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l. Int.roclucti on. 

Graph colorina proble.s ariae in IIUUly practical si t·..a.ations, for 

eu.ple in varioua tiJMtabling md acheduliQ8 ;robleas (see for example 

( 1'), ( 1~]). !t would be very uaetul to be able to date:naine quickly 

the chrc.atic n~er of a graph. However, it ia veil known that this 

probl• ia IU'-e~lete, ad thus we do not exrect to find good algori tblls 

for the problem { ( 1), ( 10) ) • 'l'bere has been proposed a claaa of branch­

and-bound alcoritbu, vhich ve e&l.l here Z¥kov aJ.&oritllu (see i)) ). We 

branch on whether or not two naa-adjac-mt vertic~• have the •~ color 

1111d bound by using tbe fact that the chrcaatic number of a graph is at 

least the size of .ay c~ete aubsraph. ~kov &l.gori th• alway a explore 

at leut a 'pruned ~kov tree'. We abal.l prove in Section 5 below that 

for alaoat &1.1 graphe G
0 

on n verticea every pruned Zykov tree baa 

at leut 

cn{loc n)
1

/
2 

node a, tor ac:ae conatut c > 1 • It tollava that any ~kov algori tlwll 

requiHa in probability .are thm exponential tille. 

E. L. Lawler ( 11) bu recently noted that a aillple algori t• 

involviDa tbe Nxi•l stable seta ot a p-apb requires aa.ly exponential 

tt.e. Dlis aJ.&oritla ia then tuter tba1 the 2'¥kov aJ.&oritbu. 

In tbe next section we pve ac.e prelild.nary definitions, includi.tg 

tboae ot 1¥ltoY trees and 2;,ykov al.Fritbaa, ud in th~ following section 

ve preHDt ac.e prel1Jt1nary 1-a. After that, in Sectiaa ~ we investigate 

the alse ot ~trees. !be atadud alaoritla tor deteraining the 

cbraatlc pol.yDcmal or a graph lmolves the exploration or a ~kov tree 

( aee tor n..rple [2 1 Chapter 15). In Seetion 5 we investigate the size 
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of J.niDed ZYkov trees and deduce that 2'0YIEDV aJcori U.. are alalr. ~ a.hu 

give a nu.eric&l exa.ple. 

In Sectian 6 ve inn.tipte a beclttncll ec.lonnc al&m'i tta. We abow 

that 1 t h ea ... tial.ly the •- ..a a certaill ~ alcor1 u., •cl obt.ain 

an upper bouDd tor Uae tiJie 1 t. requires. 1'be in ~loa 1 ve s1 Ye an 

interpret.at.ioa or our ea.rller reaul.t.a in ter8a or t.be lenctba or certain 

,t:root'a eonc:erni!J& the ctu-c.&tic n\lllber. Tbe results in thla aecticm are 

siailar in spirit to •~ Heeat rer.alts or v. ctwat&l. (1.) ccmcend.nc 

atabili tr n~ra or &nllb•; u4 1.Ddee4 tbe reafti'Ch reported in tbls 

paper _. initially .at1Yatecl b)' diacuaaicma with CbYat&l. ecmcemiDC 

hia reaulta. Finally in Sect.ioa 8 ve CCI181der •mn1-1' colodnc 

tJ.aorltbaa• .-bicb ~ uae .ore colora thE neeeasary, mel iDYestipte 

the ratio or tbe n\llber or colora used to t.be cbrc.at! c: nu.ber. Tbis 

lut sect1oa is DOt closely related 1n eoatmt to tbe rest or tbe paper, 

but tbe results there tol1ov euily t'rca 1-.. uaecl earlier. 



~. t•rellain&I'J ~riAl t1 au. 

A lli'OJ)el" eolor1J!4 of a crSJll• ~ fv'.t.hout loopa: or ; uuld ei~~: 

11 a colOJ'iD« of the verticea; or G s.> tbat no tvo adji.C".t ·tertic~.; 

receive tbe $.-c c<Uor. The color aets ln 3UCh a colorlac f"orm a pro~:•r 

p&n 1 tion or G • '!be c:br'c.ati e nw.ber x ( G J ia the leut i ntepr ll 

.uch th8t tbere ia a proper eolortn• of a u.aing il colm s. A craJh 1: 

' CCJ!Rlete if nery tva verticea are adJacent, and tbe clip n~er •(GI 

1• the ,reatest uu.ber of vertices in a ca.plete •ubrra¥h of ~ • 

Let n be • i'Q&l t1 ve intecer. We let " • Jr!note the ::et or all 

graph:: vi tb vertex set ( l, ••• , n} • 'lbrouPout. tbe J·aper I Will be a 

eonst•t vitb 0 < p < 1 Md q vill b~ l-p • A probability dhtrlbut.ior, 

is inclUICed. on the .set ~ of graphs by the .stateaent that each ~ occ~.:r.:­

independeotly vi th prooabili ty p • It k !s a :positive integer and 

~ < x < 1 a blnaaia.l randall variab.le vltb ~er:: k and lC is the 

s• of k llldepeadent {O,l} -r•doa variabi.ea Xl' ••• ,~ such tbat 

Prob(~ • 1} • x tor 1 • l, ••• ,k • 'ftNa the nUIIber of ectces in a sraJ1b 

in ~ 1a a blncaia.l nn..U. variu.le with panlll!'ters ( ~ ) and p • 

• V. can•14er &lao the 1et .... ot all IJ'8Pba vi th ftrti cea the 1ets 

or a })U"ti tion ot { 1, ••• , n) • U' k 1a • lnt ... r ve abal.l ot't.en contwse 

• k •cl {k} • !Ilea tor ~· w ~ •q tbat ~ 5 ~ . 'ftle uae or 

aeta to .lAbel. ftl"tice• 11 ·~ a notational conveftiace. 

&Dod &1.1 ~ in ~ ' • Par .,..le I.-a 5.2 be.low .tate• tbat n 

tor U.O.t all P'._ ~ 1ll .1
0 

x(Gn) ~ 112 n I 1,. n • 

'!'bil •U~pq ..... that 

Prob{G c"b: x(~) ~ 1/2 n I loa D) ... 1 

' 

&I D ... • 



• 
il'~ tf 1n "'n • rou.~ (5) - elenA• tbe ~ ..... a;.., 
and H~ • 'ftle toner ~ 1• obt.aiaecl tn:a B b7 ai~ M4iAl • 

~ ~ :>1n1q • IIDd y ; IIDd tbe lat.ur R~ la abt.aiaed tn. H by 

r~laciDI tbe ftrUcea • 8Dd r try a •illel• D'""' Yel"t.e:a a: UY 

H" ~::t H"' an obt&ined ~ H t:; • • edee·adcU tian' aDd a Q 7q 

• ·.-erte•-eaat.I'K1.lan' "apec1.1 ft.1.J. In ~ proper eolortoc or H e1 tber 

nan tbe wll liDo. reaW.t (a" (15)) t.hat 

(~.l) 

• 
~· tl•t w hawe a l"fb U ln ~ *ic:b 1a 1tael!' a leat ln 

& binuy tree. !MD b!'!DCO!UM at. H lDYolna ebcoabe DCID-adJeceat. 

wert.1 c.. X -.4 Y 1n H .act 11 nq H the leftaca R~ .-1 tbe 

ript.aaa ~ • or cour•e w \!.-at b~ at B 1 r H 11 e~e. 

~ let. c be a lftPl 111 .t. . It .. nan wl t.1a tM •U.U DOle G , 

tbe root or o.a- biAU'J t.ree, ..a br.c~t ~ w abt&lA a prU~ 

1fr'9! t.ree tor G • lb" (~ .l) w aow uaat. x. (G) 11 tbe ma~ nl• 

or x,(L) ewer all lMfta L or ~ ~tal _..,., t.ne tor G • 

A zY!re! u. tr~r a 1a a ,.rt.ial 1.fMw v. Ja t*idl ..- 1.-i u a 

ea.plete ~· .,. p we bel.c. • .. ._) • or a ~ u. tDr a &l'lllla 

lA ~ • (See &lao (~) Cblipter 15, [5).) 



Ex!!ple. 

:ISJ: 
I ""' lf)?f2 

4~, 

/ 
lt812 
4 ' 

~ 
4!-~, 

We bave nov deacribecl the 'branching' :process to be used in our 

'IJrech-and-'bOuDcl alsoritbaa. 'Dle 'bounding' process de:pends on the 

cbYiwa result t.b&t for atJ.7 II'&Jih G 

x(G) ~ •(G) • 

A lr!rD! alp1 f?:!! ia a branch-•d·bouDd aJ.sori tba for deteminins 

tiM ~ic D1111ber of a p-apb, uiq brucb and bound procenea u 

4Mcr1M4 llboft. lllch liD ~ri tala baa a nbi'O\I't1De for detendniDC 

(2.2) 

tar ..a 11'11* a a lGRI' boa4 •' (B) tor e(H) (tor Ulllple bJ' 

NM! .. a CCIIFl.te 8abcn1Jb of B ) • Alao it .aillt&iu a current beat 

upper ba.d t011r the eb~ic JWIIII)v, *ich il alvaya at aoat the rnaber 



of vertices ln any ll'llil encoUDtered. It operatea oo a &r&Jib G u 

follow a. It begina to ( coostrw:t ud) explore a partial 7¥kov tree 

for G , atartina ~ t•. t.be root G • ~ae that at sc:.e ataae w 

ha•re explOJ"ed a p.a.rtl&l ~ tree T :tlr G md we have an upper 

bound b foT x (G) • 'ftle &J.sori tba cbooaea a leaf L ot T vi t.h 

w'(L) < b if there is cuch a lea~, then trancbes at L .ad updatea 

the upper bound: if' there 1.- no 3UCh leat L tbe &J.&Orltba ret~ 

x(G) • b and stops. A particular ez.aple 'lf a ~ &J.caritba ia 

investiphd in [5), and another one in Secticn 6 be1ow. 

It is eer.;;· to see tbat a ~kov &J.&oritba a.t~s ret\11'118 tbe correct 

valuf: for th~ cbro.atic n\Eber md tben stops. Further if aq 1 t ccnducta 

a depth-first search of tbe partial l;ykov tree the atonp requi~t. 

need only b€ say O(n3 ) • 'l'he problem ia tbat ~ al&ori tmu are veey 

slow, tJven if we uppoae that the nbr;)lli;ine cu al-.,s detel'llille •(H) 

exs.c-t:.ly IIUld without co&t, and that we c• alw:·s atart vi tb the upper bcnmd 

at t.he nc1;ual, val.ue of t-he chrc.atic nlllber. (Both these nppoait.ia:u are 

of course ra"':.her unliiltely, since ve 110Uld be solrlDc JP-callplete prableaa 

[1).) 

