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Ve describe in this report various nethods, iterative and "al nost
direct," for solving the first biharnonic problemon general two-

di mensi onal domains once the continuous problem has been approximated
by an appropriate mxed finite element method. Using the approach
described in this report we recover some well known methods for solving
the first biharnonic equation as a system of coupled harnonic equations
but some of the methods discussed here are conpletely new, including a
conjugate gradient type algorithm |n the last part of this report we
di scuss the extension of the above nethods to the numerical solution of
the two dinensional Stokes problemin p- connected donains (p> 1)
through the stream function-vorticity formulation. -
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1. 1 NTRODUCTI ON.

Throughout this paper @ denotes an open set of ]R2

of boundary T. Gven
three functions f,gl,gz,We shal | consider the Dirichlet problemfor the

bi har moni ¢ oper at or

APy = £
®) | vlp =g

Y _

on - &2

This problem arises in fluid nmechanics and in solid nechanics (bending
of elastic plates).

In fluid mechanics the stream functions ¥ of inconpressible flows in 1R2,
at |low Reynol ds nunber,is the solution of a problem (PO), provi ded that
Qis simply connected. If @ is nulti-connected, ¥ satisfies also a bihar-

monic equation but the boundary conditions are nmore conplicated (see
Sections 6 and 7). In ]RB, for axisymretric flows, ¥ is the solution of a
Dirichlet problem for an operator g2 where E is an el liptic operator of
order 2, (see HAPPEL-BRENNER [29]) ; however the nmethod to be described
can be easily adapted to this situation.

For inconpressible flows at |arge Reynolds nunbers, described by the

Navi er - St okes equations, a good code for the nunerical solution of (PO)
is of great practical interest because many iterative techniques for

the resolution of the Navier Stokes equation requires the numerical
solution of a cascade of biharnmonic problens |ike (Po). This is clearly
shown in FIX (18, (19, ROACHE (41, ROACHE-ELLIS {42 for the 2 dinensional
case. Ceneralization of the following ideas can also lead to codes for
solving the 3 dinensional Navier-Stokes equation (GLOA NSKI-Pl RONNEAU [24])
and for multiconnected bidinensional doneins (see Sections 6 and 7).

Finite difference discretization of (PO) are not feasible in many cases,

namely when the geometry of Q is conplicated. Standard finite el ement
met hods for solving (PO) require rather sophisticated finite elenents
such as the 21-degree-of-freedoms of ARGYRI'S (see ARGYRIS-DUNNE [ 1 1)
or non conformng el ements of Hermite type.



Recently a new class of nmethods, called nixed nethods has been proved to
be quite appropriate to the biharnmonic operator (Cl ARLET-RAVI ART [i0],
BREZZI - RAVIART [ 61, ODEN [371). Their drawbacks lie in the fact that
they require the solution of rather large non-symmetrical |inear systens.

Qur method is closely related to the nixed nethods but its inplenentation
is quite different and nuch easier. In the continuous case the underlying
i dea of the method can be outlined as follow :

| f wo denotes the solution of
Ay, = f inQ, Ap 0, ¥ |, =
0~ » S¥%|r = Ve Yolr = By

t hen w—wois the solution of (PO) with f=0 gl=0,and 8y repl aced by

]
g, - a—i—o- . Therefore from now on we assunme that f = 0, g = 0.

Let w = - Ay and suppose that A = wlr is known. Then (Po) splits into
two-Dirichlet problems for - A :

-t =0in g - A = winQ,
(1.1) (1.2)
w|]“:)‘: wll-.=0.

n
Let A denote the linear operator A > - g—ilr, where ¥ is conputed by (1.1),
(1.2). Then we shall show that the solution of (Po) is the solution of (1.1),
(1.2) with A solution of the linear problem

(E) AX=-g

Mre precisely it can be shown that the solution of (1.1),(1.2),(E0) is the
solution of a mixed variational formulation of (Po). Furthernore Ais ?);gmetric
()
(I'). This last property is numerically very inportant,

positive definite,strongly elliptic fromthe boundary Sobolev space H_
to the Sobol ev space Hl/2
provided it is preserved by the discretization, because it insures that (EO)
is a well behaved linear system Fromthe theoretical point of viewit neans

al so that (EO) is an integral formulation on ' equivalent to (Po).



The feasibility of the method relies entirely on the ellipticity of A
Thus beside the statenment of the nethod, the main purpose of the paper
is to showthat Ais a symmetric positive definite operator on the

/2(1") and that the nice properties of A are preserved

Sobol ev space H '
by the finite element discretisation. The proofs use a mixed formulation
of (Po) equivalent to (1.1), (1.2), (EO). Therefore (1.1), (1.2), (EO)
is also a nice way of solving the mxed formulation of the biharnonic
problem This remark provides us with an error estimate for the method

(Section 3.3).

Unl ess (Po) is to be solved many times for different f and g's it is nuch
faster to use a conjugate gradient nethod for the resolution of the dis-
crete anal ogue of (EO).

H storically, the deconposition of (PO) into (1.1) and (1.2) is known in
fluid mechanics. Quite a few paper have made use of it ; anong others let us
mention SM TH [441,045],[46], BOSSAVI T [41, EHRLICH [141,[151,[16], Mc LAURI N
(341, EHRLI CH GUPTA 0171, GREENSPAN- SCHULTZ [28]. However these works are
related to finite differences approximations on rectangles and are not

using the fact that the discretized problemis equivalent to a linear system
related to the discrete trace of - Ay, whose matrix is positive definite.

We have also the feeling that our approach answers sone of the questions
arising in FIX [18, [19. Thus to our know edge, nost of the nethods to be
described are new.

Nunerical experinentations have been done to test the nmethods described
later ; the corresponding results will be published el sewhere. However
some indications will be given in Sec. 8.



2. THE CONTI NUOUS PROBLEM

2.1. Functional background and notations.

The followi ng linear spaces play a fundamental part in the study of

the continuous problem :

2
g—; e 1) aTaavT et} (@ . 1<i,j<2),
| [

@ = (v|vel?@,
v= @ oml @ = (ve B@|vl, = 0},
HE(Q) = {VeHZ(Q)Iv = -g—::— =0on I'}.

The space HZ(Q) is a Hilbert space for the scalar product

2 2
) 5 0= @Y, *Z(a_iu"sa;v") +Z oy 9y _,

12 () i@ isr,2 % i LA i,3-1,2 9%40%; T 9% 9%,

L2(@)
If @ is bounded and its boundary T is snooth one can show the followi ng :

Proposition 2.1. : The mapping v ~ | Av]| ) defines a normon V

(@)
equivalent to the norm induced by H' (). m

We shall also use the follow ng spaces :
HQ;0) = {ve L2@) |avel’@)},
¥ = {veH(Q;D)|Av = 0}.
The space H(Q;A) is a Hilbert space with the scalar product

(u’v)H(Q;A) = (u,v)Lz(Q) + (Au,AV)LZ(Q).

The norm associated with it is

@1 vllggny = VI, e llevll?, O

) L-®)

From(2.1) it is easy to show the



Proposition 2.2. : On y the topologies induced by H(Q;4) and LZ(Q)
are identical.

2.2. Traces properties

Let v _, v, be the followi ng trace mappings :
v
You = vl vy = gly

The following results are shown in LIONS-MAGENES (32] and the references
therein

Proposition 2.3.: The mapping {Yo,y]} is linear continuous and onto

12y x w7320y from H(@;0) .
Proposition 2.4. : The mapping {Yo’Yl} is linear continuous and onto
w2y 172 () from 2@,
L . . 1/2
Proposition 2.5. : The mapping Y is onto H'°(I) from V.
Proposition 2.6. : Restricted toy the mapping Y, i s an isonorphism

(topol ogi cal and al gebraical) from y_onto g!/2(r),

2.3. Geen's formula

W shall denote by <e«,*> (resp. <«-,® >> the bilinear form of the
1/2 -1/2 3/2 -3/2

duality between H "“(T) and H () (resp. H'°(T) and H T
which extends (+,*) 9 , l.e. <y,w> = frvwdl“ vveHl/z(F), weLz(F)
L 3/2

(resp. <v, w» = fovwdl yve H (D), V\ELZ(F)). Then Geen's fornula

(see B32Z) is witten

k J vAudx - J ulAvdx = <Y]u,Y v> - <<YOU,Y1V>>
Q Q °
(2.2)

|VU6 B Q) LV ve H(Q;0) .



2.4, Existence, unicity and deconposition results for (PO)._

Let us assune that in (PO ) one has

2.3) <@, g <®/2D), gyen'im.
From [32] we have the
Theorem 2.1. : Problem (PO) has one and only one solution in HZ(Q). ]
Then it is easy to show the
Proposition 2.7. : Problem (PO) is equivalent to
- Mo = f,

(2.4) - N =uw,

I Yow = g]’ ‘Y]‘\b = gz‘
Remark 2.1. : The deconposition (2.4) is well known in fluid nechanics:

w is the vorticity and ¥ the stream function.m

In the following the trace of won T will play a key role, both
theoretically and nunerically.

Proposition 2.8 : If conditions (2.3) on f,g‘,gz hold, then w admits
Y21

a trace Yoweﬂ-

Proof : Since V¥ ¢ HZ(Q) , w = - A e LZ(Q) and from (2.4), Aw = -f € LZ(Q).

Therefore w ¢ H(Q;A) and from Proposition 2.3 |, Yoo € H_]/Z(F).

2.5. Study of the relation between Y W and Y,lp

A few iterative schenes for the numerical solution of (Po) (see [9],
BOURGAT (5], GLONNSKI 211, Sec. 5 below...) as well as the quasi-direct
met hod below are in fact based upon the results of this section. In this
direction Lemma 2.1. below is essential.



Lemma 2.1 : Let X e H—l/z(l') then the followng holds ;

(i) The problem

A%y
(2.5) {9lp
- Aw[r = A

has a unique solution in V = HZ(Q) n Hl(Q).

(i) If ¢y is the solution of (2.5) in V, the (unbounded) operator A

defined by
(2.6) AX = -y, b
is an isonorphism from H_l/z(l“) onto HI/Z(T)-

/

(iii) The bilinear forma : H /2y xu /%) >R defined by

(2.7) a(A,u) = <A\,p>

1/

. . . -1/2 N
is continuous, symetric and H (T)-elliptic.

Proof of (i) : The variational problem

MAvdx = - <g—z , > Vvev,

(2.8) lo

vev ,

has one and only one solution. This result is classical. Nevertheless
let us prove it : the domain @ being bounded and the boundary |I' of @

being regular, |lAv defines on V a norm equivalent to the norm

I
) 12 ()
i nduced by H'(Q) (see Proposition 2.1.). Therefore the bilinear form

(u,v) ~» J AulAvdx
0



is continuous on V xV and V-elliptic. The mapping y1 is linear continuous
from HZ(Q) to H]/Z(I’) (see Prop. 2.4), therefore

dv
(2.9) [<gp s 2| = [<vvan| < ] _ v vll < cl[A] vl ,
n 1 H 1/2(F) 1 Hl/2 T) H—l/2(r) i @]

Thus the mapping v + < -g% , A>is continuous fromV to R The conditions
of application of the Lax-MIgramtheorem being fulfilled, we deduce
fromit the existence and uni queness of ¢ solution of (2.8).

Let us show that ¢ is also the solution of (2.5). The set of Cm(ﬁ)—
functions with conpact support, D(R), being included in V, we have

(2.10) Jp MpAvdx = 0 Yve DEQ).

Therefore

(2.11) A%y = 0.

Let w = - Aysthen meLz(Q) and,from (2.11), Aw = Q,therefore
(2.12) VE ¥ .

From Geen's fornula (see N° 2.3) and from (2.11)
0= J AYAvdx + <y V,YIAKIJ» - <y.v,Y Ay> VVEHZ(Q).
Q0 o 1 o
If vev, Yy = 0, hence
(2.13) I MAvdx = <y v,y AY> VveV.
Q 1 o

The nmappi ng Y, is surjective from V onto (I') therefore by conparing

(2.13) and (2.8) we find that

- Y M = A QE. D.
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Proof of (ii) : Cbviously A is linear. It is also an injection since,
from Theorem 2.1, ¢ = 0 is the unique solution of

The surjectivity of A follows directly from Theorem 2.1 (with £=0, gl=0).
Therefore A is an al gebraic isonorphism of H_l/z(l‘) to HI/Z(I“).

