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— Abstract. 
~~~~~~~~ ~~~

Subbarao and Andrews have observed that the combinatorial techni que I
I ::~~~ N~~T1)

used by F. Franklin to prove Euler ’ s famous partition identity J ~~~~~~~~
( 1_x)(l_x 2 )( l_ x3 )(1_x~ ) . . .  = l - x -x 2 +x5 +x7 -x~~ -x

’5+ ...
DbTh nUTIO~can be applied to prove the more general formula

1- x - x2y(l-xy) - x3y2 (l-xy)(l-x2y)  - x~~~ ( 1_xy)(l_x2y ) (~ _x3y) -

2 5 3  7~~ 12 6 157
= l - x - x y + x y + xy  -x  y - x  y + . . .  _ _ _ _ _ _ _ _

which reduces to Euler ’s when y = 1 • This not e shows that several finite

versions of Euler’s identity can also be demonstrated using this elementary

technique; for example,
2 5 7 12 15

l - x - x  +x  + x  -x  -x

6
= (1_x)(1_x2)(1_x3)(l_x )(1-x~)(l-x )

- ~~~~~~~~~~~~~~~~~~~~~~~~ + ~~~~~~~~~~~~~~ - ~7+ 6+5

= (1-x)(l-x
2
)(1-~~ ) - x~(l_x

2
)(1.~~ ) + x~~~(l-~~ ) -

By using Sylvester ’ s modification of Franklin ’ s construction, it is also

possible to generalize Jacobi’s triple product identity.
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MCS 72-03752 A03 and by the Office of Naval Research contract NOO0lI

~-76-C-O330.I - Reproduction in whole or in part is permitted for any purpose of the United
States Government.
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0. Introduction.

Nearly a century ago [7], [11k, ~l2], a young man named Fabian Franklin

published what wa~ to become one of the first noteworthy American

contributions to mathematics, an elementary combinatorial proof of

Euler ’ s well-known identity

~~ (1-x~) = l - x -x
2+~~~+x

7 - ... = ~~ (1)
k (3k +k)/2 

(0.1)
j > l  -~~<k< w

His approach was to find a nearly one-to-one correspondence between

partitions with an even number of distinct parts and those with an odd

number of distinct parts, thereby showing that most of the terms on the

left-hand side of (0.1) cancel in pairs. Such combinatorial proofs of

identities often yield further information, and in the first part of

this note we shall demonstrate that Franklin’s construction can be used

to prove somewhat more than (0.1).

In the second part of this note, we show that Sylvester’s modification

of Franklin’ s construction can be applied in a similar way to obtain

generalizations of Jacobi’s triple product identity

k ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
3>’

* = 1_ q ( z + z
_ 1

) + q ~(z2+z
_2 ) _ ... = E (_l)kqk zk . (0.2)

-‘~~< k<~

1. The Basic Involution.

First let us recall the details of Franklin ’ s construction. Let ~r

be a partition of n into tn distinct parts, so that n = (al,...,am}

for sane integers a1 > . . .  > a~ > 0 , where a
~ 

+ .. .  + a~ = n • We shall

write

_ _ _ _ _ _ _  
~~~~-~~~~~~--~~~~~~ — p
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~~(it) = n , v(n) = m , x ( i t )  a1 , (1.1)

for the sum, number of parts, and largest part of it , respectively; if

• 
it is the empty set, we let Z(it) = v(ir ) = x ( i r ) = 0 . Following Hardy and

Wright [8], we also define the “base” b (it) and “slope” s(it) as

follows:

= min (~ j € i t )  , cJ (it) = inin [J x ( i r ) —j ~~ i t) • (1.2)

Not e that if it is nonempty we have

> ~(it)+ v(it)-l and V(l t ) 
~ ~ (,t ) . (1.3)

The partition F(n) corresponding to it under Franklin’s transformation

- - is obtained as follows :

( i )  If ~ ( i t)  < ~ (it ) and ~~(it ) < v(i t ) , remove the smallest part, ~~(ir ) ,

and increase each of the largest ~~( i t )  part s by one.

(ii)  If ~ (it ) > a(n) and. a(m) < ~(n) or o (it) ~ ~ (i t) -] .  , decrease

each of the largest a(i t)  parts by one and append a new smallest

part, a(ir )

(iii) Otherwise F(it) = it . (This case holds if and only if it is empty

or ( Y ( i t )  = ~(~ ) < ~~(ir) < a(it)+l .)

These definitions are easily understood in terms of the “Ferrers gr aph”

~. 253] for the partition it , as shown in Figure 1. It is not difficult

to verify that F is an involution, i.e., that

F(F( ic ))  = it (1. 14)

for all it .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
__~ _.,._i__ ._ .~. _ -.~~~ - ,.
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largest part >~ = 6 largest part X = 7

