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Abstract.

In this paper we explore the use of 2-3 trees to represent sorted
lists. W analyze the worst-case cost of sequences of insertions and
deletions in 2-3 trees under each of the follow ng three assunptions:
(i) only insertions are perforned; (ii) only deletions are perforned;
(iii) deletions occur only at the small end of the list and insertions
occur only away fromthe small end. Cur analysis leads to a data
structure for representing sorted lists when the access pattern
exhibits a (perhaps tinme-varying) locality of reference. This structure
has many of the properties of the representation proposed by Quibas,
McCreight, Pl ass, and Roberts (4], but it is substantially sinpler and

may be practical for lists of noderate size.
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0. [ ntroduction.

The 2-3 tree [1] is a data structure which allows both fast accessing
and fast updating of stored information. For exanple, 2-3 trees may be
used to represent a sorted list of length n so that a search for any
itemin the list takes 0(log n) steps. Once the position to insert a
new itemor delete an old one has been found (via a search), the incertion
or deletion can be perfornmed in 0(log n) additional steps.

If each insertion or deletionin a 2-3 tree is preceded by a search
requiring Q(log n) tine, X then there is little motivation for inproving
the above bounds on the worst-case time for insertions and deletions. But
there are several applications of 2-3 trees in which the regularity of
successive insertions or deletions allows searches to proceed faster than
Q(log n) . One exanple is the use of a sorted |ist represented as a 2-3
tree to inplement a priority queue [6, p. 152]. In a priority queue
insertions are allowed anywhere, but only the smallest itemin the list at
any moment can be deleted. Since no searching is ever required to find the
next itemto delete, an inproved bound on the cost of consecutive deletions
mght lead to a better bound on the cost of the method as a whole.

In this paper, we prove several results about the cost of sequences

of operations on 2-3 trees. In Section 1 we derive a bound on the total

X/ A function g(n) is Q(f(n)) if there exist positive constants ¢ and
n, with g(n) > cf(n) for all n znO;it iIs o(f(n)) if there exist
positive constants ¢, , ¢, , and nj with c;f(n) < g(n) < cgf(n)

o Hence the '¢ ' can be read 'order exactly' and the
'Q'as 'order at least'; Knuth [7] gives further discussion of the ¢
and ( notations.

for all n >n



cost of a sequence of insertions (as a function of the positions of the
insertions in the tree) which is tight to within a constant factor. In
Section 2 we derive a simlar bound for a sequence of deletions. [If the
sequence of operations is allowed to include intermxed insertions and
deletions, there are cases in which the naive bound cannot be inproved:
©(log n) steps per operation may be required. However, we show in
Section 3 that for the priority queue application nentioned above, a mld
assunption about the distribution of insertions inplies that such bad
cases cannot occur.

In Section 4 we explore some consequences of these results. W propose
a nodification of the basic 2-3 tree structure which allows us to save a
finger to an arbitrary position in the tree, with the property that searching
d positions away fromthe finger costs 0(log d) steps (independent of
the tree size). Fingers are inexpensive to move, create, or abandon,
and several fingers into the same structure can be maintained sinultaneously.
V¢ use the bound on sequences of insertions to show that even when fingers
are used to speed up the searches, the cost of a sequence of insertions is
dom nated by the cost of the searches leading to the insertions. The sanme
result holds for a sequence of deletions and for a sequence of internxed
insertions and deletions satisfying the assunptions of Section 3. Our
structure is simlar to one proposed earlier by Quibas, McCreight, Pl ass,
and Roberts [4], but it is much sinpler to inplenent and may be practica
for representing noderate-sized lists. Their structure has the interesting
property that individual insertions and deletions are guaranteed to be

efficient, while operations on our structure are efficient only when averaged



over a sequence. Qur structure has the conpensating advantage that fingers
are much easier to nove. An obvious generalization of our structure to
B-trees [2] makes it suitable for larger lists kept in secondary storage.

In the final section we discuss some practical issues arising in an
i npl enentation of the structure, describe some of its applications, and

indicate directions for future work.



1. Insertions into 2-3 Trees.

A 2-3 tree [1,6] is a tree such that 2- or 3-way branching takes place
at every internal node, and all external nodes occur on the same |evel.

An internal node with 2-way branching is called a 2-node, and one with

3-way branching a 3-node. It is easy to see that the height of a, 2-3

*
tree with n external nodes |ies between Flog5 nl and |lg n| -—/
An exanple of a 2-3 tree is given in Figure 1.

[Figure 1]

There are several schenes for associating data with the nodes of a 2-3
tree; the usefulness of a particular organization depends upon the operations
to be performed on the data. Al of these schenes use essentially the same
method for updating the tree structure to acconodate insertions, where
insertion nmeans the addition of a new external node at a given position
inthe tree. (Sonetinmes the operation of insertion is considered to
include searching for the position to add the new node, but we shal
consistently treat searches separately in what follows.)

