STORING A SPARSE TABLE

by

Robert Endre Tarjan

STAN-CS-78-683
DECEMBER 1978

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

. ‘__. ' S o
v T 7
RIREX SRR ./

s v
g\/,,/

~Camze O

Storing a Sparse Table

Robert Endre Tarjanf/

Conput er Sci ence Depart ment
Stanford University
Stanford, California 94305

August, 1978

Abstract .

The problem of storing and searching large sparse tables arises in
conpiling and in other areas of conputer science. The standard technique
for storing such tables is hashing, but hashing has poor worst-case
performance. W consider good worst-case nethods for storing a table of
n entries, each an integer between O and N-I . For dynamc tables,
in which [ook-ups and table additions are intermxed, the use of a trie
requires 0O(kn) storage and allows O(logk(N/n)) wor st -case access tine,
where k is an arbitrary parameter. For static tables, in which the entire
table is constructed before any |ook-ups are nade, we propose a nethod
which requires Q(n |o§g]Z> n) storage and allows 0(z log) access tine,
where £ is an arbitrary paraneter. Choosing ¢ = log* n gives a method

with Q(n) storage and 0((Log" n)(log, N)) access tine.

CR Categories: 4.34, 3.74, 4.12, 5.25

Wi This research was supported in part by National Science Foundation
grant Mcs75-22870-A02 and by Ofice of Naval Research contract
NOO01L4-76-C-0688. Reproduction in whole or in part is pernmtted
for any purpose of the United States governnent.

1. [ntroduction.

The followi ng table searching problem arises in many areas of conputer
science. Gven a universe of ¥ nanes and an initially enpty table, we

wish to be able to performtwo operations on the table:

enter(x): Add name x (and possibly sone associated information)

to the table.
| ookup(x): Discover whether x is present in the table, and if it

is, retrieve the information associated with it.

Conpilers require such a table to store nanes of variables [2], Methods
for LR parsing [2], sparse Gaussian elimnation [6], and finding
equi val ent expressions [3], require such a table to store ordered pairs
of integers.

In considering this problem we shall distinguish between the dynamc

case, in which entries and lookups are interm xed, and the static case

in which all entries occur before all lookups. W shall use a random
access machine with uniform cost neasure [1] as the conputing model,

We assume that the names are integers in the range 0 through y-1 and
that each storage cell in the machine can store an integer of nagnitude
0(N)

An ideal solution to the table searching problemwould be a nethod
which requires Q1) time per operation and which does not require
substantially nore than o(n) space, where n is the total nunber of
entries made in the table. |f we use an array of size w to store the
table, each operation requires Q1) time, but the storage is excessive

if n<<n . (Note that the solution to exercise 2.12 in [1] al | ows

us to avoid initializing the array.) |If we use a balanced binary tree

[4] or simlar structure to store the table, the storage is Q(n) but

each operation requires 0(log n) tine. The best nethod in many practical
situations is the use of a hash table [%], which requires Q(n) space to
store the table and achieves an Q1) tine bound per operation on the
average, though not in the worst case.

Al'though for most practical purposes hashing solves the table |ookup
problem it is of interest to know how far the storage required for the
table can be reduced while maintaining an (1) worst-case tinme bound
per table access. Reduction of the storage to oO(n+ JE) , for instance,
woul d al low storage of a JEXJE matrix with n entries in Q(n+ Jﬁ)
space with (1) access tine. If the method is sinple enough we may be
able to beat hashing for some applications. Surprisingly little work
has been done on this problem see for exanple [5].

In this paper we exanmine two good worst-case nethods of storing sparse
tables. For the dynamc case, a trie data structure [L] requires 0(kn)
storage while allow ng O(logk(N/n)) access time, where k is a parameter
whose value is chosen in advance. The method supports table deletions as
well as insertions. W discuss this method in Section 2.

In Section % we present a nore sophisticated method which handl es the

static case. By precomputing the storage scheme before beginning the

. * .
lookups, the nethod achieves an Q(n Iog(” n) Wl storage bound with
o(z log, N) access tine, where is a paraneter whose value is fixed

in advance. By choosing ¢ = Iog* n x we get a method

(i+1)

W log(:L> = log2 n ; log n = lo‘g(i)(log2 n)

ﬁ/log* n .:min{i\log(fL> n <13 .

with Qn) storage and o((log* n)(logn N)) access time. The nethod

conbi nes the trie structure discussed in Section 2 with repeated application
of a method for conpressing tables by using double displacenents. Thjs
doubl e displacenent method is an elaboration of a single displacement nethod
suggested in [2,7] for conpressing parsing tables.

