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To George PSlya on the 277 th day after his birth: August 31, 1977.

Abstract.
Subbarao and Andrews have observed that the combinatorial technique

used by F. Franklin to prove Euler's famous partition identity

(l-x)(l‘xe)(l-xj)(l-xh).oo = l-x-x2+x5+x7-xl2-x15+...
can be applied to prove the more general formula
1-x- y(1-xy) - ©y° Q-xy) (1-5y) - My (1-xy) (1-%) (1Y) - ...

= l-x—x2y+i}}+x7yh-xley6-XlSYT"'--'

which reduces to Euler's when y = 1 . This note shows that several finite

versions of Euler's identity can also be demonstrated using this elementary

technique; for example,
I R R !

2
l-x-x +xXxX +x' =x =X

(1-%) (1-52) (1) (1-x") (12 ) (1-x°)

- xl (1-2) (12 ) (%) (1 ) + %710 (120 ) (1-x*) - x7 76?5

xh+5+6

e s

(12) (1-22) (1) = x " (1=22) (2-2) + x "2 (1) =

n

Pt v

By using Sylvester's modification of Franklin's construction, it is also

possible to generalize Jacobi's triple product identity.

This research was supported in part by National Science Foundation grant
MCS 72-03752 AO3 and by the Office of Naval Research contract NOOOlL-~76-C-0330.
Reproduction in whole or in part is permitted for any purpose of the United
States Government.




0. Introduction.

Nearly a century ago [7], [1k, §12], a young man named Fabian Franklin
published what was to become one of the first noteworthy American
contributions to mathematics, an elementary combinatorial proof of

Fuler's well-known identity

kx(3k2+k e

B ) w Reied AP Al vien B Y (0.1)

J=E ~o<k<w

His approach was to find a nearly one-to-one correspondence between
partitions with an even number of distinct parts and those with an odd
number of distinct parts, thereby showing that most of the terms on the
left-hand side of (0.1) cancel in pairs. Such combinatorial proofs of
identities often yield further information, and in the first part of
this note we shall demonstrate that Franklin's construction can be used
to prove somewhat more than (0.1).

In the second part of this note, we show that Sylvester's modification
of Franklin's construction can be applied in a similar way to obtain

generalizations of Jacobi's triple product identity

T Q-7 a-a)
iz
s N

~o<lk<w®

= l-q(z+z-l)+-qh(22+z- . (0.2)

)'aoo =

ds The Basic Involution.

First let us recall the details of Franklin's construction. Let =
be a partition of n into m distinct parts, so that == {a;,...,a }
for some integers 8 > eee > 8, > 0 , where a1+...+am =n . We shall

write




|
v
|

e S T PR S D I —

() =n , vwinr)=m , A(x) = ay (1.1)
for the sum, number of parts, and largest part of =, respectively; if
n is the empty set, we let g(n) = v(n) = A(n) = 0 . Following Hardy and
Wright [8], we also define the "base" b(xn) and "slope" s(x) as
follows:

B(n) = min{j | jen} , o(n) = min{j |a(n)-3¢} . (1.2)
Note that if = is nonempty we have
A{n) > p(m)+y(n)-1 and v(x) > o(x) . (2.3)

The partition F(n) corresponding to = under Franklin's transformation

is obtained as follows:

(1) If B(n) < o(x) and B(x) < v(n) , remove the smallest part, B(x) ,
and increase each of the largest g(n) parts by one.

(i1) If B(n) > o(x) and o(n) < y(x) or o(n) # B(n)-1, decrease
each of the largest o(n) parts by one and append a new smallest
part, o(x) .

(iii) Otherwise F(n) = n, (This case holds if and only if =n is empty
or o(x) = v(x) < B(r) < o(x)+1 )

These definitions are easily understood in terms of the "Ferrers graph"

[1k, p. 253] for the partition n , as shown in Figure 1. It is not difficult

to verify that F is an involution, i.e., that

F(F(n)) = = (1.4)

for all =« ,

]
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Figure 1. Two partitions of 17 into distinct parts, obtained
from each other by moving the two circled elements.

