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to logical networks ~der a variety of restrictions may be found in the 
literature, but is apt to be confusing in a first introduction. 

unc:l..uaUled 



~e.ct. 

In Introduction to Boolean Function Complexity 

by 

r·tichael S. Patenon 

(l)llvers!.ty of Warwick, Coventry, U. K.) 

~e "eC!:t.Plex1ty" of a finite Boolean fuIlcticm JII8¥ be defined with 

reapect to its cClllplltati~!1. by networks ot lopcal. el_ent.a in a variety 

of ~a. The three cCIIlplex1tlea ot "circuit lize", "formula s~ze" and 

"depth" are considered, and aa.e ot the principal resulta ccace1'D1Dl their 

relatlonahi~s and •• UmatiClDl are presented, with outlined proofs tor ac:.e 

of the ampler theorems. 'l'b1. fS1JZ'Vf!y is rutble.al¥ restricted to netvorka 

1n wh1ch all two-arpment loglcal tunctials mq be used. A rich COl'!>U8 

of theory related to logical network. under a varlet,- ot reatricticms IIIa¥ 

be tound in the llterature, but 1. apt to be confUsing in a first 

1ntroduct101l. 

It!Y!!!'4I IIICl phl'!!!a: Boolean funcUans, c~ex1 t7, lopcal netlltJrka, 

fiA1t. tuDctlou, tomula .ize, depth. 
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1. IntroductIon. 

My purpose in CClllposins this brief account is to introduce the general. 

!:1athematical reader to some of the results and problems concerned with the 

complexity analysis of Boolean tunctions. In the interests of conciseness 

aDd coherence at presentaticm I shall att8llJ)t to cover just a fev restricted. 

areas which 1 have found to be of pa:rticW.U' theoretical interest. 

The study ot Boolean function cClllplait;r dro.V3 its importance from. 

several branches ot cc;mpu.ter science. The orisinal and. moat obvious 

uDtivaUon Is that JIUII1Y of the tuks tor wlUch diC1tal e1ectrcnic eqW.pme!!t 

lIIU.t be dealped. can be useiUl.l¥ repre8eDted .. the. CCIIIlp\1taticm of Boolean 

t\mctions. All eyl'l,Plea, I have in mind. aortiDa networks, lIDU') -to-binar,r 

convertera, 1IIUltlpl1catlon unit. md addre •• deeoders. A second. catchment 

area lie. in the recently actlv-!' f'1eld ot al.cebra1c al&oritblllic ccmplu:lt~. 

Attractively structured. probl. •• such aa -.trilt Imltlpllc&tlC1D, polyncaial 

eval.uat1 en and cClIlvolut101l product have their .1lIlpleart incarnation over the 

two-element Boolean dCllll&1n. lbe aim is to l"each a cOlll,Plete und.erstaDd!Dg 

ot the cCJllPlex! ty elf sucb basic algori thma. Fi:rlal.l¥ 1 should 1Ilmtim 

"-chine-baaed" cc:.c.plexity .... re we are ccmcened. with t1ae or space bOUllcla 

011 the behaviour ot 1\trq Jlll,Ch1neB, rmdom-acce •• .-chine. or other 

;.~atractiQl1. ot cl181tal ccm,puters. For 8UI:lJlle, a 'fvhlc machine accept!na 

or reject1n& III input atriDl1Alq be .0 s1lmlated. by a l!ool-.n network 

c~t1nl a funct1CID that lower bounds OIl the cca.plu1 t~ of ncb a tuDcticm. 

yield. eorreapm4:I. bowlda OIl the :runn1n• t:1ae ot tlI. 'IUr:lDc achh. [20,25]. 

A proot that p,. lIP, lee (8), is in JIZ'1Dc1ple teuib1. b7 aucIl m 

~. 

2. DetiD1:t1aaa. 

LIt B be tbe set of n-~ Jool __ r.ct1au {f: (O,1}n .. (0,1)) • 
D 

(ae earn ...... vitia tbI ,.Ilia' 1001 .. ..,0 (t&1Ae.u.} 11 

'tba't 1 ~. S!!.) V. note t!Wo l~' -'" , ao. tar euapl., 
I~' _ 16. !Po mtro4uc. our notat1aaa .. terwino1ocr tor til... 16 b .. le 

1\mct1cm. we Un til. 1D bbl._ 1. To obriate ex;pUc1t tlmctlO1l t~.I, 

clef1a1t1CIDI 1D teru ot aP(2) , the two-e1ement field., an proriclC. 
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-- y.(l+x) 
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~lA 1. 