Insertion is acconplished by a sequence of node expansions and
splittings, as shown by exanple in Figure 2. Wen a new external node is
attached to a terminal node p (an internal node having only external nodes
as offspring), this node expands to acconodate the extra edge. If p was
a 2-node prior to the expansion, it is now a 3-node, and the insertion is
conplete, If p was a 3-node prior to expansion, it is now a "k-node",
which is not allowed in a 2-3 tree; therefore, p is split into a pair
of 2-nodes. This split causes an expansion of p's parent, and the process

repeats until either a 2-node expands into a 3-node or the root is split. If

f/WB:use lg n to denote log2 n .



the root splits, a new 2-node is created which has the two parts of the
old root as its children, and this new node becomes the root. An
insertion in a 2-3 tree can be acconplished in e(1+s) steps, where

s 1S the number of node splittings which take place during the insertion.
[Figure 2]

One way to represent a sorted list using a 2-3 tree is shown in
Figure 3. The elenents of the |ist are assigned to the external nodes
of the tree, with key values of the list elenents increasing from|eft
to right. Keys fromthe list elements are also assigned to internal
nodes of the tree in a "symetric" order analogous to that of binary
search trees. Mre precisely, each internal node is assigned one key
for each of its sub-trees other than the rightmost, this key being the
| argest which appears in an external node of the subtree. Therefore each
key except the largest appears in an internal node, and by starting from
the root of the tree we can locate any elenent of the list in 0(log n)
steps, using a generalization of binary tree search. (Several 2-3 search
tree organizations have been proposed which are simlar but not identical
to this one [1, »p. 1473 6, p. 468].)

[Figure 3]

Any individual insertion into a 2-3 tree of size n can cause up to
about 1g n splittings of internal nodes to take place. On the other
hand, if n consecutive insertions are nmade into a tree initially of
size n, the total nunber of splits is bounded by about 35 n instead

of nlgn, because each split generates a new internal node and the

nunber of internal nodes is initially at least (n-1)/2 and finally



at nost 2n-1 . The following theorem gives a general bound on the
wor st-case splitting which can occur due to consecutive insertions

into a 2-3 tree.

Theorem 1. Let T be a 2-3 tree of size n , and suppose that k insertions
are made into T . If the positions of the newy-inserted nodes in the
resulting tree are Py < P2 <.*x <, then the nunber of node splittings

whi ch take place during the insertions is bounded by

1<i<k

The proof divides into two parts. In the first part, we define a rule for
(conceptual ly) marking nodes during a 2-3 tree insertion. This narking
rule has two inportant properties when a sequence of insertions is nmade:
the nunber of marked nodes bounds the nunber of splits, and the
marked nodes are arranged to form paths from the inserted external nodes
toward the root of the tree.

The effect of marking the tree in this way is to shift our
attention fromdealing with a dynamc situation (the 2-3 tree as it changes
due to insertions) to focus on a static object (the 2-3 tree which results
from the sequence of insertions). The second part of the proof then
consists of showing that in any 2-3 tree, the nunber of nodes |ying on

the paths fromthe external nodes in positions P; <P, <..o<p to



the root is bounded by the ekpression given in the statenent of the
t heorem
Ve now define the marking rule described above. On each insertion

into a 2-3 tree, one or nore nodes are marked as foll ows:

(1) The inserted (external) node is marked.

(2) Wen a marked node splits, both resulting nodes are marked. Wen
an unmarked node splits, a choice is nade and one of the resulting
nodes is marked; if possible, a node is marked which has a narked

child.

W establish the required properties of these rules by a series of |emmas.

Lemma 1. After a sequence of insertions, the nunber of marked interna

nodes equal s the number of splits.

Proof . No nodes are marked initially, and each split causes the nunber of

marked internal nodes to increase by one. O

Lemma 2. If a 2-node is marked, then at |east one of its children is

marked; if a 3-node is nmarked, then at least two of its children are narked.

Proof . V¢ use induction on the number of marked internal nodes. Since both
assertions hold vacuously when there are no marked internal nodes, it is
sufficient to show that a single application of the marking rules preserves

the assertions. There are two cases to consider when a 3-node X splits:

Case 1. X is marked. Then before the insertion which causes X to
split, X has at least two marked children. Wien the insertion
expands X to overflow, this adds a thirdnmarked child (by rule 1 or

rule 2). Thus the two marked 2-nodes which result fromthe split of X



each have at |east one marked child.

Case 2. X is unmarked. Then before the insertion which causes X
to split, X may have no marked children. Wen the insertion expands
X to overflow, a new marked child is created. Thus the single marked
2-node which results fromthe split of X can be chosen to have a

mar ked chil d.

A marked 3-node is created when a nmarked 2-node expands. This expansion

al ways increases the nunber of marked children by one. Since a narked
2-node has at |east one marked child, it follows that a marked 3-node

has at |east two nmarked children. Q

Lerma 3. After a sequence of insertions, there is a path of marked nodes

from any marked node to a marked external node.

Pr oof . Gbvious from Lemma 2.

Lenma 4. The nunber of splits in a sequence of insertions is no greater

than the nunber of internal nodes in the resulting tree which lie on paths

from the inserted external nodes to the root.

Proof . Imedi ate from Lemmas 1 and 3. O

This conpletes the first part of the proof as outlined earlier; to
finish the proof we nmust bound the quantity in Lemma kL. We shallrequire
the following two facts about binary arithmetic. For any non-negative

integer k , let y(k) be the nunber of one bits in the binary representation

of k .



Letma 5 [5, p. 48% (answer to ex.l.2.6-11)]. Let a and b be
non-negative integers, and let c be the nunber of carries when the binary

representations of a and b are added. Then v(a)+ v(b) = v(atb)+ C .

Letma 6. Let a and b be non-negative integers such that a < b and
let i be the nunber of bits to the right of and including the |eftnost
bit in which the binary representations of a and b differ. Then

i < v(a) - y()+2l1g(b-a+l) .

Proof . If k is any positive integer, the length of the binary representation

of k is [1lg(k+t1)7. Let c be the nunber of carries when a and b-a
are added. By Lemma 5, wv(a)+ v(b-a) = y(b)+c . Wien a and b-a are
added, at least i- [ilg(b-a+l)7] carries are required to produce a nunber
which differs froma inthei-th bit. Thus i- [1g(b-a+l)] <c .

