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1.0 

CHAPTER I 

INTRODUCT!ON 

The reseuch described in this thesis Is part of t continuing effort, at the Stanford 

Hand-eye project, to develop the capabilities for a machine to analyze !tenes or complex objeCts 

and manipulate these objeCts for tasks such as part assembly. Much of the past work In three­

dimensional scene analysts has concentrated on scenes containing polyhedral objeCts only. This 

thesis is concerned with machine generation of symbolic description' for three-dimensional 

complex, curved ob jeets and their recognition based on these descriptions. The .:omplextty of the 

ob jetts viewed Is typified by toy animals such as a horse and a doll, and by hand tools such as a 

hammer. (The reader may wish to glance through the figures tn chapter 7 for a sampling of the 

scenes these programs work with.) Our conctrn here will be with the slt.apt properties or an object 

only. Other cues such as color and surface texture have not bfen used. 

Previous Work: 

The problem of ob jeet recogmtton has received extensive attention in the literature on 

Pattern Rt'Cognition ([Duda)), though the emphast~ has been on the recognition of two­

dtmensional patterns. Analysts or three-dimensional scenes from their two-dimensional camera 

images pre~nts the following difficulties: the two-dimensional Image of the object changes with 

the viewing angle; when multiple objeCts in a scene occlude each othl!l', only parts or some objects 

will be seen in the camera image, and also the occluding objeCts need to be separated from t.lch 

other. A non-convex ob .JKt can partially occlude itself. Add!•ion1lly, in our system we have 

allowed parts of an object to be aruculated (i.t. move with respect to t~e other parts). The 

classical pattern recognition methods have not been concerned with such varlaUons and have only 

considered statistical variallons of a fixed pauern. 

A popular paradigm in pattern recognition has been that of Ttmplat"' Matclting. 

Template matching consists of matching an 1nput pattern with a model pattern, knc:-wn as a 

template, on a point to point buts. The matching is usually performed at the level ar lr.put 

measurements, e.g. the intensity levels 1n the image or the values In a range matrix. i~ simple 

metri:, such a~ t: • .: root mean square of the differences, or the correlalion or the Image and the 

to!mplate establishes th~ quality of the match. Such Lemplate matching is directly applicable only If 

the Image of the entire s--ene Is Invariant, e.g for two-dimensional patterns. Some nexlble template 

matching schemes have been suggested ([Widrowl[Fischler)). Parts of such a template are 

allowed to be moved with respect to the others. Comparison of the observed scene with such a 

template finds the best •distor:ion• of the tr.-mplate required to match with the scene. These 

techniques, utalizLng point to poin: matc~1in~ of the model pattern and the scene arE difficult to 

extend for the expected variations of three-dimensional scenes. Further, template matching does 

no1 provide useful similarity and difference descriptions, such as two ob jecU are slmllu but for a 

missing limb In one. 

The early work on three-dimensional scene an .. •ysis simplified the problem by restricting 

to homocenf'OUs polyhedral objects. In a now class1cal work, Roberts ([Roberts 6S)) Ple:tracted edge 

information fr"m s1mple polyhedral scenes and compared the resulting description~ with posslbiP. 

projeetlOns of stored models for cbj!Ct recognition. With multiple objects in the scene, many 

comblnatlOns of known models were tried. It JS clear tha: for an incrtulng number of models, 

these techniques soon become computationally infeasible. 



1.0 INTRODUCTION 

The attenUon then turned to the problem of ·sody separation•, I.e. separadon of 

occluding bodies in a scene (SI!e [Cuzmanl [Falkl and [WaltzD. Crape ((Grape]) combined the 

separation of bodies wllh recognition, by removing parts of the scene recognized as belonging to a 

known body. All of these techniques were designed to work with polyhedral objecu only, and 

extensively use the pmpertles of eares and V!l'llces. ·rhough some Impressive results have been 

reported ([Waltz], [CrapeD. and perhaps some useful abstractions can be made, the specific 

techniques used fail to generalilf to a wider cla)S of objects. 

Among previous work on curved objects, 8.K.P. Horn ([HornD presented techniques for 

extracun~ three d!!1"fll1slonal depth data fro'"ll a TV image, using mlection characteristics of the 

surface. Krakauer ([Krakauerjj represented obJ~ts by connections of brightness contours. Ambler 

'' al ([Ambler]) describe experiments with simple shapes, incluriifll curved objects, usint relations 

within a two-dimensional image. However, none cl' these effCirtS really addresses the problem of 

·shape· representation and descri~tion. Work on o•JtdetJr scene analysla is a:so concerned with 

non-polyhedral objects ([Bajesyl, [Yakimovsky]), but 1gain no attention hu been paid to shape 

analysis. 
..., 

Our work Is based or, lnithl work of C.J. Ag;r• and ·r.o. Binford ([Agin 72, 73], 

[Binford D. Binford proposed a new representarlor. for complex objects by segmentation lnt'> 

primitive parts described as Ct\neralized Cylinders (and cones), .vhlch are defined by a space 

curve, known as the ua:., and a :~ of cross-sections along this curve. The shape and the size of 

the cross-sections may change co'ntinuosly along the axis. Agln c;Uilt a laser ranging system to 

measure the three-dimensional positions of the points on an object surface. The ~ position 

lnformauon helps re:olve ambir ities caused by occlusion. (This system only rneuures the 3-d 

politlons of points on the Sl.irface ••isible to the camera.) 

\ 

Agin descraoid prelimir1ai,ry effor:s at generating deKriptions from rhe three-dimensional 

range data. However, these de;cnption tech,;iques were unstructured; only isolated part 

descriptions were generated anJ nt't related to each other to make up a complete body. Further, 

the description of Individual parts had some major deficit'ncies. In particular, some d.. ·tptions 

merged nearby but distinct parts. In t~is thesis. we present n'!w description technique~~o that are 

different conceptually and in lmplmentauon. They generate adequate segmentation and part 

descriptions for an object and are a major advance over the previous worr.. The segmentation 

technaques are general and work wathout 1. prleori knowledge of the the object being viewed. 

Structured, symboliC dacriprlons are generated b~ed on these segmentations. 

Approach: 

The techniques dew:rlbed here ase the s~me representation and laser ranging system. 

These are briel1y dacrlbed In chaptei 2 and Met~ !.I, to allow an independent reading or this 

thesis. The remalllder or this thesis repmeots tl'le aiJt!wr's own contributions. (Note that this 

~hesis consistently uses the first person plural.) 

rhe chosen representation i1 designed tc• cope with the problems of 3-d scene analysis 

mentioned earlier. The mapr component of the chose.-, representation Is the Strwtur1 of the 

object, defined by the connectivity p~ttern of its sub-parts. This structure Is Invariant with the 

viewing angles, except for the absencr of some parts in a particular view due to occlusion 

(computation of this structure from certain viewing an~les may M difficult). However, some 

obJICU are reasonably 1escribed as having ,\Jternate struaures (details in chapter 6). In such cases, 
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we just ,;tore the alternative dncriptlons or the same mcxiel; each c!tscriptaon Is examined 

independently for recopitlon. The expected number of such alternates Is small. Articulation of a 

limb is easily described by its relation to other limbs. Our recogrition procedures use descriptions 

generated from the obsened data in terms of this representation. 

Two descriptions are match.:d in their structure u well as the details of the sub-parts. 

Note that since we have segmented descriptions of the sceone, the matching proceeds directly and 

don not h~ve to try various •distortions· of the model dl!scription. Recognition is by picking the 

model which matches besr with the observed description. Our system has a limited amount of 

indtxing capability, i.t. a list of similar objects can be retrieved from the memory using the 

descriptions of the current objects, ancl comparlso:'l with each lnown model is not necessary. 

Models for recogniuot; a;e obtained by storing machint generate J descriptions of the objects. 

Such a structure of VISilai models is known as a Vts'IUJl Mtmtrr•J. 

Among the contnbuuons of this thesis are: the techni~ues for segmenting the o'> jeet into 

sub-parts from rhe ob~trved data; the structure of the symt101!c descriptions and techniq!II!S for 

generating such descnptions: and methods for effl:ient ~ognltlDn from these descripl•ons 

including mder.ing. Working programs for the presented techniques have been written. (All of 

the described procrams run Without hur. :,r intervention.) 

Jn the next section, we prest'ht o.n overview of our IT.I!!hods and discuss the adequacy of 

our techniques. 

1.1 AN OVERVIEW 

The conventional •• 1put for computer vasion programs hz.s been the output of a TV 

camera or a digitized photograph. A camera 1mage is two dimensaonal, whereas the spacr. v1ewed 

11 three-cHmensional. The picture information is incomplete in the sense that ttte ~epth of the 

points in the •mage cannot be directly inferred. We Ulf a laser triangulation ranging method that 

gives us direct three-dimensional informat1on about the points in the image; this method is briefly 

dtieribed in chapter 3. 

Representation of an object b) segmenting it inLO simpler sub-pam represented as 

pneraliz.ed cones is discu~ in chapter 2. Prtmihves other than generallz.td cones are also 

suggested but have not been used in our system. Each sub-part will also be referred to as a Pitet; 

various pieces connect at a joi'llt. The connectivity of the sub-parts of an objeCt defines the 

Stn!cturt of the object. 

Techniques: 

The block diagram of Fig. l.l, dmribes schematically the processing of the ranee data. 

Following is an ov'!fvlew of these processes. 

Construction or the bourtdaries of the objects in the scene hu bHn foul'd to be useful 

in atructuring ,t;, processing of the surface range data in our system. Depth discontinuities are 

used to determine object boundaraes. and correspond to the normal notion of object boundaries. 

The ru.cing metht1d provides us with an outer boundary that 1s not sensitive to gray level 
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1.1 OVERVIEW 

variations on the $Urfrtc~ of the body. Buundary detection in TV images has proved to be a 

difficult probl~m. ev:!n wnh a restriwon to polyhtJrlll ob .Jftts only. The boundaries separate 

difier@tit bootes in '.he scene; however. touchmg oiljects are not necessarily separated. This 
1mportant case has been ignored. In occlud~ (includmg self-occhJded) scenes, some connected 

parts of an ob _Ject 1':1liY not appl'ar conn~ted. (Boundary organiution as disCU$Sed in chapter 3.) 

Technaques for segmrnnng an objtct into sub-parts and gen~ating the devrip:~s for 

a part as generAliZed cones t:.y spec1fymg ~n axis and cross-s~tions are not Immediate ftMn the 

chosen representation imlf. O.velopment of these techniques has been aa Important part of this 

work. Use of object boundaries has been Important in these lechnique~ Our Sl!f"'entatlun 

procedure starts by finding local con,.~ and then extends these local cones over larg'!i i&rO?.U of the 
ob _JKt continuously, allowing the axis dJrt(tion and the cross-sections to change smoothly. Th~ 

extension terminiltes at disconlinuaues. Each exten.Jed cone offers the choice of a segmented sub­

p:ut of the ob .)I!Ct. This segmentation procl'dure often generates multiple cone descriptions for 
some areas of the body. Baseod on c;hOIP.n simplicity critena, preferred descnptlons are >elected 

from 'he many alternatives. The rt~ult is not necessarily a unique description. Multiple 

descr1ptio1; hypoth~sls are generated and e;-amined by the recognition procedures. (Details a1 t in 

chapter 1.) 

Symbolic descriptions of an object are generated, aiming to capwre its lmpo·:tant shape 

pro~rties. They consist of the connectivny relations or the sub-parts, and summary de~criptions of 
the sub-parts and their jomts. Global descriptions depend on the relations or many sub-pan; and 
JOints, eg. bilateral syfnmetry. (See chapter !I for details) 

Matching routmes c.ompare '"•o descriptions to determi!le their differences. Recognition 
consists of choosing a previously stored descriptlcn t!1at matches bt?\t with the current dercription. 

The matching relies heavily on the structure of the ob.JfCt but also uses the ~trlc properties of 

the sub-parts. Panial matches are necessary to recognize objects with occluded parts. 

Articulations of limbs zre 1gnored; objects with different limb art!culatlons ue recopized to be 

the same. Efficient matchmg ~ween 1wo drscription structures resuks by !he use of semantic 
knowtedg~ about the descnptions, e.g. the use of distinpislttd pieces (defined lo chapter !I) and 
th! p. ~vatietl of the order of the pieces at a joint (section &.2). 

The models used for recognition are not idiGI models. we save a machine ~erated 
descriptiOn or the object (any majOr errors are removed Interactively). "L•arning• technaques to 

,n~ate mcll'e complete models are supted but have not been investipted in detail. 

A small number of important •features• of the iymbolic descriptions are used to Index 

mto v sual memory to rttrievt models with Similar dexriptior.s. Indexing Is necessary tr rhe world 

of ab .JKl• to be encaunt~ is large in number. In that case, we cannot arford to compare the 

obsernd dl'SCription with every other known description. n.tails of indexing, model acquiSition 

and matchi:1g are covrred In chapter 6. 

(NOTE: The descnpt1on and recvgmlion chapters contain some techniques that have 

not bftn unpl«nented an programs. These are mcluded to prov1d~ ideas for further extensions of 

th1s work, and to indicate the pl)SSibllilies ut improved performance. The techniques not 

implemented are clearly d~lineated. The folk-lng chapters of th1s thais are ortanlzed so that an 

introductory section contains th~ impo11ant co Ktpi.i of th~ chapter and the detail I are provided in 
subsequent sub-sections. Appendix 2, contain. l concise summary of the techniques used and has 

th~ s!;nAricant prograrn details.) 
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Ptrformance: 

The ruults of our implememaflon dforts have betn tncouraging, Wt art able to 
gentr,.te "cle~n· symbolic descnptaons. The recognataon programs can rKognaze obj«ts warh hmbs 
articular~ to vl'nous positions (ard vanom V!ewang angles). Useful descnptaons result for scenes 
contamtng muluple ol) JPC!S w1th a moderatt! 1mount of occlusion and the partially occlud~ 
objects are recognized by rheir partial descripttons. The methods described ht!re are app\acnbl,. to 
TV Image processing, 1f suitable boundaraes can be obtaaned. 

It is our view that the 1mportant e~mer.ts in juC:gmg thP performance of rKognitron 
programs for the types of scl'nes consadered here are the classts of sctnes for ~~-'htr.h the prog-rams 
worl( successfully We do not have enough data for meanmgful statistical results, but anstead 
present the results of our programs on several different scenes (in chapter 7). We have used six 
objects for our I'Xperiments and preSPnt results on 16 different viev.:s (3 of them contammg two 
objects). An analysis of the performance as related to the various scene charactensucs is 
presented. ~ . e believe that these rP.sults represent a significant break from the world of 
polyhedral objects of the past. SKtion 7.2 ducusses the speed and memory requirements of our 
programs. 

More work is ntedcd on rncorpora!mg pnmit1ves ()(her than generalized con~s in our 
programs for adequately descnbang many c>Jmplex objKts. We think that with the suggP.sted 
addauons, the progn•ms oHer potential of bemg useful m "real" applications to tulc.s st:ch as 
industrial automation (particularly for "v1sual feedback"). 

Ott:u Paradigms: 

The flow of our prcce~smg of the scene proceeds in a fairly •bottom up" or lritrarclrical 
fashion. The nKessity of a IJ,·rcrarclrical control, wrth much :nteraction betwPen ;Jrfferent levels rs 
wrdely belteved to be nKessary for compleK v1sualtasks ([W mston 71]), in agre-.:ment with current 
psychological theories about human v1sual perctption ([Gregory)). In the chr.prers on description 
and recognition, we indicate how such heten.rchical control m1ght be adQed to our programs, 
particu!ar examples are those of redescrirt 'ln an~ ver1f1cauon. The lack of such hererarchlcal 
control m the current programs is attnbu ed to the large effort that had to be spent in the 
construction of the current descripuon anc matchmg routines. The performance of the current 
programs is JUst adequate to distinguish btt 1een a doll and a toy hone. We bellev10, that addition 
of verification and gval-darected low level ~ ·scnption of such featurt~ as termination of parts will 
greatly add to the powl!r of the systfm. 

More rt"Cently, Frt'uder ([Freuder 7~a,73bD has argued for the nKnsity of the intimate 
use of goal directed knowledgt: a[ <~II ~vels of descnptlon, in contrast to the paradigm of 
generating descriptions and matdung them to models. Tht author feels that thas is desirable; 
how~ver, a principal problem to be overcome is the selec:uon of tne model to gu1de the 
descrapuons. In spKial r,.srncted apphcauons, ~uch as look111g for a ~pecific ob jt'Ct. this knowledge 
may M easily available. In a more general situation, however, we believe that descriptions of the 
complexity descnbed here need to be gtnerattd before a likely model can be retrieved from the 
rMmOry. Local descriptions ~an potentially match a very large number of ob jt'CtS and are unlikely 
to be useful m gu1d1ng further descriprioos. 

The tKhnaques presented her!! may~ considered as modules that would ,)t useful for 
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addihon of ocher pumitivts or b\! adapted for specific applications using a different control 
structure. These moduii!S should also be of direct use for extension to more complex scenes, such 
as heavily occluded scenes. 
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CHAPTFR 2 

R EPR£.5£NT AT ION 

We are Interested in the description of the "shape" of an objeCt, and in the recognttion 

of an nb ject bued on lU shape descrlpuon. The term "Shape" ha\ 1r.-.1,!ive meaning for us. but it 

defies a precise definition. The dicttonary equivalents of form or extent are equally lmprecase. Wro: 

are then interested in descriptlo.ts th1t capture our intu•tave notions of wht shape descriptions 

shoold be like. An array of positions of points on the surface as a complete description of the 

object and useful for some ~urposes. but it hardly de~rabes what one generally thinks of as shape. 

Among the ~esarable attributes for a shape representation are: the representation should 

describe a set of sh~pes compactly and simply, and should allow for determination of similaritie> 

u well as dlfferf':nces between :wo shapes. Incremental changes in an object should reflect a• 

incrl!t'Mntal chJagts in the c!escnpuon. Many "umversal" representations have been proposed. e.g. 

exjJansions ir: orthogonal series such as moments or Fourier series, or descnptlons of surfaces by 

two-climen~ional splines. These representations contain no sense of segmentation into parts. Local. 

lncrl!t'Mntal change of shape does not result in a local or ancrt'ITlfntal change in its expansaon in 

an orthogonal series. It Is unlikely that a sangle representation will be suitable for describing all 

shapes; we presern a representation that describes a certain, hopefully wide and useful, class of 

shapes simply and compactly. 

It seems to us, that any Intuitively appealing shape description must represent complex 

® jects by HpMntl.tion into simpler sub-parts. The segmentation criteria could be simplicity of 

sub-parts (Is a function of what 1 simple pnmitive is). art!e:.alation characteristics (each ~ving 

volu ne Is a separate part) or be based on our knowledge of the constnJction of the object (such as 

knowledge about cutaln parts having been attached to others) Thili segmentation and the 

conntttivaty relations of the sub-parts comprise the "Structure• of the ot'·ject. hence our use of the 

term "Structured Dtscrlptklns·. Segmentation allows for irw~ral chartges or object to be 

described incrementatly. 

Primitives may be surface descriptions or volume descnptions (for the simpler cue of 

polyhedral obj!Cls, edce descriptions suffice~ For three-dimensional objectS, the volume 

prtmltives proYlde more intuitive tegmentations. Surface diSCOC'IUnuitles are usually not a cooct 
baau for sepnentatlon. for some objeCts a particular surface is of ;pecial Importance, e.,. ma.,, 

paru might atta;h alone a nat surface. In such cases the representation should use a combination 

of surface and volume descriptions. 

We use Oeneralized Cones u main primitaves: other primitives art allowed. The 

representation cholen has been previously described In [Binford] and [Agin 721 Here, ln sec. 21, 

we prftent only a brief' summary, reflectang cur interpretation of it, and to allow an independent 

reading o( this thesis. Symbolic c;escriptions of these parts, their joints and the complete object are 

diacussed in chapter ~ 

2.1 CENER.ALlZED CONE PRIMITIVES 

An objiCt Is represented by segmenting It into sub-parts. Different pans attach at a 

Joiftl. A Mlb-part maJ have its own sub-parts, depending on the amount of dttatl to be 
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rt•pr~~nted. Thu provides a hienarthical reprfteruarion allowing for varying amount of ddail to 
bt> stored. A decomposition of a human shape is u shown In Fig. 2.1. The human sha.,. is 
rt'presented as being composed of two legs attached to onr end of the body and the two arms ar.:l 
the head attached to the other end of the body. Arms can be further represented as consisting of 
upperarm. forearm. and the fingm or the hand. 

HEAD 

BODY 

fig. 2.1 Se&mentation of a Human Form into Sub-pans 

Ttw principal representation for the pnmtlive pans in our system is by generalized 
cones; other ~rimiUvn are allowed. A ~ralized cone Is rlefined by a space a~rve. called the caxis, 
and normal cross-statoRs •lane this axil. The crosa-MCtions may be any planar area. and the 
cross-section shape may -:hance along the a,;is; the function describin( these aou-sections is called 
the cross-s«rtn jKftCtltrtt. Jr the cross-sections do not changt •lone the axil then the ceneratc..'Cl 
volume is a pneralized c,ltJttlfr. Formally, the volume described by sweepin( ot the crou-section 
atone the axls has been formulated as GmtTaltrtd Trorulat1Mt4l IJtiHirlaJtet by Binford 
([Binford)). We Impose the fol1owing constraints on the axis arMS the crou-secUons: 

I) Tf.~ cross-sections must be normal to the local axis. 

2) The axis rnuu pan through ·correspond&fll• pomts ol the cross-s.cUons. 

The points or the <.ross-sections to be used u corresponding points need to be chosftl. 
Intuitively, we want these points to be the ·centers· of the cross-seaions. The centers or gravity 
aeem to be appropriate and are taken to be the Ideal chOice for the corrtipOnciing points (note this 
choice is a,.ing made u a matter or defin1t1on). The choice cf corruponclift( points may follow 
from addiUonal constraints on the gener~Uzed translational tnvuiance. The centers or gravity 
~uire the k.nowledce or camplete cross-secuor" for their camputation. In MCtlOn f. I we present 
another choke of corresponding points thu are more directly cornputeci and approxlmate the 
centen of JfiVity. 
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The constraints stated abov~ do n(l( necessartlf determrne a unique axis, crou-~uor1 
descriptron for a given volume. E.g. a rl'ctangular aohd could be described by ax~s parallel ro i\ny 
of ats three sides. However, for an untermmared straight, circuln cylinder these conditions do 
dttermine a unique descnption, corr6p0ndmg to the usual choice of altis. Some ax1s, cross.sectlon 
descriptions are preferred to ochers, as discuued furth~r 10 sec. 1.5. The prob~ of locarrng axis 
without access to the complete cross.J«tlons will be discussed rn sec. 4. I. 

Nocc that this reprmnrauon has noc specified an l"lgorithm for ~t•tlon of an 
objeCt into sub-parts. Each segmented pnmihve is tote a simple and continuous gft1erali!ed cone; 
the conditions ~or determining srmphc1ty and ~ontinult)' will be f:.rrher l'stablished in ~. +.3. 
Even with specified conrin.Jity condiuoru, St"gmentati!'M'I of an object is not straicht forward and 
our tKhnique is devribed in chapter 4. 

The cho1ce of gentralized cones as prtmmns is attractive for descnbmg shapes With an 
axis along which thP cross-s«1ion \'lrits smoothly. Thn is ofttn true of elongated shapes (but not 
restricted to th~). Elongated shapes ue commonly found m borh man-made and na:ural obji!Cts. 
e.g. limbs of anrmals, machintt sh.1fu, ltgs of a tablt>, handlr of a hal1"mer ttt: , and a large class of 
ob.JfCCS can be conVft11fntly drscnbed u bemg bualt of genrrallted conp parts. A. program deali"g 
with a wider class of ob J«U wrll also ne~ additional pnmrtivrs. mch as planes, spheres, and 
surfaces. 

The shape of a primmve conmu of the shap!!s of It! axu. the shapes of the cross­
sections along thi5 axu A cross-S«uon can be descn~ by technrques of segmentation mto 
primitive two dimeuion;.l •conts•, i.e. the sarM representation ll\l!lhods can be scaled down from 
three dimensions to two d1mMS1ons. The shape descrrptlons of the uis and the cross-section 
function are problems of descrrpuon in til'~ d1mens1on. A~ain. segmentatiO!'I Into primitins, 
perhaps linear or ·conunuous· ~ments, suggests usrlf. Thr drtad of ~~ shapes in the 
reprnenralion can vary With the ust that they are put to; wl' have not concentrated on theSf' 
details hre. We have mainly been interested in t~e itructure of an ob j«t and use only crude 
descriptors to rtpl'ftenf the s~.ape of thP individual pnmmves. These descriptors are discussed in 
Sec.~.!. 

ObjectS with holes can be descnbl!d m terms of the solid matter that they are made of, 
but description! in terms o{ holft are simpler and carry more semantic Information. The ho~s are 
viewed u negative volumes. and can t'f descrabed as nrgative pneralited cones (or as OM of the 
ocher primitives listed in Me. 2.2). 