7lactiODI ill ~ an to .. c~ __ !UCUC 014. __ ," .".. 1:II1II 

a&I. ~. ttaae.., b. np"eIete4 .. ftlaite d1Ncte4 &cJ'Clli; pap. 
... ·~,;tb n 1n;ut M4!' _d ODe mpyt ... euh iJlplt nc4e COIftIpon4:Il't£ 

• .. ~th en. ot the .,....tl _d eMh ot.MI' D~ "ille auoclate4 with ~ 

.:"e=-t ~ ~. •• indell'" of tile 1Ipat ... is IU'O ..." -.ell other 

::':l~. has Ul ordue4 ])air ot iDetm.n& U'CI. _ U8OCi&t1C1l ~ b1nu7 
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val.ues to the inputs :1atural.ly ino..'ces bin..ry values at a.l1 other nodes 

(by applying the appropriate bas~s function at each to t~e values or 

its predecessors) and henc~ the circuit defines a function of Bn 
canputed at its output node. A s::l&ll example is 8iven in figure 2. 

& alternative f'ora.iLatlGD 1II1ich is 111 ~ H8JIIICta eqg1Yal .. t 18 

as a atn1 e!?t-Uu F'W!!. a fixed a~ or ~t1C8 steps at e.ch 

ate» o~ which a bade f'WlctlCG 1a appl.1e4 to two ua--u 1IIa1eh IIq 'be 

eitMr result. of pnvioua step. ar 1Apat U'I' t ftluea. !bere are 1Il 

• __ &1. ~ wda .equece. HJrft.1IIlte4 .., a au.J.e aqellc c1rea1t. OM 

that yields P1pn 2 11 stven'Mlow. 

"1 :- ;.~~ 

"2 :- v1 /1. X, 

", :-
" V v2 

outprt :- v, ""2 



Various parameters of circuits lIIa¥ be used as a ba.sia for cO!::plex1ty 

=easures. The most iJIImediate 1s the circuit size, c, which CO\Ilts the 

number of !ntemal n()l\e. or !Scal late., and corresponcla also 'to 

t!le number of steps 1n a pr~l'BZIl. If each sate 1D a circuit requires the 

same fixed execution time then the total time in a para1le~ cClll,PUtatioa 

by the circuit will be limited by tht; depth, d, of the c1rcuit, the 

max1muI:s number ot lates on a path fran 1111 iupu.t to the outp.tt node. III 

the ex:mtple, c - 4 and d -; • 

A mathematician misht prefer to repreaent a Bool.ean function as a 

vell-fo!'!lled l1ne3l' expreSSion over the input variables lI"i tll function 

symbols correspclldins to ueaents of ~. 1'b11 1. equ1vaJ.ent to aD 

acycllc circuit -..bere the loc1cal ptea baft taDout (oatdec;ree) at lIDat 

o:\e. Note that the input node. _y bave arbitftl'J' fanau:t, but it i. 

convenient in 41 .... to re;a:L "lIlte inputl .0 that the circuit CD be 

drum &I a tree in clo.er corre'pondtince vi til the atructun of the l1near 

to1'llll&. '!'he.!!!! ot Ii tomW.a 1a jus"; the circuit size, the nUl:lber ot 
intemal. nodea. A tormula ot size 6 1ib1cb" cc:IIIPltel" the ... function 

as in Fisure 2 11 repreaented in Flpre ,. 