-
~~~ 

c .  . . • . .  r. • • • • •/~)

v = 1 4p a r t s 4~ 
. . . .~~,I

) v = 3~~ arts~~~. . . . 
~~~~~~ o p e O = 2

slope a=3 S

ase =

base ~ = 2

it F( it )

Figure 1. Two partitions of 17 into distinct part s, obtained
from each other by moving the two circled elements.

For each I > 0 there is exactly one partition it such that X ( l t ) =

and F(it ) = it • We shall denote this fixed point of the mapping by f1

it has 11/2] consecutive parts,

= t 1, 1—1,..., L 1/2 J+ l)  . (1.5)

(See Figure 2 . )  Let

= (f 0, f1, f2, . . .}  (1.6)

be the set of all such partitions. Note that the somewhat similar

partitions [2k+ l,2k,..., k+2 ) and [2k,2k-1,...,k) are not fixed under F ,

although their bases and slopes do intersect.

i

-

I 

0 S • S  S . . . .

• •  S ..  • • S •
S . .

ro ~
‘
i I -

Figure 2. The partitions which remain fixed under F .  

- . -- ~~~~~~~~~~~~~~ -
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2. Extended Generating Functions.

If S is any set of partitions, we define the generating function

of S by the formula

G5(x,y, z) = E z(i t)  ~~~(n)  
~

v ( i t )  
• (2.1)

ItE S

The identities we shall derive from Frankl~.n ’ s construction are special

cases of the following elementary result:

Theorem 1. If S is any set of partitions,

G5(x,y, -y) = ~~~~~~~~~~~~ + G
5\~(5)

(X~Y~-Y) . (2.2)

Proof.

Let it be a partition with it ’ = F(n) ~ it • Then E(lt ’)  = E(it)

= ~( i r ) t l  , and ~ (1t ’)  = ~ (it)~~ l , hence

~
) ~,,x ( it ) 

(.1)
\l(it) 

+ ~
L(n’) ~~x(it ’ )  

(~~~ )
V(it ’ )  

= 0 . (2.3)

This equation means that it and it ’ do not contribute to G5(x,y, -y) if

they are both members of S • The only terms which fail to cancel out are

from partitions it€ S with F( it)  = it , namely the elements of Sf l ’F  , and

those from partitions n€ S with F( i t )  ~ S , namely the elements of

S\F(S) .

3. Three Identities.

In order to get interesting corollaries of Theorem 1, we must find sets

for which the corresponding generating functions are reasonably simple.

First, let S be the set P of all partitions. Theorem 1 implies

that
S

- --- -J - - -
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G~ (X,y, -y) = G~ (x,y, -y) • (3.1)

i . Now

G~ (x~~~ z) = 1+ E x1y1 z iT ( l + x3z) (3 .2)
F 1>1 l<j<f

and

G~ (x,y, z) = 1+ ~ ~
L (1+1)/2 L I/2J (Lf/2J+1)/2 yl z[1/2 1 (~~~~)

-
-

I 

1)-i

= 1+ E (X
(3k2_ /2~~2k_ l~~k +~~(3k2÷ /2~~

2k
~~k )  . (3.14)

k> l

Thus we have

Corollary 1.1.

E xt y1
~~ iT ( i- x3y) = ~ (l)k_1(X(3k k)/2?k1+X (3k +k)/2?k) (3.5)

1>1 l<j<t k>l

Franklin essentially considered the special case y = 1 of this

identity, when the left-hand side reduces to 1-fl ~~>~ 
(l-x3 ) •

Equation (3 .5) was originally discovered by L. J. Rogers [10, ~iO(14)], who

~;ave an analytic proof. The fact that Franklin’ s correspondence could. be

used to obtain (3.5) was first noticed by M. V. Subbarao [12 ] and

