
I 
~~~~~ *038 865 STAPFORO UNIV CALIF DEPT OF COMPUTER SCIENCE FIG 912

DELETIONS THAT PRESERVE RANDOMNESS. (U)
DEC 76 D E KMJTH N0001* 76 C—0330

UNC LASSIFIED STAN CS—76—58 14 It

“II
I

END

5— 77

II



II I ~~ 
I
~ ~~~ OhII2_.~.I.V L~~~I 
~ ~ IIH~

2

I ~ 
N~

1110 ‘ ~ 11111i4 Hitt~
MICROCOPY RESOLUTION TEST CHART

NAT IT ~NAL H T I A F A U  T~f~~~~~NL IAR DT
~ 

A



•
~i— ~

-.,- 
~~~~~~

“~00
00

DELETIONS THAT PRESERV E RANDOMNESS

by

Donald E. Knuth

STAN-CS-76-584
DECEMBER 1976

~

COMPU T E R SC I E NC E D E PAR T MEN T
School of Humanities and Sciences

STANFORD UN IVER S ITY

• :4’ ~~~ ‘. ~~~I. ,

LL...

/
_ _ _ _  _______ -44



_____ TJ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Unclassified 
~~~7~”. / c ~ ~‘LI~çd(-’

SECURITY CLASSIF ICA T ION OF Ti llS PAGE (1I~~.n Data Entered’ ,. 
____________________________________

REPORT DOCUMENT ATION PAGE BEFORE COSIPLETING FORM
/~~~~~ ‘ ~~~~~gg~~kZ4fUMB9fl y 2. GOVT ACCESSION NO. 3. RECIPIENT’S CATALOG NUMBER

STAN-CS-76-~~~,,,) v’
TITLE (end Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

~ELETI0NS THI~T PRESERVE RANDOMNESS~ / technical, December 1976 ‘— ~~~

6. PERFORMING ORG REPORT) IUMB ER
STAN_CS_76_58I~. ~~_—

7 THOR(s) B. CONTRACT OR GRANT NUMBER(S)Q 76~c~O33~j F

9. PERFORMING O R G A N I Z A T I O N  NAM E AND ADDRESS ¶0 . PROGRAM EL T. PRO Q~~; TASK

Stanford University AREA & WORK UNIT NUMBERS

r Computer Science Department ~~~~
-

Stanford, Ca. 94305
I I .  CONTROLLING OFFICE NAME AND A DDRESS — -

Office of Naval Research (ii,) ~Department of the Navy ‘3. NUM~~~~~ OF~~ A~~~~~~-.~ ~~~~~~Arlington , Va. 22217 1 L  ‘~e~~ T~~~
¶ 4 .  MO~4ITOR ING AGENCY NAME & ADORESS( i f  different from Contr olliné Office) ¶ 5.  SECURITY CLA . 0 Ia report) _)

ONR Representative: Philip Surra
Durand Aeronautics Bldg., Rni. 165 

Unclassified

Stanford University 15a . DECL ASSI Fl CATION! DOWNGRADING

Stanford, Ca. 94305 SCHEDULE

16. DISTRIBUTION STATEMENT (of thi s Report)

Releasable without limitations on dissemination

17. DISTRIB UTION STATEMENT (of the abstract entered in Block 20, if different from Report)

¶ 9 .  S U P P L EM E N T A R Y  NOTES

L

19. K E Y  WORDS (Continu, on reverse side ii necessary end identify by block numb.r)

analysis of algorithms, binary search trees, data organization, deletions,
priority queues

20. A B S T R A C T  (ContIn ue on reverse side If necessary and identify by block number)

~~~~~ This paper discusses dynamic properties of data structures under
insertions and deletions. It is shown that, in certain circumstances,
the result of n random insertions and m random deletions will be
equivalent to n-rn random insertions, under various interpretations of
the word ~~~~~~~~~ under various constraints on the order of insertions
and deletions.

L Oqy /~~o ~~
DD 1 jAN 73 1473 EDI EION OF I NOV 6S IS OBS OL ETE Unclassified



~~~
- - .

~~~~~~~~~~
- ‘.—~~~~~~~— - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

--—..-

( ‘ i ~
.

Deletions That Preserve Randomness

Donald E. Knuth

Computer Science Department
Stanford University

Stanford, California 91~3O5

Abstract

This paper discusses dynamic properties of data structures under

insertions and deletions . It is shown that, in certain circumstances,

the result of n random insertions and in random deletions will be

equivalent to n-rn random insertions, under various interpretations of

the word t random ’ and under various constraints on the order of insertions

and deletions.

Index Tenns : ~~alysis of algorithms, binary search trees, dat a organization,
deletions, priority queues.

A- ’
I.

This research was supported in part by National Science Foundation grant
MCS 72-03752 A03, by the Office of Naval Research contract N00014-75-C-0330,
and by IBM Corporation. Reproduction in whole or in part is permitted. for
any purpose of the United States Government.

~

. _ _



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Deletions that Preserve Randomness

When we try to analyze the average behavior of algorithms that operate

on dynamically varying data structures, it has proved to be much easier to

deal with structures that merely grow in size than to deal with structures

that can both grow and shrink. In other words, the study of insertions into

data structures has proved to be much simpler than the study of insertions

mixed with deletions. One instance of this phenomenon is described in [5],

where what looks like an especially simple problem turns out to require

manipulations with Bessel functions, althou~~ the data structure being

considered never contains more than three elements at a time.

Occasionally an analysis of mixed insertions and deletions turns out

to be workable because it is possible to prove some sort of invariance

property; if we can show that deletions preserve “randomness” of the

structure, in some sense, the analysis reduces to a study of structures

built by random insertions. The purpose of this note is to investigate

some simple properties which imply various kinds of insensitivity to

deletions.

Let us say that a data organization is a class of data structures

together with associated algorithms for operating on these structures; for

example, consider binary search trees together with algorithms for searching

them, inserting into them, and deleting from them. We shall restrict

attention to data organizations which depend only on the relative order

of the keys of items being inserted and deleted; in other words, if we

consider the two dat a structures formed by the sequence of operations

Ai
(X
i
), 

~~
(x2), .• •

~~~ 
A~ ( x )  

____  jj
A1(y1), A2(y2), .. ., Ari(Yn) I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _  _ _ _ _ _ _  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where each Ak(x) means either ‘insert an element with key x ’ or

t delete an element with key x ’, the two se q~iences should produce

isomorphic data structures if x~ < holds whenever y1 < y,~ ~ for

all I and j  . Such dat a organization schemes are quite coninon :

Binary search trees with or without height-balancing or weight-balancing

[7], 2-3 trees [1], leftist trees [ 7] ,  and binorni aj .. queues [8] all have

this property because they operate entirely by making comparisons on

keys.

r i

H

‘H 
~~~~~ -~~~~~ - -, .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~ . ~~~~~~~~~~~~~~~~~~~~~~ ~

