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We describe in this report various methods, iterative and "almost

direct," for solving the first biharmonic problem on general two-

dimensional domains once the continuous problem has been approximated

by an appropriate mixed finite element method. Using the approach

described in this report we recover some well known methods for solving

the first biharmonic equation as a system of coupled harmonic equations,

but some of the methods discussed here are completely new, including a

conjugate gradient type algorithm. In the last part of this report we

discuss the extension of the above methods to the numerical solution of

the two dimensional Stokes problem in p- connected domains (p> 1)-
through the stream function-vorticity formulation.
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1. INTRODUCTION.

Throughout this paper Q denotes an open set of R2 of boundary r. Given

three functions f,gl,g2, we shall consider the Dirichlet problem for the

biharmonic operator :

This problem arises in fluid mechanics and in solid mechanics (bending

of elastic plates).

In fluid mechanics the stream functions $ of incompressible flows inR2,

at low Reynolds number,is the solution of a problem (PO),  provided that

Q is simply connected. If Q is multi-connected, $ satisfies also a bihar-

manic equation but the boundary conditions are more complicated (see

Sections 6 and 7). In WJ, for axisymmetric flows, + is the solution of a

Dirichlet problem for an operator E2 where E is an elliptic operator of

order 2, (see HAPPEL-BRENNER c291) ; however the method to be described

can be easily adapted to this situation.

For incompressible flows at large Reynolds numbers, described by the

Navier-Stokes equations, a good code for the numerical solution of (PO)

is of great practical interest because many iterative techniques for

the resolution of the Navier Stokes equation requires the numerical

solution of a cascade of biharmonic problems like (PO). This is clearly

shown in FIX [la,  [lg,  ROACHE c4i3, ROACHE-ELLIS [4a for the 2 dimensional

case. Generalization of the following ideas can also lead to codes for

solving the 3 dimensional Navier-Stokes equation (GLOWINSKI-PIRONNEAU [id)

and for multiconnected bidimensional domains (see Sections 6 and 7).

Finite difference discretization of (PO) are not feasible in many cases,

namely when the geometry of R is complicated. Standard finite element

methods for solving (PO) require rather sophisticated finite elements

such as the 21-degree-of-freedoms  of ARGYRIS (see ARGYRIS-DUNNE [ 1 1)

or non conforming elements of Hermite type.
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Recently a new class of methods, called mixed methods has been proved to

be quite appropriate to the biharmonic operator (CIARLET-RAVIART [IO],

BREZZI-RAVIART [ 61, ODEN [371).  Their drawbacks lie in the fact that

they require the solution of rather large non-symmetrical linear systems.

Our method is closely related to the mixed methods but its implementation

is quite different and much easier. In the continuous case the underlying

idea of the method can be outlined as follow :

If $, denotes the solution of

A2$ 0 = f in R, AQ
op = 0 9 +,I, = gj,.

then q-9 is the solution of (PO) with f=O, gl=O,and  g2 replaced by
WOO

g2 -an*
Therefore from now on we assume that f = 0, g1 = 0.

Let w = - A$ and suppose that A = oil-,  is known. Then (PO) splits into

two-Dirichlet problems for - A :

- Aw = 0 in R, - 4~ = 0 in Q,
0.1) (1 .a

wlr = x Y $lr = 0.

Let A denote the linear operator x + a@- xlr, where $ is computed by (I.]),

(1.2). Then we shall show that the solution of (PO) is the solution of (l.l),

(1.2) with A solution of the linear problem

CEO) AX = - g2 ,

More precisely it can be shown that the solution of (l.l),  (1.2),  (Eo) is the

solution of a mixed variational formulation of (PO). Furthermore A is symmetric

positive definite,strongly elliptic from the boundary Sobolev space H-1'2(r)

to the Sobolev space Hw (r). This last property is numerically very important,

provided it is preserved by the discretization, because it insures that (Eo)

is a well behaved linear system. From the theoretical point of view it means

also that (Eo) is an integral formulation on r equivalent to (PO).
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The feasibility of the method relies entirely on the ellipticity of A.

Thus beside the statement of the method, the main purpose of the paper

is to show that A is a symmetric positive definite operator on the

Sobolev space H-li2(r) and that the nice properties of A are preserved

by the finite element discretisation. The proofs use a mixed formulation

of (PO)  equivalent to (l.l), (1.2), (Eo). Therefore (l.l), (1.2), (Eo)

is also a nice way of solving the mixed formulation of the biharmonic

problem. This remark provides us with an error estimate for the method

(Section 3.3).

Unless (PO) is to be solved many times for different f and g's it is much

faster to use a conjugate gradient method for the resolution of the dis-

crete analogue of (Eo).

Historically, the decomposition of (PO) into (1.1) and (1.2) is known in

fluid mechanics. Quite a few paper have made use of it ; among others let US

mention SMITH [441,[45!,[461,  BOSSAVIT [4l, EHRLICH [141,[151,[161,  MC LAURIN

c341, EHRLICH-GUPTA @n, GREENSPAN-SCHULTZ p83.  However these works are

related to finite differences approximations on rectangles and are not

using the fact that the discretized problem is equivalent to a linear system,

related to the discrete trace of - A$, whose matrix is positive definite.

We have also the feeling that our approach answers some of the questions

arising in FIX [181, LIB. Thus to our knowledge, most of the methods to be

described are new.

Numerical experimentations have been done to test the methods described

later ; the corresponding results will be published elsewhere. However

some indications will be given in Sec. 8.
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2. THE CONTINUOUS PROBLEM

2.1. Functional background and notations.

The following linear spaces play a fundamental part in the study of

the continuous problem :

H2 (52) = {VlVEL2(sI)
2

,g ,L2c%  ,* ,L2(Q)  , 1 <i,j 12) ,
i i j

v= H2(Q) "H;(Q)  = {VE H2(&?)l,lr = 0) ,

“; (QJ = {veH2(Ql)v  = g = 0 on I'}.

The space H2(Q) is a Hilbert space for the scalar product :

(u,v> =
H2 (a)

(u,v>
L2 w

+ c -&l( ax ,Tgl
L2(.Q)

+ c
( &.I 2a,-1

i=1,2 i i i,j=1,2 axiaxj ' axiaxj L2(Q)'

If Q is bounded and its boundary r is smooth one can show the following :

Proposition 2.1. : The mapping v +ll~vlI
L2 m

defines a norm on V

equivalent to the norm induced by H2(Q). m

We shall also use the following spaces :

WfW = {VE L2(Q)IAveL2(Q)),

# = {veH(Q;A)IAv  = 0).

The space H(.Q;A)  is a Hilbert space with the scalar product

The norm associated with it is

a. 1) II IIv H(S2;A) = (llvl12 L2(n) + llAvll22 P2*
L w

From (2.1) it is easy to show the



Proposition 2.2. : On jj the topologies induced by H(SI;A) and L2(Q)

are identical.

2.2. Traces properties

Let Y,, yl be the following trace mappings :

Yov = VIr Y Ylv = El, l

The following results are shown in LIONS-MGENRS  1321  and the references

therein :

Proposition 2.3 .: The mapping {y,,yI)  is linear continuous and onto

H-"2(I')  xH-3'2(I')  from H(s2;A).

Proposition 2.4. : The mapping {yo,yl}  is linear continuous and onto

H3/2 (r) x H1'2 (l?) from H2(Q>.

Proposition 2.5. : The mapping y
1

is onto H'/2(r) from V.

Proposition 2.6. : Restricted toH the mapping y, is an isomorphism

(topological and algebraical) from H onto H-1'2(r).

2.3. Green's formula

We shall denote by <*,*> (resp. K*, l >>) the bilinear form of the

duality between H li2(r) and H-1'2(r)  (resp. H3'2(r)  and H-3'2(r)>

which extends (*,*) =
L2u)

, i.e. <v,w> / vwdI'vveH
r

1/2(rj , w E L2tr)

(resp. <<v, w>> = /
r
vwdl-' “2ujEVE H , WE L2(17)).  Then Green's formula

(see C32J) is written

‘I vhudx - uAvdx  = <Y$-bY,V' -

(2.2) sz
R

ey u,ylv>>0

vu< H2(s2) ,tlveH(R;A) .
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2.4. Existence, unicity and decomposition results for (PO),

Let us assume that in (PO ) one has

(2.X f EL2(0) , g1 c H3'2(r> , 82 6 H 1/2(r).

From C32l we have the

Theorem 2.1. : Problem (PO) has one and only one solution in H2(Q).  n

Then it is easy to show the

Proposition 2.7. : Problem (PO> is equivalent to

-aw=f,

(2.4) -A$=w,

\
Y,Q = 81' Y,$ = 82'

Remark 2.1. : The decomposition (2.4) is well known in fluid mechanics:

w is the vorticity and $ the stream functi0n.m

In the following the trace of o on r will play a key role, both

theoretically and numerically.

Proposition 2.8 : If conditions (2.3) on f,gl,g2 hold, then w admits- -  -
a trace yoweH -1/2(r).

Proof : Since $ E H2(&?) , w = - A$ E L2(Q) and from (2.4),Aw  = -f E L2(,Q).

Therefore w E H(S2;A)  and from Proposition 2.3 , yaw E H-1'2(r).

2.5. Study of the relation between yaw a& y,Q

A few iterative schemes for the numerical solution of (PO) (see C91,

BOURGAT 151, GLOWINSKI Dll, Sec. 5 below...) as well as the quasi-direct

method below are in fact based upon the results of this section. In this

direction Lemma 2.1. below is essential.
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Lemma 2.1 : Let X E H
-l/2

(I') then the following holds ;

(i) The problem

\

- A$\, = X

has a unique solution in V = H2(Q)  n HA(n).

(ii)  If 9 is the solution of (2.5) in V, the (unbounded) operator A-
defined by

(2.6) AX = - y,9

is an isomorphism from H-1/2(r) onto H"2(lY).

(iii) The bilinear form a : H-'/2(r)  xH-1/2 (r) +R defined by

(2.7) aO,u) = <AA,y>

is continuous, symmetric and H
-l/2

(T)-elliptic.- - -

Proof of (i) : The variational problem

(2.8)
I A$Avdx  = - CE , X> ~vEV,

R

WV Y

has one and only one solution. This result is classical. Nevertheless

let us Drove it : the domain Q being bounded and the boundary I' of R

being regular, IIAvII
L2 (W

defines on V a norm equivalent to the norm

induced by H2(Q)  (see Proposition 2.1.). Therefore the bilinear form

(u,v) + I AuAvdx
52
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is continuous on V XV and V-elliptic. The mapping y
1 is linear continuous

from H2(n)  to H 1/2u)  ( see Prop. 2.4),  therefore

(2.9) avI<z Y X>I = I<YIWI 5 llql H-l/2(rjlylvllHl,2 s cllxllu-1 H-1  12 H2 (n j

Thus the mapping v -t < g , X> is continuous from V to R. The conditions

of application of the Lax-Milgram theorem being fulfilled, we deduce

from it the existence and uniqueness of $ solution of (2.8).

Let us show that $ is also the solution of (2.5). The set of C"(x)-

functions with compact support, D(Q),  being included in V, we have

(2.10) A$Avdx  = 0 vvc 9(R).
!2

Therefore

(2.11) A2$ = 0.

Let w = - A$,then  weL2(fi)  andyfrom  (2.11),  AU = 0,therefore

(2.12) WE l-f.

From Green's formula (see No 2.3) and from (2.11)

0 =

R
AWvdx +~yov,ylA$>>  - <ylv,yoA$> VVEH~(Q).

If veV,  yov = 0, hence

(2.13)
f

A$Avdx  = <Y~,Y,W VVEV.
R

The mapping yl is surjective  from V onto H l/2 (I?) therefore by comparing

(2.13) and (2.8) we find that

- y,A$  = X Q.E.D.
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Proof of (ii) : Obviously A is linear. It is also an injection since,

from Theorem 2.1, @ = 0 is the unique solution of :

A2J1 = 0 , y,$ = 0 , yl$ = 0.

The surjectivity  of A follows directly from Theorem 2.1 (with f=O, gl=O).

Therefore A is an algebraic isomorphism of H-li2(r) to H'12(r).