G. E. Andrews [2].

Although the power series identity of Corollary 1.1 is formally true,

it does not converge for all x and y ; for example, if we set y = x
1

we get the anomalous formula x~
1 

= x 1+ x~
1 
-1- x+ x~ + x

6 
- ... . To better

understand the rat e of convergence, we can obtain an exact t runcated version

of the sun by restricting S to the set

4 , . I 
~ri 

= [ X( l t ) < n )  . (3. )

Since

= [ it x ( n)  = n and ~ (it ) < a(n) and ~ ( i t )  < ~ ( i t ) )

= (i t  X ( l t ) = n and ~ ( i t )  o (it) and ~ (it ) n/ 2) (3.7)

we have

6
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H
G~ F(P ) (x~Y~z) = ~ (xbyn~ )( U ( i + x 3

~~)~~~( ~~ 
x~ z~~ . (3.8)

n l< b < n/ 2  ~~b <j < n-b )~~~n~b<~~<n )
Thus Theorem 1 yields

Corollary 1.2.

E x’y’~’ iT (1-x3y) = ( ...l)~~ lx (3k _k)/2 y3k_ l

l < t < n  l < j < 1  1<k<(n+ l )/2

+ (1)
k1 (3k ÷k)/2~~k

l< k < n/ 2

+ ~ (_1)b~~~b~~ U (l_X J
Y ) ) (  ~~l ’(Zb<n/2 b < j - <n -b  n - b <j < n

For example, the cases n = 1~ and n = 5 of this identity are

+ x2
~~ (l-~~~) + ~~y14(l_ ~~~)( 1_x2y) + ~:

14
~~(l_~~)(1_x

2y)(l_~~y)

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ; (~~•~~)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ x~~~ (l_~~ )(l_x2y)( l_ ~~ y)

+ x 5y6(l~xy)(l~x2y) ( l~x3y)(1~x14y)

= ~~
2 +x2? ~x

5y5 - x~y6 + x~~y8 
- x6y7 (1x2y ) ( l  ~~~~~~~~~~~~~~~~~~~~~~~~ . (3.10)

Setting y = 1 and subtracting both sides from 1 yields truncated versions

of Euler ’ s formula which appear to be new; e.g.,

~ I é

= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ; (3.11)

F . 

- 
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1-x -x
2+x5 +x7 -x~~~= ~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ; (3.12 )

i - x - x
2
+x5 +x7 -x

12
-x

15 
= ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- x7(l~x2 ) (1_x3)(1~xl4
)(1~xS ) + x~~

6(1-x~ ) (l-x14) - x 6
~~ . (3.13)

Essent ially the same formulas, but with n decreased by 2 , would have

- 1 .been obtained if we had set y = x in the identity of Corollary 1.2.

Let us also consider another family of partition sets with a reasonably

imple generating function,

S = (it ~~(it) > x ( l t ) -n and a(it ) > ~~i t ) — n } . (3 .14)

These sets are closed under F , for if it ’ = F(ir ) ~ it we have either

(i) X(1t’) = X (it)+ l  , ~~( i t ’) > ~ (it)+l , and c1(n’) = ~~( it) , or

( ii)  x ( i t ’) = X ( i r ) —1 , ~~(~rt ’) > ~ (ir ) , and ~ (n ’)  > a( i t ) . Note that S~

j 3 finite, since it e Sn implies that 2X(n)-2n < ~ (it ) + a ( i t )—1 < x ( i t ) , hence

< 2n . The set of fixed points S~~fl~ is [f 0, f1,..., f 2~ ) , and

G
5 
(x,y,z) = G~ (x,y,z)+ E x~y~z( U 

(l+x i
z)~~
( 

U ~~~~~ (3.15 )
n n n < 1 < 2 n  ~~ - n <j <n ) n < j < 1  )

-

‘. 

so Theorem 1 yields a companion to Corollary 1.2:

$
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Corollary l~3.

L x2y1~
1 