Let us show that A is continuous ; by letting v = yin (2.8 we find
t hat

l| avl| < |Iall Iy, wll < clal _ I Awl ,
’Lz « g /2y U g 2 gy w2 L2

I Aw | < clrll _ .
L2 () w2y

Thus the mapping A » ¥ : H—]/z(l“) + V is continuous ; then the continuity
of Afollows fromthe continuity of Y, Hz(Q) > Hl/z(l'). The continuity
of A'1 i s deduced fromthe continuity of A by applying the Oosed G aph

Theorem

Proof of (iii) : The continuity of A vyields the continuity of a(*,*).
Let us show the symmetry. Let )\1,>\7 eH—]/z(l") and Yys¥,y €V the correspondi ng
solutions of(2.5). From (2.8),

-1/2

(214 dBydx = <ady,) > VA A eH D)

Q 1
and by permuting >\l wth >\2
M AY dx = <AN, ,A> YA ,A e H172(r)
Q 2771 1°72 1°72 ’

whi ch conpl etes the proof of thesynxnetryof a(*,*).
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/

To show the H '/?(I)-ellipticity, |et A=A, =2 in (2.14) ; then

2

1/2

(2.15) f | %dx = <an,n> vaen V).
Q

Since Ape¥ (see (2.12)), (2.15), Proposition 2.6 and the fact that
Y = -A,imply that

2

<AA, x> 2 Cff v avl| 20

2
=Cir|“_ , C>0,
. 1/z(r)

whi ch conpletes the proof of Lemma 2.1,m

3/ 1/2

Let usgo back to problem (Po) with f e LZ(Q), 8 eH Z(F), gy € H .
W have seen from Theorem 2.1. that (PO) has a unique solution in HZ(Q)
-1/2(1"). W shall now show

and that w = - Ay has a trace A =y in H
N 1/2 1y

that Ais the solution of a linear variational equation in H

Let y be the unique solution in V of

A%ﬁ =0
(2.16) $|F =0
—AWTIF = A

Probl em (2.16) is equivalent to

- =0
wlp =2
- A = w

vl =0.

(2.17)

Then | et wo be the unique solution in Hz(Q) of

a%y = f
(2.18) bolp = g

_Awolr =0
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whi ch again is equivalent to

- hwy =
wln =0
(2.19) of
- Awo = W,
wo‘r = 8

Coviously ¢ = xpo + 9, w= W, + w. The reader will note that wo is
conputed by solving two Dirichlet problems for -A Sinmlarly for y ,

so long as A is known.
Then one has the follow ng theorem:

Theorem 2.2. : Let ¢ be the solution of (Po) ; then the trace X of

=My on T is the unique solution of the linear variational equation

Y
-1/2
W = 2 - g Vel 2,
(2.20)
r e w2y,
Proof : Prom Lemma 2.1 and from (2.16) we have
(2.21) AA, > = < g’_ii J > Vuen M2y,
Since ¥ = y-p_ and since LU on T
o an &)
oY
_ . -1/2
<A\, p> = <a—r:’ - gy W VYueH ()

whi ch shows that X is a solution of (2.20). The fact that X is the
uni que solution of (2.20) follows (via the Lax-MIgram Theorem) fromthe

fact that {A,u} » <AX,uy> is bilinear, continuous and H_‘/Z(F)—elliptic

(see Lemma 2.1.) and fromthe continuity of the |inear mapping

Y
-1/2

W <g2 =gy, Wt H 2(ry > &

Y

) 1/
( . and g, belong to H

2(r)) .m
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Remark 2.2. : Since the bilinear form a(*,*) is symmetric, the variational
equation (2.20) is equivalent to the minimzation problem

3Oy < 3 vuen VD,
(2.22)

e 02
where

| 9

JW = 5 <AU, P> - <t - BysH> .
Remark 2.3 : If the condition : g—ilr =g, is treated as a constraint
we can associate wth (Po) the Lagrangian £ : HZ(Q) XH_]/Z(F) +R
defined by
(2.23) 2o, = 1 av)Zax - fudx + <Y - >

: ’ -2 Q I on 8yr M7

Let V = {v|veH2(Q) , V=g on I'} : then one could show that
v, - YOAIJ)} is the unique saddle-point of 2 on §XH"1/2(F) and that

J(W) = - Min £L(v,W) .
veV

Therefore (2.22) is the dual problem of (Po) associated to the Lagrangian £ .
W refer to 91, 21 for a nmore conplete study of (PO) by duality nethods
associ ated to Lagrangian of the sane type of £ .

Remark 2.4 : The data f and g, come into (2.20) by means of wo only
(see (2.18)). o

Remark 2.5 : Let §i be an extension of pin Q.In a formal manner, from
Geen's formula

n

s a(A,u) = <AA,p> = - 4;& y W> =

(2.24)

‘ = - J AYpidx - J V+Vidx = J wldx -~ J Vip« Viidx
Q §i Q Q

where ¢ is the solution of (2.5) and w = - A$. Sinmilarly



< ° ] = Vll) Vﬁdx Au) lex -

Yy« Vidx —Jwﬁdx
Lz © Q°

wher e {wo,wo} is the solution of (2.19).

If wis sufficiently regular (say uEHI/Z(F)) so that there exists
e Hl(Q) then (2.24) and (2.25) can be justified. The interest of
(2.24),(2.25) is that we can now evaluate (2.20) without calculating

oy
Y 0 - o
o and o explicitly.

We shall take advantage of this remark in Sec. 3 and 4 when (PO) and

(2.20) will be approximted by a mxed finite el ement nethod.

2.6. Summary
Let y be the solution of

A%y =f in @
@y { vlp=8
¢}
Ny L
mir = &
and w = - A3, A= wll" W have shown in Sec. 2.5 that for solving

(P}O) it is equivalent to solve the follow ng problens :

|u)o|1_,=0,
-MN = w in &
(2.27) % ' I0= °
olr™ 8p°
Y
(2.28) AA=—8—[—19-82,
2.29) “ M =100 g,
w[I, =2,
(2.30) 3"[\1{) =winQ,
w‘F_gl
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Al'together 4 Dirichlet problems for -Aplus an integral equation on I’
whose variational fornulation was given in (2.20). In the follow ng
sections we shall focus on the approximtion of (2.28).

2.7. An explicit exanple : conputation of A when Q is a disk.

The results of this section are not at all essential for the under-
standing of the sequel ; they are given for the sake of curiosity.
In this section, we assune that

2 2

Q= {xeRZIX% +x; <R h

Let (r,6) be the usual polar coordinate systemin Rz.

/ 1/2

2(I) on H
defined in Sec. 2.5. The eigen functions of A are

Theorem 2.3 : Let A be the isonorphism of H—1 ()

(2.31) wln(e) = cos nf nz0

wzn(ﬁ) = sin nd nxl,

the correspondi ng eigenvalues being

R
(2.32) an = m (n=20).

Proof : Let wln, respectively w2n, be sol utions of

2%y =0
(2.33) bl =0
- Awtr =c0Sn6 (>0,

A%y =0

(2.34) bl =0
- Awlr =sinnd (a2 1),

The reader will check that

(2.35) b, (r,0) = 4—(;'—:]7 " (®R*-r2)cosnb vn=o0,
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(2.36) w2n(r,e) = ZT&:TT-(één(Rz—rz) sin né vnx1.

Since
_ _ 9y _ _ %
Moz - glp = e ®0)

it is seen from (2.35), (2.36) that

R
Awln 2(n+1)

It

C0S nb Yn>o0,

R .
szn—m sin nd Vn=x1.

The sequence B= {w]O’,wH,wN,. ]n,w?_n,...} = .
= {1, cs®, sin €.,cos n6 , sin n6,...} is total in H(I), VseR

W

(i.e. the space of linear conbinations of elements of $ is dense in

H () and A is sel f-adjoint, conpact from LZ(I‘) into Lz(l“). By appl yi ng
the spectral theory of self adjoint operator in Hspace (see for exanple
R ESZ-NAGY [0l) we conclude that $is the set of all eigenfunctions of A

Theorem 2.4 : Let A be a sufficiently snooth function on I' (say )\GLZ(I’))

then

(AN) (%) = | A(x,y)A(y)dT (y) Vxel ,
r

the kernel of A being

2
Alx,y) = -1-[(1 - 113%4—- ) an(
2R

1

2 =
) +_l§:X| (1 _IY";| )2 X

4R

ly=x]|
(2.37)

X cos-l( -l—yi%x—l-) —%1

where |y-x| = distance (x,y).
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Proof : In polar coordinates
2
(2.38) (AN (8) = J A(B,0)A(a)da
0
wher e

AG,0) = R<]—+ Z (0snBcos na + sin nb sin no) -1_)=

2 = n+1
(2.39)
- R+ cos n(8-a) )
_-2_1?(5 Z n+l V6 #a

n=1

which is the expansion Of the kernel A(6,a) with respect to the
ei genfunctions of A

Let ¢ = 8-a and 2= el¢ ; we naey assume that ¢e 1-m,+m] ; then

(2. 40) AB,0) = 5= Re (& ta(z) - ) V8 # o

In (2.40) the determ nation of the conplex logarithmis the one which
satisfies &nl=0 . Therefore

(2. 41) A(B,0) = = o (cos ¢ bn|1-z|+ sin ¢ Arg(1-2)+ 7 ) Vo # 0.

By inspection of Figure 2.1we have

Imz

Figure 2.1.
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q>:25in—'J%J- if ¢ > 0
(2.42) sin %1: JJ%;&L AN
¢ ==y i .LlEzL if &< 0
Hence
2
(2.43) CcCoSs ¢ = ]—2 Sinz ¢'i= 1 _1__;{_'
. ) th h
But sin ¢ = 2 sin 7 COS F,therefore
. .'g—zlz 1/2 > 0
sin ¢ = |1-z] (1 - if—=9) |
(2.44)

2
sin 6= -1z o - H=zlly172 gy o

From Figure 2.1. we also deduce that

Arg(]*z)=§—g if ¢> 0,
N
Arg(1-z) =5 *t5 if ¢<0.
Hence from (2.42)
‘ Arg(l-2) :—cos'1|];zl if ¢> 0,
(2.45) -1 |-z .
Arg(l-z) = cos 5 if ¢<0.

Finally, putting back together (2.41),(2.43)-(2.45), if 6#a

2 2 1/2
] .
aoo = & fom Bzlyan v gy (- 2 7

(2.46)

Let x= {rRcos6, Rsin6},y ={R cos a, Rsin a) ;(2.38) (2.46) yield

BN &) = 5z f AGGYN (AT (y) |
r

where A(x,y) is given by (2.37).m
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Remark 2.6 : If the domain Q is the open disk (0,R) the resolution
of the Dirichlet problemon Q

Au =0 in @ (or le-Q)

(2. 47)
Uu=¢gonl Tl

Ho1/2 172

involves the operator B : (I » 8 "°(T) defined by

1 R
(BA) (x) = —J 2n A(y)dT (y) A lar, Vxel.
o . W y y v regul ar X €
One can show that B is continuous and positive senmi-definite, i.e.

H-I/2

<Bu,u> = 0 Yue .

Besides,A and B have the sane eigenfunctions (see (2.31)), the

correspondi ng ei genval ues being BO =0, Bn = % ., n>1.

For the nunerical solution of (2.47) by methods of integral equations
on T and for more general domains of R2 and 33, we refer to NEDELEC-
PLANCHARD (35!, LEROUX 130} and the bibliography therein.

Remark 2.7 : For nore general donmmins, A will be a pseudo-differential

operator, wusually not explicitly known. m
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3. APPROXI MATI ON OF () BY A MXTE FINITE ELEMENT METHOD

In this section we shall use only polygonal domains @, but what follows
can easily be extended to the case where isoparanetric finite elenents
(see O ARLET-RAVIART [11 1) are used.

3.1. Triangulation of Q. Fundanental spaces

Let °Gh be a triangulation of Q satisfying

3.1) fhfinite, TcﬁVTeth, T=0,
T e

T

T and T'efh, T#T‘#%n%':(band TnT' =9 or T anc i
(3.2)
have a side or a vertex in common only,

(3.3) h = length of the greatest side of the Te ‘tfh.