[;. V (~ IE ~) "x,)] - [(;..~)" x,J 

, 



~ of the three measures we have deleribed ind.uces a eorres:pond1ng 

~ =:=plexi ty measure over ~ in a natural WIlY. Fo~ 8J Y t in Bn 

circuit size - c(t) - ain[c(a) \a 1s a circuit tor t) 

:"cn:lUla size .. let) ~ m1n{c(a) \ ex is a tol'lllUla tor tl 

depth d{f) - ain{d(a) la il a circuit for f} 

S!.:lce in the exuple considered, the tunctiCl1 C(~,~x,) can be shown 

-;: have an equivalent reprelentation as ~ l\ ~ AX, , we have 

c(s) - I(C) - del) - 2 • 
In th1s Pt.PV we shall CCl181der CI1l.y' _aaare. defined with respect 

-;~ tbe t\Jll baail ~. There 11 however • ccu1derable llterature 

:: :.ncemed vi th other baaes ccmta1n1nS sc.et1MI tunctlcml of mare thlUl 

-:-1:) aJ'&IJIIMIl'tl or ~e cCI1l1st1n& of a part1cul&r sublet or ~ aJlPl'oprlate 

-;0 IClI!III teehnolOG' or appJ.1catlC1l. A Wletul. IUl"ft7 aDd blbllogrQb7 t'or 

-:::.e •• reau! ts can be tOUDd 111 [221. 

; • BIlatlcm8h1pl llllani CC!!!plex1ty Measure •• 

J'ortunat~ the three d1tt'erent meuu:rel we have deriDed are not 

.:!.!.rel¥ independeDt. In thi. le(lt1on we ~1ze the kDown lnter­

:-elatlcuhlpa. !'We ot thele are 1DDediate. 

:..e:za 1. For au t In Bn' 

c(t) S .(t') < 2d(t') • 

~. lor the nnt lDeqaa11tT 1t 1 ..... to recall 'tbat .. t'01W:Ila 

~J • natr1cted f'anI ~ cirait. '!be ........ tal..lanl t'raI the o'bnnat1CD 

~at tor IA':/ IICICUc c1rcult _ -.dftlati (nel' with the ... ct.:Pth 
:a .... CCIIUr'trUa'teI ... ~ ~ .... of the c1reu1t stU 
~!.e wdt. tuoat nRrlct1C11' 18 _11ft .... ~ IIIJ' b1Dal7 tree 
.. ~th ~h 4 baa at mit 24.1 1I1t....:L ~.. Q 
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--,: 

These inequalities are the best poasible of tbeir type .ince tor 

n ~o:'lsider the function CONJ(n) in Bn detined by 

2P 

co:rJ(n) (xlI ••• ,Xn ) -= " Xi 
i -1 

-... ::'ere ; = L.log nJ • (AU logarithms in this paller are to base 2. 

7he note.t1 Q'l L x.J denotes tbe greatest integer not more than x.) 

is ~~er.t that for CCPIJ(n) 

For inequalities in the ","rae direeticms we have no such cClll.Plete 

results. For I aDd d, a technique ot ap.ra [27] shows 

~ji. use f ~ I to .. en l1a sup fIg ~ 1 .) Spira ai •• tate. hi. coetfie1mt 

liE 2 lOS'. A..u retin..at 1m.P1'O'I8S this coeft1cle.nt to abO\1't 

2 .465. 'l'hua d aDd 10, I are asymptot1cally within a ccmatmt JI!I1l.tlple 

~ each other. A recent result of Patersen and vau_t [l.6] relates c 

~1 d by 

c~l41ogd 

!':Jr" each ot the lIbove relUlt. a cODstzuatlcm 1s &1ft1l tor a c1rcu1t of 

!"elat1~ small. cl8pth equ1~ -t.o a C1ft1l t~ or c1.reult. 

,­-. 
Althoa&t1 a.t;er-tr1nl the ~ex1t7 ~ particular fWlcticU .... 

• ~ rather tifl'1cu1t, t!l ... are ~ peel .. "MIlt. CD til • 

• ~lc cc:ep1exS.tl •• of "IIoat- f'aDcU.&aa. It __ i.ta o(S) 1'CIII" 

=-x(o(f) 'fES} ad sWlaZ'~ tor 4 .. " tbm.tftaw ~CIIUI 

~:r aU n y1el4 

:-'::'e t1~ two CCIlRJuct1C1lS .. clue to IIapIIlcw [u,a). '1M *1'4 renlt, 
-:j" ~.!I!:::CU and Pater.en (l,) ~. CIDl¥ a 11~ CIl .. a1IIp1e cob'tnctlCll 

1 



by Spira [28]. A remarkable feature of the resul.ta for c end I 1a 

t.'::at they are matched e.sy:!ptotically by lower bounds fo::' "almost all.." 

