

l2gqq [62] for a study in which the coefficients are reporisd becsuse of
their medical import.

12Mis i3 one of many uses of Bayes’ Theorem, a definitional rule that
relates posterior and prior probabilities. PFor an overview of its use as a
diagnostic rule (ss opposed to a training criterion) and a dafinition of the
formula, see Sectiom 6.
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Ten commonly used mathematical models based on these criteria have been shown to

produce remarkably similar diagnestic results for the same data (7).

5.2 Example

There are numerous papers on uses of pattern recognition methods in
medicine. Armitage [1] discurses three examples of prognostic studies, with an
emphasis on regression methods. Goldwyn et al. [31) discuss uses of cluster
analysis. One recent diagnostic application by Patrick (73] wuses Bayes’
criterion to classify patients having chest pains {nto three categories: Dj:
acute myocardial infarction (MI); Dj: coronary insufficiency; and Dj: non-
cardisc causes of chest pain. The need for early diagnosis of heart attacks
without laboratcry tests is a prevalent problem, yet physicians are known to
misclassify about one third of the patients in categories D) and Dy and about
80% of those 1in D3. In order to determine the correct classification, escn
patient in the training set was clasaified after 3 days, based on laboratory
data including electrocardiogram (ECG) and blood data (cardiac enzymes). There
remained some uncertainty about several patienss with "probable MI." Seventeen
varizbles were selected from many: 9 features 'vrith continuous values (including
age, heart rates, wvhite blood count, and hemoglobin) and 8 features with
discrete values (sex and 7 ECG features).

The training data were wmeasurements on 247 patients. The decision rule
was chosen using Bayes’ theorem to compute the posterior probsbilities of each
diaguostic class given the feature vector X (X = [x;, X3, +++ , X]7]+ Then a
decision tule was chosen to minimize the probability of error by adjusting the

coefficients on the feature vector X such that for the correct class Dy:

P(D4IX) = MAX[P(D;IX), P(D3IX), P(D3iX);

The class conditional probability density functions must be estimated
initially, and the perforsance of the decision rule depends on the accuracy of
the assumed model.

Using the same 247 patients for testing the approach, the trained
classif’er sveraged B0 correct diaguoses over the three classes, usiag only
data available at the time of admizaion. Physicians, using wore data than the
computer, averaged only 50.5% correct over these three categories for the same
patients. Training the classifier with a subset of the patients, and using the
remainder for testing, produced nearly as good results.
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5.3 Discusgion of the Methodology

The number of reported wmedical applications of pattern recognition
techniques is large, but there are also numerous problems associated with the
approsch. The most obvious difficulties sre choosing the set of features in the
first place, collecting reliable measurements on a large sample, and verifying
the initial classifications among the training data. Current techniques are
inadequate for problems in which trenda or movement of features are {mportant
characteristics of the categories. Also the problems for which existing
techniques are accurate are those that are well characterized by a small armber
of featvres ("dimensions of the space").

As with all techniques based on statistics, the size of the sampie used
to define the categories 1s an important consideration. As the number of
important fea:ures and the number of relevant categories increase, the required
si:: of the training set also increases. In one test (7], pattern classifiers
trained to discriminate among 20 disease categories from 50 symptoas were
correct 51X ~ 64% of the Lime. The same methods were used to train classifiers
to discriminate between 2 of the diseases, from the same 50 symptoms, and
produced correct diagnoses 92% - 982 of the time.

The context 1in vhich a 1local pattern 1is 1identified raisss problems
related to the 1ssue of utilizing medical knowledge. It 1s difficult to find
and use classifiers that are best for a small decisioa, such as vhether an area
of an X-ray is 1inside or outside the heart, and integrate those into a global
classifler, such as one for abnormal heart volume.

Accurate application of a classifier in a hospital setting also requires
that the measurements in that clinical environment are consisteat with the
seasurenments used to train the classifier initially. VPor example, 1if disecases
and symptons are defined differently in the nev setting, or if lab test values
are reported in different ranges, or different 1lab tests used, then decisious
based on the classification are not reliable.

Pattern recognition techniques are often misapplied in wedical domains in
vhich the assumptions are violated. Some of the difficulties noted above are
avoided in systems that integrate structural knowledge into the nuserical
methods and in systems that integrate numan and machine capabilities into
single, interactive systems. These modifications will overcome one of the major
difficulties seen in complstely automated systems, that of providing the systea
with good "intuitions" based on an expert’s a priori kxnowledge and experience
{si1.
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6 Bayesian Statistical Approaches

6.1 OQverview

More work has been done on Bayesian approaches to computer-based medical
dectsion making than on any of the other paradigms we have discussed. The
appeal of Bayes’ Theoreml4 1s clear: it potentially oifers an exact method for
computing the probabilicty of a disease based on observations and data regarding
the frequency with which these oshservations are known to occur for specified
diseases. In several domains :he technique has beer shown to be exceedingly
accurate, but there are alsc several limitations to the approach which we
discuss below.

In i{ts simplest formulation, Bayes’ Theorem can be seen as a mechanism to
calculate the probability of a disease, in lignt of specified evidence, from the
a priori probability of the disease aund the conditional probabilities relating
the observations to the diseases in which they may occur. For example, suppose
disease Dy is one of n mutually exclusive diagnoses under consideration and E is
the evidence or obser:atioms supporting that diagnosis. Then if P(Dj) is the a
priori probability of the itii disease 15,

P(Dy) P(E(Dy)

P(D4IE) =
z P{Dy) “”uj,
ot

The theorem can also be represenied or derived in a variety of other forms,
including an odds/likelihood ratio formulation. We cannot include a full
discussion here, but any introductory statistics book or Lusted’s vclume [64]
presents the subject in considerable detail.