Given a ZQkuv tne z ror a iP"-Pl c the correapolldi.D& F'JDed. 

zY'kov tree consists ablply or the root G it •(G) • x(G) •d otherwise 

is the unique waxt•J rooted adltree or z CCIIl'ta1B1nl u tat.emal. !lOdes 

preciaely tbe nodes H or z with w(B) < x.(G) • llq ~ alpritla 

IIWit explore at least ac.e pJ'O'NCl ~ tree tor CJ • We llba1l pl"'7ft 

that pr\med. ?;JtEov trees are uaul.ly '"17 1uwt -.4 thu tbat ~ 

aJ.&ori tlaa are u.auaJ.4 vei'J' slow. 
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Finally let 11.1 eatabl11b ac.e not~tticm. We let N denote the set 

ot positive intepra and Z the aet or naa-nesative intesers. J.l'or any 

:real n.-er ll VII let r X 1 denote tbe leut intepr DOt less than X 

and L llJ cleDote the sreatea' intep~ not IIOJ'e than X • Recall that 

q ia a c008taot v.i th 0 < q < 1 ( ~zcept tOat in part or sectior. 3 VII 

allow q to vary). All losaritbu are to the baae 1/q unleas otherwise 

indicated. 
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3. Preliminary Reaul.ta. 

In this section ve ~resent same neceaaary preliainary 1~, wbich 

may be of interest in their oWl risllt. I.-. ,.1 ia well known and 18 

used only in the proof of Leala ,.2, which ia the 1110at uaed reault in 

this section. 'l'be rell&inins results, ~ :5.:5 to :5.6 concern the 

'bounded aequential colorins alloritbm', and are needed here only for 

the 'converse' result a in Secticna 4 and 5 and for Section 8. 

Let m,n £ N and let Q • {s1, ••• ,Sm) be a f-.ily of pairwise 

disjoint llubaeta or {1, ... ,n) • We • ..,. that Q 1a proper tor a sraph 

G in -"n it no tvo adjacent vertices of G are in the au.e set Si 

1n Q • For each sraph G in Jn we define a •contracted' srapb GQ 

u follows: the graph GQ has vertices s1, ••• , Sa and Ul qe between 

the vertices Si and Sj it and only if' there 1a an qe ln G betvee:t 

some vertex in the set 3i and ac.e ve::tex in the set Sj • Clearly GQ 

lll&:f be fo:raed trc. G by a aequence ot vertex-ccntractiona if 'UlCl cmly 

if Q is proper for G • 

Jov let a,n € N and let Q be a partiticn of {1, ••• ,n} into a 

aeta. It ae... reuouble to think that we are likely to have 110re edpa 

in GQ the 110r• equal in size are the seta 1n Q • We prove below that 

this 11 true. 

J'or lily ranck.!ll variable X we let r 1 deDote ita A:t.atribvtiOD 

tuneticn, that ia 

Px(t) • Prob{X:; t) 

for each real nu.ber t • Givan two ~ varillblea X 1114 Y we 

write X~ Y 1n diatributiOD it rx(t) ~ r1(t) tor eiiCb real n\llber t • 

8 



r.e.a '.1. Suppose that. X , Y , Z &ZOe randca variables, that X ~ y 

in distribution, and that both the pairs X, Z ~~.nd Y, Z are lnc:lepencient. 

Then X+Z ~ Y+Z in distribution. 

Proof. For any real n'UIIber t , 

'x+z(t) • f Fx(t-u) dFz(u} 

~ f Fy(t-u) 4Fz(u} • Fy+z(t) • 

Let a, n E N and suppose tbat m 1a fixed. Por each real m.aber q 

vi th 0 < q < 1 , let N( q) be a binamial randcm variable vi th parameters 

(;) and (1-q), and for each partition Q of (l, ••• ,n} let N(n,Q,q) 

be the n1aber of edges in tbe coatracted sr&Jlb GQ for srapha G 1n .In 

with edge-probability (1-q) • 

:r.e.a 3.2. For each partition Q of {1, ••• , n} into m sets we have 

2 
lf(n, Q, q) ~ lf(q(n/a) ) in distribution. (3.1) 

Proof. We 118¥ ot course uawae that a~ 2 • We sball prove first 

that for each partition Q of (1, ••• , n} into m seta we have 

2 
R(n,Q,q) 5 lf(qrn/•1 ) 1D distribution. 

Let Q. (~, ••• , f\a} be a ~ition ot {1, ••• ,n} into a sets; 

let a1 • !s11 tor 1 • 1, ••• ,a ; U1d. SUH'O•e that a1+1 ~ s 2-1. • Let 

v £ ~ 804 l.et Q' be the pvti tioa obtained. tree Q by n1 tchins v 

floaa ~ to ~ • In thia put of the proof ot the 1--. both n and 

q vUl. be fixecl. Dlllote •(n, Q, q) IIU1 B(n, Q', q) by KQ and RQ' 

re..,ecti vel7. In order to pron (3 .~) it h sutticient to prove that 

ill dhtri blltion. 
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COftaider rirat the cue a • 2 11 ~ IQ and IQ' ~take cml.¥ 

tbe v&luea 0 ad 1 • Cleu-1¥ 

1 11 2 (al+l)(•2·l) 
Pl'ob{lfQ • 1} • 1- q < 1- q • Prob{IQ' • 1} , 

and e~.' ) tollows. 

SUppoae now that • ~ 3 • x-t R Eel R' be tbe parti tiou Q 

and Q' rupecti~ with the lut aet dtietecl. BT 1.nclucti0ft w ..,­

uauae that 'J ~ 'J• in cliatributiOft {ill • obviou.1 natatim). Let 

D and D' be rllld«a variable a 11 vine the dep'tte ot the 'lut • vertex 

in GQ Eel GQ' reapectin}¥. 'l'beo ~ ead 11 , are i.DdepeDclat ot 

D md D' , Ed IQ • 11+D md IQ, • 1
1

,+D' • lllllce by .u-a ,.1 in 

order to prove (3.:5) Mel 10 {3.2) it ia autticient to prove that 

D < D' in diatributioa. 

J'or 1 • 1, ••• , a-1 let ~ • 1 it s1 •4 S. are lldjacet u 

vertices in GQ ID4 let Xi • 0 otbenriae. Dlf'iDe r.adaa YV1Ul" Xi 

tn:a Q' 1n a aillilar ..mer. 'lbe the r...tca Y&l'iablea ~' ••• ,x._1 

are ind.epeDdent IDd a~• to D ; tbe riD&. nriablea Xi_, ••• , ~l are 

~t ID4 ._to D' ; ID4 ~ • Xt tor i • :5, ••• , .. 1 • a-ce 

Rf'nciEt to JII'Uft that 

~ ·~ ~ Xi +%2 
lote tint that ~ ·~ .... Xi+ 12 IIQ tMe aaq tile ftl.-3 

{~ ... )• 
Prob{~·~ ~ 1) • 1- q 

2 
•• PI'C*(Xi_ + X2 ~ 1} • 

lO 



Frob{~·~ ~ 2] - Frob{~ - 1}Prob{~ • 1} 

Prob{Xl_ + X2 ~ 2} • Pl"ob{Xl_ • 1 }Prob{X2 • 1} 

(a
1
+l)a (a

2
-1)1 

- (1 - q .)(1 - q ., 

(11+1)1• (a2-1)•a (a1+s2)aa 
·1-q -q +q 

15 • Jov let t • q , ao that 0 < t < 1 • 'ftl• 

Prob{Ii +X2 ~ 2} - Frob{~ •1:2 ~ 2} 

1 1 12 (a1+l} (•2·l) 
.t +'t -t -t 

Ed thia l.ut upressicm 1a naa--.ative, aince a1 ~
 a2

-1 • art. this 

cClllpletea tbe proof of (3.5) •4 ao ot (}.2). we DCN u.ae (,.2) to 

proft (3 .1). 

Gi...a a set 8 ot J1011t1 w 1Jit.epn ..a a JIOiiti'ft ilrtepr It let 

kS be tM Mt of ;pod tift int.epra 1 I1.1Cb tbat r 1/k 1 1a in s • 

Gi..- a ]U'titlaa Q • (~,~, ••• ,a_) of {1,2, ••• ,n) tor •~ intepr n 

let IIQ be tbe partiticz (~,~ ••••kl\a) ot (1,2, ••• ,kll} • PoT 

•• zil• it Q 11 tM ~u.c. ((1,2),UJ> or {1,2,,} tb• 2Q 11 

the JIU'titicm ({1,2,,,a.}, (5,6)) ot {1,2, ••• :6) • 

1l 



Let n EM , let Q be a partitioa o~ (1,2, ••• ,n) into a aeta 

and bt q be a real llUIIber v1 tb 0 < q < 1 • Let ~ 1 cleaote the -n, -q 

aet " vitb edp-probab1litiea 1-q • 'l'tMD l(n, Q, q) ia tbe ._ o~ 

( ; ) inclepead.ent (0,1 J rancSc. variables x1J (l ~ 1 < J ~ a) aw:h 

tbat 

Prob{X1J•l] • Prob{G£~, 1-q: ac.e vertex in s1 ia adjacent to aa.e 

vertex in S j } 

l/k
2 

Let k be a positive intepr. 'l'ben ll(lm, kQ 1 q ) ia the •• o~ (; ) 

1~t (0,1} randca variables Yij (1 ~ 1 < j ~ m) such that 

• 1 - < !11/~) I ksi II ts J I 

lsillsJI 
"' 1- q • 

S.ce tor eaeh positive intepr k , 

l/k
2 •<n, Q, q) • •<m , kQ , q ) in eli atribut1DD. 

&, (3.2) ad (3.6) tar eacb kEN we have that 1n distribution 

2 
•Cn, Q, q) • •<m , kQ, ql/k ) 

But 7f~l2 

- ( i )2 
u k .. ~, lad ao clearly (3.1) bolda. 'l'bia 

c~ete• tbe proot ot X.... 3.2. Cl 

12 
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We define an aJ.coritbm related to tbe sequential aJ.soritla (SA) tor 

co1oriq graphs (see [8), [9)1 [13)) and llbich ve call the bounded 

segueetial. al.4oritba (BSA). We mall look at sraphs G in ~n tor 

•~ n in N . Suppose that w have a positive integer s • 'l'be 

BSA (bounded at a ) acta CD each grapb G in the sue way aa the SA. 

except that we al.lov each color aet to contain at 110st a elements. 

Thua the BSA (bounded at s) colora vertex 1 with color 1 and then 

co1ora the raainin8 verticea in increuinc order, coloring vertex i 

w1 th color J if j ia the leaet positive integer such that vertex i 

is not adJacent to any vertex already colored j and such that there 

are at rost ( s-1) vertices alreq- colored j • 

SUppose nov that ve bave also a poai ti ve intepr t • ror eacb 

craph G in Jn ve shall be interested. in the f'ea:ily Q(G) (• ~,t(G)) 

ccnli.tin& ot the tirat t color seta COD8tructed by the BSA (bounded 

at s ) ; 8114 110re interested in the contracted graph G' • GQ(G) • We 

sq that a f'.-I.J¥ Q( G) u abon is ,!!!g if' each of' the t seta contains 

the tUll a eleMDta. 