i".mctions. Counting arguz:enta due to StwmOll [26] and Riordan and 

Shannon [21] respectively can be used to show that for all n I t.here is 

a subset B~ C Bn with iB~1 "" 'Bn I such tha.t for all. f in B: 

Using LeI:Da 1, 1Ie have alao 

d(f') ~ n -lOS 101 n + O{l) 

To illustrat.e the torm of such count:1ng U'&\Dmtl we autl.1De a proof 

of the nrst inequa11.ty. It 1. suttic18Dt to pran tM ~ rel\l1t. 

t.e::.a 2. lor fIJ7 E > 0 , t.he DUllber of tlmet1cft1 of ~ 8UC!l tb&'t 

c(t) ~ (1_€)2
ft
/n 1. o(~) • 

~. We:t1rat eltiaate the nlalbe,. ot c1rcu1t. with Il iJtp&. UIIl 

: .-u. wbue the pt,ea are 1abell.ed wi. intepn !', •••• _. A cU=1t 

1. qec1t1e4 *_ tor ..ell pte the u.oa1ate4 ~ ... the onpu 
0-: 1t. two...... nt. are pvc. III uppeI' bCN1L4 11 tberet'an 

(n+a)2a • JJ1A • 

It ..u. UI little to re4uce the cc:aat.t 16. ..tv ..... :latez0ute4 

~ 111 ""»',.] 111 .. c1rcu1t. for ... f't.act1ca .. tIaia ~ 

.iJQUt1e. our tuk. !'1rstl¥ there VUl. lte .1ut .. pte wttll _oat 0, 
t3 Gdplt pte. ~,1lO two __ 1dll. ~ the __ f'muIt1_ 

of a. ilqluts, 1"cIr U otbuwl ........ fit 1ibIa oaalal lte eI ... ·tel 

re"'.c"te 'tbe c:Uwl.t. u... BIda mldeJ o1.ra1.t ...... ~ III ..... 

18 1IlUeUMl'D1ca II1Me tow tI1hI8t. 1 .. 1 .. 11' • .- .... , ... .,. 
UftW_ l*l.1IIIl olIeaLta. ......... .... ciHali; Sa .. ..., tot'II'd...­
eM~. ~. ' tst at ~ t.n1au oc ....... otaalta ot 
I!uat.at )I :se~_ .... 

• 

. ,', 
I' I) 



With :~ ~ (l-c) • 2
n
/n J thIs quantity 18 bounded above asymptot1cally 

b:J' 

whIch e.eeounta tor a vanishingly small tractian. or ~. 0 

P1:;::;enger surveys mel gmeralizes scae or the classical results ot 
t41s section in [19] • 

5 • !Dftr Boundl tor Particular Functicas. 

CDe ot t!1e moat 1'ruatratu.. yet t .. taUdq upactl or Baala .. 

~ct1cc com,plexity ia revealed in thil aectian.. M we have .een abcwe, 

!1ear~ all fuDetlcu have circ\l1t cC8pl.ex1t;r wb1eb poowa a;pcIletiaJ..4r 
with the n\llllber ot arcumentl. It voul4 be aatiaf)iDa to be able to pNHIlt 

!lere a a1::lple, explicitly sinn, fuDctica with a,paactial. cClllplex1t;r. 

~ cml.if !llmctical vi th such cCllllui t;r Jmota to date 1Dvol.ve 10M t1.n4 

':)t 41acccallzat1an. in their d.etiD1tian.s or 1Ae~te the tcrta1ity of 

Boolelft ~ctiCftS over a lliptl.y aalJ.no .et ot ara--t.. Drcteucht 

(2), and ~ .ad Meyer [,0] ghe a.p] .S or I1IICh t\mcticu. 

It we restrict our.elves to "Dat1U'l1" f'uDcticaa lIIdch ctOi4 all taint 

~ d.1eccr.allzatiCil the preset precl1c_t i.. -u-. !be ~ lowr 

lxMa4a moun tar 8UCh flmct1CAS are lJAear in the IlWIber or U'P'lnta. 