Among the most commonly recognized problems with the utilization of a
Bayesian approach is the large amount of data required to determine all the
conditional probabilities nseded in the rigorous application of the formula.
Chart reviev or computer-based analysis of large databanks occasionally allows
most of the necessary conditional probabilities to be obtained. A variety of
additional assusptions wust be made. FYor sexample: (1) the diseases under
concideration are sssumed mutuslly exclusive and exhaustive (i.e., the patient

1s assumed to have one of the n diseases), (2) the clinical observations are

l4g180 often referred to as Bayes’ rule, discriminant, or criterion

15fere P(Dilt) is th- g:oblbilit of the ith disease given that evidence
E has been observ the probability that evidence E will be observed
TIn the settiing of the 1th
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assumed to be conditionslly {independent over a given diseasel6, and (3) the
incidence of the symptoms of a disease is assumed to be stationary (i.e., the
model does not allow for changes in disease patterns over time).

One of the earliest Bayesian programs was Warner’'s system for the
diagnosis of congenital heart disease [115]). He compiled data on 83 patients and
generated a symptom-disease matrix consistiag of 53 syuwptoms (atrributes) and 35
disease entities. The diagnostic performance of t"e computer, based on the
presence or absence of the 53 symptoms in a new pat-:.mnt, was tnen compared to
that of two experienced physicians. The program was shown to reach diagnoses
with an accuracy equal to that of the experts. Furtitermore, system parformance
was shown to improve as the statistics in the symptcin-diisease matrix stabilized
with the addition of increasing numb rs of patients.

In 1968 Gorry and Barmett point 4 out that Warmer’e program had required
making all 53 observations for every patient to be diagnosed, a situation which
would not be realistic for many clinical applicatione. They therefore used a
modification of Bayes® Theorem in which ot“ervations are considered
sequentially17- Their computer program analyzed ~observations one at a time,
suggested which test would be most wuseful 1if performed next, and included
termination criteria so that a diagnosis conld be reached, when appropriate,
without needing to make all the observations [32]. Decisious regarding tests
and termination were made on the basis of calculations cf expected costs and
benefits at each step i{n the logical proaesals. Using the same symptom-disease
matrix developed by Warner, they were able to attaian =zuquivalent diagnostic
performance using only 6.9 tests on average19. They pointed out that, because
the costs of medical tests may be significant (in terwms of pa%ient discomfort,
time expended, and financial expense), the use of inefficient testing sequences
should be regarded as ineffective diagncsic. Warner has alsn more recently
included Gorry and Barnett’s sequential diagnosis approach in an application

regarding structured patient history-taking [118].

16rhe purest form of Bayes’ Theorem aliows conditional dependencies, and
the order in which evidence is obtained, to be exglicitly considered in the
analysis. However, the number of required conditional robabilities is so
unvieldy that conditional independence of observations, and non-dependence on
the order of observations, is generally assumed ({108].

175 similar approach wvas devised in Russia at approximately the same time
by Vishnevskiy and associates. Their analyses, and a suu-ari of the impressive
amount of statistical data chey have amassed, are contained in (l1lll1].

1854¢ the decision theory discussion in Sectiom 7.
197egts for determining attributes were defined somevhat differently than

they had Seen by Wstnar. Thus the maximum number of tests was 31 rather than
the 53 observations vsed in the original study.
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The medical computing literature nov includes many examples of Bayesian
diagnosis programs, most ot which have used the nousequential approach, in
addition to the necessary assumptions of symptom Iindependence and murual
exclusiveness of disease as discussed above. Jne particularly successful

research effort has been chosen for discussion.

6.2 Example

Since the late 1960°s deDombal and associates, a* the University of Leeds
(England), have teen studying the diagnostic prccess and developing computer-
based decision aids using Bayesiau probabilicty theory- Their area of
iovestigation has been gastrointestinal diseases, origiually acute abdominal
pain [l12) with more recent analyses of dyspepsia [44] and gastric carcinoma
f1341.

Their program for assessment of acute abdominal pain was evaluated in the
emergency room of their affiliated hospital [12]. Emergency physicians filled
out data sheets summarizi~g clinical and laboratory findings on 304 parients
presenting with abdominal pain of acute onset. The data from these sheets
became the attributes that were subjected to Bayesian analysis; the required
conditional probabilities had been previously compiled from a large group of
patients with one of seven possible diagnoseszo. Thus the Bayesian formulation
assumed each patient had one of these diseases and would select the most likely
on the basis ¢f recorded observations. Diagnostic suggestions were obtained in
batch mode and did not require direct interaction between physician and
computer; the program could generate results in from 30 seconds to 15 ainutes
depending upon the level of system use at the time of analysis [43]. Thus the
computer output could have been made available to the emergency room physician,
on average, within 5 minutes after the data form was completed and handed to the
technician assisting with the study.

During the study [12], however, these computer-generated diagncses were
simply sav'd and later compared to (a) the diagnoses reached by the attending
clinicians, and (b) the ultimate disgnosis verified at surgery or through
appropriate tests. Although the climicians reached the correct djagnosis in
only 652-80% of the 304 canel- (with sccuracy depending upon an individual’s
training and experience}. the program was correct in 91.81 of cases.

Furthermore, in 6 of the 7 disease catsgories the computer was proved more

za;ppcndicitis. diverticulitis, perforated ulcer, cholecystitis, small
bowel obstruction, psncreatitis, and non-specific abdominal pain.
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likely than the senior clinician in charge of a case o assign the patient to
the correct disease category. Of particular {nterest was the progcam’s accuracy
regarding appendicitis, a diagnosis which 1s often wmade incorrectly. In no
cases of appendicitis did the ccmputer fail to make the correct diagnosis, and
in only six cases were patients with non-specific abdominal pain incorrectly
classified as having appendicitis. Based om iz actual clinical decisions,
however, over 20 patients wvith non-specific abdominal pain werse unnecessarily
taken to surgery for appendicitis, aud in six casas patiencs wvith appeundicitis
were "watched" for over eight hours before they were finally taken to the
operating room.