Conbining inequalities, we find that

I < c+ [1g(b-a+1)] < v(a) -v(®)+ y(b-a) + MNg(b-a+l)]

< v(a) - v(b) - 2llg(b-a+1)] .

Lenma 7. Let T be a 2-3 tree with n external nodes nunbered
0,1,...,n-1 fromleft to right. The number M of nodes (internal and
external) which lie on the paths fromexternal nodes pp <Py <. . <D

to the root of T satisfies

MSE( fgnl+ 2 rlg(Pi-Pﬁ_ﬁlﬂ\ .
<i<k -~ - - J

10



Proof . For any two external nodes p and q , let M(p,q) be the nunber

of nodes which are on the path fromqg to the root but not on the path

fromp to the root. Since the path frompl to the root contains at

nost [1lg n1+1 nodes, we have

M S rlg n—l+l + Z M(pl-l,pl)
1<i<k

Ve define a_label ¢ for each external node as follows. If t is an
internal node of T which is a 2-node, we |abel the left edge out of t
with a 0 and the right edge out of t withal . |If tis a 3-node,
we |abel the left edge out of t with a O and the mddle and right edges
out of t with a 1 . Then the label L(p) of an external node p is
the integer whose binary representation is the sequence of 0's and 1's on
the path fromthe root to p .

Note that if p and q are external nodes such that g is the right
nei ghbor of p , then £(q) < 2(p)+1 . It follows by induction that
1(py) - £(p; ) S py-p; 4 for 1<i <k

Consi der any two nodes Piy o D - Let t be the internal node which
i's farthest fromthe root and which is on the path fromthe root to p; |

and on the path fromthe root to D - V¢ nust consider two cases.

Case 1. The edge out of t leading toward p;_; is labelled O and
the edge out of +t |eading toward i i S labelled 1 . Then

g(pi) > z(pi_l) . Furthermore M(pi_l,pi) , which is the nunber of
nodes on the path from t to Py (not including t ), is equal to
the nunber of bits to the right of and including the leftmst bit in
which the binary representations of z(pi_l) and /z(pi) differ. By

Lemma 6,

11
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\J(l (pi—l) ) - \)()l2 (pi) ) +2 Tlg(pi-Pi_fl) i

Case 2. The edge out of t [eading toward p, ; i s labelled 1 and
the edge out of t |eading toward s is also labelled 1 . Let
E'(Pi_l) be the | abel of 1 if the edge out of t leading toward
P 1 is relabelled 0 . Then /l(pi) - "(pi-1) < p;-p; ; and

l(pi) > E'(pi_l) . Furthernore M(pi_l,pi) is equal to the nunber

of bits to the right of and including the leftmst bit in which the

binary representations of g (pi_l) and E(pi) differ. By Lemm 6,

MP;_10®;) < v(e'(py_q)) - v(a(py)) + 2T 18(e(p;) - £ (p;_)+1))

IN

v(e'(py_1)) - v(e(py)) + 2l le(py-p; ;*+1) |
< V(B(pi-—l» - \)(/Z(Pi>)+ grlg(pi-pi_]fl)ﬁl

since v(£(p;_y)) = v(2'(p;_7))¥1.
Substituting into the bound on M given above yields

WS Tlenlede B G0leg) () +2Miele Ry D)

But nuch of this sum telescopes, giving

M<[lgnl+1+ v(z - v(z(p 2 2 [ig(p.-p, ,+1)1
— n V( (P:L)) \)( ( k>) l<j_§k ( 1711 )

< 2[1g n7 + 2 T 1g(p.-p. -+1) 1
< (gn < g(plpl_l>)

(since v(2(p,)) > 1 and v(£(p;)) < Tlg nl unless k = 1 ). This

conpl etes the proof of Lenma 7 and Theorem1, O

12



The bound given in Theorem 1 is tight to within a constant factor;
that is, for any n and k there is a 2-3treewith n external nodes
and sone sequence of k insertions which causes within a constant factor

of the given nunmber of splits. W omt a proof of this fact.

13



2. Del etions from2-3 Trees.

The operation of deletion froma 2-3 tree neans the elimnation of
a specified external node fromthe tree. As with insertion, the algorithm
for deletion is essentially independent of the particular schene used
for associating data with the tree's nodes.

The first step of a deletion is to renove the external node being
deleted. If the parent of this node was a 3-ncde before the deletion,
it becomes a 2-node and the operation is conplete. |f the parent was
a 2-node, it is nowa "l-node", which is not allowed in a 2-3 tree;
hence some additional changes are required to restore the tree. The
| ocal transformations shown in Figure L are sufficient, as we shall now
expl ai n. If the |-node is the root of the tree, it can sinply be
deleted, and its child is the final result (Figure 4(c)). If the
| -node has a 3-node as a parent or as a sibling, then a local rearrangenent
will elininate the |-node and conplete the deletion (Figures L(a),L(e)) .
Qherwise we fuse the |-node with its sibling 2-node (Figure L(f));
this creates a 3-node With a |-node as parent. W then nust repeat
the transformations until the |-node is elimnated. Figure 5 shows an
exanpl e of a conplete deletion.

[Figure 4]
[Figure 5]

A deletion in a 2-3 tree requires o(l+f)
steps, where f is the nunber of node fusings required for the deletion.
Since the propogation of fusings up the path during a deletion is simlar
to the propogation of splittings during an insertion, it is not surprising

that a result analogous to Theorem 1 holds for deletions.