For each f > O there is exactly one partition = such that A(n) = 2

b

and F(n) = . We shall denote this fixed point of the mapping by £, 3 |

it has [{/271 consecutive parts, 1

£, = (511,00, L0/2)41) . (1.5)

e s

(See Figure 2.) Let
Q = {fo’fl,fe, -oo} (1‘6)

be the set of all such partitions. Note that the somewhat similar

partitions {2k+1,2k,...,k+2} and {2k,2k-1,...,k} are not fixed under F,

although their bases and slopes do intersect.

eo oo eeo o000
o0 L) LN
LI
fo f‘l f2 f'3 f‘h fs o e e

Figure 2., The partitions which remain fixed under F.
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2. Extended Generating Functions.

If S is any set of partitions, we define the generating function

of S by the formula

> XZ(") y}‘(ﬂ) ZV(“) 2 (2.1)

Gs(x)y} Z) =
nes

The identities we shall derive from Franklin's construction are special

cases of the following elementary result:

Theorem 1, If S is any set of partitions,

GS(XJY,‘Y) = GSF]Q(x’y’-y) 3 GS\F(S)(X:Y)'Y) . (2.2)

Proof.
Let n be a partition with n' = F(n) # = ., Then g(n') = (x) ,

AMr') = a(n)T1, and v(n') = v(x) 51, hence
n b1 T b1 16 !
XZ( )y)\( ) (_y)V( )+ XZ( )yk( ) (_y)v( ) ' 0 7 (2.3)
This equation means that n and =n' do not contribute to GS(x, y,=y) if
they are both members of S . The only terms which fail to cancel out are

from partitions mneS with F(xn) = n , namely the elements of SN& , and

those from partitions neS with F(x) ¢S , namely the elements of

S\F(8)y « &

5 Three Identities.,

In order to get interesting corollaries of Theorem 1, we must find sets
5 for which the corresponding generating functions are reasonably simple.

First, let S be the set P of all partitions. Theorem 1 implies

that




Gp(%y,-y) = Gé(x,y,-y) . (3.1)

Now
GP(x,y,z) = 1+ 72, xlytz T (l+sz) (3.2) :
£>1 1<j<t {
and :
GQ(x’y,z) R Zl xz(:z+1)/2-|_z/2_|(l_z/2_|+1)/2yzzr:/aﬂ (3.3) ’
1> 1

2 2
1+ 5 (xOGE-K)/2 2k-1 k(K +k)/2 2k k )

= . (3.b)
k>1
4 b
e | Thus we have
: Corollary 1l.l.
4 P 2
[ 2.1 j k-1 k -k)/2_3k-1 k™+k)/2 3k
E T 'y T a-dy) = T (1) (x(3 e SO ). (3.5)
. £>1 i< k>1
L . Franklin essentially considered the special case y = 1 of this

identity, when the left-hand side reduces to 1.-113 >1.(l--x'J) .
; Equation (3.5) was originally discovered by L. J. Rogers [10, §10(4)], who

gave an analytic proof. The fact that Franklin's correspondence could be

ot SR

used to obtain (3.5) was first noticed by M. V. Subbarao [12] and

G. E. Andrews [2].

Although the power series identity of Corollary 1.1l is formally true, 3

it does not converge for all x and y ; for example, if we set y = x-l

S

we get the anomalous formula ! a x-l+-x-l--l--x+~xh+x6 - ees o« To better

g S

understand the rate of convergence, we can obtain an exact truncated version
of the sum by restricting S to the set
P, = {x(n) <n} . (3.6)

Since

IA

o(n) and B(n) < y(n)}

o(n) and B8(n) < n/2} (3.7)

P\F(F,) = {x|a(x) = n and p(x)

= {n|A(n) = n and B(x)

I

1

.

we have
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. pals D L+ e G
GPn\F(Pn)(x ¥,2) 15b5n/2(x Y Z)(b<J§rn-b( + % z)) (n-blTjsnx z) (3.8)

E i Thus Theorem 1 yields

Corollary 1l.2.