~~~~ 
(l-x 3y) = L (_ l) k l (X (3k _k)/2?k_ 1+ x (3k )/ 2

~~k)

1 < t <n  l <j < 1  l < k < n

÷ ~~ (~ l)by2b+fl
( ~~ 

(i~x~y)~~~( ~~ 
x~~~

1< Z b < n  \~b <j < n J 3~,, n < i~~ n+b )

For example, the cases n = 2 , 3 of thi s identity are

= 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ;

~~~~ x2
~~ (1-~~~) ÷  ~~y14(l-~~~)(1-x2y) = ~~r

2 ÷x 2? ~~~~~~~~~~~~ _~~7~
6 ÷~~

12
~

8 ÷ x15y9

- xY (1-x2y)(1-~~ y) + ~~~~~~~~~~~~~~ (1-dy) -

Setting y = 1 and subtracting from 1 leads to formulas somewhat analogous

to (3.11) and (3.13):

1- x- x 2 +~~~ + x 7 
= (l_x)( l_x 2 ) _ ~~~( 1x2 ) + ~~~

+14 ; (3.16)

1- x - x2 
+ x5 + xT - x

12 
- x15 (l-x) (l-x2 ) ( 1-~~~) - x

14(1_x2)(1_~~)

(3.17)

Let us restat e the identities arising from Corollaries 1.2 and. 1.3

when y = 1 , where n is even in Corollary 1.2: 

~~~~ .--- - -—-  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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1+ ~~ (_ 1) k 
~ (3k2-k)/2 +~~(3k2+k)/2

- 1< k < n

= ~i ( l )
k

x (2fl+2)k _ k(k+l)/2 iT (i-x~) (3.18)
O < k < n k < j <2 n - k

= L (~ 1) k nk+k(k+l)/2 U (l-x3 ) . (3 .19)
O < k < n k <j < n

~1

The latter formula was discovered by D. Shanks [11] in the course of some

experiments on nonlinear transformations of series; he observed that it can

be proved by induction on n without great difficulty. There is also a

short proof of (3 .18): Let

A(k ,n)  = (l_x k ) + x k (l_x k ) (l_x k~~ ) ÷  ... +x~~(l_x
k
) ... (l~x~~~) , (3 .20 )

R(k ,n) = X 
+ 1)k ( l X k 1 ) ... (l_x~~~ ) . (3.21)

Then A(O,n) = 0 , A(k , O) = i_~
k , A(k , -1) = 0 , and it is not difficult

to show that

A(k ,n )  = 1- ~
2k+ 1 

- R(k ,n)  - ~~
k+2A(k+l,n_ 2 ) if n > 0 . (3 .22 )

Iteration of this recurrence yields identity (3 .18). The use of this

recurr eL,ce is actually only a slight extension of Euler ’ s original technique

L ’~
] for proving (0.1).

It is interesting to compare (3 .18) and (5 .19) to “classica.l” formulas

~ri terminating basic hypergeometric series, as suggested in a note to the

authors by G. . .Andrews. If we set a = 1 , b = c = d = ~ , and q x

in a highly general identity given by R. P . Agarwal [1, Eq. ( 14 .2) ], we

obtai n 

10
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1+ ~ (1)
k 
~
(3k

2_k)/2
+ (3k

2
+k)/2

1 < k — n

= ~~ ( 1) k x~~~÷~~ /2( 
~~ 

(i-x~~~ / U (i-x~ ) . (3 .23 )
O < k - ( n ~~k <j (2n-k J / l <i<n ~ k

In particular, when n = 3 this formula gives the following analog of

(3 .13) and (3.17):

i - x _ x 2+~~~+x~~_ x~
2 _ x l5 = 

(l_x)(1_x
2
)(1_~~)(l_x

14)(l_x5)(1_x
6)

- ~~ 
(l-x2 ) ( 1-~~~) (1-~

4 ) (1-x~ ) + ~~+2 ~~-~~)(1-x~) - . (3.214)
(l-x)(l-x ) ( -x)

r.