In Section 4 we mention sone applications of our results and make a

few addi tional remarks.

2. Storing a Dynam c Table.

To store a dynanmic table, we use a trie [4] with n-way branching
at the root and k-way branching at every other node, where k > 2 is
an integer whose value is selected in advance. Each node in the trie
contains one table name and either n or k pointers to nodes one |evel
deeper in the trie. (Sone or all of the pointers may be null.) Figure 1
gives an exanple of such a data structure.

[Figure 1]

To look up a nane x in the trie, we divide x by n and then
repeatedly by k . V& use the successive remainders to specify a search
path in the trie. For instance, to search for 190 in the trie of
Figure 1, we look for 190 in the root. Not finding it, we divide 190
by 8, leaving 23 with remainder 6, which |leads us to node e .
Again not finding 190 , we divide 23 by L to get 5 with renmai nder 3 .
This leads us to node i , where we find 190 . To insert a name in the
trie, we first search for it. The search leads to an external node, in
which we place a pointer to a new node containing the new name. See
Figure 1.

Qur tries differ fromthose discussed by knuth [4] only in that we
allow the root to have a higher branching factor than the other nodes;
this reduces the time required by the method without increasing the space
bound, but requires that we know n (at least approximtely) before we
begin to construct the table. It is straightforward to inplenent the
met hod, and we |eave the details as an exercise. Note that by choosing
the branching factors to be powers of two, we can replace division by
shifting, and we can allocate space for the pointers out of a single array,

avoiding initialization by using the solution to exercise 2.12 in [11.

The total space required by the nethod is O(xn) in the worst case.
The tine required for either a look-up or an insertion is proportional
to the length of the search path, which is [1og (W/n) 1 in the worst
case. On the average, the method requires Q1) |ook-up and insertion
time, since it is at least as fast (ignoring constant factors) as hashing
with separate chaining [}].

If we add to each trie node a list of the non-null pointers init,
then our data structure will support deletions. To delete a given table
entry, we first search for the node containing it, say p. W then
| ocate some external node g which is a descendant of p . W replace
the entry in p by the entry in q and delete node q . 1f p itself
is an external node, we nerely delete p . See Figure 1. Wth careful
implenentation this method requires 0(log, (I/n)) time in the worst case

for a deletion.

3, Storing a Static Table.

Section 2 shows that by using tries the worst-case tinme to access a
table can be decreased as nuch as desired, at the expense of additional
storage. If the table to be stored is static, i.e., all the entries take
place before all the |ook-ups, then we can inprove the method of Section 2
substantially. W shall show that for an arbitrary value of ¢, it is
possible to store n entries selected out of Nin Qn Io<g£>n) space

with o(z log, N) access tine.

For simplicity we shall assune that N is a perfect square, i.e

¥ = m- for some int eger m. W can represent the table to be accessed

by an mxm array A . Position (i,j) in the array corresponds to
name k , where i = [k/mj+1 and j = k nod m+ 1 . Position (i,j)
contains the information associated with kK if k is present in the
table and contains zero if Kk is absent fromthe table.

W shall describe a method for conpressing A into a smaller
array C, by giving a mapping frompositions in Ato positions in C
such that no two non-zeros in A arenmapped to the same position in C .

Qur mapping is defined by a _displacement r(i) for each rowi ;

position (i,j) in Ais napped into position r(i)*jin C . The
idea is to overlap the rows of A so that no two non-zeros end up in
the sane position. See Figure 2.

[Figure 2]

Each entry in Cindicates the position in A (if any) napped
to that position in C, along with any associated information. To
look up a nane k , we conpute i = |k/mj+1l and j = k nod m+ 1 .
If C(r(i)+j) contains k , we retrieve the associated infornation.