I.- 3.3. Let K be a bincaial. rmd«a variable with pu'QMtera ( ~) 

-= q
82 

• '!hell ror each nOG-nep.ti'ft 1Dtepr k 

Pfti»{~ lllaaea at 110at k eclpa} ~ Prob{B ~ k}Prob{Q(~) is tull} • 

Proof. Let • (· a(n, a, t)) be the collect101L or all. tbe t.mliea -
Q(G) rar p-lfllbl G 1D .In • !bu a 1a the collectiOG of' .U f'811.1es 

(~,···•It> or t cl11Jo1Dt nblleta r4 {1, ••• ,n} eecb of' abe at .oat a 

ud nch that tor uch 1n4a 1 in {1, ••• , t} .ad eecb ftrtex v in a 

set wl th in4a crater thtll i , it I s1 l < • or ., < u ror aaae 'ftl'tex 

u 1n s1 tbiD ., > u' ror ac.e Yuta u• 1n s1 • 



Let Q • ( s1, ••• , St) be a f'amily in R • Let X be the set of' 

graphs G in .In such that no two vertices adjacent in G lie in the 

same set Si , 1111d let Y be the set of graphs G in .I;. such that 

for each index i in { 1, ••• , t} 1111d each vertex v in a set vi th index 

greater then i , it I s1 1 < s or v < u f'or saae vertex u in s1 

then v is adjacent in G to s~ vertex u• in Si with v > u' • 

Then 

{ G £ ~: Q( G) • Q) ,. X n Y • 

Nov clearly in distribution ve have 

given G€Y , 

and conditioning on X does not affect the distribution of the number 

of edges in GQ • Thus in distributi.on 

given Q.(G) • Q • 

But nov tor each k € Z , 

Prob(G' misses at moat k eqea) 

• Prob£IE(G')I ~ ( ~) -k} 

• E Prob{IE(GQ) I ~ ( ~) - k I Q(G) • Q}Prob{Q(G) • Q) 
Q€& 

> ~ frob{(:) -II(GQ)I ~ k}Prob(Q(G) • Q} 
Qca 

Q t\J1l. 

• Prob(lf ~ k)Prob{Q(G) tull} Cl 



Lenna 3.4. For any positive integers n 1 s, t with st < n 

( ( ) } ~ n(l - qs-l)n/s -t+l • Pro·o Q G
0 

not full 

Proof. For each graph G in .J
0 

and for i • 1, •• • , t let Si (G) 

denote the i-th set in Q(G) • Then 

t 
{Q(G ) not full} • U {lsi(G )! < s} • 

n i•l n 

Now for each k < n in A:J and each gra:Jil G in ~ let ak( G ) - n n -n 
denote the number of vertices of G amalgst tilco f'1 rat k ldlich the SA 

n 

colors with the first color (see [8]). Then 

t 
Prob{Q(~) not full} ~ !' Prob£lSi(G >I < s} 

i·l n 

t 
< i ~1 Prob{an-(1-l)s(Gn) < s} 

t 
< I; s(l-qs-1)n/s-(1-1) (see [8]) 

1·1 

ta.a. 3.5. Let a > 0 aDd let a and t be f\mctiona f'rc:. N 

to ,._. such that a(n) ~ (1-a)l.o8 n IIDd a(n)t{n) ~ {1-c)n for each 

n in N • Then 

Prob(Q(~) tul...1.) - 1 

It turtber a(n) ~ (2 loS n)1/ 2 for each n in N ther 

Prob(~ ea.plete} - 1 aa n - • • 



Proof. By Lellllla 3. 4 

log Prob{Q(~) not f\lll) ~ log n - en/log n • log e n -(l-a) 

-- un ... .,, 

and so (:5.8) bolda. Nov suppose tb&t s(n) :=:, (2 108 n)1/ 2 tor each n 

in "-1 • If' ll is as defined in Laa& 3 • 3 then 

0 > log ~~'-~-~ • 0} 

t s2 
• ( 2 ) log(l- q ) 

n2 
2 

~ 2 log n log(l - 1/n ) 

... o as n-..,. 

Hence 

Prob{N • 0} ... 1 u n .... • (3.10) 

Nov (3.9} follovs f'raa (;.8)1 (3.10) and I.-a 3.3. u 

I.-a ,.6. Let 1 > 0 • 'l'ben for alaoat all grapba G in ~ there 

is a }ll'OJ)V partitioa R or G into at 1eut (1-c) n (2 101 nfl/2 

aeta aueh that the ec:mtractecl £rapt ~ ia ca.plete. 

~· Let a(n) • r (2 loc n)1/ 2 1 .ad t(n) • r (1.-c) ll (2 lee nfl/2 1 

tor each n ill N . ~ 1»7 1.-. '.5 
Prab{o;. ~ete] - 1 u n -• • 

Jlow w1 tb acb poaJib G in ~ w lhall. U80Ci&te a praper ]IU"ti tica 

ll(G) nla't.ed to tbe pzaper f.mq Q(G) 1 .-4 tbe COIIUIICted IJ'IIta 

a• • Ga(o) rel.atAd to tbe caat.rlll!tet\ II'IP o• • oQ(G) • Olaaider a 

crltllb G in ~ • ~· tb&t tM ftl't1c• of G DOt :.;.. ~ Mt in 

Q(G) are v1, •••••J 1D 1Dcreuiac Ol'der. Par 1 • l, ••• ,J 1a tan 

~.11) 



add the vertex vi to the first possible set in Q(G) (that is, to the 

:first set in Q(G) such that vi is not adJacent to my vertex in the 

set) and 1r ve CIUlDot add vi to aey- &l.req present set in Q( G) then 

we add to Q(G) a new singleton set {vi) • In this way we construct a 

* proper partition R(G) of G with at least t seta. Let G be the 

contracted gr&Pl ~(G) • Then clearly the nUIIIber of edges missing in 

* G is at most the nUIIIber or edaes missing in G' • Hence in particular 

we have by (3.11) that 

* Prob { ~ cOIIIpl.ete) - 1 as n ... ao • a 

Lemmas 3.5 and ,.6 are in convenient farms tor the present purposes: 

they clearly are not in tbeir stronpst forma. 

17 



4. Z,ykov Tree a. 

In this section we investipte the sizes of 1¥koY trees. We ban 

tbree .aiD reuons for doins thia. l'irstly the aizes of ~ow trees are 

of intere:t in their cnm rilbt, tor Gllllple if we vhh to detuw:lne tile 

cm-c.&tic ~al of a IP"&Jil ([2], Cblipter l.5 ); ·~ aa. IIIIDwl.edp 

of the aizes ot ~ trees helps ua to inteJl'ft't renlta oa the ai&ea of 

pruned ~ov trees; and thirdly acme of the ~ta ~ieb we ue bere 

are siJall.ar to those we U6e for proved ~kov trees in the next aection. 

There are two theoreaa 1n this section. '!'he first sbOR ill pu-ticular 

that eYe!'J ~kov tree for a liven IP"ePl hu the .... size, that is the 

••• nUIIber of nodes. Given a gra)D G let ua denote bJ C (G) the 

maber of proper partiti011a of G (that is, the n-.ber of colorinp 

of G with •color indifference• ). 

'l'heorea 4.1. Every ~kov tree T for a griQ!b G hu 2C(G)-l. nodes. 

Proot. It is not hard to check that the vertex seta of tbe l.eana ot 

T are in 1-1 carre8p01ldence with the proper part:it1CD8 of G • 0 

'l'he next theorea pves uy.ptotic reaults wbich by ~ a..1 Ux7Ye 

~ be atated in terM _.i tber of the size ot 2'¥Jtcw trees tor a 1fti1b G 

or ot the nUIIber C(G) ot proper partitiana of G • We cbooae to state 

th• 1n tenaa ot tbe latter. It 1a ccm'Ytmieut to ·~ out part ot 

the proo! u a 1-. 
ror enry n 1n - and 1, r in Z let !

11
(1,r) be tbe ut 

ot gr.paa 0 in ~ such that in nery ~ tree tor 0 it w start 

at the root G we em &l~a .U. l(n) lett tUI"Da and r(n) I'1Pt 

tUl'lla vi thout reaching a leat. If a II'8J)b G ia in 'l ( 1, r) 
D 



tbat certainly ewey 1.iJ11oY tree tor G bu at leut ( I+ r ) node a. We 
r 

viah to ebooae tbe 1\metiooa I •d r ao tbat Prob T
0
{t,r) -1 

l+r 
u n - • ad ( r ) ia u .Luwe u poaaible. 

I.-a Jt.2. 'l'bere aiat t'unet1aru I IIUl r hem N to '-1 aueb 

tbat 

u n-• 

( l+r 1 2/3 lac r ) ~ n{los n - :5( 2 lac a) ) 

ror n autnci•Uy 1.arp 

For ex.ple w .._., tate I md r ao tbat 

2-(2·2/3 + o(l))(1- a)·lh 
f(n) • a -. 

f!:!2!. t.t I a4 r be r.etiaru hat N to N , web tbat. 

(4.1) 

(J..2) 

l(n) ~ (:) ad r(n) ~ D•l , wllic:b w llball cbaaM bel.alr. PQr eldl n 

1n N l..t. a(n) • n-r(n) , l.t a(a) • nfa ..ca let k(a) • (;) • 
, /2 

Ve aball cbooH r ao tbat a( a) - • u a - • bat x(n) • o( (lol n )- ) • 

Let Ita a.ot.e tile aet ot )IU'tit.iaaa ot fl,2, ••• ,a) 1ato at 1eut • 

Daa.-p&J' Mta. '!biD tiM eGIIpl.--t t_(l,r) ot T
0
(f,r) 1n ~ aatisnea 

f (l,r) • U {GE~: Q proper tar G ...t GQ aia .. a at _,.t I ... a} 
D Qclla 
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Prob{G£~: GQ ld. .. ea at moat I qea} ~ Prob{I ~I} (4.6) 

n 
Now clearly a,., cODtaina at .oat n partitiODB ADd ao by {4.5) e4 (4.6) 

Frob T
0

(1,r) ~ n° Prob{l ~ I} • (4.7) 

We shall use (4.7) to ••ure that Prob fn(l,r) -0 u n .. •, ua4 so 

clearly we auat take 1 < E(l] (at leut ror larp n ). We let 

1 l x2 2+o(1) 
l(n) - ~ E(Jf) • ~kq - D 

lov 

2 2 
< {l+1 )( k )qz l (l- qz )k-1 

' 
(tor n ntncien~ larp tbat l(n) ~ 1(1] ). 

low b7 (4.7), (~.8) .n4 (~.9) 

lQI Prob fD(I,r) 

(4.8) 

< D laC D + I lOCk • I lac I + I lOC e • ,!, • (k•l) laC e q~ + 0(~ D) 

• A laC n + l(l.Qa k·(· lc!l2 +lack· x2
) + J.oc • • x2

- 2 J.oc e + o(1)) 

• D loi D • l(loc e • J.oc 2 + o(l)) 

... •• U D •• 

a.ce (~.1) llalda. It 1 tna to cMoM r • -

~ ';r) ~ ( ... )(lc!l I - lGc a) 

• a(l·a-1 )(l.ac a - 2 ~ a - ,! • 0(1)) 

~ •(loc a - a·l los a • a2 
+ a(l• o(l))) .. 