1L



Theorem 2. Let T be a 2-3 tree of size n , and suppose that k < n
deletions are nmade fromT . If the positions of the deleted external
nodes in the original tree were P <P <. .. <D, then the number of

node fusings which took place during the deletions is bounded by

2{Tlg n1+ 2 Tlg(p.-p, ;+1)7
( 1<i<k i 7i-1 )

Proof . W shall initially mark all nodes in T which lie on a path

fromthe rootof T to one of the del eted nodes. By Lemma 7, the nunber
of marked nodes is bounded by the given expression; hence the proof is
conplete if we show that during the sequence of deletions it is possible
to renove one mark fromthe tree for each fusing.

During the sequence of deletions, we shall maintain the invariant
property that every 2-node on the path from a narked external node to
the root is marked. This is clearly true initially. During a deletion,
the marks are handled as indicated in Figure 6. An ' x' on the left side
of a transformation indicates a node which the invariant (or a previous
application of transformation (b) or (f)) guarantees will be marked;
an 'x' on the right side indicates a node to be marked after the
transformation. These rules make only |ocal rearrangements and create
only marked 2-nodes, and hence they mmintain the invariant. The fusing
transformation (f) renmoves at |east one nmark fromthe tree. One of the
termnating transformations (e) may create a new nmark, but this is
conpensated by the starting transformation (b) which always destroys a
mark. Hence a deletion always renoves at |east one mark from the tree
per fusing, which proves the result. O

[Figure 6]

15



The bound of Theorem 2 is tight to within a constant factor; that is,
for any n and k<n there is a 2-3 tree with n external nodes and
a sequence of k deletions which causes within a constant factor of the

gi ven nunber of fusings. W omt a proof.

16



3. Mxed Sequences of Qperations.

Wien both insertions and deletions are present in a sequence of
operations on a 2-3 tree, there are cases in which q(log n) steps are
required for each operation in the sequence. A sinple exanple of this
behavior is shown in Figure 7, where an insertion causes splitting to go
to the root of the tree, and deletion of the inserted elenent causes the
sane nunber of fusings. W expect that when insertions and deletions
take place in separate parts of the tree, it is inpossible for themto
interact in this way. The following results shows that this intuition is
justified, at least for a particular access pattern arising from priority
queues.

[Figure 7]

Theorem3. Let T be a 2-3 tree of size n , and suppose that a sequence
of k insertions and ¢ deletions is perforned on T . If all deletions
are made on the |eftmost external node of T, and no insertion is nmade
closer than (lg m)l'6 positions from the point of the deletions (where
mis the tree size when the insertion takes place), then the total cost

of the operations is

O(log n+k+ g+ 2 log(pi -pi_l) ) ,
1<i<k’

where k' < k is the nunber of inserted nodes that have not been del eted

and p; <P,<...<p, are the positions of these nodes in the fina

tree.

17



Proof. W shall first sketch the argument and then give it in nore
detail. Insertions are accounted for by marking the tree in a manner
al most identical to that used in proving Theorem 1. Deletions may
destroy some of these marks, so we charge a deletion for the marks it
renoves;, the remaining narks are then counted using Lemma 7. Because
we assune that insertions are bounded (Ig n)1“6 positions away from the
point of deletions, the left path is unaffected by insertions up to a
height of at least 1g 1g m. Therefore roughly 1g m del etions occur
bet ween successive deletions that reference an "unprotected" section of
the left path. These 1g m del etions cost 0(log m) altogether, as
does a single deletion that goes above the protected area, SO ¢
del etions cost roughly 0(z) steps to execute. Adding this to the cost
of the insertions gives the bound.

W shall present the full argunent as a sequence of |emmas. First
we need sone termnology. The left path is the path fromthe root to
the |eftmost external node. Note that deletions wll involve only
| eft-path nodes and the children of such nodes. W say that an insertion
changes the left path if it splits a 3-node or expands a 2-node on the

left path

Lenma 8.  Under the assunptions of Theorem 3, the cost of the sequence

of insertions is

O(log n+k+ 2 log(pi -P; ) + O(cost of del etions)
1<i<k!

Proof. On each insertion, we nmark the nodes of T according to rules
(1) and (2) in the proof of Theorem 1, while observing the follow ng

additional rule:

18



(3) Wien a narked 2-node on the left path expands, an unmarked

3-node i S created.

As in the proof of Theorem 1, the cost of all insertions is bounded by
the nunber of marks created using rules (1) and (2). Rule(3), which
destroys a nark, can be applied at nost once per insertion, and hence
the nunber of marks renoved by this rule is k) .

This marking scheme preserves the property that on the left path,
no 3-node ever becomes marked. It does not preserve any stronger
properties on the left path; for exanple, a marked 2-node -7tk no marked
of fspring may occur. But it is easy to prove by induction on the number
of insertion steps that the stronger properties used in the proof of
Theorem 1 (a marked 2-node has at |east one marked offspring, a narked
3-node has at |east two marked offspring) do hold on the rest of the tree.
The intuitive reason why the corruption on the left path cannot spread
is that it could do so only through the splitting of 3-nodes on the
path; since these nodes aren't marked, they never create "unsupported"
2-nodes of f the left path.

The notivation for these marking rules is that deletions wll
necessarily corrupt the left path. During deletions, we treat marks

according to the following rule:

(4) Any node involved in a deletion transformation (i.e., any

node shown explicitly in Figure 4) is unmarked during the

transformation.

This rule renmoves a bounded nunber of narks per step, and hence over g
del etions the number of marks removed is o(cost of deletions) . Since

this rule never creates a marked node, it preserves the property of no

19



marked 3-nodes on the left path. It also preserves the stronger in-variants
on the rest of the tree, since it will only unmark a node whose parent is
on the left path.