In p.rt1C"..Il.U', leNar bcNn4a UJII;Ptotic to 2ft haft ..... pI'OftIl ~ S~ 

bl'OM. t.:ill •• of 1'uDctiCCI SA ~ b7 1alllL0I'I' 12~]. .... nceD~ 
?a1I1 has show. bomI4I &r,fI:Iptotic to 2 i 11 (17] a4 Idl renlt hal ..,.. 

.....,uzed to a vl4er clua ...,. 8t~_ [29]. !be latter JII'OftI this 

l.wa' bo'.md. tar _ YU7 liIIpl.e o=m=ee ,,1C1D1 c!1l) tar all. 

• > 2, 4e1'1llecl bT 

(n) ( ) c. ~, ... ,~ - 1 it ~~. 0 ( .... ) 

- 0 otherW1., 

a4 catch •• this tar Cit v1tb the ... ~lc 'IQIJIU' lMMI4t !be 

=-thodl Q~ PmI. .ad. ~ an too 0GIIPllcate4 to tGllGlr ..... , 1nIt 

";~. tl&.-.-a.ll' or &. 211 lonr bouDd proof c_ lte Il~ ill the aiIIplA «aIII'l.e 
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of 'X
2

• The tbreahbold 1'unet1als 'X~D) are detined by 

(D) ( '1 i ~ ~. 
'III ~I • •• ,XDi - I ... Xi ~ 111 

- 0 otherwise. 

Theorem 1. 

~. For D - 2 I the reault is obv'i0U8. ~se n > 2 md the 

result is true tor LlJ. aaller values. CcDaider a min'·' e1reuit tor 

T~D) with m pt •• , and select a pte I at .ax'.' distance t%"Cllll the 

CNtpt,lt node. ~e~. to thia pte.ut b. (diat1Jlet) 1npIt node., 

~ , Xj sq. It Xi and x.1 both have tan_ 1, the depead.8l1ce ot 
the outiut CD Xi 1 Xj is only throush the value or I. 11111 is uslD'd 

ainee tor certain values or the other U'~t. the eircuit muat diat1Dau1m 

IaCIII8 ~ posaible valuea tor "1 + x.1 ' D~ 0, 1, 2. we my 

tbere~ore ~se that Xi haa rUlOQ't at least tva and ia ccanected to 

tllO distinct pte. I end h. It we t1x the val.ue at inJ"lt Xi to 0 

t!1eD I Ulel h cc.prte functions of ~ one ~t. !he .. are 

tn:rial enouab to be absorbed into the hDcticas at the IUCceed1n& Dodes, 

.' '''n&tiDg I and h. The relUlt~.r.c c1rcu1 t hu .. 2 ptes md 
(n-l) 

.:.rt~ eo:npu.t.s 1'2 trac the r 'nilal ~ts. _ 1Ildw:tiCll 

we have 

1Il-2 ~ 2(n-l)-, , 1. •• , • ~ 2b-,. 0 

Oth.r (1cwr) linear bC'.ln:la are p .. __ JIu'per, Jlaieb ad. ..... 

[ ~ ]. 'lb ••• m4 nlate4 Naulta are sarr.- 'b7 Sanp 18 :22]. 
_ nCID-liDear l.ouar boaa4 tQr tbe oUcu.1t aise or _ -:pU.c1tlT 

p.,. t\mctiCil -U cClDatitute _ illplrtat ...... trc:a Gar pn..rt 

a;paUa.. To prwe p -I- lIP b7 thi. reNt. woalcl Nqaire a nCll-~al. 
lOW!' 'bozd tor ... n1tabl.e 1Uctica. 8cIM al.1ttlt pocre_ hu __ 

:.&de tor the t....:La sb. ....... and. this 1d.ll. be c:atlJ.ae4 18 the nat 

aectlcm.. ~ an &3 ~t no J1cm-trlnaJ. l.cwr bouncb GIl Upth other 

thM those c!er1n4 directly ~or cone.pcaUna t~ size reRl.tl aain& 

the nlat!.oc d > l.oI I • 

10 



5. Lower 30unda an Formula Size. 

An i:::portant theorem here 1s due to Neeiporuk [15] 0 Suppoae that 

the a.rgw:ents to a tunction t in ~ are partltimed into b~0ck8 

R11 00 01 ~ 0 It tor some i the argument. in ~ the blocta R.1' 

j ~ 1 , are :fixed to 0 or 1 in same ~, the result is a reatrict1cn 

of' r, a !\mction t' depenciJ.Ds only em the variabl.ea in Ri 0 Let 

=t be :~e nu:Dber of different such restrtctic:ma f' tor all. poaalb~e 

f'ixatianl5 of the other var!ablea 0 Now the theora can be atated a~ 

al follows. 