Let us show that A is continuous ; by letting v = $J in (2.8) we find

that

lb4
L2 u-0

5 xII II
H-1'2(r)

IIYldI
H1'2(r)

s WI
H-1'2(r)

II $11A
L2(&

i.e.

II $11A
L2 u-0

< CII~II
H-"2(r)'

Thus the mapping A -+ $J : H-'12(r) + V is continuous ; then the continuity

of A follows from the continuity of yl : H
2
(a) -f H1'2 (I'). The continuity

of A-1 is deduced from the continuity of A by applying the Closed Graph

Theorem.

Proof of (iii) : The continuity of A yields the continuity of a(*,*).

Let us show thesymmetry.  Let xl,A2 EH -li2(r) and IJ,,$J~  EV the corresponding

solutions of(2.5). From (2.8),

(2.14)
I

A$lA+2dx  = <AX2,Al> VA A EH
1' 2

-'12(r)
52

and by permuting Al with A2

A$2A+ldx  = <AX 1 ‘x2> vXl,X2 E H-li2(r),
i-2

which completes the proof of thesynxnetryof a(*,*).
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To show the H
-l/2

(r)-ellipticity,  let Xl = X2 = X in (2.14) ; then

(2.15) I $1A 2dx = <AX& v/Xc H-1'2(r).
R

Since A$e$j  (see (2.12)),  (2.15),  Proposition 2.6 and the fact that

Y,W = -X,imply  that

<AM’ 2 CII Y,AvJlI  ;4,2 = wl~4,2 Y -0,
m (0

which completes the proof of Lemma 2.1.m

Let usgo back to problem (PO) with f E L2(fi), gl eH 3/2
03, 82 E H '12(r).

We have seen from Theorem 2.1. that (PO) has a unique solution in H2(Q,)

and that o = - A$ has a trace X = you in H
-l/2

(I?). We shall now show

that A is the solution of a linear variational equation in H-l/2 me

Let T be the unique solution in V of

A2j? =  0

( 2 . 1 6 ) 51, = O

- A$ = X.

Problem (2.16) is equivalent to

(2.17)

-a=()

Wlr = x
- /‘$=w

p1, = 0 .

Then let $, be the unique solution in H2(SI)  of

A2$o = f

( 2 . 1 8 ) @,I, = 81

-Wolr = O
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which again is equivalent to

-Au =f0

(2.19)
wolr = O
- A$ 0 = o.

+,I, = 81’
\

Obviously $ = Q, + T , w =w o + w. The reader will note that J,, is

computed by solving two Dirichlet problems for -A. Similarly for v ,

SO long as X is known.

Then one has the following theorem :

Theorem 2.2. : Let + be the solution of (PO) ; then the trace X of

-A$ on r is the unique solution of the linear variational equation

I

w
<AA& = + - g2,u> V'eEH -1'2(r),

(2.20)

x E H-1'2(r>.

Proof : Prom Lemma 2.1 and from (2.16) we have

(2.21) a?<AA,y>  =-<an,'-'> v'l-~eH
-l/2

(no

Since v = $J-$,  and since 2 = g2 on r

<AX@ = <$ - g 2’ 1-I> VpeH-"2(r)

which shows that X is a solution of (2.20). The fact that h is the

unique solution of (2.20) follows (via the Lax-Milgram Theorem) from the

fact that {A,p} +- <AA,p>  is bilinear, continuous and H-1'2(r)-elliptic

(see Lemma 2.1.) and from the continuity of the linear mapping

a$
LI+<az  g2yV>:H-- -1'2(r)  +R

w

( 3,"- and g2 belong to H 1'2(r)).~
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Remark 2.2. : Since the bilinear form a(*,*) is symmetric,the  variational

equation (2.20) is equivalent to the minimization problem

J(x) 5 J(U) b”l-~eH -1/2(r),

(2.22)

X E H-"2(r)
\

J(p) = +
WJ

<Au,P - ~0 - g2,p>  .an

Remark 2.3 : wIf the condition : ;i;;lr = g2 is treated as a constraint

we can associate with (PO) the Lagrangian &: H2(n)  XH -1’2(r) -+ R

defined by

(2.23) zL(V,~) = ;
n

Let ? = {vlveH2(fi)  , v =

NY - yoA$) is the unique

J(p) = -

IAv12dx  -
In

fvdx + <g - g2, 1-I>*

gl on rl ; then one could show that

saddle-point of & on $xH -‘/2(r) and that

Therefore (2.22) is the dual problem of (PO) associated to the Lagrangian d.

We refer to cql,  [211  for a more complete study of (PO) by duality methods

associated to Lagrangian of the same type of2 .

Remark 2.4 : The data f and gl come into (2.20) by means of Q. only

(see (2.18)). l

Remark 2.5 : Let ij be an extension of 1~ in $I. In a formal manner, from

Green's formula :

a(U) w= <AA,p> = - < -a n 9 P> =
(2.24)

where $ is the solution of (2.5) and w = - A$. Similarly
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(2.25)

ahl< -
an Y p> =

I R
V@$dx +

I52
A$o;dx  =

\

= .Vl;idx -
f-2

“$0
R
wocdx

where {~o,Qo}  is the solution of (2.19).

If lo is sufficiently regular (say 1-\ eH 1'2u)) so that there exists

6 E H'(Q)  then (2.24) and (2.25) can be justified. The interest of

(2.24),(2.25) is that we can now evaluate (2.20) without calculating

@ a'o explicitly.
an SE&an

We shall take advantage of this remark in Sec. 3 and 4 when (PO) and

(2.20) will be approximated by a mixed finite element method.

2.6. Summary

Let $ be the solution of

A2$ =finfi

(po>

I

$1, = gi

$lr = 82

and w=- A$, X= ~1 r. We have shown in Sec. 2.5 that for solving

(PO) it is equivalent to solve the following problems :

(2.26)
I

- AU0 = f in s2,

uolr= OY

(2.27)

(2.28)

(2.29)

- AQo = w. in s2,

'!jolr=  81,

W,
AX = an - g2,

I
-Au = f in fly

Wlr = X Y

(2.30)

I
- A$ = u in R,

$1, = 81’
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Altogether 4 Dirichlet problems for -A plus an integral equation on I'

whose variational formulation was given in (2.20). In the following

sections we shall focus on the approximation of (2.28).

2.7. An explicit example : computation of A when R is a disk.

The results of this section are not at all essential for the under-

standing of the sequel ; they are given for the sake of curiosity.

In this section, we assume that

i-2 = {xeR21x;  + x; < R2}.

Let (rye)  be the usual polar coordinate system in R2.

Theorem 2.3 : Let A be the isomorphism of H-‘/2(r) on H1'2(lY)

defined in Sec. 2.5. The eigen functions of A are

(2.31)
wln(O>  = cos n0 n20

w2n(e> = sin no n21,

the corresponding eigenvalues  being

( 2 . 3 2 )
R

a
n

= - (n20).
2(n+l)

Proof : Let $,,, respectively $J,,,  be solutions of

A2$ = 0

( 2 . 3 3 ) $1, = O

- At)Ir = c o s  ne (n 2 0) ,\

( 2 . 3 4 )

A2$ = 0
$1, = O

- A+Ir = sin ne (nr 1).

The reader will check that

( 2 . 3 5 ) Q,,(r,e) = & (E)" (R2-r2)  cos ne Vnn>O,
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(2.36)
1

$2ncrye'  = 4(n+l) R(r)"(R2-r2)  sin ne tJn21.

Since

A+ = - 21, = - $$ (Rye)

it is seen from (2.35),  (2.36) that

R
A$,, = -2(n+l) c o s  ne Vn>O,

R
A$2n = -2(n+l) sin ne Vnnl.

The sequence a= (wlo ~~~~~~~~ ,...,Wln,w2n,...  =I
Y

= 0, cos 8, sin e,..., cos ne , sin n6 ,...I  is total in HS(r>, VSER

(i.e. the space of linear combinations of elements of 3 is dense in

HS(I'))and  A is self-adjoint, compact from L2(r)  into L2(r>. By applying

the spectral theory of self adjoint operator in H-space (see for example

RIESZ-NAGY 140-l) we conclude that %is the set of all eigenfunctions of A.

Theorem 2.4 : Let A be a sufficiently smooth function on I' (say x e L2(r>)

(AU (x> =
I
A(x,y)UyH-‘(y) her,

r

the kernel of A being

I

A(x,y) = & (1 -[ ly-x12  ) Jln( R ) + lY-xl (1 _ IYmx12 )+ x
2R2 I IY-X R 4R2

(2.37)

x cos-‘(lgL)-+ ,1
where ly-xl = distance (x,y).
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Proof : In polar coordinates

2R

(2.38) (Awe) = A(B,a)X(a)da
0

where

(COS ne cos na + sin ne sin na) --&-

(2.39)
=-R (L + c cos ;:;-a,  )

2lT 2
‘de 751

n21

which is the expansion of the kernel A(8,a)  with respect to the

eigenfunctions of A.

Let $I = 8-a and z = e id) ; we may assume that GE I-IT,+IT~  ; then

(2.40) A@ ,a> = $f 32 (+ JW-j-&) - $4 ve # a.

In (2.40) the determination of the complex logarithm is the one which

satisfies Rnl=O  . Therefore

(2.41) A(8,a)  = - & (cos$En\l-z\+  sin@Arg(l-z)+  i) b'@ # 0.

By inspection of Figure 2.lwe  have

Figure 2.1.
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@ = 2 sin if 4 > 0,

(2.42)

Q I= 2 sin-1 ‘-‘I-
2

if $ < 0.

Hence

(2.43) 20 Jl-z12
cos$=l-2sin  T=l- 2 .

But sin @ = 2 sin y cos 7,therefore

sin @ = ll-zl  (1 - ll-z!2)  l/2if $ > 04 ,

(2.44)

sin 4 = -I pzl (1 - 11-212 )1/2
4

if $I < 0.

From Figure 2.1. we also deduce that

Arg (

Arg( 1

-z) = 2 - 2 if $> 0,

0 7T
-z) =2+2 if $< 0.

Hence from (2.42 >

Arg(l-z) = - cos
-1 I l-z1
-2 if c$> 0,

(2.45)

I
Arg(l-z)  = cos-l !A+ if @< 0.

Finally, putting back together (2.41),(2.43)-(2,45),  if efa

I
A(8 ,a> = ;

[
(I- 1$)&n & + 1 l-z1 ( 1  - + )1’2 x

(2.46)

I
x cos-l I14 1---

2 12 l

Let x = (R cos 8, R sin 01, y = {R cos a, R sin a) ; (2.38),(2.46)  yield

(AA)(x)  = & A(%Y)X(y)dT(y)  ,
r

where A(x,y) is given by (2.37).m
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Remark 2.6 : If the domain R is the open disk (0,R)  the resolution

of the Dirichlet problem on s2

(2.47)
Au = 0 in R (or lR2-Q)

U =gon  r

involves the operator B : H-1'2(r) + H"2(r) defined by

(W(x) = & r Rn * A(y)d k/A regular, VXE r.

One can show that B is continuous and positive semi-definite, i.e.

<B~,J..I>  2 0 VPEH -1’2(r).

Besides,A  and B have the same eigenfunctions (see (2.31)),  the

corresponding eigenvalues being PO = 0, Bn = & , nrl.

For the numerical solution of (2.47) by methods of integral equations

on r and for more general domains of lR2 and R3 , we refer to NEDELEC-

PLANCHARD bg, LEROUX !3($  and the bibliography therein.

Remark 2.7 : For more general domains, A will be a pseudo-differential

operator, usually not explicitly known. m
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3. APPROXIMATION OF (PO) BY A MIXTE FINITE ELEMENT METHOD.

In this section we shall use only polygonal domains 52, but what follows

can easily be extended to the case where isoparametric finite elements

(see CIARLET-RAVIART cl1 1) are used.

3.1. Triangulation of R. Fundamental spaces

Let zh be a triangulation of Sz satisfying

(3.1) eh finite, TcS?  VTE \ , U T=n,
TE

T-l

I T and T'crh , T # T' * ?n?, = fl and TnT' = 0 or T (I~~u ;
(3.2)

have a side or a vertex in common only,

(3.3) h = length of the greatest side of the TE ch.