It follows that after the sequence of insertions and deletions, all
marked nodes lie on paths fromthe inserted external nodes to the root,
except possibly some marked 2-nodes on the left path. The nunber of nodes
on the left path is Qlog(n+ k- £)), and by Lenma 7 the nunber of marked

nodes in the rest of the tree is

0(Iog(n+k— N+ D log(pi—pi_1+l))
1<i<k! '

Adding these bounds to our previous estimates for the nunber of marks
renoved by rules (3) and (4), and noting that 1lg(xty) <1lg x + y for

xy > 1, gives the result. O

Lemma 9.  Suppose that a sequence of j deletions is made on the |eftnost
external node of a 2-3 tree, such that the deletions do not reference any
| eft-path nodes changed by an insertion made during the sequence. Then the

cost of the sequence is (j) + O(height of the tree before the deletions) .

Proof . The cost of a deletion is 0(1+f) where f is the nunber of

fusings required. Each fusing destroys a 2-node on the left path, so the
total cost of the j deletions is Q) + O(number of left-path 2-nodes
destroyed) . But each deletion creates at nost one left-path 2-node, and
insertions do not create any 2-nodes that are referenced by the deletions,
so the cost is in fact Q) + O(mmber of originally present left-path

2-nodes destroyed) . This is bounded by the quantity given above. O

20



Lenma 10. Under the assunptions of Theorem 3, if the tree T has size

mthen an insertion cannot change any |eft-path node of height |ess than

lg 1g m.

Proof . A 2-3tree of height h contains at nost 5h external nodes.
Hence a sub-tree of height 1g 1g mcontains <_5lg lgm (lg m)lg 5
external nodes, which is strictly less than the (Ig m)l'6 posi tions

that are protected from insertions under the conditions of Theorem 3. O

Lemma 11. Suppose that the bottommost k nodes on the left path are
all 3-nodes, and deletions are perfornmed on the leftmost external node.
If insertions do not change any nodes of height < k on the left path,
then at |east 2° deletions are required to nake a deletion reference

above height k on the left path.

Proof . Let us view the left path as a binary integer, where a 2-node is

represented by a zero and a 3-node by a one, and the root corresponds to

the nost significant bit. Then deletion of the leftmost external node
corresponds roughly to subtracting one from this binary nunber. Consideration
of the deletion algorithmshows that the precise effect is as follows: if

the left path is xx...x1 then a deletion causes it to become xx... XxO

i
(subtraction of 1), and if the path is xx... x100. . . 0 then it becones
i -
. ! )
either xx...x011...1 (subtraction of 1) or xx...x101...1

(addition of 2%7i-

1 ). Only this final possibility (corresponding to using
the transformation in Figure L4(e)) differs fromsubtraction by one. Note
that under these rules everything to the left of the rightnost one bit is
unreferenced by a deletion.

21




Before a deletion reference above height k can take place, the
nunber represented by the rightnost k bits nust be transforned from

2¥.1 into 0 by operations which either subtract one or add a positive

nunber.  Thus K1 subtractions are required, corresponding to oK1

del etions. O

Lemma 12. Under the assunptions of Theorem 3, the cost of the sequence

of deletions is 0(log n+k+ z) .

Proof. For accounting purposes we shall divide the sequence of j

deletions into disjoint epochs, with the first epoch starting immediately
before the first deletion. Intuitively, epochs represent intervals during
which insertions do not interact directly with deletions. W define the
current epoch to end immediately before a deletion that references any
node on the left path that has been changed by an insertion since the first
del etion of the epoch. This deletion is then the first in the new epoch;
the final epoch ends with the last deletion of the sequence. According to
this definition, each epoch contains at |east one deletion

Let £y denote the nunber of deletions during the i-th epoch, Ky t he
nunber of insertions during this epoch, and m, the tree size at the start
of the epoch. The first deletion of epoch i costs 0(log mi). By
Lemma 9, the final ;-1 deletions cost o(zi + 1 og mi) since they operate
on a section of the left path that is unaffected by insertions. Hence the

total cost of the deletions in epoch i is o(z; + log m,) . Ve shal |

4
prove that except for the first and |ast epochs, this cost is O(zi+ ki_l),
so that the total cost of these epochs is 0(z+k). Since m, < ntk

each of the first and |ast epochs costs O(li + log(n+k)) . Conbi ning

gives the bound in the |emma.
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Consider an epoch i that is not the first or the last." The first

del etion of an epoch transforms all nodes bel ow height h on the |eft

path into 3-nodes, where h is the height of some |eft-path node that

has been changed by an insertion since the start of epoch i-I . Let
hi = |1g 1g miJ—l . By Lemma 10, the allowable insertions at this point
cannot change the left path bel ow hei ght b, . This remains true even if

the tree size grows to mi or shrinks to J;: , since this changes the
value of 1g 1g mby only 1. Hence if h > hy (i.e., aJL left-path
nodes bel ow height h are 3-nodes), Lemma 11 shows that 2 L Q(log mi)
del etions are necessary to reference a node above hei ght h, . Thus

£ = Q(log mi) , Wwhich neans that o(zi + log mi), the cost of the epoch
is o(zi). If on the other hand h < b, this inplies that at sone
point during epoch i-I the tree size mwas much snaller than m,

in particular nx Vm—i. But this shows that kilzg(mi), SO

o(;zi + 1 og mi) = o(/zi+ki In summary, we have shown that the cost

l)'

of epoch i is o(1u + kiép regardl ess of the value of h , O

1

Conbi ning the results of Lemmas 8 and 12 proves Theorem3. O

Theorem 3 is certainly not the ultimate result of its kind. For
exanple, it is possible to allow some nunber of insertions to fal
close to the point of deletion and still preserve the time bound. (NOte
that Lemma 8 does not depend on any assunption about the distribution

of insertions, so only the proof of the bound on deletions needs to be
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4, Level -Li nked Trees.