- ,  



~ ,.. ,
~~~~~~ 

..-—
~~

——
~~

,--- -.

2. Preliminary Definitions.

Let 1(x) denote the operation ‘insert an element with key x ’

and let D(x) mean ‘delete an e1~nent with key x ’. We shall be dealing

with sequences of operations

A1(X,~
), A2(x2), ~ A~(x)

where each A1 is I or D , and where each insertion I(x.) introduces

an element x,~ which is distinct from x1~...1x~~1 ; at least this holds

with prob~.bi1ity l • Furthermore D(x~) will make sense only if x
,~

has previously been inserted and not yet deleted; in particular, the number

of D ‘s must never exceed the number of I ‘s, counting from left to right.

Since we are assuming that the relative order of keys is a.l]. that

matters, not their precise value, it suffices to restrict attention to keys

jl,2,...,nJ when there have been n insertions. If y1,y2,...,y~ 
is a

sequence of n distinct keys, let

~
(
~i ~2 ~~

be the canonically reordered permutation of (1,2, ..., n} obtained by mapping

the j -th smallest key into the number j  . For example,

p (8 ,T e~ J~~~) = 1 4 2 1 3

If X
1
,X

2
,..., X is a permutation of [1,2,...,n) , we write

S(x~ X2 5. .  xi.)

for the data structure obtained after the sequence of insertion operations

I(X~) r(x~) ... i(x~~)

Finally we write

H • R( x1 x2 ... x~~\j )  = y1 ...
if the operation of deleting j from S(x1 x2 ~~.. x~ ) and. renumbering yields

3

~ 

- -.,
~~~~ 



structure S(y1 ... y 1) , 
where x1x2 

... x~ is a permutation of [1,2, ...,n)

is a permutation of (l,...,n-1~ , and 1 < j < n

It is possible for several input permutations to yield the same

structure; in other words we might have S(x1 x2 ... x~) = S(x~ x~ •. .  x~ )

although x1 x2 ... x~ ~ x~ x~ ... x~ . In this case the R notation is

not uniquely defined, since any permutation y1 ... y~~1 yielding

could be used as the value of R(x1x2 ... x~1 \j)
However, we will assume that a particular y1 ... y~~~ has been selected

in each case. Thus, if S(x1 x2 ... x )  = S(x~ x~ ... we might wish

to define R(x1x2 ... x~ \ i )  ~ R(x~ x~ ... x~ \j) even though it will be

true that S(R(x1
x
2 
... x \j)) = S(R(x ~~x~~... x1 \j)) . Some of these

definitions of R will be better than others; a typical theorem to be

i roved below states that deletions will preserve a certain kind of randomness

i t  it is possible to define the R function in a certain way.

The R function can be used to define a deletion operation on

jermutations in the following way. Let ir be any permutation of n

distinct elements (not necessarily integers), and let u be the j-th

smallest element of .t . Then we define ,
~\u (with respect to a given B

function) to be the unique permutation of the elements of ~r other than u

such that

= R(p(~ )\j) . j
For example, let ~ = 33 2 5  and R(14 2 13 \ 2 )  = 13 2 ; then it/3 = 2 5 .

.
4 



2. Examples.

Perhaps the simplest kind of data structure is an unordered linear

list, where an insertion is done by simply appending the new element at

the right of the list and a deletion is done by deleting the element and

closing up the space it occupied. Then S(x1x2 
... x1~) is the linear

list (x1,x2,...,
x~) , and R(x1x2 ...x~ \j) = p(xl...x

~~l
xk÷l...xn)

where X
k 

= j  . In this system the representation preserves all information

about the order of insertion.

At the other extreme we might consider a sorted linear list, in which

S(x1x2 
... x )  = (1,2,...,n) for all permutations x1x2 ... x of

(1,2,...,n) . In such a system R(x1x2 ... x~ \j) can be defined to be

any permutation of [1,...,n-1) that we wish, as a function of x
1
x
2 
... x~

H and j.

In between these extremes lie many other regimens, and binary search

trees provide a simple but interesting example. This system defines

S(x1x2 ... x~) as the empty binary tree if n = 0 , otherwise S(x1x2 
xn)

consists of a root and two subtrees; the left subtree is S(p(y1...y~ ))

and the right subtree is S(p(y~~...y~~1~~
)) , where 

~~l
•’•

~~m ’ ~~~~~~~~~~~~

are respectively obtained from x1...x~ by striking out all e1ement~

(> x1, < x1) . ~irthermore R(~~ x2 ... Xn \ j )  = p (x1 ... Xk_l ~~~~~~~~~~~~~~ x~ )

or p(x1 ... x~~.1 x,+1 ... x )  , where = j  and x
1 = j+l if j  < n

here is deleted if j = n or £ < k , otherwise x
1 

is deleted.

For example,

S(123) = , s(l32) =

s(213)  = s(2 3l )  =

H -
~

5. 

-~~~- ——-, 
~~- - —-- ~~ ~~~~~~~~~~ -~~~,-—-~~~~~~



r:-:----——-
~
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

k ~~ —— 
—.r ~~~~~~

U •~

s(3 12) = , S(32 1)  =

and deletion is defined as follows when n = 3

R(123\l) = 12 , R(123\2) 12 , R ( 12 3 \ 3)  = 12

R(l32\l) = .12 , R ( l3 2 \ 2 )  = 12 , R ( 13 2 \ 3 )  = 12

R ( 2l 3 \ l )  = 12 , R ( 2 l 3 \2 )  21 , R ( 2 l3 \ 3)  = 21

R(23 1\ 1)  = 12 , R ( 2 3 1\ 2 )  21 , R ( 23 l \ 3 )  = 21

R (3 12 \ l )  = 21 , R ( 3 12 \ 2 )  = 21 , R ( 3 12 \ 3 )  = 12

R (32 1\ l )  = 21 , R ( 3 2 1\ 2 )  21 , R ( 32 1\ 3 )  = 21 -

1~~

6
~~~~~~~~~~~~~~~~

—
~~
--—--~~~~~~~~~~~~~~~~~~~ —

-—- --±-~~--~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ . .



iTI~ ~~~~~~~~ ~~~~~~ ~~~~~~~~ 

3. Deletion Sensitivity and Insensitivity.

From an intuitive standpoint, we wish to show that certain data

organizations satisfy theorems of the following general character:

“Given a sequence of operations containing n random insertions and m

random deletions, in some order , the result is a random dat a structure

on n-rn elements; i.e., it has the same probability distribution as we

would have obtained by doing n-rn random insertions.”

The first such theorem was proved by T. N. Hibbard [3], who showed

that binary search trees have the following property : create a binary

tree by inserting n distinct elements in random order, then delete one

of them chosen at random (each being equally likely) .  Then the resulting

tree shapes have the same prob ability distribution as we would have generated

by inserting n-i distinct elements in random order. We shall call thi s

one-step deletion insensitivity, abbreviated. I*Dr . (The motivation

for this abbreviation will come later; it essentially means “any number

of random insertions followed by one random deletion ” . )

Our definitions make it fairly clear that a dat a organi zation has the

I*Dr property if and only if it is possible to define the R function so

that, for each n , the n•n~ values of R(x1x2 ... x~~\~~) comprise each

of the (n-i)~ permutations y1 ... ~~~~ exactly n2 times. For example,

the tableau above for binary search trees with n = 3 shows “12 ” and “21 ”

each occurring 9 times.

Proof: The “if” part is obvious. Conversely, consider a data structure

a whi ch is equal to S(y1 ... for exactly s different

~~. r~utations yl. . . yf l l  0 ’ [l,...,n-l~ . The I*Dr property