The chosen axis, cross-secuon repr~sentation has simllanu.s with the B'um medial ax1s 
transform ({Blum)). The main d1fterencts are as follow~. The Blum transform Is sensitive to small 
chances in the boundary or tt:t' surface (a smilll drsturbance cau~s mal'r rxcursior1s of th~ axu} 
whereas for the aenerahled tone I S,.•~!l Ja~turbanc~: mtrrly Pf'rturbs the local cross-sections. 
Computatton of the Blu~ :i ansform requ1m know~~ of complete surf~ce, our method IS 
content to compute tne pan1al c•oss·sectlon5. The Blum transform 11 a Htramform·. i.e. it yield~ a 
unique reprtsentation for g1ven data, wh«eu muk1ple cones can descrr~ the same volu~ 
effecuvely (e.g. a recranplar sobd may be repmented by axes m lny of the three orthogonal edge 
directiOns). Non-uniqueness of thr representation IS not v1ewed as a disadvantage, but rather an 
amporranr ac:lvanrace allowing for alternatave descriptions. The Blum transform is well deftned, 
however, while the description ~•,1n1sms described here are sun tvolvn.g. .~ more detailed 
compamon may be round tn [Ag~n ':'21 
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2.2 OTHER PRIMITIVES 

SCit'IV shapes nffd a complex cross-section functiOn when described u generallzed con~s. 

Description In terms or other primitives may be simpler. In the followinl we suggest additional 

primltivu This list is only meal"t to widl'll the clus of shapes that can be well described. 

Spheres: Though sph~ra can be represented by an axis. cross-secuor. representalicn. 

they do not have a preferred directiOn of elongation, and deKriptiOn u a sphere is simpler. P~l.s 

or sphet"a can be described u terminato;c! spheres. 

Surfaces: We have argued for the desirability of volurM representations. However, for 

some objects, a parucular surface hu special meaning and descriptiOn In terms or this surfao;e as 

pr@ferrt!d. E.g. the top of a table may be described u a thin cylinder or u a flat surface. Surface 

descriptions are likely to be useful for ob .)KtS made of thin material, such u folded sheet metal. 

Surfaces are also useful in dd:ribing termmatiGns of cmes. 

Termmations: A cylinder (cone) terminated by a surface not normal to its axis can be 

descnbfd as a cane with a taperang cross-section function near the tftlninatton. However, a much 

simpler descrtption is u a cyltnder (cone) ancf a termina~ing surface. 

The programs we present use generalized cone pramitives exclusively. Future 

incorporation ol other pramlt&ves 11 compatable with the methods used. These primitives suffice 

for many shapes, e.g. roy antmals, hand tools, and some machine parts (shafts). A mapr class of 

ob jeetl that iS hard tO describe by primitives diiCUssed here iS that or complkated CastiniS: 

perhaps there are no simple repraentalions far such shapes. We have l1fW implemented 

important surface descriptiOns, but think that with the addition or such • primitive, useful 

diKtiptiOns can be ttnerlled for a large number of objecU encountered In applications such u 

industrial automation. 
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CHAPTER~ 

DATA ACQ.UISJTION AND SOUNDARY ORCANIZATION 

In this chapter we descri~ the techmque uSt'd to d:rectly measure three di~Mnsional 
pusauons of points on the surface of an ob.J«t and inference of ub.J«t boundaries from thas data. 
Also discussed is the separation of a scene into dafferent bodan, usanf( the derived boundaries. 

Humans are able to view photographs easaly and infer depth 1nformauon from a sangle 
picture using many "U.S, such as texture gradaents, shadows, haghlights etc. However, machine 
implerMntatlons of these depth inference techniques constitute significant research problems by 
themselves. Our decision to use direct depth rang1ng was as an expedient, so that we could 
investigate the problems of sha~ descnpuons Note. that we do not have "complete" anforma~1on 
about ~n obj«t, only the posuions of point .. on the v1sible surface. Most of the ·~rcepuon" 
problems thus r~aan. h has turned out that rr.any of the technaques developed can be apphtd to 
·rv image d•ta, and even provade clues for attacking this problem. 

In sec. ~.I, we br~efly descrabt a laser triangulation rangang method, originally df\·elofed 
by G.j. Agin and T.O.Banford. The geometry of the current setup as different from that 
described '" [Agin 721 however the descnption of detaals IS sun applicable. A reader famaliar 
wtrh Agan's ranging method may skip sec. ~.I. A slmalar rangang method hu also been descnbe-d 
in [Shirail Some other methods of depth ranging are discussed in [Earne.stl 

3.1 LASER TRIANGULATION RANf..oiNC 

Rancmr by laser trtangulation IS similar. in pnnciple. to rangang using a ster@O pair or 
pictures, with one camera repl:aced by a known SOUfce of light. ConSider an object illuminated by 
a lingle light beam of known position and orimtatlon (Fig. ~.I). The camera iMage com!~tl of 
JUst the one illuminate~ point. If the carMra is cabbrated ((S•I]). the ray from the Image to the 
object point il known. Since the illuminaung beam Is also known, the positiOn of the ob jKt point 
can be directfJ det_,muned bJ triangulauon Posiuon anformataon for the whole object can be 
obtained by scanninr the ob JfCt by a number of known rays. However such a scan requires a 
larp number of beam positions and would be slow. 

Consider the lllum1nar1ng light beam to bf! r4!placed with a plane of light, of known 
po&ition and orientation. The plane antersetts the ob.JfCt a.!oog a planar curn, and this curvf! 
forms an amage on the camera screen. With each rotnr on thas l""'lge, we can assocaate a ray to the 
object, as before. Now, the interSKtion of thas raJ with the laght plane unaquely determines a he 
po&ilion of the ob J«< paint. Thus we can determine the 3-d posatiOn of each point an the Image of 
the allumlnated part ol the object. The scann1ng of the complete object now involves sweep1ng 
known planes across it, whach Is sigmficantly faster than scannang wath a poant beam. 

The apparatus uled for generating scanning light planes is shown schematically an fig. 
S.2. LiJht from a laser Is diverged to a plane beam by a cylindr:-:11 lens. The diverged beam is 
reflectld by a mirror which can be rotated about an axas, ro gtr~erate dafferent output planes. 
Thftt plants all pass thrCJUCh a common line, bur near the ob JfCIIhey may be canlidered nearly 
parallel, but di•laclld In palition. The camera laoking at the object MtS only th! luer ltpt. either 
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by proper contrast ad)lstment or by placmg an interference film in front of the lens. The light 

plane Is tcanrwd auoss the ab jKt and the cormponcllnc Images on the carMra scnen are 

recardtcl. The plane posatlons are known by a calibratiOn procedure ~nd three-dimensaonal 
positions of the points on the amage can bl! computtcl 

Surfaces that are parallel to the l'lht plane, are measured with poor accuracy. To 
counter th1s. we chclole another orientation olthe IiCht plane, obtained by rotaung the cylindncal 
*'• in the path of the laMr bam, and sweep the abjfet with plaMS of this new orientatiOn (by 

rac;ntnc the mirror). The optimum anale between the two orientations is 90 decrees. howner 
hudtiiue llmiUttons of our apparatus frequently limit tht allowed anclt to about 4~ degrees 

Our data input thus consiSI:s of two serta of scans; tKh serin of scans consists of nearly 

paral1tl but d~placed li~ht plaMS, and the two oreentatiOns are at an angle of bttwHn i!l-90 
decrees- Fip. S.S ~hows the two series of Kans for a doll Each framf# of a tcan consists or the set 
or ~nts in the canltf'a amage that have nan-&erO briChtness. Wtth each frame is assaclated a 

transform matrix. Olvftl an imap point In the frame, th&s matrax can bt used to cenerate the 

tnr•climenuonal posauon ol the corrapondiftC ab jecl po6nt (use ol homopneoua coordinates 
((Roblrtl &i)) allowl the truuformation to bt a Simple lftlti1X muiUplicaUan operatlan, Me [Apn 
72) for d«atla). 
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The triangulation angl~. i.e. tht anglf between the hght source and the camera at tht 
objeCt IS typ1cally about 45 dtgrers For such a setup, the r~solut1on of tht? ranging system (relauve 
error) is about I mm at a distance of I meter. This system u sub _jeCt to occiu!ton from two angles; 
the observed surface or the objeCt must be v1s1ble !rom the camera view-pom,:, and also not be in 
a shadow from the laser point of vaew. Thus for a circular cross-section, we are able to see only 
about 120 degrees of the cross-section. We have a trade-off of shadows for accuracy In decidang 
on a triangulation angle. 

The s~ of the data acquasauon is intrinsically limited by the time required to read 
the TV camera for each plane posnion. We have not attempted to mintmize the data acqumtion 
lime and the scannmg of an ob ,JeCI typ1cally takes a few m1nutes. Applicabihty of "grid coding• 
schemes to speed up the rangmg process is d1scussed later, m sec. 7.2. 

ThiS method of depth rangmg 1s attractive because of the direct mtasurernent of range. 
The author was I!XPft'Jmenting wuh stereo measurrment of depth at the beginning of this 
research ([Nevaha]). The pr:>blem of fanding correspondmg rtgtons in two scenes is a time 
consuming and error-prone operation there, and the author was easily convened to using this 
rang1ng method so that work co•Jid concentrate on the problfms of Jhape description. (The 
descnption techniques to bt descrabed are equally applicable to range daca obcained by other 
JMans.) Baumgart ([BaumgartD describes some techniques for data acquisition using multiple TV 
images. Other relevant work on scereo cltpth measurement may be found In LHannah] and 
[Lev mel. 

The preser.t impltmentation with a He-Ne laser, limits the hue of the objects whose 
ran~~ can be measured. Use of a bright white light source or a. multi-colored laser source woutd 
atlevlate this problem. The main disadvantage of the method is in the shadows caused bv wide 
angle triangulation (a much smallfr triangulation an~le would still bt ustful). Range of the 
apparatUS IS limtted by the power rrqu1red tO r:-ojKt a plane, even With relatively efficient 
imaging devices, such u silicon target mukiplying tubes. 

3.2 BOUNDARY ORGANIZATION 

The data from the laser !.Cans or the scene consis: of two series of scans. Each scan 
conSists of several jrfl'lf&ts. Each frame as composed of the points of non-zero brightness In a smgle 
TV amace (corresponding ro one posataon of the il1umanaring light ••lane). These points 
correspond co the parts of the objett itlumanated in that pankular frarnt. The three dimensional 
positions of these poenu are computablf by use of the known calibration information. 

Each frame concains a number of '''""'d'd $tf"'t'llls, corresporuiing to continuous 
surfac;.n of the ob.J!CU scanned. A diS<OOttnuaty 1n the object surface appears as a discontinuity an 
the camera image ol the laser scan. The space dasconttnuiues also correspond to tht ob JKC 
boundaries (as viewed from the part1cular anglf). Thus the outt'r boundaries of an object can be 

constructed from the extrrmlties of the connecced segments In the laser scans. The notion of a 
boundar~ u dtfininc the extrenws ('( the continuous surface, agrees with the normal concept or a 
boundary (as opposed to rextuR or color bounda:ies for example). However, In some Instances of 
touching ob jedS thiS process will resuk in boundaries which Include paru of more chan one 
objeCt. 
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.... u Boundary Constructe~ rrom lhe Scan• in ,.,, 19 
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The processing nf the inpu: data requires locating th~ connKted s.gments in a frar:.e, 

and locating therr extrtmities. !deally, the points in a segrntnt would conn:ct to form a than c:urve. 

However, due to wver31 f:lctors mrludmg the finite width of the illuminttting plane and vidicon 

blooming, these poants form ar: area. several raster units wide. A •thin· curve approximation to 

this aru iJ ol:-!~:r.C.:: \a:l laser Jean [lictutes presented m tto;s thesis display t.,inned ~uns). Some 

thi:-,ning trchniques were presenred in [Agm 72]. 1\bn Borning has implemented improved 

thinning tKhniques an.:l they have been used for pactures here. Thew thinning techniques are not 

of direct mterest here ar.d no l:mher detaals are provaded 

1 :1e extremitaes of ~11ch sct;mcnts are linked (by straigh~ lines) to form a comple•e outer 

boundary for tl.e obJects an the scene The detaals of the atgornhm for constructing such 

bot.mdanes and also the likely ~ources of errcrs have bet!1 relegated to Appendix I. The reader 

may assume the l~ser sc<.ns and a b":Jndar~ to be the input for the algorithms described in the 

succeeding chapters. An example of the boundary output Is shown in Fig. 3.i (fram the laser 

scans of Fag. 3.3). 

The construction of 5uch a boundary provi11es a useful and convenient way of 

structuring the data. Body sepo.ralion and detection of holes follow Immediately from the 

boundary data (details of body separauon are discussed in sec. !3.3). The boundary is ~lieved to 

be of importance for humtn visual perception ((AttneaveD. The description routines presented in 

the succeeding chapteu r~ly heavily on the u.oe of such a boundary, anti this information alone is 

sufficient for many applications indudang rKognttion of many scenes. The performance 

improvements of our descriplion routines over previous work ([Agin '72D are strongly ,.ependent 

on our use of the boundary data (see Chapter 4). (Note that we do not generate descriptions of 

the boundary ;n s1, rather descriptions of the volume outlined by the boundary.) 

3.3 BODY SEPARATION 

Separation of mult•t,le ob jeets in a scene from the ob jl!ct boundaraes Is dir~t. These 

boundaries correspond to depth dascontinuities 1n OOJKt space. Eath isolated set of boundaries 

defines a body that is connec~ in space. Thas set contaans more than one boundary if the body 

has ho:es. Howrnr, parts of a ronnected body may not •lways seem conr.Kted, because of 

shadows or occ1usaon. We have a partaal body separation; a body may be split in more chan one 

piece, but all srparate t-odies have been asolated. However, bodaes which touch are nac nectssariiY 

segmented. E.g. consider the TV amage an fag. S.~ the laser scans for this scene are shown in fig. 

~.6 and the boundary output •n Fag. n (more examples are presented in chapter 7). The 

separataon of the left doll lq from the snake is cUfflcuk In the TV image, but the separation of 

this snake from the upper part of the leg is immediate from the boundary data. Note that the 

lower part ')f the lee as wen u connected to the snake, as the two objects touch and no ~epth 

dlsconttnllit) is observed. (If the lower leg were nat connKted to the snake. it would stUI appear 

sepuatecS from the rest of the doll) More sophisticated wgmentatlon techniques will be required 

for separatinstouchiiiJ ob.JKU. The lJ:"oblem Is related to that in lnhrrlnc body sepnentatlon in 

monocular scenes and hu not befon in• estipted here. 
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Fig. ~.5 A TV Picture of a Doll and a Snake 
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Fig. 3.6 Laser Scans for the Scene of Flg. U 
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Fig. S. 7 Roundary DeriYed from the Scans of Fig. S.6 
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CHAPTER 4 

BODV SEGMENTATION AND PRIMITIVE DESCRIPTIONS 

Our descriptaon scht>mt as bast'd on descnbm~ an object m tt'rms of simplu sub-parts 

Generalizt'd cones are used as P' 1muy paammves; other pnml!ives such as planes and spheres are 

nt'cessary, but havt n01 yet bten amplt>mentt'd. Gt>ntrallzed cones can dt>scribe arbatrarily comp1ex 

shapt>s. Samplicaty crtttraa netd to he specafled to ptrmat !hear use m segmentation. We segment 

an ob _JKt an to gtneralizt'd conts wtth a "smooth • ax 1s and cross-secuon function, i.e. the ax is 

dart'CttOn and the cross-st'Ctions along the ;uus change contanuc:.;;.ly. Continuaty is a natural basts 

for segmentation, but it 1s clt>at that the resultmg st>gmentataon mto pnmihves will depend 

strongly on tht' spt"Ciflcataon of the contmu1ty conditions. Wt" do n01 txpect a furfect segmentation 

for t'Very objeCt, in the sense an which humans would segment it. Context must be used to join 

some stgment@d parts or furtht-r segment a part at some higher levtt Alternate dtscriptions ue 

used when muluple descnptaon hypothtsts are reasonable. (The rt'CGpltiOI'I programs eumine 

the multiple hypotheses and select the onr that matchrs best.) 

In thas chap~'-'r Wt' dascuss the tt'Chnaques that gt'nt'rate a number of alternate 

segmentauons and the basis for c:,oosang among the alternativt-s. The following chapter cover~ 

further symbolic descriptions for the seiKted segmt!ntations. The body separation wu discussed 

in sec. 3.3; in this chapter, we will be concerned wath descriptaons of one body. 

The chOSfn representations do not providt! a direct computational procedure for 

generating segmented dtsenptions from the anput data. unlike trarujor"' representations, f!.g the 

Blum transform or the Founer Transform. (Local descriptions can be darectl~ computed In our 

representation by fittang coues to the local data.) Continuity and s1mplic1ty conditions are usable 

for examaning rhe acceptabalaty of a cone descripnon. However, no a priori knowledce of the axes 

::!ir~!i-.us, axes shapt-s, tht' cross-sKtaon sazes or the cross-section functions is available. 

Our segmentation techmque procef'ds m two parts. First, the art-as of the body that can 

be dt-scnbed by local cones are determaned by the use of the "proJKtion" technique (discussed in 

Sec. <t.2). The second part Improves on the axes of the local cones d~ermined by projections and 

tn.:~ I'Xtends these local <.Ones, by aJiowang the axes darectaonS tO Change smoothly (U diSCUssed in 

Sec .•. 3). S~.;ch extensions allow tracmg of slowly curVIng cones. The extensions t~minate if :he 

cones cannot be extended continuously, t'llher havmg reached the end of tht! objeCt, a cross-section 

discontmuity or an ax1s disconunuaty. Other cone descnption methods are discussed in section 

H. 

A number of local cones are generated and then utendt'd. Each extended cone 

represents a poss1ble segmenttd sub-part Many local cones are hkely to extend to common pam 

of a bC'dy. Thus a numbrr of altrrn<~te segmentataons are suggested. We choose among the 

suggested dtseraptions and retain a sm.-11 set of alternate descnptaons. The result as not necessarily 

a unique descraption for an ob .)t'Ct, but neat her do we wash ro r.rain all possible combinations. 

Simple prefHftlce criteria select preferred dtSCnpuons. Among two descriptions for the same area, 

we prt-fer a long cone to a short cone; and prefer cyhnden to cones. Descriptiont of areas 

contamed 10 areas dtserabed by oth~"r cones are ehmmated. When il clear choice is not available, 

alternate desu.pllons are madr. The choace of segmentations u t!ucu!sed In section -t.!J. The 

selecu:m ~edures used are local Larger context, e.g the context of a joint for chorce of local 

descriptiOns has not been anvestagattd. Th1s hu been satisfactory for scenes or moderate 
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comp~Katy; more global choice as clearly useful. In section 4.5, we also discuss techniquE's of 
redescnplion of parts wath more context, hkely to be useful for improved descnptions. 

Our descrip<ion J>roctdures use only the boundary of the object. The !\-d data has b~n 
utthz~ in corutrumng the boundary from the depth dtSCOiltmumes. We also use the !'-d pomron 
of rhe pomts on the boundary. We compute only those pomts of a cross-section that lie ~n 1h1s 
boundary, and no assumptions are made about the shape or the cross-section aprion The 
remainder of thr cross-section can be computf"..l on demand. (See sec. 1.1 for locating the axts of a 
cone from only parual knowledge of the cross-setuons.) The detatls of the cross-sections have nor 
been useful, because of the hmtrauons on the vistble part of the cron-secttons and the errors uf 
rangmg (!~ sec. 1.3). Also, we feel that rhe ddatis of the mtertor are of secondary Importance. 
useful for making finer dtsuncuons. Thrs is m agreement wtth psychologtcal evidence about 
human perception; crude boumhry mformauoo is enough for many recognition tasks ([Attnea ve )). 
The boundary does depl'nd on the vtewmg angle, but the results produced are relallvt'ly 
msensattve to the vaewmg angle over a wtde range. Note that we do not malr.e descrrptions ol thP 
bou11danes themselves (viewed as ipil~E' curves), rather of the uolurr" outhoed by the boundar w>. 

Use of the boundary p•rmus us to use the same techmques of analysis for processmg dar:~ It u"l 

TV Images only. The boundary must now be obtamed from intensity mformation. However, 
boundanes from tntensny anformauon are d1fhcult to obtam and unrehable. The probJtom of 
body 1ep;Arauon must also be solved by other means. (Thts probJtom IS slmilaf to the problf'r., · •t 
separ aung touchtng ob .JKts.) 

In prevk·u· work ([Agtn 72]). Ag:n hu rl"cn~ proctdures to generatP wru 

descnpuons. However, maJOr shortcommgs of these techmques limrt thetr performanc:t- on 
moderatfly complex scen~s. mak mg thfm unusable for further exrensaons Ha: methods fit 
cyhno.icr~ of circulaa cross-secuotu to tile v1stble surface of the ob ji!Ct. These methods had nu wrll 
dehned nouon of a part, and a cyhnder would oft•n include : .... o proxtmate but disunct parrs of 
an ob ,JKt. such as two f1ngers of a glove. Such errors cannot bt raslly corrtcted at a higher level 
by use of context. No attempt was made to connect the separate cones to form an object m Agm\ 
wcwk. Our descnptlon process 1s more structured because ol ats use of buu1.dary. Our techmques 
are conceptuallf different and the1. developmmt has requirl!d a larg" investment of riforr. They 
uh1b1t substanually tmp•ovfd performance; some example' are presented in sec. 1.3. Our 
programs are also sub$tanually faster, as we need to worlr. only w1th the boundary of an ob J!Cl. 
Also, our methods do not assume any parucular cros;-secaon shapes. whfrfas Agtn's methods were 
restncted to cucular shapes. 

Each cone descnpuon 1s represented by a hst of axis poanu and normal cross-secuons 
along this axis. Summary descnpuons for each cone mclude the length of its axis, the av•ragt­
width of the cross-sections and the ratio of the length to the Wldtl':. The cross-section funcuon 1s 
approximated by a linear function and an averag .. COM-angle is computed. These summary 
descripUons au: ~:!russed m more detail m section !U. 

of. I CONE DEFINITIONS 

The generalized cone repr~sentauon has been d1scusssed earlier (sec. 2. 1). The 
constraints on an u1s, cross-sectton descropuon were defi'led to be tha~ the cross-sections must be 
normal to the loul axts and that the ax•s must plU! through correspcnding points of the cross­
sections. Cho1ce of centers of gravity for corresponding pomu was considered. 
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However, the cmrer of grav1ty of a cross-section cannot be COihputed without the 
knowledge of th~ completr cross-section. We s.. only the fronc of the cross-S«tron. If crou-s~tion 
shaPft w.re limited, Wf could esumate the comp~e cross-s.ction by fitting rhne varaous shapes. 
An alternative approximation would be t.l use the center of gravity of the vasable cross-section. In 
thii imp~ cation, we compute only the two md-pomts of a cross-stet ion (those on the boundal y 
but with known thm-dunensaonal posmoru) and use the mad-poant of the line panang these two 
end·poants. This method of dlttrmmmg corresponding pomts gives a closer approximation to the 
cmter of gravity for the case of circular cross-sections. Fig. <f.l(a) shows the axis obtliu.zd by 
joinlnJ the centers of gra ~lty of the visible parts of the cross-s.ctions and Fag. f.l(b) Jhows the 
axes obtained from the mad-points of the ends or the visible pan of the cross-sections. The axis 
in Fig. <f.l(b) coincides with the desil'fd central aXIS. How.ever, an our syst~m Ins than half the 
cross-section Is visible and the approxamation Is noo. Pf.rfect. 

(ol (b) 

Ftg. -4.1 Two choices ror "" •s POints 

For computing COM descriptions, we have taken the mid-point or t~ ends of the visib~ 
part of the cross-sectlans as our eho1ce of the corresponcilng points. This is taken to be the 
thjimtiJnt. for axis. cross-StClian desmpt1ons. (i.e. we require tht axis to pass throuch these points). 
Nac~ that this chOice ar correspondmg points will cause a cone uis to be located in somewhat 
differenr. positions with varyi"' viewing ang'". thoug~ the variations will be small for elongated 
parts. Our recognitiOn prognms oo nat rely on 'he precise location of such axes and are 
Insensitive t.o such variations. 

f.2 LOCAL CONE SAMPLES: M::.THOD OF PROJECTIONS 

AI tM first step in finding cones delcnbtnc an object. we find local cones ducribing aman areas or the object. If two consecutive para11el cross-sections have the property that their 
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mid-tJCints joan in a line which ls aorrr•al tu '' ''.#' cruu-s~cdon.'l. then this H"e and the cross­

sections comprise a local cone by our rltfiniUl.IIU of a genera1i4.ed cone. Wt f111d local cones 

satisfying these conditions, by const~u~:tin' crou ~ectaons normal ro ei&ht equally spaced directions, 

by usirtg •projections· as d!Seribed bflcw. 

C.onsider a pamcuhr proJKtlon d1:-Ktion, .ay X1, having a specified orientation with 

respect to the object. We wtsh to find local cones. with axas potntang along this direction. Rotate 

the Image (aboUt the origtn) so that xi coinr.ida 'IIIith the Urtratated X-axis. Fig. 4.2 JhO·Jo'· the 

do11of fig. 3.4 10 rotated by 1!l degree (X1 is poinbng horizontall)). Now construct cross-secttons 

normal to the rented X1, sp;aced 10 rut!!' units apart (the complete picture IS 330 units wide), by 

forming ~!lrs of points on the op()\-"\ite side!S or the boundary. As example see (pl.p2) and (p3.p1\ 

in Fig 1.2. Note. 1011~ ~ross-sections in tht~ figure are not exactly vertkal; this is because of coarse 

sampling of the b:JUndary ana iit~. of interpolatkln between boundary points. If two can~uve 

cross-sections satisfy the condition that the ::~~ through their mid-points Is wit"in a specified 

angle (22.~ degrees) of X1• we have found a local cone (actually an approximatic.n to one). One 

local cone may contain more than two crou-sections. if orher conse.:utive cross-sections s<Uisfy the 

constnants an successive p;airs. Fig. f.,, shows the axes obtamed from the cr~Stct!ons or Fig. 1.2. 

lThe axes are shown by double Jines and the auoctated boundaries are shown in heavy hiltS.) 