If not, we know k is not in the table. The access time with this

nmethod is 0(1) ; the storage required is mfor the row displacenents
plus space proportional to the number of positions in C. aho and
Ullman [2] and Ziegler [7] advocate this scheme as a way of conpressing
parsing tables, but they provide no analysis.

To use this method, we need a way to find a good set of displacenents.
Ziegler suggests the following "first-fit" nmethod: Conpute the row
di spl acements for rows 1 through m one-at-a-tine. Select as the
row di spl acement r(i) for rowi the smallest value such that no
non-zero in rowi is mapped to the same position as any non-zero in
a previous row. An even better method, also suggested by Ziegler, is
to sort the rows in decreasing order by their nunber of non-zeros and
then apply themfirst-fit. W shall enploy this "first-fit decreasing"

nethod. See Figure 2.

Theorem 1. Suppose the array A has the follow ng "harnonic decay"
property:
(H For any /£, the nunber of non-zeros in rows with nore than y

non-zeros is at most n/(s+1) .

Then every row displacenent r(i) conputed for A by the first-fit

decreasing nethod satisfies 0 <r(i) <n.

Proof . For any row i , consider the choice of r(i) . Suppose r(i)

contains ¢ > 1 non-zeros. By (H the number of non-zeros in previous

rows is at nost =n/¢ . Each such non-zero can block at most ¢ choices
for r(i) . Atogether at nost n choices are blocked, and
o<r(i) <n. O

The following algorithmis a straightforward inplenentation of the
first-fit decreasing method. Input to the algorithmis a list of the

non-zero positions in A .

First-Fit Decreasing A gorithm

Step 1: for i =1 wtil m do
count(i) := 03 list(i) := p od;

for each non-zero position do

NWN;&; one to count(i); put j in List(i) od;
Step 22 for ¢ := 0 until n do bucket(c):= ¢ od;
for i :=1 M mdo put i in bucket (count(i)) od;
Step 3: E@Zk: O%HJFIH-IQEGMK) := false_od;
for each 1 in bucket (c¢) do
T = o
check overlap: for each j in list(i) do
mwﬁwentry(r(i)ﬂ) _a:em
r(i) := r(i)*1; go to check overlap fi_od;
for each j in List(i) do
entry(r(i)+) :=true od od_od;

After Step 1, List(i) is alist of the non-zero colums in row i
and count(i) is a count of these non-zeros. Step 2 is a radix sort of
the rows by their number of non-zeros. The initializationin Step 3
assunes that A has harnonic decay, Which is the case in which we shall
be interested. |f A does not have harnonic decay, nmore space nust be

al located for C.

Theorem 2. If A has harnonic decay, then the first-fit decreasing

al gorithm requires O<n9+m> tine to conpute row di spl acements for A,

Proof . Steps 1 and 2 and the initialization in Step 3 require Q' n+m

time. For 1 <i <m, let rowi contain ¢ non-zeros. Then the

time to conpute the displacement for rowi is o(nzi) , and the total

m
, : : 2
time to conpute row displacenents is O(2 ni; * n = o(n™+m) . O
1

i=1
If the array A has harnonic decay, then the row displacenent
nethod provides (1) -time table access while requiring only ntom-1
storage, not counting storage of the information associated with each
nane. If A does not have harmonic decay, we nust smooth out the
distribution of non-zeros among the rows of A before conputing row

di spl acenents. To acconplish this we apply to A a set of colum

di spl acenents c(j) , mapping each position (i,j) into a new position

(i+e(3),3) . This transforms A into a newarray B with an increased

nunber of rows (namely max c(j) + ml) but with the same nunber of

colums. See Figure 3.
[Figure 3]
V¢ choose the colum displacements so as to satisfy an exponential

decay condition defined as follows. Let B. be the array consisting of

the first j shifted colums of A. Let n. be the total nunber of
non-zeros in B.J. Let N be the number of non-zeros in E§ whi ch
appear in rows of B.J containing nore than i non-zeros. Let b be
an arbitrary integer.
' i(2—nj/n)
Ej(b): For 0 <i <b, n.l.J 5%/2

Not e t hat Em(LlogE n)) inplies B = Bm has harnoni c decay. To

satisfy Ej(b) for all j , we enploy the first-fit method a- follows:

10

Comput e the displacenents for colums 1 through m one-at-a-time.
Sel ect as the colum displacement c(j) for colum j the smallest

val ue such that B.J satisfies Ej(b) . See Figure 3.