20 



Let 1(n) • ( ~ los n)1/' and 111(n) • r n/1l • Now X • n/m and so 

1 ~ x ~ n(n/1 + 1)-l 

Tbua 

los n/x + x
2 :S (la& n)/1 + (los n)/n + 1

2 

• .,l + o(l) 

Hence by (~.10) 

los( ';r) ~ n(1os n - 5( ~ los n)2/' + {2-l/5 + o(1) )(los n)l/3) 

~ n(los n - 5( ~ los n)
2

/ 5 ) 

tor n auf'ficiently larp. Thus we have proved (~.1). Frail the above 

we ~~q euily check {~.5) and (~.~). 'l'bia ccmpletes the proof of 

I.- ~.2. CJ 

'l'beoNa ~.,. (1) :ror t!Ver:f srapb ~ in "n 

lotEC(Gn) ~ loCC(;n> • n(losn-loslosn-lose+o(l)) , 

(2) fte apeete4 n.lue E[Cnl ot C(~) tar srapha ~ in "n aatiatiea 

lotE I(Cn] • n(loe 'J- (2 1•31 n)1/ 2 
-llos los n + 0{1)) 

(3) Jar ~ all srapha (',n in "n 

n(J.oc n -:5( i lOC n)
2/3) ~ lOS C(~) ~ n(loe n- (2 log n)112 ) 

.!£!!!• (1) 'lhe ftrat part follows eaa~ trOll the observation that c(;n> 

ia ·~the n~r ot partitions of {l, ••• ,n]. 

21 



(2) We tirat show that 

los E[C
0

] ~ n(los n- (2 los n)112 - ~ los loc n + 0(1)) • (4.11) 

Let d be a f'wlction trOIIl ~ to t::l auch that d(n) .- • u n • • 

but Sa¥ d(n) • O(n/101 n) • 'We mall choose d below. Let "'n be the 

set of partitic:na of (1, ••• ,n} into k • Ln/dJ seta each of size d 

and (possibly) the (n-kd) ain&}.eton set {kd+l}, ••• , (nJ • Then the 

number of partitions in Rn equals 

(ltd)! > (n-d)! 

k!(d!)k - (n/d)!(d!)n/d 

and the probabUity that a partitic:n in 1.n ia proper equals 

( d)k lnd 
q 2 ~ q 

Hence the lopritha or the expected n~r or proper partitions 1n In ia 

at least 

(n-d} loc(n-d} - (n/d) loc(n/d) - (njd}(d 101 d) - i nd + o(n) 

• n(loc n - loc n/d - l oc d - ~ d + 0(1)) 

!low let 

tar x > 0 • !b-.n t
11 

(x) acbievea a llllifl'M .tn1- tor x > 0 at 

x • (2 101 n + 1)1/ 2 - 1 11114 Wa mn1•• eqgala 

(a..l2) 

(2 101 n)1/ 2 + ~ 101 loc a + 0(1) (a..l,) 

22 



We set d(n) • L (2 log n)1/ 2 J tor n e N and find that the right hand 

side in (4.12) equa.la 

n(l·Jg n - (2 log n)1/ 2 - ~ log los n + 0(1)) • 

Hence certainly (4.11) holds. 

We nov show that 

log E(Cn) ~ n(loc n- (2 log n)112 - ~ log log n + 0(1)) 

The inequalities (4.11) and (4.14) or course prove the second part of 

the thE-orem. 

Let k • k(n) be an integer i such that the expected n\aber of 

proper parti tiona into i non-e.pty seta h a mu1••. Then clearly 

E(Cn) is at moat n tilDes the expected Dlllber or proper pa...-titiana 

into k ncm-empty sets. Let d • d(n) • n/k • (1'hua d(n) is not 

necessarily an integer.) 

Let Q • (~, ••• , ~) be a partition ot {1, •• • , n l and let 

(4.14) 

ai • lSi I for i • 1, ••• ,k • !be u 1D [ 8) w see that the probability 

that Q is proper equals 

k ~ si(sl-1) 
1T q 

i·1 

Al.Bo tbe nmber ot putitiou ot {1, ••• ,n) into t. noo-tlllllpt)< seta is at 

.oat k
0 /t.l • BIDce 

1 2 
kn f (n /k -a) 

l(~n] ~ D if q , 



l 2 
los E[Cn] ~ n los k - k loc k - ~ T + o(n) 

• n los n - n lee d - £ loc n - ~ nd + O(n) 

• n(J.cs n - tn (d) + 0(1)) 

att by (4.13) 

tD(d) ~ (2 ~ D)l/2 + i lee J.o& D + O(l) 

and so ve have prond (~.1~). 

(~ ) 'l'be left hand inequal.i t;y in part (3 ) tollon ~ate~ f'roa 

I.-a 4.2 aDd the diacuaaiOD pnceclin8 it. low clearly 

lee E[Cn] ~ n(J.oc n • (2 ~ n)l/
2

) + ~ Prob(~ c(~) ~ n(~ n- (2 1oc n)112 )] 

Uld 80 by part (2) 

101 Prob{J.oc C(~) ~ n(loc n- (2 loc n)
1

/
2 )1 

~ n(- i J.oc loc n + 0(1)) 

~ ·• U n ~• • 

1hia prona the ript h81d iDeqaali't7 in pu-t (3), ...t tbua ~· tbe 

proat ot tbe tbeona. 0 

aida 1D tbe tbin :put ot !beol• ~., ~. !be HCODII pa-t auaeat. tbat 

tiM rtllat b-' 1Ae4plal1t;y ill tbe tbirci put .., be quite .,od. It tbu 

.... qaite ]10881ble tbat the lett~ 1Deqaal.lt:r 1a ratbel'--. Jtece11 

that tbe lett W lneqaalit:r tollon rrc. I.- ~.2. · Pl"o,oeitiall ~.z. below 

abon that ~ ~.2 1a 1D a .-.e beat poeaible. JlraJioaiticm ~.~ 

correiiJIGDila to Pl"opoai ticm 5. 7 1D the nat HCtica. Ve clo DDt pi'Oft 

rropo.iticm ~.~ b.,...: it~ be pl'ond ala~~ tbe llDea ot tbe )II'OOt or 

Pl'ojloe1 ticm 5. 7, ulJII uae J"aallta 1n 81et1cm '. 

p 



Prc?pod tion 4. 4. Let I mel r be runcticma frca .._, to lillf au.ch 

that 

Then 

Prob 'n(l,r) - 0 u n- • • 

llote that (4.15) above aem• that for any function f such that 

f(n) • n{losn-(}+o(l))(~ losn)2/:5) 

ve have 

los( •;r) > f(n) for D sufticiently larp. 

(4.15) 



5 • PrUnecl ;ytuw Trees. 

In this aectica ve iJlYestipat, the size o~ pnmed ~·kov trees. We 

do not IUDaP to t1nd out A" .ucb about pruned 18kov treea u w ~ound 

out abo.lt ( ,. apruned) Z,Jttov trees in the luf; aectica, but we ce able to 

prove a p-eater tbta expcaenti&l l.owr t.'Uld. 'l'bia reault lhon that 

~ alp-1 t.mul tor deterw1 ni 111 the ~tie nlllber o~ a graph usually 

require .,re than ezpcaential. time. 

We have seen tbat f1VVJ ~ tree ~or a given P'IIJ!h baa the ._ 

dze. 'l'bua certainl.y if ve have to cmstruct a ~ tree tbQre 11 no 

point in ape114ins tiae cboosins a 1 beat 1 "-iY o~ branch1f18. l'be ;.11 tuaticm 

is .,Ute ditterent when ve look at pruned ~trees. 1'WI.l pruned 

l¥koY treea ~or a si ven griiJlh ~ have different aizer. 

<1> 
I \ 

& ([) 
I \ 

(D---\> 



For every graph G let r(G) be the ratio of the greatest size 

to the ~est size for pruned ~kov trees tor G ; and tor each n 

in ~ let r(n) be the mni•• valne C't r(G) over all graphs G 

on n vertices. Thus r(n) is a Maaure ot the possible variation 

in sizes or pruned 2'¥kov trees for gr&Ji1a em n vertices. 

For each graph G on at 1110st tour vertices we have x (G) • •( G) 

and so every pnmed 2'¥kov tree tor G hu exactly ooe node. 1'bua 

r(l) • r(2) • r(3) • r{4) • 1 • 

The exampl.e above sbOVll that r(5) > l , IIDd by •dd'na isolated vertices 

to a graph it is easy to see that r(n) (strictly) increases trc. n • 5 

onwards. Thus 

r(n) > l tor n > 4 • 

In fact r(n) gran dr~~matica.l.q with n • 

PrgPOsition 5.1. 
~ (l+o(l)) 

r(n) ~ n • 

we prove P.ropositioo 5.1 by cooatructina tor each intepr n ~ 7 

a graph !\; oo n vertices such that 

!!. (l+o(l)) 
r(u;.) ~ 2C(-. nj- )-1 • n

2 
• 

l2 1 
(5.1) 

Here C(~) is the !Uiber ot p&rtitiOD& ot a set ot k distinct el•rats 

(... 'lbeorell "·' ) • 

l'irat tor eiiCh intepr k ~ 5 lArt ~ be tt.e pet.pa ~ rJ.u (k-5) 

vertices lld,1acent to each other wrta. Blu ~ 11 a 'wheel. with (k-5) 

axles': see the ......,... bel.ov ror a, • It ia eaq to cb.:k tbat •(~) • k-3 

and x(~) • k-2 ; llld that e<~e:ry pruned ~tree tar ~ baa exactly tbne 

nodes. 1ov tor each intqer n ~ 7 let K;_ be the &l'll1b S,. Ill 
I- +1 

topther vi th L n/2 J -1 ilolated. wrtice1. 2 



0 

0 

0 

0 

Ex!I!Ple. Hh is a, plus 4 isolated vertices. 