These are the parts or the ob jKI that have local cone descriptions With the axis pointing in ~he 

chosen pro.JKlion direc.tion. Fig. H. shows all local axes obtained frorre projection in eight 

different dir«t1ons ror 1nis ob jKt (!ach 22.~ degree apart). More prorrarn details are tl:·~eribed 

in Appendix 2. 

The para~4!n uwd for this me(hod were determined empincally. The accuracy w1th 

which tha: axss can be determined (w11h1n 22.S Jerrl!eS of the projection directiOn In the abuve 

descrtptton) is dependent on the spacing between two ne1ghbor1ng cross-sections and the expectrd 

random variations 1n the boundary. Also, tf the axas needs to bf determined more accurately, we­

need to project in more directaons. However, the techniques described in the next section for 

refining the axes direction; are more efftcaent. Four projection directiOns are u~al1y adequate for 

finding '" loeal cones of interest (w1th the chosen accuracy range~ eight directions provide 

enough redundancy. The choice of spacing of the crau-sections alone the projection direct!on u 

by a trade-orr between the ~p111t1al resolutaon with whiCh the local cones can be determined and the 

accuracy or the axis direction. 

The resulting seamtntation for an object iJ dn«lly dependent on the local cones 

generated by pro.JKlUMU. The projectiOn methods are sucetllf'ul ill flndlnt local tOMS for 

elongated partS d an ob jKL Local cone generation for non-eloncated fll'U (with Jencth to width 

ratlo of las than 0.5) is not rffiable. 

4.3 EXTENSION OF LOCAL CONES 

The projKttons prov1de us wtth a numbfr or local cones and their approxamate axes 

directiOns. In this sectiOn Wf descnbf ill procedure ta improve the axa directions and extend the 

cones u far u possible continuously (a concise descraption of the alprtthms and more 

impllmt'~·talion detaib are in Appendix 2). Ext11uians of a cone allow tht axts direction to 

change smoothly. 
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Ax is R efinr.·lnl"!'lt. 

The ax1s rftmmg process u irtrauve. We start from the Jist of axu poanrs for the local 
cones provided by the pro,Je<:tlons. A stra1ght lme 1s fll to these poir,u to approximate t:ne uis. 
We construct the correspondmg WJSHtf:tions, normal to the ax1s at the axis pom•S, by ftndmg 
inters«uons wtth the boundary. Only the end-points of these cross-secuons are computed. The 3-
::! p.Jsations oi thl'se l'nd-poanrs arl' u!.td. The distances from the axas of the mid-pomts of <hese 
new cross-~«t1ons ue computed. If the mad-pomu lie on tne ax1s, then the ax1s and the crou­
sectlons satasfy ti,e requuMWnts of riescnbing a cone. For real data. thu requ1rement can only be 
e11pect~ to be satufl~ apprOXII"lately. We accept an axas, cross-secuon descripion, if the average 

distance of the m1d-pomts from the axas ts less than a threshold. (Thts threJhold is set to the :>-d 
dastance c:nrespondang to 2 raster untts, and .s related !C t!.e tKpected random variations m 
derermtning the mad-pomu.) If the threshold is exceeded, we f1t a stra1ght lane through the mad­
points of the n~w cross-secllons to defme a new axis and uerale. The number of allowed 
1terauons 1s set at ll, (we accept the resulting axas. cross-section• after !I iterataons). Thu process 
daverges when the il.\15 dtreo:taon ctTlnges to the extent that new cross-sectaons <;an 'lOt be 
gen~rat~ by compuung antersecuons w1th the parts of the boundary that the process began With. 

Convergence of this tterauvr process as easy ~c. see for a circular cylinder or -cone for a 

wade rang~ of starting dar.ct1ons For a straight carcul?: (yhnder, consider )tartmg with any set of 
parallel cross-secuons, the line ,;oan.ng thm m1d-poants 1mmedaately converges to the desared ax u 

Stmllar convergence follows for a regular cone, but for more general cones the precJSe convergence 
crllena hav~ not been worked out. Empmally. th~ d~scnul"d process has been four.d to converge 
for elongated p.arts. When convergence faals. 1t as conl' .. ded that the part has no good descrapuon 
as J cone With the axas an the prescnbed direcuon. Tnas part may be later dcS<nbed as a cone 
w1th some other axss. Some ar~as may hav~ no good cescnptions in terms of cones and no cone 
de~cnpuons m:shr result for them. Descnptaon of such parts rtquJres other pnmatives and as not 
consadered an thu work. 

Cone Extensions: 

Ontt an ax1s, cross-si!Ct:on descraptaon of a part is found, we try to extend the cone 

continuously over a larger part of the body. We extrapolate the axis at either end by a small 
distance (the chotce of step sate as d1scussed later). A cross-section nonnal to the local axu 1s 
constructed at this point and its mtersecuons with the boundary are computed. If no intersecuons 
can be found extension terminates. (Thas 1ndacates an end of rhe object or a sharp turning of the 
boundary). 

Tflls are made to determane whether this cross-~ion is acceptable as follows. The 
dastance of i:S mid-point from the extrapolated axis 11 comp!!ted. If this distance Is larger than a 

threshold (3-d distance comspondang to -+ picture units) then we make a mochfaed guess at the 
extrapolated axas, by including thas new mid-poant and recompute a normal cross-section. (We 

have found it satisfactory to JUSt accept the new recomputed cross-section and not aterate on :has 
ph;ase.) Fig. f.!i shows an extended cross-secuon on a curving cylinder that is not acceptabJtt, but 
prov1des a new direcuon ror th(l axas and a new acceptable cross-sectaon. Thas proc~ure allows 
us to trace the axis for a $1noolhly curvmg object 

The new cross-section is then tested for continuity of wicith with the previous cross­

sectionl (Lhe continuity evaluation IS $ptctfaed later). If the new cross-setrio.• as acceptable, furrher 
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EXTRAPOLATEr. 
CROSS-SECTION 

EXTRAPOLATED 
AXIS 

Fig. -+.5 Extension of a Cone 

txlelllkJn is attempted by iteration or the 11bove descri~ process. If a dlscontinuuy iS d«ected 

than the extension terminates. (Actually, before termlnatang, extensaon at half the initlal step size 

il attempted.) 

As example. when the local cones of Fag. U are extended this way, cones or Fig. 4.6 

riiUk (the axes of the cones are shown in this figure). Note the mukipbcity or conn particularly 

for the head. For the other parts, vuious local cones have converged to ,,.,arly Identical cones and 

an barely dlstinplshable In the fipre. Each cane offers :o potential sepMnted sub-part (choice 

of JePI'ffttatiOns Is diScUssed in sec. U). 

t..tt.r termination ot a plete, a check is made to see If the end of the Clb jed was also 

nachtd. We ch«k whetMI" the part or the boundary beyond the last cross-seaton ls laraely 

a.~tained in a sman extensa. or the tone. Part or the boundary may bt btyond the last cro:s­

.rtan in the 2-d imaae but not In three-dimensional space. One instance of this is Nhtn a cone 

&I ttrminared by a plane face. Example, see FIJI. 4. '1 (shows s·enerated cones) and 4.8 (shows laser 

acans), the plane face on the hammer head as detected as a termination for the cone describing the 

held (piece p 1). 

This txtentlon method is ad hoc. and the choice of pa1ameters used determtnea how far 

a cane will be extenckd. Pr«ise properties oi the extended cone lit diffieuk to determine and the 

SIIUIIS of tho mechod hu only bml tested empirically. The tollowanc discusses some lff'ecu of the 

paramettr chotcts. 

The sc.p slJe ullclln the extmsicn process is important. We choose the step liUt to be 

proportional to the rldius d the cylinder at thiS point ( 0.05 o the current radius, bounded by an 

abiQiure minimUm and maximum seep size). We expect to find !btpted pMctl and hence wider 
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p1ec~s ar~ also expected to b~ longer. lr ~Ktens1on fails we r~uc~ the step si:~ by a half an~" try again. If this falls too, we s£op. Obviously, many smaller step sizes could be tned. at the cost of additional computation. The lcxal axis dir~tton is dl!termined by fltUn@." a scr•lght line to a small number (5) of n~arby ax1s points. Th~se ITiflthods allow us to trace slowly curvang parts of a piece, but may fall when the curvsture is large. Higher level routines evaluate such Jegi"Mntations and 
two disconnected parts may be connect~ bas~ on context. 

Evaluation of th~ acc~ptao1lity of a new crou-secuon is design~ to detect drastic 
discontinulti~s and cont~Kt must b~ used for fin~r diStinctions. A parabola is fit to a small number of prev1ous cross-secuon widths and th~ width of the new cross-s~ction Is pr~lcted. The actual width IS allowed to d1ff~r from this predicted w1dth by a fixed proportion (0.?5). 
Soundan~s r.onstruct~ by our programs ar~ frequ~ntly slightly jagged. because of misalignment of two laser scans and errors an computing segment end-points (see Appendix I). This forc~s us to 
r~lax the continuity conditions for a cone, to avo1d termmati.m because of these small boundc~;·y 
fluctuations. 

No exphCJt checks are made for the slo~ of ax1s to b~ contmuou~ If the cone curv~s too sharply. we find no boundary intersections for the extended cross-secuon and the conl!' 
t~rmmat~s. Thus con~s wtth an elbow, e.g. a human arm (see sec. 5.~ for elbow pants), will be 
segm~nt~ at the elbow dependmg on the curvature of the axis there. The next level programs are able to d1scov~r a segmentation at an elbow, and g~erate an 1lternative description m~rg1ng <he two (sec +.5). The converse process of segmenting a cone ar the elbow has nor been used m our system; its implementation IS d1rect 

The thr~sholds for crou-section conunuity and step me were p1cked intu:t1vely and adJUsted empirically. A more analytical approach to such cho1c~s 1s not clear. Perhaps, single 
rhr~sholds are not suffic1~t and alternate descnpuons with different theresholds would be helpful. However, we believe that a general program should be Insensitive to the choice of such thresholds. At lt>ast a partial solution 1s in the use of wider context for makmg segmentation decisions, such as later I"Mrging of two p1eces separated at this level. 

Chotee of such segmentation mtena IS a general problem that occurs In many domams e.g. linear approKimauons to a curve. We can do a better segm~tation if we can look at the whole data globally, rath~r than just use local contlnuuy cnteria. We will then be able to make 
some use of context in dec1dmg on the segmentation pomts. In the present case, this may be accomplished by usmg very loose constrai;.ts in cylinder tracmg and then furth~r segm~nung the 
r~su!tant piece. We may use the techn1ques commonly ~.:sed for fitting straight line segments ([Duda, chapter 9)), to the axis and to the cross-section function. Usually, these methods attempt to keep the maxllltu,.., ttrror wl[hm a sptetfi~ bound. Further segm~tatlon decisions are meaningful only m the coruext 10 which they are to be used and hence must be mad~ by th~ routines that use thu segmentauon data. 

Extensions are found for all local cones suggested i:.ly imtial segrMntatlon. Thus many 
parrs of the body will be included m more than one descnpuon. This allows us to compare alternatives and choose on the baSIS of wider conteKt (see section <t.5). 

These cone description routmes only need to compute the end points of the cross­sections. The compuuuon of the interior points of the cross-sections from the surface range data Is straight forward. We ha11e not used these intenor points because of thr. dlfflcukies In using 
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d~tatled dtscription of the cross-sKtions in our systern. Only part of the~e cross-sKtiC.iiS is seen. 

Th~ light sourc~ and the camera axis form an angle of ~0-60 degrees, limnmg the visible part of a 

circular cross-sKtion to 120 degree!. Also, the cross-sections ar~ small for ob )Kts of a size 

conveniently used with our scanning apparatus. The visible part of these cross·sectaons is nearly 

nat and the ranging errors b~ume signific1n~ in the description of their shape. We use perceivE'd 

width as the basic descriptor. 

Some summary descriptors are used to describe the gross shape and the Site of a piece. 

We have u~ the length of its aXI.•, the average cross-SKtion width, the ratio of the tmgth to the 

width anrl an average cone angle. More details on symbolic description~ of the pieces are 

presented an section !U. 

Performancf': 

We present results on somll! scenes that were also uSil!d by Agin in previous work \[Agin 

72]). F1gs. i.9 and 4.10 show the results of our programs on a glove and a horse. Agm's 

descnpuon programs merged parts of the tndex finger and the little I mger in the glove, ana the 

body of tli~ horse extended to include the tail (we have no~ reproduced the pa(;rori~l result~ of 

Agm's worl:). Our description methods join the vanous tones to form complete ob _Jeets as 

descnbed in chapter ~. whereas Agan's descriptions only descnbed ISolated pam. Our program.o 

are also substanually faster, as we need to work only with tne boundary of an ob jeet. Also, our 

methods do not assume any particular cross-section shapes, whereas 4.~in's methods were restricted 

to circular shapes. 

Our programs give sah,factory ~erformance on scenes of complexity illustrated here 

(more uamples will be presented m chapter 7). If a sub-part is elongated, it is well described by a 

cone and our programs are usually successful in finding such descriptions. Some extensions, such 

as when other sub-parts Interfere, cann.x be made properly without the use of this contextual 

information (sec. -t.!i). This advice is bes: >upplied from the higher level routines. A weakness of 

the programs is the failure to verify that the computed cone description in fact describes a cone. 

We may describe a plane surface as a surface or a cone whereas it may be better viewed as a 

termination of some other cone or jUst a nat surface. Design of special routines to detect such 

cases needs to be mvestigated. 

H OTHER CONE DESCRIPTION METHODS 

Iteration is used for accurate location of the axes of cylinders in the methods of the 

previous sKtion. An alternative to iteration is to find a best cone that fits the given boundary 

segments. The cone axis mus! be constrained to a certain form such as straight or parabolic, and 

the cross-sK~Ion function may be limited to be linear locally. A best fit m the least square sense, 

with these constraint!, wall give us the axis and cross-SKtion function directly. 

Differential Geometry ([0"'--ieiiD, is concerned with desc:riptlons of surfaces located in 

three dimensional space and may be relevant to the generation of the desired cone descnptions. It 

characterizes surfaces by a small number of variabln. mainly using local curvature. The author 

brief1y Investigated the use of principal curves. which are the directions of mmimum and 

maximum curvature. The temptation of using the principal curves lies in the fact that they are 
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irttrinsic to the surface, and are not sensattve to obscuration or viewing ang~s (the vasable part :>f 

them of course is). For the case of circular cylinders and cones, maximum curvature curves 

comclde wttn our choice of cross-sections. However, for more general cones, nc such sample 

relations exist. E.g. for an elliptical cone, the maxunum curvature curve is not even planar. (Thts 

curve can be easily constructed by observang that it must be normal to the generating line m the 

tangent plane, as two principal curves are always orthogonal. The principal curve goes towards 

the apex starttng from the major axts and returns after reaching the minor ax as). 

Comp!itation of t~rv .. :t•re requtres the use of second derivatives of the local surface, 

and can be strongly affected by nngH-:g errors. We experimented with programs to search for 

directions of mmimum curvature by defmartg ·average· curvature over a short distance. The 

average curvature along a gtvrn direcuon over a chosen length was computed by rneasunng 

"bendlnf defined as the maximum excursion of surface polnts m between. from the line JOmmg 

the given end-potnts. Moderate success was obtained for those parts of an ob jeet that were 

elongated. For such parts the curvature changes slowly, and the measurement of average 

curvature Is better ,;usufied. 

The author was unable to fi'ld any sample relations between the chosen generahted cone 

repr~ntauor.s and the mtatte! used tn Dtfferential Geometry. For thas reason and the above 

stated difftculttes of compuung derivatives, the subjeCt was not pursued further. However, the 

principle curvature directions may sun be useful in .. hoosing among alternate descriptions, e.g. in 

choosi"C a preferr«< uiS direction for a thin disk. (the elongation direction is not the preferred 

direction here). 

4.~ CHOICE OF SEGMENTATIONS 

The cone desr.riptlon routines generate a number of possible sub-pa~s. Many of these 

cones share common parts of the obJKt and hence are not all compatible wtth one another (e.g. 

see the various cones for the legs and the arms of the doll in Fig. 4.6). However. some 

tegmentauons are more appealtng. intutttvelJI. than others. We ;um to choose a small num~r of 

segmentations mto sub-parts, the sub-p.uts m one ~nwntarion betng compatible. We prefer 

cylindrical and elongated descripttons. Paeces w,,h length to wedth ratto lower than a threshold 

~re discarded, provided they overlap with :;gme oth~r pi«\s. 

The Simplesr form of overlap occurs when a part ts d~scnbed more than cnce because 

the cone extension programs starting from different local ~ones, converged on m~arly the same 

cones. E.g. see the two cones descnbmg the left arm of the doll in fig. 4.6 (the axes of the two 

cones overlap a lot and are barely dtstangutshable in the ficure). The various descnptions here 

are equeulent and we may choose any one. W~ prefer the loni,~5t cone. Some cone descnpuons 

are termtnated prematurely, due to a local dtsconlinuity of the boUndary. Another cone describing 

the same area may nut be brgken. If a cone is completely or largely included m another cone, we 

retatn the containmc cone only. 

Another class of confliett"C descriptaons is caused by the effects of corners. Consider the 

two dimenSiOnal exan.ple tJf a rectancle. F*C. 411, showing axes of variOUs cones by dashed lines. 

It may be described by cylinders with axes alone the sides. or by axes bisecting the corners. 

Amonc the cylinders with axes alonf the sides, we choose the more elongated one, I.e. one having 
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Fig. 4.11 Different Cones for a Rectanile 

the larger length to width ratio. The •corner• cane is included in the longitudinal cylinder, or 

small extensions of this cylinder. TIM latter case 'OCCUn wMn anoth~r cylinder is present near the 

comer and prevents the longituchnal cylinder from eKtending to the end. Wt choose to Ignore the 

description which Is c:ontaaned in the other. More details of t~se computations are provided near 

the end of this section. 

Sometimes, no clear choice can be made between two alternate piece descriptions. E.g. 

the head of the doll in Fig. 4.6 Is nearly spherical and many axes directions are equally good. In 

such cases we may re~ain the various alternatives and make multaple d~scriptions (this ex ample 

should really be described by a sph~ primitive). Current programs pick ant' of the alternatives 

only, but the data structures allows easy addition of .lternates. (Note the followang describes an 

instance where we do use alternate descriptions.) 

Applicauon or the abo\·e ~lection c:iteria results in the selected ~tation of Fig. 

4.12 for the doll of Fig. 4.6 (the algorithm is stated precisely in .A.p~ndlx 2). Nace the parts In 

Ftg. 1.12 are numbered in an arbitrary orc!er. loth arms and !togs are dmribed by ~ than one 

cone each initially. Note that the small canes describing the f~ of the doll were computed ro be 

contained in the leg and do not appear in the final choice. CoM P!l describing the top of one ~ 

wu nac JUdced to be included In the extension or P6 (but an alternative description merging the 

two Is also generated u described In the following). The shoulder piece in Fig. 4.6, is contained in 

the extensions of the body p&ece and hence does not appear in Fag. 4.12. Such computation ts not 

very robust Shortly, we deKribe a technique of redescription which would be more reliable. 

Use or local dilcontlnuitles for making terman.:otion decisloriJ ir. the ,~one description 

process results, sometimes, in premature termination. A part Is thus broken into two parts 

separated by a small discontinuity belween tht two parts. If such two parts extend into each other 
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c;ontinuously, we genente an al:ernative description that creates a new part combaning the two 

paru. For example in rig. 4.12, P!i anc: P6 arP merg!d mto ;~ smgle part. Such decasaor.s to 

consider this entire volume as one piece can not be made by our pnmmve desc:npuon rouun~s. as 

they look for local discontmuities only, and have no notion of an Isolated, small dasconunuhy. 

(This merging actually takes place after "joints" of selected p1eces have been computed. Jotnts ue 

discussed in sec. S.2 and the detarls of merg•ng in section A2.2S of appendix 2.) 

£Ktens1on of some piecf's IS terminated by the mterference of other p1eces attached to 

this piece. The t'Xtt'nded cross-secttons bt"gtn to include parts of the othu p1ecl">. For eumple 1n 

the description of the ooll in Fig. 4.6, the paece describing the body of ~he doll d~s not extend 

into the shoulder arc~a. the extension bemg mhib1ted by the pre~ence of the arms De~criptions of 

such p1• ~ can be improved by redescnb1ng the cone primitives usang a mod1f1ed boundary, 

generated by "cuuing off" anterfermg p1eces. Tlus redescnpt1on technaque has not b~n 

implemented; use of the boundary by 'he cone descript1oo routmes permitS a dirt'Ct 

imple:'!'lentation. Some redescnpuons of primitives may also benefit f'rom bemg guided by more 

sp«lfic information pro'lided to the cone description proctdures, such u a j)rescnbed ax1s 

direction or the cross-section Widths. 

Another example of alternauve segmentations and chosen s'!gmentauons IS shown an 

Figs. 4.13 and i.li. More examp~s of fanal segmentations are pre$ented m rhapter 7. 

In the rest of thts sect1on are presented some deta1ls of the programs u~ for selfoction 

of segmentations. 

The extent of a piece as defir.ee by the boundary St"gments of its two s1dts. We use the 

boundary segments to determine the amounts of overlaps of two p1eces. Boundary overlaps are 

easier to compute, but not as closely related to t:1e desired geometrical computations as area 

overlaps. E.g. an Fig. 4.13, the doll body IS described by two cones with nearly orthogonal axis; 

these cones share substanually the same area but no common bouudary• (Correct choices were 

made m this case, only because one of the p1eces was discarded due to 1ts very low length to width 

rarlo.) Normally. the area computations require sagmflcanrly larger amount of computation than 

the boc..ndary computations. However, when evaluating the area overlap of two cones here, the 

approximations of the cones by their axes points and cro~:; !.«tions are already available, i.e. tne 

areas to be compared have betn segmented in sequentaal traprzo1dal strips. This reduces the 

complexity of the requ1red computation. We have used boundary overlaps, but JUdge the 

tmplementaUon of area overlaps necessary for ancreased performance in further work. For this 

tmplementation, a cone is consadered to be completely 1ncluded in another if a large part (> 0. 7!1) 

of boundary segment of its two sides is 1nclud!d in the other. 

If complete inclusion does not occur, the max1mum d1srance of one connlctmg piece 

from the other IS comruttd. If thiS distance IS a sman fra~:tion of the length of the including piece, 

then inclusion 11 assumed. If only one s1de of a piece is mc.!uded in the other, but the piece as not 

elon1attd or is very conical, it is elimanated. 

These oYerlap resolvmg methods are simp.e but work well for our e'ICamples. We expect 

significantly better performance 1f the techniques of rtdescnptton by rrrnoving some parts and the 

computation of cone overlap by ustng areas mstead of boundary wtre to be used. Addit:on of the 

redesc:riplion techniques would nol requare any modifications of rhe COI'Ie d~~npuon routines they 

need to be :>:l'l'~ly supplied with mochf1ed boundartes lnterfenng pam can be eu11y determined 
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when ~ .. e joints for this piece are computfd (sec. ~2). However, we must make judgements about 

whkh pieCes are already well destribed and can be cut-off, and which ()(hers need rfdescription. 

i.6 OTHER DESCRIPTiONS OF PRIMITIVES 

We have dileuued the descnpuon of objects by generalized cone primitives. Some 

objects or ~ parts of these objeCts are not well described this way and other primitive 

descriptions must be used. These additional primitives may be used in conjunction with cone 

descriptions or may be completely independent. We will diScuss only a few additions that may be 

found useful in furt~.er work. 

I. Planes: Planar surfaces are frequently present in machined objects and are nO( 

necessarily parts of cylindtrs. SomeurMs, they occur as terminations of cylinders and our methods 

ue able to notace this, af dte terminauons are nearly ortho~;onal to the axis. M(lre genera11y, we 

shou1d adentlfy the planar parts of the surfaces and evaluate whether they form terman.&tiQrls and 

their witability for being described as parts of cylinders. 

2. Spheres and Sowls: Sphencal ob jteis may be describ<!d by an axis, cro~s-section 

description, but no preferred axis direcuons exist and It is sampler to describe them as spheres. 

~- Holes. Holes may be described by describing the volurMs enclosing them or sometimes 

more convenaently as negative volumes. Descraption of negative volumes is the same as that of 

positive volumes and the samt d!!craption methods apply. In plrticular, holes may be described as 

necative cylinders. 
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CHAPTER~ 

SVMSOLIC DESCRIPTIONS 

From the ,:ho~ segmentations of ~n object, we aim to gl!nerate structured, symbolic 

oescnpuons attempting to captur~ the "important" shape characteristics of the ob jKt. The 

descriptions contain enough Information for recognition of the ob.)I!CtS and for mdexing into a 

visual nwmory for similar objects. Other uses for the.e descriptions may be in computations for 

mantpulatlon, stability or for acquisition or models. We consider the ability to generate useful 

symbol&e descriptions as the central issu::: of this thesiS. Utility and performance of programs for 

applicauons, such as recognition, depend directly on the ability to generate (and manipulate) these 

descriptions. 