L • Sylvester’ z Involution.

Let u~ now turn to Jacobi’ s identity (0.2), which is formally equivalent

under the ~ub st i tu t~ on q2 
= uv and z2 

= uv~~ to :~i 

-- -- ~~~~ ... ~ _____
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~~~~~

. - - , - r -  -

-r (l~~u3v )(l~~uJvi)(l~~u
3’.1vJ ) - 

-

j>l -
-

= 1+ ~~ (l)k(U
(k ÷k)/2V(k k)/2+U(k k)/2V(k +4/2) - (14.1)

k>1 
/

The left-hand side of this equation can be interpreted as involving

partitions of Gaussian integers ni+ni into distinct parts of the form

p4-qi , where max (p,q) > 0 and 
~
p-q

~ 
< 1 ; the coefficient of u

m
v
n will

be the excess of the number of such partitions with an even number of parts

over those with an odd number of parts. The right-hand side says that

there exists a nearly one-to-one correspondence between such even and odd

partitions, the only unmatched partitions being of the forms

[l,2+i,...,k+(k—1)i) or [i,l+2i,...,k—l+ki} . (4.2)

Pn explicit correspondence of this sort was discovered by J. J. Sylvester

[11., 
*~57-6l, 614-68] 

shortly after he had learned of Franklin’s construction;

at that time Sylvester was a professor at John s Hopkins University in
*/

.~a1tiinore.—’

The literature contains several incorrect references to the history
of Sylvester ’s construction. Sudler [13] says that the approach taken
by Wright [15] is essentially that of Sylvester; but in fact it is
essentially the same as another construction due to Arthur S. Hathway ,
quoted by Sylvester in [114, §62]. Zolnowsky [16] independently rediscovered
Sylvester ’ s rules (i) - (iv), and observed that these were sufficient t0
prove Jacobi’ s identity since they will handle all cases im4~ni with Tfl > n

Sylvester ’s original treatment has apparently never been cited by
anyon e else, possibly because it comes at the end of a very long paper;
furthermore his notation was rather obscure, and he nude numerous
careless errors that a puzzled reader must rectify. Indeed, the present

• 
- authors may never have been able to understand what Sylvester was talking

• 
about if Zolnowsky ’s clear presentation had not been available.

_ _ _ _ _ _ _ _ _



—~ —~-- —~~
- ---~~ -“-~~ ~~~~~~~~~~~ —~~~~~~~ —r —- —

We shall represent complex partitions it by three real partitions

• , it0 , 
it , containing respectively max(p, q) for those part s p+qi

in which p-q = +1 , 0 , or -l • For example, the complex partition

i t = [ 3+2i , 2+i , l , 3+3i , l+i , 3-i-14i )

of 13 + Ui will be represented by

= (3,2,1) , it0 = [3,1) , it = (14)

Sylvester noted that if i is artificially set equal to 2 , we obtain

a one-to-one correspondence between the compl ex partitions of m+ni and.

a subset of the real partitions of ml-2n into distinct parts; it
÷ , it0

and it map into the part s congruent respectively to +1 , 0 , and. -l

modulo 3 , hence Jacobi’s identity implies Euler’s.

In order to present Sylvester’s construction, we recall the definitions

of E(it ) , .~ ( i t )  , x(i t ) , ~ (i t )  , and a(it ) for real partitions in Section 1

above; we also add two more attributes,

= ~nir1(k k+1~ it) , ( 14 .3 )

a[i] = rnin[k kc xt and. k > ‘r(n)) . (14.14)

By convention, the minimum over an empty set is ; thus, ~ [ ir ) =

and only if it is empty, and a[it) = ~ if and only if it has the

form [1,2, . . ,, k) for some k > 0 . Sylvester defined an involution

F(it) on complex partitions it by what amounts to the following seven

ruies:

( i )  If ~ ( it0) < a ( it
÷ ) , remove the smallest part, ~ (it

0) , from it0

and increase each of the largest ~(n0
) part s of n~ by one.