Let Pk be the space of polynomials of two variables (3 inR3)  of degree

less than or equal to k ; we introduce the following finite dimensional

spaces

(3.4)

(3.5)

Vh = {vhlvheCO(a)  , vhlTePk ATE eh},

Voh = hhlvh~ Vh , vh = 0 on I') = VhnHA(G)  ,

ni
(3.6) h : a complementary space (not precised for the moment)

of voh in V
h

i.e. pi CVh h and Vh = Voh @r/Lb Y

W
gh

= f(vh,qh)Ibh'qh)  EVhXVh ' Vhlr = glh'

(3.7)

R h
Vv l 'iQhdx =

nqhlJhdX  + r 2h hg 1-I dr VllhEVhl'

In (3.7) ,glh is an approximation of gl which belongs to yoVh and g2h

is-an approximation of g2 such that .rr g2hllhdT  is "easy" to compute

(g2h = g2 possibly).
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3.2. Approximation of (PO)

(PO) is approximated by

(3.8)

jh(+hYwh)  ’ jhhhYqh)  v hhYqh) E wgh ,

(‘,>

jhhhYqh>  = $
InfhVhdX ,

and where fh is an approximation of f (fh = f possibly) such that

Jn fhvhdx is easy to compute.

Such an approximation (P,) of (PO) by finite elements is said

mixed (see [lOl,C91).  One can easily show the following propos

to be

ition ..

Proposition 3.1 : Problem (P,) has one and only one solution.

3.3. Convergence results (k2 2).

It is assumed that the angles of %, are bounded, uniformely in h,

from below by 8
0

> 0 and that "e, is such that

(3.9) Max h(T) I 'I min h(T) ,
TE % Tceh

V'toh, '1: independent of h,

where h(T) is the length of the largest side of T. If k22 it is shown

in ClOl  that, under the above hypothesis, one has

(3.10) bj,-+li H] (s2) + Ib,-(-A~)  11 2 s CIIQII hk-l

T-8 m Hk+2(fi)

where C is independent of h and Q ; naturally this result supposes that

f,gl,g2 have been conveniently approximated. For a discussion of the

case k=l we refer to C23,Ch.  41, GLOWINSKI c221.  We also refer to SCHOLZ

r431 where, under the above hypothesis on c,, it is shown that if k23

one has the following error estimate
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11 qh-9 11 L2 W)
+ h2 Il~,-(-A’/‘>II

L2 60
’ Chk+l IbdHk+l (W

where C is independent of h and @.

Remark 3.1. All what is said for triangular elements also holds for

quadrangular elements.

3.4. Decomposition of (P,).

By definition of ?(h : Vh = Voh @I ?Ih. Let (JIh,wh}  be the solution of (P,)I

and let Ah be the component of tih in %,, i.e.

*h = $,-'h) + Ah ; (+,--Ah  E Voh , AhE Rh.

In C91 the following theorem is shown

Theorem 3.1 : Let {Jl,,w,}  be the solution of (P,)  ; let Xh be the

component of w in Zh ; I+,,w,,  h+ h-
A } is also the unique element of

VhxVhxnh such that

Vwh*Vvhdx  = J,fhvhdx \dv EV
h oh '

! Wh-hhEVoh’

+, ’ ’h ' ',I, = glh'

(3.14)
Ii-2

V$h*Vphdx  =
I fYhPhdX  +

rg2huhdr
VJlhC  Rh.

Owing to the importance of this result for what follows we shall give it

a proof.
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Proof of Theorem 3.1 :

(i) Let Woh be

W I
oh

= ((vh,qh)  cVOhxVhI  J Vv l Vphdx =
i-2 h I

q F dx
Qhh

V~-r~eV~j  l

Let {I/.J~,w~}  be the solution of (P,) then

(3.15) {$h+tvh,uh+tqh)  cwgh '-% V~Vh'qh3EWoh*

The following process is classical in the Calculus of Variations :

from (3.15) we deduce that

I 1
t jh(Qh+tvh,Wh+tqh)-jh(l/Jh,Wh) 1 2 0 Yt> 0,

(3.16)

vhhYq$ ’ Woh’

Now

lim
t>O
PO

1 I
= Whqhdx  -

R
Slfhvhdx

(then the linear mapping (vh,qh) -t
I

(w q -f v
h h  h h

)dx is the derivative

of j, at {$h,WhI).
s2

Therefore

I Whqhdx  -
f v

R h h
dx

R
2 0 v {vh,qh}  cWoh,

and since W
oh

is a linear space,

(3.18)
I
R dhqhdx  -

I
nfhvhdx =o V(v

h�qh)  � Woh l

Also by definition of Woh,  (vh,qh} cWoh implies

(3.19) Vvh=Vwhdx  =
I
4 w dx
nhh

Y
i-l

which, together with (3.18) implies that
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(3.20)
I R

Vwh'Vvhdx  =
Infhvhdx

uvhYqh) ' Woh'

Let vhcVoh ; the problem

IJ !a qhphdx  = I RVvh*Vphdx ',$"h'

I 'he'h

has a unique solution and of course {vh,qh} eWoK This shows that,in

(3-20), Vh can be any function of Voh ; therefore it implies (3.12).

Similarly, since {$h,whI E W
Ew

we have

(3.21)
I i-2

VQVvhdx  =

Hence (3.13) is proved

for (3.14).

wvdx+ g v dr
52 h h I r 2h h

\JVhE Vh.

by choosing vheVoh  in (3.21) and vh in r/lb

(ii) Conversely, since Vh = Voh ’ ‘h , by adding (3.12) and (3.13)

we find that

I
I !a

VQh*Vvhdx  =
I whVhdx  + I

g v dr
52

r 2h h

{$h’wh)‘VhXVh  Y +hlr = glh’

Therefore

(3.22) t+h,w,)  EWgh.

Let (vh,qh) cWoh, then

IR
Vvh*Vuhdx  =

i i-2
qhl-lhdx ' ,$ ' 'h ,

and in particular

(3.23)
I i-2

VvhmVwhdx  =
I
qwdx v
nhh



- 25 -

Then (3.12), (3.22),  (3.23) imply

The functional j, being convex on Vh xVh, (3,24)  characterizes {$,.wh]

as being the solution of (P,).

Remark 3.2 : Equalities (3.12)-(3.14)  are the discrete analogues of

(2.29),(2.30)  and of

I! V$*Vpdx = J/pdx + j,p2pdx V,MR,

(3.25) ( !A

3;1:
\

complementary of HA(R)  in H'(Q),

3.5 Discrete analogue of Lemma 2.1.

Let Xhe %?, and let wh, respectively $,, be the solutions of the following

approximate Dirichlet problems

h ' Wh-Xh ' Voh ,

Then we define the bilinear form ah : nhX Rh +R by

(3.28) ah(XhYph)  =
I
wpdx-
Qhh IR h

V$ l Vphdx

The reader will notice that to define ah we have used Remark 2.5.
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Lemma 3.1. : The bilinear form ah(*,*) is symetric, positive definite.

Proof : For j=1,2  let A. E ??ih  and w. $.
Jh Jh' Jh

respectively be the solutions

of (3.26) and (3.27).

By definition of ah(*,*)we  have

(3.29) ah(XlhYX2h) =
IR

wlhX2hdx -
I cl

V$lh*VX2hdx.

By letting X2h = (X2h-w2h) + w2h , (3.29) becomes

a 0h lhyA2h)  = I nwlhw2h
dx -

IR
V$lh*Vw2hdx  +

I
-

(3.30)
52
V$lh*V(w2h-",,

- I
w (wR lh 2h

-A )dx.
2h

From (3.26) and since qlhcVoh

(3.31) I s-2
VW2h
l VQlhdx = 0

Similarly from (3.27) and since w2h-A2h~Voh

(3.32)
I

V+lh*V(w2h-h2h)dx = w (w -A )dx
i-2 I R lh 2h 2h

and on account of (3.30)-(3.32)  we have

(3.33) ah(XlhYX2h)  =
Inwlhw2h

dx VhjhE 711, j=1,2

which shows the symmetry of ah'

To show the positive definitness let Alh = A2h = Ah in (3.33) then

(3.34) ah(XhYXh)  = 2
I

w dx.
Qh

Therefore ah(Xh,Xh)  = 0 implies wh =0 which in turn implies Ah=0  since

'h
is the component of wh in r/l

h'
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3.6. Application of Lemma 3.1. to the resolution of (P,).

Let bbhywh

of wh. Let

b be the solution of (P,) and let hh be the component in zh

<Y$., be the solutions of

I VGh=Vvhdx  = 0 Hv EV
a

h oh'

51
Vvh*Vvhdx  =

I
iiv dx vv EV

(3.36)
cl

h h h oh'

?j,'  Voh'

Let Woh and JI,, be the solutions of

(3.37)

vWoh l Vvhdx =
I nfhvhdx

vv,E  voh'
.Q

W EV
oh oh'

(3.38)

I "oh
l Vvhdx =

I
v dx

52
Woh h

sz
vv,E voh'

$oh
EV

h ' oh
I) = glh on r.

Then $J, = Jlh + $,, Y Wh = ;I1 + Woh and (3.35)-(3.38)  are the discrete

analogues of (2.16)-(2.19).

We shall now show that Xh is the solution of a variational problem inRh.

From the theorem below we shall derive a discrete analogue of Theorem 2.2.

Theorem 3.2. : Let {Q,,w,) be the solution of (P,) and let Xh be the

component in
%

of wh. Then X, is the unique solution of the linear

variational nroblem.

(3.39)
I "oh h

l Vu dx -
i-2 I

Wohphdx -
52 I

g p dxr 2h h vph' %hY
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which is equivalent to a linear system with a positive definite

matrix.

Proof : Owing to Lemma 3.1., applied to @h,~h),we have

V(+ -$ >*Vcl dx =
hoh h

but {$h,wh} belongs to W
&h

therefore (see (3.7))

I 5-2
V$h*Vphdx  -

Ii-2
WhlihdX  = I

g pdxVphenr 2h h h

which, together with (3.40) proves (3.39).

The uniqueness is obvious since ah(*,*)  is positive definite. The

equivalence with a positive definite linear system is a classical

result on the approximation of linear variational problems. We

shall write the matrix of this system in Section 4.

Remark 3.3 : To compute the right hand side of (3.39) it is necessary

to solve two approximate Dirichlet problems ((3.37) and (3.38)).

Similarly Ah being known, to compute w h and i$., it is necessary to

solve the two approximate Dirichlet problems (3.12) and (3.13).

3.7. Study of the conditioning of ah(*,*).

Since the linear system associated with (3.39) will be solved by direct

or iterative methods, it is important to know the conditioning of the

matrix of the system. Theorem 3.3 below will help to estimate this

conditioning. For the sake of clarity we shall assume that Lagrangian

type finite elements are used.
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Theorem 3.3 : We assume that R is convex. If rh satisfies the

hypothesis of Sec. 3.3., and if k2 1 and h is sufficiently small,

then

(3.41) ah hohhil 22
L u-1

' ah(Xh'Ah)'  ~~~YoAhll;2cr)  "he ',,

where a,@ are two positive constants, independent of h and X
- h'

Proof :

(i) Proof of the second inequality. Let hhe % h. It follows from

(3.34) that

(3.42) ah(Xh'Xh)  = 2
I

w dx,
Qh

where w
h

is the solution of

I Vwh*Vvhdx  = 0 vv EV
52

h oh'
(3.43)

Wh-AhEVoh.

Let Gh be the solution of the Dirichlet problem

(3.44)

vGh.Vvdx = 0 Vd(Q),
R

.I Gh-Xh E I-+2)

From Sec. 2.5.

dw

(3.45)

= II IIWh 2 ' IIwh-+.,ll  2 =L a>
L (n) + lb&ii 2

L (Q)

= IIWh-Ghll

Let I4 = IIAII
;ea2m ,L2m

then ( )

(*> IAl = largest eigenvalue of A.
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I<ALP-I  5 IAl ll~ll
L2u)

II IIIJ
L2U>

VA,P E L‘u),

therefore, from (3.45)

(3.46) j/;;Ts;h7-i;;Ir  ' IIWh-whll L2tn> +m IIyoxhll

To estimate IIw~-G~II
L2 m>

let us use the method of AUBIN-NITSCHE

(see C 2 l,C361)-

Let weL2(51)  and let $, respectively rJ,, be the solutions of

1 I V@Vvdx  =
I
wvdx

n s-2
Vvd(Q)  ,

(3.47)

$E H;(Q),

Then - A$ = v and, R being convex, c$EH~(,)  nH1,(R).  Also  w hlr = vr =
= Xhlr  l

Therefore w~-~~EH~(Q).  From (3.47) we see that

(3.49)
In

w(wh-ijh)dx  =
IR

V+V(wh-ijh)dx  =
I c2
v(+-0,) l V(Wh--;h)dx +

+
I R

v$h*v(Wh-$h)dX.