~~~~~ that n random insertions ~ollowed by one random deletion

I

:ho oa

udi
~~~~~~~~~~~~

t with relaT

~~~~~~~~~~~~

1 s ;



— r -~~~~ — 
y ” ,- -.--~~ -~~~~~~~~~~~ .-

-,- .---.-----,

in other words, the n.n~ values of S(R(x1
x
2 

x~ \j)) as x1
x
2 ...

ranges over the n~ essentially different insertions and the n essentially

different deletions should include the given structure a exactly

times. By redefining R(x1x2 ... x~~\j) if necessary we can ensure that

2
each of the s permutations y1 ... y~~~ occurs exactly n times.

The I*Dr property might seem to be aLl that one needs to guarantee

insensitivity to any number of deletions, when they are intermi xed with

insertions in any order. At least , many people (including the present

author when writing the first edition of [7]) believed this, and the Eubt ie

fallacy in this reasoning was apparently first pointed out by Gary l~~ott

in hi~ thesis [6]. Before we proceed to study stronger forms of deletion

insensitivity, it is important to understand why the problem isn ’t entirely

trivial, so we should look at binary trees more closely.

Consider the following process:

(i) Create a binary search tree by starting with the empty tree

and inserting three independent random real numbers, uniformly

distributed between 0 and 1

(ii) Delete one of these three numbers, selected at random ~i.e.,

each is selected with probability 1/3 ).

(iii) Insert a fourth independent random real number uniformly

4 
distributed between 0 and 1

- ( . since the binary search tree organization has the I*Dr 
property, we know

that the tree remaining after ct~.1 (ii) will be like a rand~ ~ree after

two, insertions; i.e., ~~~ and will be equally likely.

Furtb€ rmore it ~ easy to verify that the element x inserted in ~te~ ( iii )

is ~~u~±ly likely to be smaller than , between, or larger than the two

_ _ _

_
_ _ _ _ _ _ _  

8

~~~~~~~~~~~~~~~~~~~ — ~~~~~ . . A



elements remaining after step (ii); for example, the probability that

x will be the smallest remaining element is 1/3 . Therefore the

insertion in (iii) would seem to behave as the random insertion of a

third element into a random two-element tree.

Yet when we analyze carefully what happens after steps (i), (ii),

(iii) have been performed, we find that the tree ~~“N,, is obtained

with probability 25/72 , not 1/3 . (See [5] for a detailed study of

this process.)

The fallacy comes from the fact that the probabilities for the result

of step (ii) and the relative position of x in step (iii) are not

independent. If we are given the fact that the result of step (ii) was

, the conditional probability for element x to be smaller than

the two remaining elements turns out to be 13/36 , not 1/3 , since this

• arises when x is the smallest of all four elements (probability 1/1+ )

and when x was second smallest but the smallest was deleted (probability

1/14 times 14/9 , since 14 of the 9 cases where R(x1x2
x
3
\j) = 12

have j = 1 ). Therefore, inserting a random element in [0,1] is not

equivalent to inserting a number with probability 1/3 of being smaller

than the two remaining, even though a random element in [0,1] does

have (unconditional) probability 1/3 of being smaller than the two

remaining.

p

I

9

—-. -- -- ---- . —— .,- —-, -— 
— --—-- -, -—---- — — -— p. ~~~~~~~~~~~~~~~ 

. .- -.,
~~ —.



,~ - .——-—.--~ -,-~ w.--
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

- - ~~~~~~~ ~~~~~~~~~~~~~ ~~ 
- —,-- 

~

,——-----,-- 
___

14. Further Definitions.

The above example shows that deletion insensitivity is not as simple

as it may seem at first, so we need to be somewhat careful in our treatment.

In this section we shall define several types of insertions and deletions

which lead to types of insensitivity that seem to be of importance. The

following shorthand notations will prove to be convenient:

I stands for insertion of a random real number from some continuous
r

distribution; for example, the distribution might be uniform on the

interval [0,1] . Each random number inserted is assumed to have the

same distribution, and it is to be independent of all previously

inserted numbers. Thus, if we look at n such random numbers

the n~ possible orderings p(x1X2 ... x~) are equally

‘ikely, and the particular distribution involved has no effect on the

behavior of the data organization.

• 10 stands for insertion of a random number by order, in the sense that

the new number is equally likely to fall into any of the d+l intervals

defined by the d numbers still present as keys after previous

insertions and deletions; this is to be independent of the history

by which these d numbers were actually obtained. The example in

the previous section shows that this is a different concept from

.• it is a somewhat artificial kind of random insertion, but it may be a

sufficiently good approximation to reality in some applications, and

it agrees with ‘r 
before any deletions have taken place.

:~
_ _  

10



stands for a “biased” insertion of a random real number obta in ~ I a.:b

follows: Generate an independent random number X with the ext unential

distribution, so that l-e is the probability that X < x • Insert

the number X+t , where t denotes the key most recently deleted

(or 0 if there have been no prior deletions). Such insertions arise

naturally in priority queue disciplines, where the element with

smallest remaining key is always chosen for deletion; the keys can be

thought of as specific moments of time when events take place. In

this interpretation the exponential deviate X represent s a random

“waiting time”, so that X+t is the time when a newly inserted event

will be deleted if the most recent deletion occurred at time t

(Another way to produce biased insertions is to generate a uniform

real number X in [0,1] and to multiply it by the most recently

deleted key, or by 1 if there were no prior deletions. This corresponds

to the above di stribution if the largest key is always deleted, since

it is essentially isomorphic under the mapping f ( x )  = -log x .)

Dr stands for a random deletion, in the sense that if d keys are present

each is chosen for deletion with probability 1/d

4~H D stands for a deletion by relative order or rank, in the sense that if

• • d keys are present and if some number j  between 1 and d is

speci fied, the j-th smallest element is deleted. Such a j  is specified

in advance for each deletion.

D stands for “priority queue” deletion, the special case of D0 in whichq

j  is always equal to 1 .
,1

• 11

, . - ---~~~— - -—•—~~~~~~~ ~-- •-•-• • - -- - - -  _ _ _ _



• - -—  _______  
~~~