~eorem 2 (Nec1porult) 0 There ex1 sta a > 0 such that tor all. t 1 

P 
1(£') ~ &0 E 1.08 III 

i_l 

zen the ~'. are as defined above 0 0 

To explore the ma.:v:jmllll poaaible lanr bouDda dertvab1.e f'l'O!Il this 

theorea we note that it Rl cemtains r variables then there are em the 

eme had at moat if! poslible tunctiema em. Ri , aDd c:m the other at 

~oat 'if-r fixatiaal ot the rel!!&ininC variables 0 Hence 

md the opt1l!ma bcnmd, lIhich reqaires r to be about log D , is or order 

n2/1OC D 0 

!he variety or applicatlC11ls or lfeclpcmak' a tbeorc 18 iUutrated 117 
thll tallO'ld.n& ea.pl.ea. '!'be 1'ul.l. bouD4 or a O 'D.

2/1oc 'D. tor... & > 0 

18 provable far IIec1ponak's orIc'nal tuDct1cma (15).m tar f'lmctiema 

def1Ilecl b;y Pal [17] 0 In botIa caus the ""IIPles 1aTOlft ... DOtiCID or 
"1II4ireet addre-1Dc", for 1:AateDee Pal. uses f'mI.ctlC1l8 or the rem. 

t(z , !J., 00. , !k'.) - I: 
- - lx 

~eft = Md the !i' s U'8 biDu7 .,..cton or lAa&th .,.a4.eN ! 
1s a b1.narJ -rector at 1eqth k - 21. t-o ~ute the ftltW ~ the 

f'lmctim:., 'ta. vector ~ i8 I"epZ'ded as a b1Darr 1Dda to select the 

11 



vector y Wlicb 18 used s1n1larly' to select eme binary d1pt ot z. :.x _ 

Jeciporuk I s exmm,ple can be sl1&btly =d1t:ied 1IIld. both upper and l.cnrer 

bounds o! order 02/101 n :proved !or the resULt. 

!O!Ore alpbra1c in nature are t~'! exC!!pl.es ot utermnant over GF(2) 

by lO.ess [ 9] and the .. stable tlL"Tlage problem" (exact matching) b:r 

r..ar;per c~ sava&e [ 5 ] 0 The lowr bounda proved in these cue. are 

oaJ.y a on3/ 2 
0 F1n&l..ly we have unpl.:.bllahed re.w.ta !rca two entlrely 

dlttere:l.-: areas. 1'here is a cc:ntext-!'ree ~ over a binary &l~et 

ao that the n-U'1 fUnction d.etined by the atr1Dp 1D the lan8uaae ot 
lear..b n haa to:nml.a Bize ot order at leut n2/10& o. '!'he topolog1ca1 

predicate ot ccanecte4ne.a on a .qu.e.re b1.zl.uy ~ )'ielda a tlmctlC1l 

v1th t'or.:rula .1M at leaat a.n.log n • 

We cloae tbi •• ectlem _ ~tIcm!..n& t1IO ... .,'&1' tbecmma 11v1nc 
nan-l1Dear 10lNr bo\mda em to1'!lUla aize. !he t'1rIIt 18 cJu.e to IIo4es aDd. 

Specker [ 7] 1114 baa been lP,Pl1ed by !'.ode. 1;0 ~c precU.cate. w.ch 

&I ccmolexity .ad carmectedDell [ c]. 'l'he aeccm4 is a reault at' Fischer, 

!.te7W and Pater.on. a weaker version of' .1ch &JIPI&I'8 in [']. loth 

th~ em be ~ u;prea.ed &I fallon. 