£ A0 W Gdae T dap D R
1<¢<n 1<3<} 1<k<(n+tl)/2

2
' % s (_l)k-lx(jk +k)/2y3k
E | 1<k<n/2

3 5 (_l)byn+b+l (. -n- (l-xjy)) ( -ﬂ- xj+l ) i
j <n-b n

1<b<n/2 b<j< n-b<j<

? ‘ For example, the cases n =4 and n =5 of this identity are

xy2 + %232 (L-xy) + Oy (1-x7) (1Y) + =% (1-xy) (1) (1-Oy)

B x7y6 - x5y6(l-x2y)(l->?y) + x5+hy7 ; (3.9)

Xy° + %0 (L-xy) + % yh(l-w) (1-Fy) + xl’y5 (1-xy) (1-%°y) (1-y)

+ PO (Loxy) (1-x%) (1-Fy) (1-x"y)

= P+ Ky -y - x7y6 + xlzys - x6y7 (1-xFy) (1-y) (l-xhy) + x6+5y8(1-x3y) . (3.10)

Setting y = 1 and subtracting both sides from 1 yields truncated versions

of Euler's formula which appear to be new; e.g.,

LexeeP 42l o Qx)(1-2)(1-2) (12" - P (1f) (1P )+ 2T (3.11)

R T S
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lox-2+0 +x -x2 = (1-x) (l-x‘?) (1-x3)(1-xh) (1-)?)

- La-Pya-d)a-xh + L0 aP) (3.12)

Laxak S A it e (l-x)(l-xz)(l-x-ﬁ)(l-xh) (l-xs)(l-x6)

SR Lt} (e Hkex Je Yo i O M B T | 05.15) 1

Essentially the same formulas, but with n decreased by 2 , would have

been obtained if we had set y = x-l in the identity of Corollary 1.2,

Let us also consider another family of partition sets with a reasonably

cimple generating function,

s, = {n [ B(x) > A(x)-n and o(x) > A(x)-n} . (3.14)

These sets are closed under F , for if =n' = F(n) ;é n  we have either

(1) a(x') = a(m)+1, B(x') >p(n)+1l, and o(x') = p(x) , or

(i1) a(n') = aA(m)-2, B(x') >0(xn) , and o(x') > o(n) . Note that Sy

is finite, since ne§ implies that ax(n)=2n < B(w)+o(x)-1 < )(x) , hence

A(n) < 2n . The set of fixed points s,N& is {fo, fl”"’an} » and

Gg (b¥r2) = G, (byy2)+ D x’y’z( i e ))( T sz), (3.15)
{-n<j<n

n n n<l§2n n<j<i¢

so Theorem 1 yields a companion to Corollary l.2:




Corollary 1.3.
B EBE el L U (_l)k-l(){(31@-11)/23;1:-1+ x(3k2+k)/2y§k>
1

1<£<n 1<3<4t <k<n

b_2b+ o -
P e L T (1-xy) Tl x9 2
1<b<n b<j<n n<j<ntb

For example, the cases n =2, 3 of this identity are
g 2.2 6 L 2 +h 6
xy© + XY (L-xy) = XY + B -0y - kY- Py L)+ Ty

xyo XY (L-xy) + Oy (1-xy) (1) = P+ -y - x50+ x12y8 e

- xhy5 (1-7y) (l-x5 y)+ xh+5y7 (1-Cy) - xh+5+6y9 :

Setting y = 1 and subtracting from 1 leads to formulas somewhat analogous

to (3.11) and (3.13):

LoxesPrDd el & Hlen)ient fon e iy " 3 (3.16)

l1ax=x+ ® A%l o (1-x) (l-xe) (l—:?) - xh(l-xg)(l-xa)

+ £ 72 (1-%) - it {3.17)

o
e e e i T

Let us restate the identities arising from Corollaries 1.2 and 1.3

when y =1, where n is even in Corollary l.2:




5 SR R x(5k2-k)/2 % x(3k2+k)/2
Lk

5 (_l)kx(2n+2)k-k(k+l)/2 il (l_xj) (5.18)
0<k<n k<j<en-k

(-1)E LDErk(krl)/2
0<k<n

The latter formula was discovered by D. Shanks [1l] in the course of some

experiments on nonlinear transformations of series; he observed that it can

be proved by induction on n without great difficulty. There is also a

short proof of (3.18): Let

AlE,n) & (l-x i x (o g 1% ot s (L™ (3.20)

ik

X(n+l)k( _xk+l) k+n)

cos (L=x

. R(k,n) . (5e81)

A(k,0) = 1-x" » A(k,-1) = 0, and it is not difficult

Then A(O,n) = 0,

to show that

:
Alk,n) = 1 i Rkn) -0 CaQ+l,n-2) if n >0 . (3.22)

Iteration of this recurrence yields identity (3.18). The use of this

recurrence is actually only a slight extension of Euler's original technique

[6] for proving (0.1).

It is interesting to compare (3.18) and (3.19) to "classical"” formulas

on terminating basic hypergeometric series, as suggested in a note to the

authors by G E. Andrews., If we set a=1, b=c=d=o, and q= x

in a highly general identity given by R. P. Agarwal [1, Eq. (L.2)], we

obtain

AT D

¥
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(c1)¥ LGEK)/2 | (3K5+K) /2

. (_l)k Xk(k+1)/2( T (l_xj))/
O0<k<n k<j<en-k 1

In particular, when n = 3 this formula gives the following analog of

A

W L 3.5)
Jd <n-k

(3.13) and (3.17):

L pePed et A2 05 (es)(-C )02 ) (12 ) (120
?)(2-)

(1-x)(1-x

1 - G WSO g (i e L 125 | o

(1-x) (1-%°)

L,  gylvester's Involution.

- Let us now turn to Jacobi's identity (0.2), which is formally equivalent

under the substitution q2 = uv and 22 = qul to . 3;*:




T

g

Gl

T -V -udvd)@-ud ) 7o
§od e
r/'
B (_l)k(u(k2+k)/2v(k2-k)/2+u(k2-k)/2v(k2+k’f/2) ; (4.1)
k>1

/
The left-hand side of this equation can be interpreted as involving

partitions of Gaussian integers mtni into distinct parts of the form
ptqi , where max(p,q) > O and |p-q| <1 ; the coefficient of vt will
be the excess of the number of such partitions with an even number of parts

over those with an odd number of parts. The right-hand side says that

there exists a nearly one-to-one correspondence between such even and odd

partitions, the only unmatched partitions being of the forms

{1,241, ..., B0 (R-1)1] or {i,3+21,...,k-2%Ki] . (4.2)

A explicit correspondence of this sort was discovered by J. J. Sylvester f
[1L, §357-61, 6L4-68] shortly after he had learned of Franklin's construction;
at that time Sylvester was a professor at Johns Hopkins University in

*
baltimore.—/

7 The literature contains several incorrect references to the history
of Sylvester's construction. Sudler [13] says that the approach taken }
by Wright [15] is essentially that of Sylvester; but in fact it is
essentially the same as another construction due to Arthur S. Hathway,
quoted by Sylvester in [1L, §62]. Zolnowsky [16] independently rediscovered
Sylvester's rules (i) - (iv), and observed that these were sufficient to
prove Jacobi's identity since they will handle all cases mtni with m >n .