,-,
~~~ -,- -,—-_~~

,- ---— ,_ .,. ___.,_ _ _ _ _ . • _ _______• — •

D stands for a deletion by relative age, in the sense that if d keys

• are present and if some number k between 1 and d is specified,

the k-th oldest element (the one which has been present k-th longest)

is deleted. Such a k is specified in advance for each deletion.

Df stands for a “fi fo ” deletion, the special case of Da in which k

always equal to 1

stands f or a “lifo” deletion, the special case of Da in which k i:

• always equal to the current value of d

Using these abbreviations we shall talk about four different kinds Cf

deletion insensitivity :

• I 
I~D means any number of insertions followed by one deletion;

I~ D~ means any number of insertions followed by any number of deletions;

I ’DI a~eans any number of insertions, followed by one deletion, followed

by any number of insertions;

(I,D)
4 

means any number of insertions and deletions, arbitrarily intermixed.

• (of ’ course we also require that deletions never outnumber insertions.) The

I;. I’ s and D’s will have subscripts to identify their type; for example,

(I r~ Df ) * stands for any number of insertions of random uniform numbers

intermixed with fi fo deletions. In the first two cases I*D and I*D*

however, no subscript will be given to the I ‘ s since it is easy to see that

(Ir~
Io~

Ib) are all equivalent until the first deletion has occurred.

We would like to say that a data organization has the (Ir)Df)
*

ir ~i..ert j  if’ o~ erations (I r~ Df ) * always produce an essentially random dat a

.: truCtur~~; a data organization might similarly have the I*Dr property, and

so on. These intuitive notions might be formalized as follows, in 

12 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



_ _ _ _  

~~~~~~~~~~~~ ITT7T’~ ~~~~~~~~~~~~~

• terms of the B function for that data organization: Consider a sequence

of operations

A1(u1), ~~(u2), •..,

which includes n insertions and m deletions; each A± (u
~ ) is an

insertion or deletion of a given type (e.g., an ‘r or a Df ). We define

a permutation n~, of the u ‘s remaining after i steps as follows :

• - is the null presentation ;

if A (u ) is an insertion, it . is it . followed by u .
i 1 1 i-i i

if A~,(u~) is a deletion, it. is the permutation it
1 1\u~ 

defined

in Section 1 above.

In other words the B function gives us a way to convert deletions on

the given dat a structures to deletions on permutations of the keys. Each

permutation it
~ 

has the property that the dat a structure obtained after i

• steps is exactly the same as the structure which would be created by inserting

the elements of it. in order from left to right (without deletions).

For example, consider the operation sequence

1(0 .5),  1(0.2),  i(o .6 ) ,  D ( 0 . 5) ,  1(0 .14)

on binary search trees; then

= 0.5 0.2 0.6 , = 0.6 0.2 it
5 

= 0.6 0.2 0.14

- • 
since p(it14) = R(2 13 \2) = 21

After n insertions and m deletions we will obtain some permut ation

itm+n of the remaining n-rn elements. An R function will be called

insensitive to deletions if the elements of are in random order

af ter  such a Cequence of random insertions and deletions, i.e., if the

resulting permutations 
~~~~~~~ 

of f ’ , . . ., n-rn) are uniformly distributed.



LT II.T~T~~~~~ •~~~~ ~~~~~~~~~~~~~~

According to this formal definition, it should be clear for example

that a data organization has the I*Dr 
property if and only if it has

- ai~ R function which is I*Dr 
deletion-insensitive. Ck~ the other hand

our definition uses only the B function, not the S function, so we

are actually distinguishing between different permutations which might

• yield the same data structure after insertion; we are therefore talking

about rather strong forms of deletion insensitivity. This aspect of our

• model is discussed further in Section 9 below.

r

I



i~~~~~: ~~~~~~~~~~~~~~~ ~~~~~~~~~ 
~~T-~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 

- -  -

I
5. Reducing the Number of Cases.

With three types of insertions, six types of deletions, and four ways

. to combine them, we have defined 6+6÷18 + 18 = 148 types of deletion

* * * *  * *  * * *2nsensltlvlty, namely I D , I D0, ... ; I I D0, ~ 
1r’~r

1r’ “~~ 
~

• (Ir~
Dr)

*
~ (Ir~Do )*~ ••~~ , (I~,D2)~ 

. But many of these are uninteresting,

since (for example ) biased insertions are prob ably meaningful only in

connection with priority queue deletions, type

It is well-known that the exponential distribution is “memoryless” , in

the sense that if X is an exponential deviate and if we are told that

x > x
0 
, the conditional distribution of X-x0 given this knowledge is

again exponential. This suggests that (Ib, Dq)
* is actually equivalent

to (Io~Dq)
* 
, a fact which was first proved rigorously by Jonassen and

Dahl in their study of priority queue algorithms [14]. Therefore we need

not consider ‘b any further.

• A sequence of random operations with insertions of real numbers can

be converted to a discrete probability space in a simple way, because our

• data organization is assumed to depend only on comparisons between distinct

• keys. If there are n insertion operation s of type ‘r ~ we can assume

without loss of generality that the numbers inserted are the integers

• jl,2,...,n) in some order, and that each of the n~ permutations is

• equally likely. On the other han d, suppose that the insertions are of

type 1
~ 
, where the structure contains respectively ~~~~~~~~~~~ elements

just before each insertion; then the number of equiprobable cases to

• 

• 

consider is (d1+1) (d2+i) ... (d~+l) . Furthermore if we are doing m

random deletions of type Dr ~ with respectively ~~~~~~~~ elements

resent before the deletions, we should multiply the number of equally:1 
15•



—- -~~~~~~~~~~~~ -—‘-—~~~~~~ -——--- 
~

•%•____ •‘_ .--.•--~-----~~ • .—--- •-.-—-- •-.-— ‘ ~~
.-•--••.- - - ---‘,•‘--••-- •- _w-•~---~ ~~

- 
~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~ ~

-‘--
~ ~

•‘

~

•
— _

~~
_ 

~~~
•-
~~

•..-- —• •• —
~~
.--

~~~ —— -‘--
____________ • ~~~~~ 

— —  

~~ UI

I

probable types of insertions by d~ ... d~ , the number of different ways

to specify the deleted keys.

For example, consider again the sequence of operations IrIrIrDrIr

discussed in Section 3; we have n = 14 , m = 1 , dj = 3 ~ so the number

of equally probable ways the algorithm might behave is n x di . . .  d~ =

2 1 4 x 3  = 72 . In 25 of these ways the resulting dat a structure is

agreeing with our claim that the probability of this tree is 25/72

Furthermore it turns out that the final permutation p (it
5
) will be 231

in 13 cases; thi s confirms that the prob ability of obtaining /
“N.b

• given that the tree after the deletion was N., (i. e ., given the 31

cases with p(1t14) = 12 ), is 13/36 . On the other hand if the operat ion s

• had been IoIoIoDr Io , we have n = 14 , d1d2d
3

d14 = 0 1 2 2 , m = 1 , dj =

so the number of equally prob able ways the algorithm might behave is

~~~~~~~~~~~~~~~~~ = 514 . Under this model (which corresponds to the fallacy

discussed in Section 3), the tree occurs with probability 1/3

in fact, it is not difficult to prove that the R function given for binary

search trees is (I o~ Dr ) * deletion insensitive, by writing down the

reasoning which might have led us to believe (fallaciously) that it was

(Ir~Dr)
W 

deletion insensitive.

