
ADA038863 

TWO RESULTS CONCERNING MULTI COLOR lNG 

by 

V. Chvatal, M. R. Garey and D. So Johnson 

STAN-CS-76-582 
DECEMBER 1976 

COMPUTER SCIENCE DEPARTMENT 
School of Humanities and Sciences 

STANFORD UN IVERS lTV 



Unclassified 
I£C:UI'ITV CLAISIF'ICATIOIII 01' TMIS ~AGE (ft- Dete &.J.,ed) 

REPORT DOCUMENTATION PAGE • RIEAD DISTRUL'TIOIIB /- BEFORE COIIPLETING FORM 

)~ 
~ 12. GOYT AC..._ ... -..· "j h-'J:-.1 .• } STAN-CS-76-;8~~ ·~ / 

I . --' 
f ,. .,.. ~--· 

{ 
\ 

•· Ttn.r ( ... _,~ .. --~-~~ 

-- ~--- . ------- ... ----- ---~ December 1976 -{ 'IWO RESULTS CONCERNmG KJLTICOLORING • 
., technical, 
\ 

~ '~~ / rp 1 ... !IIIF'O.-..rN%0"~ RI!JIIOitT NUMBEit 

----- .- STAN-CS-7 -5 2 _.-----7. AUTHOI'(I) I. COHTI'ACT Ollt GRANT NUM8Eft(oJ 

R./Garey. D. 