The segmented parts connect at jotnts. The joints and the parts deterr.· ine the structure 

of the objKt. Description of this co.•nechv1ty structure is ~ fl'l:tjor component of the object 

d~scriptlon. Object descriptions cont~in descriptions of the parts, the joints, and their 

relationships, using global as well as local propertie~. The local descriptors provide details of the 

indlvidL,al parts, and their shape. Joint descriptors depend on the angular, positional J.ild the size 

relations of its constituent parts. Global descriptors depend on relations among larger number or 

parts; e.g. the detection of bilateral symmetry in an ob jrct structure. 

A major goal of these descriptions is to aid in recognizing an object as lJelongmg to a 

class of models, and to be able to make detailed o.omparhons within a class. The structure is the 

most important de:.:riptor used. The deta1ls of the pans are used to make finer distinctions. The 

descriptions are hierarchical; varymg amounts or detail can be added to the basic descriptions. 

Our descriptions of the joints and the pieces are limited because of the problems or using 

descriptors that are not invariant wit:-t viewing angles and limb articulations. and benuse of the 

need for better low level (con~ description) routines to allow better symbolic descriptions. 

In our system, only cone! have been used for describing parts. These cones are allowed 

to attach to the other pans of the object, to form joints, at each end only (no joints along the sides 

of two cones are allowed). Such joints can be defined by an area not Included in any piece 

description. A number of pieces are connected to a joint. Connectivity of various parts is easily 

inferred from the boundary. Connectivity relations are a very central part of the descriptions of 

an ob_JeCt. Some parts are panly shadowed and their connections to other parts are not darectly 

k.nown. They appear isolated and we must hrpott..sire their connections. (E.g. two legs of the 

horse In Fig. 4.10.) We have implemented sirnple hypotheses mechanisms; other mechanisms are 

augetted ( ... sectiOn M). These hypotheses are further examined ln the process of' matching 

with modfls. 

Different pieces and joints are represented as symbolic entities. CtJnnecUvity relations of 

the object may be viewed as graph relations with jOints as nodes of the graph anct pieces as the 

ara between them or vtce versa. E.g. thf graph Kructure for the doll of Fig. ·fl2 is shown in Fig. 

5.1. (This graph shows pieces P~ and P6 as merged into one. The "S" and •H• paeces are 

tUmnpsAtd as explaaned later). The graph shows the two arms and the head of the doll jOined 

to the body at one end and the two legs joiMCI to the other end. (Note, the information about 

conn«tlon of the head to the body is missing in Fig. t.l2; the graph shown here Is idealized.) 

Various descriptors are attached to both the joints and the pieces. Relations other than 

connectivity abo exist between variOUs pieces and joints. Data structures for symbolic descriptions 

art presented in Appenclix 3. 
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Fig. 5.1 Connection Craph of a Doll 

Dt~rlptions ne generated for the pieceS and the .JOints of an objec:L Details of piece 

descriptions are ;imittd by the rathrr ~parse data that is available for cross-sections. The axes of 

pltce.s are not so accurate near the ends ~:~f the pieces, becau~ r,t ~h~ l!ff~·~ of other connecting 

pieus; this affects the accuracy of the piece descriptors and also the joint descriptors whicn rely 

on the angle between the pieces. 

Major descriptors for a piece are based on its relative silt. We use the length of its 

axil, the wtclths of the cross-sections, and the ratiO of the axiS length to average cross-section 

width {elonpaon). The cross-section function is approximated linearly. This is equivalent to 

spec.ifyin& an •averaae· ancle for the apex of the cone. Some qualitative descriptors such as 

s&ra~Cht axiS, conical or cyllndrlcat. regular or irrtplar are computable directly from the piece 

axil and crass-section data. but have not been used. 

JOints are described by the relationships of tl1e parts attacned to them. Angular, 

poslltonal and relative size relations of the parts are used. The number of pieces at a joint and 

their relative Siaa an noted. The ""' of a joint is described, for example a T- joint or a neck. 

jotnl However, these descriptions are not invariant to limb arUculatiOns. making their utility for 

recapiUor. procrams vtry limited. The different joint types aim to reflect different possible 

physical constructions for the joints. but the inference of the constructions from the descriptions is 

dtfftcuk. 

The clobal descriptions 11m to describe the amportant characteristics of the whole object 

or of some large portions of the object. It is common for a large number of narrow parts to attach 

to a wider part, in natural u well u man-made ob jectl. E.g. the arms and the legs of a doll attach 

to the body. As a conMquenct It IS useful to conlider a a sl:ze hierarchy based on the widths of 
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the cross-sections of a part. The largest part is at the lowest level and attached parts at succeu1ve 

higher levels. The matching process need only match pieces at the same level. (In an occluded 

scene, only the relative levels ma} be known. Then matching betw~ different levels has to be 

tried, pre~rving the relative order.) 

Our implementation of size hierarchy as in computing the large pieces of the object and 

considering these to be tlistinguisAtd. Other distinguishing characteristics for a piece car. be 
defined: we use the property of a piece bemg very long, in comparason ro other p1eces of the same 

object. e.g. the handle of a hammer. These distinguashecl pieces help in making immediate 

correspondences between two descnptions durmg matchmg for recognition; the matchang process 

starts by matchmg pieces with similar disttnguashing characteristics. 

Planes of bilateral symmetry for an ob .)Kt are searched for. Tests for similarity of two 

pieces are based on thear gross propertu~s. Knowledge of distinguished paeces helps in limiting the 

search for symmetry planes, as these pieces have few or no symmetrical pairs. Symmetry 

computations are complicated by occlusion. Some parts may be hiddm completely or partially. 

Appendix 3 Includes the details of the data structures used for symbolic descriptions. 

5.1 PIECE DESCRIPTIONS 

Summary descriptions for a p1ece are used to descnbe the size and the bross shape of a 

piece. Such descriptors, both qualitauve and quantitatiVe are useful for quid., crude matchmg of 

two pieces. These descriptors are computed from the more detailed axis, cross-section descriptions. 
The axis has bftn represented by a list of points that define a space curve and the cross-sections 

by their end-points. This detailed informauon can be used for point to point matchang of two 

pieces. 

The important size summary descnptors used are the axis length, the average crnu­
!:«tion width, and the ratio or the ~gth to the Width. Elongated pieces (length to width ratio > 

S.O say) are of part!cular interest. They •re •wen defined• and unlikely to appear 'f)Uriously in 

descriptions. A hnear approx1mat1on to the cross-section function is made. This corresponds to 

fitting a linear cone to the pi.~e and the cone angle is used as a descriptor. Matching procedures 

use the cone angle to differentiate between cylindrical and conical pieces. We abo retain 

information about the ends of :1 piece, consisting or the location and the direction of the local axis, 

and the local widths of the cron-sections. 

In the following we suggest some techniques that would be useful for further 

descriptions of the cone axes and cross-sections. These have not been implftnented In our system 

and the reasons for not using them are given. 

The ax1s of a parr IS a curve in three-dimensiona' space and, normal curve description 
techniques are applicable to its description. The axis may be approximated by a ~ of curves. 

such as straight lines or splines. Choice of the segmentation points, or the positioning of the knots 
in the spline fit case, 11 crucial to good descr1pt1on. Segmen<auon pomts should be at 

diiCOI'Itinuities; points of inflection and high curvature change ue obvious chOices. 
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Tht cross-stocttons arl! ~ pl:!inar artoit, !hey may b~ d~scnbf!d by s~gmenratJOn of rh1s ~rea 
into two Jamenstonal "cone" prumuves, m a manner analogous to the st>gmt-nrat1on of rhree 
d1mensaonal ob _Jeers In facr. thf> same programs can be t'liUmded ro ha!1dlt' the rwo dJmM~•o•nl 
'as~e. Such segmentat1on would pt'rmiC us ro handle complt>' shapes for cross-secuons ·.vnt, 
dJscontmmues and corners, as m a fluted cross-section, for example The crou-secuon function, 
i.e the function dl!!scnb~ng rhe changes Jn the crou-s~uon! along the a1us can also be descnbed 
by segmentation, ~ay by pu~ce....,·tse lmear functlot15 Currently, we approJomare the cross-secuon 
function by a smglto lin~ar funmon 

Such techmques for descnbmg :he axtos and the cro~s sections are tueful. HowevPr we 
have not conctncrared em tht'se, bellevmg rhar they repre~nr u~dept'ndtnt numencal anal~s1.s. 

problems, not central to the problems oi nb yet descnpt10n. Also, tnt' data about the cross-secuons 
in c;,e prtstnt •mplemcntatton u l•mnecl, and the .s.egmentat1on procedurt IS ltkel~ to be unreliable. 
Some gross shape properrres :1bour the a.,es, and cross-snuon.s, such a~ stnught a>m, comcal or 
cyhndnc~l part, regular or trrt'gu!ar, conve)(, flat or conuve cross-secrions can be obtamed 
directly, but many of these dtscnprors rf.'quart tht ust of a thresho1d JUdgem~nr, e.g. berween a 
smught and a corv~ axu. We have not used wch desmptors e1ther. 

~.2 UNKINC Of Pf[CES AND JOINT DESCRIPTIONS 

In our represent all on. Wt' are mren•sred an desmbmg rht JOFHS between d1fferent parts. 
The descnpr1on of pans has been re!tncr~c ro ~enerahzed cyhndtrs; w~ further tesrncr a cone to 
JOin the other parts at ont of at~ rwo ends c.nly. Thu u rather resmcuv•!, e.g. a hammer cannot be 
drscrabt'd as a hand~ connewng ro tht> m1ddle of the hammer head, but the head n~s to be 
descnb~ as rwo ptec~s wh1ch con11ur at the handle. How~ver, this resmctton has nor been vt-ry 
1mportanr for the Objt"cts cons,dered here and leads to a very s1mple algonthm For connecling 
p•«~s. Other ways of JO:mng pam can be t'<ISJiy addrd. 

For rhu sJtuatton, a jOint IS adequa[tly defmt'd by an area whrch 15 not mcluded '" an) 
p•ece descr:puons, and by the p1eces wh1ch adJOin this arra. The constr~:':Uon of a JOint area 1s 
very simplt usmg the boundary: we start at one end <'f some p1ece ;md move along rhe boundary 
until we come ro another paece; then •\ tp iiCross rht new plfCt aJlti conunue along the boundary in 
tt.e sarnr way unul we have returned iO the startrng pomt. Our path c!efmts the JOint, it consiSts 
ol ends of pi«es and boundary s~ments betw~n them. These boundary ~ments are nu11 1f the 
adJOining pi«:es overlap. In ,m t)(treme ca~e. where all connecting p1Pces intersect, the joint area 
may be .:ero. We f1nd new pmts unul ends of all pu!t..~5 that do nor termmare at the eond of an 
ob ~t ;,a, Vf! h~n !!"!-:!t!ct~ F•e ~ 2, sn!>ws rh,. JOints obtaantd for a doll, from the ple<:es s..,-,wn in 
fig. i.l2, 1n this wty (the JOint ar~as are shown shadowed). Note rhat tht: JOinU J • .md J2 ;1re 
berw~n p1eces rhat do not ovtrlap; JOint J3 ts bt"tw~n rwo overlappmg f'lt'Cf's .md JOint Ji has 
only one attlrh@d p1~t (thrs p1ece failed to ex rend to the end of tht> leg). 

Symbolic d~scnpt10fll of a JOint Lonu.n rht order of paec"s COJlllt'Ctt>d at a pmt and a 
domanant pse<:e, whiCh " tM Widest p1ece of the pmr. The order of p1eces " not mvanant to 
VlfWtng ang-~s srnce the parts are conne-crecl on a two d1mens;onal s•.1rfW!, wh1ch does not ha"e a 
'.Jseful invanant ordenng. Howtver, for many ob .Je<!s, partscularl;· when rhe polrts oc'ur along a 
plane curve, the order 1s pre~rved for othtr v1ewmg anglrs; our rl'logmuon programs assume 1h1s 
orcift' prfSfrvacaon. 
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In the followmg. we describe other jOmt descriptors that were imp1emented but have not 

bf't'n used m recogmuon for reasons stattd later. 

We descnbe the .JOints by "types", however these cllSSI!s are not mutually exclusive, and 

new type additions can be made without afftrung the old ones. We have tned to define JOint 

descriptors that correspond to different ways the jOints are formed In the pl.y$ical construction of 

ob jeets. However the inference of the construction from the descnptions is no( well understood. 

A catalog of various desmptors and thflir definitions follows. 

T-JOint: Two pteces are collinear and continuous and connected to a thtrd, non-collinf'ar 

piece. Th~ two collinear pieces are allowed to appear merged in a sangle ptece (Fig. 

5.3a). An example is the .JOin! of a hammer handle to its head. 

Fork Joint: One p1ece is "opposite" all other pieces, i.e. a half-plane stpara·es this one 

piece and the others (Fig. 5.3b) An exampie is a human hand. 

Neck JOint: Two pieces with differ~nt cross-sections, but wit~ .axis continuity (Fig. 5.3c). 

An eumple as a human neck. 

Elbow JOint: Two sim1lar bt·c n::~n-colllnear pieces (F1g. 5.4d). t:xamples are human 

elbow and knee. 

Cross-se.:rton Conservatton: between a large p1ece and attached smaller pieces (Fig. !1.3ej. 

E.g both human leg cross-sect1ons are conserved at the torso. 

Coplanarity: All comtatuent hmb aKes are coplanar. 

Programs for computmg the jOtnt descnptors follow the ahove defmations directly. 

However, some approxtmauons must be u$ed, partly for lack of complete information in a scene 

and partly to be ansensitive to the errors of low lev~rl descriptions. The axis directions are ill 

defined near !he ends or a piece; hence angular JUdgments are inaccurate. We see only part of the 

cross-sections and use the perce1ved width for those descnptors tl,.>~ need cross-section 

information. 

Collinurity of two paeces must be computed for T- joint descriptions. We use the 

continUity of axes directions and cross-section w1dths. Continuity of boundary near and between 

the ends of the two pieces would provide a better continuaty check. (the boundary on one side of 

these two pieces must be conunuous for a T-jOtnt). Loose constraints (upto ~0 degrees) are used 

on axes directions for determanauon of colhnearity. 

Of the abov11 JOint types. the fork and the coplanar .JOints ate dependent on the limb 

aruculauons Also, our con., descnpttor. routines do not ::~lways provldP sarisfactory axes 

dtrections near the JOints. These descnptors would be of obvious value for non-articulated ob j«ts 

or 1n some case\ where the Jrticulat1on limtts were known. Determination of cross-section 

conservation requtres seeing all the pieces of the pint. These teuons have prevented the use of 

JOint types for recogmtion. 

If the objeCt is known to have a T-joint formed by connection of one piece In the 
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midd~ of a11other piece, then this descriptor Is invariant and could be used for recognition. In the 

currtnt implementation, our models do not have such Information. 

!.3 OBJECT DESCRIPTION 

The descriptors used for individual p1eces r.nd joints have bt.en discussed; we also make 

descriptions for a compl«e ob j!ct. These descriptions aim to capture the important features of 

m!lny pieces and jOints of the ob .rect and their rel•tionships, and be useful for rec~nltlon. The 

connecti vlty relauons becween pieces and .JOints are known; we have a dtiCription l)f the object 

that may be viewed as a graph structure. We now aim to characterlle the Important parts of this 

structure. 

Stmple descriptors are the number of joints and the number of pieces. The number of 

elongated pieces (length to w1dth rauo greater th~n a rhreshokl) is also u~. slr:ce it is less 

!ensltive to segmenrauon differences (but stall subject to variations caused by occlusion). 

The large p1eces m an ob ~t description are tlisti11fUislt~d. as there are only a few of 

these. (If limbs are formfd by a largl!' p1ece splitting off tnto many p1eces, 1t results tn a clear 

dascrimination betwftn larger and smaller pieces.) The pieces can also be distinguashed by other 

characteristiCS. we have used the property of a piece being mo•·e elongated than the others, e.g. the 
hand~ of a hammer. Only similar dist•n&l.liShed pieces may bf matched for recognition, allowing 

for efficient matching between two descnptions (Sft chapter 6). 

We note whether a dishngui!hed piece has pieces attaclled on both ends; their number. 

and their slles relative to the distinguished piece. If pieces at ,,...e end of the piece are very 

different tnan at the other. wch as being at leaR twace as wtde or twiCe u long, this deKriptaon 1s 

abo; i.\SSOCJated with the disUnguashed paece. This helps in •orienting• the distinguished paeces in 

match mg. 

Bilateral symmetry as ofr~n found in natural and man made oh .)@ttl, and planes of 

bilateral s;ymrnetry ue useful descnptors. For a bilaterally symrMtric: t'lbject, sub·p•rts must occur 

in symmetncal pairs. unlfts they lie along the plane Clf symmecry. If the axes of all parts of an 

object are c:oplanar, this common plane is also a symrMtry plane (front/back); such symmf'try 

ptanes are not or mu!h mterrst and are not described. The dlstanguishect p1eces of an obJeCt do 

nac normally have a patred p1Ke. In this c~ the syrnmdry plane must pau through the axis of 

this piece, or be normal to this iiXIS and divJde the distmgu•shed piece in !ytnmetrlcal halves. 

The ~arch for sym~ry planes u confined to those passing t.,rough the ues of tht 

distinguished pieces. At each end of the distinguished ptece we look for symfMtric pain of limbs. 

The symmetry plane must pus betwem a symmelric pair. Once such a pan 1s found, the 

symmetry plane iJ c:onstrained. If more than one pair of ltmbs is symmttr1c to each other, a few 

akernative planes are pouablf. We only nft'd to test the symmetry of other limbs relative to these 

planes. This aids in determining the connections of shadowed limbs (Cf. sec. ~~.'1). 

To evaluate ob .)Kt symmetry, we '-ted to evaluate limb similarities. We have only 

simple descriptors for individual piKe!. The similarity test is based only on lh~ ltngths and the 

widths of the limbs. M atch•ng of two p1eces by comparing their cross-sections at each point along 
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th~ir axes would gave better discnmmatlon. Art•culataon of hmb~ IS aliow~; thas aruculalil·n ne~d 

not be symmemc, thus the bilateral symr.1etry . Jmputat1ons are hm1ted to usang the attachment 

points. Some parts are ~hadowed and then attachment IS unknown, we include thtm in symmetry 

tvalulltions using the hypothemed attachment points (Cf sec. 5.-4). If !ymmerry is found. 11 

provides further weaght for com1ecllons of the shadowed parts. However, >imalarity of the limbs 

In shadow to the other hmbs IS diffiCUlt 10 de:€rmme. 

Our evilluations for symm~try are admittedly crude, however It as felt that when 

symmetry is discovered, It u not hkely to be accldCiltal and can be .a useful descriptor. 

5.i LINKING OF S:!ADOWED PARTS 

We have a partial body sepanuon anto groups of connecte1 p1eces. Some p1eces h;ne 

no conntctions. btcau'e of occlus1on and shadows. E.g. two of the legs of the horse tn fag 4.1 0. 

Connectavaty of these p1tces cannot be known dtrtctly, we can only hypothesu;e po$Sable 

connections. The shadow reg1ons are !:Mwn from the knowledge .:~f the pos1t1on of the light 

source. Clues for conntct1ons are obtamed from prox:mny and symmetry. Semantic knowledge 

such as stabihty and support relations would be helpful. Some ob y.ts Will not be stable wuhout 

the connection of isolated parts, eg. a horse cannot ~tand on only the right front and the nght 

rear leg. The staballty problem as d1fhcu!t sance only the front surface of the ob ~t is seen. W ~ 

have not used stability considera<ions. 

If multiple ob ~ts are present m the scene, we mt.Sl estimate what body an isolated piece 

is connected to. Even tf only c.ne ob.JKI as ~.nown lO be in the scene, we must estimate its 

attach~"t points. 

The light beam and the camera ax•s are not collinear. A poir-t in space is invisible if 1t 

is occludtd from eitht:: the camera or the laJer vaew. Some improvm.ents could be obtained by 

usln .. a camera image an addition to the laser scan data. The position of the light source ts 

known and the shadow regions are computable. The parts that ~ast shadow on other paru are 

also known. The c:onl'lectlon of the isolated part to any other part m•t~r be through a shadowed 

or an occluded region. However, thts d~s not un1<tuely determine the connections. Use of 

monocular inf~•matJon, using the ~urfa~e description from the visible p~rt could help resolve 

some ambiguitatts. 

Let us consider the caJe where only one ob ji!Ct as presel'it m the scene; tf more than onP 

obJI!'Ct is m the s.:ene. we make hypothe~es about connectiOns to each cob jt'Ct m the scene. We 

restrict ourselves t!l fmdmg connecuons of the shadowl?d hmbs co the extsttng JOints only; r'ortt 

general procedures wall t1early be needed for further extenston~ t:~f thts work. Shadows are hkely 

to be caused when tt:.!re are many limbs at a joant. The dtstance of an uolated part from all 

jointi of the ob ~t IS found, and the nearest one IS p•~ked. Th1s pant lS hYpotheSI· ed to be the 

attachment of this ISOlated piece. Venficataon by extendmg the isolated ptece to intersect the 

proposed jOint •s nOl used beuuse of imprecise knowledge of ax1s dlrecuon near the end, 

particularly for a shadowed lamb. 

Hypotheses generated by proximity analysis are used when computmg btlateral 

symmetry (Cf. sec. !.S). If aymmetry is found, we anterpret it as further ev;dence of the 
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hJpothesazed connKtaons. The~ coonttuon hypotheses are taken u only w~ak. ev1dmce for 

lank.mg Thus, for the purposes of recogmtton, we ignore the isolat•!d p1eces first. and try to "ll"nfy 

the connecuons suggested by the model (this assumes that a corr,!Ct model as ava1lab~). If the 

programs w~re acquiring models withocn human ASIISllnce, we would want to us,e multip~ vaews 

{matching of two des!rapuons 1s discussed in sec. 6.2). 

For analysis of htaY1Iy nccludtd scena. where ftw connKted structum are found 

inaually, more sophisticated mechanums for hypothfsaling connr·:tions will be necessary. Some 
s~mentatlort and hne completion techmques from the work on the analysis of f>')lyhedral ob _Jt'(ts 

ar·e apphca~~- Edge and croSS·$t'Ctlon cont.nuoty provide evtdtr1tf for connecuon and T-JOints 

suggesc ~grwntauon. E.g. 1n fig. i.lf. the left leg of the doll is split an two parts because of the 

occlusi•'Jr, caL.sed by the snakt and hyporhesn for connectmg thetn could test for continuity (here 

the problem is further complicated by the touching of the snak.e and the lower part of the ltg). 

We have not madf any attempts at such analyliS and consid~r it a prime prob~ for ~xttn$tons 

of tim rl"~arch. 

r, !I JOINT/PART SEMANTICS 

Tht physical construction or a pmt constrains the articulation of 1ts parts. A ball and 

socket jomt has different artaculauons th:ln ~ .,,~~!! jc~nt. Tt.~ p1m descnpuons do niX uruquely 

determint in~" p!':r»i'-•i corunucuons, but :ire wsgestive. We offtr Kll"'t 1pttulflti01U about what 

oo JKl characteruucs might be suggested by somt joint descriptors. 

Nur:r~ally. we see cron-sectaoos from one point of view, and know the&r width an one 

d&rrct•on; httle u known about the wadth in the onhopnal direction. We may auume the rwo 

widths to be the .1ame, but $0MetlrMS we can make a better hypothesis. Consider JOints where 

croSS·$4!Ction is cons~rved between one large paece and aeveral, JaY n, sm1ll similar pieces, and the 

attachment point of small pa«fl to the JOint lie approximately in a straight line. For example. 

conSider the! joint of finctrs and palm of a glove. It is reasonable to guess 1n such cases that the 

rrOSS·St!Ctlon or tM llrJe pit:e is tlongared In the perceived darection by a faaor of n to I. (see 

Fag. !>. 3(e)). 

Some esumates about the 1nvariance of joint descriptors can be made. Cenerally. those 

descnptors dependmg on angular relauonshaps will change. Size related descriptors are more 

constant e.g. neck JO&nrs and cr055·sectlon conwvatton. Our attempts at estimating hmb 

articulauon charaeterishcs from tht joint destriptors der&vtd fram the observed surface have not 

been successful. 
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CHAPTER 6 

R [COGNITION 

Recognition of ob j!Cts has bren one of t)Ur maJOr goals. It also provides a measure of 

the effectiveness uf our description mechamsms. We regard the problem of recognition as a 

problem of comparang desmpuons of two ob J«IS; recognitaon is talen to be the process of 

discovering whether the observed description is a description of some previously seen or lnown 

object. We believe that the most effective procedure is to verify that the observed description is 

compatible With the model. Guessing of a suitable sub :lass of models 1s an important and 

difficult part of the recognition process. 