Also wheVohc  H:(n) therefore from (3,43),(3,44),  we have

(3.50)
I52

V(wh-;h)V$hdx  = 0.

Finally from (3.49),(3,50)  we have

(3.51)
I cl

w (w,-G,)  dx =
I52
V($-$hbv(wh-~h)dx ’ II@,-$11 Hi(njlWh-'hl~Hl(,)  '

0 0

But it is well known (see STRANG-FIX [47]) that under the above hypothesis
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where C 1 is a constant independent of h and 4.

From Proposition 2.1

lldl H2(Q> 2 3 llwll
L2(Q)'

Therefore

(3.53)
I

w(wh-kh)dx 5 C3hllwll IIWh-3hll VWEL2(0)
i-2 L2 w H! (0)

which in turn implies that

(3.54) llWh-3hll  =
L2 m

sup II IIW

WEL2(.Q)

w(wh-ijh)dxl  5 C3h \\wh-khII  1 .
Ho 68

w#O

Thus now we must estimate ([w~-G~II

8; W)
; from (3.43),(3.44)  we have

I V(wh-Gh)*V(vh-tih)dx  = 0 VVhEVh  , Vh--hhEVoh.
R

Therefore

iJR
lV(~~%~)(~dx  =

In
V(~,-W,)~V(~~-V~)~X  +

(3.55)

I

+
I
V(Gh*h).V(vh*h) dx =

n Is-2
V(ijh-wh)*V(Gh-vh)dx

vv EV
h h Y vh-AhE Voh ,

which shows that

lIwf3hll H;(Q)
5 II Vh-Gh 11 H;(Q)

VVhEV
h Y Vh-Ah ’ Voh’

Let rh be the operator of interpolation on yh associated with the method

of finite elements used, rhcd(H1(Q)  n C"(n),Vh).  Then G,e H'(a) 'ds <+

and
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(3.56) II IIG
h H'(0)

’ ns I)Y,Ahll
H1 u)

2
where I\ s is independent of Xh. Now 52 is bounded inR and its boundary

is Lipchitz continuous, therefore, tJs > 1, HS(Q)  c Co(B)  with continuous

injection. Hence ITS can be applied to Gh and

(3.57) 'h'h(T = 'hi, = 'hlr

Let s'<s  ; owing to the above properties and to the hypothesis on pphy

we have (see for example BABUSKA-AZIZ i 31)

(3.58) 11 '@h-;, 11 H1, (Q)
5 c

(s' 4)
hS

'-I ;II II
h HS(Q)

with C independent of h and Gh. We deduce from (3.56),(3.58)
(s' YS)

II ‘&.+h 11
J$ (Q2)

IK
(SYS')

hS '-' Ih,hhll
H1 (I')

with K
6' 4)

independent of h and Ah. Therefore V6 >O, there exists

Cg independent of h and hh such that

(3.59) l~rhGj,-GhII  1 <-
Ho (fl)

c&h(1'2-6)IlY  x 11
O h H1 (r) ’

From the hypothesis on rh we have also

IIY,+,lI < ’ IIy,+-)l
Hl (r) - h L2(r) ’

therefore

(3.60) II ‘@h-‘h  11
H;(Q)

5 Csh-1'2-$yoAhll
L2u)

where C 8 is independent of h and Xh. From (3.57) it is possible to take

Vh
= 7ThGh in (3.55) and together with (3.60) it implies that

(3.61) II Wh-Gh 11 HA (W
5Cgh-1’2-611yoAhi/

L2(r) ’
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and at last from (3.46),(3.54)(3.61)  we have

(3.62) j/m) 5 (m + Cgh1'2-6) /Iyoxh~l
L2(r)

VAhe ',

which completes the proof of the second inequality in (3.41).

(ii) Proof of the first inequality.

Since %, satisfies the assumptions of Sec. 3.3. it is straightforward

to show that

(3.63) hovhil

where C is independent of h and vh. Recalling that

I
w2dx

n h
= ahtXhyXh)  'AhE '$,

and ‘hlr = WhlrY we deduce the first inequality of (3.41) inrnediatly

from (3.63). This completes the proof of Theorem 3.3. l

Remark 3.4. : Proceeding as in [9, Th. IO] one could show from Theorem

3.3. that

(3.64)
ah(XhYXh) aO,U

lim sup
h+O Xhd'Jh-tO) llyoAhl122  = AeL2c;;;loj X 2 .- =II II

I IA .

L (r)

3.8. Summary

Let {$,,w,} be the solution of (P,) and let Xh be the component of wh

in 7JIh. The vector Xh is the solution of a linear system the matrix of

which issymmetric, positive definite. This system is given in variatJona1

form in (3.39) but the bilinear form ah(*,*)  is not known explicitly. The

construction of the matrix and the resolution of the corresponding linear

system will be dealt with in the next section. The resolution by iterative

schemes will be considered in Section 5.
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4. CONSTRUCTION AND RESOLUTION OF THE LINEAR SYSTEM EQUIVALENT TO (3.39).

4.1. Generalities

Let Nh Nh= dim(nh)  andmh = {wiji=l  a basis for Rh ; if xhe Rh

Nh
(4.0 Ah = c A.W..

J J

Proposition 4.1. : The problem (3.39) is equivalent to the linear system

in (X,,...A,  )
h

Nh
CahCwj,WiIAj  =
j=l I 52

V$oh'VWidx  -
I

nWohWidk  -

cEh)

-I
g w.dr,

r 2h 1
i=l Y.'., Nh. m

NhWe shall denote a.. = a (w w.) , Ah = (a..).
iJ h jy 1 1J i,j=l'

It is also easy to show

the following

Proposition 4.2. : The matrix Ah is a NhxNh positive definite symmetric

matrix.m

We shall now study the construction of Ah and of the right member of (Eh)

from a suitable basisah.

4.2. Choice of nh.

The space nh should b e chosen such that the computations of a.,. and of
iJ

the right member of (Eh) are easy. Therefore the basis functions w;E 3,

should have a small support. It seems from C91 and C23,Chap.  41 that a

good choice is as follows

Rh complementary of V
oh

in V
h'

(4.2)
vhe % jvhlT = 0 'v'TE  gh , TnI'  = 8.
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If in particular Vh is defined from Lagrangian finite elements (see

Figure 4.1. for k=2), R, is the space of those functions which take

the value zero at all nodes of %, which do not belong to r .

Then

Nh
= dim( m,) = Card (C,),

where

Ch = {P e rl P node of eh)

Nhand a good choice for ah is the canonical basis ah = {wi}i=l , where

wi E vh

(4.3)
Wi(P;> = 1 y PiE Ch y W;(Q)  = 0 tJQ node Of Th y Q # Pi.

For notational convenience we have supposed that Ch has been renumbered

from 1 to Nh. With this choice of m,
and ah the coefficients A., in rela-

3
tion (4.1) , of Ah are precisely the values taken by Ah at the boundary

nodes P. , j=l Y-*-Y Nh'
Thus

3

A.
J

= oh VPj E Ch , .j=l ,***, Nh'

Figure 4.1.

(k=2 ; a small circle indicate a boundary node. The supports of w4
and w. are shown).

J



- 36 -

4.3. Computation of the right members of (Eh)

Let bh = {bl ,...,bN 1 be the vector of the right member of (Eh) :
h

(4.5) bi =
I

VQo$'widx  -
I

w w.dx - g w.dr , i = 1 ,***,
n Q

oh 1 I r 2h I Nh'

To compute bi we need to know woh and 'oh'
This is done by solving (3.37),

(3.38).

Remark 4.1. : The computation of bh is faster if the support of wi is

smaller (see Sec. 4.2). Besides if mh verifies (4.2) it suffices, to

compute b
h'

to know w
oh and Qoh on the triangles Tewh such that T n l? # 8.

This remark eventually allows to reduce the memory space allowed to $,,

and w
oh

in the computer.

4.4. Computation of the matrix Ah

Let wj E ah. For simplicity let us omit the subscript h on w and $. Then

let W., resp $.,
J 3

be the solutions of (3.26),  resp. (3.27),  corresponding

to w., i.e.
J

(4.6)
I Vwj’v’hdx = O vl-(hEVoh’52
0. EV

3 h
W. -w. EV
J J oh'

;In ?i l �hd⌧ = I w.l.l d⌧
(4.7)

nJh
vphEvoh�

$J. EV
\ J oh'

From (3.17) we find that

a
ij

= a
hJ
(w.,wi)  =

I
w.w.dx -

szJ1 I
(4.8)

QVljlj*Vwidx  ,

1 <i,j INh.
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Thus, to find the j
th

column of A
h'

it is necessary to solve the two approximate

Dirichlet problems (4.6)(4.7) and then, wi describing ah, to evaluate the

integrals in (4.8). Naturally Remark 4.1 also holds for the computation of

a
ij l

It should also be noted that since Ah is symmetricyin  the computation

of the j
th

columns,it  suffices to compute a.. such that 1 'j <i.
iJ

We shall see in Sec. 4.5.2. how to use those remarks when (Eh) is solved

by the method of CH0LESKY.m

Remark 4.2 : From (3.33) we have

(4.9) a =
ij I

w.w.dx
.eJ

t/l<i,j  INh.

Therefore it seems that Ah can be computed by solving Nh Dirichlet problems,

instead of 2Nh when (4.8) is used. In fact this simplification is only

superficial. Indeed to use (4.9) one needs much more memory for the storage

of w
1 ,***,w,h*

It is always possible to use tape or disk storage but it

increases considerably the computing time. Besides this it should also

be noted that the integrals in (4.9) must be calculated over Q entirely

instead of a neighborhood of r as in (4.8). m

4.5. Resolution of (Eh).

4.5.1. Generalities

V
Let Xhe RNh be the vector {X,,...,XN  ) ; then (Eh) is written

h

(4.10) Ah Ih = bh.

The matrix
Ah

is symmetric positive definite ; to solve (4.10) we can use

the method of CHOLESKY. We can also use an iterative method like S.O.R.,

S.S.O.R. (see VARGA C481,D.M.  YOUNG 1491) or like steepest descent or

conjugate gradient (see J.W. DANIEL r-131,  CEA [7 1, POLAK c391,  CONCUS-

GOLUB 1121).  We shall give more details in Sec. 4.5.2. on CHOLESKY's

method which seems particularly well adapted to the resolution of (Eh).
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In fact the methods of steepest descent and the conjugate gradient method

do not require the knowledge of Ah. We shall come back to this point in

Sec. 5.

4.5.2. Resolution of Eh by the method of CHOLESKY.

Since Ah
is symmetric positive definite there exists a lower triangular

matrix L
h'

invertible and unique such that

f t= Lh Lh ,
(4.1'1) t

R
\ ii '0 Y 1 lilN

h '

where R..11 ,
1lilN

h
are the elements of the diagonal of Lh.

If R..
13

are the elements of Lh then

R
ij = 0 if 1 <i <j<Nh.

We recall the formulae of CHOLESKY :

For j=l,

(4.12)

I

a
R

il=-
il R

V25isN
11

h'

For 2 'j INh

I R
j-l

=
jj

(a.. - cJJ k-1
Ilgk) 1'2 ,

(4.13)

R \dj+l<i<Nh.

i
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It appears from (4.12),  (4.13) that it is not necessary to memorize

Ah
in order to construct L

h'
Indeed, suppose that the (j-I)-first  '

columns of L are known ; to find the j
th

h column we compute the

solution (wj,qj) of (4.6),(4.7)  and then a.. by (4.8),  R.. by
JJ JJ

(4.13) and aij by (4.8)) 'ij by (4.13) for j+l risNh.  The same

argument also applies to the construction of the first column of L
h'

Once Lh is known the determination of A, breaks down to the resolution

of two triangular systems :

(4.14)

LhYh  = bh

t”
LhXh = Yh’

The computation of Ah from ih being straightforward finally mh and

'h
are computed by solving the two approximate Dirichlet problems

(3.12),(3.13).