Let P be the space of polynomals of two variables (3 in R3) of degree
less than or equal to k ; we introduce the following finite di mensional

spaces
— °/F
(3.4) v, = {vhlvhec « , VhITEPk VTe ﬁh}’
_ 1
(3.5) Voh = {vhivhe Vh A 0 on T} = thHo(Q) ,
(3.6) 3 7f(h . a complementary space (not precised for the nonent)
of Vop 1M Vh i.e. mhcvh and Vy =V, @ 77Lh ,
V\Igh = {(Vh’qh)‘(vh’qh) €thvh ’ Vh|1-\ = glh,
G.7N
IWI, |WX:J(%HFX+ ngPhﬂ1Vuh€VhL
9] Q T
In (3.7) »8,, 1S an approxi mation of 8, whi ch belongs to Yovh and 81,

i s-an approxi mation of g, such that [ dl' is "easy" to conpute

(8, = 8y possi bly).

T 82nMn
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3.2. Approximtion of (PO)

(P) is approximated by

3,000 < 5 (vp,a) Y (v qy) € wgh ,
(P)
(wh,wh) € Wgh

where
(3.8) 5ov a0 =~ | e | Pdx - | £ov dx
. h'Vh? 9 Z ] g P

and where £ is an approxi mation of f (fh = f possibly) such that

fQ £ v,dx is easy to conmpute.

Such an approxi mation (Ph) of (Po) by finite elements is said to be
m xed (see [10],{9]). One can easily show the following proposition

Proposition 3.1 : Problem (Ph) has one and only one sol ution.

3.3. Convergence results (k2 2).
It is assunmed that the angles of °€h are bounded, uniformely in h,
from bel ow by 60> 0 and that ‘ﬁh i s such that

(3.9) Max h(T) <t mn h(T) , V?fh, T independent of h,
T e?%l T 61%1

where h(T) is the length of the largest side of T. If k22 it is shown
in [10 that, under the above hypothesis, one has

(3.10) v, vl e llo-ap) I, < cllu] p<!
h Hl ) h L2 ) Hk+2(§2)

where Cis independent of h and ¥ ; naturally this result supposes that
f,gl,gz have been conveniently approxi mted. For a discussion of the
case k=1 we refer to [23,Ch. 4], GLONNSKI [22]. W also refer to SCHOLZ

T431 where, under the above hypothesis on ¢ is shown that if k=23

it
hi
one has the follow ng error estinate
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Chk+1

2
I v | + 07 [lw = (-a9) | < Il
b2 g h 2@ (@)

where C is independent of h and V.

Remark 3.1. Al what is said for triangular elenments also holds for

quadrangul ar el enents.

3.4. Deconposition of (Ph).

By definition of %, : Vv, =V eMW. Let {,»w,} be the solution of (P,)

and | et Ah be the conponent of wy in

L]
"

h? 1.€.

(3.11) W (wh—)\h) + )‘h : wh-xh € Voh v AL S

In {97 the followi ng theoremis shown

Theorem 3.1 : Let {y ,w } be the solution of (P,); let ) be the
conponent _of o dn T {q’h’“’h’Ah} is also the unique el enent of
thvh x?f(h such that

Vw, *Vv_ dx = JQE v, dx Vvhevoh s

h h h'h
(3.12) &
wh—)\h € Voh’
L] = V
o Vlbh Vvhdx szhvhdx v €V s
(3.13)

(whevh > V|1 = 8in

(3.14) VP, oV, dx = w y,dx Jg wdl Yy e M .
g h h |th + 1..Zhh h h

OmMng to the inportance of this result for what follows we shall give it
a proof.
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Proof of Theorem 3.1 :

(i) Let Yon be

_ | _
WOh = {(vh,qh) evohxvhl | W Q. h Vphdx = qhuhdx vuh € Vh} )

I
Let {wh,wh} be the solution of (Ph) t hen

(3.15) {wh+tvh,wh+tqh} € wgh VteR, V{vh,qh} €W L.

The following process is classical in the Calculus of Variations :
from (3.15) we deduce that

‘% [jh(ll)h+tvh,wh+tqh)—jh(1})h,(uh)1 >0 Ve> o,
(3.16)
(V{vh’qh} €¥Won
Now
1. . _ -
LLB” 3 [Jh(wh+tvh"*’h+tqh)”Jh(”’h’“’h)] " Qwh’qhdx fothdX
t>0

(then the |inear mapping {vh,qh} > Jg (whqh-f hvh)dx is the derivative
of j, at {wh,wh}).
Therefore

|Q u)hqhdx - szhvhdx >0V {vh,qh} €W s

and since V\{)h is a linear space,

(3.18) wyqpdx -

v,dx =0 V{v
I g bR

£y pedpt €W

A'so by definition of w_, {vh,qh} eW , inplies

whdx ,

(3.19) IQ Vvh°thdx = 4y

e}

which, together with (3.18) inplies that
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(3.20) ' Vw, Vv, dx = Jgfhvhdx V{vh,qh} €W .

Let v, eV the problem

h’

has a unique solution and of course {vh,qh} eW This shows that, in
(3.20), v, can be any function of Vv, ; therefore it inplies (3.12).

Simlarly, since {wh,wh} € wgh, we have

. = v .
(3.21) o W)hVVhdx = szhvhdx + I ngh VhdF vy eV

Hence (3.13) is proved by choosing v
for (3.14).

p€Vyh N (3.21) and v, in ey

(ii) Conversely, since Vv, = Vohea mh, by adding (3.12) and (3.13)
we find that

JQ W)h'Vvhdx = J whvhdx + IFg2h Vth Vvhe Vh’

Q

Wb e ViV s ¥y p o= 8y
Therefore
(3.22) {\Ph,wh} € wgh.

Let {v } e WO then

h,qh h)

JQ Vv, Vydx = [Qqhuhdx v woevy

and in particular

(3.23) o Vvh-thdx = lgqt\‘w{_lx v {vh,qh} €W,
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Then (3.12), (3.22), (3.23) inply

Q wpdpdx - JthVhdx = 0 V{v,apte Wy,
(3.24)

{wh ’ (.Uh} € Wgh .

The functional j, being convex on V, xV (3.24) characterizes {y,.wy}

as being the solution of (Ph).

h’
Remark 3.2 : Equalities (3.12)-(3,14) are the discrete anal ogues of
(2.29),(2.30) and of

(J VPeVudx = J wudx + J gzudx Yuen,
(3.25) ' & @ r

7 : conplenmentary of H;(Q) in 5! Q).

3.5 Discrete analogue of Lemma 2.1.

Let Ahe th and |et W respectively ¥, be the solutions of the follow ng
approximate Dirichlet problens

JQ th-Vvhdx =0 A vy € Voh’
(3.26)

Wy € Vh' wh—kh € Voh ,

L} Vlbh'Vvhdx = JQUJ hvhdx Vv, eV .,
(3.27)

d)h eV h

Then we define the bilinear form ay mhx mh-’R by

= - , 0 .
(3.28) ah()‘h’uh) ngh“hdx ngh Vphdx Vuhe h

The reader will notice that to define a, we have used Remark 2.5.
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Lemma 3.1. : The bilinear form ah(-,-) is symetric, positive definite.

Proof : For j=1,2 |et )jhe 772h and "th-‘i’ah respectively be the solutions
of (3.26) and (3.27).

By definition of ah(-,-)we have

(3.29) aho\]h’AZh) = I w]h)\Zhdx - lQle]h'V)\Zhdx.

By letting >‘2h = (>\2h—w2h) oWy (3.29) becones

aho‘lh’AZh) = wlthhdx - | W)lh-Vthdx + | W)lh-V(le,l—)k,.H
Q Q il

(3.30)

] |Q“’1h(“’2h'A2h) dx.
From (3.26) and since wlhévoh
(3.31) | Vo, @ vQhdr = 0

Q
Simlarly from (3.27) and since th_)\Zhevoh
(3.32) g VbV wy =y, ) dx :|QW1h(V&h_>‘2h)dX
and on account of (3.30)-(3.32) we have
(3.33) aho‘lh’xzh) = nglh“)Zth \Mjhe mh j=1,2
whi ch shows the symmetry of a -
To show the positive definitness |et th = )‘Zh = >‘h in (3.33) then
(3.34) a, (A0 ) = wldx
' h*"h* "

Therefore ah(xh,xh) =0 inplies mh:O which in turn inplies Ah=0 since

A, is the conponent of w_in mh.

h h



- 27 -

3.6. Application of Lemm 3.1. to the resolution of (Ph).

Let {wh,mh be the solution of (Ph) and | et xh be the conponent in T

of w, . Let Z&h,wh be the solutions of

JQ th-Vvhdx =0 \'fvh eVoh,
(3.35)

wy, € Vh wh—xh € Voh’

L) W}h-Vvhdx = JQ whvhdx Y vy € Voh'
(3.36)

Ibh € Voh'

Let wyy and xboh be the solutions of

Vo . @ Wk = | £v.dx Vv eV,
a oh th h" "oh
(3.37)
Wone B
|Q vwohO Whix = IQmohvholx Vv e Vo,
(3.38)
Yon €Vh Y% 8n ON T

Then wh = wh + woh » Wy = W+ W and (3.35)-(3.38) are the discrete
anal ogues of (2.16)-(2.19).

We shall now show t hat >‘h is the solution of a variational problem in mh.

From the theorem bel ow we shall derive a discrete anal ogue of Theorem 2. 2.

Theorem 3.2. : Let {y, ,w } be the solution of (P) and let A be the

conponent _in m] of W - Then kh is the unique solution of the |inear

vari ational nrobl em

ap Qo) = | VWon! lpdx - J WopHpd® - | Bt hdx Vupe T,
(3. 39) Q Q r

Ahe 77Lh,
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which is equivalent to a linear systemwth a positive definite

matrix.

Proof : Owing to Lemm 3.1., applied to {J,,w,},we have
aho‘h’“h) = Lzb_huhdx - J V$h'Vuhdx = J (u)h—woh)uhdx -
Q Q
(3.40) - JQV(wha% ) Vu rgiX = JQ Vw0h°Vuhdx - quohuhdx -
- ( szwh-Vuhdx - [Qwhuhdx) Y, € Wlh,

but {wh,mh} bel ongs to Wgh therefore (see (3.7))

|Q Vq)h-Vuhdx - Jﬂwhuhdx - JFgZhuhdx A uhe 7/’Zh

which, together with (3.40) proves (3.39).

The uni queness is obvious since ah(',') is positive definite. The
equival ence with a positive definite linear systemis a classical
result on the approximation of |inear variational problens. W
shall wite the matrix of this systemin Section 4.

Remark 3.3 : To conpute the right hand side of (3.39) it is necessary
to solve two approximate Dirichlet problens ((3.37) and (3.38)).
Simlarly Ah bei ng known, to conpute Wh and ]‘Dh it is necessary to
solve the two approximate Dirichlet problenms (3.12) and (3.13).

3.7. Study of the conditioning of ah(-,- .
Since the linear systemassociated with (3.39) will be solved by direct

or iterative nethods, it is inmportant to know the conditioning of the
matrix of the system Theorem 3.3 below will help to estimate this
conditioning. For the sake of clarity we shall assume that Lagrangian

type finite elenents are used.
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Theorem 3.3 : W assune that Q is convex. If "(,‘h satisfies the

hypothesis of Sec. 3.3., and if k> 1 and his sufficiently small,
t hen

2 2
(3.41) ah [ly X || < a (A2 0)< Blly A ] VA e M,
oh LZ(I‘) h*"h’"h oh LZ(I‘) h h

where o,B are two positive constants, independent of h and )‘h'

Pr oof

(i) Proof of the second inequality. Let )\he th. It follows from
(3.34) that

2
(3.42) aho‘h’)‘h) = w dx,

IQh

wher e wh is the solution of

0 th-VVhdx =0 v vy

(3.43)

wh—Ah € Voh'

Let ﬁh be the solution of the Dirichlet problem

s f Vi, +Vvdx = 0 VveH (@),
Q (o)
(3.44)

- 1

wh-}‘h € HO ).
From Sec. 2.5.

Va, o) = lw, |l < o - | + a1l ,

h* " "h’"h h Lz(Q) h hLz(Q) hL @
(3. 45)
= ”‘*’h’a’h”Lz @ N SAY A YAy

Let |A] = [a]| then (™)

212y, L2 1)

@) |A] = largest eigenvalue of A
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l<anan] < Al , Dl ,  vaue 12D,
L°(D) L7(

therefore, from (3,45)
(3.46) Va0 = Iyl N gl o

To estimate Hwh—&hH 5 et us use the nethod of AUBIN-NI TSCHE
L

)
(see [ 2 1,[361).