• It is impossible for an B function to be IDq4 
deletion insensitive.

In fact, this is obvious, for the operations I I D I lead to six
• r r q r

equiprob able values of it14 (namely 23 , 32 , 23 , 31 , 32 , and 31 ),

hence p ( i t14) = 12 with probability 1/3 and p(it14) = 21 with probability 2/~ .

This holds for all R functions, since R(x1x2\j) is forced to equal 1

Gince Dq is a special case of D0 , no R function can be 1 D01 deletion

in.:ensitive either, much less (Ir~
Do)~ • Fortunately such types of

insensitivity do not seem to be very important in applications. 
• 

~
_
~

_ _ t_ _ __ __ _
~

_ ______ • _ ~. _



___ 
-
~~~~~~~~ 

-—-- .—- 
~~~~~~~~~~ 

•

The fact that I*D specifies a smaller class of operations than

I*D~ or I*DI* , and that these in turn are smaller than (I,D)* , means

for example that

(I ,D )* ~ T~ D ~ I*Dr

any B function which is (Ir~Dr)
* insensitive is also 1D  , etc.

Similarly the fact that D
q 

is a special case of D0 
means that

insensitivity under D0 implies insensitivity under D
q ; 

and insensitivity

under Da implies insensitivity under both Df and . Furthermore,

insensitivity under either D0 or Da implies insensitivity under Dr ~

since Dr corresponds to a sum of disjoint cases with the ‘s or k~ ‘s

varying in all d~ possible ways.

Thus there are many obvious implications between the various types

of deletion insensitivity which remain to be investigated; and we will

find that many of these are actually equivalent to each other.

The first equivalence result is, in fact, obvious:

Lemma 1. Let D be Dr ~ D0 or D
q 

Then

* * * **  *(I0,D) ~ I~DI~ ~ I D ~ I D

Proof. Since (I0,D)
* 
~ T*D* ~~ T~D , and (10,D)* ~ I~DI ~ I D  , it remains

to show that I~D ~ (10,D)
* ; i.e., we need only prove that one-step deletion

sensitivity implies full (10,D)
* insensitivity. But this is obvious since

~
qe can prove that p(1t1) is uniformly distributed after an 10 insertion if

was, and. one-step insensitivity implies that ~ (it~~) is uniformly

ciistributed after deletion if p(it~~1) was. Thus p (n~) is uniformly

distributed for all i •

• _ _ _ _ _ _ _ _ _ _



-

~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
-

~~~~~~
- -

Similarly when D is Da ~ 
Df , 

or D
1 

we have I*D I~DI~ ;

• but I*D* need not be equivalent to these, since the first deletion

might “confuse” the ages of the remaining elements. For example, the

reader should have little difficulty constructing B functions which

* * *
are I D insensitive but not I D insensitive.

L I 

18 
_ _ _ _ _ _ _ _ _ _



_-•- - •--

~~

— • - •‘ - • • --
~~~~~~~~~~~~~~~~

-- 

~~~~~

- - • -•

~~

--

~~~~~~~

••- • - —  

~~~~~~~~~~~~~~~~~~~~~

-

~~~~

--—-

~~~

-

1. Necessary and Sufficient Conditions.

We can make further progress in understanding deletion insensitivity

if we convert the definitions into properties of the R function. Let

be the set of all permutations on n elements; and if x is such a

permutation, let Xk be its k-th element, frc~n left to right, for

1 < k < n  • If x € P~ and y € , we write

[x\j = y]

for the function of x , j  , and y which is 1 if R(x\j ) = y ,

otherwise 0 • In terms of this not ation, the following lemma is an

immediate consequence of the definitions :
.

Lemma 2. An B function is

* . . 2
(a) I D insensitive if and only if ~ [x\j = y] = n , for all

r x€ Pn

l< j <n

and n> l

(b) I*D0 
insensitive if and only if ~~~ [x\j = y] = n , for all

x€ Pn

and n > j > 1 ;

(c) I~D insensitive if and only if ~ [x\l = y] = n , for all
a t q x€ Pn

y € ~~~~ and. n > 1 ;

(d ) I*Da insensitive if and only if ~ [x\xk = y] = n , for ~~~~~~~

• x € P n

~ 
€ 
~n-l 

and. n > k > 1 ;

l~



~~~~~~~~~~~

_

• ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~
—--

~~~~~
—-

~~
----

(e )  I D f insensitive if and only if I’ [x\x1 = y] = n , for all
x €

• 
y € P

~~~ 
and n > 1 ;

( f )  I*D1 insensitive if and only if ~~ 
[x\x~ = y) = n , for all

x € P n

and n > l .  ~

Clearly (b) ~ (c), (d) ~ (e) and (f), and (b) or (d) ~ (a), as we already

knew. Furthermore it is easy to see that these are the ~~~~ implications

between the six types; we might have (e) and. (f) and. (c) but not (a) ,  etc.

The next result is less obvi ous, possibly even surprising, since it

states that a comparatively weak form of deletion insensitivity is

equivalent to a comparatively strong property.

Theorem 1. I*D ~ I*D 1* c~ (I ,D )* •0 r r r  r r

Proof. Since (Ir~Dr)
* 

~ 
ID~,I , we must only show that IDrI ~ ~~DQ

and I*D0 r~ (I ,D )*

Assume first that a given B function is Ii)r
1 deletion insensitive,

- • 
I and consider the sequence of operat ions I~DrIr for some fixed n . Any

of the n .(n+l)~ equally prob able realizations of such operat ions defines

a sequence of permutations it1,... ,it
~ ÷2 

such that 
~~~~~~~ 

is a

uniformly distributed permutation on [1,2,...,n)  ; hence every possible

- 
• 

permutation ~(n ~~2 ) occurs n(n+ 1) times. Let p (n~~2) =

and = ... y~_~y~ , where y .~ = j  , and suppose that t is the

element missing from yj . . .y 1~ , where 1 ~~t ~~n+1 ; then = Y~ or

y - l  according as y~ < t or > t • The number of ways to obtain

is

20



- ~~~~~~ -- -y T~~TIT

l<t~~n+l 

((x
~~P 

[x\(t-1) = P(Yi~~~.~~nl
)1) (xcF 

[x’-\t =

t > j  t < j  
_I
J
J

= ~~ [x\t p (y1 ...y~_ 1)] 
+ ~~ Ix\j = 

~~~~~~~~~~ ~~x€ P  x€ P  
-

1<t<n 
n

= n
2 

+ ~~~ [x\j = p (y1 ... yx€ P n
n

b:,- Lemma 2(a) ,  since R is I*Dr deletion insensitive; and this equals

n(n+l) by assumption. Therefore R is I*D0 deletion insensitive by

Lemn~i 2(b).