- - .. ,y v./Chvit&l, 
-

~~~i-~~~J'l~~ ... B¢3 M. s. pohnson / ;t; l ~~ 
J, PlUtP"OitMING OltGANIZATION HAMil AND AODIIIESS I I 

Stanford University 
Computer SCience Department ~ 
Stanford, Ca. 94305 

I I. cprTIIIOLL.ING O"'I"ICI! "'.IUifE AND ADDIIIESS *· .,&or~,. --"'"'..!1 
Of ce of Naval Research I I Dee-.-T6 -- -· ----·-
~p&rtment of the Navy II. NU~F' ""~ --1 ~ A 
Arlington, VA 22217 r.,J_ . 

tt. MONITO,.ING AGI!NCY NAME • ADD,.ESS(It rlllfe,_t ,,_ Cont10run1 Olllc:e) II. SECURITY CLASS. (af lllle NPOrtJ II 

ONR Representative: Philip SUrra Unclassified 
Durand Aeronautics Bldg., Rm. 165 
Stanford University 15•. DI!:CLAISIF'ICATION/DOWNG~ADING 

Stanford, Ca. 94305 SCI11DULE 

16. DISTit18UTION STAT~MIEIIIT (of lllh Report) 

Releasable without 1imitations on dissemination 

11. DISTitt81JTION STATIIMaNT (•I "'• ... lrRI •t-d 1ft 81oc:k 20, If dlf,.,_.t tro. Jt,......,) 

••• SU~~LEIIIIENTAIIIV NOTES 

tt. KEY WOitOS (C_,_ - ,.,_ •• el• if nee .. _,. -..l 1-tl/y lly W- _._) 

analysis or algorithms, combinatorial mathematics 

ao. A8STitACT (C_t._ • ,._ ..... II,..., •• ..., lllft4 ...... ,. 'r lWedr ......_, 

The m-chrol:&tic number x
11 
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of Lov'-sz, our first result shows that for any m ~ 1 and any E > 0 

there exists a graph G for ~hich X 1 (G)/X (G) > 2-£ This shows m+ m 

that the known bound of 2 for all m and G is essential~ best possible. 

Our second result shows that the least integer m0 for which X~(G)/mu = 

lim X (G)/m can be asymptotically as large as J \nlogn)/z for some 
mtciD m 

n vertex graphs, though it can never exceed e(nl.ogn)/2 
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The m-chromat~c number Xm(G) of a graph G • (V,E) 

is the least integer k such that there exists a mapping 

f:V + {S ~ {1,2, •.. ,k}:ISI• m} having the property that 

f(u)nf(v) • • whenever {u,v} £ E. This is a generalization 

of the standard notion of chromatic number and arises in 

connection with mobile telephone frequency assignments. 

Answering a question of Lov,sz, our fi~st result shows that 

tor any m ~ 1 and any £ > o, there exist5 a graph G for which 

Xm+l(G)/xm(G) > 2-£. This shows that the known bound of 2 

tor all m and G is essentially beat possible. Our second 

result shows that the least integer m0 for which xm
0

(G)/m0 • 

11m Xm(G)/m oan be asymptotically as large as e{(nlogn)/2 --tor some n vertex graphs, though it can never exceed e(nlogn)/2 • 
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I. INTRODUCTION 

The following generalization of the standard notion 

of graph coloring has been of recent interest [1,3,4,6,7,8]. A 

multlcoloring of a graph G • (V,E) is a functicn f defined on 

• V whose values are sets (of "colors") satisfying f(u)nf(v) • + 

whenever {u,v} E E. For positive integers k,m, a (k 1 m)-color1~ 

or G • (V,E) is a multicoloring for G such that lf(v)l • m 

for each v £ V and I U f(v)j • k. The m-chromati~ number xm(G) 
V£V 

is the least integer k such that there exiets a (k,m)-coloring 

or G. (This last definition differs from that of [6,7] by a 

factor or m.) Notice that form • 1 these definitions corres­

pond to the usual graph coloring notions. The purpose of 

this note ia to resolve two que~tions about multicoloring con-

veyed to us by P. Erdos (2]. 

The first question deals with the relationship 

between Xm(G) and Xm+l(G). It ia not difficult to see that 
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with equality possible in the right-hand jnequality only 

for m • 1. Lov~sz asked [2) whether, for each value of m, 

there exist graphs G such that Xm+l(G) > (2-E)Xm(G). We 

~hall answer this question in the affirmative. 

The graphs we shall use are defined us follows: for posi­

tive integers n > 2m, the g~aph Gn has vertex set consisting 
- m 

of all m-element subse~s of {1,2, •.• ,n} and has an edge between 

two such vertices exactly when their intersection is empty. 

It is easy to see that xm(a~) ~ n merely by considering the 

multicoloring provided by the definition of Gn and, in fact, 
m 

it is proved in [7,8] that xm(a~) • n. Thus, to answer the 

question or Lov,sz, it suffices to prove the following theorem: 

Theorem 1. For each m ~ 2, there exists a constant c such 

that for all sufficiently large n 

In order to prove Theorem 1, we require the following 

lemma, which is an immediate consequence or a special case of 

':'~1eorem 3 in [ 5 J • 

Lemma 1. For fixed m > 2 and n sufficiently large, there 

exists a oonstant a 0 such that the number of m-element subsets 

of {l,2, ••• ,n} which can be chosen so that no two are disjoint 

but thet•e is no 9lement common to all is at most a 0nm-2• 
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Proof of Theorem 1. Fix m. We merely need to show that, 

for all sufficiently large n, 

and the result will follow by induction. So suppose we have 

a (k,m+l)-coloring of a~ such that k = Xm+l (a~) , where n is 

any integer sufficiently large that the conclusion of Lemma 1 

holds and such that(~:i)> ma0nm- 2 , where a 0 is the constant 

of Lemma 1. We first claim that there must be at least n+l 

m-2 colors which each appear on more than a 0n vertices. 

Suppose there are n or fewer colors which each appear 

on more than m-2 a 0n vertices. By Lemma 1, each such color can 

appear on at most (~:D > a0nm-2 vertices since they must all 

share a common element. Thus, since each of the (~) vertices 

receives exactly m+l colors, we must have 

(m+l) (~) ~ n (n-1) 
m-1 

or, rewriting, 

Since 

(mn) ( ) m-2 !. k-n a0n 

k • Xm+l (o~) ! Xm (a~) + x ~~) 

! 2Xm ~~} • 2n 
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it lollows that we must have 

However this is a contradiction, since n was chosen sufficiently 

large that (~) = ~ (~:i) > ~ ma0nm- 2 • a 0nm-l, and the claim 

fo~lows. 

Thus there are at least n+l colors which each appear 

on more than a 0nm- 2 vertices. The set of vertices on which 

any color i appears must form a collection of pairwise-inter­

secting m-element subsets of {l,2, .•. ,n}, by definition of G~. 
m-2 

Thus, by Lemma 1, whenever color i appears on more than a 0n 

vertices, all those vertices must contain some common element 

ei. Since there are more than n such colors, we must have 

ei • eJ for some i and j. If we delete from G~ all the vertices 

f Gn-1 ( l) containing ei • eJ, we obtain a copy o m and a .k-2,m+ -

coloring of it, since colors i and J have disappeared. Therefore 

and the theorem is proved.l 

The second question involves what we call the 

• ultimate multichromatic number x (G) defined by 

x*(G) • inf Xm(G)/m. 
m 
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It is proved in [1,7] that the value of x*(G) is always achieved 

for some finite m. One easy \!ay to see this is to formulate 

the problem of determining x*(G) as a linear ~rogramming 

problem. (as done in [ 4]) : Let v1 ,v2 , ••. ,vn be an ordering 

of the vertices of G and let s1 ,s2, ••• ,s1 be an ordering or 

the independent sets or G. 

and 0 ~>therwise. Then ·the 

x*(a) • min 

subject to: rj > o, -

I. 

2 xi,-:rj • 1, 
j•l 

Define xij to be 1 whenever vi E 

value or x*<o> is given by 

1 

' rj ~ 
j•l 

1 ~ j < lj -

1 < 1 ~ n. 

One can show easily, using Hadamard's Theorem, that no basis 

matrix for this problem can have determinant exceeding nn/2 

and this is an upper bound on the value or n required. 

This upper bound however seems ridiculously large. 

sJ 

Erdos asked [2] (as did the authors, independently) whether 

x•(a) could always be achieved for an m not exceeding the 

number or vertices ot a. We answer this in the negative, 

constructi~ graphs tor which extremely large values ot m are 

necessary to achieve x•(a). 
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Let Cp denote the graph which ic a cycle on p 

yertices. The join a1+a2 of two graphs a1 and a2 , having 

disjoint vertex sets, consist$ of all edges and vertices in 

the two given graphs along with all edges joining a vertex 

from G1 to a vertex from a2 . We use the following two lemmas 

in our constructjon: 

Lemma 2. [4,7] For a11 integers p ~ 1, 

x•<c 2p+l> = 2 + (1/p). 

Lemma 3. [7] For all graphs a1 and 02 , 

Let pi denote the ith prime and define the graph 

G(i) t(; be c2pl+l + c2p2+l +·. ·+ c2pi+l" The number of 

vertices n of G(1) is given by 

n • 1 + 2 ~ pj . 

Applying Lemmas 2 and 3, we obtain 

x•<a<1ll • 21 + % (1/pJ > • 

Since Xm(G(i)) must al~ays be an integer, it follows that the 

least value of m for which x*(G(i)) • xrn(G(i))/m can be no less 
i 

that ]Or
1 

pj (and in fact that value or m will ~ork). Using 

the Prime Number Theorem and expresaing this lower bound in 
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terms of n, we obtain the asymptotic lower bound of 

e{(nlogn)/2 • 

Thus, though this is still quite fa~ from the upper bound of 

nn/2 • e(nlogn)/2 

we see that extreme}y large values of m can be required in 

oroer to achieve x*(G). 
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