Theorem 3. The set of colum displacenents <c(j) conputed by the first

fit method to satisfy Ej(b) for all j is such that

O<c(j)5lmlog2b+CXn) for 1L<j<m.

Proof . For any colum j , consider the situation when <(j) is chosen.

n order for a possible choice of c(j) to violate Ej(b) , there nust

i(2-n./n)
be some i such that n,., > n./2 J Since E. . (v) holds,
iJ J j1
i(2—nj ¥ /n) _ _ _
Nij.1 < nj_l/z . Each row of B, with i non-zeros in the
first j-1 columns and an additional non-zero in colum j contributes

i+l to N5 Each row of BJ with nmore than i non-zeros in
the first j-1 colums and an additional non-zero in colum j contributes

1to n'1'.J'nij-1 Thus there nust be nore than

i(2-—nj/n) i(2—nj_|/n))/ _ .
(nj/E - nj_l/Z (i+1) rows in B.J with nore than

i-1 non-zeros in the first j-1 colums and an additional non-zero in
colum j . Since colum j contains exactly nj"]-l non-zeros, i > 0.

W al so have

(nj/gi(z-nj/n) L /zi(g-nj'l/n))/(iﬂ)

J-1

n.Ei(nj-q _|)/n
J

(nj_l/zi(z-njq/n))(—] 1)/(i+l)

(1) (10

Vv

Y

(‘1(nj—nj_l)(ln 2)/n) / (i+l)

v
—
j}

e
]
I._I
\
ro

i(e-n, . /n)

. -1 -
> (i n'j-l(nj-nj-—l) In 2)/ (2 J n (i l))

Consi der the set of ordered pairs whose first elenment is a row of

Bj-l with more than i-l non-zeros and whose second element is a non-zero

of column j . There are at nost ni_lj_l(nj-nj_l)/i such pairs. Each
i(2-n./n)

choice of c(j) for which ngy > nj/E J accounts for more than

i(2-nj_l/n) . .
(1 nj_l(nj—nj_l) In 2) (2 n (i+1) () stinct pairs. Thus

i(2-n./n)
the nunmber of choices of c(j) for which Ny > nj/E J is
bounded by
i(2-n. | /n)
n (n.-n.)2 T e
i-1j-1Y73 j-1
2
i nj_l(nj-nj_l) In 2
i(2—nj |/n)
n, ., 2 i n (i+l)
J-1 by E. (b
S (B 2 TP R v EBya(P)
2 J i n, . In 2
j-1

12

(2—nj-l/ n)

2 n itl < (4 log e)n(i+l)/i2 .
- .2 2
i~ In 2
Summing over i, We find that at nost
b 2 2
(L Log, e)n(i+l)/i° <(k log;2 e)n(ln b + 1 + 7/6)
i=1

< lmlog2 b + Q'n

choices of c(j) are blocked, and 0 < c(j) < kn log, b+ Qn) . O

It is not hard to inplement the first-fit method so that it conputes
col um displ acenents to satisfy Ej(b) for all j in O(n+m) tine.
V¥ |eave the details to the reader.

By combining row and colum displacements, we obtain the follow ng

tabl e storage schene.

Tabl e Constructi on.

Step 1. Construct a set of colum displacenents ¢(j) for array A
by using the first-fit method to satisfy Ej([_logg nj) for
all j . Conpute the transforned array B .

Step 2. Construct a set of row displacenments r(i) for B by using
the first-fit decreasing nethod. Construct the transforned

array C .

Tabl e Look- up.

Let k be the nane to be accessed. Conpute i = |k/m |+l ,
5 =kmdm+1, and k¥ =r(i+c(j))+ . If Ck*) contains k ,
retrieve the associated information. If not, k is not in the table.

15

Wth this method, the access tinme is Q1) , the storage is m
for the colum displacenments plus Lin :Log2 1og2 n+m+ Qn) for the
row di spl acenents (by Theorem 3) plus n+m1 for C (by Theorem 1),
not including space required to store the information associated wth
each name. The total space is thus Ln log, log, n + 3m + Qn) . The
tine required to construct the storage scheme is O(n2+m) .