Remark 4.3 : Once Lh has been determined it is very easy to solve other

problems (Eh) corresponding to other values for f,gl,g2. In fact it is

a general statement that the most expensive phase of the resolution

of a linear system, by CHOLESKY's method is the determination of Lh.

It is even more so in our case since the determination of Ah requires

the resolution of 2Nh Dirichlet problems.

4.5.3. Summary , number of linear sub-problems with the method of CHOLESKY

The solution of (P,) by (Eh),  solved by CHOLESKY's method, requires

the resolution of

- Two Dirichlet problems (3.37),(3.38)  to compute bh,

- 2Nh Dirichlet problems (4.6),(4.7),  1 Ij <Nh, to compute Lh,

- Two linear triangular systems (4.14) to find Ah,

- Two Dirichlet problems (3.12),(3.13)  to compute oh, +,.
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Thus 2Nh+4  Dirichlet problems (with the same matrix) and two triangular

systems.

4.6. Conditioning of Ah

We recall that the condition number V(M) of a square NxN invertible

matrix is given by

(4.15) v 00 = Ml w II 9

where the matrix norm is induced by the canonical vector norm of piN.

We recall also that if M is symmetric and positive definite

(4.16)
lJmaxv(M) = -
lJ

,
min

where 1-1 max (resP' ~min) is the largest (resp, smallest) eigenvalue of M.

The linear system (Eh) is easier to solve when v(A$ is small. If yh

satisfies the assumptions of Sec. 3.3 the following theorem is fairly

easy to deduce from Theorem 3.3 and from (4.16).

Theorem 4.1 : If a Lagrangian finite element method is used and if

the assumptions in Theorem 3.3 hold, and k2 1, then

(4.17) v (Ah) = O(i) .

Remark 4.4 : It should be pointed out that the classical approximations

by finite differences or finite elements of A (resp. A2) lead to

matrices with condition number in O( (resp. O(l)) and are therefore

not as well conditioned as
5-l

h4.
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4.7. Various remarks

Remark 4.5. : The 2Nh+4  approximate Dirichlet problems found in Sec.

4.5 are of the form

(4.18) (-A), uh = ch ,

where (-A), is a NixN{ symmetric positive definite matrix (approximating

-A ) with Ni = dim(Voh).

Therefore since the 2Nh+4  problems differ only by their right members,

the matrix (-A), can be factorized by Cholesky's method (and by using

the fact that (-A), is sparse)

(-A> h = Ah A:, ,

where Ah is a lower triangular invertible matrix.

The matrix A, being computed once and for all, the 2Nh+4  problems reduce

to 4Nh+8  triangular linear systems.

Remark 4.6 : If (4.18) is solved by an iterative method, in order to

compute  (wj ,~j >, it is not unreasonnable to initialize the algorithm with

wj-l ' 9 j-1 ' provided that the corresponding basis functions w.
J-1 ‘wj

are neighbors.

Remark 4.7 : All what is said above remains valid if in Sec. 3.1,3.2

numerical integration methods are used to define W
0

particular if k=l and for special triangulations, if

approximated by

(4.19)
1

c
3

5
T E eh

measure (T) c qh(MiT)lJh(MiT),MiT,i=1,2,3vertices  of T,
i=l

then the method studied gives back the classical 13 points finite difference

approximation of the operator A2 (see p3,Ch.  41,[221).
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5. REMARKS ON THE USE OF ITERATIVE METHODS. THE CONJUGATE GRADIENT METHOD.

5.1. Generalities

We have pointed out, already in Sec. 4.5,that  (Eh)  could be solved

by iterative methods such as the method of steepest descent or the

conjugate gradient method. We shall see that in doing so it is pos-

sible to solve (Eh) without having to compute Ah explicitly. It suf-

fices to solve, at each iteration, two approximate Dirichlet problems

for - A.

,For the gradient methods we will consider in Sec. 5.2 fixed step size

methods, a general study of which was done in CIARLFT-GLOWINSKI  C91

(see also C23,Ch.  41, @il and CIARLET [ 81) with numerical applications

in [5]. However the next paragraph may be viewed as an extention of C91

since iterative schemes in H-"2(r),  for solving approximatly (PO),  are

described. In Sec. 5.3 we shall study some of the methods considered

in Sec. 5.2. but with variable steps now. Then in Sec. 5.4 we shall

study the conjugate gradient method.

It will be useful for the following to introduce the isomorphism

rh
: Tq, + RNh defined below :

NhLetah = {wi)i=, be the basis of vh introduced in Sec. 4.1. If uhe v,

(5.1)
Nh

c'h = i-1 'iwi  '

then rh is defined by

(5.2)

Let (0,. )h be the usual euclidian scalar product
NhinR and II*llh the

corresponding norm. Then

(5.4)
JR

'@oh 'vphdx  -
J
uoh,$dx -

n Jyg2hFihdr = (bhYrhph)hvphE  nh'

where A
h and bh are as in Sec. 4.1, 4.3.
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5.2. Steepest descent methods with fixed step size.

5.2.1. Description of the method.

Let sh : mh 'mh +R be a symmetric positive definite bilinear form

and let p be a positive number. In a variational formulation the

method of steepest descent with fixed step size is written as

follow :

(5.5) x; E 'h
arbitrarily chosen

then A: known, Xn+l
h is computed by

n+l
'hex, d+$ = sh(h~,~h)-p(ahtX~,Fh)-(bh'rh~h)h)  v uh

(5.6)

n+l
\xh dh*

E

n+lThus to compute Ah from Ai, it is necessary to solve a variational

problem in 3;)2
h

i.e. to solve a linear system. We shall come back to

this point in Sec. 5.2.2., 5.2.3.

The form sh being symmetric positive definite there exists a symmetric

positive definite matrix Sh such that

(5.7) sh(xh’ph)  = 6 r Ah h h' rhl-lh)h l

Now from (5.3),(5.7) we see that (5.5),(5.6)  is equivalent to the

algorithm :

(5.8)

(5.9)

rh$ = IXy,...,Aihl~  lRNh arbitrarily chosen,

n+l
rhXh

= rh"~-PShl(AhrhX~-bh),

which corresponds to more classic notations.
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5.2.2. Implementation of algorithm (5.5),(5.6)

In view of (5.9) it appears that to implement (5.5),(5,6)  we need to

(9 determinate bh,

(ii) determinate at each iteration Ahrhh:  (Ah is not known),

(iii) solve a linear system of matrix Sh'

It is seen from (5.4) that the determination of bh requires the

resolution of the two approximate Dirichlet problems (3.37),(3.38)

to find uoh and JI,,. The implementation of (iii) will be discussed

in the next paragraph. As to (ii), Sec. 3.5 and (5.3) imply that

to find Ahrh$  we must solve :

’ J V+Vvhdx  = 0 vv EV
i-2

h oh'

(5.10)

+; E Voh

and

(5.11)
JR V$;-Vvhdx  =

J
w;vhdx

R
tJVhdoh.

Ir);: ' Voh

and then
Ah

n
'hXh

is such that

(Phrh+hph)h  = ah(XL,vh) = J w;phdx -
s2 JRV$;~V~hdx v,.+/ %j, ;

more precisely when uh describe 3, we have

(5.12) (PhrhX:) i = ah(XE,w;) vii=1 9***, Nh '

where (Ahr X")
th Nh

h h i
is the i component of AhrhX:  inR .

Once Ah is obtained (which supposes that the process (5.5X(5.6)  converges)

uh and JI, are found by solving (3.12)J3.13).
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Remark 5.1. : It is possible to avoid solving the four Dirichlet problems

(3.37),(3.38),(3.12),(3.13)  by proceeding as follow (as in [51) :

(5.13) X:E 711,  arbitrarily chosen,

then h: known, find A:+l by

(5.14)
J 52

Vw;*Vvhdx  =
JnfhVhdx

O;-A;EVoh,

vVhEVoh  ,

(5.15)
\Jn

V$;*Vvhdx  = J,W;vhdx VVhEV
oh'

(5.16)

I

'h('hn+l &,> = sh(A;,~h)+P 0R
VQn*Vphdx

1

vl-lh' */II, , ';+l  '?,,f

J n
QUhPhdx J >g2#hdr 9

n+lIn view of (5.7),(5.16)  the determination of Ah in (5.16) requires

the resolution of a linear system of matrix S
h'

5.2.3. Choice of sh

In principle any symmetric positive definite bilinear form on qh will

work. However the choice of sh should be guided by the following two

seemingly contradictory properties.

(i) Choose sh(*,*) such that Sh is sparse and even diagonal ; in the

former case Sh will be factorized by the Cholesky method, Sh = ThTk,

and Th will be stored in the memory of the computer (Th is also sparse).
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(ii) Since ah(*,@) is an approximation of a(*,*) defined over

H-1/2(r) and H-1'2(r)-elliptic, it would seem reasonnable to take

S,,(=' 0) to be also an approximation of s(*,*) where s(*,*) is a

bilinear form, H
-l/2 (r)-elliptic. Such a choice leads to a full matrix

'h
; we shall come back to this point in Sec. 5.2.5.(See  also Remark 8.1).

Let us discuss the point of view (i) : let us assume that %'ih  is

defined by (4.2) and that a Lagrangian finite element method is used.

It follows from C91, D3,Ch. 41, C5l that sh(*,*) can be one of the

following

'(5.17) sh(xh,$) = J ,

(5.18) sh(xh,l-lh)  = J A P dxnhh ,
(5.19) sh(xh,l.lh)  = J
Such choices lead to a sparse matrix Sh( provided that the boundary

nodes have been properly numbered).

By numerical integration it is easy to approximate (5.17),(5.18)  by

bilinear forms for which Sh is diagonal. If k=l (resp k=2) and if

the notations are as in Figure 5.1. (resp. 5.2) we may approximate

(5.17) by

(5.20)
Nh IP

Sh(hh,l-lh) = c i-lpil+lpipi+lI
2

x.1-l.
i=l

1 1 '

which corresponds to the trapezoidal rule of integration (resp. by

(5.21)
Nh IPiPi+lI

Sh(Ah'l-lh)  = c
i=l

6

which corresponds to Simpson's rule).
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Figure 5.1.

r

Figure 5.2.

5.2.4. Convergence of algorithm (5.5),(5.6)

Theorem 5.1. : Let {X:}n be a sequence generated by algorithm (5.5),(5.6)

and hh the solution of (Eh). Then for all choices ALE rnh

lim $=hh,
n+aJ

if and onlv if

(5.22)

where
n, h

is the largest eigenvalue of ShlAh.

Proof : Let y: = rhAz-rhXh. From (5.9)

(5.23)
n+l

'h
=  ( I - + &  .

The matrices
41

and Sh being symmetric positive definite,
-1

Sh Ah has

Nh eingenvalues
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o<A, <A2 I S..., 2 A,
h

and N
Nh

h
eigenvectors {vi)i=l Sh-orthogonal  i.e.

(S v v.) = 0
hi' J h i#j ;

the set
Nh

{viji being a basis for R
Nh n

, yh
can be computed on it and

with self explanatory notations, (5.23) becomes

(5.24)
n+l

'i
= (~-pA~)yy i=l,...,Nh.

Algorithm (5.5),(5.6) will converge if and only if

(5.25) Il-pAil < I Vi=l,...,Nh  ,

which is equivalent to (5.22). m

Remark 5.2 : One could show that

(5.26) A
Nh =

ah(uh’uh)
max

phe m,-co>  'h('h"h)  l

Remark 5.3 : The previous demonstration, based on the spectral decompo-

sition of SilAh is standard. Another method, based on inequalities of

energy can be found in [9l ; this method extends to the infinite

dimension case (see 19, Sec. 21).