"'i'bearem" (X). Por all. t in 3n either I(t) is X-larp or there 18 

an X-restrictIon 01' t to • vU'iablea 1Ib1ch is X-l.1Dear. 0 

libar. X - Bodes - SjIecDr, an X-rennC'tlon 18 ...sa bT settSnc the 

~!n& variable. to 0 _d IIIl X-lln-.r tl&ct1em is or the tom 

sCx"" •••• ~} - bO • (b1 " " ~) e (be "E9 Xi) 
1 i 

... bo ' ~, be are ~ CClUtuIt. -. cnwl1ae u.tea ....-,tlO1l. 

lIb& X - ftlCber - JII1V - Pater.CD, _ X-ftIIUict1ca 18 ...sa bT 

• .tt1n& agel ...-a or ~8 to 0 -. l. IIUl III X-u.. hn~ca 

baa the tOIlt 

12 



In both cases X-large is defined in tel'lllS of n and 111. (the number 

=:~ variables or the restriction). The largest bounds provable with the 

:~rat theore~ are lesa than n 10g* n Where 

. 
• lD 2} 

2" 
10g* n - least III. such that 2 ~ n 

'::"le merit of the second theorem lies in its capacity to prove bounds up 

'to n log n / log log n" We abal.l. retum to thes. theorems in the ne..'Ct 

section lihere their specializatIons to ~rlc f\mctlcm.s are IIOre 

~'~cinctly expressible. 

i' " 8)etric 7uact1<l1ls. 

A _petrIe t\mct1on is eme which h 1Dvari.ant Uftder pelW.1tatic:m.s 

0:" ita u-s-ent., or equivalently, a tuftctlO1l f(~I" "~) 1s .,...tric 

~ mel cmly if there 1s a tunct1c:n g auc:h that 

t(~, .. ' lI lh) - a( f X1 ) 

::"lere are precilely 2n+1 ~ric t\mctions in Bn _:!Dce 1:. Xl cm 

-;ake 0+1 diN'eNllt value.. We denote the set or s;yIDetr1c 1'ImctlQls in 

~ b7 ~. 
A much lower range ot ctlllplex1t1el 1. 1nolnd here. 

-:':1eon1l ,. c(8n) is linear ill n II .(~) 11 bGmlded b7 • ~_al. 
!.:l n II and d(~) 1s O(lOC Il) • 

~. Eaeb beaut result. bQa • two-Rap cout.nct1C1l. lD tile ftrat 

....... a circuit 11 dedllled W ~. the b1Ml7 npnMll'tatica or the 

.,. 1: xl' 'ltd.1 Nt or r~n+l)' - p hIlct1Cl1l1 em be CClIIpited 

.~tber vith a c1rca1t or 11. o(n) 01" in Mpth O(J.oc n) # b7 a recan1" 

~tt1Da proce .. 1D 1Ib1cb nprel.ta't1cu ror the two halnl ot the 

vC--t .et an cClllPl'tecl C14 tb_ Id6Icl tocetber. ~ add1t1ca r4 two 

~-d1ctt binuy a.bV. can be }Jftt'o1'..t. "'7 a circuit or 81.. O(P) 1ft a 
!':a1&bt!'orva:rcl ,... Por the "-17tb boaD4 a .1ped-cl1&1 t l"8pI'eHIltaUoa [1) 



can be u:;ed. 80 that L"l add1 tion requires depth 0Dl¥ 0(108 p). A binerJ 

represent.at1co h Dot used untU the tinal. result. 

The secooi at... has only to cCll1p\lte the required tunct1cm trom the 

p results of the first staae. The results given in Section 4 shoW' tha.t 

this sta.ee requi!'es e1 ther only about ~ /p - O(n/los n) gate8 or aruy 

depth pt"l. '!'be UJl!.er boun:1 on tomula 11ze tollows fr<a that tor 

depth. a 

Detailed constnetions tor the first staae are provided. by l·tu.ller 

and Preparata [14J. A polynomial ~r bound tor l(~) is proved by 

Krapchenko (10). '!'he best bOlmd CD tonwla 81 ze pUshed to date is 

0(n'·56 ••• ) and 4ue to Pippenaer [181. 