These investigators also performed a fascinating experiment in wvhich they
compared tne program’s performance based on data derived from 600 rezl patients,
with the accuracy the system achieved using "estimates” of conditioval
probabilities obtained from experts 160121, aAs discussed above, the program vas
significantly more effective than the unaided clinician vhen real-iife data were
used. However, it performed significantly less well thar clinicisas when expert
estimates were used. The results supported what several other observers have
found, namely that physiciasns often have very little idea of the "true"
probabilities for symptom-disease relationships.

Another Leeds study of note was an analysis of the effect of the systea
on the performance of clinicians ({13]. The trial we have mentioned that
{nvolved 304 pat.ients was eventually extended to 552 before terminstion.
Although the computer’s sccuracy remained in the raunge of 912 throughout this
period, the performance of clinicians was noted to improve markedly over tiwe.
Fewer negative laparotomies vere performed, for exsmple, and the number of acute
appendices that perforsted (ruptured) also declined. UWowever, these data slowly
returned towards baseline after the study wvas terminated, suggesting that the
constsat awareness of computer monitoriag and feedback regarding systea
performance had temporarily generated a heightened awareness of intellectual

processes smoug the hosp’tal’s surgeons.

6.3 Discussion of the Methodology
The ideal matching of the problsm of acute abdominal pain and Bayesian

anslysis mst be emphasized; the technique camnot necessarily be as effectively

2isycr estimates are referred to s “"subjective” or '‘persomal”
robabilities, and some investigators have argued that tl;:z should dbe used ia
yodm l(n%m when formally darived conditionsl probabilities are wsot
ava e .
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applied in other medical domains vhere the following limitations of the Bayesian

approach may have a greater impact.

(1) The assumption of conditional independence of symptoms usually does not
apply and can lead to substantial errors in certain settings (72]. This has
led some investigators to seek nev numerical techniques that avoid the
independence assumption (3]. If a pure Bayesiar formulation is used
without making the independence assumption, hcwever, the number of reguired
conditicnal probabilities becomes prohibitive for complex real world
problezs (108).

(2) The assumption of mnutual exclusiveness and exhaustiveness of disease
categories is ususlly falme. In actual practice concurrent and overlapping
disease categories are common. In deDombal‘s system, for example, many of
the abdominal psin diagnoses missed were outside the seven "recognized”
possibilitics; if a program starts with an assumption tha: {t need only
cousider a small number of defined likely diagnoses, it will inevitably miss
the rare or unexpected cases (precisely tiie omes with which the clinician is
wost apt to need sssistance).

(3) Ir memy domains it may be inaccurate to assume that relevant conditional
probabilities are stable over time (e.g., the likelihood that a particular
bacterium will be sensitive to a specific antibilotic). Furthermore,
diagnostic categoriss and definitions are coustantly chaneing, as are
physicians’ observational technigues, theresdy invalidating data previously
accumulated??. A similar problem results from variations in a priori
probabilities dependiag wpon the population from whizh a patient is draw?3,
Some observers feel that these sre major limitatiouns to the use of Bayesian
techmiques [16].

ln general, thea, & purely Beyesian approsch cam so coustrain prodlem
formslation as to wmeke s perticular spplicatioa umrealistic and hence
unworkable. Purtharmore, even vhes diagmostic performamce is excellemt such as
in deDombal’s approach to shdominsl pais evalustion, clinical implementation and
system acceptamce vwill generally be difficult. Porms of representation that
allov explasation of system perforumece is familisr terss (i.e., a wore

=!!ut h graduwal ¢ ia definitioas or observational techmiques ma
be ouuaucm dgucublomdm snslynis, a Bayesfon anslysis tﬁq:: ....’.'
such data is inevitably proee to error.

2)4obembsl hes examimed such raphic end pepulstioa-based variations
in probabilities snd has reperted o.t!;‘gmtu of his smalysis [(14]).
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congenial interface with physician users) will heighten clinical acceptance; it

{s at this level that Bayesian statistics and symbolic reasoning techniques may

most beneficially interact.

7 Decision Theoretical Approaches

7.1 Overview

Bayes’ Theorem is only one of several techniques used in the larger field
of decision analysis, and there has recently been increasing interest in the
ways in which decision theory might be applied to medicine and adapted for
sutomation. Saveral excellent reviews of the field are available in basic
reviews {45), textbooks 184), and medically-oriented journal articles
{671,(94],[109). In general terms, decision analysis can be seen as any attempt
to consider values associated with choices, 2s vell as probabilities, in order
to analyze the processes by which decisions are cade or should be made.
Schwartz identifies the calculation of "expected value" as central to formal
decision analysis ([94]. Ginsberg contrasts medical classificaticen problens
(e.g., diagnosis) vith broader decision problems (e.g., "What should 1 do for
this patient?"), and asserts that most important medical decisions fall 1in the
latter category and are best approached through decision analysis (29].