Remark 5.4 : If sh(xh,ph)  = J X 1-1 dl?
rhh

(which is the most natural

choice for s
h

) it is shown in [91 that under the hypothesis on 'h
in Theorem 3.3 and for Lagrangian finite elements with k> 1,
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(5.27) lim =
%J max

h+O h
v E H2(&')  n H;(G)

f I, IE12dr/  i, lAv12dx}  = A ,
v#O

therefore it is possible to estimate AN for a certain number of
h

domains for which A is known (see J. SMITH C441).

Remark 5.5 : It can be shown from (5.24) that the optimal value

for p is

(5.28) P
opt

= UU++$ > ,
h

in which case

(5.29) n+l n,
h

IYi I~-
$.I

ill lyll vi=l,...,Nh  ,

h1

which gives a linear convergence  ratio

hN -A

(5.30) h1
x <+I\.
opt n,

h'

With (5.17) and according to Theorems 3.3 and 4.1,

(5.31) x
opt

5 I-yh , y>O independent of h.

This result seems pessimistic at first sight. However numerical tests

show that if the solution of (PO> is smooth the speed of convergence

is practically independent of h, (see [Sl). This is because algorithm

(5.5),(5.6) is a finite dimensional approximation of the continuous

algorithm below

(5.32) X0 EL2(r)  arbitrarily chosen,

-AC? = f,
(5.33)

wnlr = iin,
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(5.34) I - A$" n ,=W

$“I, = 819

(5.35) xn+l wn
= P + PC -&- - g2) l

Let II, be the solution of (PO) ; if X = -A$I, = wJr belongs  to L2(r)

it follows from C91,[221, provided

(5.36) o<p<; (A defined in (5.27)),

'that

(5.37) lim {+n,Un)  + {$,-A+)  in H2(n) X L2(n), strongly.
n-

However one can show that in general the convergence rate is sub-

linear (i.e. slower than any geometric sequence). This is due to the

fact that A, introduced in Sec. 2.5, is compact from L2(r>  into

L2(r).

Now let us construct steepest descent methods in H-li2(r).

5.2.5. Iterative methods in H-li2(r).

In this section we assume that fi is simply connected. Let us investigate

the point of view (ii) of Sec. 5.2.3. Among the continuous bilinear forms

SC', a), ,i,-'12 (r)-elliptic, the most classical one (see Remark 2.6) is

defined by

(5.38)

where C is a positive constant.

Of course if a Lagrangian finite element method is used and if 1;1,  is

defined by (4.2) then s(*, 0) defines a symmetric positive definite form

s&,*) by
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Sh(Ah,~h) = s(y,xh,~o~h)  = & J (C+Rn
rxr &I-

>X,(X~~,(Y)dr(X)dr(Y>,

(5.39)

and we recall that y, is the trace mapping of Sec. 2.2. In practice

'h(*Y l ) of (5.39) is not feasible and we must approximate the integral

in the right member by a numerical integration process (see LEROUX Da).

Then a (full) matrix Sh is obtained and, once factorized, Sh = ThTk,

the matrix Th will be stored in the memory of the computer. However

we prefer the following process, which ought to be justified theore-

tically. For clarity we assume k=l and we start with the following

remark :

If c is the cercle of radius & and centre 0 (see Figure 5.3.)

Figure 5.3.
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then the operator

(5.40)

is an isomorphism of H-l/2(;) on H1'2(T), symmetric and H-'/2(q)-

elliptic. Now let us approximate S (i-' , in fact) as follows : let

ii = l/Nh  and define Lj, : RNh +RNh bY

(5.41) 1 (45); = (5i+1+5i-,-25;)/h2  , 2 lilNh-1,

The operator -^4, (resp. I--\) is symmetric positive semi-definite

Jresp.  positive definite) and in matricial  form,

(5.42)

The interest of -ih is in the fact that its eigenvalues and eigenvectors

are known explicitly , therefore the computation of

(5.43)
-1

'h

will be easy. In fact the reader will check that if Nh is even the

eigenvectors of -ih are
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Cj ={ COS 2 n j (i-l )h}Fil  , Nh
o5j?-y

s. =
J ’

Nh Nhsin 2r j(i-l)~Ii_l  , 1 Sj 5 2 _ 1,

and the corresponding eigenvalues are

(5.45) 6. = 4 sin2 I!j..L .
J L2

If Nh is odd then

(5.46)

C. cI Nh= {cos2rj(i-l)h)
Nh- 1

J i=* y OSj12,

s. = Nh
Nh- 1

J
(sin2rj(i-l)h)i=l , 1 I j I2 ,

with the eigenvalues as in (5.45). Then to compute Shl

kj and S.

we normalize

J

I

cj = ‘j’ II’j  IIh Y
(5.47)

sj = ‘j’ IIsj IIh Y

and we denote by Th the unitary matrix that has ??. and 5. as column
J J

vectors

(5.48)
--

Th =(~o~l~l...CjSj...).

Then we denote by

(5.49) Dh = Y

and then
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IGh
t= ThDhTh

and

(5.50)
-1

'h
= (~-i~)l'~  = ThD;'2T;  ,

and of course

‘12 =
Dh

d-I+6 1

I I - -1+6
2

II 1+6.

0
ItI+&.

$
L \

\

.

The matrices Sh and Shl are full N xN symmetric positive definite
- h h

matrices.

Algorithm (5.5),(5.6) ( in its equivalent form (5.8)(5.9))has  been applied

to (PO) with Sh defined by (5.50) and the numbering of I? being as in

Figure 5.1. The corresponding numerical experiments will be described

in a forthcoming publication by BOURGAT-GLOWINSKI-PIRONNEAU. In Sec. 8,

Remark 8.1 we suggest an alternate choice for s~(*,~),  in order to iterate

"approximately" in H-1/2(r).

5.3. Gradient method with variable step size.

5.3.1. Orientation

Fixed step size steepest descent method have the drawback to require

the knowledge of the eigenvalues A, and $ to find a feasible p. At
h

the cost of additional computations one may overcome this difficulty.

We shall indicate two methods for adjusting p at each iteration and

we shall give some details on the implementation of these methods.

These two methods are well-known as steenest descent method and

minimum residual method.
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5.3.2. Principle of the variable step size methods.

Let us first begin by recalling the principles of these methods and

then in the subsequent sections their applications to (Eh).

In RN, let& be a NXN symmetric positive definite matrix and

(3 <RN. The linear system

(5.51) Jts = B

has a unique solution. Let us solve (5.51) by the following algorithm

(5.52) co EIRN arbitrarily chosen ,

(5.53) 5
n+l

= $pns-l (A p-B> ,

where in (5.53) S is a NXN symmetric positive definite matrix and p
n

is chosen "at best" at each iteration. We denote

(5.54)
gn

= ftp-f3 .

01 Method of steepest descent.

Let J : RN + R defined by

Jb-11 = $ M-M-l) - (w-l)  l

Then the solution of (5.51) is the unique solution of the minimization

problem

Therefore p, is computed such that

I J(tn-pnS-lgn) 5 J(cn-pS-lgn)  v p <R ,

(5.55)

Pn Ext.
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It follows from (5.55) that

(5.56) Pn = (S-lgn,gn)/  (dtS-lgn,S-lgn)

which completes (5.52)(5.53).  Let us note that gn satisfies

(5.57)
n+l

g = gn-pnJdgn.

This relation will play an important role in the resolution of (Eh).

,O2 Method of minimum residual.

We have still (5.52),(5.53),  but p, is such that

I
(s-1gn+1  ,g”+’ ) 2 (s-l (gn-p&-lgn) ,gn-pbkS-lgn)  VP ElR ,

(5.58) f

P, EJRY

from which we find

(5.59) Pn = (As-lgn,S-lgn)/(S-ldtS-lgn,Jdgn).

The relation (5.57) still holds in this case.

5.3.3. Application of the method of steepest descent for the solution

of (Eh).-

In the particular case of (Eh), algorithm (5.52),(5.53),(5.56)  takes

the form :

(5.60)

- (5.61)

(5.62)

(5.63)

rA
n+l

h h
= rhh~_PnS~'g~  ,

n
gh

= Ahrhhi-bh.
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In case Ah is known explicitly the implementation of (5.60)-(5.63)

is straightforward. Besides we think that it is not interesting to

use this method for solving (Eh) when Ah is known explicitly.

Therefore let us assume that Ah has not been computed yet. By ins-

pection of (5.61),(5.63) it seems that two Dirichlet problems must

be solved at each iteration to compute g,",  then a linear system of

matrix Sh to find Sh'gi and again two Dirichlet problems for

However from (5.57)

(5.64)
n+l

gh

so that one may proceed like this :

l Compute g: from X0
h (t

wo Dirichlet problems) and compute S
-1 0

and AhShlgE
h gh

(two more Dirichlet problems) then compute p,

by (5.62) and $,glh  by (5.61),(5.64).

0 Compute X
n+l n+l

,g
h h ,P, from g: by computing Si*g: and Ah$g;(two

Dirichlet problems) and by using (5.61),(5.64),(5.62).

In short :

l One needs at each iteration to solve a linear system of matrix S
h'

l And two Dirichlet problems per iteration (+ two more for the first
‘

iteration).

This procedure is summarized as follows :

(5.65) ';' R,,

(5.66)

(5.67)

g; = Ahrh$-bh  , n=O ,

(5.68) rX
n+l

h h = rhX:-pnShlg:,

(5.69)
n+l n -1 n

gh = gh-PnAhSh  g', Y

n=n+l and go to (5.67).
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Remark 5.6. : We could study the rate of convergence of algorithm

(5.60)-(5.63) by the techniques developped in MARCHOUK-KUZNETSOV

[33l.  Similarly it would be interesting to study the propagation

of round-off errors in the numerical implementation of (5.65)-(5.69).

Remark 5.7. :

matrix Sh are

factorization

When the Dirichlet problems and the linear system of

solved by direct methods the feasibility of a pre-

method (like Cholesky for instance) is evident.

'5.3.4. Implementation of the minimum residual method for solving (Eh)

Everything said in Sec. 5.3.3. for the steepest descent method applies

also for the minimum residual algorithm. The two methods differ only

by their choices of p . The adaptation will be obtained by replacing

in algorithm (5.60)-(F.63)  instruction (5.62) by

(5.70)

Similarly when Ah is not known explicitly it is bett~er to use (5.65)-

(5.69) with (5.67) replaced by (5.70). Remarks 5.6, 5.7 also apply

to this algorithm.

5.4. Solution of (Eh) by the conjugate gradient method

5.4.1. Orientation.

The matrix Ah being symmetric positive definite it is natural to solve

(Eh) by a conjugate gradient method. We recall that these methods are

super-linearly convergent and that when there are no roundtoff errors

they converge in a finite number of iterations.

We begin, in Sec. 5,4.2., by some recalls on the conjugate gradient

-method and then in Sec. 5.4.3. its implementation for solving (Eh)

is discussed.
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5.4.2. Recalls on the conjugate gradient method.

Again let us consider problem (5.51),  i.e. &c = B, where .&satisfies

the hypothesis of Sec. 5.3.2. For this problem the conjugate gradient

method is (see for example [13l,  C 71, C391).

(5.71) co cRN , chosen arbitrarily,

(5.72) go = Jt CO-6 ,

(5.73)
0

z = go , n=O , ’

(5.74)

(5.75)

(5.76)

Pn = (zn,gn)  / (dtzn,zn>(*)

5
n+l

= p-pnzn

‘n = @+I ,gn+l)/@,gn)

(5.77) n+l n+l n
Z = g +Y zn

n=n+l and go to (5.74).

Note that (5.75) implies that

(5.78) n+l
8 = g”-P, AZ”.

This relation will play an important role in the resolution of (Eh).

5.4.3. Implementation on (Eh)

In the particular case of (Eh),  (5.71)-(5.77)  takes the form

(5.79)

(5.80)

ALE m
h ’ chosen arbitrarily,

g; = Ahr X0-b
hh h

(*) We also have p n = Ign~2/(dfzn,zn).
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(5.81) z; = g; Y n=O,

(5.82)

(5.83)

(5.84)

(5.85)

rX
n+l

h h
= rhhE-pnzL  ,

n+l
gh

= Ahrhh:+'-bh,

'n
= (g;+'  ,g;+l),/(g;Yg;),

(5.86)
n+l n+l n

'h = gh +Ynzh  ,

n=n+l, go to (5.82) .m

By inspection of (5.82),(5.84),(5.85)  it seems that 4 Dirichlet problems

are required at each iteration to implement (5.79)-(5.86)

(two for Ahzf:  (resp. AhrhhE+l)).  In fact as for algorithms of Sec. 5.3.

one can reduce the number of Dirichlet problems to two. Because

n+l
(5*8’)bis  gh = g;-pnAhz;.