If we are willing to allowa little slower access tine, we can
further decrease the space required to store the table, W construct
not just one set of row and columm displacenents, but several. Each
set of displacenents is used to conpress a different part of the table.
To ook up a name, we use each set of row and colum displacenents in
turn until either finding the name or running out of mappings to try.
The algorithm described bel ow, uses a paraneter ; whose val ue

determnes the tinme-space trade-off.

Tabl e Construction.

L . (
Initialization. Let b, = [_lopg> nl and for 2 <h< g,

b
n = 2 1 et Ay be an array representing the table to be

stored. For h from 1 to , repeat the follow ng steps.

let b

Step 1. Construct a set of colum displacenents ch(j) for Ay
by using the first-fit method to satisfy Ej(bh) for all j
Conpute the transfornmed array By -

Step 2. For each row i of B_ containing more than bh

h
non-zeros, |et rh(i) =p . Construct a set of row displacenents
rh(i) for the remaining rows of By (those containing at

most o, non-zeros) by using the first-fit method. Construct
the transformed array Cy for these rows.

1k

Step 3. Forma new array A ., by repl aci ng with a zero each
non-zero in Ah mapped to a position in Gy - (The non-zeros

repl aced are exactly those mapped into rows of B, wth at

mst by non- zer 0s.)

Tabl e Look- up.

Let k be the nane to be accessed. Conpute i = |Xk/m+1 and
j=knmdm+1. Let h be nininmm such that rh(i+ch(j)) £ 0.

Compute k* = r ;‘L+ch(j))+j_ If c k*) contains k , retrieve

A n
the associated information. Qtherwise, Kk is not in the table.

2 .
This multiple displacenent nethod requires O(n”+ im) time to
construct the table and allows O(1) access tine. The next theorem

bounds the space required.

(4+1)

Theorem 4. The nultiple displacement nethod requires Q(n log n+ fm)

space to store the table.

2-h+l .
Proof . For _l<h< gb > Flog() n] . In particular

b, > [log, nl . Furthernore, since B, satisfies E (b)), at nost

g 2
b

n/2 ® non-zeros appear in rows of B, containing more than b,

b
. h
non-zeros. This neans A, , contains at most nf2 © =n/b non- zer os.

The storage required for the first set of displacements is mfor

(4+1) n)

the row displacenents plus Q(n |og *m for the col um

di spl acenents (by Theorem 3) plus Q(n)+m for c, . For 2 <h <1,
the storage required for the h-th set of displacements is mfor the

row displacements plus Of (n/bh) log bh) + for the colum displacenents

15

plus 0(n/b,) +m for C, - Summing over h we find that the total
(£+1)

storage is Qn log n + /m) . d

V¢ now conbine the nultiple displacenent nethod with the tree
structure of Section 2 to obtain a static table storage nethod good
for arbitrary values of n and N . CQur first step is to construct
atrieasin Section 2 with k = k-1 . The trie has 0(log, N)
depth and contains n+(n-1)(Lgﬁ;J -1) < n5/2 poi nters, of which
only n-1 are non-null. W can regard the pointers in this trie as

consisting of a table of n-1 entries selected from n5/2

possi bl e
nanes; ouogn N) | ook-ups of pointers in this table are required

to look up an entry in the original table. W use the multiple

di spl acenent scheme with m = FnB/hﬁ to store the pointer table.

& thus obtain a nethod which requires o(n Iog<l) n) storage space
-and al | ows O(l]ﬁgn N) access tinme. |If mgrows only polynomally

with n, the access time is 0o(¢). Choosing { =1og* n gives

an Q(n) -space nmethod with 0((Log”* n)(logn N)) access tine.

16

L. Remarks

There are several possible applications of our table storage schenes.
The dynam c algorithm of Section 2 can be used to keep track of the
fill-in when carrying out sparse Gaussian elimnation [6] and to keep
track of signatures when finding equivalent expressions [3]. The static
al gorithm of Section % can be used to store tables for LR parsing [2,7].

In all these applications N =(Xn2)

Al though we have not studied

the practicality of our nethods, they are sinple enough to be conpetitive
with hashing in sone situations. Indeed, the row displacenent nethod
described in Section % has been proposed as a practical way to store
parsing tables [2,7]. It is inportant to note that our bounds are

wor st-case and that the worst cases are unlikely in practice.