Sylvester's original treatment has apparently never been cited by
anyone else, possibly because it comes at the end of a very long paper;
furthermore his notation was rather obscure, and he made numerous
careless errors that a puzzled reader must rectify. Indeed, the present
authorcs may never have been able to understand what Sylvester was talking
about if Zolnowsky's clear presentation had not been available,




We shall represent complex partitions = by three real partitions
Ty Ty T, containing respectively max(p,q) for those parts ptai
in which p-q=+1, 0, or -1 ., For example, the complex partition
Now {3921, 2%1 51, 3431, 14 , F4R4 )
of 13%3+11i will be represented by
1'[+ = {3,2,1} > T!O = {3,1} ’ ﬂ_ = {)-I»j o
Sylvester noted that if i 1is artificially set equal to 2 , we obtain
a one-to-one correspondence between the complex partitions of mtni and
a subset of the real partitions of mt2n into distinct parts; =, , T s
and n_ map into the parts congruent respectively to +1, 0, and -1
modulo 3 , hence Jacobi's identity implies Euler's.
In order to present Sylvester’s construction, we recall the definitions
of $(x) , v(n) s AMn) , B(x) , and o(n) for real partitions in Section 1

above; we also add two more attributes,

t[{n] = min{k | k+1¢ n} , (4.3)

al1]

min{k | ken and k > 1(n)} . (L.4)

By convention, the minimum over an empty set is  ; thus, B[n] = »
if and only if n is empty, and a[n] = » if and only if = has the
form {1,2,...,k} for some k > 0 . Sylvester defined an involution

F(n) on complex partitions =n by what amounts to the following seven

rules:

(i) If 6(no) < c(n+) , remove the smallest part, B(no) » from =,
and increase each of the largest B(no) parts of m_ by one.
{11y It ﬁ(no) >0o(n, ) >0 and 0(n+) # A(n;) , decrease each of the

largest 0(n+) parts of n_ by one and append a new smallest part,

o(n,) , to Ty .

o 3.
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(111) 18 B(xy) > o(x,) = A(x,) and B(x,) < o(x,)*+B(x ) , remove
the smallest part, B(ﬂo) 5 from “O and append a new largest

part, a(n+)+l » to n_ and a new smallest part, B(no) -a(n+) 5

toa 1 .

(iv) 1f 6(n0) >0(n,) = A(n,) >0 end B(uo)+1 > o(n, ) +p(n_) , remove
the largest part, c(rr+) » from = and the smallest part, B(n_) ,
from n_ and append a new smallest part, 0(n+)+-s(u_)-l , to L

(v) If A(m ) =0 and a(r_) > B(n:o)+'r(:r_) and t(n_) > 0, remove

the smallest part, B(no) , from = and replace the part t(n_)

(0}
in n_ by T(n_)4-6(n0) .

(vi) 1f A(m) =0 and a(rn ) < B(n0)+-r(n_)+l » replace the part
a(n_) in x_ by t(n_)+l1 , and append a new smallest part,
a(n_)-1(x_)-1, to .

(vii) Otherwise F(n) = n . (This happens if and only if = has the

form (4.2).)

It can be shown that F(F(n)) = n , and that in fact rules (i) - (ii),
(1i1) = (iv), (v) = (vi) undo each other.:/

For example, Sylvester's correspondence pairs up the complex partitions
in the following way, if we denote partitions by listing the respective

- ot
elements of =m, , %y, T separated by vertical bars :

:/7 At this point one cannot resist quoting Sylvester, who stated that these
rules possess what he called Catholicity, Homoeogenesis, Mutuality,
Inertia, and Enantiotropy: "I need hardly say that so highly organized
a scheme ,.. has not issued from the mind of its composer in a single
gush, but is the result of an analytical process of continued residuation
or successive heaping of exception upon exception in a manner dictated at
each point in its development by the nature of the process and the
resistance, so to say, of its subject-matter." [1lh, p., 31L]

> These are the complex partitions whose sums have the form k+(11-2k)i .
Sylvester gave an incorrect table corresponding to these 12 partitions
at the bottom of [1lL, p.315]; in his notation, he should have written

"lst Species. 11 3.8; 6.3.2 6.5; 8.2.1 3.5.2.1.
2d Species. 9.2 5.2.L4.
3d Species. 10.1 6.L4,1; 7.4 3.7.1."