Ths following topics are among the ceatral issues in the field:

(1) Decision Trees. The decision making process can be seen as a sequence of

steps in which the clinician selects a path through a network of piausible
events and actions. Nodes in this tree-shaped network are of two kinds:
decision oodes, where the clinicfan must choose from a set of actions, and

chance nodes, where the outcome is not directly comtrolled by the clinician

but is a probabilistic response of the patient to some action takeu. For
erample, a phyiician may choose to performs a certain test (decision node)
but the occurrence or nomoccurrence of complications may be largely a matter
of statistical likelihood (chance node). By analyzing a difficult decision
process befors taking any actions, it wmay be possible to delineate in
advance all pertinent chance and decision nodes, all plausible outcomes,
plus the paths by which these ouccomes might be reached. Furthermore, data
may exist to allow specific probabilities to be associated with each chance
node in the tree.
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(2) Expected Values. In actual practice physicians make sequential decisions

based on more than the probabilities assnciated with the chance node that
follows. For example, the best possible outcome i{s not necessarily sought
if the costs associated with that "path” far cutweigh those along alternate
pathways (e.g., a definitive diagnosis may not be sought if the required
testing procedure is expensive or painful and patient management will be
unaffected; similarly, some patients prefer to "live with" an inquinal
hernia rather thaa undergo a surgical repair procedure). Thus, anticipated
"costs" (financia.., complications, discomfort, pacient preference) can be
associated with the decision nodes. Using the probabilities at chance
nodes, the costa at decision nodes, and the "value' of the various outcomes,
an "expected value" for each pattway through the tree (and in turm each
node) can be calculated. The ideal pathway, then, is the one which

mzximizes the expected value.

(3) Eliciting Values. Obtaining from physicians and patients the costs and

values they associate with various tests and outcomes can be a formidable
problem, particularly since formal analysis requires expressing the various
costs in standardized units. Ome approach has been simply to ask for value
ratings on a hypothetical scale, but it can be difficult to get the
physician or patient to keep the values24 separate from their knowledge of
the probabiliries 1linked to the associated chance nodes. An alterrvate
approach has been the development of lcttery games. Inferences regarding
values can be made by identifying the odds, in a hypothetical lottery, at
which the physician or patient 1is indifferent regarding taking a course of
action with certain outcome and betting om a course with preterable ocutcome
but with a finite chance of significant negative costs if the "bet" 1is lost.
In certain settings this approach may be accepted and provide important
guidelines in decision making (77].

(4) Test Evaluation. Since the tests which lie at decision nodes are central to

clinical decision analysis, it 1s crucial to know the predictive value of
tests that are availabla. This leads tc consideration of test sensitivity,
specificity, receiver operator characieristic curves, and sensitivity
analysis. Such issues are discussed by FKomsroff in this issue of the
Proceedings (57] and have also been summirized elsevhere in the clinical
literature [68].

24,190 termed M"utilities" in some refurences; hence the term "utility

theory" (84]).
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Many of the w=ejor studies of clinical decision analysis have not
specifically involved computer implementations. Schwartz et al. examined the
workup of renal vasculsr hypertension, developing arguments to show that for
certain kinds of cases a purely quslitative theoretical approach was feasiblec
and useful [94). Howvever, they showed that for wmore compler clinically
challenging cases thz decisions could not be adequately sorted out withour the
introduction of numerical techniques. Since it was impractical to assume that
clinicians would ever take the time to carry out a detajled quantitative
decision analysis by hand- they pointed out the logical role for the computer in
assisting with such tasks and accordingly developed the systea we discuss as an
example below [33].

Other colleagues of Schwartz at Tufts have been similarly active in
applying decision theory to clinical problems. Pauker and Kassirer have
examined applications of formal cost-benefit sanalysis to therapy selection [74]
and Pauker has also looked at possible applications of the theory to the
amanagement of patients with coronary artery disease {76]. An entire issue of
the Nev England Journal of Medicine has also been devoted to papers on this
methodology [46].

7.2 Example
Computer implementations of clinical decision analysis have appeared with

increasing frequency since the mi1d-1960’s. Perhaps the esarliest major work vaz
that of Ginsberg at Rand Corporation [28], with more recent systems reported by
Pliskin and Beck [80] and Safran et al. [91].

We will briefly describe here the program of Gorry et al., developed for
the management of acute renal failure (33). Drawing upon Gorry’s experience
with the sequential Bayesian approach previously sentioned [32]), the
investigators recognized the need to incorporate some vay of balancing the
dangers and discomforts of a procedure against the value of the informatiom to
be gained. They divided their program into two parts: phase I comsidered only
tests with minimal risk (e.g., history, examination, blood tests) and phase II
considered procedures involving wore risk and inconvenience. The phase I
program considered 14 of the 20st common causes of renal failure and used a
sequential test selection wurocess based on Bayes’ Theorea and omitting more
advanced decisfon theoretical techciques [32]. The conditional probabilities
used wvere subjective estinates obtained from an expert nephrologisct and were
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therefore potentially as problematic as those discussed by leaper et zl1. [60]
aee Section 6.2}. The researchers found that they had ro choice but to use
expert ertimates, however, since detailed quantitative data were not available
either in databanks or the llterature.

It {s in the phase II program that the methods of decision theory were
employed because it was in this portion of the decision process that the risks
of nrrocedures becam~ important considerations. At each step in the decision
process this program comsiders whether 1t 18 best to treat the patient
‘mmediately or to first carry out an additional diagnostic test. To make this
lecision the progras identifies the treatment with the highest current expected
value (in the absence of further testing), and compares this with the expected
values of trestments that could b2 fnscicuted 1if another diagnostic test wvere
perforsed. Comparison of the expected values are made in light of the risk of
the test in order to determine whather the overall expected value of the test is
greater than that of ismediate treatment. The relevant values and probabilities
of outcomes of treatment were obtsined as subjective estimates from
nephrologiats in the same way that symptom-disease data had been obtained. All
estinates were gradually refined as they gained exparience using the program,
however .

The program vas evaluated ou |8 test cases in vhich the true diagrosis
wvas uncertain bnt two expert nephrologists were willing to make management
decisfons. 1In 14 of the cases the program selected the same therapeutic plan or
diagncstic test as was chosem by the expsrts. For ihiee <f ths fowr remaining
csses the program’s decision was the physicians’ second choice and was, they
felt, s reasocusble slternative plam of action. In the last case the physicians
alsn accepted rha prograsa’s decision os reasonsble although it was not among

their first twe choices.