The matchang proc!dures must tale mto account the follow1:1!; d1fflcult1es. We allow 

for arbitrary scale changes of an obJKt and articulation of liS lambs. Descnpuons generated for 

an ob,J«t are not murely anvanant to v1ewmg angles and articulation. The amount of St>lf­

occluslon varies. There are misSing p1eces ar-:! less frequentlY, extraneous p1eces. Only the "front" 

of an objtct is seen and the cross-sect1ons for the parts are only par~ially lnown. Non-cmular, 

partial cross-sections are sub j«t to change with different v1ewmg angles. It 1s 1\ecessary to be able 

to make partial match.s. when some parts of the ob jf!Ct are mvislble. It IS felt. and hoped, that an 

spite of these vanations, enough u •seen· to dJJtanguish the scene, for most viewmg angles. 

For recognition, the programs need to have access to a store of model descriptions. 

Memory models may be constructed by stonng prev1ous machine generated descriptions, or put in 

by hand. Manual construction of the models may be ettht>r by making meuurements of the 

physical ob j!et, or by supplying the desmpuon of an idealized object; however, the mant.1al input 

of models is tedious. M achlne generated models may use one or more views of an object. Models 

obtained from one view will usually be mcomplete, as only parts of an object are visible; other 

views must be used to obtain more mformauon. We usually construct the models by !loring a 

description of .he object from a single v1ew; these descnpt1ons are mochf1ed intPrac:Uvely r.o correct 

for errors. 

Some objects can be well described 10 more than one way. For example, Fig. 6.1 shows a 

segmentation for the same glove as 1n F1g 1.9 (part of the palm of the glove was not visible in the 

latter hgure). The two descnpuons have a d1ffercnt wucture; in one desr.nption all f1ve fingers 

are attach~!~:~ to one md of the palm, wh1le In the other tht' thumb is ~ttached to the other end. 

Herf', we store both descriptions. Durmg recogn1t1on, we match wnh each description 

ind~dently and choose the one wh1ch prov1des a bftter match. In our 1mp!t'menrat1on, a tJSer 

makes the deciSion about the use of multiple, mdependent descnrt1ons (the cllfferent descnptaons 

still be1ng g~erata:i by the machme). Automatang thiS Jlrocess IS a n~tural "leunmg" proble.:'l. In 

sec. 6.8, we dlscuu how more complete models may be acquned by the mach me. 

Some of the ob jKt descnptors used in our system can be usefully viewed :u defan mg a 

graph structure. with the JOints as nodes and pieces u arcs, or v.ce versa. De~cnp11ons of p•eces 

and joints can be associated w1th the nodes and arcs as labels, rJr properties. Relations betw~n 

two pans can be elCpressed as relauon arcs; representation e,f telatlons between more than two 

parts is not so convenient. Our mterpretauon of this gnph 1s more than JUSt as a "syntactic" 

description. Many "semantic• p,..nies are represented an 1t, by the cho1ce of descnptors used for 

the constnuent pieces, the joints and the~r relationships, and the use of the distinguished pieces 

(tee ch. !>). We treat the connectiVity Information about an ob je<'t as describmg a graph structure. 
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Fig. 6.1 A dO<htr View of the Glove of Fig. i.9 
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however not all ob jeer descriptors are embedded in this graph form (e.g. the bilateral syl"'metry 
descriptors). 

The recognit1on problem could be c~nsidered as a graph matching problem that finds 
the best partial matr-h. Most of the genera! graph matching algorithms are concerned with the 
problem of determining complete graph ISOmorphisms, they provide a yes/no answer and no 
measure of parual match 1s used. They are clearly of little U'f for our purposes, with the expected 
variations in graph structures. Some partial graph matching algorithms have been proposed. A 

good survey of these technaques IS provided in [Barrow]. Ambler et al. ([Ambler)) describe a new 
"maxirr -~ cliqueM matching techn1que, which fands the max1mal self-consistent set of 
corres1- dences between the two graphs. We feel that the ~eneral partial graph matchang 
procedures can b~ .nade to wor~ for many ca'fs, and that the graph interpretation for the 
descnptauns IS a useful on!', but that treaung the problem as a pun~ graph matchmg probh~m 1s a 
wrong emphasis, and does not lend to easy use of heurast1cs and scene semantiCS. It as hard to 
anclude knowledge about the best uses of descnptions an a graph r~presentauon alone; the graph 
matching procedures treat the matchang of all nodes "unaforml(, and use of contex! IS dafficult, 
e.g. we may want to match two parts (nodes) an pairs only, or insast on certam nodes being in a 
particular order. We will describe match1ng procedures, that do match the two connection graphs. 
However, the mate hang 1s ~uided by knowledge about the nature of the descr iptaons used. 

We have attempted to make the object descriptions correspond to our intuitive 
descriptions; this allows us to use intuitiOn and mtrospecuon for developmg heuristics for use an 
matching. Humans, normally generate much more complex descraptions and use much more 
knowledge in their perception, however, when presented w1th a "stick f1gure" that corresponds to 
our machine de'ICrlptlons, (e.g. see fig. 6.2). they have little trouble In identifying the objects. We 
can examine, introsper~avely. some of the processes used. Our programs rely heavily on the 
structure of the ob ,J«t and relative SiltS of its parts, so do humans; the articulation angles are 
important for people but limited stored models preVftlt the programs from us1ng them. Humans 
undoubtedly also use some complex mechanasms, such as an .:valuation of the stability of the 
oojects; however. such mechanisms are hard to isolate and implemftltataon IS difficult because of 
their complexity and lack of relevant knowledge. It is easy to provide specific knowledge about 
specific objeCts; the diffi~ulty is in incorporating knowledge that1s likely to be useful for at least a 
significant "micro world". Models for classes of objects, such as the class of four legged animals 
would be useful. 

Our paradigm for recngnatlon is as follows (Cf. the recognition block in Fig. i.l). We 
use impt:Jrtant features of the symbolic descriptions to indn: into memory models to fmd a sub­
class of similar moclels and compare the descnpt1on of the ob .)fCt wi!h the descriptions of thl!se 
models (section 6. 7). Each comparuon generates a difference descnption. We pick •he preferred 
difference descriptions, based on the similarities· If structure and the similanties of 1ile individual 
parts and their relations. This is the process of dirttt lflatclting (section 6.2). Vtrijic(l.tion would 
consist of checking whether the differences between the model and the obj«t descnptions can be 
"explained" in a satisfactory way, usang redescnpuon of parts if necessary. (Verificataora methods 
are discussed in section 6.6 a.1d redescnption methods m chapter 5; neither have been 
Implemented.) If a satisfactory match as not: found, new members from the visual memory can be 
obtained by indexing wilh a modified description code. We have defined different leveb of the 
matching process: indexing, direct matching, verificataon and rede•cription. 

Thc objeCt description Is matched with the de;criptions of each model suggested by the 
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Fig. 6.2 S!tck Figures or Two Obj!cts 

andexang mechanism. The result of a match as a description of the diffrrmces (and not just a 

numerical value). We believe that for complex descnptaons a samplf we1ghted numencal 

•vaiL•auon is nor sufficient; passmg on symbo:tc differences allows orher procedures to use more 

context an making a decas1on. Of course, at the fanal demion stage, some overall assessment must 

be made, but at any intermediate stage, symbolic uructured differences are much more useful. It 

helps find simalanues as well as differences, such as a new ob jKt is similar to the ones we have 

seen before. but differs In some small respect We think this would bf essential to a •turning· 
scheme. Availability of explicit differences is also imponant, if venfication and redescription IS to 

be attempted. 

Matchmg of the object descnptaon with a selected model descripuon involves the 

matchang of the two descripuon muctures and the detaib of the parts of the two structures. 

Knowledge of scene semantics gu1des the matching process. The matching begins oy matchmg 

samilar distinguished paeces. Order of paeces at two JOIRt~ are preserved dur~ng matching. A 

match description contains pairs of pint matchf'S, paars of piece matches and lasts c.t unmatched 

parts. With each matched pair is associated a description of the quality of that match; pint 
matches note the number or missing or extra pieces and piece mato:.hes note an evaluation of the 

match of vulOUs pieCe descriptors. All matched joints are required to have consastent c.onnectivaty 

relation\. 
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Partial structure Is sufficient, in many cases, for identification. For heavily occlud~d 

scenes, generat~ either by multiple ob JtCU or by the self-occlusion of a single ob JeC' viewed from 

a particular angle, the stt ucture of the ob jKt is not directly available; various alternate structure 

hypotheses must be generated and investigat!d. Our prognms do not handle such extreme 

situations; these problems are further discussed in sec. 6.1. 

Parts of the objects are compared on the basts of their metric propert1es; tht\e 

descriptors are subjeCt to SOt'il~ variations with the viewing angle. The length of the limbs is 

independent of the vtewing angle; nor all of thts length is alwa~s seen, however. Shadow 

information tells us whether thts 1s so, and. such limbs can be treated differently. The visible part 

of th.:- cron-secuons changes. but for most cross-sections the vanat1ons are small; moreover, if the 

cross-sections In the model are completely determined, partial cross-sec~ions can be matched. In a 

hmit!d context of matchtng one part to iii restracttd number of o!her parts, these descriptnrs are 

usually distmct enough to provtde ad~uate discramanauon. 

To ptck. a best match, we have to choose between two difference descnptions. Our 

decision routines attempt to choose on the buts of gross dtfferen;:es tn the structure first and use 

detaib of the matches later, as necessary Due to the expected vanab1lity in the descrtptions of the 

sanw obji!Ct, we make a ch'Jtce only tf the two difference descriptions are clearly differem, 

otherwise multiple cho1ces are ;,;ported. If alternative descnpt1ons extst for an Obji!Ct (or the 

model), then the descri;>tions having the best match are sele<.ted. (Note, in the current 

implemc!ntation the alternative descnpuons for an ob .)Kt are limited to merging of two separat~ 

pieces. The models may have more than one mdependent descript1on) 

Further deciSions requare a ·venficatlon· of whe:her the two descrip(ions coulcl 

reasoeubly repre~n: the same object. by trymg to find explanations for the differences. For 

example, •tenflcauon may nplam the occlusion of a missing ptece or check the functional 

requirMWnts of the model. Redescription of parts is necessary to explam some of the differences. 

We have not used any venficauon techmques; some are suggested tn Sec. 6.6. 

In th! followmg, we first present an example fim, and then discuss the detaab of 

matchtng and indexing. Appendtx 2 has • conc1se summary of the algorithms used. 

o.l AN EXAMPLE 

An example of matching a descnption is presenttd here. Some of the operations 

mentioned here are descnbed in more detatls in the following secttons. Fig. 6.3, !hows the 

boundary for a doll and tts p1ece segmentatton, and Fig. 6.4, its connection graph. Note that one 

arm and ont lfg or the doll are not connected to thr rest of the object, but the arm 1s hypothesized 

to connect to the arm JOint and the leg to the leg JOint. The body and the head are libelled as 

two dtstifl(&ltsltrd pieces, being the two lar&e pieces in the description. 

The i:lc!~xmg process >uggests matchmg this descnptton with the stored descriptiorn of 

a doll and a horse (amorog the objects known to the prograon). Here, we will discuss match~ng 

with a doll m detail. 

The connection graph f1.1r the doll model is shown m fig. 5.1. The head and the body 
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Fig. 6.3 A Yaew cf a Doll 

are ilgaan the disunguashed paeces. The body as a disung·11ished piece is two-ended (connected at 

both ends) in both descrapuons and the head one-ended (tOnnected at one end only). The 

matchang starts by matching -.am;Ju distingu;shed paeces and a two-ended ob~ piece can not 

match il one-ended model paece. Thus the anltial choices are: 
I. ob_JKt body with model body. 
2. ob JKI head wuh model head. 
~- ob j«t head with model body. 

Consider the first alternative, 1.e. matching the objeCt body with the model body. The 

match of these two pieces is acceptable. Two cho1ces are possible fo1 matching the JOints: 
a). the c• .. ject arm joint wath the model arm joint; 

a.nd th<4 objeCt leg jOant wath the model lee joint. 
or 
b). the ub JfCt arm jOint with the model leg .)Dint; 

anr; the ob.JfCt lrg pint wnh the model arm pant. 

The matching programs explore both alternatives. Consader opuon (a), and the detaals 

of matchmg the two arm pants. 

The ob _JeCt doll arm pant has only two pieces besides the body attached to this .JOint 
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L 

Fig. 8.4 Connection Graph of the Doll in Fag. 6.S 

(head and one arm), whereas the model description has three. These two lists are matched with 

each oth~r. in direct and reversed Drden. For each order, the head matched With head and the 

arm \•ith an arm gives the minimum total paece match error. (Piece match error is a numerical 

evaluation of the differences in the relati•Je siz.es of the pieces and is described in stc. 6.,). The 

lefl arm of the object matcning with the left arm of the model gives a marginally better match; we 

have no real strong discrimination between th, two orders here. Note that the information about 

the angle between •he limbs is not usfd, since the model does no: have any information about 

artlcul;tion limits. Hiving settled on these matches. the programs note that the model has one 

extra arm and the ob.JKr has an isolated arm, that could be connected to the joint being matched. 

This match is tried and found to be satisfactory and is retained. 

Matching of the two leg jOints pror.eeds similarly. In this case the Isolated object leg is 

shadowed and its per~eaved width as smal~r than the corresponding leg In the model description. 

However. it is known that the obJKt leg i1 shadowed along Its w1dth and Is allowed to match with 

the larger model piece. 

Now, examine the matching of the jOints as in alternative (b) above, i.e. matching the 

object leg jOint with the model arm joint and vice-vena. The matches obtained are: the objeCt leg 

with a model arm at one end; and the object arm with a model leg, and the objeCt head wath 

another made1 leg at the other end. 

A choice is made !:J«ween alternatives (a) and (b) now. The average pieCe error is 

clearly better for choice (a). (tt.e ratio Is > 2: 1). The main dlscriminauon was made by the 

mismatch of head and leg for the alternative (b). 

Other possible distinguished piece matches are tried. Matching the objeCt head and the 

model head, ends up In a match that is identical to the above match. The other altern~hve of 

matching the object head with the model body is carraed out, but turns out to be clearly inferior. 
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as no pombl•: rr.atches can be found ior the objeCt leg af the connPctavny relauons are to be 

followed. For the curr .nt ex ample, the amual p1ece matches have used all t'~t' paeces .tnd the 

JOintS of the two descnpttons, and no rxtensaons of the matches to the other JOints are needed Of 

the descnpuons mcluded tht' ~et;uls of the hands at the enc• of the arms, we would extend the 

matches tu the hanc:!s now) Correct correspondence of the parts results from the mat :hmg of 

these two descnpuons. 

The obJeCt descraptwu as also matched agaanst the model of a hor~,·. and thO? followmg 

piece m.ltches result as the be~r ma:ch between the two: the do:l body wnh the ho1s~ body, the left 

doll leg warh a rear horse leg. the nght doliiPg wHh the horse taal. the raght doll ;nn wath a front 

horse leg. and the doll 11Pad wuh the hone neck No matches are found for the asolated doll arm, 

nor for one rear leg, one front leg and thl' hud of thl' horse. 

The connectiVIty relataons of thl' matches wath a doll and a horse are ad~ntacal, as they 

should ~e. More pans are mmang 111 the match wath the horse. but we allow for the posstbdtty of 

the parts to be ~11dden. The .:hoa'e between the two matches as now based on the er~ors of paece 

matches. Match watha doll as preferred How~vtr th~ dascnmmataon •~ not strong enough to reJeCt 

the other ponabalitv. The output of the matchang routanes as shown an Fag. 6S The models that 

match With the descraptaon arl" ~hown m a ~referred order. For m:tt(.h wath each model are 

shown the assagnment of the ob ji!Ct paeces (as an ftg. 6.3) wnh thl' paeces an !he model (the names 

of these paeces are shown). The head of a doll and the neck of the horse do not mat'=h well, 

however the error evaluation generated 1)y the paece m<:tch routanes as not strong enough to make 

an unequivocal overall chotcl'. Added discnmanatton requ1res more careful matchang of the 

andivtdual preces. If artaculauon hmats of the models were know:1 to the models, the mformataon 

about rhe angi•!S between h~IJs would provade dear dascnmtnatlol'l for thas example. 

Results for more sctnes and c?nclusaons drawn are presemed an the next chapter. The 

following .ecti<.ons descrabe :h~ matchang proces!.es an more d~raal. 

6.2 MATCHING WITH A MUDEL 

Consadtr match1ng an ob_r-ct descnpuPn With a parucular, seltttPd moael descrapt1on. In 

the following, we assume the model ciescrapuon to be JUSt a prevlously encounterf.'d ob ,ret 

description. All parts of tht ob jl'Ct are assum~d to be present an the model, however. not all the 

detaals of a part are known. The full cross-s•ctaons of the parts of a model are not known. but 

only the perceaved width from a p11rt1Cular vacwmg ar.&le. We permtt the lambs of a,, ob,r.ct to be 

articulated, but the present models contaan no anfrJrmauon about the limns oi artaculataon. In 

section 6.8, we di"uu how amproved models may be acquared. 

The matching problem as to make thf. best correspondences between the two descnptlons 

and gene:ate a description of the remaanmg differences The problem is combanatonally d1fflcult 

if all possible c•Jrrespondences art med; furtht?r the evaluation of such undarected matches as 

difficult. The number of alternauves consadered as hmlted by startmg the matchmg process by 

marching only similar distinguislttd p•ece~ in the two descriptaons (dasunguashtd paeces were 

described in sec. !i. 3). 

The Widths of the~ p1eces are used to normalizt the scale of the complete ob ,Jl'Ct and 
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Metehes in preferred order 

OOLL 

PRINTING PIECE CORRESPONDENCES 

P3 ARM 
P4 HEAD 
P6 ARM 
Pl BODY 
P2 LEG 

NO MATCH FOliNO FOA THE FOLLOIJING PCS Oi- Tt€ OB..f:Ci 

nontt 

NO MATCH FOUND FOR THE FOlUliJING PCS 0: THE MGOEL 

LEG 

MORSE 

PAINTING PIECE CORRESPONDENCES 

Pl BODY 
PS CDMB_REAR_LEG 
P2 TAIL 
P3 FRONT_LEG 
P4 NECK 

NO MATCH FOLHJ FOR THE FOLLO~ING PCS CF T~ OB..ECT 

none 

NO MATCH FOlHl FOR THE FOLLOUI ~ PCS OF Tt£ I'ML 

~AO 
REAR_LEG 
FRONT _LEG 

Fig. 6.S Matching Results for the Doll of fiJ. 6.! 
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are not used for a similarity test. We requ1re an approx1mate match of the elongauon and cone 

angle descnptors. A piece may be connteted eather on one sade only, or on both Sides. Such pieces 

are called one-ended and two-ended respecuvely. A two-ended p1ece m the object description ss 

not matched to a one-ended p1ece m the model but the reverse IS allowed; we expect the ob ji!Ct 

descnpuon to have 'IO more p1eces than the model. The dlstinguiShmg characteristic of the two 

p1eces must match; if one p1ece 1s elongated so must the other. 

Cons1der the matching of two dutmguasl•ed paeces ODP (objl!tt) and MOP (model). Let 

the pants at the ends of ODP be 0)1 and OJ2: and at the ends of MDP be MJI and t.!j2. 

These JOintS can be matched m two way;: !) 0 J I with MJ I and 0 j2 With MJ2; or 2) 0 J I with 

MJ2 and OJ2 with MJI. If one end of each ma1n piec"! is unsymmetncal then the corresponding 

ends are matched. Otherwase, the cho1ce of ends to match is based on the quality of joint matches 

in the two alternatives. 

Now cons!Jer the matchmg of jOants in the two descnptions, With the spec1fied 

corr"ponde,~c; of onE p1ece from each JOint. With each JOint is :nsoc1ated an or-::lered last of 

p1eces co:-.nected to lt. The order of the p1ece~ was determaned by the pos1Uon along the boundary 

of the rbjtCt. Thi$ order u not necessanly mvaraant with the vaewing angle: however, we assume 

at to be so. (Note that smce we are usang dislinguished pieces, the m:mber of alternatives 

consider .. <! i~ suatably small that all matches without preservang order could be ~valuated.) The 

paec~; :-t the JOints are matched in the same order and reversed order. (\roe ordrr as piCked ~ •m 

the re~o.Jlts. We are not able to dafferenuate between views of an ob.J!Ct from the "front" or the 

·back", thus a human left hand IS not duungu1shed from a right hand. St:ch disuncuons 

normally need faner details of the surface or the cross-sectaons than are available to us from our 

t- ardware/software system, e.g. an formation about nose and eyes is useful in disunguishmg the 

front of a human. Som~ m.provement in resolution COIJid be achaeved by selecttve verafirauon 

(sec. 6.6). 

M atchinjl of two paecu generates a description of their differences. The sizes of the 

pieces arc normalized t y the gaven scales (used throughout one comp~te match). We note the 

dafferences an the vanous paece descnptors. The descraptors used are: length, width, length to 

wadth ratio (redundant). cone an~le and the number of connected paeces. We also g~!':!!rate a 

numencal evaluation based on a non-hn"!ar weaghting of these differences, and call this the "error" 

of the match. \Details of the evaluation functaon are dascussed in sec. 6.3.) 

If one of the piece5 as a complex paece, a.e. made up of a combanauon of p1eces, then we 

match the whote piece lS well as ats components to the other paece and pick the pair that matches 

best. For example, our model of a horae <:ontatns two alternative descraptions of the rear legs; as a 

sangle paece or SP.gmerued in top and bottom paeces. If In some v~ew of the horse, the whole leg as 

seen, it gets mat.:hed to the sangle leg paece an the model, but 1f only the top of the leg is seen it 

gets matched to the piece in the model descnbang that part of the leg. 

In pint matches, the number of paeces at the two JOints as not necessarily the ~ame. We 

want to piCk pa~e matches so that each paece an the smaller lw IS matched to one piece in the 

larger list (no dupl11;ate matches) and the total match is opt1mal. Matching ,.rror for a hst match IS 

the sum of the errors of ars component paece matches and as the crateraol' used fl:r choo~mg 

between liS! matches. We match hsts in the darect and the reversed darectaons ""d choose on the 

basu of resultartg toral errors. In thas caSt a sample numerical evaluation sui'1ces. since all other 

dafferenc:es are 1:he 'ame Deta1ls of the piece last matching procedure are discussed in sectaon 6.~. 
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The d«!scnpt•on of dJff«!rtnces for a JOint matr.h consists of tht" following: the total 

matchmg error of the assoctated pltces. max1mum of the ptece match E>rrrns. hm of unmatchtd 

(extra) pltces and mtssmg pteces. These descnptors summante a JOint match, the ptece march 

c\est>ripto!s are also earned along wtth the JOint march allowmg the dtetslon routtnes to h11ve 

access tn them. Note that we have not used the differences 1n angles bt'tween the pteces of the 

JOints. We have no mfot mat ion about the allowe:i articulations of the hmbs of a model ancl so 

assum~ all poss1ble arttculauom. Fot recogtuuon of un<~rttc:ulated oh fCU. these angl~s would 

obvt•Jusly prov1de powE>rful dtScnmtn:won. The dr:swpuons of JOint types have also not bf'en 

usen as some of them dtpend on hmb arncuiattons and also btcause of the madtquacies of low 

levf'l descnpttons (sec. 5.2). The n:uurt' of the rr.atchmg mechanasm allows easy addtt1on of such 

information to the program; tn the future. 

Afttr th.:o vanous dtstlngmshd p1tces and theH end pmu havt been match~ we 

attempt to choose betwt'en the matches (decmon routmes 1!1 sect1on 6.5). If some matches are 

clearly preferable to others we retam only those. All acceptable matches are then "extended" to 

tnclude the rest of the p1eces and JOtnts of bo!h the object and the model. For each patr of ptrce: 

that havjl been matched, we match the JOintS at the unmatched ends and contmue unul all JOintS 

and pieces have been matched (some JOtnts and pteces have to be match~ wtth null .)Otnts and 

null p1eces). Thts procedure assures the matching of the ]Otnts an thl' two ciPscrtpttons to have 

consistent connecuvtty rt>lations, 1f the graph5 matched have no loops. c~s ts the case for all thjl 

ob_Jeets constdered here. More generally, we expect the objl'Ct p1e~e connecuon graphs to have very 

few loops; our method can eastly be ext,•nded by first detecung thE loops and d1sconnectmg them, 

then performmg the l'l<tens1ons of the .atch as descnbed and then recherkmg the connecttvtty 

relations demanded by the loops. Afte1 the matches have been extenclPd, we attempt to choose 

among the varaous matches agam and the best of them IS the repr~sent~ttvl' match wtth thrs 

particular model. 

Parttal matchmg proceeds m a very natural way m the processes descnbed here WP. 

match those pam thltt are VISible and make a note of the parts in the model that are not seen tn 

the current scene. Otctstons about the 1mportance and the plaustbility cf the missmg parts 1s left 

to the deciSion rouunes (sec. &.5). Of course, the dtscrtminauon oi the matchmg procedures 

decreases as the number of parts seen decreases. 