Let weLz(Q) and let ¢, respectively ¢, be the solutions of

J VoeTvdx =  wdx Vv eH (Q) |
Q lg °
(3.47)
1

o€ HO(Q),

JQ V(bh'Vvhdx = szvhdx Vvh € Voh’
(3.48)

¢h € Voh'

= ‘I) =

Then - Ap = v and, @ being convex, q>eH2(Q) anl)(Q). Alsow |

| h|T
eHO(Q). From (3.47) we see that

Therefore wh—&

= "hT. h

J w5, Ydx = J VeV B )dx = Vo-g) @ V-t
Q Q o
Ty By,

Aso w eVo c H:)(Q) therefore from (3.43),(3.44), we have

h h

(3.50) " V(w, =3, }o, dx = 0.

Finally from (3.49),(3.50) we have

3.51 ww -@) dx = V(¢p~, ) *V(w, =k, )dx < - w, —0 .
( ) |Q h “h |Q ¢¢h h *h H(bh ¢HH(1)(Q£‘ h hHHé(Q)
But it is well known (see STRANG FI X [47]) that under the above hypothesis

on Gy»
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o, =6|| < ¢ |l¢f h
e RO N )

o

wher e C1 is a constant independent of h and ¢.

From Proposition 2.1

<

ol < ¢, [lwll .
0 N A ()
Therefore
~ ~ 2
(3.53) w(w, ~% )dx < C,h||w|| [|w, - || Ywel(R)
g BB 3 o * V@
which in turn inplies that
- -1 ~ N
(3.54) o Sll, = s |1w||L2(Q)l [Q wop By )ax] = ¢ [luy -yl
weL7(R) ) I-10
w#0
Thus now we rust estimate Hwh-ﬁ)hll 1 : from (3.43),(3.44) we have
H ()
o

JQ V(wh-wh)'V(Vh-wh)dx =0 ‘v’vhth , Vh—)\heVOh.

Therefore
|90, 5.) [ %dx = V@, -w )V (@ v, )dx +
o h h o h “h h h
Q

(3.55) + |QV(wh—wh)'V(vh—wh) dx = lgV(&h-mh)'V(mh—vh)dx

Vvhth , vh-)\he Voh ,

I

whi ch shows that

Hwh-a)hH i < th-G)h I | Vvh€Vh v Ay € Vo

H (@) HO(Q)

Let m be the operator of interpolation on °Ch associated with the nethod
of finite elenents used, Trheaﬁ(H] @ 0 c°@,v,). Then &, « B (Q) Vs <%

and

@
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3.56 &, 1| < A v Al
( ) h HS(Q) s o'h Hl

2 .
where A_ is independent of A . Now @ is bounded inR and its boundary
s 0 ,=. . .
is Lipchitz continuous, therefore, V¥s> 1, H(Q) < C () with continuous

i njection. Hence T can be applied to &h and

(3-57) M1 = Sulr = M|t

Let s'"<s ; owing to the above properties and to the hypothesis on 7fh'
we have (see for exanple BABUSKA-AZIZ i 31)

(3.58) n® 7l |l

I 0y I N (s',s)

()
(o]

@

with Cist.s) i ndependent of h and v, . V& deduce from (3.56),(3.58)

l|m @ -6 | <K, b IR
h'h "h H(l) ) (s,s") oh H‘ M

Wi th K( 'e) i ndependent of h and Ah. Therefore ¥& >0, there exists
s ,S

c5 i ndependent of h and Ah such that

(1/2-6) | )
(3.59) |, oy - hII o ° o SN
From the hypothesis on f% we have al so
c
‘ v 2 < 7 v Ayl ,
Wity B ' 2 5y

therefore

N -1/2-
@oy s, 1y s e Tl

MR Tyl RRRTED

where Cg is independent of h and A . From(3.57) it is possible to take
vy © ﬂh&h in (3.55) and together with (3.60) it inplies that

A

- -1/2-
3,61 e ¢ n 2y | ,
(3.6 bR Tl S o BT 21y

[}
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and at last from (3.46),(3.54)(3.61) we have

1/2-8

(3.62) a, (A 52 < ( la| + Cgh Y Iy 2l Va e 7

L°(T)

whi ch conpl etes the proof of the second inequality in (3.41).

(ii) Proof of the first inequality.

Since %h satisfies the assunptions of Sec. 3.3. it is straightforward

to show that

Vv, €V

(3.63) v vyl 20 < =llwy| 2@ b€ h

‘ F

where C is independent of h and Vi . Recalling that

24 = y/(
dx = ah()\h,)\h) V)\he %

Wy

¥l

and Ath =
from (3.63). This conpletes the proof of Theorem 3.3. e

wh“,, we deduce the first inequality of (3.41) immediatly

Remark 3.4. : Proceeding as in [9, Th. 10] one could show from Theorem
3.3. that
a, (A ,\) a(i,\)
(3.64) lim sup % sup —— |A].
w0 A0} Iy a1, = ) 2oy H =
L °(T) L)

3.8, Sunmmary
Let {wh,wh} be the solution of (P,) and let A be the conponent of w
in 7)2h. The vector >‘h is the solution of a linear systemthe matrix of

which issymmetric, positive definite. This systemis given in variational

formin (3.39) but the bilinear form ah(-,~) is not known explicitly. The
construction of the matrix and the resolution of the corresponding |inear

systemwi |l be dealt with in the next section. The resolution by iterative

schemes will be considered in Section 5.
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4. CONSTRUCTI ON AND RESOLUTI ON OF THE LI NEAR SYSTEM EQUI VALENT TO (3. 39).

4.1. Ceneralities

N
- . —_ lh . ”m . .
Let N = dim(”7 ) and B, = {w.} .7 a basis for M if A€ 772h
Nh
(4.1) )\h = Z )\jwj,
Proposition 4.1. : The problem (3.39) is equivalent to the linear system
in (A, ,e. )y )
1 N
Nh
A, = | W -V - % -
JZ:‘ ah(w sW.) JQ (" h widx J u)ohwidx
(Eh)
- JFQZhwldT, i=1, ’Nh ]
= Ly = Nh i
W shall denote aij = ah(\nj,/vQ , Ah = (a'xJ)'i,j=1° It is also easy to show

the follow ng

Proposition 4.2. : The nmatrix Ah is a Nh><Nh positive definite symetric

matrix.m

W shall now study the construction of Ah and of the right nenber of (Eh)
from a suitable basisﬂih.

4.2. Choice of mh.

The space th should be chosen such that the conputations of a. - and of
the right member of (Eh) are easy. Therefore the basis functions W, € th
should have a small support. It seens from [9] and [23,Chap. 4] that a
good choice is as follows

7, conplenentary of V., in V.,

oh h

vhe%:vhl,r =0 VTe ’Zp'h, TnT = @,

h
(4.2)
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If in particular V_ is defined from Lagrangian finite elenents (see

h
Figure 4.1. for k=2), mh is the space of those functions which take

the value zero at all nodes of th which do not belong to T .

Then

=4
n

dim( M) = Card (I),

wher e

Iy

{P eT| P node of <!

N
and a goodchoice for B is the canonical basis B, = {wi}if1 , Where

=2

(4.3)
w,(P.)=1,P. e ,w (Q =0 VYQ node Of 'Ch , Q# ..

For notational convenience we have supposed that Zh has been renunbered

from1 to N . Wth this choice of 7. and ‘T’h the coefficients AJ,, in rela-
tion (4.1) , of >‘h are precisely the values taken by Xh at the boundary

nodes P.J , ]=|,...,Nh. Thus

X, = A (P. VP, e L, jJ=1,...,N. .
J h( J) €%

\\\\ \\\\ \ : P .

13 Pl

Figure 4.1

(k=2 ; a small circle indicate a boundary node. The supports of w
and w.J are shown).

4

™
L
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4.3. Conputation of the right nenbers of (Eh)

Let b = {bl,...,bN } be the vector of the right nenber of (Eh) :
h

(4.5) bi = |vaofwiidx - IQwohvv.ldx - Jrgzﬁv.ldl" , 1 =1 ""’Nh'
To conmpute bi we need to know ®oh and woh' This is done by solving (3.37),
(3.38).

Remark 4.1. : The conputation of bh is faster if the support of W, is
smaller (see Sec. 4.2). Besides if mh verifies (4.2) it suffices, to
conput e bh’ to know Yon and woh on the triangles Te%’h such that T aT # 8.
This remark eventually allows to reduce the menory space allowed to woh

and w

op IN the computer.

4.4. Conputation of the matrix Ah

Let w. eﬂs For sinmplicity let us onmt the subscript h on w and y. Then

J
| et V\JI resp wj, be the solutions of (3.26), resp. (3.27), correspondi ng

to w, i.e.
4 i
JQ VwJ.-Vuhdx =0 Vuhevoh,
(4.6) )
w. €V w.~w. €V
J h J J oh'
JQ ij ' @ I ,u uul Vuhevoh,
(4.7)
wJ: 5V0h|
From (3.17) we find that
aij = ah(wj’wi) = IQW.JW.ldX - IQVle°Vwidx ,

(4.8)

1<i,j sNh.
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Thus, to find the j '

Dirichlet problems (4.6)(4.7) and then, v, descri bing 33h, to evaluate the

col um of Ah’ it is necessary to solve the two approximate

integrals in (4.8). Naturally Remark 4.1 also holds for the conputation of
alij It should also be noted that since Ah is symmetric, in the conputation
of the j th columns,it suffices to conpute a.l.J such that 1<j<i.

We shall see in Sec. 4.5.2. how to use those remarks when (Eh) is solved
by the nethod of CHOLESKY.m

Remark 4.2 : From (3.33) we have

- L CN .
(4.9 2 IQw.lw.de Vi<i,jsNg

Therefore it seens that Ah can be conputed by sol ving Nh Dirichlet problens,

i nstead of 2Nh when (4.8) is used. In fact this sinplification is only
superficial. Indeed to use (4.9) one needs much more menory for the storage
1,...,mNh. It is always possible to use tape or disk storage but it

i ncreases considerably the conmputing tinme. Besides this it should also

of w
be noted that the integrals in (4.9) nmust be calculated over Q entirely

instead of a neighborhood of T as in (4.8). =

4.5. Resolution of (Eh).
4.5. 1. Ceneralities

Vv N
Let khe R B be the vector {xl,...,xN} : then (Eh) is witten
h
\%
(4.10) A A= by

The matrix Ah is symetric positive definite ; to solve (4.10) we can use
the nmethod of CHOLESKY. W can also use an iterative method like S.OR,
S.SSOR (see VARGA [48],D.M. YOUNG [49]) or like steepest descent or
conjugate gradient (see J.W DANIEL [13]1, CEA[7 1, PQLAK [39], CONCUS-
@G0LUB [12]). W shall give nore details in Sec. 4.5.2. on CHOLESKY's

met hod which seems particularly well adapted to the resolution of (Eh).
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In fact the nethods of steepest descent and the conjugate gradient nethod
do not require the know edge of Ay W shall come back to this point in
Sec. 5.

4.5.2. Resolution of Eh by the method of CHOLESKY.

Since A is symetric positive definite there exists a lower triangular
mat rix Lh’ invertible and unique such that

_ t
Ay = M
(4.1'1)
.20, 1<isN,
wher e Ry ISiSNh are the elements of the diagonal of L.

If R. are the elenments of L_then
13 h
Qij =0 if 1<1 <jsNh.

W recall the formul ae of CHOLESKY :

For j=1,

—
=
n
ﬁ)'

(4.12)
45
= _ < <
‘ 2,1] 7 vV2<i Nh
1
For 2 <j <N
L2
L.. = - 2.) ;
i i3~ (B k}=:1 k
(4.13) i-1
= _]__. j+1 <1 <N, .
I 113 SLJJ (81 kz——-:l R’ikg'jk) V3 ="
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It appears from (4.12), (4.13) that it is not necessary to nenorize
Ah in order to construct Lh‘ Indeed, suppose that the (j-1)-first

h colum we conpute the

col ums of Lh are known ; to find the jt
sol ution (wj,wj) of (4.6),(4.7) and then a.J.J by (4.8), R’jJ by
(4.13) and aij by (4.8), Qij by (4.13) for j+l sisNh. The sane

argunent al so applies to the construction of the first colum of Lh.

Once Lh is known the determ nation of >‘h breaks down to the resolution

of two triangular systens

LyYh = by
(4.14)
tx_
LA = Yn

\'
The computation of Ah from )‘h being straightforward finally w, and
wh are conmputed by solving the two approximate Dirichlet problens

(3.12),(3.13).

Remark 4.3 : Once Lh has been determined it is very easy to solve other
probl ens (Eh) corresponding to other values for f,gl,gz. In fact it is
a general statenent that the nost expensive phase of the resolution

of a linear system by CHOLESKY's nethod is the determ nation of Lh.
It is even nore so in our case since the determnation of Ah requires

the resol ution of 2Nh Dirichlet problens.