( i i )  If 13(it0) > a(It
÷ ) > 0 and a(it

÷ ) ~ X(1r~) , decrease each of the

- 
• 

largest a(it+) parts of it~ by one and append a new smallest part,

, to it0

a



- • -•.-- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -

(iii ) ii’ ~~(it0
) > ø( i t

÷ ) = x(i t~~) and ~~(ir
0

) < a(1t÷ )+~~(it ) , remove

the smallest part, ~~(it0
) , from it

0 
and append a new largest

• 
- part, a(it+)+l , to and a new smallest part, ~~(it

0) - ~~
(,t

+ ) ,

to it _

(iv) If ~~(~~~) > a (it~) = ~~~it÷
) > 0 and ~(it

0
)+l > a(it ) + ~~ (it ) , remove

-• the largest part, a(n~) , from and the smallest part, ~~( i t )  ,

from it and append a new smallest part , a(i t+ ) + ~ (it )-l , to it
0

(v) If x (n~
) = 0 and a(1t ) > ~ (it0) + r ( i t ) and ¶ ( i t ) > ~ , remove

the smallest part, ~~(it
0

) , from it
0 

and. replace the part ~r(it )

in it_ by

(vi) If x ( n÷
) = 0 and a(it ) < ~~(i t

0
) + it ( i t  )+1 , replace the part

a(it_ ) in it by t(it )+l , and append a new smallest part,

a( i t ) - t ( i t )-l , to it
0

.

(vii) Otherwise F(it) = it . (This happens if and only if it has the

form (14.2).)

It can be showa that F(F(it)) = it , and that in fact rules (i) - (ii),

*1(i i i i)  - (i v) , (v) - (vi ) undo each other.—’

For example, Sylvester’s correspondence pairs up the complex partitions

~ f 
in the following way, if we denote partitions by listing the respective

elements of it~ , it
0 , 

it separated by vertical bars—’:

At this point one cannot resist quoting Sylvester, who stated that these
-
• rules possess what he called Catholicity, Hcinoeogenesis, Mutuality,

Inertia, and Enant iotropy : “I need hardly say that so highly organized
a scheme ... has not issued from the mind of its ccznposer in a single

• gush, but is the result of an analytical process of continued residuation
or successive heaping of exception upon exception in a manner dictated at

F each point in its development by the nature of the process and the
resistance, so to say, of its subject-matter.” [114, p. 31143

These are the complex partitions whose sums have the form k-4-(ll-2k)i
Sylvester gave an incorrect table corresponding to these 12 partitions
at the bottom of [114, p. 315] in his notation, he should have written

“1st Species. U 3.~~; 6.3.2 6.5; 8.2.1 3.5.2.1.

• 3d Species. 10.1 6.14.1; 7. 14 3.7.1.”

• - - - - - • - -- - - -~~~~~~~~~~~~~~~ — .~~ - ~~~~~~~~~~- . - , ~~~~~~~~~ ~~~~• ~~~~~~~~~ 
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• 31 11 14(j rules (i) and (ii)

• 21(1(1 .- 3 1(( 1 rules (i) and (ii)

1(2l( . 2(2( rules (i)  and (ii)

1(3( 21((2 rules (iii) and (iv)

(2(21 .-. ((141 rules (v) and (vi)

- (1131 .. 1 (32 rules (v) and (vi)

• 5 .  Generating Functions Revisited.

If S is a set of complex partitions, we let

G3(u,v,y, z) = ~~ ~RE( it) ~~E ( i t )  yX ( i t )  ~ (i t
0

) 
, (5.1)

it€S

where

ft~~(it) = z(it
÷

) + ~(n 0) + E(it ) - ~~( i t)  ;

= E(it~)-v (1t~)+E (~t0)+E (it_
) ;

1x(~+) if x ( i t ) > 0
= ( (5.2)

if x ( i c~ ) = 0

These 4efinitions have the property we want, as shown in the following

-- theorem.