The results in Sections |-3 show that in several interesting cases
the 0(log n) bound on individual insertions and deletions in a 2-3 tree
is overly pessimstic. In order to use this information we nust exam ne
the cost of searching for the positions where the insertions and del etions
are to take place. If the pattern of accesses is random there is little
hope of reducing the average search time below 0(log n) ; it is inpossible
for any al gorithm based solely on conparisons to beat Q(log n) . But
in many circunstances there is a known regularity in the reference pattern
that we can exploit.

One possible method of using the correlation between accesses is to
keep a finger -- a pointer to an itemin the list. For a suitable Iist
representation it should be much nore efficient to search for an item
near the finger than one far away. Since the locale of interest may change
with time, the list representation should nake it easy to nove a finger
while still enjoying fast access near it. There may be nore than one
busy area in the list, so it should be possible to efficiently maintain
mul tiple fingers.

The basic 2-3 tree structure for sorted lists shown in Figure 31is
not suitable for finger searching, since there are itens adjacent in the
l'i st whose only connection through the tree structure is a path of length
o(log n) . Figure 8 shows an extension of this structure that does
support efficient access in the neighborhood of a finger. The arrangenent
of list elements and-keys is unchanged, but the edges between interna
nodes are made traversible upwards as well as downwards, and horizontal

links are added between external nodes that are neighbors (adjacent on
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the same level). W shall call this list representation a level-Ilinked

2-3 tree.
[Figure 8]

A finger into this structure consists of a pointer to a termnal node
of the tree. It would seem nmore natural for the finger to point directly
to an external node, but no upward links |eading away from the external
nodes are provided in a level-linked tree; the reasons for this decision
wi Il beconme evident when inplementation considerations are discussed in
Section 5. Note that the presence of a finger requires no change to the

structure.

Roughly speaking, the search for a key k using a finger f proceeds
by climbing the path from f toward the root of the tree. W stop
ascending when we discover a node (or a pair of neighboring nodes) which
subtends a range of the key space in which k lies. W then search

downward for k using the standard search technique.

A nore precise description of the entire search procedure is given
bel ow in an Algol-like notation. [f t is an internal node, then we
define Large&key(t) and smallestkey(t) to be the largest and snall est
keys contained in t, and |et Leftmostlink(t) and Rightmostlink(t)
denote respectively the leftnost and rightmost downward edges |eaving t
The fields ¢nbr(t) and rNbr(t) give the left and right neighbors
of t, and are Nil if no such nodes exist; Parent(t) is the parent

of t, and is NIl if tis the root.
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P.r.offfji’fi Fi nger Sear ch(f, k)
comment Here f is a finger (a pointer to a termnal node) and k
is akey. If there is an external node with key k in the structure
fingered by f , then FingerSearch returns a pointer to the parent
of the rightnost such node. CQtherwise the procedure returns a pointer
to a termnal node beneath which an external node with key k may be
inserted. Hence in either case the result may be used as a (new) finger.
LL k > Large&Key(f) then return SearchUpRight(f,k)
elseif k < Smal | est Key t'ﬁé\ﬁv return searchUpLeft(f,k)