4.5.3. Summary , nunber of l|inear sub-problens with the nmethod of CHOLESKY

The solution of (Ph) by (Eh), solved by CHOLESKY's nethod, requires
the resolution of

- Two Dirichlet problens (3.37),(3.38) to conpute bh,

- 2Nh Drichlet problens (4.6),(4.7), 1 <] sNh, to conpute Lh,
- Two linear triangular systems (4.14) to find Ah,

- Two Dirichlet problems (3.12),(3.13) to conpute w,, by -
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Thus 2Nh+4 Dirichlet problens (with the same matrix) and two triangul ar

syst ens.

4.6. Conditioning of A

We recall that the condition nunmber v(M) of a square NxN invertible

matrix is given by
(4.15) von = uff [

where the matrix normis induced by the canonical vector norm of RN.
Ve recall also that if Mis symmetric and positive definite

u
(4.16) vy = BX

mn
wher e Hoax (resp. umin) is the largest (resp. smallest) eigenvalue of M
The linear system (Eh) is easier to solve when v(Ah) is small. If °6’h
satisfies the assunptions of Sec. 3.3 the following theoremis fairly
easy to deduce from Theorem 3.3 and from (4. 16).

Theorem 4.1 : If a Lagrangian finite elenent method is used and if

the assunptions in Theorem 3.3 hold, and k> 1, then

(4.17) VA = 0@ .

Remark 4.4 : 1t should be pointed out that the classical approximtions

by finite differences or finite elements of A (resp. Az) lead to

matrices with condition nunber in O(LZ) (resp. 0(»—15)) and are therefore
- h

not as well conditioned as Ah
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4,.7. Various remarks

Remark 4.5. : The 2Nh+4 approximate Dirichlet problens found in Sec.
4.5 are of the form

(4.18) (=8), uy = ¢,

wher e ('A)h is a N}'IXN}'1 symetric positive definite matrix (approxinating
- i v = 3

A) wth Nh dlm(VOh).

Therefore since the 2Nh+l+ problens differ only by their right nenbers,
the matrix (-A), can be factorized by Cholesky's nethod (and by using
the fact that (-A), is sparse)

wher e Ah is a lower triangular invertible matrix.
The matrix Ah being conputed once and for all, the 2Nh+4 probl ems reduce
to 4Nh+8 triangular linear systems.

Remark 4.6 : If (4.18) is solved by an iterative method, in order to
compute (“’j ,wj ), it is not unreasonnable to initialize the algorithmwth

Wiy ’wj-l , provided that the corresponding basis functions W'j-—-]’wj
are neighbors.

Remark 4.7 : Al what is said above remains valid if in Sec. 3.1,3.2

nurmerical integration methods are used to define W . and (Ph). In

gh
particular if k=t and for special triangulations, if qhuhdx is
approximated by &
(4.19) lZ Ti‘ M, Ju (M, )M, _,i=1,2,3 i f T
. 3 5% neasure ( )i=1 9, M, ¥ (M) M, 1=1,2,3 vertices 0 ,
h

then the nethod studied gives back the classical 13 points finite difference
approxi mation of the operator A2 (see [23, ch. 41,0221y,
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5. REMARKS ON THE USE OF | TERATIVE METHCDS. THE CONJUGATE GRADI ENT METHOD.

5.1. Ceneralities

% have pointed out, already in Sec. 4.5,that (Eh) could be solved
by iterative nethods such as the nethod of steepest descent or the
conjugate gradient nmethod. We shall see that in doing so it is pos-
sible to solve (E) without having to conpute Ah explicitly. It suf-
fices to solve, at each iteration, two approximte Dirichlet problems
for - A

_For the gradient nmethods we will consider in Sec. 5.2 fixed step size
met hods, a general study of which was done in CIARLET-GLOWINSKI [9]
(see also [23,Ch. 4], 200 and CIARLET [ 81) with numerical applications
in [5]. However the next paragraph may be viewed as an extention of [9]

since iterative schenes in H_]/2

(T), for solving approximtly (PO), are
described. In Sec. 5.3 we shall study sone of the methods considered
in Sec. 5.2. but with variable steps now. Then in Sec. 5.4 we shall

study the conjugate gradient nethod.

It will be useful for the following to introduce the isonorphism
N
W(h*Rh defined below :

h
Y

Let\%h = {wi}i=l be the basis of 7/7h introduced in Sec. 4.1. If Wy € ?72h

Y
(5.1) D IR

i=1
then " is defined by
(5.2) T = {ul,uz,---,uNh} Vi € M-

N
Let (e,- b be the usual euclidian scalar product inR = and || h the
corresponding norm Then
(5.3) a, (o) = (A ,ru )y VAU e My s
L] - - = W? ’

(5. 4) ngwoh Vuhdx Jﬂwohuhdx JrgZhuhdI‘ (bh,rhuh)hVuhe h

wher e Ah and bh are as in Sec. 4.1, 4.3.
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5.2. Steepest descent methods with fixed step size.

5.2.1. Description of the nethod.

Let s ¢ th x??(h »>R be a symetric positive definite bilinear form
and let p be a positive nunber. |n a variational formulation the

met hod of steepest descent with fixed step size is witten as

follow :
(5.5) Az € ?ﬁh arbitrarily chosen

t hen AE known, AEH is conmputed by
n+] _ n n

s, Oy suyp) = sh()\h,uh)-p(ah(xh,uh)-(bh,rhuh)h) Vou, e ?ys
(5.6)

n+l

)\h € mh'
Thus to conpute )\n“ from )\E, it is necessary to solve a variational
problem in 771 .e. to solve a linear system W shall cone back to

this point |n Sec. 5.2.2., 5.2.3.

The form sp being symetric positive definite there exists a symetric

positive definite matrix Sh such that

(5.7 ShOpoip) = GSprphp Ty

Now from (5.3),(5.7) we see that (5.5)(5.6) is equivalent to the
algorithm :

N
(5.8) r,n)\;’l = {A?,...,Agh}e RD arbitrarily chosen,
n+] _
(5.9) rrnt! = ral-es A r b ),

whi ch corresponds to nore classic notations.
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5.2.2. Inplenmentation of algorithm (5.5),(5.6)
In view of (5.9) it appears that to inplement (5.5),(5.6) we need to

(1) determ nate bh’

. . . . n .

(ii) determinate at each iteration AT (Ah is not known),
(iii) solve a linear systemof matrix Sh.

It is seen from(5.4) that the determ nation of bh requires the
resolution of the two approximate Dirichlet problems (3.37)(3.38)
to find wh and Von The inmplenentation of (iii) will be discussed
in the next paragraph. As to (ii), Sec. 3.5 and (5.3) inmply that
to find Ahrh)‘g we must solve :

n —
] JQ th°Vvhdx =0 Vvh EVOhI
(5.10)
| NE—AE € Voh
and
n n
VW, Vv, dx = . v, dx Vv, eV,
‘JQ h "'h Jg h' h h*~ "oh
(5.11)
n
lph € Voh

n .
and then Ahrh>\h is such that

n
Arpdp )y = Oy = J wphpdx - JQW’h'V“th Vg € My 3
Q

nore precisely when by descri be th we have

n n .
(5.12) (Ahrh)\h)i = ah()\h,wi) V1=1,...,Nh ,

N

th h

n . . n.
wher e (Ahrh)‘h)i is the i conponent  of Ahrhkh in R

Once >‘h is obtained (which supposes that the process (5.5)(5.6) converges)
w, and wh are found by solving (3.12){3.13).
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Remark 5.1. : It is possible to avoid solving the four Dirichlet problens
(3.37),(3.38),(3.12),(3.13) by proceeding as follow (as in [51) :

(5.13) Age m, arbitrarily chosen,

n+l

t hen )\E known, find A'" by

51 JQ VwE'Vvhdx = Jthvhdx Vvhevoh s
| wg_)‘g € Voh’
515 JQ V\UE'VVhdx = JQw;vhdx VvheVOh.
bV s ¥y = gpon T
s, Ob ) = sh(xﬁ,uh)w(JQ W vy, dx - ngﬂuhdx - :’g'Zhuhdr),
(5. 16)
Vi € My )\EH e?)zh.

In view of (5.7),(5.16) the determ nation of Aﬁﬂ in (5.16) requires

the resolution of a linear systemof matrix Sh.

5.2.3. Choice of Sy

In principle any symmetric positive definite bilinear form on ?)zh will
wor k. However the choice of sy shoul d be guided by the follow ng two
seeningly contradictory properties.

(i) Choose sh(-,-) such that Sh is sparse and even diagonal ; in the
fornmer case Sh will be factorized by the Chol esky nethod, 8, = ThT;,
and T, will be stored in the menory of the conputer (Th is also sparse).
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(ii) Since ah(-,-) is an approximtion of a(*,*) defined over

H']/Z(F) and H-]/Z(T)—elliptic, it would seemreasonnable to take
sh(',') to be also an approximation of s(*,*) where s(*,*) is a

bilinear form H—I/Z(F)—elliptic. Such a choice leads to a full matrix
S, we shall cone back to this point in Sec. 5.2.5.(See also Remark 8.1)
Let us discuss the point of view (i) : let us assume that %h is

defined by (4.2) and that a Lagrangian finite element nmethod is used

It follows from[9]1, 23, Ch. 41, [5] that s, (*»*) can be one of the

fol I owi ng
' (5.17) sy (Ao ) = erhuhdr ,
(5.18) s, (Ao = mxhuhdx |
(5.19) s, Aok = \QVXh'Vuhdx.

Such choices lead to a sparse matrix Sh( provi ded that the boundary
nodes have been properly nunbered).

By nunerical integration it is easy to approximate (5.17),(5.18) by

bilinear forms for which Sy is diagonal. If k=l (resp k=2) and if
the notations are as in Figure 5.1. (resp. 5.2) we may approximte
(5.17) by

LI AL A 2
(5. 20) s, ) = > 7 AqHy

i=1

whi ch corresponds to the trapezoidal rule of integration (resp. by

N
ho PP,
Z i 1+]
(5.21) sp oMy = < 5 OyHg g Bt Mabe)

whi ch corresponds to Sinpson's rule).
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i+]

Figure 5.1 Figure 5.2

5.2.4. Convergence of algorithm (5.5),(5.6)

Theorem 5.1. @ Let {Ag}n be a sequence generated by al gorithm (5.5),(5.6)
and A, the solution of (E ). Then for all choices Xﬁe Mh

lim A =,
n->o h h
if and onlv if
(5.22) 0<p<ANL
h

wher e AN is the largest eigenval ue of S;]Ah'
h

Proof : Let y; = rhkg—rhxh. From (5.9)

(5.23) o= (e

The matrices Ah and sh being symetric positive definite, s;llAh has

Nh ei ngenval ues
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0<A1 sAz S yeeey S A

h
. Ny .
and Nh ei genvectors {Vi}i=1 §,-orthogonal i.e.
(Sh|v' v.)h =0 i3

N N
the set {vi}ihbei ng a basis for R b yﬂ can be conputed on it and

with self explanatory notations, (5.23) becones
ntl  _

n o._
(5.24) YIS U-ph)y] =1, N

i h’

Al gorithm (5.5),(5.6) will converge if and only if

(5.25) |1-pAi| < Vi=l,.. ., N,

which is equivalent to (5.22). ®

Remark 5.2 : (ne could show that

(5. 26) A - ap (M)

h = max —( )
we m -{0} ShitPnoHy/

Remark 5.3 : The previous denpnstration, based on the spectral deconpo-
sition of s;'Ah is standard. Another nethod, based on inequalities of
energy can be found in [9]; this nethod extends to the infinite

di mension case (see [9, Sec. 21).

huhdl" (which is the most natural
choice for sh) it is shown in T9] that under the hypothesis on "Ch

in Theorem 3.3 and for Lagrangian finite elements with k2 1,
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2
(5.27) limA, = max {j lg—" dI‘/I |Av|2dx} =A,
h+0 'h 2 1 n Q
Ve () n H (Q)
v#0 ©

therefore it is possible to estimate AN for a certain nunmber of
domains for which A is known (see J. SM TH [44]).