By brmchinl within the larse c0111p011ent of lfh we see that the 

..allest siu of a pruned 2;.Vkov tree for H' is 3. Rov 
D 

Hence by bnnchinl first aaooast the L n/2 j -1 isolated vertices in H~ 

ve see that the greatest size of a pruned ~kov tree ~or lfh is at leut 

the size of • unpruned 2;ykov tree for the sraph ~Ln,'2J _1 ccosistilll 

ot L n/2 J -1 isolated vertices. But by 'l'beor• 4.3 every 2;ykov tree 

tor this II'&Jih baa 2C(~ L n/2 J _1 )-1 nodes. We ban nov proved (5 .1) 

cd so cCllllpleted. the proof of Propoaiticm 5.1. 0 

Jtote that it the isolated. vertices are listed tirat then the urked 

~ alp'it!a will expl.ore at 1eut the larp pruned~ tree for H' , n 

c4 so the backt.r~k col~ al&oritba vill alao do b..ny (see Secticm 6). 

ccacem1JIC the cbrca&tic nWiber of a IWlda p-aph, vbicb 18 taken 

esseati~ trca [8]. Recall that all 1opr1 -u.s are to the bue 1/ q 

Ullless otberwiae 1D41cated. A set of nrtices iD a IJ'&Pl G is stable 

it no two an 114jacent, •d tbe stabU1tz n..t>er a(G) 1a the sreate•t 

m-.r of vwticea iD a 8'tabl.e set. 



LeiiDa 5.2. For alllloat all graphs Gn in .ion 

i 
)( ( G

0
) ~ 2 n / los n 

Froof. If x ( G
0

) 5 ~ njlos n then certain4 the stability n'UIIIber 

of a satisfies n 

But H we ::et s(n) • r2 lOS nl then 

Hel'ce 1 Frobf" (G ) <,.. n/log nl ~ 0 as 
,.. n - "" ' 0 

The tolloving conjecture appears essentially in [8). 

Conjecture 5.,. If 1 > 0 then for alllost a.ll graphs G
0 

in .j 
n 

we need 011• 110re 1- 1D order to prov~ our ll&i.n results. SUppose 

that we have a poaitive COilStant a aDd tunctiOilS I end r rna N 

to Z . Por eaeh n in N let r/!(l,r) be the set of graphs G n 

in "'n auch that 1n every ~ tree ror G 111beDever we start at the 

root G and JUke l(n) lef't turn. and r(n) ript tuma we do not 

encOUDter ~ node H with •(H) ~a x(G) • (Cmlpare with the det'1Diticn 

or Tn(l,r) preeedine Leilia ll.2 1n 8ect1Cil ~.) It G is a &rapb 1n 

~(l,r) then certainly ever,y ~tree for G bu at leut { •;r) 

nodes H with .(B) <a x(G) • 'l'bu settin8 a • 1 ve see that if' G 

is 1n r! (I, r) theD every pruned 7¥lmY tree for G baa at leut ( l;r ) 
nodes. We visb to choose the t'uactiOIUI l md r ao that 
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~( f+r frob T t,r) - 1 u n - • ancl ( ) 1a u larp u poaaible. D r 

I.-a 5.A.. Let Cl be a podtiv'! e011atant. 'l'beD there exiat tuDeticma 

I ucl r traa ~ to Z aw:h that 

Prob ~(l,r} - 1 u n-• 

ancl 

t+r l l/2 los( r ) - a n( ~ los n} • 

-l/2 r(n} • Ln(l2 los n) J 

I.- 5.4 above of courae correiJ)Oada to I.- 4.2 for (unp:nmed.) 

~ov treea, ucl w aav in Section 4 that I..- 4.2 1 a 1D a aenae beat 

poaaible. At the eacl of thla aeetion w aball pron tbat ~ 5.J. 11 

alao 1D a aenae beat poaaible. 

(5.2) 

(5.1.) 

(5.5) 

1!22!• Let I •4 r be t'tmctlau rrc. N to N , Wlicb w aball 

( (I ( -1 cbooae later. Let b n) • L 2 n 101 n) J , l.t Bn be tbe a.t o~ 

p-apba G 1D .o\ .ueh tbat x(G) ~ b(n) , .ad l.t B
11
(l,r) be t.be Mt 

or II'IIF8 G ::n .a,. neh tllat 1ft en17 7¥mY tree tor G ._ner w 

atart at t.be root .all ..a I (n) lett tlii'Da •d r(n) r1lbt t111'1la w 

clo DOt •eCUlteJ' 8117 Dade H vit.b e(B) ~a b(D) • 'a. 

a B nB (l,r) c: T (l,r) 
D D - ft • (5.6) 

11r l- 5.2 Pl'aii(BD) - 1 u n - • • a-ce it Prob Bn(l,r) - 1 u 

n - • til• ao cloea Pl'ob '( (I, r) • 'lbu w 1dall to cbooae 1 •d r ao 

tllat Pl'ob •a ( 1, r) - 1 u a - • 111111 ( ';r ) 1a u lup u pouible. 



We nov loolt at the c~leaent fin ( l, r) of Bn ( l, r) in ~n • 

LE:.; it be the collectioo or all tud.lies Q • (s1, ••• , ~) of b disjoint 

subsets of fl, ••• ,n} Yith union conta:lni.Da r+-b elements. For each 

fm!y Q. in a let TQ be the set or graphs G in "'n such that. the 

cootracted graph GQ llliues at 110at l qes. Nov if G is a graph 

in E
1
) l, !") the!) ac.e graph obtai.ne i traa G by pertormi1.g at most r 

vertex-cactractiall contains a LubsraJ:Ib en b vert1ce11 lllissins at most 

l ectse11; end ao G € T Q for t•ilY Q. (proper for G ) in it • Hence 

(5.7) 

.... 
llelrt ve find an upper bouad tor Prob('l'Q.) • It is coovenient to let 

( : ) ~d x • r;b . We ah&ll choose r so that x(n) - • as 
2 

X 
q n ... • • Let N be a bincaial. rencloa variable w1 th par•eters m and 

By I.- :5 .2 for each Q in R , 

Prob('fQ.) ~ Prob{l ~ " • 

JQ,.- clearly a eoataina at 110at nn f'IAiliea Q. Renee by (;.7) 

lind (5 .8) 

f'rot) ~ { 11 r) ~ DD Pl'ob{ll .:: f J • 

We 8ball ue (5.9) to -.ure tbat Prall ~(l,r) • 0 u n • • , eel 

SO of COU'Be W Dee4 l(n) < E(J] (at leut tor larp D ) • 

• let 

l(n) • L f E[J) J • L i llq:J! J • 

51 

(5.8) 

(5.9) 

(5.10) 

(5.11} 



Note that the right hand aide above depends only on x (and n ). We 

have 

log Prob(N ~ I} 

2 2 
~I log m- I log l + I loge - x I - {m-1) log e qx + 0{1og n) 

1 2 2 • l(log m - (log 2 • log m - x ) + log e - x - 2 log e + o{l)) 

• l(log 2 - loge+ o{l)) • 

Now suppose that r(n) • U.n(log nf1/ 2 
j for some constant ~ with 

0 < ~ < ~a aq. Then x(n) - (2A.ja)(log n)1/ 2 and 

{5.12) 

log l(n) • (2 - 4A.2/cf + o(l)) log n (5.1~) 

But nov by {5.9), (5.12) and (5.1~) 

Row 

&S D • • • 

We next look at the value of ( l+r) 
r 

lot~( l+r) • r{1og 1 - log r + 0(1)1 
r 

and choose a value for 'A. • 

• "Jt..D{los n)-112 {2 log n- {4A.2jrl)(1og n) -log n+O{l08 los n)1 

• {A.- 4).3;cl + o(l)) n{log n)1/ 2 

'!'be •axi•• value of A - 4A.' /rf for A > 0 1a attained at A. • l2-112a <fa . 
'l'bu w pve A. this value, mel find tbat 

{5.14) 

u required. 'ftle Yalue ve bave cboseo for r ia u in (5. 5). Clear.l¥ 

w ~ clec:reue the Yalue of I frca tbat in (5.1(1) if ve do not tiNa 

falaU) (5.1~). 'nlwl ve 118¥ set I u 1D (5.~). 'l'hia ca.pletea the 

proof of x.e-& 5. 4. ~ 



Frca I.- 5.4 ad the diacuaaion preeeding it we .ay nov deduce 

immediately our main results. 

Theorem 5. 5. If a is a positive const111t then for alaost all sr.. Gn 

in ,In 1 every ~ov tree for Gn is ncb that the logari tba of the n\8ber 

of nodes H vitb w(H) <ax(~) is &ayllptotic&lly at least 

l 1/2 a n( 
27

1us n) • 

'l'he 110st interesting special case of Theorea 5.5 above is vben 

p • q • l/2 and a • l • 

Corollary 5.6. Consider the property for gr~ Go an n vertices 

that every pnmed Zoykov tree for ~ has siz.e at least 

n{l~ n)1/ 2 

(1.14) • 

'l'he proportion of graphs 011 n vertices with this property tends to 1 

as n-•· 

Corollary 5.6 ahov8 that all¥ 7¥kov al.gorltla as defined in Section 2 

'U..Oat al.W¥s' requires 110re tbaD expooeatial tiM. Thus certainly 

there exists a sequence {G:L,~ ••• ,~, ••• ) such that <\t is a graph 

an n vertices md the tiM take bJ lllJ 7¥kov alaori tla 011 ~ gran 

f&i ter tb.u ezpcllleDti&lly vi th 11 • :lo CCilltl"UCtiCil is mOE for auch 

a seque11ce. 

K. R. Gare7 and D. s. Jolllllton [7) have abo. that the probl• of 

detendninc the em-c-.tie nWiber of a 1NJ1b to within a raetor leas 

thu 2 11 JP-ca.plete. B:r --.log one ai&bt have expected ac.e ertec:t 

in Theora 5.5 at a • l/2 aq, but none h ~t (see also 

Coroll.u7 7.2 below). 



'ftle above cl1acua1on is u,..,totic ill nature, but. w .._, be 

interested in ~ a ~cw al&ori tt. t.o p-.pus tdlich are fairly 

larp but clefinUelJ rlnite, aq to cr&Jibs vitb 500 vertices. Az'lpaents 

aiailar to tbose aboft but aillpl.er abow tbat w are alre.q ill trouble. 

We sball .ee below tbat tor 80I'e U.. ''" ot the &riiJiba oa 500 Yert.1cea 

every pruned ~cw tne baa .ore tba 1012 DOdea. 

Set p • q • 1/2 ao tbat probabUi tiea c:orNQQDd to proport.iana. 