7-3  Discussioa of the Mathodology

The exncelleat performance of fory “'s program, despite {ts relisnce on

subjective estimates from uxperts, may serve to emphasize the importance of the
clinical smalysis chat underlies the decisioa theoretical approsch. The
reasoning stepe in wussaging climical cases have bLesn dissected in such detaii
that smsll errors {. the probebility eetimates are appareatly wmuch less
importaant tham they were for deDoubal’s purely BDayesian approach (80]). Gorry
suggests this mey be simply because the decisions msde by the programs are based
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on the coubination of large aggregates of such numbers, bur this argument should
apply equally for a Bayesian system. [t seems to us more likely that
distillation of the clinical domain in a formal decision tree gives the program
so much more knowledge of the clinical problam that the quantitative details
become somewhat less critical to overall system operation. The explicit
decision network 1is a powerful knowledge structure; the "knowledge" 1in
deDowbal’s system lies in conditional probabilities alone and there is n> larger
scheme to override the propagation of error as these probabilities are
mathematically manipulated by the Bayesian routines.

The decision theory approach is not without problems, however. Perhaps
the most dffficult problem is aesigning numerical values (e.g., dollars) to a
human 1life or a day of health, etc. Some critics feel this is a najor
limitation to the methodology [120). Overlapping or coincident diseases are also
not well-managed, unless specifically included in the analysis, and the Bayesian
foundation for many of <che calculations still assumes mutually exclusive and
exhaustive disease categories. Problems of symptom conditional dependence still
remain, and there is no easy way to include knowledge regarding the time course
of diseases. Gorry points out that his program was also 1incapable of
recognizing circumstances in which two or more actions should be carried out
concurrently. Purthermore, decision theory per se does not provide the kind of
focusing mechanisms that clinicians tend to use when they assume an initial
diagnostic hypothesis in dealing with a patient and discard it only if
subsequent data wmake that hypothesis no longer tenable. Other similar
strategies of clinical reasoning are becoming increasingly well-recognized (53]
and account in large part for the applications of symbolic reasoning techniques

to be discussed in the next section.

8 Symbolic Reasoning Approaches

8.1 Overview

In the early 1970°s researchers at several 1institutions simultanecuaely
bagen to investizate potential clinical applications of symbolic zeasoning
techniques drawm from the branch of computer science known as artificlal
intelligence (AIl). The field is well-reviewed in a recent book by Wiaston [128].
The term "artificial intelligence" is generally accepted to include those
computer applications that involve symbolic inference rather than strictly
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numerical calculations. Examples includz programs that reason about mineral
2xploration, organic chemistry, or mclecular biology; programs that converse in
English and understand spoken serntences; and programs that generate theories
from observations.

Such programs gain their power from qualitative, experiential judgments,
codified in so-called ".ules-of-thueb" or "heuristics", in contrast to numerical
calculation programs whose power derives from the analytical equations used.
The heuristics focus the attention of the reasoning program on parts cof the
problem that saem most critical and parts of the knowledge base that seex most
relevant. They also guide the application of the domain knovwledge to an
individual case by deleting items from consideration as well as focusing on
items. The result is that these programs pursue a line of reasoning as opposed
to following a sequence of steps in a calculation. Among the earlies’ symbolic
inference programs 1in medicine was the diagnostic interviewing systea of
Kleinmuntz [54). Other early work included Wortman’s information processing
system, the performance of which was largely motivated by a desire to understand
and simulate the psychological processes of neurclogists reaching diagnoses
(130].

it wvas a landmark paper by Gorry i{n 1973, however, that first critically
analyzed conventional approsches to computer-based clinical decision making and
outlined his motivation for turning to newer symbolic techniques [34]. He used
the acute renal failure program discussed in Section 7.2 [33]) azs an example of
the problems arising when decision analysis is wused alone. In particular, he
analyzed some of the cases on which the progrsa had failed but the physicians
considering the cases had performed well. His conclusions from <chese
observations include the following four points.

(1) Clinical judgment is based 1less on detailed knowledge of pathophysiology
than it 1is on gross chunks of knowledge and a good deal ot detailed
experience from vhich rules of thumb are derived.

(2) Clinicians kuow facts, of course, but their knowledge 1s also largely
judgmental. The rules they learn sllow them to focus attention and generate
hypotheses quickly. Such heuristics permit them to avoid detailed search
through the entire problem spzce.

(3) Clinicians recognize levels of belief or certainty associated with many of
the rules they use, but they do not routinely quantitate or use these

certainty concepts in any formal statistical manner.
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(4) It is easier for experts to state their rules in response to perceived
nisconceptions in others than it (s for them to generate such decision

criteria a priord.

In the renal failure program medical knowledge had been embedded 1in the
structure of the decision tree. This knowledge was never explicit, and
additions to the experts’ judgmental rules had generally required changes to the
tree {tself.

Based on observations such as those above, Gorry identified at least

three important problems for investigacion:

(1) Mcdical Concepts. Clinical decision aids had traditionally had no true
"understsnding" of medicine. Altkough explicit decision trees had given the
decision theory programs a greater sense of the pertinent associations,
medical knovledge and cthe heuristics for problem solving in the field had
never been expiicitly represented nor used. So-called "commen sense” was
often clearly lacking when the programs failed, and this was often vhat most
alienated potential physician users.

(2) Conversational Capabilities. Soth for capturing knovledge from
collaborating experts, and for communicating with physician users, Gorry
argued that further research on the development of computer-based linguistic
capabilities was crucial.

(3) Explanation. Diagnostic programs had seldom omphasized an abiiity to
explain the basis for their decisions 1ia terms understandable to the
physician- System acceptability was ctherefore in:vitably limited; the
physician would often have no basis for declding viether to accept the
program’s advice, and might therefore resent wha: Could be perceived as an
attempt to dictate the practice of medi-ine.