We have used the order of p1eces relativt' to a dJStmguish~ ptec• :md assumed thar 

the!.e disungutshed pteces are vtst~·le. In scenes where these dtstmg111shed p1rces are htdden, we 

have cm:ular lists of ordered IMces and a larger number of possible marches will need ro be 

mvestigated. With rhe rt>soluuon of our setup, we do not normc~ily see the dt'tatls at the ends of 

pteces. wh&eh could be advantagecusly used for d1scnminating between pttces (e.g. the hand at the 

end of a human arm). Some tmproveme:lt could be obtam~ by better prr(t'dures to examtne 

p1ece termmat1ons. m t'le process of the pi!Ce descrapt:ons. In this sect1on, we have been 

considering matching agamst a g1ven model; however, the difftcult problem With partial 

snformat1on is to select su1table models to match agatnst. The problem of matching occluded 

Ketle5 IS further diSCUSsed In SK. 6.4. 

6.3 MATCHING OF OBJECT PIECES 

In t~JS section, we dtscuss the ddatls of the matchtng of ,)leces, the bam for choostn~ 

~mong piect matche•. lind the opumal matchmg of two lists of piects. 
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Matchmg of two p1rcts mvolvrs comparing their paecr descnpton. We assocaa1e a 

dtscnption of the differences w1th the pltct match (a LEAP &tern, differencts stored as datum of 

the Uft!l) and <tlso generate a weagntrd numerical error based on the daffrrrnces. fhr nurn,.•Jcal 

error as useful for choosmg 111 hm1ted contexts. 

The most important characteras:ac compared is the connrctiVIty of tht paece;. to be 

matched. Paece mau:hes are called as sub proces~s of a pant match process, and the jOints at one 

end of the pteces to be matchtd iHe given. We compute the difference an the number of ptf:'ces 

attach@<~ at the other ends of these pieces, thas difference ts called conntctiuit' difftrtnct The 

connecttvny difference is posatave af the ob ~~ piece has more p1l""~S conner!ed to 11 than the 

model parte: s.uch a match wJII ntcl'ssarily luve SOf'ile paeces of the Objii!Ct unmatchl'd and 1s thus a 

poor match even wtthout further context. If the model piece has more p1eces connected to I! than 

the object pu~ce, then the connectiVIty difference as set to zero; the model is allowed to have extra 

pttces. Only ·well.defined· paeces are u~ for computing the connectivity dafferl"nce~. a pat.>cl' as 

well-defmtcl af 1t as elongartcl (length to w1dth rauo larger then 3.0) or if it IS a dastmguashed 

pitce. 

·rhe scale of the twc paeces to be matched is normalized by given factors (the ~izes of 

the p1eces first matched in the overall match). Differences in width. ratio of length to wadth and 

cone angle are computed and thear weaghted sum is used for a numeracal evaluauon of the era or 

of the match. This error funcuo~ IS used only to Hnd gro~ nwtnc diffe1ences betw~n two 

r:tescnpuons and the cho1ce of the spectftc function is not of much importance (some reasons for 

the choiCe are explatned later). 

The error func,ion is computed as follows (mod1ficataons for matchmg shadowed pteces 

are covered later): 

Where: 

dw • Wadth dafferrnce 

• "B~OLUT£ (Wadth 1- Wadth2) 

dr • Length to Width Rat;o difference 

• (Length_Wldth.Ra.uo1) I (Length_Width_lbti~) 

If dr < I then dr • lldr 

de • Cone angle difference 

• A \\SOLUTE (Cone .angle 1 - Cone_ang\e2) 

(All angles 1n radtans.) 

f r:dr)• If :!r< 1.0 then 0.0 else 

if dr> !'.0 then 1.0 else O.lo(dr -I} 
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fc<dc>· If de< 0.1 thM 0.0 else 
if de> 0.3 then I else de . 

In the above evaluations, lowttr and upper thresholds have btten set for cone .angle 
differences and length to wtdth rauo dtfferences. Jf the lower threshold IS not exceeded, the 
differences are not co•u!dered Significant and do not contnbute to the error value. If the upper 
threshold is exceeded, it tndicates a very poor match and the error contribution •.. set to a value 
(1.0 in both cases) much larger than ttxptct~ in a good match. Rnsons for the choice of relative 
weights in this function are ducussed lalf!r. 

If an object piece is shadowed. the p1ece desrriptors for the complete piece are unkn:>wn, 
and the quality of i!S march wnh a rnodel pie'e is difficult to establish. We assume that an 
arbitrary amount of the piece may be obsc~.ored. In thl' above error computations, if the wt~:th of 
the shadowed p1f'Ce is smaller than that of the model p1ece being matched with, the width error 
component (fw<dw)) 1s iaken to be zero. Average width has been used here; if part of the piece is 

unshadowed then the use of the width of the un:~hadowed p<.rt would give improved rewlts. The 
cC'ne angle and the length to Width rauo for a shadow~ P•'·Ce are not known reliabl~ and art not 
used for determirung the match error. However, the connectivity differf:nce IS computed in the 
samf' way. The information about the shadowed piece havmg excess pieces connected to it u still 
equally significant. 

The selection or the error function has been ad h.x; it 1s based on our expectations of 
reliability and invariance of varaous descriptors. We expect the width of a piece to be known 
reliably (but dependent on the VIewing anglei; while tne length, and hence the length to width 
ratio, and the cone angle tend to be sens1t1ve (0 descraptlon methods. An Improvement would be 
to assign the weights for each piece match separately, depmding on some context e.g. for matching 
with a very long piece the elongation IS important and should be g1vM more weight A more 
complete model of the ob j«tS might specify what the essential qualities requir"<i for a piece are 
and innuence the weaghtmg. Standard, statast1cal parameter setting techniques ([DudaD may btt 
useful in determanang these weights, if no context is used. 

The shapes of the piece ues (straight, circular etc.} have not be!n used for matching. 
primarily because the pieces Mcountered in the ob ji!CtS we consider havt been mostly ~traight. 
The cross-section shapes have not been matched, since these are not known very well in the 
present implementation. We have also r.ot compared the cross-section functions in a very detailed 
way; we merely fit a straight line to one, to determine an average cone angle. A more subtle 
evaluation could compare the andivldual cross-sections 1long the axes of the two pieces and bu1ld 
differences; this is expected to catch local dafferences of shape better than our averaging process. 
The major difficulty would bt caused 1:-~ause of the quality of the bou.1dary data, which adds a 
significant error to the cross-section w1dths, maskmg any fine systematic differences. 

To !'-le\.t between two p1ece matches. we first compare the connectiVIty differences. lf 
one match has a higher connectivity difference (which corresponds to excess ob j«t pieces) than 
the other, then that match is re.J«tcd. If conr.ecrivlty difference is the nme, we pick the piece wltn 
the lower numerical evaluation. This p1ece selection method is very local and is used in limated 
contexts only (in selecting piece matches when hst of pieces at two JOints have to be matched). 



6.3 PIECE MATCHES 

MATCHINC OF PIECE LISTS: 

Consader the matching of two lisu of pieces, in a gaven order; the lists may have 

different number of pieces. Let the two lasts be P• {PJ• P2· ..... Pml and Q.• {q I• q2, .... qnl· and let 

m s n. We want to pick piece matchfS so that each paece an the shorter last, P, is matched to one 
paece in the longer list, Q. One p1ece can match with only one other paece. The rel<&tive order of 

pieces must be maintain~. i.e. if Pi matches q jo and Pi•l matche) qk then J < k. Thas 

requirft'nent constrains the matching of a paece, p1 in P, to be matched to q j in Q, such that t • (n­

m) s J s i • (n-m). Each Pi must be matchtd to a different q J' A complete t;~ search with these 

constraints could be made ro flnd the best assignments, as the number of r ·ces involv~ is small 
(say s &). Howevrr, we use the following procedure which Is faster: Ev• the match of e~ch 
piece Pi in P to each potentaal matching paece q j in Q. (with the noted constraints between i and J) 

and arrange the matches in a list ordered by the preference of theSt' piece matches (piecl" match 
selection was discussed earlier). For each piece compute a match sensitivity ratio (to be defined 
shortly). indicating how fast the macch quahty for this piece deteriorates as its matching piece is 
changed. Assign the piece with the highest sensitivaty ratio its best match. Remove the matched 
paeces from further consideration, by removmg matches involving these pieces !rom the paece 
match lists, and update the sensitiVIty ratios. Repeat this until all pieces in P have been matched. 

Let us now spetify the mate!\ sensitiVIty ratio. Some pieces are left wrth only a single 
match, etcher imllally or after some paece ass1gnments have been faxed; in such cases, we set the 
sensitiVity ratio to an arbitrary h1gh valut, MAXRAT, assurmg that this piece wall be assigned a 
match farst. Normally, the sensauvaty ratao ., the rat10 of the second be~t match t1ror to the best 
match rrror. However, af the object p1ece is shadowed, the senr.illvlty ratio is set to its lowest 
valu•. The match quality of a shadowed paece is not known reliably, and Its match selec:Mn 1s 
deferred to ~ last. If the connectlvaty dafference or the two alternatives is different, the sensitivity 
ratio is set to 0.1 o MAX RAT. so that this piece wall be as>ICJled its best match immediately after 
the single match pieces have been matched (this applies for a shadowed piece match as well). If 
the piece is a •wen defined· piece, the ratio is doubled (so that the well defined pieces are matched 

earlier). 

A piece list match is characteriZed by the sum of inchvidual piece match errors. TCI 
choose ~tween two orders of matc:hin' two lists (direct and reversed), we compare the total errors 
for the two orders; If one ordtr is clearly better (error ratio > 2) then pick the lower error • 'lltch, 
ocherwise make a decision oased on the lo\l.er maximum piece error. A numerical piece trror 
suffices for selection here, >ince the rest of context is the sanae for :he two orders. 

Many objects we consider are bilaterally :;ymmetrJ.:; their limbs form symmetric pairs. 
For such ob jKts, the matching of piece lists could b.:· improved by matching the pairs 
simultaneously; the at>ove descrabed procedure finds matches for each limb separately. 

6.4 OCCLUSION AND SHADOWS 

Parts of an object may be occluded by other parts of the same ob.JKt. or by the parts of 
another objKt in a mul~l-oOject scene. In such cases, Lhe description prc:~ures provide some 
tsolatf'd sub-structures. each such sub-structure consisting of a number of connected pieces, and 
JOf'llt .sotated slncle piKes. We regard each sub-structure as a separa~e ob JKI. The isolated pieces 
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may be parts of on~ of th~~ ob je<:ts or be smgle piece ob je<:U. Descrapuon routmes also generate 
hypotht'ses for connections of these asolated paect's to the JOints of ob jt'Cts. based primanly on 
proximity and symm~ry (Sec. H). .4.t the stage of matchmg. we are able to furtht'r exammt' the 
validity of these hypotheses, hy examining whether such pieces are presl'nt in the moc.iel but nor 
In the ob je<:t description. We discuss the handling of these isolated parts assuming that connecteci 
parts of the object provide enough data to make partial matches. 

The matching begins by companng a connected sub-structure, '~g:uded as an ob _~ect, 
wath memory models, agnormg the asolated pieces that possibly attach to this oo Jl'Ct. At each JOint 
match betwt'flt the ob_,ect and the model, we exammt' whttht'r the modtl pmt has somt' piects 
that have not bftn matched. If so. the p1eces hypothesized to connt'ct to the current ob je;;t jomt. 
If any, are matched wath these t'xtra model piect's. Sin.:e the connectivity hypotheses are wt'ak. 
such matches are accepted only if the pieces match well. (Matching of a shadowl'd pil'Ce with a 
model piece wa! discuJSed in sec. 6.3.) The matching error as rtquared to be less thr..n the 
maximum matchmg error of the other pieces at thas joint. A more satisfactory resolution would 
be to use more sophisticated matching techmques, such as to determme whether the visible pan of 
the shadowed hmb matcht's with some part of the model limb. If a suitablt' match is found, then 
this Isolated piece is rt"gardecl as being attachec; to the propost'd JOint (in the context of 
hypothesuing thu objet! to be the model objet!), and as hereafter mduatd m the evaluations for 
quality of the overall match. Thas process u repeated for each proposed ob JI'Ct an th~ scene. (A 
converse procedure, that assumes the hypothesized connections first, and venfies them by 
matching with memc>ry models, has the advantagt's of staning the matchan~ with a larger, more 
selective structure, and wall be particularly useful for heavily occluded sce .. t"s where little sub­
structure is immediately avaalab~. A combination of both methods as hkely to be used for 
dafficult scenes.) 

Isolated paeces that remain unmatched by the described procedure are matched with 
single piece objeCtS. Further treatment of the paeces that remam unmatched is diffacult. The 
current programs simply i~noa• them anc 1dentafy rhe remaaning ob rcts. Several alternatives are 
possible: after an ob je<:t has been identified and some p•eces are missing. we may accept even poor 
matches for these pieces now. Redescription of these paeces and a closer examinatlotl of shadows 
will perhaps be necmary for a better treatment; we have not investigated this. Some parts are 
split In rwo because or occlusion from another part, e.g. one leg of the doll ·n Fag. i.li is seen as 
two separatt parts becc

1
use of the occlusaon caused by the sr.ake. Continuity or such parts could 

now be examined with rhe knowledge of the corresponding model pil'Ce (such as the length of the 
model piece Is close to rhe length of the combmed piece). This technique has not been 
implerr.ented. 

The for~ing prl'Sumes that enou~h parts of an ob JKI are seen u connected to 
est. 'Jiish a good match with the modt'ls; this may not be so for heavaly occluded scenes. Some 
conjetrures about such conditiO'lS are offered here. In such mst:mces the matchmg process and 
the description process must work more closely cogerh~r. rhe r.1atching procrss supplym& more 
lnform:ttion for description hypotheses. Some hypotheses for conntcttons and continuations of 
parts can be generated at the :iescnption level, ·bottom up". by examinmg contmuny. We can use 
the continuity of surface, axes of p~rts and the cross-secuom Three-dtmensaonal position 
Information will greatly aid in the detel min a lion of these continuities. Alttrna:ively, given a 
model description to match against, WE: can attemj)t to find parts of the pieces that fit well with 
the model (•top down approach j. A combinaLaon of the two methods will probably be used. 
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It u our f~hng that the maJOr problem is to select a SUitable set of hkely modeis based 

on the 101llal descriptions for these occluded scenes, to keep the .:ombinatoncs wilhlr. control 

Unfortunately, the resolution of our sy.ottm does not permit us to see the details of the ends of 

parrs, which could be used to s.Jggest likely models. More refined piece descnptors would also be 

helpful here. Finally, we think. that s-lobal context must be used to aid the select1on of models 

her~?, i.l!. we must have some idea of what we are looking for, when we see a complicated occluded 

scene. 

An example With shadowed pieces wu discussed In sec. 6.1. Some results for scenes with 

multiple ob.JKts are presented 1n chapter 7. 

6.5 SELECTION OF A MATCH 

Recognition requues a selection between two object matches. Ti'le s,election procedures 

are the same, whether all the JOIIlU of the ob ~~ have been matched or not. These procedures can 

be called at any stage of the matching proce!s to determme whether a preferred match exists, 

a!lowing incorporation of matchmg "strategtes". For example, our programs attempt to select first 

when only the 101tial two p1eces and theu JOIOts are matched and later when the whole object is 

marched. 

The two destriptions of the same ob,JtCt are not expected to be identiCal, and so we must 

have a way of choosing between two non.empty difference descriptions. In general, the probl~m 

of dec1dmg what dafferences are more important than the others is difficult. One solution for this 

problem is to try and find unacceptable differences; descriptions are l'ffective to the ~xtent that 

such large differences can be found between most obje<:t descriptions. Our preference scheme frrst 

attempts to find majOr differences m the structure of the two descriptions, If large differences are 

found, further evaluation is nor necessary. finer distinctions, betwetn similar structures, are made 

on the basis of individual part matches. If increased resolution were available, better 

discrJminaliun could be obtaaned by examining details. e.g. by examlnaticn of the ends of legs and 

hands of ammal shapes. The cho1ce of preferences is heurrstic, and il el(pected to applv to a wide 

class of objects. Possibilities for other preferences to be specified in the models of the objects will 

be discussed. Also, it would be easy for the decision preferences to be determined by the calling 

programs In our case, because of the availability of structured symbolic differences at the decision 

stage. 

Each ob.JKt match description contains a list of pint matches and piece matches. Some 

local selection decisions about what pieces to match ha\'e already been made. Olobal choice is 

attempted here. The selection is bued on fmding large differences. otherwise no choice is made. 

The main strucrural dtfference look.t'G for IS the number of pieces tn rhe cb.JKt that are 

not matched by the fnoclel (conmtency of [he conn,.:tivity relalions is already assured by the 

match1ng procedures). We 11re assuming tt'.'! modtl! to be complete and the extess pieces are 

consadered to be a IT•&JOr ducr~pancy. Wt! choose the match with fewer exceu p1ecei. For these 

evaluations only well defined pieces are considered (elongated pieces only). Thi:. helps make the 

selection insensitive to small extraneous pieces, that may someumes be gener .. ced during the 

description prt~tess. ·rhe sum or the connecuvaty differen~s (sec. 6.!) gives the number of object 

pieces that are not going to be matc~ed by the model lnd is useful even when all the joint 



6.5 SELECTION 70 

matcht.; have nor been completed. We corr.plttrly ignort any ••lissing parcts, presuming them to 

be hiddtn. A more ~":Jhisucated process should investigate whether th1s IS possible. (S•mply 

preferrsug the match with fewer missang pieces will always result an picking the s1mpler of the two 

models that share a common structure, e.g. the structure of a horse is SJmtlar to tha~ of a doll With 

an extra limb for tall, and this prtfrrrncr scheme will tend to pick a doll, for those vaews of the 

horse in which the tail is nor visable. lt is difficult to combine the number of musing pieces wath 

the Olher measures of match quality.) 

If no structural differences are found, we compare the evaluations of the paece matches 

of the two ob.JKI matches. For each objtct match the average and the maximum pirce match error 

is computed. Average error is an andacauon of the overall fit of the various pieces and the 

m"ximum error Is useful when two ob.JKts are similar but differ markediy in a single piece. If 

rather of these quantities dlfferes signiftcantly (by a ratio of 2 to I) betwee11 t~,e two matches, we 

select the match with the lower error. Average error is considered before the maximum error. 

If no clear dtiferences are obtained, we pick the match with the lowest average error or 

the lowest muimum error. depending on which provades the greater discrimination (larger ratio), 

but mark the selection as low confidence. 

The decision procedurt' described here relies on general consaderatton~ and gross 

differences. We do nor make any decasions based on model specific information. Part of the reason 

is in our use of loose models. The models are JUSt prevaous descnptions with minor modifications. 

More specsfic information could be added to the models enher by hand or by a description 

learning scheme ([Winston)). If the models specified th~ necessity of certain relations to hold, we 

could check for them here. These relauons can be of the form of certaan ratios of sizes of tht 

limbs, necessary similarity (or d•ss•m•lanty) of the limbs etc. No angle information has bern used 

in making decisions, sine~ the articulation limits are unknown. If added resolution were available, 

we could examine the confusing parts in more detail, e.g. examine the structure at the ends of the 

parts 

6.6 VERIFICATION 

Procedur~s to choose between two matches were descnbed in the last section. 

Addtt!onaUy, It is desirable to test further the adequacy of a match. Our decis•on procedures insist 

on a minamal quality of the m&tr.h (such as no extra well defined paeces) but no attempt is mad~ 

to explain the remaining differences. Since th~re ii likt!y ro be m'lre information in a model than 

in the object description, a more general system should try to ·verif( modf'l information in the 

objeCt descriptiOn. This seems to be the case In human perception ([Posner]). Redescription of 

some parts may explain some of the differences; the d~cription of model piecPs Is known and the 

description procedures can test .vhether a similar description can be obtaaned for thr object pieces. 

We have ncx implemented verification and redescription procedurt's. In the following 

we suggest some verification techniques. 

1. Examine the missang and rxtra paeces: Can the invisible pie!Ce be hidden for some 

perm!~.:;.;~le articulation of this piece and the known articulations of the visible pieces ? Can 

the extrar.eous pieces be included in the other pi.xes by redescription ? 
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2. Can the metric d1ffertnces of two matched pieces be explained? The perce1ved Width of a 
p1ece ,;hanges With the v1ewmg angle; examtne whether the Width is 'onsistent with the 

present v1ewmg angle. (For such venf1catton, th~ :iouti.:: needs to have informauon about the 

complett' crou-sectaons.) Sometimes, a piece i.s terminated prematurely because of a local 

disconun:my tn the boundary and 1ts length measurement is faulty, now we can redescribe 

th1s piece With different continuuy conditions to determine whether it can be matched bettrr 

With the model piece. 

~. Model spec.tfic data: check any specific retauons that must hold for this particular objtct 

(among the visible parrs). These relations may be based on the functional requirements of 

tht object. 

1. Support and stability retauons: check whether the ob,Jett could be stable w1th the proposed 

piece assignments. This is difficult w1th on I} partial information about the ob jett 

5. Increase Resoluuon: Our ~v~=ern 1s hmited in resolution; however, if higher resolution were 

ava1lable, we might not want to process the whole scene at this higher resolution. After 

matching, we have specifH: high resolution features that we need to venfy. This may involve 

gathertng new, h1gh resolutton data from the scene, or JUSt to make use of such data in parts 

of the desmpuon phue. (Increased resolution will require the use of a narrower light beam 

and finer 1mage nmphng; m'reastng the effecuve stereo angle is not practical because of 

additional shadow problems.) 

6.7 INDEXING INTO VISUAL MEMORY 

In thiS chapter. we have discussed the matching of an ob jt'Ct descnption With a gi'<en 

model descrapuon. and also the cho1ce between two such matches. If the number of models known 

is small. for recognition we can s1mply match :he current ob jeet description with each known 

model and choose the best match. Howe·:er, as the number of models increases, the computation 

required increases proportionately, and indtlting to locate a sub-class of similar models bf!comes 

necessary. In our s;•stem, we have expenmenled With a small number of models o..,ly, but the 

number of models can be increased indefinitely, in principle. In the following, we de.Kribe some 

prelimanary efrorts at mdexing and also diSCUSS how more powerful indexing method~ may be 

Implemented. 

For indexing, some important "features" are abstracted from a complete obJKt 

description. The~ features may be vaewed as forming a "future V«tor" or a "description code". 

Note that two models may have the same feature vector :.nd d1ffer tn the detailed descnpuons. 

These features are used only to locate promtslng simtlar descriptions. and not to establish a 

detailed match. Models wath exactly the same description code can be located effictently by 

:tandard ha.Jit coding techmques. We hue chosen those features of an ob jfCt descnption that are 

ir,sensitive to changes in the viewang angiPs and hmb articulations. However, some variations do 

occur because of ocdusion and descnptton accuracv. We do not expect to find a memory model 

with the same description code, but mstead lwk for those models whose de~<.t i~~!on code is close 

to the observed code. 

The problem of flndmg 11 similar code is similar to the problem of finding a best match 
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(with Hamming distance) discussed by Minsky Be Papert ([Minsky). pp. 222 • 225). They 

conjecture that thr solution of this problem rtquues the equivaler.t ot a complete search of the 

memory. Rivest ([Rivest]) presents a statistical analysis claiming that for rusonable distribution of 

the codes in the description space, a simple search around the observ~ code has a high 

probability of findang a match in a rather small number of steps. However, these methods have 

treated the problem of searching for best match al a general combinatorial search problem. For 

our problem of indeKing, the generated descriptions have some stmantic content to titem, which 

can be used advantageously for searching. We can use the knowledge of the descrip~lons to 

decide which descriptors are likely to be insensitive to change and also which ones may bll! m 

error for this particular description. 

Our paradigm for Indexing is as follows. One .,r iioore description codes are generated 

for an object description (also an ob_r-ct may hiilve multiple descnptions). The models with the 

same description code are retrieved from the memory. Based on the knowledge of descriptors and 

possible errors, the description code is changed and new models with the modified code are 

retrieved. The number of changts made to the desmptton codl' may depend on the confidence of 

the various components and the process could be stopped if a suitable match was found. However, 

becau :e of the difficulties of judgang the adequacy of a match, we have not chosen to stop the 

indexing process until all reasonable alternatives have been tried. 

The choace of features used for Indexing has been based on their invariance. For the 

class of scenes considered in this thesis, we have b~n assummg that one or more of the 

distinpislttd pieces of ~n ob ~iKt is present m any scene. This has lead to a chotce of descriptors 

of the distinguished pieces for indeKing. Each distinguished piece generates a separate code for 

indexing, and the presence of any distinguished piece in the scene is sufficient for proper 

in de:~~ mg. i.e. Indexing IS possible from partial views. The choice of descuptors used is further 

constrained by the desire to use only those descriptors that can be represented by integer values, 

preferably binary. Use of real valued descriptors such as the relative widths of the pieces at the 

end is more difficult. A possible approach is to quantize the real values; however we have not 

used such d~scriptors, 

Followang Is a lbt of descriptors for a distinguished piece that are usable for indexing: 

I. Connectivity of the dist•ngu•shec! p1«e (connected at onl! end or both). 

2. Conical or cylindncal distmguished piece (conical bemg defmed by the average cone angle 

ex~;.eeding a threshold). 

3. The type of the distinguished piece, e.g. long or wide. 

of. Shape of' its cross-section; flat or curved, concave or convex 

&. Shape of the axis; is it straight ? 