We aball be talkhltE about sraJila in ~OO • Rote first tbat, u 1n the 

proof ot ~ 5 .2, we bave 

Prob{x(G) < '9} < Probfa(G) ~ 11&} 

-( 11&) 
< ( ic:' )2 2 

< 0.2. (5.15) 

Por poa1t1-nt intepra I and a let S(l,a) be tbe aet of cnP1• 

G ill .A_;oo llllicb baYe a II\Jbp'aJIIl aa a -.ertic:ea lliaaial at .oat I 

edpa. DIDote ( ; ) bJ It and lliPJIO&e that I !: i k • 'l'ha: 

k 
Prob S(l,a) ~ ( 500 )2-~ ~ ( k) 

• i·k-1 1 

• 

• (5.16) 

Let A be t.be M't ot P'IPaa G ill ~OO ncb tbat x(G) ~ '9 ...S G 

la DOt 1D 8(5,,28) • '!beD bJ (5.15) ...S (5.16) 

Pl'clb A > O. 75 (5.17) 

,. 



Nov let G be a graph in A and let T be a pruned ZYkov tree 

for G • Then in T if ve start at the root and make 5"5 left turns 

and 11 right t.urns ve can never reach a leaf; for if H is a leaf 

of T then H has a complete subgraph on 39 vertices and at least 

39-11 • 28 of them must be original vertice.- of G • Hence the 

number of leaves of T is more than 

2( 53~ll) > 5 x1o11 

and so the number of nodes in T is more than 1012 • Hence by (5.17) 

for more than 3/-,. of the graphs G in "'5oo every pruned Zqkov tree 

for G has more than 10
12 nodes. 

The basic result in this section is of course LeDma 5.4 frcm which 

Tb~em 5.5 and Corollary 5 .6 follow i.JIIIlediately. We remarked earlier 

that r... 5.4 cc.•rreSJonds to Lelllla 4.2 and ve noted in Section 4 that 

I.-a 4.2 is in a sense beat possible. We now investigate how good 

I.-a 5.4 is. PropositiCD 5.7 below sbows that in a {weaker) sense 

I.-a 5.4 is also best possible. This suggests that our lover bOUD.d 

for the size of a aallest pruned Zykov tree for a gra;ph may not be toe. 

bad. Hawver, our caJ.y upper bound for the size of a SJIIallest pruned 

ZykaY tree tor a craph is very a1Ch larpr (see Corollary 6.2 in the 

next aectiCD) • 

Jlropoaltion 5 .7. Lt.t a be a positive constant. If f and r are 

flmctiou trc:a N to All such tbat 

l.oi( ';r) > (2 + o(l)) an( ifJ.oc n)112 

then 

Prob (Ct,r) - 0 

(5.18) 



Further if the Conjecture 5 .3 holda and if' 

log( ';r) > (1 + o(l)) an( ir log n)112 

then apin (5 .19) holda. 

(5.20) 

~· P(,l' each n in ,_. let -. {n) be a real nUIIber such that aay 

1 :S .. (n) :S 3 • SUppose .that I and r are functions froiD IIIII to _, 

such that 

log( ';r) > (~ + o{l)) an(:::, log n)1/ 2 (5.21) 

For each n 1~ N let d(n) .. ('!')/2) n/log n , let D
0 

be the aet of 

grapha ~ in ~ such that -..{~) S d(n) , and let D
0
(l,r) be the 

set of' graphs ~ in .In such that in every Z¥kov tree for Gn 'Whenever 

we .tart at the root and make l(n) lett tuma and r(n) right turns 

we do not enco'UDter any nod~ H with •(H) 2 a d(n) • Then 

(5.22) 

We ah&U prove tba~ 

Prob Dn(l,r) -0 u n ... ~~~~ • (5.23) 

~ee ve have done this ve are nearly tinillhed. 

lote t1r1t that ve u.y u-.e t'lat l (n) ~ ( ~ ) and r(n) ~ n-1 • 

.Al1o if' l < r tor ac.e n in ~ tben 

.nd 10 by (5.21) we baYe loc(t+r) • J.oc 1 + O(l) • 

low 

( f+r) < (l+r)r < 0 2r 
r -

.nd 10 by (5.21) apiD 

r(n) ~ (c1 +o(l)) n (J.oc n)·l/2 tor~ ccutet e
1 

> 0 • 

We nat lhow that w .ay .. ._. tb&t 

(5.2 .. ) 



( ( ( ( -.~.'2 
r n) ~ c2 + o 1)) n log n) ' tor ac.e conat111t c2 > 0 • (5.25) 

For each n in N let s(n) • f(2 log n)112 , and t(n) • rad(n)l • 

Then by LeDIDa :5 • 5 

Prob{~ caaplete} .. 1 as n-• 

But ve may o~tain the graph G~ fraa the graph G
0 

by perto:raiq at 

most (a(n)-l)t(n) vertex-contractiODa, and so 

D
0
(0, at) S (G~ not ccaplete} • 

Now by (5.26) and (5.27) 

u n ... • • 

It follows that ve JDaY aasmae that (5.25) holds. 

We nov abow that for n sufficiently larp we have 

Let 

x(n) • r(n )(log n )1/ 2 /n 

so that by (5.24) BD4 (5.25} we have los x. O(l) • late that 

r/011 • 2x/at- (~ n)1/ 2 
• 

low 1t (5.28) h false tbell tor infinitely any values of n we b&Ye 

2 
t(n) < 02q(r/ad -1) 

q( t+r) • r(los 1 - loc r + 0(1)) 
r 

~ x L(lol n}·l/2 (2 lac n - r 2/oPd2 + 2r/ad - lac D 

+ i loc J.os D + 0(1)) 

• (x - ~r..) trh2 + o(l)) n (l.oc n)1/ 2 

< (~ + o(l)) an( *loc n)112 

(5 .26) 

(5.27) 

(5.28) 



(aee the proot ot ~ 5.4). But this contradicts (5.21) .nd ~o (5.28) 

BOY tor each D in N let a(n) • rr(n)/ad(n)l-1 md 

t(n) • r ad(n) 1 • By (5.25) Uld ~ ,.~ 

u n -• • 

Also 

(a(n)-l)t(n) ~ (r/ad -1)(ad + 1) 

< r -

(5 .29) 

2 2 
tor n auttici•tl.r 1u-&e that a d 2= r • Hence as in the derivation 

ot (5.27) we have that tor n mtt1c1ently larp 

!k(l,r) s (~ lid•••• ~ than 1 edpe) • 

For each n in N let I be a binmd.al randca variable vitb par..etera 

t .2 
( 2 ) •d q • Then by x.e-a '·' 

Prob(G~ aiuea am-e the I edpa} 

But l(n) - • u n .. • ad by (5.28) l(n)/E(II} - • u n .. • • 

Bence 

Probfll ~ I) •• l. as n-•. 

But now (5.25) tollowt by (5.29), (5.30), (5.31) aDd (5.~2). 

SupJloae that "'(n) • 2 + c(n) tor n 1n N , 11here t(n) > 0 

8ll4 I(D) - 0 U D - • autficiet~ alowq that by 'J.'beo~ 8 iD (8) 

U D ... • 

(5.32) 

(5.33) 



Theu (5.19) follows f'rca (5.21), (5.22) md (5.:n ~ 110d so we have 

proved that if (5.18) ia true then ao ia (5.19). Row auppoae that the 

Conjecture 5.3 is true and that !'(n) • 1 + c(n) for n in N , where 

, (n) > 0 and , (n) .. 0 aa n - • "llfficiently s~owly that (5 .33) 

holds. 'l'heu u above it f~ova that if the Conjecture 5.3 Uld (5.20) 

are true then 30 ia (5.1$). Tbia ccmpletea the proof of Propositioa 5.7. u 



6. Backtrack Coloring. 

In this sect1011 ve inveatipte the 'bac:ktr~~ek' coloring al.Soritba 

(BC &l&Cri'tba) fer determ1n1ng the cbrceatic number of a graph. This 

al.goritl& vas pointed 0\lt to the author by R. Tarjan. Given a graph G 

it explores part or the 'backtrack coloring tree' (BC tree) fer G 11 

vbieb is an illplicit eDU~~eration or the proper partitions of G • We 

shall see that the BC al.goritbm is essentially the suae as a certain 

Zykov algoritba, the 'marked' ~kov algoritlv... Also we shall give an 

upper bOUDd for the nUIIber or nodes or the BC tree aplored by the BC 

U&orit-.. It will follow that it is worth pruniag BC and ZYkov trees. 

we first describe the backtrack colori.Dj tree (BC tree) ror a graph 

G in "n • It ia a rooted tree vi th heieht n-1 • Each node is 

colored with one or the colora c111 ••• 11 cn • A node colored ci at 

depth d ( dist.nce d below the root) correapcmds to an assigrJMnt or 

cclor e1 to vertex ( l!t-1) or G • By look:l n1 at a node and 1 ts 

ucestora ve see that a node at depth d correapOilda to a coloring or 

the tirat (l!t-1) 'ftrticea or G • To cocatruct the BC tree for G 

w tirat coutruct a stncle node (the root) aDCl color 1 t c1 • •ow 
.,.... thl.t K 11 a leaf in the tree 10 far c011at:ructed and that It 

11 at Upth d ~ n-2 • 'l'beD K correapoadl to a proper colorin& C 

or tiM first (cttl) 'ftrticea of G • Let io be 1 plus the wez1-

1Dda or a calar 1IH4 1D the col.ariq c ; ud let e1 11 ••• , c1 (llhere 
1 .1 

j 2 0 ...t 11 > • • • > 1.1 ) be the colors used 1D the cclorin& c ad. 

ncb that Yertez (4+2) 11 Dot IIIIIJ.c•t to E¥ 'ftrtex or the col.ar. 

Ve let tiM Dada K ba.,~ (J+l) .cma col.arecl c1 , c1 11 •• • , c1 in ar4er 
0 1 j 

t'l'Ca lett to rittat. 



We have nov defined. the BC tree for G • It 1B not hard to see 

tlu1t t.. •ere is a 1-1 correspondence between the nodes of the BC tree 

for G at depth d and the proper parti tiona of the 'Nbsrapb ot G 

induced by the fir£t {d+l} vertic"• (see ~e 6 .. 1 below). Hence 

the n\llllber or nodes in the BC tree for G is betvee C(G) and nC(G) , 

and so Theorem 4.:5 gives asymptotic results dbo\lt the size ot BC trees. 

If k £ N the BC tree tor G ;pnmed at k is s~ the root of 

the BC tree tor G if k • 1 and otherwise it is the 'IJI'lique maxlwl 

rooted subtree of the BC troee for G such that each internal node 18 

colored with cme of the first (k··l) colors. 1'he RJ"Dled BC tree for G 

is the BC tree for G pruned at x(G) • 

Exi!!IIPle 6.1. Take G as the cycle with 5 vertices, n\lllbered as 

indicated.. 