Now assume that a given R function is ID0 deletion insensitive,

• and 03n:ider any given sequence of operations A1(u1), ... , A~~~ (U~~~ )

c~ rr tsponding to n ‘r ‘s and m Dr ‘s, where there are respectively

elements present before the deletions. Any of the n ij . . .  i~

• :it-illv probable realizations of such operations defines a sequence of

• -r~~i~at~ ons ~~~~~~~~~~ , 
where the keys inserted are [1,2,...,n] in

~: orn e ord c- r , and we wi sh to prove that each of the (n-m )~ possible values

of ~~(~t~~÷~~) occurs n d ~ ... d ’/ (n -m)~ times. Let z1,..., z be the

elements deleted, so that it z ... z is a permutation of the nml-n l in

elements inserted. We will prove that each of these n permutations

occur s exactly d~~...d times.

In order to avoid cumbersom notations, a single example should suffice

;~~ lain the ba sic idea. Suppose the sequence is

‘r ‘r ‘r ‘r ‘r Dr ‘r Dr Dr ‘r ‘r

H 
J 

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ _ _ _ _



- — - - — .—r ~~-— -
• - - -——- —

~~~~~~~
—-

~~~~
—-- 

- • 

~~~~~~~~~~~~~~

—- - —-----— —- ‘--- - --- -- -

so that ri = 8 , m = 3 , d~d~d~ = 5 5 14 , and. suppose we want to coun t
- 

- 
how many realizations will yield 

~~~ 
= 5 1 u 3 7 and z

1
z
2
z
3 

= 8 2

Working backwards, we must have 5
9 = 5 16 , = a permutation on

[1,14,5, 1) such that = it
9 
, = a permutation x~x~x3

x14x5
on [1,2,14,5, 6) such that ~~\2 = , and. = a permutation on

[x1,x2,x3, x1 , 8) such that = x~x~x3
x14 . By Lemma 2(b) the

number o1 choices for 
~8 

is 14 , arid for each 
~8 there are 5

suitable ltr 
‘s~ and for each it

7 
there are 5 suitable ,r~ ‘a,

hence there are ~~~~~~ solutions. It should be clear that this

method of proof is completely general. 0

This completes a characterization of deletion insensitivity

involving D , D , and D : We have three classes
r 0 q

(I ,o)
* 

~ 
I:DrI: ~ I~D ~ I*Dr

• (10,D0) * 
~ IQDQIQ ~ I D 0 ~ ID0 I;DrI; (Iry Dr )

~

(Io~Dq)
* 

~ ID qI ~ I D q ~ I D q

and (Ir)Do)
* (Ir~

Dq)~ 
I D 01 I;DqI; 

are impossible.

~



• 7. Age-sensitive Deletions.

Let us now consider Da 
more closely.

Theorem 2. An R function is I*D 1* deletion insensitive if and only
• 

• r a r

if, for 1 < j, k < n and all 
~ 

€ 
~n-l ~ 

there exists a unique x €

such that x,~ = j  and R(x\j) = y

Assume first that a given R function is I*D 1* deletion insensitive,

and consider the sequence of operations 
~~
DaIr 

for some fixed n , where

the deletion operation removes the k-th element inserted. Any of the

(n+l)~ equally probable realizations of such operations defines a sequence

of permutations s1,..., it~~~2 
such that p(itn+2) is a uniformly distributed

permutation on (l,2,...,n) , hence every possible permutation p(it~~2)

occurs n+l times. Now argue as in Theorem 1 with the extra restriction

that x sP is such that X
k 

is the element being deleted; using

Lemma 2(d) we find that the number of ways to obtain p(~t~~~2
) = y1 ...

is

n + 2I~ [x\j =

X E  Pn

when y~ j , hence the condition in Theorem 2 is necessary.

Conversely, assume that the stated condition holds, and consider a

• . p n-p
• given s€quence o~ operations IrDaIr 

where D
a deletes the k-th element

inserted. For example, the sequence mi ght be IrIr~r
IrIrDaIrIr 

with

n = 7 , p = 5 , and k = 14 • The number of realizations which yield
- 

I ~ 
= 3 1 1 4 5 7 2  is the number of permutations x of [1,3,14,5, 6) such

that x14 = 6 and x\( = 3 1145 ; and by hypothesis there is just one

:ueh x • There are sev~ ri choices of it
8 

with p( 1r8) = 3 1 1 4 5 6 2 , and

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



I~~ T~ TIT i~~ ~~~~~~~~~~

‘

~~~~~~~~~~~~~~~~~~~~~~~~~~

_ ‘
_ _  

~~~~~~~~~~

r

each such choice occurs once. This argument clearly generalizes to

prove that B is IrDaIr 
deletion insensitive. 0

* * *Corollary. IrDaIr (Ir~
Dr)

Proof. The condition of Theorem 2 is much stronger than the condition

• for ID 0 in Lemma 2(b), since the latter requires only that the equ atlcr .

R(x\j ) = y have exactly n solutions when j  and y are given. Now

apply Theorem 1. 0

The condition of Theorem 2 is not strong enough to prove ( I , D ) ’

insensitivity, which seems to be very strong property indeed. The author

has been unable to construct any R functions which are (Ir~
Da)~

lii-ensitive except those which satisfy the following strong requirement:

Condition Q. For each 1 < k < n there exists a permutation q1 ...
of [l,...,k-l,k+l,...,n) such that R(x1x2 ... xfl \xk) p(x ... x~~~~ ) .

In other words, deletion of the k-th element inserted will permute the

other elements in a way depending only on k , not on their values.

This condition may not be necessary, but it is at least sufficient

to prove what we want:

Theorem 3. An B function which satisfies Condition Q is (i ,D )~~r a

deletion insensitive.

Proof. Consider the operation sequence

Tr ir ir ir ir Da ir DaDa Ir ir

where the three Da ‘ s respectively have k = 2 , 3, 14 , and let us count

how many reali zation s will yield it
11 = 5 1 63 7  after deleting the elements

214 

—• ----
~~~
---- 

~~~- — -- -- • — - - - —- -
~~~---- - - ---—---~~~ - -~~~ ---—---- --— ~~~~~~~ —~~~~~~~~~~ --  -



~~~~~JTT~T T ~~~~~ ’~~~ ~~~~~~~~~~~~~~~~~~~~~~~~

8214 in this order. Suppose the eight insertions are z1z2
z
3
z14z5z6z7z5

respectively, a permutation of [l,2,...,8) ; we will show that the z ‘s are

uniquely determined by these assumptions. For concreteness, let us

suppose that some of the permutations implied by Condition Q are

x1x2x3x 14x5\x2 = x
3

x1x5x14 , x1x2x
3

x14x5\x14 = x2x5
x
3
x1 , and

-

~ 
• x1x2x3x14\x2 x

3
x1x14 • Then we know that it

5 
= z1z2z3

z14z5 , z2 = 8 ,

a1 = z
3

z1z5z14 , = z3
z1z5

z14z6 , z14 = 2 , it
8 = z1z6z5z~ Z

6 = 14

= z5 z1z~ , it
11 = z5

z1z3
z~z8 = 5 1 63 7  ; hence z1... z8 = 1 8 6 25 1 4 3 7 .