else return f

endif

end FingerSearch

procedure  SearchUpRight(p, k)
| oop

~~~~

comrent At this point either f =p, or f |ies to the |eft
of p's right subtree. The key k is larger than the |eftnost
(smal | est) descendant of p .
if k< LargestKey or ribr(p) = Nil then return Searchbown(p,k)
else q « rior(p)

i f k < Snal |l estKey then return SearchDownBetween (p, g, k)

elseifr k < Lar gest Key then return SearchDown (g, k)

el se p « Parent(q)

S~

endif

endif

r epeat

AN

end SearchUpRight

procedure SearchUpLeft (p, k)
(simlar to the above]
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procedur e SearchDownBetween(p, g,k)

loop until p and g are termnal:
coment Here p is the left neighbor of g, and k is contained

AN

in the range of key values spanned by the children of p and q.
i f k < LargestKey then return_ SearchDown(p, k)
elseif k > smallestKey(q) then return SearchDown(q, k

el se p « RightmostLink(p)
g « LeftnostLink

endif

r epeat

NN

if k < Key[RightnostLink(p)] then return p
el se return g

ONINININS  ONININININI

endif

end SearchDowvmBetween

~r~r

procedure Sear chDown(p, k)
{the standard 2-3 tree search procedure)

This algorithm allows very fast searching in the vicinity of fingers,
In spite of this, we shall show that if a sequence of internixed searches,
insertions, and deletions is perfornmed on a level-linked 2-3 tree, the
cost of the insertions and deletions is domnated by the search cost, at
least in the cases studied in Sections 1-3. |n order to carry out this

analysis we nust first examne the cost of individual operations on a

| evel -1inked tree.

Lema 13. If the key k is d keys away froma finger f , then

Fi nger Search(f,k) runs in e(log d) steps.
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Proof . The running time of FingerSearch i s bounded by a constant tines

the height of the highest node exam ned, since the search procedure
exam nes at nost four of the nodes at each level. It is not hard to

see fromthe invariants in SearchUpRight (and SearchUpLeft) that in

order for the search to ascend £ levels in the tree, there nust exist
a sub-tree of size -2 all of whose keys lie between k and the keys

of the finger node. The lemma follows. [

Lenma 14. A new external node can be inserted in a given position in
a level-linked 2-3 tree in ©(1l+s) steps, where s is the nunber of

node splittings caused by the insertion.

Proof . V¢ sketch an insertion nethod which can be inplenmented to run

inthe claimed tinme bound. Suppose we wish to insert a new externa
node with key k . During the insertion process we nust update the Iinks
and the keys in the internal nodes. Let node p be the prospective
parent of node e . If e would not be the rightnost child of p, we
mke e a child of p, insert the key k in node p and proceed with
node-splitting as necessary. |If e would be the rightnost child of »p
but e has a right neighbor, we nmake e a child of the right neighbor.
Qtherwise k is larger than all keys in the tree. In this case we make
e achild of p and place the previously largest key in node p .
(The key k is not used in an internal node until it is no longer the
| argest.)

When a k-node q splits during insertion, it is easy to update the
links in constant tine. To maintain the internal key organization, we
place the left and right keys of g in the new 2-nodes produced by the

split, and the mddle key in the parent of q. O
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Lemma 15. An external node can be deleted froma level-linked 2-3 'tree

in e(l+f) steps, where f is the nunber of node fusings.

Proof . Simlar to the proof of Lemma 1k, O

Lemma 16. Creation or renoval of a finger in a level-linked 2-3 tree

requires o 1) time.

Pr oof . Obvious. O

Now we apply the results of Sections 1- 3 to show that even though
the search time in level-linked 2-3 trees can be greatly reduced by
maintaining fingers, it still domnates the tinme for insertions and

deletions in several interesting cases.

Theorem 4. Let L be a sorted list of size n represented as a
| evel -1inked 2-3 tree with one finger established. Then in any sequence
of searches, finger creations, and k insertions, the total cost of the

k insertions is 0(log n + total cost of searches)

Proof. Let S be any sequence of searches, finger creations, and
insertions which includes exactly k insertions. Let the external nodes
of L after the insertions have been perforned be naned 0,1,...,0tk-1
fromleft toright. Assign to each external node p a label f(p), whose
value is the nunber of external nodes lying strictly to the left of p
which were present before the insertions took place; these labels lie

in the range 0,1,. . .,n.
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Consi der the searches in S which lead either to the creation of
a new finger (or the novement of an old one) or to the insertion of a
new item Call an itemof L accessed if it is either the source or
the destination of such a search. (W regard an inserted itemas the
destination of the search which discovers where to insert it.) Let
pp<p,<.. <p, be the accessed itens.

Ve shal| consider graphs whose vertex set is a subset of {p, |1 <1<},
W denote an edge joining p; < P, in such a graph by P;"P; and we define
the cost of this edge to be max( Flg(l(pj)- £(p;)*1) 1, 1) . For each
i tem p, (except the initially fingered item Iet % be the fingered
itemfromwhich the search to p; was made. Each ay is also in
{p; |1 < i<} since each finger except the first nust be established by
a search. Consider the graph ¢ with vertex set {p; |1 <i <4} and edge
set {(qi,pi) |1 <i <t and i is not the originally fingered iten

Sone constant times the sum of edge costs in Gis a |ower bound on
the total search cost, since lz(pi)— z(qi)1+l can only underestimte

the actual distance between a; and 1 when D; is accessed. W shall

describe a way to nodify t, while never increasing its cost, until it
becomes
?l - r2 - . - rk
wher e rp <r,<.. . <r  are the k inserted itens. Since the cost of
this graph is 2 [1lg(r.-r., ,+1) 1 , the theorem then follows from
. i7i-1
1<i<k
Theorem 1.
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The initial graph G is connected, since every accessed item nust
be reached fromthe initially fingered item W first delete all but
2-1 edges from G so as to |eave a spanning tree;this only decreases
the cost of G.

Next, we repeat the following step until it is no |onger applicable:
| et P; -y be an edge of G such that there is an accessed item 1
satisfying p; <P < Py - Renovi ng edge P;-§; now divides Ginto
exactly two connected conponents. If D, is in the sane connected
conponent as p, , We repl ace D;-P; by Py"P; ; otherw se, we replace
P;-Py by p;-p, . The new graph is still a tree spanning (Pi |1 <i <1}
and the cost has not increased.

Finally, we elimnate each item P, which is not an inserted item by
t ransform ng P;~Ps-Py to p;-p, . and by renovi ng edges P;Py wher e
there is no other edge incident to p-; - This does not increase cost,

and it results in the tree of inserted itens

as desired. O

Theorem 5. Let L be a sorted list of size n represented as a |evel-Iinked
2-3 tree with one finger established. Then in any sequence of searches,
finger creations, and k deletions, the cost of the deletions is

0(log n + total cost of searches)

Proof . Simlar to the proof of Theoremk, using Theorem 2. a
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Theorem 6. Let L be a sorted list of size n represent ed' as a

| evel -1inked 2-3 tree with one finger established. For any sequence of
searches, finger creations, k insertions, and ¢ deletions, the total
cost of the insertions and deletions is 0(log n + total cost of searches)

if the insertions and deletions satisfy the assunptions of Theorem 3,