In (a) below we llbuw the part of tbe BC tree tor G u:plDNCl by the BC 

alFritJ.. In (b) w llbolr the i..ae tree structure lllld i..Ucate at e.ch 

node the correspoad1,. partial coloriall of G • 'nle letters a, ... ,J 

1Dd1cate the order 1n wll1ch the nodea are first visited by the BC aJ.aDritla. 



(a) 

depth 0 

l 

2 j 



(b) 

depth 0 

1 

2 

3 



The backtrack coJ.or11!,1 al&ori tbla (BC al.IOri tla) for deterainiJlC 

the ehroaatie nu.ber x(G) ot a sra,ph G conducts a depth-tirat search 

of the BC tree tor G 1 keepiJlC to the riaht. <:bee ve have folmd a 

path tro. t.he root to a leaf ua:1q at .,at the first k colora w mow 

that x (G) ~ k and so ve need not explore the descead.anta ~t azq node 

labelled with a eol.or not in the first k-1 • Thus ve 'prune' the BC 

tree. The BC &J.cori tla JIWit of course exp1ore all the nodes of the 

pnmed. BC tree tor G • 

In order to relate the BC al.IOritba to tbe ?.,ykov br.ncb-and-bound 

&J.&orit.bu c:onaiclered earlier we first give a deacription of an 

illplementation of a ~ aJ.&oritta. 

Let G be a srapb in ~ for •~ n in N . We aball define 

the aarW 2;yko! tree (MZ tree) tor G • It is a certain ~kov tree 

tor G ill llbich at each node certain ftrticea are 'aarked.' • At each 

node H the urluld -vertieea ton~ .n initial s...-t of the entire 

.. cpae11ce or vertic•• -- we &18181 tbat the aet1 1D each part! tion or 

{11 ••• ,n] are ordered ao that ve have a 1nc:reuinc sequence of 1eut 

intepra -- •4 the aarked. vertices 1Dduce a ea.plete aub&r-Pl of H • 

1'be MZ tree ot G il cletined. u tollon. 1'be root is of course G , 

•4 we aark vertex 1 • SUppoae that H ia a leaf of the tree .a tar 

eoutNCtecl. It the tlrst w.arked wrtex 1D H ia ed,jacat to MCh 

..n.ct ft'J'tex til• -.rk tbia wrtex. ccmtiDue doinc th11 .til either 

~ nrtex ot B ia ~ 1D 11hich cue B ia c~ete llld ia a 

1~ ot the • tree or G ; or tbe tint ~ ftJ"tex ia DOt M,Jacet 

1D B to ~c.~ II&I'U4 nrtex. In tbia cue we brmcb em the first 

.....-ked vertex ...S the tirat ..rbcl nrtex not ed,jaceDt to it. lla.rke4 



vll!rtieea 1t~ aarked in the aona or H .ad the nev contr.cted wrtex 

in the ris,htam is also urked. 

The ..rked 2ty!o! al&orita.l (MZ alaOritta) explona part or the MZ 

tree usins depth-first search keeping ript, md pl'Uilea tbe tree using 

the fact that the ..riled wrtice• at a node point out a ~ete nbCJ'IIJlb. 

The MZ al&oritla auat of course explore evtlr.f node in tbe pruned ~kov 

tree eorrespondinc to the MZ tree. It is quite s1.JII11ar tc tbe aJ.soritta 

in [51. 

B!Sl• 6.2. M in ~e 6.1 t.U G u the cycle with 5 vertices, 

nwabered u indicated. 

G 

The the part or tbe MZ tree tor a ex}llored b7 tbe MZ al.&oritla ia lhCMl 

below. 'l'be ..rlted wrtice• are n1.lA4 ill, IDil 1D -'dit1cm we ban labelled 

the firat aarked nrtex v1 t.b c1 , tbe aecCD4 v1 th ~ .a4 the third 

with c, . 





It should be apparent that the BC and liZ &l.&Oritlaa are really 

different forms of the same aJ.gori tblll. Suppose that G iG a graph 

in ~ • Tben it is not hard to prove that there is a correiJ)Oildence 

between the nodes of the BC tree B for G and the nodes of the MZ 

tree Z for G such that 

( o.) each node in B correspc:lllda to ane or two node a in Z ; 

(b) each node in Z corresponds to between l and n nodes in B ; 

(c) pruning occurs at corresponding nodes. 

The lettering in Examples 6.1 and 6.2 indicates aucll a correspondence. 

* * Let B and z be the parts of the treea B and z explored by the 

BC and M2. !Llsoritbllla respectively. 'lbe!1 by the above 

* * 2IB I 2: IZ I IIDd 

It follows by Corollary 5.6 that for almost all graphs an n vertices 

n(loc n)1/ 2 
the BC algor! tbll requires tiae at least c tor sCJBe ccmstant 

': > l • 'l'be next rea\ll.t yields an upper bound tor the tiae required by 

the BC or MZ a1.&0ri tla. 

'l'beorea 6.1. Let 1 > 0 • '!'ben tor .ao.t all I"IJila in "n the 

n,_,.r of nodea of tbe BC tree explored b7 the BC aJ.&oritla 11 at m8t 

(~+ l)n 
n • If Ccl1.1ec'ture 5.:5 ia true theD tar &boat all l"fPla ~ 

( f+c)n 
in ~ the pnmed BC tree tor G baa at IIOat n node•. n D 

,!:!:22!. Lri k be a twact1011 trca N to Z . Par MCh P'l!llh G 

in ~ l.t ~(G) be tbe IIC U.. tor G pnM4 at k • Par i,J 

in N let t(i,J) be the a.pectecl D1llber ~proper part1t10118 1Dto j 

seta or P"'IJJU in ~ • ftm 



rrc. tbe proor or~'·' we have 

~12/J -1) 
r(t,J) ~ .11 

q 

ad ao 1 t 1 < D and J ~ k we eel"tai.Dly have 

l 
1 i 2/2k -2 D 

r( 1, .1 ) ~ n q q 

llow let 

t.(n) • L(l+c)n/101 DJ 

tor D ill N . 'ftlen tor 1 E N , 1 < D 

end ao by (6.1) .nd (6.2) 
l 

E{IBk(Ga)IJ ~ D~ rf2/2k q-2 D 

( f + f + o{l))n 
~ D • 

(6.1) 

(6.2) 

1bw t.M BC ~tla iaitiuq ~ 1:be 'ri~' patb ill tiM BC 

t~, ... 80 :laitial.q it .eta~ tM ..... tial color1Dc &l&arita.. 

s-ee_. !beftna 8 1D (8], tor aliiDat aU pollb8 1D ~ 1:be BC &lpritla 

~ at ..t D DOiea f4 tiM BC V.. 1llai'* _. DOt 1D tile BC tree 

Jll'.-l at k • !be t1nt ptll't ot !Mona 6.1 - tDUa. floca (6., ) • 

• DaW prGIN .. aecaad Jlll't ot tbe ~ ~ 

k(n) • L(l+a) ~ D/~ DJ 



tor n in N . Then for i E N , i < n 

l 
i i 2/2k. 4 (l+c )n 

n q ~ n 

and so by (6.1) and (6.2) 

( i (l+,)+o(l))n 
< n • 

Hence aa above 

* Denote the pruned BC tree tor a srapb G by B (G) • It x (G) ~ k 

then IB*(G)I ~ IBk.(G)I • Thus 

(6.4) 

* ( f+dn ( l+c)n 
{IB(G0)I~n } 2 {l~(~ll~n 4 }n{x(~)~k). (6.5) 

llov nppoae that Ccmjeeture 5., bolda, so that 

(6.6) 

Tbm tbe HCClDd part or 'ftlearea 6.1 follow rrc. (6.~), (6.5) and (6.6}. 0 

Caz:ol.larJ 6.2. t.t a > o • 1hm tor alaoat all srllpba ~ 1n ~ 

tbe " t er r4 IIIOdu r4 tbe -a.t ~ tree tor ~ explored by the 

( 1+c)n 
Ml'ked ~~ alpll'itla 1• at mat n 2 • It Ccftjeeture 5., bolda 

~ tor ~ all lftllla• ~ ill ~ the pruDed Mrked ~ tree 
1 

( f+c)D 
tor '\a baa at ..t n DOdea. 



1. Lengths of Proofs. 

Most of our results so far JU¥ be phraaed in teru of the lengths 

of certain kinds or proof which dete~ne chromatic numbers or ~ich 

establish lower b~ for chromatic numbers. We then obtain results 

concerning chromatic numbers which are st.ilar in spirit to recent results 

of v. Chvatal (4] concerning stability nlllllbers. Indeed this paper vas 

inith.ll.y motivated by discussions with Chva.tal concerning his results. 

If k is an integer at least as great a.s x (G) then there is a 

short proof that x(G) ~ lt -- n.aely we 1118¥ exhibit a coloring of G 

using at 110st k colors. In general such a proof' is hard to find but 

it JDUat of course exist. However, if k is at most x(G) then it 

1s not clear if there is necessarily a short proof of this fact. 

The following two 1'\Jles -..y be uaed to determine or bound cbraJI&tic 

n\llbers (see sectioo 2 cad (2.1) in particular}. 

(Rl) x.(G) • llin{x(G~) , x<a;y)} • 

(a:= J If G is cCIIplete then x(G) equals the !Wilber of' vertices or G • 

Given a set 8 of rule• like (11) 8Dd (112) let us call a proof that uses 

only tbeae rules ca 8-proof, m4 each a:ppl.ication of a rule in S a~· 

Clearly there 1a a cl.Dae corre~ce between an { (Rl}, (H2} )-proof 

<illtendnina x.(G) m4 a ~ tree tor G • 

l'rca i'beol'• ~.1 .. obtaiD 

Co!oUuz 1.1. If G il a crapb in .t
8 

tben every {(Rl), (112)}-proof 

vhicb c!etftld.nea x(G) vitbout rectundmt 1tep1 baa exactly 2C(G)·1 atepa. 

'ftm3 by !beorta 4.~ we Jmov quite a lot about the leD&tbs ot 

((Rl), (112)}-procta 1fbicb cletmline ~tic~.. Consider now a 
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third rule, wich can be used. to establish a lower bound tor chraaatic 

number& (see (2.2)). 