This argument clearly generalizes to prove the theorem, since there is

always a unique realization for each choice of itm+n and the sequence

of element s deleted., for each choice of k ‘ s in the Da operations. ~

There is an interesting way to weaken Condition Q to obtain a somewhat

weaker kind. of deletion insensitivity, yet one which is stronger than that

of Lemma 2 ( d ) :

4
Condition %. For each 1 < k < n there exists a sequence of n pernut at i~ n s

(q1,1... q1,~~_1
), ~ ‘ (

~~ ,i~~” ~~,n-l~ 
of jl,...,k-l, k÷1,..., n) with

the following property: For all y € 
~~~~~~~~~ 

there exi sts a permutation

of [1,..., n) , possibly depending on y , such that

p( x l ... x
~K l xk +l . .. x

fl
) = y and x,~ = j  implies

= ~~~~~~~~~~~~~~~~~~~~

In other words, when we delete the k-th element inserted the result is

- 

- one of ri specified permutations of the remaining elements; and if the

remai ning elements are held fixed., while x~K runs through all ri possible

values relative to them, the results run through these n specified



F: • --• ---

~

--—• — 
_ -~-‘_, - -•—-— — _——--- __-—- —V —

permutations in some order. Condition Q. implies Condition Q~ , since

the n specified permutations might be identical.

• This rather peculi ar condition seems to be just what is needed to

vrove the following slightly weakened form of Theorem 3

Theorem 14. An R function which satisfies Condition Q is (I , D )D 0 a

d~ !ction insensitive.

Proof. As in the previous proofs, it is mcst convenient to consider a

tvire-or-less random example which is sufficiently general to be c~nv1ncin~

‘~rithout the introduction of elaborate notation. Consider the operation

- ~~ - f lCe

10 10 10 I~ I~ Da 10 Da Da lo b

whe r- . the three Da ‘ c have k = 2, 14 , 14 , respectively. There are

1.. .3 .L.5 .5 . 14.5 reali zations of thi s sequence; we will show that 5.5 .J.~

them will yield any given value of p( 1r11) . For example, suppose

p(rr11) 
3 1 1 42 5  . There are 5 choices for the q-permutation in the

~irst  deletion ; let us choose one of these, and assume for example that

th~ deletion takes it
5 

= z1z2z
3

z 14z5 
into ii- = zj z~,z z f ~ = z

3
z1z

5 z 14
Is; In other words , one of the q-permut at ions for n = 5 and k = 2 is

assumed to be 3 154  . (If 3 15 1 4  occurs as two or more of the

q-permutations we also choose the subscript j  such that

(3, 1,5, 14) = ~~~~~~~~~~~~~~~~~~~~~ ; thus, there are 5 distinct choices

~ ossible even when the q-permutationz are not dist inct . )  Then if

= ~~~~~~~~~~ we must delete the 4—th oldest element, whi ch is

(since it equals z5 ); again we have 5 q-permut ations to choose : ron~,

and let us suppose that the q-pexmiut ation for the second deletion yields 

-• . • . • --
~~

- •- - • • - - - • • -- .. --•~~- ••~~~-- - - - - -. • -• . •--- •-~~~ -- . •- • • •  ----• - - I



z~ z~ z~ zj = z~z~z~z~ ; we similarly shall choose one of the 14

q-permut atio~ s now available for the last deletion and suppose that it

yields it
9 

= Zj ’ Z~~’Z~~’ = Z~Z~Z~

To make p( 1t11) = 3 1 1 42 5  we now can work backwards and identify

• the relative sizes of various elements: Since p( 1t
9

) = 213 , we know

that p (z~ z~ z~ ) = 321  . This value of y together with Condition

allows us to determine p ( i t 8) , since each possible value of z~ relative

to Zj~ z~~, zj~ corresponds to one of the predetermined choices of

q-permutation once p (z~~z~~z~ ) is known . Ifl our case p ( n 8) must be

143 12  , 1 432 1  , 1 42 3 1  , or 3 2 1 4 1  , and our choice of q-permut ation

subscript tells us which of these occur s, say 14 2 3 1 ; then

P (Zj Z~~Z L Z ~ ) = 2 1 1 43  and we can similarly reconstruct p ( it7 ) , which

might be 2135  14 . In the same way p (it6 ) = 213 14 implies that

p ( z 1z
3

z 14z5 ) 1 21 43  ; and we can use this knowledge to find

say 213 5 14 . Each I insertion has now been characterized, thus each
0

of our 5.5.4 choices has led to a unique realization such that

= 3 1 1 42 5  . 0

• Although 10 is a somewhat artificial type of random insertion,

L Theorem 14 is interesting because (Io~Da)~ insensitivity implies I*Da

insensitivity, and. this special case is not artificial.

Let us conclude our theoretical investigations by considering

briefly the fifo and lifo deletion types, Df 
and • If the B

f unction satisfies

R(x1x2...x~ \x 1) = p (X2 . . .x )

it is obviously (Ir~D~) 
insensitive ; note that this condition might

hold even though neither Condition Q nor are satisfied, in fact the

_ _  —- - - - - --~~~~~~,-~~~~ - •



—
~~

— — 
~~~~~~~~~~~~~~~~~~~~~~~~~ ._ _ -__. ~~~~~~~~~~~~~~~~~~~~~ 

_____________

• 

- - -
~~~~~~~~~~~ 

_ _

weak condition of Lemma 2 (a) might not even hold. On the other hand

when the R function does not satisfy the above formula, there appear

to be no interesting conditions which guarantee I*D insensitivity,

other than the condition we have already discussed. (We might have,

say, R(x1 x2 ... x~\x1) = p (x3 
x2 x4 ... Xn) and R(x1 x2 ... x~\x2) =

• p(x1
x
3 
... x~ ) ; these conditions lead to (Ir~Df)

* insensitivity

• without the full generality of Condition 0, but they don ’t seem to be

very interesting.) Essentially the same remarks hold also for lifo-

deletions, if R does or does not satisfy

R(Xi•~~~
Xn_i Xn\Xn) = p (x1 ...x~_ 1)

4

4.



-
~~~~~

I

3. Applications.

• Let us finally apply these theorems to some important dat a organizations.

Sorted and unsorted linear lists have every possible type of insensitivity

to deletions, but this is obvious without the above theory.

Binary search trees provide what is perh aps the most interesting

application. We have already mentioned that Hibbard [3] originated this

theory by essentially proving that the R function defined in Section 2

above is I*Dr insensitive. 1~ uth {7, answer to exercise 6.2.2-13 ]

observed that it is in fact I*Da insensitive, and. then Khott [6] went

much further, proving that Hibbard’s B function is (Io~Da)
* insensitive.