Remark 5.5 : It can be shown from (5.24) that the optinal value
for pis
(5.28) Popt. = 2/ (hy#hy )

in which case

-A
(5.29) |“+'[<—AN—h——]—1“| Vi=l N
. ¥; < AN +A] 5 i=1,...,

h
which gives a |inear convergence ratio
AN -A
h 1
(5.30) R <

opt ~ AN +Al
h

h 1

Wth (5.17) and according to Theorenms 3.3 and 4.1,

(5.31) :}{Opt < 1-yh , y>0 independent of h.

This result seens pessimistic at first sight. However numerical tests
show that if the solution of (Po) is smooth the speed of convergence
is practically independent of h, (see [5]). This is because algorithm
(5.5),(5.6) is a finite dinmensional approximtion of the continuous

al gorithm bel ow

(5.32) 2° e LZ(I“) arbitrarily chosen,
-t = f,

(5.33)
wn| - )\n
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n n

- A =w
(5.34) N
U) II" = g]!
| ay”
(5.35) AP URTE S S

Let ¢ be the solution of (Po) ;o if A= 'AW‘T = wlF belongs tO LZ(F)
it follows from [93,[221, provided

(5. 36) 0<p< % (A defined in (5.27)),

"t hat

(5.37) lim (%,u) > {9,-00} in B2(@) x 12(2), strongly.
n—>®

However one can show that in general the convergence rate is sub-
linear (i.e. slower than any geonetric sequence). This is due to the
fact that A, introduced in Sec. 2.5, is conpact fron1L2(F)into

L2 (y.

/2

Now | et us construct steepest descent nethods in H—l aIT.

1/2

5.2.5. lterative methods in H '“(T).

In this section we assume that Q is sinply connected. Let us investigate
the point of view (ii) of Sec. 5.2.3. Anong the continuous bilinear forms

s(*,*), H—l/z(F)-elliptic, the nost classical one (see Remark 2.6) is
defined by

1 1 i
(5. 38) s W) = o err (C+&n W)K(x)u(y)df(x)df(y)

where C is a positive constant

O course if a Lagrangian finite elenment nethod is used and if mh is
defined by (4.2) then s(+,+) defines a symetric positive definite form

Sh(.’.) by
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1 1
Sho\h’uh) = s(’Yo}\h,Youh) = — (C+&n 'i—y_—XT)Ah(X)Uh(Y)dT(X)dF(Y),

2m JPXF
(5.39)

Ah’uh € mh ?

and we recall that Y, is the trace mapping of Sec. 2.2. In practice
sh(-,O ) of (5.39) is not feasible and we nust approximate the integral

in the right menber by a nunerical integration process (see LEROUX B0).

. . . . _ t
Then a (full) matrix sh is obtained and, once factorized, § = LT,
the matrix Th will be stored in the menory of the conputer. However

we prefer the follow ng process, whi ch ought to be justified theore-

tically. For clarity we assume k=1 and we start with the follow ng
remar k

If ¥ is the cercle of radius 5 and centre 0 (see Figure 5.3.)

<>

Fi gure 5.3.
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then the operator

2
(5. 40) 5= - 45)72

46
. . . - ~ ~ . -1/2 =2
is an isonorphism of H ]/Z(Y) on H]/Z(Y), symetric and H / -
elliptic. Now |et us approxinmate S(§—], in fact) as follows : et

Ny,

- N
_ ; . h
h-l/Nh and deflneAh. R"™ >R " by

(8.8,

(5. 41) (B ),

(£y+Ey, ~26) /0

(& Ei_]-2£i)/fxz 2 <isN.-1,

i+l+
" ~2 h
BBy = (Byroy 726 /00, VE R T,

The operat or '—AAh (resp. I—Zh) is symretric positive sem -definite
{resp. positive definite) and in matricial form

The interest of -Ah isinthe fact that its eigenval ues and eigenvectors
are known explicitly , therefore the conputation of

(5. 43) st = (1-a)!/?

will be easy. In fact the reader will check that if Nhis even the

ei genvectors of —/Sh are
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~ N

Cj ={cos2mj (i-1 )P, 0s<j< _ZE ,
(5.44) N .

s. ={sin 27 j(i-1)h}. b : h

3 {sin 27 jd l)h}i=l’ 1 535_2_.. 1,
and the correspondi ng ei genval ues are
(5. 45) §, = = gin? Tih

] ﬁz 2
| f Nh is odd then

- Nh Nh_l

C.:l = {COSZTTJ(l-l)h}i=] , 0<j< 5
5. 46
(5. 46) N -1

S:] = {SLnZTTJ(l-l)h}i=] , 1<) < 5

with the eigenvalues as in (5.45). Then to conpute S;I we normalize
[]

C. and S.

J ]

c. = c./ |, ,
s ool s Iy
(5.47)

5. = s,/ |ls.

so sy lsg s
and we denote by Ty the unitary matrix that has EJ and §J as colum
vectors
(5. 48) T =(CC,S,...C.5....).

Then we denote by

(5.49) b = \ ,

and then
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N t
I—Ah = ThDhTh
and
LN VI 1/2 ¢t
(5.50) Sh = (I Ah) ThDh Th ,
and of course
1
0
| 1146,
\
D1/2 - .

The matrices Sh and S;] are full H\I XNhsymretric positive definite

matrices.

Algorithm (5.5),(5.6) (in its equivalent form (5.8)(5.9)) has been applied
to (PO) Wi th sh defined by (5.50) and the nunbering of T being as in
Figure 5.1. The corresponding numerical experiments will be described

in a forthcomng publication by BOURGAT-GLON NSKI-PIRONNEAU. In Sec. 8,
Remark 8.1 we suggest an alternate choice for sh(-,- ,in order to iterate

"approxi mately" in H—]/Z(I‘).

5.3. Gradient method with variable step size.
5.3.1. Qientation

Fi xed step size steepest descent nethod have the drawback to require
the know edge of the eigenvalues A and ANh to find a feasible p. At
the cost of additional conputations one may overcone this difficulty.
We shall indicate two nethods for adjusting p at each iteration and
we shall give sone details on the inplenmentation of these nethods.
These two nethods are well-known as steenest descent nethod and

m ni mum residual et hod.
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5.3.2. Principle of the variable step size nethods.

Let us first begin by recalling the principles of these nethods and
then in the subsequent sections their applications to (Eh).
In RN, let £ be a NxN synmetric positive definite matrix and

g eRN. The linear system
(5.51) AE =B
has a unique solution. Let us solve (5.51) by the follow ng algorithm
(5.52) £° e]RN arbitrarily chosen
n+l

(5. 53) "= g“~pns" (A E™-B) ,

where in (5.53) Sis a NxN symmetric positive definite matrix and p
n

is chosen "at best" at each iteration. W denote

(5.54) g = AL"-B .

@ Method of steepest descent.

Let J : RN + R defined by

JM) . g (An,n) - (8,m)

Then the solution of (5.51) is the unique solution of the mninzation

probl em

J(E) < J(m) VYner',

3 elRN.

Therefore Py is conputed such that

J(En-onS'lgn) < J(E™ps g™ v p €R |
(5. 55)

0 €R.
n
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It follows from (5.55) that

(5.56) o, = (8T ENEM /(s g5 g

which conpletes (5.52)(5.53). Let us note that g satisfies

(5.57) g™ = ghp 57"

This relation will play an inportant role in the resolution of (Eh).

@ Method of mnimum residual.

W have still (5.52),(5.53), but °y is such that

-1 n+l n+l
S g 8 )

<(s7 Mg -psTg") g0 s g Vo R |
(5.58)

°, €R,
from which we find

1 1

(5.59) Py = (AS gn,S_lgn)/(S.-l./kS_lgn,.f(:S_ gn).

The relation (5.57) still holds in this case.

5.3.3. Application of the nethod of steepest descent for the solution

of (E).

In the particular case of (Eh), algorithm (5.52),(5.53),(5.56) takes

the form :
(5. 60) Aﬁe M, »
- (5.61) rhAIE]Hl = r A0 s 'gl
(5. 62) o = (5, Br,El) /(A S, gn,S e,
(5. 63) g, = AT Ab .
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In case Ah is known explicitly the inplenentation of (5.60)-(5.63)
is straightforward. Besides we think that it is not interesting to
use this nethod for solving (Eh) when Ah is known explicitly.
Therefore let us assume that Ah has not been conputed yet. By ins-
pection of (5.61),(5.63) it seens that two Dirichlet problens nust

be solved at each |terat|on to conpute gh, then a linear system of
matrix S to find s,_ gh and again two Dirichlet problenms for Ahs gh.
However from (5.57)

n+l

_ n_ -l n
(5.64) B, = 8, PpASh 8

so that one may proceed like this

° Oonpute gh from )‘h (two Dirichlet problens) and conpute Sh h

and AhSh gh (two nmore Dirichlet problems) then conpute o

by (5.62) and Al!l,g]h by (5.61),(5.64).

n+l n+l . -1 -1 n
e Conpute )‘h 8 5P from gﬁ by conputing S, gz and Ahsh g, (two

Dirichlet problens) and by using (5.61),(5.64),(5.62).

In short :

e One needs at each iteration to solve a linear systemof matrix Sh'
e And two Dirichlet problens per iteration (+ two nore for the first
iteration).

This procedure is summarized as follows :

(5. 65) Aem

h h’
(5. 66) = ArA-b ., n=0
(5.67) Po = Sy Epsap) /(A S gh,S, e,
(5. 68) r A= a0 ST,
(5.69) grl = gh P ALS hlg?l ,

n=n+l and go to (5.67).



- 58 -

Remark 5.6. : W could study the rate of convergence of algorithm
(5.60)-(5.63) by the techniques devel opped in MARCHOUK- KUZNETSOV
[33]. Simlarly it would be interesting to study the propagation

of round-off errors in the nunerical inplenentation of (5.65)-(5.69).

Remark 5.7. : Vhen the Dirichlet problens and the linear system of
mat rix Sh are solved by direct nethods the feasibility of a pre-
factorization nethod (like Cholesky for instance) is evident.

'5.3.4. Inplenmentation of the mninmum residual nmethod for solving (Eh)

Everything said in Sec. 5.3.3. for the steepest descent method applies
al so for the mininumresidual algorithm The two nethods differ only
by their choices of 0, The adaptation will be obtained by replacing
in algorithm (5.60)-(5.63) instruction (5.62) by

-l n -l n -1 -1 n - n
(5.70) P, = (&S, &5, gh)h/(sh ALS, 8psALS, 8 )pe
Sinilarly when Ah is not known explicitly it is better to use (5.65)-

(5.69) with (5.67) replaced by (5.70). Remarks 5.6, 5.7 also apply
to this algorithm

5.4. Solution of (Eh) by the conjugate gradient nethod
5.4.1. Oientation.

The matrix Ah being symretric positive definite it is natural to solve
(Eh) by a conjugate gradient method. W& recall that these methods are

super-linearly convergent and that when there are no round-off errors
they converge in a finite nunber of iterations.

W begin, in Sec. 5.4.2., by sone recalls on the conjugate gradient
-method and then in Sec. 5.4.3. its inplenmentation for solving (E,)
is discussed.
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5.4.2. Recalls on the conjugate gradient nmethod.

Again let us consider problem (5.51), i.e. AE =B, where .&satisfies
the hypothesis of Sec. 5.3.2. For this problemthe conjugate gradient
method is (see for exanple [131,[ 71, [39)).

(5.71) £ R , chosen arbitrarily,
(5.72) g° = A £°-8,

(5.73) 2’ = g%, n=0,

.74 o, = g™ / (2", 2H
(5.75) €™ = g "

(5.76) Y - @™ ey /e e
(5.77) Zn+| - gn+| +Ynzn

n=n+l and go to (5.74).
Note that (5.75) inplies that
n+l

(5.78) g =g-p A"

This relation will play an inportant role in the resolution of (Eh).

5.4.3. Inplenentation on (Eh)

In the particular case of (Eh), (5.71)=(5.77) takes the form

(5.79) )\ge 7ﬁh , chosen arbitrarily,
o _ o_
(5.80) By = ApThiy by

(*) W al so have P = |gn|2/(.ftzn,zn).
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(5. 81) z;:gﬁ, n=0 ,

(5.82) (I (Zaygﬁ)h/(Ath,zE)h (or (gg,gg)h/(Ath,zE)h) ;
(5.83) R

(5.84) g = ar b

(5.85) Y= @ e Dy ey

(5. 86) z?:l - g’:'wnzh“,

=n+l, go to (5.82) .=

By inspection of (5.82),(5.84),(5.85) it seens that 4 Dirichlet problens
are required at each iteration to inplement (5.79)-(5.86)

n n+l .
(two for Az, (resp. Ahrh)‘h ). In fact as for algorithnms of Sec. 5.3.
one can reduce the nunber of Dirichlet problems to tw. Because

n{l _ n n
(5.-88)pis 8y T By PpAnZye

Indeed if we use algorithm (5.79)-(5.83),(5.84)bis,(5.85),(5.86) we note

that once l‘:,z'r;grfh are known, two Dirichlet problems are necessary to
. . o ntl
conput e Ahzg. Once this vector is known we can conpute 0. xg »8h

then the know edge of gn+] enabl es us

by (5.82), (5.83), (5.84)bis ; h

to compute Y, and zlr:ﬂ by (5.85),(5.86)

Remarque 5.8. : The Remark 5.7 on the prefactorization of the matrices
also holds in this case.