Theorem 2. Let S be any set of complex partitions, and let ~ be the

set of all complex partitions of the form ( 14.2). Then

1-. G5(u, v, y, -y) = Gs ~ ~(u, v, y, -y) + Gs\F(s)(u~ 
v, y, -y) , (5 .3)

El. I
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Proof. As in Theorem 1, we need only veri fy that if it’ = F(ir) ~ it

we have E(i t ’)  = ~~( it) , x (l t ’ )  = x (it)tl , and v(it 6) =

Rules (.1), (iii), (v) all leave E unchanged, decrease v(it
0

) , and

increase x ( i t )  ; rules (ii), (iv), (vi ) are the inverses. There is one

slightly subtle case worth discussing: Rule (iii) applies when x( i t ~ ) = 0

and it changes X ( it ~~) to 1 ; in that case the hypothesis 
~

(Jr
o ) < ~ (it )

implies that T(lt ) = 0 , hence x (J t ) = 0 . 0

6. Jacobi-like Identities.

We shall apply Theorem 2 only to two infinite sets of partitions,

leaving it to the reader to discover interesting finite versions of Jacobi’s

identity analogous to Corollaries 1.2 and 1.3.

If P is the set of afl complex partitions, we have

~~~~~~~~~~ = I ~ ufvl_1y1( U (i+u~~~~~)~~f ~~ 
(l+u~~~v~)

~ 1>l \~l<j<1 )~ •.j�1

+ ~ ~~‘ ( ~~ 
u~~~v~ ~ 

( 
U (i+u~~~v~) ~ ~~ 

(i+u~v~z); (6.1) 
-

1>0 \l<j<1 )~~~j > I+1 ) Jj > 1

urthermore

G~(u,v,y,z)  = 1+ L (U 
2
v~~~

_ / 2
y
k
+u /2v~~~~~)/2y

1~
). (6.2) -

k>1

Setting z = -y in (6.1) gives the identity G~(u,v,y,-y) = G~(u,v,y,-y)

which can be rewritten as

~~~~~ 

~~~i :

_ _ _ _ _ _ _ _ _ _  
~~~~~~~-- rn
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Corollary 2.1.

i l l - iy u~~
1 j+2-l 

( U ~~~~~~~~~~~~~~~~~~~~~~~~~~
-a~ < f < c~ TI (1+u v ) \j>l

j>0

= E u~~
2

2v~~
2

V2y1c

~~ (k<~

Our derivation makes it clear that this formula reduces to (14.1) if we set

y = 1 and replace (u,v) by (-u,-v) ; it is therefore a three-parameter

generalization of Jacobi ’s identity.

The right-hand side of Corollary 2.1 can be expressed as

E ~~~~(k +k)/2
(

-l
)
(k -k)/2 

= U ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-cx’<k<o j>l

by Jacobi ’s identity (11.1), hence Corollary 2.1 implies that

1 1 1—1
E y u v

U ~~~~~~~~~~~~
j>O

— iT (l+u~~~v~y~~ ) (l+u~v~~
1y) (i-u3v3 )

— 

j > 1  (i+u~~~v~ ) (l+u~v~~~ ) (l-u~v~y)