In particular, if we do n random insertions, followed by m < n fifo-

deletions, the resulting tree has the shape distribution of a binary tree

after n-m random insertions. This is a di f ficult theorem to prove,

perhaps the “deepest” result about a data structure which had been obtained

by anyone before 1975 .

It is possible to establish Knott’s theorem using the above theory;

in fact, much of that theory was motivated by what he did. We want to

• chow that the binary search tree organization satisfies Condition

Let k <n be given, and. for 1 < £ < n let

p

J 3- ... (k-1)(k+1) ...n , if I K k ;
q1,1 ~1,~~_ 1 

1... (k-l)2(k+l) ... (I-l)(i+l) ... n , if I > k

Let y = y1.. .y~_ 1 c P ~ be given, and let z1... z~_1 be the in~~rse

permutation, so that y = j  . It is not difficult to verify that
• j

Condition holds with the permutation d.efined by

, if z~~<k

p.  = ~ z~+l , if z. k

, i f j = n



- ••— •--—--—--•.---—- —-• — ‘,,-.•-----,•--.- —.
~

.•—-•-— •,--- -• •.— -• .—.—— -— 
_________

Thus binary search trees are (I ,D )’ insensitive to deletions

using Hibbard’s method. On the other hand we have seen that they are

not (Ir~Dr)
* insensitive, so by Theorem 1 they are not even I*D0

insensitive.

Suppose we define deletion in a different way, essentially by

interchanging left and right in Hibbard’s method.: Let

R(xi
X
2~~••X n

\j) P(Xl...Xk l Xk+l ...Xn) or

where xk = j  and. x
1 = j-l if j  > 1 , and where x,~ is deleted if

• 
- j  1 or £ < k , otherwise x1 

is deleted. (For example, this changes

R(l32\i), R(312\3) to 21 and R(2l3\2), R(23 l\2) to 12 in the

table of Section 2.) This function is (10,D )
* insensitive to deletions,

and it also satisfies Lemma 2(c) so it is (Ib~Dq)
* insensitive as well.

F’urthermorc, like 1-Iibbard’s function it possesses (Ir~DI)
* insensitivity.

We can also verify (Ib~
Dq~

DI) 
insensitivity, if the l

b 
insertions

are biased by the most recent Dq (not D
2 ) 

deletion. (Is it

(Ib~
Dq)Da)~ 

insensitive in this sense?)

Jean Vuillemin [8] has recently defined a usefti type of data

organization which he calls binomial queues, and Mark Brown [2] has shown

• that they are highly insensitive to deletions. In fact, Brown proved that

the corresponding B function satisfies Condition Q, hence it is (Ir~
Da)

4

and (Ir~
Dr)~ 

insensitive.

The leftist tree structures developed in 1971 by Clark Crane (see

7, Section 5.2.3]) unfortunately do not share such nice properties. In

fact, the corresponding function R(x1x2 x~~x~~\j) 
has a pronounced bias

towards 3 2 1 and 2 3 1 except when j = 1 , and the function

~(x1 x
2~~~x14~~~\l) is e~~remely biased. Therefore leftist trees are quite

sensitive to deletions, and it will probably be very difficult to analyze

• 
them. In fact, the analysi s for ~ur- ~n~ ertions is already very formidable.

~imi1ar remarks apply to balanced trees. 



9. Degeneracy.

We have defined deletion insensitivity only in terms of the R

function, but when many different permutations lead to the same data

• 
• 

- structure (i.e., if they yield the same S value) it might be possible

to have deletion insensitivity that cannot be carried back to any R

function for the organization. For example, when the data structure

consists of a sorted linear list, the S function is essentially constant,

so we trivially have (Ir~Do)
* insensitivity; but we have observed that

no R function can have this property.

In other words the conditions we have derived in Theorems 1 and 2

are sufficient but not necessarily necessary for insensitivity. An example

can be given of a data organization which is IDrI 
insensitive when

the S equivalences are considered, yet it is not I*13o 
insensitive:

Let B(x1 ... xfl\xk) = p (x1 ... Xk l  xk+l ... x )  for n 
~ 3 ,

R(x1x2~~\l) = 12 , B(x1
x
2~~\2) = 21 , R(l23~~) = R(132~~) = R (23l~~) = 12 ,

B(213\~) = R(3 l2\3) = R(32l\3) = 21 ; and let S(x1...x) = o(y1...y~)

if and only if x1 ... x~ = y1 ... or n > 3 and x14 ... Xn =

and S(p(x1x2x5
)) = S(p(y1y2y3

))  , where s(132) = 3(231) and

3(3 12) = S(3 21) . The operations I II D
q 

leave a nonrandom result;

but 1r~r’r 
clearly produces a random structure when n 

~ 3 , and this

can be verified. also for n = 3 . Thus Theorem 1 is not true when we

take the S equivalences into account.

It appears unlikely that any conditions weaker than those discussed
b

in the above lemmas and theorems will be useful for proving deletion

• insensitivity in practice. Furthermore it is not difficult to see that

~h existence of an R function satisfying the six respective conditions

in Lemma 2 is, in fact, both necessary and sufficient for the six

corresponding kinds of I*D insensitivity. (We proved this for I*Dr in

Section 3.)

LA
-- --~~ --- - • -• -~~~• ~~~~~~~~~~~~~~~~~~~~~ ;• • • ~~~~~~~~~~~~ ,~~~~• !~~~~~~~ •• —----•-—~~~~~ .- •



-~~~~~ —‘v —
~~~

-‘-
~~ 

- ~~~~~~~~~ ~~~~~
• 

•—• - •-— —— • — - •—— ———• —
~~~~~~~~

- • - _I ~ I I 
-

[1] A. V. Aho, J. Hopcroft, and J. D. tSli.man, The Design and AnalyEis

of Computer Algorithms, (Reading, Mass.: Addison-Wesley, l971~~,

x + 1470 pp.
[2] Mark R. Brown, “Implementation and analysis of binomial queue

algorithms,” submitted for publication.

13] Thomas N. Hibbard, “Some combinatorial properties of certain trees

with applications to searching and. sorting,” J.ACM 9 (1962), 13-28.

[14] ~xne Jonassen and Ole-Johan Dahl, “~~ia1ysis of an algorithm for

priority queue administration,” Math. Inst., Univ. of Oslo (1975).

[ 5 ]  Arne Jonassen and Donald E. Knuth, “A trivial algorithm whose

analysis isn’t ,” submitted for publication.

[ci Gary L~. Knott, “Deletion in binary storage trees,” Ph.D. thesis,
Computer Science Department, Stanford university (May 1975), 93 pp.

[7] Donald E. Knuth, The Art of Computer Programming, Vol. 3, Sorting and
Searching, (Reading, Mass.: Addison-Wesley, 1973).

[8] Jean Vuilleniin, “A data structure for manipulating priority queues, ’

Comm. ACM, to appear.

M