Qur algorithms make use of array storage; they cannot be inplenented
using only list structures as storage. Thus they indicate a difference
in power between random access mmachines and pointer machines. They also
suggest a time-space trade-off for the table storage problem at |east
in the dynam c case. Wether such a tinme-space trade-off exists is a
question deserving further study. For the static case, an affirmative
answer to the follow ng question would inply the existence of an
Q(n) -space, 0(log N -access tine storage schene:

Is there a constant ¢ such that, for any mym array A

containing n non-zeros, there is a set of colum displacenents

selected from {0,1,2,...,en} for which the transforned array B

has harnoni c decay?

17

Acknow edgnent .

My thanks to Yossi Shiloach for extensive discussions which contributed

greatly to the ideas presented here.

18

Ref er ences

[1] A V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Anal ysis

of Conputer Al gorithns, Addison-Wsley, Reading, Mss., 197L.

[2]1 AL V. #ho and J. D. Ullman, Principles of Conpiler Design, Addison-
\Wesl ey, Reading, Mass., 1977.

(31 P. J. Downey, R Sethi, and R. E. Tarjan, "Variations on the common
subeqgression problem" submtted to Journal ACM

[4] D. E. Knuth, The Art of Conputer Progranm ng, Vol unme 3: Sorting
and Searching, Addison-Wesley, Reading, Mss., 1973.

[5] R Sprugnoli, "Perfect hashing functions: a single probe retrieving
method for static sets," Comm. ACM 20 (1977), 841-849,

[6] R E. Tarjan, "Gaph theory and Gaussian elimnation," Sparse Mtrix
Conputations, J. R Bunch and D. J. Rose, eds., Academc Press,
New York (1976), 3-22.

(7] S. F. Zeigler, "Smaller faster table driven parser," unpublished
manuscri pt (1977).

19

U apou 913 |ap

pue ‘ $JT Ag @ ul oGl ©@d%e|des ‘y Aes ‘ 9 Jo JUepuBISEP B S| YJ IYn BpOU [eu B IXd
Ue 91820 | ‘'@ 9pouU UI 1] 8Je20| am ' QGT 918 [9p OL 'Paledlpul Se spou mau e 1Iasul
an 9Jaywm ‘ | Bpou 0) pea| £ pue 9 SJopu AU Yl oor Og" m@r oc Buinib ‘v Aq
Alpareadal pue g AQq Q€ @pIAIp aw ‘ Q€ 1Jdsul oL GGZ ‘<02 ‘06T ‘PLT “OST “0¢T ‘18 ‘¢
so1ljus pue ‘siaywas (e Buiyouelq Aew-y ‘j00J 8yl e Buiyouelg Aew-g ‘TS =W Y1 M aLa3 Yy ‘T 8.nb 14
FT" T T T
L.L_l_1_1.J
T y
¢ |o6T 7l
) \ IS 0 q
| l .
14 l ¢ oﬂ_ coe 0¢T 13

[-
o

-

20

1 - * - - *
2 * *¥ - * -
3 * - * - -
L - - - * -
5 ¥ - - -
A
oo x| r(1) =1
* - x - r(2) =0
oo o o r(3) =
| - « - r(l)= 5
I ¥ - - - % r(5) =7
5 1 8 10 4% 12 20 18 - - 24
C
Figure 2. Row di spl acements conputed for an array using "first-fit

decreasing" strategy. Asterisks denote non-zeros;

dashes denote zeros. Each position in array C contains
the position in A (if any) mapped to that position

in C. Positions in A are numbered row by-row starting
from zero. Row displacenents are conputed in the order

2)1)5)5)h.

21

Figure 3.

% *
* * *
A * *
%
v %
| - _ _ *
* - - - -
* - * - -
- - - - - c(l) =0
* - - - * c(2)y =5
B
- * - - - c(3) =0
* - - - c(l)y =6
- - * - c(5) =0
- - * -

Col um di spl acements conputed using first-fit to satisfy

EJ.(_logE ny)for all j . This constraint requires no
rows With more than one non-zero in B, at nmost one
such row in B5 and B), and at nopst two such rows

in B5 .

22