Remark 5.9. : Al gorithm (5.79)—(5.83),(5.84)bis(5.85),(5.86) is nore

sensitive to the round-off errors than algorithm (5.79)-(5.86) in which
n+l
&
former algorithma periodic reinitialization procedure of the type

+ + +1 . .
zgl = ngtll , gﬁ bei ng conputed by (5.84) instead of (5.84)bis.

is conputed by (5.89). Therefore it is reasonnable to use on the
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6. - The case @ p-connected (p 2 1). (l) The continuous problem

6.1. Formulation of the problem

Let {Qk}ﬁxo be a famly of sinmply connected, bounded domains of R2

with a smoth boundary I‘k, k=0,1,...p. W& assunme also (see Figure 6.1.)
t hat

(6.1) Q< Yik=l,...p.

We define then Q@ and T by

P _
(6.2) @=0q - , T =an.
.- LA,

Figure 6.1

We consider over @ the followi ng Stokes problem

-> > ->
- pAu + Vp = £ over @,

>
Veu = 0 over 9,

(6'3) -+ > > >
ulro = uy with JTO u e ndl =0,

>
ulr = 0 Vk=l,...p.
k
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Let wus introduce
- 1 1 ->
(6.4) VO={V€HO(Q)XHO(Q) ,Vev =0 p.p. O N Q},

> 1 1 ->
Vb={V€H(Q)><H () ,Vev =0 p.p. ONn Q,
(6'5) > > ->
VIFO=ub ’ v|1rk= 0 Yk=1,...pl.

/ 1/2

In (6.5) we assune that ;bEHl 2(1‘0) xH

then (6.3) has the follow ng variational formulation

(1"0). 1t fis sufficiently smooth

> > > > >
Uf VusVv dx = [ f evdx VVEVO
(6. 6) & &

ueVb

> > g >, 2
where fev denotes the usual scalar of £ and v inR". It follows from e.g.
LIONS [31] that (6.6) has a unique solution.

6.2. A streamfunction formnul ation.

From the boundary conditions in (6.3) there exists a stream function ¥
such that

Il - _ %
(6.7) u, = —5;2 ;ouy = axl in Q,
6.8) Y(x) = f Kb-ﬁ dr_Vx el
X X
(o]
(6.9) Y = const. OnN Fk,Vk=1,...p,
aw _ _—> .—>
(6.10) Elr = - T,
0
el - -
6.11) Eh,k =0 Yk=1,...p.

Moreover ¥ is the unique solution of the follow ng variational problem

[ 3f2 Bfl
(6.12)

!
V¢€WO , wewb

. ->
where, in (6.12), ng = cos(n,Oxi) and
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_ 2 3¢ _ _ -
W, = {open (D), B_nll‘ =0, ¢|Fo 0, ¢|Fk const .
(6.13)
Vk=I . ..p},
= 2 a¢ = —% 0# % = =
W= {6 cH () , gﬁ-lro = -y T, anlrk 0 Yk=1,...p ,
(6. 14)
> >
d)lr = up endl ¢|I, = const. VYk=l,...p}.
o] X X k

(o]
In (6.9) the constants are unknown. They are arbitrary in (6.13),(6.14).
i = = . 6.12)-(6.14
Let us define ¢, by ¢ ¢|I‘k’k|““p It follows from ( )= ( )
thet (6.12) can be reformulated

af_2 Bfl )
J( W, o, Pt 2 O frk(fxnz'fznﬁdfk

U MAGdx =
' Q 2 k=

(6.15) {

Vcbewo ,wewb .

It follows from(6.15) that ¢ is also the unique solution of the follow ng
minimzation problem

(6.16) Mn J($)
¢€Wb

wher e

af Bf]

P
2 2
6.17 J()=H[A¢dx- ( =% - =— )ddx - ¢f(fn—fn)dr.
( ) ¢ 2 Q‘ I lQ ax] sz kz=:lk Ty 172 7271 k

6.3. A generalized biharnonic problem
The problem (6.15)) (6.16) is actually a particular case of the slightly nore

general biharnonic problem

- + P
MpApdx = J fodx Y, Y bk Voe wO |
Q k=1

(6.18) {
S ew ,
Ye e
- where
2 o) _ _ _
Wg = {¢EH (Q) ’ a_nll'\ - gzv (blr - glos ¢lﬂLk‘ g]k+const.
(o]
(6.19)

Vk=l ,...pl}.
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3/ /

2 1
(I‘k) Vk=0,1,...p, 8, cH
are arbitrary ; (6. 18) has a unique solution.

In (6.19) we have 9 €l

It follows from (6. 18),(6.19) that § is also the unique solution of

(6. 20) Mn J(4)

W
Ve .
wher e
J(¢):%J | A ax -dex Sy g,
9) Q k=1
with q>|F =g * C Vk=1,...p.
k

6.4. An equivalent formulation of (6.18),(6.20).

In order to reduce (6.18),(6.20) to a set of ordinary biharnmonic problems

the fundanental result is given by

Theorem 6.1. : Let us define C eRP by

~

(6.21) C, = wlrk-glk . k=1,...p,

wher e J} is the solution of (6.18),(6.20). Then Cis the uni que solution of

2(I‘) and the constants

(%)

J(€) £3(C)  ¥C eRP,
(6.22)
aeRp,

=3

P
1 2
(6.23) j(c) = —J ‘Awl dx - [ fydx - Z Y,C
2 g Q Ty kK

where, in (6.23), ¢ is the solution in HZ(Q) of the ordinary biharnonic

probl em
Azw = f over Q,

(6 24) wlr\0= gIO s wlrk = g]k+ck Vk=]:~~'p!
W, _
TalT T &)

(x) i.e. like (PO) of Sec. 1.
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Proof : Let CeRP and let ¥ be the correspondi ng solution of (6.24).
Then
(6.25) Vew
and

(6. 26) 5(0) = J@) 2 Mn J(@) = J@) VC eRP,

e W
¢ g

Conversely, since Hz(ﬂ) <W we obvi ously have from (6. 18)
(6.27) J APAGdx = J fodx Vo e ui(n)

Q Q
which inplies

2A
(6.28) ATy = f over Q.
Moreover, since ﬁ:ewg we have

” 8, _
(6.29) “’Iro “f0, alr =&
and (6.21) inplies
(6.30) wlrk = 8,,*C, VEk=l,...p.
1t follows from (6.23),(6.24),(6.28)-(6.30) that
(6.31) JW) =j(E) zinf j(O.

cerP

Conparing (6.26)) (6.31) we obtain (6.22) and the uniqueness is obvious.®

Remark 6.1 : The minimzation problem (6.22) may be viewed as an optim
control problemin which the control variable is C, the state variable is

Y , the state equation is (6.24) and the cost function is defined by (6.23) .=

The following result is an obvious consequence of Theorem 6.1. and relations
(6.23), ( 6.24).
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Pronosition 6.1 : The mininization nroblem (6.22) has a unique solution

which is also the solution of the |inear svstem

(6.32) %k(é) -0, l<k<p,

the matrix of which is symmetric and positive definite.m

6.5. - Mathematical expression of Vj and application to the solution of
(6.18),(6.20).

6.5.1. Expression of V.

In order to solve (6.18),(6.20) through (6.22) the following results are

f undanent al

Theorem 6.2 : Let ¢ be the solution of (6.24) and w = - Ayp. Then if j(+)
is defined by (6.23),(6.24) we have

(6.33)

Proof : Let ¢ @ R, then

P
(8.34) U5 (©)+6C = 1im J_(_C;tf_g)_-_J_@ - Dunsvax - J £Spdx - ;kack

t#0
where, in (6.34), &Y is the unique solution in HZ(Q) (and wo) of

Q

( AZ&J) = 0 over Q,

¢l =0, 8|, = & Vk=l,...p,
(6. 35) Ty Iy k

O sl =
a‘n‘”’lr‘o'

It follows from Geen's fornula that

(6. 36) J ApASYdx = Ayspdx + Jmpﬁ@- Sydx - J L apspdr |
Q X9 r °f ron

Si nce Azw =f and w = =AY it follows from (6.34)-(6.36) that
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. _ ﬁ,\_ _ P
(6.37) Vi(C)+dC = g:l Jp (Bn drk Yk) 6Ck V&C eR",
k

whi ch proves (6.33).m

. . ow .
Remark 6.2 : Formula (6.33) is not correct since, usually, §EIT is not
. -3/2
a function but an elenent of H

for %é ‘1s
k

(I). Actually the correct expression

(6.38) g—%— Cc) = Xy » %’»— Vi k=1,...p
k

wher e Xy is the function defined over T such that

(6.39) =68 . L=0,1,...p,

X |

k I“Q k2

and where <«s,+» denotes the duality between H3/2(1“) and H_3/2(T)-

To prove (6.38) we should use Green's formula (2.2) (see Sec. 2.3) instead
of (6.36). =

Remark 6.3 : Let us denote by )”(k an extension of X, over £ such that
f(k o H(Q. Then from Geen's formila we have

ii. = AwY we VY - =
3C, ©) JQ X dx + ng VX dx - Y
(6.40)

= VweVy, dx .\] £, dx - v, , k=l,...p.
Ig K g N k

The advantage of (6.40) by conparison to (6.33) is that it gives an expression
5

of 3—(-:} in which 5—;:]11 does not occur explicitly. This is an inportant renmark

in vile(w of the approximte problem

6.5.2. Application to the solution of (6.18),(6.20).
There are sevaral methods for solving (6.32)

; we can use either direct
- methods or iterative methods. As in Sec. 5, 6 we can use gradient or

conjugate gradient nmethods, without knowing the matrix of the system

(6.32). However, since p is usually small it can be convenient to conpute
the matrix and the right hand side of (6.32).
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W have
(6.41)  j'(C) = BGC(d+y)

where y = {Yk}P derP and where B is a pxp symetric positive definite

k=1’
matrix ; Band d are not known a priori . Concerning {B,d} we can easily

prove the follow ng

Proposition 62: W have

'c)wd
(6.42) dk = -J = dT k=l y...p,
r

wher e $ = —Awd, wd being the solution uf

2, _
Awd_f over %,

V.| =g, Vk=0,1,...p,
(6.43) d Tk 1k

awd
W"I‘ "8y m

Proposition 63: Let B = {bkz}lsk,JLSp’ then

Smpv
= < <
K& = Jr 5n A o Lskksp,

k

wher e, Wy = - sz , w!@ being the solution of

(6.44) b

Azwl = 0 over Q,

(6.45) wm‘rk: 6k2\1k=0,1,...p,

Remark 6.4 : Remarks 62, 63hold for (642 and Remark 6.3 holds for
(6.44). 1t follows in particular from (6.40),(6.44),(6.45 that

(6.46) bk?, _ JQV y -Vﬁv(k dx . =
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Remark 6.5 : Since B is symetric we also have
kaL - JQV&k.VXIL dx , 1<k,2<p,

In fact, fromthe symretry of B it is convenient to construct B,colum
by colum, by conputing only b , for the pairs {k,&} such that 1 <2 <ksp.m

Once B and k are known, solving (6.32), i.e.
(6.47) BC = d+y
is atrivial task which produces C.once Cis known, we obtain ﬁ) from(6.24). ®

Remark 6.6 : The solution of the "generalized" biharnonic problem (6.18),(6.20),
through the solution of (6.32),(6.47) by a direct method, requires the solu-
tion over Q of (p+2) "ordinary" biharmonic problens

e 1 to conpute d,
ep to conpute B,
e 1 to conpute IIJ fromc (this last one is (6.24)).