Gorry’s group at MIT and Tufts d/wveloped nev approsches (o examining the rensl
failure problem in light of thes: observations [75].

Due to the limfitations of the older techniques, i was perhaps inevitable
that some wmedical ressarchers would turn to the AI fiald for new techniques.
Major research asreas in Al lnclude knowledge representation, heuristic search,
natural language understanding and generation, and modeals of thought processes
-~ all topics clearly pertineat to the problems w: have been discussing.
Furthermore, Al researchers were beginning to look for applications to which

they could apply some of the techniques they “ad developed in theoretical
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domains. This community of researchers has grown in recent years, and a recent
issue of Artificial Intelligence was devoted entirely to applications of AI to
biology, medicine, and cheuistry (105)25.

Among the programs using symbolic reasoning techniques are several
systems that have been particularly novel and successful. At the University of
Pittsburgh, Pople and Myers have developed a systen called INTERNIST that
assists with test selection for the diagnosis of all d4isesses in internal
medicine [?1]. This awesome task has been remarkably successful to date, with
the program correctly diagnosing a large percentage of complex cases selected
from clinical pathologic conferences 1in the major medical joutn11526- The
program uses a hierarchic disease categorization, an ad hoc scoring system for
quantifving symptom—disease relationships, plus some clever heuristics for
focusing attention, discriminating between competing hypotheses, and diagnosing
concurrent diseases [821. The system currently has an inadequate human
interface, however, and is not yet implemented for clinical trials.

Weiss, Kulikowski, and Amarel (Rutgers University) and Safir (Mt. Sinai
Rospital, New York City) have developed a acdel of reasoning regarding disease
processes in the eye, specifically glaucoma [125]. in this specialized
application area it has been possible to map relationships between observatioms,
pathophysiologic states, and disease categories. The resulting causal
associational network (termed CASNET) forms the basis for a reasoning program
that gives advice regarding disease states in glaucoma patients and generates
management recommendations. The systes is undergoing evaluation by a nationwide
netwerk of ophtholomologists but is not yet offered for routine climical use.

Por the Al researchers the quastion of how best to manage uncertainty in
medical reasoning remains a central 1issue. The programs mentioned have
developed ad hoc weighting systems and avoided formal statistical approaches.
Others have turned to the work of statisticians and philosophers of science who
have devised theories of approximste or inexact reasoning. For example,
Wechsler [122] describes a program that is based upon Zadeh’s fuzzy set theory
(133], and Shortliffe and Buchansn [101] have turned to confirsatiom theery for
their model of inexact reasoning.

!&uly of the systems which use AI techaiques for medical decision making
yers developad on the A o L C e bionet)col scienchs.  Ihe SMEX-
AIM computer {- ph 4 cally located at Stanford Umiversity but 1is used by
researchers nationwide via connections to computer networks. The resource is
funded by the Divisiou of Research Resources, Biotechnology Braanch, Natiomal
instituces of Health.

26pgta communicated by Drs. Po’h and Myers at the Pourth Annual A.I.M.
Vorkshop, Rutgers Univer:ity, June 1978.
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8.2 Example

The symbolic reasoning program selected for discussion 1s the MYCIN
System at Stanford Universiry (102]. The researchers cited a variety of design
considerations which wmotivated the selection of Al techniques for the
consultation system they were developing [99]1. They primarily wanted it to be
useful to physicians and therefore emphasized the selection of a problem domain
{n which physicians had been shown to err frequently, namely the selection of
antibiotics for patients with infections. They also cited human issues that

they felt were crucial to make the system acceptable to physicians:

(1) 1t should be able to explain its decisions in terms of a line of reasoning
that a physician can understand;

(2) it should be able to justify its performance by responding to questions
expressed in simple English;

(3) 1t should be able to "learn" new information rapidly by interacting directly
with experts;

(4) 1ts knowledge should be easily modifisble so that perceived errors can te
corrected vapidly before they recur in another case; and

(5) the interaction should be engineered with the user in wmind (in terms of
prompts, answers, and inforwstion volunteered by the system as well as by

the uscvs).

All these design goals were based on the observation that previcus computer
deciston aids had generally baen poorly accepted by physicians, even when they
were shown to perform well on the tasks for which they were designed. MYCIN’s
developers felt that barriers to acceptance were largely conceptual and could be
counteracted in large part 1f a system were perceived as a clinical tool rather
than a dogmatic replacement for the primary physician’s own reasoning.

Knovwledge of infectious diseases is represeniad in HYCIN as production
rules, each containing a "packet" of knowledge obtained from collaborating
experts [102]27. A production rule 1is simply a conditional statemen: which
relates observations to associated inferences that may be drawn. For example, a
MYCIN rule might state that "if a bacterium is a gram positive coccus growing in
chains, then it is apt to be a streptococcus.” MYCIN’s power is derived from

auch rules in a variety of ways:

Z27production rules are a technique frequenmtl lo in Al research
[9] and effectively applied to othar ociz:tificqg:oblz- 5:3.1§:d(61.
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(1) {t is the program that determines which rules to use and how they should be
chained together t> make decisions about a specific casel®;

(2) the rules can be stored in a machine-readable format but translated into
English for display to physicians;

(3) by removing, altering, or adding rules, the systcm’s knowledge structures
can be rapidly modiffed without explicitly restructuring the entire
knowledge base; and

(4) the rules themselves can often form a coherent explanation of system
reasoning if the relevant ones are translated into Inglish and displayed in

cesponse to a user’s question.

Associated with all rules and infereuces are numerical weights reflecting
the degree of certainty associated with them. These numbers, termed certainty
factors, form the basis for the system’s inexact reasoning [10l]. They allow the
judgmental knowledge of experts to be cz2ptured in rule form and then used 1ir a
consistent fashion.