(a3) x(G) ~ w(G) • 

Allowing the uae also or the rule (R3) correiJ)Oilda to pJ'UI11ns our ~ 

trees. Frt111 Theor• 5.5 ve obtain 

Coroll.ary ].2. It a is a given ccmstant factor with 0 <a < 1 then 

for alaost all graphs ~ in ~ every {(Rl),(R.5)]-proot llbich establishes 

a lover bound tor x ( Gn) exact to vi thin the factor a is IUI.:h that the 

logari thlll of the nuaber or steps 1B uymptotical.ly at least 

a n( i, los n)1/ 2 • 

Row set p • q • 1/2 and a • 1 in Corol.lar,y 1.2 (u ve did in 

Theora 5. 5 ) • 

Corollary 7.3. Ccmdder the property tor gra}ila Gn in "'n that in 

every ( (Rl, (R.5) ]-proof eatabliahine; the correct lower bound tor x ( ~) 

the llUIIber of steps is at least 

n(lO&c! n)l/2 
(1.14) • 

The proportion or grllllha in Jn with tbia prope:z ty tends to 1 u n - • • 

rrc. Corol.J.uo7 6.2 we obtain 

Caroll.ary 7.1t. Let 1 > 0 • !b8l tar allloat all P'&JIU '\. 1D ..t
11 

the Mrked rpm aJ.corit• pelda ad ((11),(12),(16)}-proot uterwin1q 

( !+,)n 
x(~) with at 110~t n 2 atep8. It OCDJecture 5.3 hol.U ~ tor 

u.oat &1.1 sriiJiba ~ 1n ~ the aarked 1Pa'l &l&oritla ( nentua.lq) 
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yields an {(Rl), (B2), (~))-proof determining x(Gn) with at 1110st 
1 

( l;+t}n 
n steps. 

Conlider nov a fourth rule wbich can be used to bound chrcmatic 

mabers. 

{R4) If G has a subgr&Jlh H then x{G) ;;;: x(H) • 

The set of rules {(Rl),(B2),(R4)] seems to the author to be as natural 

as tbe set {(Rl), (Ie)} for eatabliahins lower bounds for chr~tic mabera. 

The tollCJVi.ns propoai tian ahovs that the two sets of rules are in a sense 

equivalent. 'nle proof is straiFtforvard and is omtted. 

Plyl!ositiOD ].5. l'or my { (Rl), (R3 )}-proof that x(G) 2! lt there is an 

{(Rl),(R2),(R4)}-proot vitb at JIK)St twice as ..ay steps; and for 8111 

{(Rl), (R2), (R4)}-proot that x(G);;;: k there is an {(lU), (R3)}-proot 

vi tb no .,re steps. 

At tlrat s1tJ1t 1 t llipt s._ to be of ~tap to allov abo rules 

l1lte the rule (ll5) bel.ow, which is close!¥ related to tbe rule (lU). 

(ll5) x(G) 2! ..x(x(~) , x(~) 1-1 • 

~e voul4 of coune DOt baYe to mow both x(~) 1114 x(~) 1n arcl8l' 

to uae tbe rule (ll5). BowYer, it is not bud to pi'Oft for _...., e the 

fol.lolr1nc propoai ticm. 

Propo!itioa 1.6. ror 1D7 {(Bl), ... , (ll5)}-proot that x(G) ~ k tbere 

ia- {(Jtl),(J5))•proof with DO .oft &tepe. 
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(R6) If some vertex v in G 1a adJacent to each other vertex then 

x.(G) • x(G-v)+l (where G-v has the obvioua meaning). 

However, ap.in we 1118J see without difficulty that including this rule 

would not lead to shorter proofs. 

Yet another possible rule Wbich might be thougnt helpful is the 

'principle of separation into pieces•, as described in [2) C't! l.pter 15. 

This rule shovs hov to break our probl.em into small.er independent 

subproblems if the graph baa a separating set which induces a cCIIpl.ete 

subgraph. It mq on occaai....n help to organize proofs but once again we 

may easil.y check that it does not shorten them. 

Final.ly l.et ua note that all the above discussion ralls down it' we 

are all.oved to recOSJllze is<*)rpbic graphs with different vertex sets. 

It vould be interesting to mow llhat can be said in this case. 



8 • Minimal Col.oriys. 

Many authors have investigated algorithms A for {properly) col.orlns 

sraJils G vhich are fairly fast but which use a n\Der A( G) of col.ora 

posaibl.y greater than x(G) • (See for ex•mple {9], [12], [13], [1.4].) 
A 

Following D. s. Jobnson [9} w let A(G) be the ratio of A(G) to x(G) , 

and let A(n) be the liWd.Jma value of A(G) over all sr~ G on n 

vertices. Clearl.y 1 _:: A(n) ::_ n and the ....Uer A(G) or A(n) ia the 

better. In (9] it is shown that for several of the JDOst c~ algorit.luu 

A the t\mction A(n) is of order n • ror the beat of the lmCMl (fut) 
A 

algoritlaa the t\metion A(n) is still of order n/lDc n • 

It is susseated in [9) that the usual behavior of A(~) for graphs 

~ oa n vertices JUJ be very dif'ferent fr<:a the behavior :round tor A(n) • 

We shall aee that this is indeed the case. 

Consider first the sequential coloring algoritba SA or ~ (aee 

[8], [9) and Section 3 of this paper). Jobnaca sbon vitbout dif'ficult::y 

that A:t (n) ia of order n , and susseata that, bcnlner, the apected 

value of ~ ( ~) ma¥ be bounded by a COilltant indepa1dellt of n • It 

tol.l.an euil.y fiUl reaulta in a paper [6) by G. Grt.ett e4 the preaeat 

author that tor .., & > 0 ve have A.t ( ~) ~ 2+ l tor &molt all sr.PY 

~ in "*o : also 1 t i a easy to prove that the expected nlue of ~ (a..) 

1a at .oat 2+& tor n auf'ficiently l.arae (aee the proof of 1!leona 6.2 

below). 

We DOW l.ook at the unal. bebuior of A(~) tor other coJ.orin& 

al&Oritllaa A • A pzooper col.oriDC ot a II"'Pa G 11 !dp1wl 11' tor each 

pair ot colora uaed. ac.e ftrtex of oae col.or i1 lidJ~~Cet to aa.e ftl"tex 

ot tbe other col.or; that ia, it no color em be replaced by ac.e other 

al.re~ uaed col.or; that ia, it tbe correapoDd'ftl JJI'0»88' pvtit10D Q 



of G is such that the contracted graph GQ is c~ete. A coloring 

a.lgoritbll is IILinimal if it al.VB¥B yie1ds lllin1mal colorings. All the usu'll 

coloring algori tbms are minimal, and in any case :f'raa m arbi trar,y pro.~r 

coloring one ~ easily produce a minimal coloring. Thus it • ..._ 

reasonable to restrict our attention to minimal coloring algori thas. 

For ~ery sr&fh G let M(G) be the ma.Y1•w value of A(G) over 

all minimal coloring algoritbiiUI A • An altemative definition of M(G) 

is then that it is the largest integer t for which there exists a proper 

partition Q ot G into t sets such that the contracted graph GQ 

is cc:aplete. For every graph G we let M(G) be the ratio of M(G) 

to x(G) • Thus M{G) is a aeasure of how badly it is possible to 

color G • 

It s~ema that for all¥ fast eol.orins al.soritba A yet proposed there 

mst gra}hs oo which A performs very badly ([9) }. However, for 110st 

gr~Qila every m.:iniwal colorins algoritla perfonaa not too badly: we aball. 

prave below that M(Gn) is in probability onl¥ of order (los n)1/ 2 

I.-a 8.1. Let c > 0 • 'l'hen for ~at all graphs Gn 1D ~n 

(1-~:) n (2 los n)-l/2 ~ M(~) .S (l+c) n (los nfl/2 • (8.1) 

Further for n suttieien~ larp the expected value of M(~) lies 

in the above ranee. 

!!:22!· 'l'he lett bad inequ&llty in (8.1} follows ~•tel¥ frca I.-a ,.6. 
Let • be • intepr at leut (l+c} n (lol n)-l/2 • By I.- ,.2 

the prabMUi't7 t.ba't a gl.Yell partitiOD Q of {1, ••• ,n) in'to a a.ta 

yi.e14a a c~ete ll'aJD GQ 11 at moat 

2 (.) 
(l- q(n/a) ) 2 • 
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Hence the probability Pm that there exists IUCh a partitim Q 

(proper or not) is at most 

But nov 

if n is surt1ciently large. Hence for n sut11ciently larse 

The risJ:lt hand inequality in (8.1) f'ollovs t'rc. (8.2), &D4 ao ve have 

c<Bpleted the proof of (8.1). 

The set ond part of the leaaa, concernins expected value a, follows 

frta the lett hand ineq11ality in (8.1) end trca (8.2). (J 

.. 
Recall that M(G) is the ratio of M(G) to x.(G) • 

Theon. 8.2. Let 1 > 0 • Then f:Jr alllost all IE'•• Gn iD ~n 

(8.2) 

(2-1/2 - ,)(los n)l/2 ~ M(~) ~ (2+a){los n)1/ 2 • (8.3) 

Further for n ntticiently large the expected T&l.ue of X(~) llea in 

the above ranee. 

l!:22!· Ve Jmov t:rc. [ 8] ( • ee also [ 6] Cbapter 11) that tor alllost all 

ll"IIJIU ~ 1D ~ 

1/2 n/U. n ~ x(Gn) ~ (l+c) n/q a • 

llow (8.3) ta1l.on frga (8.~) .ul I.-a 8.1. 

(8.~) 

'!be left bad 1Dequal1 t;r tor the mpcted ftl.ue ot M( (\.) tol.loiM 

note first that 
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E[M(~)} < ( l/2 nflog nf
1 

E[M(G
0

)] 

+ n Prob(x(G
0

) < l/2 n/log n) 

But from the proof of :r.e-a 5. 2 

n Prob{x(Gn) < l/2 n/log n} - 0 

and by Lemma 8.1 for n sufficiently large 

E[M(Gn)] 5 (l + r./') n (log n) -l/2 

Hence by (8.5), (8.6) and (8.7) 

E[M(~)] 5 (2+r.)(log n)1f2 

as n- • • 

(8.5) 

(8.6) 

fol· n sutnciently large. This ccmpl.etes the prvof of thil'l ~ohe final 

t~eorea. CJ 
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Sane que~t:l um:. 

The main re::ult ha~ been that Zykov (l,].goritblla tor detei'ID1niD8 the 

chromatic number of a graph in probabi~ity take tt.e at leaat 

c 
1/2 n(lug n) 

on graphs on n vertices. 

tlmt merit attention. 

(ror some c:mstaot c > 1 ) 

Tbis result raises at least three questions 

Firstly, the best upper bound here for tae t~ taken is very .ucb 

greater than the lower bound. Is the lower bound ot the riabt order ot 

llla@Jli tude't 

Secondly, all the resul.ts her~ are based on the raodoll &rllllb JDOCiel 

which has con~tant edge-probability p 1 and in certain eire\altUleea 

the model which has constant average degee Sfa¥ llligbt be .are appropriate 

(see for example [ 6] Chapter 16). lire there correspolldias results tor 

this case? 

'nlirdl.y, it follows t'raD the discussion in Secticm 7 that Va.riOWI 

' improvements' in the ~llov algorithms do not in tiii!Ct lead to a decreaae 

in the time taken. But what happens if s.- ve allow 111 iac.orpbi• 

search? 
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