Let us set a = - v ~~~, q = u v , and x = u v y , to make the structure of

this formula slightly more clear; we obtain

L 

-

~~

L I .,~ -~~

_ _ _ _ _  -I



n -1 -1 j+1 j j+l
E 

x -

~

-

~

- (1-a x q )(1-axg )(l-q ) (c .~~)
-co<n<

~ iT (1-aq~~~ ) k > O  ~~~~~~~~~~~~~~~~~~~~~~~~~j >0

This three-parameter identity turns out to be merely the special case b = 0

of a “ remarkable formula with many parameters” discovered by S. Ramanuj an

(see [8, Eq. (12.12.2)]); Ramanujan’s formula, for which a surprisingly

sbnple analytic proof has recently been found [5], can be written

E x
tl 

~~~ 
(l_ b~i~~~

)-a, < ri < a, j>0 1-aq

iT (1-ba ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ (6 ~— 

j~~O (1-ba ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

. . )

If we let S be the set of all complex partitions with it~ nonempty,

G6(U,v,y,z) and G
5~~~(u,v,y,

z) are given by the terms in (6.1) and (6.2)

involving y t for I > 1 • The set S\F(S) consists of those partitions

• with it÷ = [1) and. ~3(,t ) < ~~(i t
0

) , hence

= uy E ub_lvb ~~ ~~~~~~~~~~~~~~~~~
b>l j>b

By Theorem 2, we obtain

Corollary 2.2.

( E u
1v~~~y

1 f~ (l+u3v3’)\( U ~~~~~~~~~~~~~~~~~~~
~ I>l l < j < t  

)~~i�l )

= ~~ u
2
+ / 2 v

2
~~~

/2yk+y E ~
b
~
b 

U ~~~~~~~~~~~~~~~~~~~ .
k>1 b>l j>b
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~1iIf we subtract this identity from that of Coronary 2.1, we get the

formula for the complement of S , namely

~ y~i( 
~~ 

~
i-l

~~~~( U (l+u3
1
v3)~~
( ~~ 

(i-u3v3y)
1>0 t~l< j<1 Jt,~i>1+1 ) j>l

= ~~ ~~~
2 

/2~(k
2
+k)/2~-k _~~ ~~ u

b
v
b TI ~~~~~~~~~~~~~~~~~ . ( 6 . 5 )

k > O  b > l  j > b

Futting y = 1 reduces the left-hand side to U~~>o (1_u 3v3 ) ( 14-u3
~~

v3 )

hence we obtain

~ u
b
v
b U ~~~~~~~~~~~~~~~~ = E u /2v

+
~~~

2 
. (6.6)

b>0 j>b k>0

Let q = uv and x = -u~~ ; this formula is equivalent to the identity 
- 

-

~ 
q
b 

~~ 
(1-q~)(1-q~x) = ~~ (~x)

k
q~~~~~~

2 
. (6.7)

b>0 j>b k>O

Equation (6.7) can be derived readily from known identities on basic

hypergeometric functions. Let us first divide both sides by

, obtaining

n

n>0 U (1-xq~~~ ) ( l-q~~~ )
O< j<n

- 
( 1 

~ (~x)
k (k

2
+k)/2

— ( TI (l-xq~
4-1)( l-q~~~ ) 

J 
k>0 

q

\,~j~~0 I

Now we use E. Heine’s important transformation of such series, a five-

parameter identity [ 9 ,  Eq. 79] which essentially states that

19 
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S

f (u ,v;a,b;q) = f(v,u;b,a;q) if

f (u ,v;a,b ;q) = ~~~E u n U  
(i bvqi )(ii q~~~ ))( j~~ o (~ ))

In our case we let u = q , v = x/b , a = 0 , and b -. , obtaining the

desired result:

(0>0  U (l~xq3+l)(1qi~~
))(i

~~o 
(i i+1

))
O< j<n

= ( ~~ x~ U (~qJ )~~ ( U j+l
~~n > O  O ( j < n  )~~~j > O  (1-xq. ) )

It is not clear whether or not the more general equation (6.5) is related

to known formulas in an equally simple way.

An amusing special case of (6.7) can be obtained by setting q = x
2

and multiplying both sides by x

xk U (l-x3 ) = ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ (l)
kX(k+1) ( 9 )

k odd j>k k>O

“The partitions of n into an odd number of distinct parts in which the —

least part is odd. are equinuinerous with its partitions into an even number

of distinct parts in which the least part is odd, unless n is a perfect

square .” An equivalent statement was posed as a problem by G. E. Andrews

several years ago [3], and he has sketched a combinatorial proof in [14,

r i. 156-157]. However, th ere must be an involution on partitions which

proves this fonnula~ If the reader ci,n find one , it might well lead to a

• 

- 

number of interestin g new identities.
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