Indeed if we use algorithm (5.79)-(5.83),(5.84)bis,(5.85),(5.86)  we note

that once
n n

X ,z ,g" are known,
nh h h

two Dirichlet problems are necessary to

compute Ahzh. Once
n+l

this vector is known we can compute p,, Ah
n+l

'gh
by (5.82), (5.83), (5.84)bis  ; then the knowledge of gE+' enables us

to compute y, and zhn+l by (5.85),(5.86)

Remarque 5.8. : The Remark 5.7 on the prefactorization of the matrices

also holds in this case.

Remark 5.9. : Algorithm (5.79)-(5.83),(5.84)bis(5.85),(5.86)  is more

sensitive to the round-off errors than algorithm (5.79)-(5.86) in which
n+l

- gh is computed by (5.89). Therefore it is reasonnable to use on the

former algorithm a periodic reinitialization procedure of the type
n+l n+l

'h = gh Y ii+.,n+l being computed by (5.84) instead of (5.84)bis.
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6. - The case n p-connected (p 2 1). (I) The continuous problem.

6.1. Formulation of the problem.

{$)izo be a family of simply connected, bounded domains of R2

a smooth boundary rk, k=O,l ,...'I). We assume also (see Figure 6.1.)

Let

with

that

( 6 . 1 )  %cQo Vk=l,...p.

We define then R and r by

( 6 . 2 )  Sl-ao-fiq,r = an.
k=l

Figure 6.1.

We consider over Q the following Stokes problem

- PA; + V; = Z over 52,

J

+ -b

r Ub
l n dr = 0 ,

0

= 0 Vk=l,...p.
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Let us introduce

(6.4) V. = {:EHA(Q) xHi(n) , 00; = 0 p.p. o n  Q},

= (f~H’(fi)  XH’(n) , V*v’  = 0  p.p. on Q,

+ -t
r =ub,vrk=O  Vk=lI ,...p).

0

In (6.5) we assume that u
b

E H 1’2(ro)  XH”~ (To).  If r is sufficiently smooth

then (6.3) has the following variational formulation

1-I1 f V;*V; dx = &;dx vhl

(6,. 6)
R fi-2

0

ZEV
I b

where I*: denotes the usual scalar of I and t inR
2
. It follows from, e.g.

LIONS c311  that (6.6) has a unique solution.

6 . 2 . A stream function formulation.

From the boundary conditions in (6.3) there exists a stream function $J

such that

( 6 . 7 ) u, =g , u2 =-g in R,
2 1

(6 .a qcx) =
f
-Cbot: dro vx E r. ,

xOx

( 6 . 9 ) QJ = const.  on rk , vk=l,...p,

(6.10) 21, = - zb*‘,
0

(6.11)  $Jr = 0 Vk=l,...p.
k

Moreover $ is the unique solution of the following variational problem

- I IJ I AWWdx =
8f2 af,

( 6 . 1 2 )
J!d 52

( ax - r )$dx +
1 2 J r

(fln2-f2nl)Qdl'

where, in (6.12), n.1 = cos(n,Oxi)  and
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wO
= {$EH’(Q) , zlr = 0 y @I, = 0 9 $1, = const.

0 k
(6.13)

Vk=l
, l l .PL

I
rk

= 0 vk=l,...p  ,

Y @Irk
= const. Vk=l,...p).

In (6.9) the constants are unknown. They are arbitrary in (6.13),(6.14).

‘b
= +H2(ti)  , 2

(6.14)

01, = a’b*‘dro
0 J

0

Let

the

( 6.

us define $k by Qk = $1
rk ’

k=l , . . . p. It follows from (6.12)-(6.14)

(6.12) can be reformulated

IJ
I

A$A$dx  = ( 2
R J

af

5)
n a ‘k

(f
xl
-&$dx+

2
,n2-f2nl)drk

‘hWO ,$-“.,  ’

It follows from (6.15) that $J is also the unique solution of the following

minimization problem

(6.16) Min J($)
@ ’ ‘,,

where

I 44A 2
af

(6.17) J(O)  = $ d x -  (2
IQ a

- 2 )$dx  -
rk

(f
R xl 2

,n2-f2n1 )drk*

6.3. A generalized biharmonic problem.

The problem (6.15)) (6.16) is actually a particular case of the slightly more

general biharmonic problem

A$A$dx  = V$EW
(6.18) RI J J s-2

fWx + 5 Y +kc' k k 0 ,
hWgy

- where

(6.19)

I

W
g

= {@EH~(Q)  y !$I,  = 82, $1, = 810, +Iv = g]k+const*
0 ‘k

Vk=l ,...p).



‘lkEH 3’2(rk)  Vk=O,l ,*..P, g2 EH 1’2(r) and the constantsIn (6.19) we have g

are arbitrary ; (6.

It follows from (6.

18) has a unique solution.

18),(6.19) that $ is also the unique solution of

(6.20) Min J($)
VJ E wg

where

with
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J(4) = 3 J I $1A 2dx - J P

s2 RfWx - c Y C ,k=’ k k
Olr, = glk + CkVk=ly***p*

6.4. An equivalent formulation of (6.18),(6.20).

In order to reduce (6.18),(6.20) to a set of ordinary biharmonic problems (*>

the fundamental result is given by

Theorem 6.1. : Let us define E elRp  by

(6.21) ck = ;I, -glk  , k=l,...p,
k

where $ is the solution of (6.18),(6.20).  Then t is the unique solution of

I
j<S 5 j(C) VC CR’,

(6.22)

t ERR,

with

P
(6.23) j(C) = + (A$12dx  -

s1
f+dx - c y C

n kc] kk

where, in (6.23),  Q is the solution in H 2
(Q) of the ordinary biharmonic

problem

A2Q = f over Q,

(6.24)

i

$1, = 810 Y $1,
k

= g]k+$ vk=*,*-•py
0

w
X r = g2sI

(*) i.e. like (PO) of Sec. 1.
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Proof : Let CeRP and let 9 be the corresponding solution of (6.24).

Then

(6.25) $ E Wg

and

(6.26) j (Cl = J(Q) 2 Min J(o) = J(q) VC eRP.
0 (5 wg

Conversely, since Hz(R)  cWo we obviously have from (6.18)

( 6 . 2 7 ) J A$A$dx  = J f$dx
R 52

v$ E H;(n)

which implies

(6.28) A2$ = f over 0.

Moreover, since $eWg we have

(6.29) = 810 ,
aS
dr =: g2

0

and (6.21) implies

(6.30) $1, ‘, glk+tk  Vk=l,...p.
k

It follows from (6.23),(6.24),(6,28)-(6.30)  that

(6.31) J(%) - j(E) 2 inf j(C).

CeRP

Comparing (6.26)) (6.31) we obtain (6.22) and the uniqueness is 0bvious.m

Remark 6.1 : The minimization problem (6.22) may be viewed as an optimal

control problem in which the control variable is C, the state variable is

4J Y the state equation is (6.24) and the cost function is defined by (6.23) .m

The following result is an obvious consequence of Theorem 6.1. and relations

( 6.23))  ( 6.24).
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Pronosition 6.1 : The minimization nroblem (6.22) has a uniaue solution

which is also the solution of the linear svstem

(6.32) g (E) = 0 , l<k<p,
k

the matrix of which is symmetric and positive definite.m

6.5. - Mathematical expression of Vj and application to the solution of

(6.18),(6.20).

6.5.1. Expression of Vj.

In order to solve (6.18),(6.20) through (6.22) the following results are

fundamental

Theorem 6.2 : Let $ be the solution of (6.24) and w = - A$. Then if j(*)

is defined by (6.23),(6.24)  we have

(6.33) g (C) = r drk-Yk  , k=l,...p.
k k

Proof : Let &Z l R', then

P

(6.34) Vj (c).&c  = lim j(C+tfc)-j  CC) =
J
A$A&dx - J f8$dx - cY @

t-to R M k=lk k

where, in (6.34), &$ is the unique solution in H2(n)  (and Wo) of

( A26$ = 0 over s2,

(6.35)
"$I,  = 0 , 6$1, = bCk Vk=l,...p,

0 k

It follows from Green's formula that

(6.36) A$Ad$dx  =
I

A2@S$dx  + A$ ii- 6$dx  - 2 A$&+dr  .
s2 R r an J ran

Since A2~ = f and w = -A$ it follows from (6.34)-(6.36)  that
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(6.37) Vj(C)*&  = & frJg drk-yk)  6ck v&C ERPY

which proves (6.33).m

Remark 6.2 : Formula (6.33) is not correct since, usually, elr is not

a function but an element of H
-312

(r). Actually the correct expression
aJ .

for ack Is

(6.38) g (C) =
at.d

+%k, x >- yk , k=l py...
k

where x
k

is the function defined over r such that

(6.39) xkl,
R

= 6kR , 2 = O,~,...P,

and where e*,*B denotes the duality between H3/2(r) and H-3'2(r).

To prove (6.38) we should use Green's formula (2.2) (see Sec. 2.3) instead

of (6.36). m

Remark 6.3 : Let us denote by 2, an extension of xk over fi such that

kk l Hi(Q). Then from Green's formula we have

I
2 (C) =

k JR
Awjikdx  +

(6.40)
=

J i-2
V&7ikdx

JnVo*Vkkdx - yk =
-J fi dx - yk , k=ln k ,...p.

The advantage of (6.40) by comparison to (6.33) is that it gives an expression
.

of 3 in which
au

aGk
xlr does not occur explicitly. This is an important remark

in vrew of the approximate problem.

6.5.2. Application to the solution of (6.18),(6.20).

There are sevaral methods for solving (6.32) ; we can use either direct

- methods or iterative methods. As in Sec. 5, 6 we can use gradient or

conjugate gradient methods, without knowing the matrix of the system

(6.32). However, since p is usually small it can be convenient to compute

the matrix and the right hand side of (6.32).
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We have

( 6 . 4 1 ) j ’ W = BC-(d+y)

where y = {y,~~=,, dERP and where B is

matrix ; B and d are not known a priori

prove the following

Proposition 6.2 : We have

J
ati

(6.42) dk = - v-i drk , k=l
r an

,... p,

k

.

a pxp symmetric positive definite

Concerning {B,d}  we can easily

n fwhere w = - A$
- d

d, JI, being the solution -_

A26, = f over R,

( 6 . 4 3 )
Qdlrk  = g'k vk=O,',..+

a'd
zr = 820 nI

Proposition 6.3 : Let B = {b ) then
kg llk,Rlp'  -

( 6 . 4 4 ) bkR = J
at0
-A drk ,

r an
1 lk,RSp,

k

where, uR = - A$, , J1, being the solution of

I

A2Qg = 0 over s2,

( 6 . 4 5 )
$,I,

k
= tikR ‘jk=O,l,...p,

a%k-Ian r
= 0.m

Remark 6.4 : Remarks 6.2, 6.3 hold for (6.42) and Remark 6.3 holds for

(6.44). It follows in particular from (6.40),  (6.44),  (6.45) that:

( 6 . 4 6 ) bkR = JR
V W *Vii, dx .m

R
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Remark 6.5 : Since B is symmetric we also have

bkR = JR
V\*Vgll  dx , l~k,R~p.

In fact, from the symmetry of B it is convenient to construct B, column

by column, by computing only bkR for the pairs {k,R) such that 1 I R <k<  p.m

Once B and k are known, solving (6.32),  i.e.

(6.47) Bt = d+Y

is a trivial task which produces e. Once E is known, we obtain $ from (6.24).m

Remark 6.6 : The solution of the "generalized" biharmonic problem (6.18),(6.20),

through the solution of (6.32),(6.47)  by a direct method, requires the solu-

tion over s2 of (p+2)  "ordinary" biharmonic problems :

l 1 to compute d,

l p to compute B,

l 1 to compute $ from t (this last one is (6.24)).