'!'he resul.tB ot Sclmorr [24,25] show that tor eat'..h n > 2 all 

except eig!lt f'uDctlons haft lize cc::IC!\Plex1t;y- at leaat 2n-'. 'l'he eisht 

reoaining f'UDctim8 have c2llpl.ex1ty n-l or 1. stoclauyer 8hon in 

[29] that at but balt ot ~ has ccaplu:1ty about 2 ~ n • He alao 

state. that c(~) ~ 6n • 
Directing our attentiCll aaain to f'0l'aIl.& 8ize lie t'1nd that 5eciporuk I 8 

thet"~ is relatively impotent tor ~r1c tuncticml since tor a block 
r+l of aize r the llUIIber ot re8trieticml :La l:lm1ted. to 11111(2 , D-r+l} 

£0 that only liDev lower b01mda are der1nble. 

lIlen the tbeore: of iiodel and 9peclurr 18 reatricted to QDl8tric 

~iQfts it CaD be restated ::IQre dna.ti~. 

TI2eore 4. For .eme (sl.ovl1' poow1n,) fUnctioa ten) nth t -. as 

n - ., tor all t in ~ 

either I(t) > noteD) ~ I(t) < 2n • 

~. 'lbe c:mq -r--:etriC tuDct1ClU 1IIl1dl eacape tile ccacl1t1CIDI lNt1'ic1t1lt 

!or & 1la:l-llDear lowr bound an tuact1C1D1 ot tile tom 

(bO" 1\ Xl~ a (bi "V Xi) e (b2 "ED ~) • b, • 

For all. n, eacIl of' these 16 hDct1C1D1 baa & tar.ll. or lize at JID8't 

211-1 • 



'!'h. only Umnatiun th."to". to the power or t.he Hodea - Specker 

theo, .. tor .~trlc runot1onl 11 the 10Nn ••• ot the bOUDd. A rather 

better boun4 11 attlUnable tor lUll)" .~dc t'unctlon. using the 

t'hcher -M.~er - 'at.erlon r.MIlt. n.e correapandial 11cplificatlon to 

~ 11 al follow •• 

Theorem 5. For IOU & > 0, all .urnc1ently large n and tor all t 
in ~ lie have, tor all k 

either let) > a·n • lOS kj loc 101 It 

t 11 a !uncticm only or E9 xi 
i 

k < ~ xi < n-k. C 
- i -

in the rage 

"'bereu in the preriClU8 theorem a tl:nctiaD. .scapecl the laver bound aUy 

it it vu ccmatant or altema.t1Dc except poa.ib~ in the "end zm.a" ot 
size aD.e ot the s. tunctiaD., in this aeccmd result the "end zOftea" are 

ot a1:&. k. To produce a bamld ot order n. log n Iloc las n 1ft! need 

to eDaure that It > n € tor Ie.. € > 0 • 

lor the hId.l.1 •• of threlhhold 1'Imctioca ~D) aDd cClllp'U.tlDce 

tunct1caa ~D) de:tined in Sectial 5 ". III,Y establish the t'oll.ow1ng 

rel\llta as coroll.ar1ea ot Tbeorems 5 aDd. 6. 

(ii) For all • > 0 , there 18 a cClUtut a> 0 ncb that 

1(~Il» > •• 11 olocll/1oc laa 11 :tor Ilc < It < n-Il€ , 

I(cill» >aono1ocn/1oclaan tar 2 <k<ll-n€ 0 

The tuDet1C11l8 <{Il) are ot apecla1111teNa't ...,s.n a1Dce CIII. CD CCID8tzoact 

~~ ot 0l'Ur 11. J.oc D tor th.a., to IIpp'OaCh the pro ... 10wr bOUDcl 

rather clo:ael¥. 



8. Conclusion and Qpen Prob~~. 

A multitude of :prob~ems of practical and theoretical. interest can 

be expressed. in terms of the coc.p1exi ty ot Bool':!1Il1 functions. In recent 

years a substantial body ot ne-I results in this area has been attained. 

'lbere remain however embarrassingly large saps in our knovl.edge and 

proot techniques. This can best be appreciated in ~anaidering the 

following set of simply stateable open probleas. 

1. Prove a non-linear lower bound on the cireu1t size or sCIIle expllcit~ 

given Boo~e8D tlmctions. 

2. Prove a quadratic lower bound on the tcmmla .ize or explicit 

hDctionl. ,. Daprove the pIleral inequallty c > a·d·lOI 4 • .... 
4. Prove an &QII.Ptotic depth bO\D1d not derivable ham a corre8pOl1c1i!l& 

bound an to!llUla size. 

Show l(~) > •• n.log n tor scae a > 0 • 
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