1y




3|x| « L] rules (i) and (ii)
21|ijr -~ 31||2 rules (i) and (ii)
1|21 - 22| rules (i) and (ii)
1(3| « 21f|e rules (iii) and (iv)
l2l2r - | b1 rules (v) and (vi)
1|31 - |32 rules (v) and (vi)

e Generating Functions Revisited.

If S is a set of complex partitions, we let

Gg(wv,¥52) = T RE() SE(m) A () ZV(ﬂo)

nesS

where

Ro(n) = z(n,) + 2(ny) + 2(x) - v(x_) 3

gx(n) = £(n,) = v(m ) +2(ng) +2(x_)
A () ifr a(m) >0 3
A(n) =
-(x)  if A(z) =0 .

These «definitions have the property we want, as shown in the following

theorem.

Theorem 2., Let S be any set of complex partitions, and let & be the

set of all complex partitions of the form (4.2). Then

Gg(W Vs ¥y =¥) =G 4(WVs¥s-¥) + Gg\p(g) (W3 -¥) o

(5.1)

(5.2)

(5.3)




Proof.

As in Theorem 1, we need only verify that if =n' = F(n) # =

we have I(1') = £(n) , A(n') = A(n)%1l, end v(xy) = v(x) 51 .

Rules (i), (iii), (v) all leave Y unchanged, decrease v(rro) , and

increase )(n) ; rules (ii), (iv), (vi) are the inverses. There is one
slightly subtle case worth discussing: Rule (iii) applies when )\(n+) =0 1
and it changes A(w ) to 1 ; in that case the hypothesis B(no) < g(n)

implies that 71(n_) = 0, hence A(n)=0. O

6., Jacobi-like Identities.

We shall apply Theorem 2 only to two infinite sets of partitionms, T
leaving it to the reader to discover interesting finite versions of Jacobi's
. identity analogous to Corollaries 1.2 and l.3.

If P 1is the set of all complex partitions, we have

Gp(u;v,y, z) = ( ulvt-lyl( 1T (l+u'jvj-l))( T (l+uj'lvj))
h

1>1 << -5 |

+ y-l( 1T uj'lvj)( i (1+u‘j'l”j))) T (+udvlz); (6.1)
1<i<t J2i

J >l

Jurthermore

Gé(u,v,y, z) =1+ X u(k2+k)/2v(k2-k)/2yk+ u(kz'k)/av(k2+k)/2y-k ) . (6.2)
k>1

Setting 2z = ~y in (6.1) gives the identity GP(u’v’y’ -y) = GQ(u,v,y, -y, i

which can be rewritten as

B e R W




Corollary 2.1.

) ¥ o e T (1+ud"1vd) (1+udvd 1y (1-udvdy)
—~<t<e ] (1+uj+’v3+"1) izl
320
_ oy G0E/e (k)2 k
-0 k<o

Our derivation makes it clear that this formula reduces to (L.l) if we set

y = 1 and replace (w,v) by (-u,-v) ; it is therefore a three-parameter

generalization of Jacobi's identity.

The right-hand side of Corollary 2.1 can be expressed as

2 2 : > S oo
(R ER Tl ey aeeded ) (e
o<k <o J>1

by Jacobi's identity (4.1), hence Corollary 2.1 implies that

j[lulvl-l

z
e l<@ Tl' (l+uj+tvj+t"l)
i>o0

@Ity @edVtly)  (eudvd)
J>1 (1+u'j-lv‘]) (l+ujvj'l) (l-ujv']y)

Let us set a = -v'l s, Q=uv, and x = uvy , to make the structure of

this formula slightly more clear; we obtain




U2 0 3o G M i s i

X (1-a l "3 J )(l axq )(l- J l)

-e<n<e || (1-aq?™) k>0 (l-a’T‘ji )(1-aq?) (1-xq”)
320

(6.3)

This three-parameter identity turns out to be merely the special case b = 0 {

of a "remarkable formula with many parameters" discovered by S. Ramanujan

.