The MYCIN System has been evaluated regarding its performance at therapy
selection for patieants with either septicemia (132) or meningitis [131]. The
program performs comparably with experts in these two task domains, but as yet
it has 0o rules regarding the other infectious disease problem areas. Further
knovledge base development will therefore be required before NYCIN is made
available for clinical use; hence questions regarding 1its acceotability to
physicians cannot yet be assessed. However, the required implementation stages
have been delineated [100], attention has been paid to all the desig- criteria

mentioned above, and the program does have a powerful explanation capsbility
[9S].

8.3 Discussion of the Msthodology

Vhereas the computations used by the other paradigms: wmostly involve
straightforward apmlication of well-developed computing techniques, artificial
intelligence methods are largely experimental; new approsches to knowledge
repressntation, language understanding, heuristic search, and the other symbolic
reasoning problems we have meationed are still needed. Thus the Al programes
tend to be developed in resesrch exv!ionments whare short term practical results
are unlikely to be found. Howsver, out of this research are emergiag techniques

25l'llc control structure wsed is termed "gosl-orieated” and i# similar to
the consequent-theoress used in Hewite’s H.A-ll 42].
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for coping with many of the problems encountered by the other paradigms we have
discussed. Al researchers have developed promising methods for thandling
concurrent diseases [82),(125], assessing the time course of disease [18], and
acquiring adequate structured knowledge from experts {ll]. Furthermore, inexact
reasoning techniques have been developed and Implemanted [10l] (although they
tend tc be justified largely on intuitive grounds). In addition, the techniques
of artificial intelligence provide a way to respond to many of Gorry’s
observitions regarding the three major inadequacies of prior paradigma as
described in Section 8.1: (1) the medical Al programs all tend to stress the
representation of nmedical knowledge and a sense of understanding the underlying
concepts; (2) wmany of them have conversational capabilities which draw on
language processing research; and (3) explanation capabilities have been a
primary focus cf systems such as MYCIN.

Szolovits and Pauker have rccently reviewed some applications of Al to
medicine and have attempted to weigh the successes of this young field against
the very real problems that lie ahead [108]. They identify several deficiencies
of curreat systems. For example, termination criteria are still poorly
understood. Altnough INTERNIST can diagnose simultaneous diseases, it alsc
pursues all sbnormal findings to completion, even though a clinician often
ignores minor unexplained sbnormalities if the rest of a patient’s clinical
status 1. well understood. In addition, although some of thess programs now
cleverly mimic the reasoning styles observed in experts [17],[53]), it is less
clear how to keep the systems from abandening one hypothesis and turning to
another one as soon as new information suggests another possibility. Programs
that operata this way appear to digress from one topic to another — a
characteristic that decidedly alienates a user regardless of the velidity of the
final diagnosis or advice.

St.ll largely untapped is the power of an Al program to mdersrand its
own knovliedge base, i.e., the structure and content of the reasoning mechanisms
as well as of the medical facts. In effect, AI programs have the ability to
"know what rhey know", the best working example of which can be found in the
prototype system named Tefresias [10]. Because such programs can reason about
their own knowledge, they have the power to encode knowvledge about strategies,
e.g., vhen to use and vhen to ignore specific items of medical knowledge and
which leads to follow up on. Such "meta-level” knowledge offers a new dimension
to the design of "intalligent assistant” programs which we predict will be
exploited in wr:ilcal decision making systems of the future.
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9 Conclusions

This reviow has shown that there are two recurring questions regarding

computer-based clinical decision making:

(1) Performance: How can we design systems that reach better, more reliab’e
decisions in a broad range of applications, and

(2) Acceptability: Fow can we more effectively encourage the use of such systems
by physicians or other intended usera?

We shall summarize these points separately by reviewing many of the

fssues common to all the paradigms discussed in this paper.

9.1 Performance Issues

Central to assuring a program’s adequate performance is a matching of the
most appropriate technique with the problem domain. We have seer. that the
structured logic of clinical algorithms can be effectively applied to triage
functions and other primary care problems, but they would be less naturally
matched with complex tasks such as the diagnosis and management of acute renal
failure. Good statistical data may support an effective Bayesian program in
settings vhere diagnostic categories are small in number, unon-overlapping, and
wel:-defined, but the inability to use qualitative medical knowledge limits the
effectiveness of the Bayesian approach in more difficult patient wumanagement or
diagnostic enviromments. Similarly, mathematical wmodels may support decision
making in certain well-described fields in which observations are typically
quantified, and related by fuactional expressiouns, but in which the knowledge is
typically 1limited to nuserical encoding. These examples, and others,
demonstrate the need for thowghtful consideration of the technique wost
appropriate for managing a c.!uical problea. In general the simplesat effective
approsch is to be prnfcrrd”. but scceptability issues must also be considered
as discussed belovw.

As researchers have ventured into more complex clinical domains, a number
of difficult problems have tended to degrade the quality of performance of
computer-based decision aids. Siguificant clinical problems require large
koovledge bases that contain complex iaterrelatiocnships including time and

29¢ 19 also alwayse .!propriuo to ask whether c ter-based approachas
are needed at sll for a given decisiom makiag task. Por all but the most
complex cliaical algoritims, for example, the developers have tended to discard
¢ ter Pprograms. swuu;. Schwartz et al. potuted out that decision
analyses can oftem be successlully sccomplishad 1ia s qualitative meoner using
paper and pencil (%4].
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functional dependencies. The knowledge of such domains is inevitably open-ended
and incomplete, so the knowledge base must be easily extensible. Not only does
this require a flexible representatior of knowledge, but {t encourages the
davelopment of novel techniques for the acquisition and integration of newv facts
and judgments. Similarly, the lrexactness of medical inferemnce must somehow be
represented and manipulated within effective consultation systems. As we have
discussed, all these perfcrmance issues are important knowledg= engineering
research problems for which artificiasl intelligence already offers promising new
methods.