If we want to solve these ordinary biharnonic problens, using the deconposition
(2.26)-(2.30), studied in Sec. 2, we shall have to solve (p+2) "integral equa-
tions" like (2.28) and 2(p+3) Dirichlet problens for -A (a superficial analysis
would indicate 4(p+2) Dirichlet problems).®

Remark 6.7 : The above matrix B depends of Q only, therefore it remains

unchanged if f, (k=0,1,...p),g2 are nodified. It can be constructed

81k
once and for all for a given Q. ®

6.6. A saddl e-point property.
We use the notation of Sec. 6.4 ; taking %‘f{— g, as a [inear constraint,

let us define a |agrangian & : RPXH']/Z(F) +R by
1 2 oY (P‘
(6.48) L(C,u) = = |All)| dx = fydx + <y, = - g, >- Z,Y.C,
3?&-2 I dn 2 otk k

1/2

where in (6.48), <+,+> denotes the duality between H_l/z(l“) and B '°(T)

and where Y is a function of C and u via
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Azw = f over Q,

6.49) {¥lr = Big ’w'rk =8 + G VEI,...p,
(o]

_ Awlr = |,
Let us prove

Proposition 6.4. : Let y be the solution of (6.49)
t hen

Q

nd w=-A); we have

9L w - v Vik=
<§.50) 56k(c,u) fr S= -y, Vk=1,...p,

k

32

_ W
au (C,H) - N

(6.51) .

Proof : From (6.48), (6.491, we have :

2 (C,u)*6C + il (C,u)e8p =  AYASYdx - | £Sydx +
aC ou o Q
(6.52)

3 N P
+<U,~a—n6w>+<6u’ﬁ—g2>_z kack
k=1
a8y = 0

(6.53)] oyl =0 ,éwlrk = 8C,,
(o]

Su.

- 88|,

Rel ation (6.49) and Geen's formula yield :

(6.54) JQ MYSAYdx ~ J

on

9 ]
Qf(S\Ludx + Jr Y AYSYdT + <y, — &y >= 0.

Then wusing (6.53) and (6.54)

ASAYdx - J f&Pdx + <y, g—;éw > = J g% Sy dT =

9] 9] r

(6.55)

)
kzl SCk [F o dl"k.

k
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Therefore
L o2 .
(656) E'E(C)U).GC"’E(C’U) GU_ Z(Gck Edrk'Yk)+<5U,g‘82>,
k= (1T,
which conpletes the proof.

Remark 6.8 : Remark 6.2. still holds for the proof of Proposition 6.4 and
for the above formulae.

Proposition 6.5
Let wg_@f: be respectively the solutions of (6.18),(6.19) and (6.20). Let

X be equal to E)lr . then {C,\}is the uni que saddl e-point of £ over
RP x 1 /2(T).

Proof : From (6.29), (6.32), (6.33), (6.50), (6.51) we have

e

E(C’A) = 0 '

(6.57)

(6. 58) %:J_e (€, = o.

Then to prove that {C,A\} is a saddle point of &£ over RPXH_]/Z(F), it is

sufficient to show that #£is convex in C and concave in u ; and a necessary

and sufficient condition for this is
3L

(6.59) ( 2% (cvéc,w) —g—f(c,u»-dc > 0 VSCeRP Yyl

I/Z(I‘) ,

(6.60) < §—f (C,u+du) ~ %ﬁ’; (C,u),8u> 20 vaueu"}(r), vCeRP.

From (6.50) we nust show that :

P
adw )
k=l Fk

where Sw = - A8y, and

rsy =0,
(6.62) &plro =0, &p\rk = 8C, , k=l,...,p,

- A6w|r.= 0.
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Geen's fornula and (6.62) inply that

0= a2y sydx = J |asy] 2ax + 2 nsyspar
1o Q Ip

Therefore

P

38w 38w 2

£ §ydT = sC J =2 4r, = J |ASY|“dx 2 0 .
JI‘ on kél k Fk an k Q

The proof of (6.60) is alnost simlar ; we leave it to the reader. =

From Proposition 6.5 and the convex-concave property of£ it follows
from GLOW NSKI - LI ONS- TREMOLI ERES [23, Ch. 21 , FORTIN GLOW NSKI [20]
that for solving (6.18)-(6.20) we can use the follow ng al gorithm of
Arrow Hurwicz type (® :

1/2

(6.63) (€®,2°1erP xH '°(D) , arbitrarily given,

then for nz0

(6.64) 3™ = g g7 2N oy >0

P
&£
(6.65) o Cn—pz%-(—:- (Cn,AnH) . 0y >0.
- | 1/2 .
In (6.64), Sis a duality mapping fromH /2(T)t0H / (D.It i s

convenient to wite (6.64), (6.65) in the follow ng equivalent form
which is more suitable for conputations :

n+l

- Aw =fover Q
(6.66)
n+l
w ‘F = An,
n+l n s
(6.67) Cy €, ~ 0, (L s Al yk> ,
k
n+l
_ A¢n+l =
(6.68)
n+l n+l _ n+l _
W ‘Iﬂ = gIO ’ W Il—\k - g1k+Ck Vk—l,...p,
o]

(*) we only consider an algorithm with constant step PyaPy
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8¢n+l

1
(= - &)

(6.69) Al o am p,S

Remark 6.9 : If ieLz(l‘) then S can be replaced by | in (6.69). =

Remark 6.10: The above algorithmis a precise formalization of sone of

the concepts felt by PERRONNET C381.

Remark 6.11 : Thus the biharnonic problemon a nulticonnected domain has

been replaced by a sequence of Dirichlet problems for Laplace's operator.

7. = THE CASE 2 p- CONNECTED (p 21). (I1) THE DI SCRETE CASE.
7.1. Fornul ation of the approximte problem

We assune in this section that Qk is a polygonal Vk=0,1,...p. The
spaces Vh’ Voh,mh being defined as in Sec. 3.1, we define Wgh by

Wi = {1peay) €V XV VhlT = 8ons "h'l“k =gk * comst.Vk=l,...p,
0

JQ V‘vh-Vuhdx = IQ qpHpdx | JF g W daT Vuhth}.

W approximate (6.18),(6.20) by

(7 1) M n Jh(vh’qh)

(vh.qh) € Wgh

wher e

(7.2) J. (v q)=lj Iqlzdx—vadx- g Y. C
h' h’%n 2 ]y 'h g h'h & kK

with thT‘k=glkh + € Vk=1,...p.

The approximate problem (7.1) has a unique solution {q"h":’h} and it is

al so equivalent to

7.3) Mn_j [(C
( )carlpjh‘)

with
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p
1 2

(7.4) j (C) =3 |w|dx—Jflde- Y, C

h 2 1o 'n g h'h k; k Uk
where in (7.4) {wh,wh} depends on C via the "state problent
(7.5) Mn JonVhody)

(Vs 4) € Wgh(C)
in which
(7.6) wgh(c) = {(vh,qh)ewgh , Vhll"k = Bun * Ck Vk=1,...p}
and

I v,q) =4 la)%dx - | £ v dx
(77 TonWnedn) =7 Jant 9% = o Faa

Clearly we have the follow ng

Proposition 7.1 : The nininisation problem (7.3) has a unique solution
A
Ch which is also the solution of the linear system
33, -
(7.8) W(ch) =0, 1<k<p

the matrix of which is symetric and positive definite.

7.2. Solution of (7.1) via (7.3).
7.2.1. Conputation of th.

We begin by stating the follow ng

Proposition 7.2 : Let {y ,w } be the solution of (7.5)-(7.7), then if
3, () is defined by (7.4)-(7.7) we have
th
— (C) =JVw°V)~(dx—Jf)~(dx-Y
3C.k Q h "7k Q h*k k

(7.9)
wher e

Xke /h’
(7.10)

Xkll"z = 8., ¥4=0,1,...p.
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Proof : From (7.4) we have :
- P
(7.11) ]h(C) o H Iﬂmhéwhdx - IQtthll)hdx - kgl Vi Gck.

Let us deconpose Gwh into
— P -
(7.12) G'JJh = dq)h + k; Sck X

wher e

P
Gwh = dwh - kzl dck X bel ongs to VOh
Then from (3.12) with v, = B'IEh, we have :

%
(7.13) |Q Vu)ﬁV(Swhdx = |Q£h6whdx + kZﬂ[JQ(thVxh - fh xh)dxl Sck.

Si nce {wh,wh} € Wgh’ we have

(7.14) V(Swh 'thdx = |dehw {lix.

:

Using (7.13)) (7.14) in (7.11) we find the discrete anal ogue of (6.38)

P
(7.15)  j,(Q ¢ @ = csch(wvidx-indx-y]..
k; k| Jgh s U K

7.2.2. Application to the solution of (7.1)-(7.3).

As in the continuous case we can solve (7.8) by direct or iterative

net hods.

7.2.2.1. : Direct nmethod.
W have

(7.16) jl_'l(C) = BhC - (dh+y)

§=1’ dheRp and where B, is a pxp symmetric, positive

definite matrix ; B, and dh are not known but can be computed fromthe

where v = {Yk}

fol | owi ng
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Proposition 7.3 : W have

(7.17) d = «IVUO VX, + Jf X,.dx , k=l,...p
hk 0 dh k Qh k

wher e {wh,wdh} are the solutions of (7.5),(7.6)_withcC=0.

Proposition 7.4 : Let B = {ka}ISks!LSp , then

(7.18) b, - J Vw, o * V%, dx
Q

where {y thL} is the solution of (7.5),(7.6) with

h’

= 0 ¥k=0,...p, 8, =0, C =8, .

Remark 7.1 : Remarks 6.5, 6.6, 6.7 hold.

7.2.2.2 : lterative nmethods.

As in Sec. 5,6 we can use gradient or conjugate gradient nmethods to
solve (7.8) without conputing explicitly B and dh.

Moreover as in the continuous case, an alternative nethod would be to
compute the saddl e-point in RP x m, of

_ 1 2. S _
=z:h(c,uh)_7| lwh1 dx Jthlj}hdx+ Qvu h. (hd JQuhwhdx

Q

(7.19) o
-| u g, dar - % Y, Cp.»
\]r h &2h G kK

wher e {wh,wh} is a function of cand Hy via

S JQ th°\7vhdx Jgihvhdx Y vy, € Voh

( W HL € Vone

Jwvdx Vv eV
Q

JQ Vb Vvpdx h'h h© “oh

Upe Yy ‘“h\ro: 8oh ‘“h‘rk * 8n Gk
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The reader will have no difficulties in finding the discrete anal ogues
of (6.50), (6.51) and of the ArrowHurwicz algorithm (6.64)-(6.69).

Remark 7.2 : |If 7’¢h is chosen as in (4.2), cf. Sec. 4.2, the above integrals
in(7.17)-(7.19) are in fact to be done on the boundary triangles only. =

8. Further Remarks. Coments.

Remark 8.1 : Various sh("') have been given in Sec. 5.2.3., 5.2.5.
The corresponding matrices Sh are synmetric and positive definite.

-]/2(1‘), "approximately", we feel that a good

In view of iterating in H
strategy is to choose Sh as the inverse matrix of the matrix related to
(5.19). Nunerical experinments to test this conjecture are planned for

the near future. =

Remark 8.2 : In the conjugate gradient nethod of Sec. 5.4 we have used the
canoni cal inner-product of RNh. However it is also possible to use an inner-
product related to a matrix Sy symetric and positive definite. The various
formulae will be a little nore conplicated, but the various remarks done

in the case of gradient nethods about the choice of Sh and s, still hold

h
for these variants of algorithm (5.79)-(5.86).s

A large part of the results of this report were announced in GLOWINSKI-
Pl RONNEAU [251], [26], [27]. In fact this docunment has to be followed
by other reports of GLOW NSKI- Pl RONNEAU, BOURGAT- GLON NSKI - Pl RONNEAU, etc. .,
in which the above results and methods will be extended to the nunerical
treatment of
9 2

° 3T AY + VATY= f,

with appropriate boundary conditions,

e Navi er- St okes equati ons,

etc. ..
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About the choice between the various nethods described above, it appears
fromour numerical experiments that the two nmost efficient nethods are :

(i) The conjugate gradient nmethod of Sec. 5.1 if the approxinate
bi harnoni ¢ problem has to be solved only a small nunber of tinmes and/or

if Nh is very large.

(ii) The "quasi-direct" method of Sec. 4 if we need a biharnonic sol ver

to be used a large nunber of times. It is in particular the case when

solving by sone iterative methods the Navier-Stokes equations in the

{y,w} formulation.

To conclude we would like to point out that a fundamental tool for
obtaining these nethods is the mixed finite el enent nmethod of Sec. 3,
because its very fascinating (!) algebraic properties.

Sone applications of the gradient nmethod with constant step of Sec. 5
may be found in BOURGAT [5].
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