* (see [8, Eq. (12.12.2)]); Ramanujan's formula, for which a surprisingly

simple analytic proof has recently been found [5], can be written

N A
Z Xl’l ‘ l i bgj+n
~o<n<w J>0\ l-aq

I | R T € B 1)(1-aucq )@-g** (6.3)

i>0  (1-vatxl¢d)(1-a = ") (1-a0d) (1-x¢° ) :

If we let S be the set of all complex partitions with n,_  nonempty,
Gs(u,v,y, z) and Gsn‘b(u,v,y,z) are given by the terms in (6.1) and (6.2) 4
involving yl for f > L . The set S\F(S) consists of those partitions

with n, = {1} and p(n_) < B(no) » hence :

b-1 Db j=1_J
Gg F(S)(u,v,y, ) =y 2 W v TT (+udvdz) (1eud ™) i
\ b>1 Jj>b

By Theorem 2, we obtain

. s O

BB ot Miiaded il

:'l Corollary 2.2. i
k 13
I A 3 i 9
B} b ulv? lyl ﬂ' (1+udv? l) ]T (1- wdyd y)(l+uJ lv‘j) i
B | 121 1<y<t izl B

| :
(k +k) /2 (k -k)/2 k+y T ubvb -n' (l_qu y)(l+u3 lvj) I
Kk>1 b>1 Jj>b
18
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If we subtract this identity from that of Corollary 2.1, we get the
formula for the complement of S , namely

¥ T wd-tyd 1T (1+uj'lvj) E (l-ujvjy)

£>0 I jst J> 1+l izl

2 2 g ’ 7
u(k -k)/EV(k +k)/2y-k__y ) ubvb TT (l—quJy)(l+uJ_le) : (6.5)
k>0 b>1 J=>b

Putting y = 1 reduces the left-hand side to TTJ:>O(l-quJ)(l+uJ—le) 3

hence we obtain

o MO 2 2
P il i Q- )@rd ) = B LK K2 (K+K) /2 (6.6)
b>0 J>b k>0

Let g=uv and x = - ; this formula is egquivalent to the identity

2
b j j k (k+k)/2
= @ T @ad)adn = B (ofEE2 (6.7)
b>0 J>b k>0
Equation (6.7) can be derived readily from known identities on basic
hypergeometric functions. Let us first divide both sides by

TT5:>1(1'QQ)(1-QJX) , obtaining

> i .
n>0 ] @=x*hHa-Jh
0<j<n
- e L
T (-xa*ha-J™) | x30

320

Now we use E, Heine's important transformation of such series, a five-
mp

parameter identity [9, Eq. 79] which essentially states that

19
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f(u,via,b3q) = f(v,usb,a3q) if

1-ag’) (1-vq? 1-ug?
f(u,v;a,b3q9) = " | {2 aqj)( vg& M ===
n>0 0<j<n (L-bvg)(1-q¥ )

3 >0 l-a.uqJ

In our case we let u=q, v=%x/b, a=0, and b - =, obtaining the

desired result:

I

j+1
z A - (1-¢7")
n>0 T @-xaHa-dd™h szTo
0<j<n
e . JiEL
n>0 0<j<n >0 (1-xq ")

It is not clear whether or not the more general equation (6.5) is related
to known formulas in an equally simple way.

An amusing special case of (6.7) can be obtained by setting q = 2
and multiplying both sides by x :

sk i L, .9 3 k_(k+1)
£ I (1=2°) & 2ex"¢x" =0 = T («1)x

kodd j>k k>0
"The partitions of n into an odd number of distinct parts in which the
least part is odd are equinumerous with its partitions into an even number
of distinct parts in which the least part is odd, unless n 1is a perfect
square,” An equivalent statement was posed as a problem by G. E. Andrews
several years ago [3], and he has sketched a combinatorial proof in [k,
pp. 156-157]. However, there must be an involution on partitions which

proves this formula! If the reader cun find one, it might well lead to a

number of interesting new identitiec.
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