It 18 also important to consider the extent to which a program’s
"understandirg" of its task domain will heighten its performance, particularly
in settings where Lknowledge of the field tends to be highly judgmental and
poorly quantified. We use the term "understanding” here to refer to a program’s
ability to reason about, as well as reason with, its medical knowledge base.
This 1implies a substantial amount of judgmental or structura! kiovledge (in
addition to data) contained within the program. Analyres of husan clinical
decision making [17],(53] suggest that as decisions move from simple to complex,
a physician’s reasoning style becomes less algorithmic and more heuristic, with
qualitative judgmental knowledge and the coonditions for invoking 1t coming
increasingly into play. FPurthermore, the performance of complex decision aids
will also be heighrened by the representation and utilization of high level
"mera-knovledge" thar permits programs to umderstand their own limitations and
reasouing strategies. In order to design wmedical ~omputing programs with these
canahi’ities, the designers themselves will have to become cognizant of
"knou! - lge englneering” issuss. It 1is especially important that they find
effective ways to match the knovledge structures they use to the comwplexi:y of
the tasks their programs are cesigned to undertake.

9.2 Acceptsbility Issues
A recurring observaticn as one reviews the literature of compute--based

medical decision making is that essentially none of the systems has been
effecrively used outside of a resesrch environmeat, even vhea 1its performance
has been shown to be emcellent! This suggests that (it is aa error to
concentrate research primarily on methods for improviag the computer’s decision
saking performsnce when clinical ijapact depends on sclving other problems of
acceptance as well. Thera are some data [106] to support the extreme view that
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the biases of wedical personne. against computers are so stroug that syutems
wili inevitably be rejected., regardless o performance. However, we are
beginuing to see examples of applications in which initial resistance to
automated techniques has gradually been overcome cthrough the incorporation of
adequate =27ystem bdenefits [1211}.

Perhaps one of the most revealing lessons on this sublect s ar
~bservation regarding the system of “esel et al. [70) described in Section 2.2,
Despite documented physician resistance to cl!inical slgorithms ia other settings
“38], the physicians in Mesel’s study accepted the guidance of protocols for the
aanagement of chemotherapy in their cancer patients. It is likely that the key
to acceptance in this instance is the fact that these physicians had previously
wad no choice but to refer their patients wirh cencer to the tertiary care
center in Biraingham where all complex chemotherspy was admiaistered. The
introduction of the protocols permitted these physicians to undertae tasks that

they had previously been unable to do. It simultanecusly ailowed maintenance of

:lose doctor-patient relationships a»d helped the pstients avoid {frequent long
trips to the ceater. The motivation for the physician to use vhe system is
clear in this case. It s reminiscent of Nossti’s assertiom that physicians
vill first welcoms computer decision aids when they become aware that colleagues
who are using thes have a clear advaatags in their practice 187,

A heightened awaresess of “humas eugisseriag™ issues among medical
computing researchers will alsc make computers more scceptable to physicians by
making the programs easier amd more plessant to use. Fox has receatly revivwed
this fleld (m dezatl (221. The (sswes range from the mechasics of {(mteraction
wvith the computer (e.g.. 28ing display termimals vith such features ar light
peas, specisl keyboards, color, smd grephics) to the festures of the progras
that sake it sppear as a halpful tool rather tham s complicetiag burdea. Al so
iavolved, from both the mechamical and global design sides. it the development
of fienidle laterfaces that tailor the style of the iatersctios & he needs and
desires of individuwal physiciass.

Adoquite atteation mmst s180 be gives to the severe time comstraiats
perceived by physicisms. Ideally they would liks programs to take no ®ore time
thas they curreatly spond vhea accouplishing the same tssk o8 their owm. Time
and schedule pressures are similarly likely to explais the grester resistaace to
astomstios smoag istermn and residests thas smeag wsdical stwdeats or practicing
physiciams {a Startsmes’'s study [106].
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The issue of a program’s "self-knowledge" impacts on the acceptance of
consultation systems in much the same way as it does upon program performance.
Decision makers in general, and physicians in particular, will place more trust
{n systess that appear to understand their own limitations and capabilities, and
that know when to admit ignorance of a problem area or inability to support any
conclusion regarding an individual patient. Moreover, physicians will have a
means for checking up on these automated assistants if the progrzms have an
ability to explain not only the reasoning chain leading to their decisions but
also their problem solving strategies. High-level knowvledge, including a sense
of scope and limitations, msy thus allow a progras to know enough about itsclf
to prevent its own aisuse. Furthermore, since systems that are not easily
modifiable tend not to be accepted, meta-level kniwledge about representation
and interconnections within the knovledge base may help overcome the problem of
programs becoming tied too closely to a store of knovledge that is regionally or
temporally specific. It is therefore {mportant to stress that considerations
such as those we have wmsntioned here may argue in favor of using symbolic
rcasoning techniques even when a somevhat less complex approach might have been

adequate for the decisior task itself.

9.3 Susmary

In sumsary, the trend towards increased use of knowledge engineering
techniques for clinical decision prograns stems frow the cual goals of improving
the performance and 1increasing the acceptance of :uch systems. Both
acceptsbility and performance issues must be considered from the outset {(n a
system’s design because they dictate the choice of methodology as much as the
task domain itself does. As grester experience is gained wiih these techniques,
and as they becoms better knowa “hroughout the medical compu~ing community, it
{8 likely that ws will see increasisgly powerful umions betwaen symbolic
ressoning and the alternats paradigms we have discussed. Oune lesson to be drawn
lies 1in the recognition that much basic resesrch remains to be done {in medical
computing, and that the field is wore than the application of established
comput ing techniques to msdicsl problems.
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