Proof . Simlar to the proof of Theorem 4, using Theorem ., (O
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5. Inplenentation and Applications.

In Section 4 we described a |evel-linked 2-3 tree in terns of
internal and external nodes. The external nodes contain the items stored
inthe list, while the internal nodes are a form of "glue" which binds
the itens together. The problem remains of how to represent these objects
in storage

External nodes present no difficulty; they can be represented by the
itens thenselves, since we only maintain links going to these nodes (and
none coning fromthem. Internal nodes may be represented in an obvious
way by a suitable record structure containing space for up to two keys
and three downward links, a tag to distinguish between 2- and T-nodes,
and other fields. One drawback of this approach is that because the
nunber of internal nodes is unpredictable, the insertion and deletion
routines nust allocate and deal | ocate nodes. In random2-3 trees [9]
the ratio of 2-nodes to 3-nodes is about 2 to 1, so we waste storage
by leaving room for two keys in each node. Having different record
structures for the two node types mght save storage at the expense of
meki ng storage managenment nuch nore conplicated.

Figure 9 shows a representation which avoids these problems. A 3-node
is represented in a linked fashion, analogous to the binary tree structure
for 2-3 trees [6, p.469]. The internal node conponent containing a key k
is conbined as a single record with the representation of the item
(external node) with key k . Hence storage is allocated and deal | ocated
only when itenms are created and destroyed, and storage is saved because
the keys in the internal nodes are not represented explicitly. (The idea

of combining the representations of internal and external nodes is also
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found in the "loser-oriented" tree for replacenent selection [6, p.256].)
[Figure 9]

An exanmple which illustrates this representation is shown in Figure 10.
Each external node except the largest participates in representing an
internal node, so it is convenient to assune the presence of an external
node with key +~ in the list. This node need not be represented
explicitly, but can be given by a null pointer as in the figure. Null
rLinks are also used to distinguish a 3-node froma pair of neighboring
2-nodes. There are several ways to identify the fLinks and rLinks
that point t0 external nodes: one is to keep track of height in the tree
during FingerSearch , since all external nodes lie on the sane |evel.
Another method is to note that a node p is termnal if and only if
fLink(p) = p .

[ Figure 10]

V¢ now consider the -potential applications of this list representation.
One application is in sorting files which have a bounded nunber of
inversions. The result proved by Quibas et. al. [4], that insertion sort
using a list representation with one finger gives asynptotically optinmal
results, applies equally to our structure since insertion sort does not
require del etions.

A second application is in merging: given sorted lists of l|engths
m and n, with nxn, we wish to nerge theminto a single sorted |ist.

Any conparison-based algorithm for this problem nust use at |east

1lg mrn =o(lmlog =) co arisons; we would |ike an algorithm
9 np g

m
whose running tine has this magnitude. W solve this problem using our

list structure by inserting the items fromthe smaller list in increasing
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order into the larger list, keeping the finger -positioned at the nost

recently inserted item This -process requires Q(m steps to dismantle

t he smaller |ist, and O(Iog n + 2 log d ) steps for the insertions,
1<i<m

wher e di is the distance fromthe finger to the i-th insertion. Since the
items are inserted in increasing order, the finger noves fromleft to right

through the larger list, and thus 2 d. . <n . To maximze
. 1 -
1<i<m

2. log di subject to this constraint we choose the d, to be equal,
1<i<m *

and this gives the desired bound of 0O(m log(n/m)) steps for the algorithm
(The usual height-bal anced or 2-3 trees can be used to performfast merging
[3], but the algorithmis not obvious and the tine bound requires an

i nvol ved proof.)

When an ordered set is represented as a sorted list, the nerging
algorithm just described can be nodified to perform the set union operation:
we sinply check for, and discard, duplicates when inserting items from the
smal ler list into the larger list. This obviously gives an Q(m log(n/m))
algorithm for set intersection as well, if we retain the duplicates rather
than discarding them Trabb Pardo(8] has devel oped al gorithms based on
trie structures which also solve the set intersection -problem (and the
union or merging problems) in O(m log(n/m)) time, but only on the average.

Anot her application for the level-linked 2-3 tree
IS in implementing a priority queue used as a simulation event list. In
this situation the itenms being stored in the list are -procedures to be
executed at a known instant of sinulated "tinme"; to perform one sinulation

step we delete the itemfromthe [ist having the smallest tinme and then
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execute it, which may cause new events to be inserted into the |ist.
Theorem 3 shows that unless these new events are often verysoon to be
del eted, a 2-3 tree can process a |long sequence of such sinulation steps
with only a constant cost per operation (independent of the queue size).
Furthernore, searches using fingers will usually be very efficient since
the simulation program produces events according to known patterns. (Sone
simulation |anguages already give programmers access to crude "fingers",
by allowing the search to begin froma specified end of the event list.)
An obvious question relating to our structure is whether it can be
generalized so that arbitrary deletions will not change the worst-case
time bound for a sequence of accesses. This seems to be difficult, since
the requirement for a movable finger conflicts with the need to maintain

path regularity constraints [4]. Thus a compromise between the unconstrained

structure given here and the highly constrained structure of CGuibas et. al.
(4] shoul d be expl ored.

Even if such a nore general structure could be found, it mght be
less practical than ours. To put. the problem of deletions in perspective,

it would be interesting to derive bounds on the average case performance

of our structure under insertions and deletions, using a suitable nodel
of random insertions and deletions. It may be possible, even without
detai |l ed know edge of random=2-3 trees, to show that operations which

require o(log n) time are very unlikely.
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Figure 2, A 2-3 tree insertion.
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Figure 3. A2-3tree structure for sorted lists.
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Figure 4. Transformations for 2-3 tree deletion. (Mrror-images of
all transformations are possible.)
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Figure 5: A 2-3 tree deletion.
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Figure 6. Deletion transformations for -proof of Theorem 2.
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Figure 7: An expensive insert/delete pair.
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Figure 8. A level-linked 2-3 tree.
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Figure 9. A storage representation for internal and external nodes.
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Figure 10. A structure and its storage representation
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