6. Regularity of this piece (cross-section function of a regular part ttas some simple 

geometrical shape) 

We have used only the first three of these descriptors, primarily because the pros-rams 

for pner~ting the other descriptors have n01 been impiemented (see sec. 5.1 for choice of piece 
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descriptors). Also, the computiltlr•ns of regulanty cannot be rehably made wuh the quality of data 

currently ava1lable to our prog;·ams. We have used the descriptors of the dastmguished paeces 

only. However some l1 .. scnp:on. for the whole obJKt may be usefully includ~ in the description 

code, e.g. whether ;my of 1he p1eces 1s regular. We have not used any JOint descriptors for 

indexing here, because of thm vanab1hty as d1sr.ussed before (sec. 5.2). 

Further effiCiency :n rmieval of the models u gained by using the number of p1eces 

attached ~'~~ the either ends of a distmguish~ piece. Let N 1 be the number of attached pleces at 

one tnd and N2 at the oth~r. and further let N2 s N J· The models wuh the same description 

code are stor~! in a list, which 1s retraeved durmg andexing. This list is ordered m a descending 

order w1th the number N I correspondang to the particular distinguished p1ece. During retrieval, 

we ~arch along this list for those mooP.Is that have more attached pieces than the observed 

description piece. The models must ha'<t at least as many pieces as the ob jt'Ct for an acceptable 

matrh. When the first model wnh In~ p1eces is encountered, the rest of the list need not be 

con\ide1·ed. Further improvement would result in ordenng the sub-!ist of models w1th the same 

value for N 1 by the value of N2. On the avenge, these two orderings should rl!duce the number 

of models to be ~onsidered b~· a factor of two each. 

In the current implementauon, we index anto memory for a description code 

correspondmg ro each dlstmguished pu~ce. If the obJKt piece Is one-ended, it can match with a 

model wath a two ended da.mnguashed p1ece and thiS alternative Is also u~ed to index. Other 

perturbations to the description code Ct"t:ld be ba~ 011 the ccnfidence of the descriptors, e.g. if in 

the description of the dastmguashd paece tht' observed cone angle is close to the ti:reshold then we 

should try its descripuo:1, both as coniC<ll and non-comcal; we have not used this. The number of 

entries requared grows exp('nenually w1th the number of descriptors that need to be perturbed, 

and must be chosen carefully. Our expenments with indexing did no: advance enough to study 

thls in detail. In the following we present an analysis of expect~ andexing effidenc1es, based on 

some samplifyang assumpuons. 

The retrieval efficiency of the mdexing scheme is dependent on the number of 

descriptors used. Let n be the tocal number of descriptors and assume all descriptors ro bE: binary 

'II alued. Also assume that on the averag,. m of these descriptors have value I. If this number is 

assumed to be exactly m, the number of po~:.1ble codl!s is the binomial coefficient Cn,m· Consider 

the ~!tuatlon where the number of models an the memory is much lart,er than the number of 

possible model codel. In this case each model cr:de is expected to have a long list of models 

attached to It and each probe mto memory is expeo::•ed to s•J«etd in retneving sorM models. Let ' 

be the number of dncnptors that are doubt!ul and need to be perturbed. Then, the number of 

entries made is 2/ (assuming independence of these descriptors). The reduction in the number of 

mo1els considered in this case is the number of possible codes, dividM by the number or mtries 

made, i e. (Cn,m)/(21). A further improvement by a factor of i can be expected by ordering the list 

as described above. 

As example, if n were 6 (as enumerated in the list of descraptors above) and m was ~. 

Cn,m • 10. The best possible Improvement faCt'lr is then iO, modified by the number or needed 

entraes. For our Implementation wath n• 3, and m• : or 2. the expected improvement Is stall equal 

to 12. Considering the prelimmary nature of these efforts, we feel that the results are 

encouraging. Note that our •xpectation of indexing efficiency Is pr~i'=ated or. the belief that the 

ob jecU will be evenly distr:buted over the chosen descriptors. 
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Consider the example of the doll d1scussed in secuon 6.1 (Fig. 6.!). The set of models 

used cor u.ts of: a horse, a doll, a glove. a nng. a snake and a hammer. The distinguished pieces 

for th~ .• esent view of the doll are the body and the head. Using descriptors of the body, the 

ir:dexlng programs pi-:k out the doll and the horse as the similar models (the other models do not 

have enough attached parts to their dut:nguished pieces). However, using the head of the dol1, 

the hammer model Is also picked out as a likely model. Note that if the shadowed arms wert: 

connected to the body, this suggestion would not have been made. The hammer is quickly 

rejeCted as a F Jssiblf match, by comparing the total number of pieces o! the object. This number 

could also have been used as a descriptor for Indexing by further ordering the model lists by this 

number. 

Current implementation or mdexing sufferes from the Inadequacies of our descriptive 

techmques, though we think that some Improvements can be made by techniques already 

discussed (see chapter 7, for a summary). Use or real valued descriptors would also aid in 

improving the effectiveness of mdexmg. e.g. we could use the relative sizes of the pi~es and the 

angles between them. Our indexmg !iCheme is designed to work with ocduded xene~ and parUal 

views. However, situations w1th heavy occluMon are not consid,.red. With a limited number of 

models. the analysis of occluded scenes IS s.omewhat simpler. as various models can be •ftt• to the 

ol"tserved data. With a large number of models, it becomes necessary to generate enough ~c.:ttom 

up· descriptions. so that a hst of hkely models can be efFiciently indexed. 

6.8 MODEL ACQ.UISITION AND LEARNING 

For recognition, we need a collection of model descriptions. These models may be 

previously seen descuptaons (visual memory) or bl! input by hand. The Iauer alternative is tedious 

and not used. We construct models by savmg a prnious description of an object, which is then 

interactively modified to correct for errors. A SUitable viewing anglf is chosen so that a maximum 

of the obJect is seen. Additional information. as necessary. is add!d tc tl't• model so that all parts 

of the objeCt are present, but not all details of the parts are known. T 1 : ·II cross-sections of the 

parts of a model can not be determined from a singlf view. We star .. _ ·'i' the perceived width 

from the particular viewing angle. The observed anglfs between the pieces at a joint are known, 

but not their articulation characteristics. In some cases. we use indeptndmt descriptions gmtrated 

by two different v1ews, u in the example of a glove discuued earlier. Such models have been 

satisfactory for our purpose; following are suggestions on how more complfte models may be 

acquired automatical1y. 

Information about the unseen parts of an object can be obtained by usmg multiple 

views of the object. To combine the information from sevtral v1ews, we have to be able to find 

comMOn link.s in various views. If the object stays in the same physical position for the different 

views, or is moved by a precisely known amount (e.g. by being rotated by a l-.nown anclf on a 

turntable). then the linking problff"' is simpler, since we know the three-dimensional positions or 

points on the visiblf object surface. We can assemble data from the separate views before 

genua~ing any symbolic descriptions. but must ·rrgister• the various views whose absolute 

calibrauon may be in error. Alternatively, we can describe each scene, and then match the 

descrlpUons of ~he various views. The different views can, for example. be used to complete the 

cross-sections for parts. We can use the knowled6e about the limbs being in fixed positions here. 

Akernately, if many views are used. the differences from view to view can be made arbitrarily 

small and the eormpondt!11ce problem becomes trivial. 

Reproduced from 
best available copy 
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Views with dafftrent amounts of hmb l'rtlculauons car :.4! u~t'd to lt'arn tht arttculauon 

charactt'nsllcs. The matchmg procedurts can be th" ones we have preSt'ntfd, wath the exc ptaon 

of not assumang that eather of the descnpt1ons to bt compared is more complett' than the other. 

Smct' the descrlpuons wall not bt "perft'ct", the matching procedurtos must dl'cade about whach 

parts of the descnptions are acceptable, based on the compaubtlity of the d!fferent vaews. Pans 

found an several vaews are clearly more crfdable. The learmng example.> need not use views with 

htavy amounts of occlmaon, making the task of description and matching taster. Wheu two very 

dafferenr descrapllons are gtnerated for t;1e same Objt'Ct (rg. glove an Fags. 4.9 and 6.1), tht 

programs wall need to decade wht•her both of them iilre acceptable or whether one IS an erroneous 

descrtpuon Th1s deciSion may depend on whether one de:..:riptton can be transformed tnto the 

other, without d.an~mg the shape of the obrct. (An alternatave to stonng both descnpuons 

would be to havt tht matchang programs att~mpt SU(h a transformation.) Acqutsltaon of •uch 

knowledge IS "learnmg" 111 a non-mvaal seme. We thank that the present marchm& procedurrs (an 

be ~asaly l'l\tended to accomplish tillS. 

A different class ot model characteristiCS, requmng certaan relataons to hold iur "\ 

rartacular .,odel, can be ltarned IJy exammauon of d1ffertnt M~xamplesM. as suggested by 

[Wtnston]. These relat1ons may, for example, be requart'CI mttrac relat1ons of so'""'e parts or 

r~uart'CI symmetry of parts. Wanston's procedur..-s fand s1malanttes and dafferences between 

dafferent examples and ::~bstract nKessary relations for a certain model. We ~1re able to gener:ue 

s1mllar difference descriptions. Howtvtr, Wtnston relies heavilr on each descaaptaon bemg p11rfect 

(no massmg or extra lints m the descnptaons) ~nd extensaon to imprecase descriptaons will requ1re 

addataon of prefe:ence cntena. 

We have not anvesttgatfd these learnang probltms, and suggest them as Important 

problems for further re~earch. 
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CHAPTER 7 

RE.SUL TS AN~ CONCLUSIONS 

Some results for difft~!nt techntques d-eKribed were presented earlier. Here we present 
more results on other scents to illustra•~ their performance ranp. We summarize the strong and 
th~ wealt points of our t«hniques and implementa>ion, and discuss some ideu for rela~ed. further 
research. 

7.1 RESULTS 

Figs. 7. I thru 7.1 !>, show results at various leveh of processing. These include the resu Its 
of boundary routines, prehmtnary segmentations an(! axis, :ross·section dt'scnptions, sek>cted paece 
Hgmentat1ons and the output of the recognition routint ... The segmented Sllnes show the axas of 
rhe cones. The marching results show the models selected by the indexing and a preferred 
ord11rang of rhese models as a result of matchmg (one or more moclels may be included/. For t'ach 
such match, the figures also ,~·ow the correspondenc.es made between th~ pltte~s of the objeCt and 
th~ pieces of the model. In t•u· followmg we discuss in detail ttln performallCe characteristiC~ of 
the various pr(l(.es~s. by eumining the results. 

Use of three-dim"!~tional data is very effective m separatmg occlud~ bodies; the 
separation is a natural out<"Jme or the boundary orgamnuon proce.u (str figs 7.3 and 7.5; 
compare wtt~ the TV ptctures in Fags. 7.1 and 7.2). However, touching obrcts are not necessarily 
separated, e.f. part of a doll leg and the snake in Fag. i.lf are seen a.s a .singk> ob Jl!ct. 

The quality of the boundary output is affect~ by the following factors. The end pomts 
of the two !f!ries of laser ~cans do nOt always 11atch well causing :he bou11dary to be JaggPd. A 
particularly noticeable example is an F1g. ?.6. The thinning process is alw poor in locatior. of the 
md poinu of short segments. More senous problems can occur It the scan data itSI'If is poor. !f 
the hue of the ob jeer is cornplem~ntary to rhat of the illuminAting htht (or it nas dark spots), rhe 
TV amage of rne ~an has false discDntJ'lUJties. Use of :~ white hght cr mulu-color las~r wou!d 
solve this problem 1n many taies. Reflections from t .. e ob j«t can gtve rise to spurirus 1mage 
points. Combinang TV image data wnh the J.u~r scan data should hc!p wnh the above problems. 
The boundary defantuon i! of coune larn11ed by thf resoluuon of the appa! aws. 

The segment:..aons for an object are chosen from several alternatives. Prev1ously, 1n 
figs ~.f and i.13 w~ presented the alternative cones for two scenes. Figures in thJ.s chapteo·· sho\J 
only the selecttd cones. Choosang among alternate descriptions invalves computatior af the 
~vtrlap of two descnpttons. We have used boundary overlap as the ~asure of piece ovt'rlap, 
area overlap IS more robust ~nd closer to ti1e desared measure. Area overlaps can be compuled 
Without $Ubstanrial overhead b~ause of the nature or the data (tr'le areas are describM by an ax1s 
and normal cro$5-sect• .... ns}. PropE.~ reso1uuon or some alternates rtquires redescnptaon techniques 
and was discussed m sec. i.5. 
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F1g. 7.1 A TV P1cture of a Horse and a Ring 

F1g. 7.2 A TV Picture of a Horse and a Doll 
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F'C. '7.S SepwntatiOn or Sane Comspondlni: to Fig. 7.1 
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THE MODELS SELECTED BV ltllEXIM:t 

lmSE 
DOLL 
GLOVE 

••tchee in preferred ordet 

HORSE 

PRINTING PIECE C~SP(NIENCES 

P9 NECk (Note P9 ie the piece forMed by Merging P3 and PGI 
P2 BOOV 
P4 FRa~T _LEG 
Pi TA:L 

!'40 MATCH FCUil FOR H£ FOLLQI.IING PCS (F Tl£ OB.£CT 

NO F'ATCH FOIH) FOR THE FOLLOLIING PCS (F Tl£ MDUEL 
HEAD 
FF-AA_LEG 
FRONT _LEG 
COMB_REAR_LEG 

Fie. '7.f Retopitlon Results for Horae in Fig. '7.S 

79 
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Fl,. ?.5 Segmer.,ation of Scene Corresponding to Fig. 7.2 
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Fac. 7.6 A View ola Horse 
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THE MODELS SEL~CTEO ~V INDEXING: 

HORSE 
DOLL 
HAMMER 

matches in preferred order 

HORSE 

PRINTING PIECE CORRESPONDENCES 

Pl BODY 
P2 TAIL 
P3 TOP _REAR_LEG 
PS FRONT_LEG 
P4 NECK 
P7 HEAD 

NO MATCH FOUND FOR THE FOLLOIJINC PCS OF Tl-£ OBJECT 
P6 

NO MATCH rOUND FOR THE FOI..LOIJING PCS OF TH£ MODEL 
BOTTOM_REAR_LEG 
REAR_LEC 
FRONT_Lt::G 

DOLL 

PRINTING PIECE CORRESPONDENCES 

Pl BOOV 
P2 LEG 
P3 LEG 
PS ARM 
P4 HEI.J 

1'.'0 MATCH FOUND FOR Tl-£ FOLLOUH.C PCS OF TI-E OBJECT 
P6 
P7 

NO MUCH FOt.J«l FOR THE FOI. LOUING PCS OF HE I'OJ€L 
ARM 

Fig. 7.7 Recognition Results for Horse af Fig. 7.6 
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FiJ. 'IJ A Snau 
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Fig. 7.9 Anocher View of a Doll 

THE ~LS SELECTED BY JNOEXING1 

HOR'x 
I:X1L 

matches in preferred order 

DOLL 

PRINTING PIECE CORRESPONDENCES 

P3 BODY 
P7 LEG 
P6 LEG 
P4 ARM 
P5 ARM 

NO MATCH FClNl FOR Tl£ FOLLOI.IING PCS OF THE m.JECT 
P8 

NO MATCH FOLNl FOR THE FOLLQI.IING PCS OF Tl£ 11XEL 
lEAD 

Fig. 7.10 Recognition Results for the Doll in fig. 7.9 

8i 
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Fig. 7.11 A Clove 

THE MODELS SELECTED BV INDEXINGa 

HJRSE 
GLOVE 

Matches in preferred order 

GLOVE 

PRINTING PIECE CORRESPOtaNCES 

Pl PALM 
P3 MIOOLEjFINGER 
PS LITTLE_FINGER 
P4 I NOEX_F INGER 
P2 FORE_Fit«ii:R 
P6 TIU'IS 

~!iJ MATCH FCJlH) FOR THE FOLLCJL.IING PCS CW: T~ 00.£CT 

none 

NO MATCH FOlN:l FOR THE FOLLIJJ I NG PCS 0: TIE MOOEL 

ncne 

Fig. 7.12 Recopitaon Results for the Clove in Fig. 7.11 
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9 

,,,. 7.1& Another View of' a Horse 
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In the cone description process, the local cones are extended unt1l they encounter a 

discontinuity. The d1sconunuity 1s defml'd locally, as an abrupt change of the cross-section. The 

local continuity deflmtion works well w1th cyhndncal parts, where the cro1:-sectaon as constant or 

varies slowly. Parts s~mented by a IC'Cal discontinUity are me1ged an later processmg, e.g. m Fag. 

4.10, pieces Pi and P7 describing the top and the bottom of a I~ are merg:od into a single p1t!Ce 

as ~n alternative description (Also PI and P2 1n F1g 7.8). The converse, of sphttmg a pit>ce mto 

sub-pam later can also be us~!ul, but IS not implemented. More eftort u net'dtd for a betrt>r 

global continuity analysis wh1ch takes into account the roughness of the boundanes 

The descnFt1ons of the aKes are generally sali~factoq in the centrll parts of a piece. 

Near the jOmt of a piece w1th other pieces, the descriptions can be affectt'd by attempted 

extensions into parts of tre other pier.es, leading to etther premature termination of a piece 

descnptto~ or distortion (curllr.g) of the axis near the end: e.g. see the end of ptece P9, In F tg. 

7.13, near tt.e pmt wtth the body. Thts also affects those JOint descnptors that rely on the 

angular relations of the parts. Improvement of such descnptions will requ1re detection of th1s 

effect and perhaps redescription after removal of the mterfenng parts. We are able to de~P.rt 

ortt:ogonal terminations of a p1ece, e.g. the face of the hammer m Fig. i. 7. Proper rlescriptaon of 

other termmations will requne spectal routmes. More attt'ntton also needs to be patd ro 

descnptions near the ends of paeces, e.g. descript1on of a hand termmatan~ iU1 arm. However, more 

resoluuon 1s necessary for rhe tmplementataon of such desc.npttons 

The resulting selectt'd descnpttons are satiSfactory on the whole, the segmentations betng 

consistent with the destred. antutttve dl!scrtpuons.. We beheve that the results shown here ar"' for 

a wide enough variety of scenes, that the success of the progran1s is not attnbutable to the1r 

tuning for the spectfic scenes, and that stm1lar performance can be expected ora scenes of s1m1lar 

compl1xtt,. The deswption programs have not resulted tn any maJOr "extraneous" piece 

descriptions. The recognition programs ignore small extra pieces (such as the ptece P8 

representing a foot an Fig 7.~1). 

The con:~ections among the pieces are easily inferred from the boundary. Symbolic, 

summary deKr1pt1ons are generated for the ptetes and the jOtnts of an obJect, as ducussed in 

sections 5.1 and 5.2. The JOint descriptions relying on angular relations of the parts have not 

been very useful for us, because of the above mentioned uncertainities of the axes dtrections, and 

the allowed articulations of thP. parts. The bilateral symmetry computations rely on very crude 

measures for part similari:ies and need improvement 

For occluded scenes, 1he separat1on of disjoint bodies is adequate (except fot the 

separation of touching ob.r-cu) The hypotheses for COI'Inect•ons of occluded parts are based 

primarily on proxlmtty. lmplementiltton of more sophistiCated techr.tque~ requares Improved pan 

descriptions (e.g. more accurate axt>s directions). Knowledge of support and stabtllty telat.ons can 

be of value here. No hypotheses ue generated for tM ~;:;,,;mo.:ity of a part split m1o two sub-parts 

by :m occluding part. E.g. m Fig. i.li, one of the legs of tile d~ll is split mto two parts because of 

the ucclusion caused by the snake ly1ng across the I.-g. Such crJnnecuon hypotheses wtll be essen:ial 

for scenes with heav1er occlus1on than constdered •-.~re. 

A dark suppor!lng surface (background) has been u~ed for our scenes. The separatton 

of parts of the supporttng surface from the objl!cts is not expected to be very d1ff1cult whP.n using 

three-dimensional position data. Th1s problem JS ir.cludeti an the problem of separaung touchmg 

objects, but could beneftt from the use of spectal routines, such as searchtng for planar surfaces. 
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The models used for recognition are not ideal, but previously generated descriptions of 

the objeCts. No effort has been put In "lttmir.f more complete models. We have used only a 

small set of models for our recocnition experiments. However, the recognition programs are not 

written for this particular set of models and are expected to work well With other ob JKtS, that are 

welt described by the ':t"losen representation. Also, since recognition 11 strongly dt!pendent or. the 

structure, it Is fek that addition of objeCts with different structures wUI not adversely affPCt the 

performance of t~ese programs 1 1ssummg that adequate descriptions are generated) Tor the 

following exampln, tht set of models used conslst!ld of' the followlnf. a doll, a hor•e. a glove. a 

snake, a rtnc and a hammer. 

The discrimination of the recognition programs is good between objects with different 

structures. E.!. the clove In Fig. 7.11 Is euily recorniled by the programs (matches With the glove 

model pnerated from descriptions of fig. U}. Dilerimlnation of objects from parual structure 

descriptions depet'ds on the amount of the structure seen. E-c. the recognition of horse In Fig. 7.6 

is unambiguous but not in Fig. ?.&, and the doll in Fig. 7.9 Is also recognized without any 

confusion. For ob jiCtS with similar structures. e.g a doll and a horse, relative sizes of the parts are 

used for recognition. With unrestricted limb articulations. the angular relations of the parts have 

not been useful. For certain VIewing angles, the relative sile information is not adequate for 

c~arly p1cking one model over the other (remember, our models are incom!>lete). In such 

instances, the multip~ cho1ces are reported tn their preferred order. E.g. the horse in Fig. 7.3 is 

recC{.nJZtd even though only a partial vte•·· IS Sftn, but the identification of the horse in Fag. 7.5 

Ia noc clear ((holces :)(doll and horse are . .:ported, the doll i>eing the marginally preferred choice). 

JdenUflcauon of lndiV!dual parts as an Integral pan of the recognition proceu. This rna~.es the 

problem or further ver1fy1ng the multiple choices wier (we have ne~~ implemente~ any 

verification techniques). Nelle the many articulated views of the same doll, in Fig;;. 4.12. 6.3 and 

7.1 S; and a view or another doll in fig. 7.9. 

111 30mf instances the ..0 jects .ue !dtntifiee correctly, but the part identifications are in 

error. E.g. ;n Fig. 7.6, the t<aal and the rear 1-.g of the horse have been interchanged (see the output 

In Fig. 7. 7}. ThiS is because the decision wu based purely on the metric sizes of these parts (the 

lengths, widths, and the cone anales), and the models had no information about the attach.nent 

pomts of these limbs or the support relations. Shadows can cause part of the structure to be 

obscured. E.J. In FiJ. 4.14, the head of the doll is 1101 lftll u connected to the doll body. Without 

this connection, the r«<%ftielon pragrams lnterchanae the ldentiflcauon of the arms and the ~~ 

(becau.e of the Interpretation of the shoulder piece u head). An hypothesis suggestang connection 

of the head to the body Ia l'"fl'lred, but Is not examined by t~e recognition programs because of 

the above UKonsisttncy. If the head is connected to the bo~y first (by manual Intervention), 

proper identification of the arms and the legs results. with the shoulder piece being classified as 

an unimportant extraneous pltCe (since it Is ne~~ elongated). '!'his examp~ 'uggests that more 

"bottom-up• procewna of hypothesized connectiOrt~ Is likely to b.! n«ftSary for complex, occlude<.: 

ICtMJ, 

Tht performance of the rteognitlon programs could be Improved by use of rr.ore 

detailed models. Some Improvement could also be obtained by more detailed matching of 

individual pans. instead of just matchang the average descriptors. Of course. the use of oth~r 

data, such u surface color and texture, would simpUfy many diSCriminations (e.g. doll vs horse). 

Such data can be obtained rrom tht TV image. 

The index me ~rocedures are succasful In work.inr with partial views of an object and 



7.1 RESULTS 90 

retrieving a list of similar models. The indexing process Is ·robust• in this sense. Effecrlv~ness of 
Indexing depends on the amount or the object seen, i.l. the number of suggested Similar models is 
smaller when a larger amount of the objeCt is visible. E.g. only horse and doll ar~ suggestl!d as 
models to be matched against for both the dolls in Fig. 7.5 and 7.9, but the horse in Fig. 7.!i es 
matched against a doll, a horse, and a hammer. We have used only a few descriptors for 
Indexing; more descriptors ntf!d to be added. The number of models used for our experimenrs is 
too small to provide meamngful statistical results. 

Only generalized ~one primitives have btl!n Implemented in our description programs. 
Addition of other primittves, particularly planes, will help in extending their range. We have also 
not concentrated ..,., the descriptions of ob jeets with holes. The detection of the holes from the 
boundary information available to us is dtrect. The modification of the descriptions of the solid 
part in terms of these holes IS more complex. 

The speed and memory requirements of o~r programs are discussed In the following 
section. 

7.2 EXECUTION TIMES AI"'D MEMORY ~EQ.UIRi.MENTS 

In the following we present the run times and program sizes tor the various stages of 
processing in our system. All execution times are run ttmtos for a PDP-10, KA-10 processor, 
running under the Stanford Monitor \unpaged) and the programs sizes are for 96 bit words. 
Isumates of processing times for improved versaons of rt-.ese programs are offer~. 

The ume required for acquiring the laser scan data is essentially determined by the time 
tabn to read a TV frame. and store the non-zero intensity points. We allow I second between 
reading of rwo frames due to vidicon lag (image persistence). Currently, the time required to scan 
a scene is about 2-4 minutes. Intrinsically, the lime required Is limited to that needed for the 
reading ot multiple TV Images. With currently available Imaging devices, each frame could be 
praciiMd in 2·) TV field Urnes (to allow for persiltenct}, and a typical scene requiring less than 
200 Jeans would take less than 10 sees. 