If we want to solve these ordinary biharmonic problems, using the decomposition

(2.26)-(2.30),  studied in Sec. 2, we shall have to solve (p+2)  "integral equa-

tions" like (2.28) and 2(p+3)  Dirichlet problems for -A (a superficial analysis

would indicate 4(p+2) Dirichlet problems).m

Remark 6.7 : The above matrix B depends of R only, therefore it remains

unchanged if f, glk (k=O,l,...p),  g2 are modified. It can be constructed

once and for all for a given R. m

6.6. A saddle-point property.

wWe use the notation of Sec. 6.4 ; taking x

let us define a lagrangian d : RPxH -1'2(I-)

- g2 as a linear constraint,

+R by

(6.48) L(C,p) = + A 2dx -
J

P

I $1
J

w cR i-2 fWx + <5-1, x - 82>- k,lykck’

where in (6.48), <*,a> denotes the duality between H-1/2(r) and H1'2(I')

and where $ is a function of C and p via



(6.49)

A2+ = f over R,

+I, = glo ,Ji(,
0 k
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glk + ‘k
vk=l,...p,

Let us prove

Proposition 6.4. : Let $ be the solution of (6.49) and w = - A$ ; we have

then

afT (C&) =
(:*50) =k

% drk - yk vk=l
r a

,***P,

k

(6.51) +; (C,F.I) = 2 - g2.

Proof : From (6.48),  (6.491, we have :

I

a=t
ac K,lJ)*6C

aie
+ qy uhJ)*6’J  =

I
A$A@dx - J f&$dx  +

(6.52)
i-2 fl

yk &�, l

A26+ = 0 ,

(6.53) 6+1, = 0 y 6@Ir
0 k

= 6Cky

- A&& = 6~.

Relation (6.49) and Green’s formula yield :

(6.54) A@A$dx
i-2

- jpwx + jr $- A@$dI’ +< ,-,, $. sq, >= 0.

Then using (6.53) and (6.54)

+>= J ao SqJ dr =
ran
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Therefore :

(6.56) + (SC,
k% ( I

g drk - Yk

‘k
>
+ < &l, 2 - g2 > ,

which completes the proof.

Remark 6.8 : Remark 6.2. still holds for the proof of Proposition 6.4 and

for the above formulae.

Proposition 6.5 :

Let G and E be respectively the solutions of (6.18),(6.19)  and (6.20). Let- -
i be equal to Wlr , then {e,^x,is  the unique saddle-point of % over

Rp x H-1'2(I').

Proof : From (6.29), (6.32), (6.33), (6.50), (6.51) we have

(6.57) g (E,X)  = 0 ,

(6.58) za;P (E,i;> = 0.

Then to prove that {t,x)  is a saddle point of $. over RPXH -li2(r), it is

sufficient to show that &is convex in C and concave in u ; and a necessary

and sufficient condition for this is

(6.59)  ( acad (C+8C,‘l) - &$‘(C,~))dC 2 0 v’6CcRP ,Vu E H-1'2(r>  ,

(6.60) < q-iad K,lJ+W - ~;(c,ji)&>  20 v&MH-+(I'),  vCER~.

From (6.50) we must show that :

P
(6.61) c 6c

k
V&C ,Rp

k=l

where 60 = - A&$, and

(6.62)
6"& = 0 , &I&

k
= 6C, , k=l,...,p,
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Green's formula and (6.62) imply that

0 =
I

A26$ ?@dx =
R J .Q

IANI 2dx + r k A8$8+dr .
I

Therefore

I r I
j-p drk=

I
lA6$12dx  2 0 .

'k
n

The proof of (6.60) is almost similar ; we leave it to the reader. n

From Proposition 6.5 and the convex-concave property of&? it follows

from GLOWINSKI-LIONS-TREMOLIERES C23,  Ch. 21 , FORTIN-GLOWINSKI [201

that for solving (6.18)-(6.20) we can use the following algorithm of

Arrow-Hurwicz type (*) :

( 6 . 6 3 ) {c~,~~}ER~  xH-1'2(I?  , arbitrarily given,

then for n20

( 6 . 6 4 ) x”” = xn+p$ ~;(cn,hn) , P] >O ,

( 6 . 6 5 )
aa

Cn+’  = Cn-p2 ac (Cn,An+‘)  , p2 >O.

In (6.64),  S is a duality mapping from H
-l/2

(r) to I-P2(r). It i s

convenient to write (6.64),  (6.65) in the following equivalent form

which is more suitable for computations :

- Aw”” = f over R
( 6 . 6 6 )

n+l
w I r An,=

n+l af.d
n+l

(6.67) Ck = cp - p2

‘k

T drk-Yk  Y
>

( 6 . 6 8 ) I
- A$“+’ n+l

=w

I +
n+l 1, = 810 Y Qn+’ Irk = g]k+$+’ Vk=l,...p,

0

(*) we only consider an algorithm with constant step pl,p2.
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(6.69) ii”+’ = A” + p$( s - g&
Remark 6.9 : If AeL2(r)  then S can be replaced by I in (6.69). n

Remark 6.10: The above algorithm is a precise formalization of some of

the concepts felt by PERRONNET C381.

Remark 6.11 : Thus the biharmonic problem on a multiconnected domain has

been replaced by a sequence of Dirichlet problems for Laplace's operator.

7. - THE CASE fi p-CONNECTED (p 21). (II) THE DISCRETE CASE.

7.1. Formulation of the approximate problem.

We assume in this section that 9 is a polygonal Vk=O,l ,...'I. The

'Paces  'h' voh, n, being defined as in Sec. 3.1, we define Wgh by

W
0

= I(v,,q,) eVhxVh  9 Vhlr  = glob, Vhlr = glkh + const.  Vk=l,...p,
0 k

In Vvh*Vphdx  = R qhl-lhdx  + Ir
g l-l c'r VllhEVh)'2h h

We approximate (6.18),(6.20)  by

(7.1) Min

where

c702) Jhcvh,qh) = 3 I lqh12dX  - I
P

Q
nfhVhdx - fl 'k 'k

with vhlr = glkh + Ck Vk=l y... p.
k

The approximate problem (7.1) has a unique solution {$h,;h}  and it is

also equivalent to

(7.3) Min j (C)
cERp  h

with
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(7.4) j,(C) = i
I

luh12dx  -
I

P
f$dx-

i-2 nhh k;lyk  ck

where in (7.4) {@,,w,) depends on C via the "state problem"

(7.5) Min
h,, qh) ' Wg'.$C)

Johbh'qh)

in which

(7 l 6) Wgh(C) = i(vh,qh)cWgh  , vhlr
k

= glkh + Ck vk=l,...p)

and

(7.7) Joh(vh,qh)  =; Iq 12dx -
IR h

Clearly we have the following

Proposition 7.1 : The minimisation
A

problem (7.3) has a unique solution

'h
which is also the solution of the linear system

ajh -
(7.8) ac (C,) = 0 , llklp

k

the matrix of which is symmetric and positive definite.

7.2. Solution of (7.1) via (7.3).

7.2.1. Computation of Vj,.

We begin by stating the following

Proposition 7.2 : Let ~$,,w,) be the solution of (7.5)-(7.7),  then if

j,(m) is defined by (7.4)-(7.7)  we have

ajh
(7.9) ac cc> =

I
Vu 'Vjikdx  -

I
-

k i-2 h nfhXkdX - yk

where

ik’ 7;1hY
(7.10)

R
= 6k11  VR=O,l,...p.
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Proof : From (7.4) we have :

(7.11) j;(C) l 6C = w &A dx -
nh h I

f s$ dx -
Qh h

; yk &‘,*
k=l

Let us decompose 6Jh into

(7.12) &/J~ = &qh +

where

6Ck gk belongs to Voh

Then from (3.12) with vh = &qh, we have :

(7.13) IR Vui’J&Qhdx  = I f 8$ dx + fah h [Ik=l R
‘v~vj$, -- fh xh)dx 1 6Ck.

Since {+h,WhI E W
gh’

we have

(7.14) In V&$, #ow,dx = I 60 w dx.n h h
Using (7.13)) (7.14) in (7.11) we find the discrete analogue of (6.38)

(7.15) j,‘(C) l & = f
k=l

6Ck [ lph*Vgkdx - j,fhgkdx  - yk ] . n

7.2.2. Application to the solution of (7.1)-(7.3).

As in the continuous case we can solve (7.8) by direct or iterative

methods.

7.2.2.1. : Direct method.

We have

(7.16) j;(C) = BhC - (dh+Y)

where y = {yk :=l,) dhERP  and where Bh is a pxp symmetric, positive

definite matrix ; Bh and dh are not known but can be computed from the

following
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Proposition 7.3 : We have

(7.17) dhk = - V"dhoVjik  +I 52 J f 2 dx , k=l,...poh k
.

where E$J w
h' dh

) are the solutions of (7.5),(7.6)  with  C=O.

Proposition 7.4 : Let Bh = {bkR)llk  Rip , thenY

(7.18) bkR = J VWhR*V%kdx

cl

where c$,,,w,,) is the solution of (7.5),(7.6)  with

fh = '3 g&h = 0 vk=O,...p,  g2h = 0 , Ck = 6kR .

Remark 7.1 : Remarks 6.5, 6.6, 6.7 hold.

7.2.2.2 : Iterative methods.

As in Sec. 5,6 we can use gradient or conjugate gradient methods to

solve (7.8) without computing explicitly Bh and dh.

Moreover as in the continuous case, an alternative method would be to

compute the saddle-point inRp.F?hof

d+$) = ; I bhl 2dx - J f$dx+nhh IR hVP l 'Qhdx -
!a J p-~ddx-nhh

(7.19)

-J rUh g2h dr - 5 yk 'k,
k=l

where (Oh,$h} is a function of C and ph via

IJR
Vwh*Vvhdx  = J f vQhh dx V vh E voh

iJ VJlh*Vvhdx = J whvhdx vv EV
h

i-2 R
oh

$‘../ ‘h’ Q,(r = gob , *hlrk = g’kh + ‘k’
0
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The reader will have no difficulties in finding the discrete analogues

of (6.50),  (6.51) and of the Arrow-Hurwicz algorithm (6.64)-(6.69).

Remark 7.2 : If Z7h is chosen as in (4.2),  cf. Sec. 4.2, the above integrals

in (7.17)-(7.19)  are in fact to be done on the boundary triangles only. m

8. Further Remarks. Comments.

Remark 8.1 : Various sh(*, 0) have been given in Sec. 5.2.3., 5.2.5.

The corresponding matrices Sh are symmetric and positive definite.

In view of iterating in H-1/2(r), "approximately", we feel that a good

strategy is to choose S
h

as the inverse matrix of the matrix related to

(5.19). Numerical experiments to test this conjecture are planned for

the near future. m

Remark 8.2 : In the conjugate gradient method of Sec. 5.4 we have used the

canonical inner-product of RNh, However it is also possible to use an inner-

product related to a matrix Sh symmetric and positive definite. The various

formulae will be a little more complicated, but the various remarks done

in the case of gradient methods about the choice of Sh and s
h

still hold

for these variants of algorithm (5.79)-(5.86).  m

A large part of the results of this report were announced in GLOWINSKI-

PIRONNEAU [25],  C261,  C271. In fact this document has to be followed

by other reports of GLOWINSKI-PIRONNEAU, BOURGAT-GLOWINSKI-PIRONNEAU, etc..,

in which the above results and methods will be extended to the numerical

treatment of

0 -&A$ + vA2$ = f,

with appropriate boundary conditions,

l Navier-Stokes equations,

etc... .
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About the choice between the various methods described above, it appears

from our numerical experiments that the two most efficient methods are :

(i) The conjugate gradient method of Sec. 5.1 if the approximate

biharmonic problem has to be solved only a small number of times and/or

if Nh is very large.

(ii) The "quasi-direct" method of Sec. 4 if we need a biharmonic solver

to be used a large number of times. It is in particular the case when

solving by some iterative methods the Navier-Stokes equations in the

{$,w}  formulation.

To conclude we would like to point out that a fundamental tool for

obtaining these methods is the mixed finite element method of Sec. 3,

because its very fascinating (!) algebraic properties.

Some applications of the gradient method with constant step of Sec. 5

may be found in BOURGAT [51.
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