Much m~re time is spent In the preliminary processing stages of the program, than at 
"higher" levels. This is consistent With the reduction of amount of data at higher levels. Thtnning 
of laser scans takes two to five minutes of runtJme, proportional to the number of points in the 
scans. The program size 1s about 201(. Computation for thinning is not expected to be reducl!d 
by larr factors. How~ver, thinning of different laser scans 1s independent of each other anCI 
processing times could be reduced by parallel proceSSing if such processors were available. In our 
lmplemtntation. we use rhlnnmg only to locate the end points of segments for linking in a 
boundary. Unthinned data could be used instead. 

The e,.ecution time for linking the segments in a boundary depend on the size of the 
picture. E.g. the horse in Fig. 4.10 requ1red 20 sees whereas the picture in Ftg. 3.6 required only 8 
sees. The program size is about 20K. The major portion of thiS processing time is !pent in 
computing thf! intersections of the two Sets of laser cross scans {appendix 1). Such computations 
would normally be proportional ro the product of the number of stgmer'ts In the two scans 
However, the use of la..er calibration informarlcm limits the number of cross scans that need to be 
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tnveaugatPCS for inEersection with :. given scan. The computation ume is thus proporuonal to the 

product of :he number of scan~ and the average lfngtn of a scan. In AppPndax I, wp have 

outlined a method for com•·~ung interst'Ciions d·rectly by uung o large men Jry array (21.5K) f()r 

recordint the scans at each poant in the image plane. The tirnr required for comp~talion of 

Intersections will be that required to access thts array once for each point in the laser scans. For 

an averqe scene containing 10,000 points of non·l~ro brightneu, this time ts expectt'<i tCI be less 

than l second. Note that this time will be c.nly a linear funcuon ol tho: num~r of pOI!"!ts. 

Projection in each directtcn takes an avetage of ~ steords We proJ!!C' in 8 directions, 

requiring about iO secortds. The computation time ;~ proportional to the number of boundary 

points for the object The programs are about ~OK in silt, but the temporary data storage 

requires upto an aadltional ~K. Much of this stora,e could be reduced by more efficient codmg 

of the present procrams. The major proportion of thl! execution time for the pro.JI!Ction 

operations is spenr In computing the croS\·Sectlons, such as shown in Fig. i.2. We think thas 

computation can not !:If reduced !agntfacamly, but the projections in different dirPCrions are 

independent and could be computed slml!'taneously on parallel processors. 

The extension of the local r.ones generated from the projections requires about i5 

seconds e<~ch for objects in fags i.6 ?.nd '!.13. The lime requirPCS ro compute these axes as 

proportional to the total number of cross.secttons computed, whach as proportaona• to the length of 

the lxes of the cones. Processang ttme could be reduced by samphng the axes lt coarser anterval•. 

Some parts of the object are descrabed by nearly adentical, multiple cones resulting from daffi!~C:il[ 

local cones, e.g. see the legs In Fig. i.S. Such duplication could be detected, an some casu, oef0re 

the extension of the cones by examantng the containment of the axes of the local c..cmes. Th.! 

extensaon of different cones is independent or each other and thus amenable to parallf'• 

proctJSing. The size of these programs is about 30K. Our cone description routanes are about an 

order of magnitude faster than those described by Agin ([Agin '72j), this imr!'ovement '~omes from 

our use of the bounduy rather than the poanrs on the surface in the descripM:'! pr"'ess. 

The rfiOIUtion of overlapping cones and the symbohc descripu.:ms of the chosen parts 

requires less than five seconds for the examples presented here. The matchmg of a descraption 

with one mcrlel requires ~ than 2 seconds. Indexing reciuces the number or models to be 

matched against, In 0\Jr cue to 2 or ~(the tame required for indexing itself Is Insignificant). W:!h 

a large model base and no indexang, the matching times would become the maJOr component for 

recaplelon. In our implementation, this stage of the processing requires the least ume. The 

symbolic descriptiOn and recognition programs run In about 60K or ~ry (the running stze or 

the programs will iO up with an increase in the number Gf models). 

The processing speed of the currmt programs is far from beang an ·real time·; the 

average time for complete processing betng about 5-lO minutes (including the data acquisition 

times). However, w1th the speed up of data acquisition and elimination of thannan~;; this time can 

be reduced to about ~ minutes. These programs have not been optimrzed lor run time effacaency 

and improvements can be exp«ted by such optimazataon, e.g. the eliminauon of array bound 

check.lng and machine coding cf the inner loops. 

T~e execuUon times are, of course, dependent on the speed of the hardware processor. 

Already, processors five times faster than the processor used for our experiments are avaalable at 

reuonable costs (e.g. PDP 11/i~). Processing times of u low as 30 seconds are thus currently 

feuible. lu moll of the time 11 spent in processing that can be done lnd~pendently and in 
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parallel, multiple proceuors can bf used to .·educe this processing time in direct proportion to the 

number of such processors. With the expected decrease in ''-e cost of such processors, near real 

ttrne computation of our algorithms will be fea~&ble ::t reasonable costs. 

The total size of our programs is itbout I~OK, with addit1onal data storage rang•ng upto 

50K, depending on the scene. Much of the processing is sequential :md only parts of the 

procram:~ need reside In the memory at one time. Our system monitor does not permit •his and the 

procrams are run as several smaller programs. The sire of the programs is not eKpected to be a 

major constraint with the use of modern techniques of paging momtors. 

7.3 FURTHER RESEARCH 

Sever&i lmprovPments in the performance of our prognms can be obtainerl by 

tmplementi\tion of techniques suggested ;.orev1ously (in chapters 4, 5 and 6). In summary, the 

important ones are: 

I. Redescription of parts after the de"riptions of the neighboring parrs are known. 

2. Use of more drta&led models of thf' objects. perhaps for specific applications. 

S. Verlfic:atlor. methods for resolving recogait&on ambigu&ties. 

of. Incorporation of primitives suet, as spheres and flat surfaces; and better descriptions of 

piece terminations 

! Improved resolution from the hardw.re setup. 

In the following are suggestions for further research, related to our work., and to extend 

the resu1b of this research. 

The majOr need Is to extend the result~ for scenes of higher complexity, such as heavy 

occlusion or unfavorable v&ew•ng anglu Analysis of such scenes is likely to follow a modified 

control structure. Surface continuity hypotheses Will need to be generated at an early stage and 

communication belwtf"' different IIWIJ will need to be more extensive. Analysis would be helped 

by lncorporauon of knowledge such 3S support and stability. Use of such knowledge with only 

partial information about the objects Is ur.clear. 

Simpler analytical techniques m.1, suffice for ap!)licatlons to viJWJI ft~dback where much 

information Is at hand about the expected ob.JfCts in the scene. VIsual feedback. has been found to 

be of rat utility In previous attempts at manipulation aarned for lndustrhl automation 

applications ((01111 (BollesD. Incorporation of primitives othrr than generalized cones Is likely to 

be necessary for objects encC'Untered in industrial application!. 

Learning of mocM des.:rlptions by using stveral views of the same object and by 

comparison with other objecrs Is a description learning problem. Winston ((Winston]) approached 

this problem for the domain of polyhedral ob jecU; we feel that the current domain is richer and 

prue'lts further important problema. The dacrlptiOna reneratecl here are not necessarily perfect 
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(rhese problems correspond to missmg or extra lines in Wanston's case) and some of the relataons 

are metric. 

Even though we g-::her complete three-damensional data about the vasable surfaces of an 

object. our programs are ab~ to work wnh merely the houndary data. Such data can, in pnnc1ple, 

be obta1ned from the TV image alone. For situations where the use ,f laser ranging as not 

acceptable, the canwra image may be the only available input (this st.:JI tioes not preclude the use 

of depth information obtained by a stereo pa~r of pictures). We do not expect a 2-D analysas to be 

usy, but still ftel that our ttchniques offer hopes of making It feasible. 

The extraction of boundary information does not req•!ire compltie three-damensaonal 

poutton inforrroataon. Grid c~ling tect1'11'JUes suggest possibihttes of extracttni; boundanes moa·e 

simply and quickly. Will and Pennangton ((WaiiD have de;cnbed experiments with shining 

various grids on polyhedral ob ~cts and darect extract•n~a of plane faces. Constder shamn~ 3 g1ad 

ot aStern ate ~ark and braght lanes on an object. 'I he extremit1es of the lanes on the obJ-ect can be 

used to com.truct the boundaraes. However, some ambiguities occur becaus,. of co.nddence of 

segments from dafferent lines m the pro,Je~tang grid (thiS confusion is what prevents the direct 

position m~asurc:l"'Wflt of all pomrs on the surfac~ by shaning a stngle partt'rn on the ob jf'Ct). 

Output from shining a rectangular grid is equavalent to that obtamed by COiiSidermg aU the laser 

scans for one scene from our ~urrenr appariltus at the same h~. Fig 3.3, shows the las<?r scans 

for a doll; some scans appear to go unbroktn from the head of the doll to the body because of the 

co•ncidence of segments from dafferent laser pos,uions. The individu;ll scans, not s~own in :he 

figure here, .~how clear da.scontanuities and the boundary shown in Fig. lot, separates the head and 

the body. (Note rhe head and the body are separated because of depth discoounuaties from the 

particular viewing ang~.) Codi11g of hght patterns on the grid can be used to reduce such 

ambiguities. For any co-~e. some set of surfaces will gave erroneous results. The requirements of a 

grad code for jUst extracting the bound·.ry anformation and nc: necessarily provacte complete range 

!nformauon may be umpler. 

7. i CONCLUSIONS 

Research in the area of descnptacn and recogmtton for realistically compli,ated sce11es is 

preliminary and our programs are not of darecr use for applications such as mdustrial aurom:tri.:.n. 

However, we feel that a ~inning has betn made into extenclang computer viston techntqu•:-s to 

curved and complt" ob.JfCts. We thank that our techmque~ •• e generalizable, and that for 

restricted applications at ~ast. extensions of our techniques nn be made to work. The 

performance or techniques pPsented an this thesas was discussed in det:L!I in sec. 7.1, :~nd 

suggetions for tmprovements provided an sec. 7.3. Here we summarize and dascuss ho\11 our 

methods relate to some broad issues an computer vision and anifictal intellige!'l•:e. 

i. Representation: The pOwer of our programs (or lack of 1t) as strongly derPndent on shape 

representation. In our expenence, the chosen pnmataves have been useful for the class of 

ob.JKts used in our experiments. We think that they wm apply tl) a broad class of indus,t:ui 

objects and anamal shapes. We wert abk to dtserabe obJKts It varymg levels of detail and 

d~rrerenuate between gr011 and fane detaals. The pnmitves allowed the articulataon of hmbs 

to be expressed naturally, and we .ue able to recognize objects with such articulations. The 

Mly intermedlaw representations of interest wert a representation or 2-d amagto spac~ and ~ 

reprnentation ol thf boundary, a)lrticulary proximity on the boundary. 
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2. SegtMnt~tlo11: The ~rMntatior probltm consAsts of segmenting different objects an a 
scene and 5eg1Milting an objeCt 1nto sub-parts. The body separation problefr, b«omes 
simpler with the use of riepth data but still remains a fundamental problem (as for the cases 
of touching bodies and supporting surfaces}. lr. this thesis, "'e have ignored this problem. 
The notion of continuity Is buic: to our segmentation of a body into parts. In our case, we 
have used the discontinuities of a cone descrip'ion. In the context of the chosen 
representation, we have been suct~ssful in finding gross disconunulties. Better contmuity 
formulations may result In more useful and finer segmentation, and pre!.ent an Important 
research problem. In our "t~mion, the low level techniques are necessary, but not :til 
problems need be resolved ar that ltvel; the final segmentation decisions can only be made '" 
the context in which they are to be used. The ability to generate alternlltive descri!)tlons is 
crucial. We suggested some redescriptiOn techniques in the conte)(! of a joint. 

3. Indexing: Our approach to recogmta,;~ has ~en through malc.ing descriptiotts. The 
descnptive stage seems necessary 1f the systt-m is to have any indexing c:spabilities. Some 
approach~s to indexing were presented in this thesas; we believe it to to be a major and 
difficult step In the recognition process, and generally OtCeSSary betore whlgh level• 
knowl~ge can be used (discuss.ed in more detail later). 

•· Marching of Descriprions: Our recognation of objects is by matching two description 
structures. The description structures contain many descriptors and relations among thl!'m. 
We beheve that samilarity of such structur,.~ can not be adequately evaluated solely by a 
metric defined on the various descript;,rs. In our programs, we have chosen to make 
dt!SCriptions of differences and euluate the differences in the context of the ta~k of 
recognition (such as, coukl the two descriptions belong to the same ob j«t in spite of the 
difft;ences by •explaining• ~: ... diff~rences). Thus, a three legged horse would be recognized 
u a horse, assuming the fourth leg to be hidden. Such comparison is essential for 
recognition from partial tnforma;ion. Also, note that segmented models are essential for such 
evaluations. The ultimate resolution of the differences must depend on the goals of the 
program. Wher. confronted with a ")Urple cow, output of a matc:ht!';5 prCM.es.s should be that 
tt sees an ob j«t with the shape of a cow bul the color is in discrepancy. Whe";her the ob 1 ct 
should ~called a cow or not, must depend on what addiuonal checks can be made and w~tt 
is the purpose {of making such a decision). For ~ecognillon, greater power is <tvailable fro1!l 
including model-driven verific:ation tests, e.g. by checking the feet of a t:orse to distinguish it 
from a doll. 

-t. Computational Complexity: The amount of computitional t-"ort requir~ Is Intimately 
relat~1 (0 th~ t~lmensional (thrre-dimenslonal) naturf of thl .as~o~a1 processing. Operations 
such iiJ finding proximity In a plane or space are inherently expensive, but necessary, e.g. for 
boundary organization, and finding boul'ldary correspondences for the cone descriptions. 

5. lmp~rnentation effort: An important Issue in vision r~arth Is the effort required for 
imptementatien. Our progrl'ms are lar~ and have required considerable investment of time. 
though they address unly a smo~ll part of the vision problem (we have dealt with shape onlv). 
We believe that at leut j)a:-t of lhe reuon for is ir. our use of a language like SAIL (or 
LISP). which operates at too low a level for visual operations. A special "high level• languap 
wtll aid the system building process. 
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Uae of High Lenl Knowtee.ge: 

Some alttrnauve pandigms, sugesling the use of "high level• knowledge and goal 

d•rected (•top down") cechr~iques have been SUBfsted recently. In one form ({Tennenbaum]), this 

knowledge Is used to Umit the search, r.uch as by wuming \hat the teltph•mes are found on tables 

in an office and by using ~he knowledge that a table tor is euy ro find. Another suggestion has 

been to .se hypotheses generated rrom a very s.mple description of the scene (or parts of a scene) 

to guide further descrlptlons ({Freueder 7~a.b)). h'e think. that the principal issue '" t~.e use of 

high level knowledge to cuide a visaon pr01;ess, is the generation of a workai.Jy small number of 

hypothese about the scene (or the obJPCt). We discuss the various techniques In the context of 

the following tasks. 

I. The v1sual environment is limited and well known. The properties of objects (such as 
color) and their approximate locauons are known (and no unknown ob ,JetiS are in the 

environment). Example: a selected office scene. 

2.Tne visual environment 1s hmued and relatively well known. Most of t~e objects and ltJOse 
spatial relations among thm-t ar~ known. However, rhe ~erne may contain unknown objects. 

S. A complex environment wnil known context, such as an ordmary office or an outdoor 

scen~t. The ~!ne contains many complex objects and a complex set of goals is specified for 

analym. 

<t. The context of the envaronment ts compterely unknown, such as a randomly selected 

photograph. 

In task. I above, if ~he goals and objects are very few (e.g. telephones may be the only 

black. objects on table tops), some relatively simple techniques can be used to recogni1e objects. 

Ft'r example, Tennenbaum's work uses only pointwise properties such as color and no shape 

information at all. However, when the environment is more complex (task 2). e.g. bla~k telephones 

and black nore books may be found on a table top, a more detailed analysis (su-:h as shape 

dncrlpUons) of the scene will be nectssary. Tennenbaum's methods.can still help il' hmiting the 

parts or the scene that need to be described 1n detail. For known environments, a •top down• 

approach Is likely to be more effacient and len prone to error. 

With rich Visual environmenu (such as for tasks ! and •>. we believe that a 

sophisticated "'ow level• analysis will bf required to obtain reasonable hypo~~eses. In our system, 

the indexinc of models (hypotheses) is more effective when a large del';r;puon structure is 

available, and local descriptions (of a sincle rone) can match a very large n•,;,mber of objects. Thr 

descriptiou mechan!~ms suggeul!d by Freuder, should be Df value ,~ter auch indexing. We 

estimate that both low level description techniques and high level recognition techmques wiil need 

10 be strtngth!Md. 

The techniques presented in this thesis are best v~wed as mocl"les that can be adapte\! 
(or ap«tfic appUcations. We believe that such description techniques will be necessary, e't'en in a 

system based on a top down approach, for ll.ythin& bul simple and ILnown scenes. 
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In this appendix w~ discuss construction of a boundary from the laser scan da;a. Th~ 

laser scans consist of two sena of scans. Each scan conmts of several TV frawtn Eact. fram~ 

corr~spunds to one positlOfl or the Illuminating light plane. The frames an one series of scans are 

produc~ by light planes which are nearly parallel. The light planes for the two series of scans 

form an angle of between 60 to 00 degrees (depends on the hardware sttufi). One series of scans 

will b~ rtfe1 red to as cross-scans for the other series. 

Points in each TV frame group into a number of sc'zn stgmtnts. Pomts Within a scan 

segm~nt ar~ c:onnected, I.e. each pomt has a neighbonng pomt Within one ro· .. , or one column in 

the picture. No two pomts in two separate ~gmenrs may be so connected. Thus, each scan 

segm~nt t:orresponds to a conti11uous part of the surface. An ob ,Jett boundary i~ constructed by 

}"'lning the end-points of scan segments (by straight hnes) in an order determined by techniques 

described below. 

An example of the scan output for a doll IS shown in fig. 3.3. Thes-: scans provide us 

with the equivalent of a binary intensity d1g1tal p1cture. Construction of the boundanes for such a 

picture Is straight forwncl ([Dud a) pp.290-293). However. m our case, the picture IS sampled. i.e. 

w~ do not have intensaty nlues at points between the scan segments. The boundary construcrion 

needs to estimate whether there is a cav1ty between ~menu. Our boundary algorithm is 

dealgn~ to work even If cross-scans are not availabli!. We first describe the algorithm assuming 

that the cross-scans are available and then describe the modifications. 

Th~ basic ri!GJirement for the boundary is th&t it not cross a solid part rn the object 

(and henc~ a scan segment), or a hole. We construct the boundary by comparing segments in 

succnsivt frarT'es. Two scan segments, S I and S2, belongmg to n~'ighboring frames are co!"'sidered 

to awrlafl if th~ is a cross-scan that inter~=~~ both S I and 52. Overlap of two segments is taken 

to Indicate pr~lftlce of a solid part of the body between them ~ssnce there ar~ some visible p'lints 

in. betwem). A modifie1 dtfiniuon of overlap, for situations where sufficient cross-scans are not 

present, is giVen later. 

We will dacribe the boundary linkmg by referen(t to pictonal examples. We first 

descdbe the connections of ~~nts m two successivt [a.m.:s and the cross-scan segments 

t~rmlnating between th~. Si, (i IS an integer) is u~ to denote segments in on~ scan and Ci to 

denot~ segments an the cr~scan. Relations between segm~nts in th~ two frames fall in one of the 

following three categoria. 

(a) A segment S I, in on~ frame overlaps wirh only one other Jeir.~nt in the next frame. The 

linking Is as shown In Fig. A l.l(a). Starting from one end of S I, we connect the ends of c1 

that tmnlnate between S I and S3 until we come to a cross-scaro Jtgment that intersects them 

bath. The boundary now connects the crosJ..scan segments .ntersecting 53 but not S I, and 

t~mlnaung between Sl and S3, until the end of S3 is reached. 

(b) Two segments. say Sl and S2, both overlap segment S3 in the next frame. Linking of 

end-points Is u shown in Fig. A 1.1 (b). 

Note thM this ceneralim to overlap of many sqments with one, by repeatedly considerinc 

O"t!l'lap of two sepnents in one frame wi.h one segment sn th~ ocher frame. 
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(c). Segmenr S I do.s not overlap with any segments in the next fram~. This situation is 
shown in Fig. A 1.1 (c). 

The above cases have illustrated local bounr\ary organiution. Starting from one end of 
the picture and applying the above m~thods to an frames in one scan will yteld one or more closed 
boundaries. Case {a) above illustrates boundaries of two parts, these may belong to different 
objects, or join in some other part of the pi,ture. Case {b) illustrates the jointng of two such parts. 

Joining of these parts on the other si<:!~ also, would indicate a hole. Case (c) illustrates the 
boundary at the end of a part. 
Modifications of the Algorithm. 

The algorithm :h!scrtbed above is heavily dependent on the determination of rhe 
·overlap" of two segments. The rt!quirement of a common intersection cross-scan was used for 
det~mination of overlap. However, for short ~mMts we may have no cross-scans to use for 
determining ovl!rlap (because of llmiled sampling). Also, tf rhe cross-scans are not orthogonal (but 
at an angle of say 60 degrees), then a singlt cross-scan may not tntersect two nearly parallel short 
segments (whereas an orthogonal cross-scan would). To overco~ these difficulties, overlap is 
redefined as follows. 

Two scan segments S I and S2 (in successive frames) are taken to overlap If one of the 

foUowing holds: 

I. There Is a cross-scan $egment that intersects both 51 and 52. 

or 

2. (a) Th~e is no cross-scan frame, such that one s~ent of this fume intersects 5 I and the 
other Intersects 52, and 

(b) There exists a plane though the point of lllumination and normal to the plane of S 1 
that it intersects both ~·ts S I and S2. 

Example: Fig A 1.2. 

(a) S I and S2 overlap 

(b) 51 '!nd S2 do not overlap (CI and C2 belong to a common frame; C3 and Ci belong to 
another ~ommon frame). 

(c) S I and r;2 do overlap (C I and C2 do not belong tn the same frarM). between thf!m. 

(d) S I and S2 do not overlap (condition 2(b) Is not satisfied). 

Ir condition 2 (a) is not satisfied, 1t indicates there Ia evidence of a break betwt..:n S 1 

and S2. Condition 2 (b) indicates that an onhogonal cross-scan could h•ve Intersected thHn both 
and with ladt of evidence ro rhe contrary (i.e. condition 2(a)), we assume rhar S I ar.d S2 do 

ov•lap. 

This modified definition is equivalent ro assuming that there 15 Po boundary between 
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two scan segments whtn WI! han no way of tesung it w1:h the natlable data. lmpr ,vement~ 

could be 'lbtained by using the gray ~vel TV image an add1t1on to the scan u-;formation· •ve •·.ave 

not implemented this. Tne resulting boundary as affected by any errors in the 1np•1t data, s'Jch as 

missing scan points or addational scan pomts cause.' by noise. Some degree of rto\iStance to sue~• 

errors Is achiev~ by ignoring boundanes formed soltoly by connecting segments tn JUSt ont ir amt 

(this overcomes holes caused by a ftow missmg pomts in JUSt ont> stogment or lJounclaries outhr•!Of 

isolated noise pomts). Note that these difficulties of boundary deteCtion from laser sc&ns ·!l"f 

minimal compared to the dafficulues of boundary detect •un from gray level pacturtos. Further, these 

problems are resolvable by improved scanning hardware. 

Another problem, caused by some unanalyit'd attnbutes of our scanning appratus, has 

been in the end-points of the two seraes of scans not correspondmg exactly, but offset from each 

other. Thas makes the resulting boundary jagged and affects the accuracy wath which caue 

descriptions can be generatt'd based en these boundaries. 

Computational Requirements. 

In OUf method, boundary linkmg r~uires calculatmg the antersecttons of the segments 

from the two cross scans. We neM calculate only a few of the possible antersecttor:s near :he ends 

of the segments. Given a segr.1ent S I, w~ can calcul;.te wh1ch cross scan angles can contain 

segments that intersect S I (by calculattng the an~les of end pomts of S I from the laser viewpoint, 

and obtaining cross scans ... \hat range of angles). ThP. inrer$ettton of two segments as dttermined 

by making oiecewase hnear approximations to the two segments. A few mi'lor errors and extra 

effort are caused by slight errors in the Intersection process and by the calibration unc ... ainiti~s 

which give small ang~ errors in choosing cross scans. 

An alternative appro•ch for computtng intersections would be to use a large array. 

wt,~re each byte of th.• array corresponds to a position in the •mage piane. For each point thai 

bl!longs to some segmel't an one $Can orientation, mark the corresponding byte 1n the array by this 

segment numt..er. Now, for ead. point that belongs to some segment C1, in the cross scan check 

whether the corresponding byte in the memory is mark!":~. If so, then the ~egment c1 intersects 

with the marked segment In the memory, at thas point. Tnis method will ~ave us all intersections 

wtthout searching. The obvious dlsadvarnage I! the r!quarement of a large memor) (Each FOint 

in image plane ,.,.qu1res only enough bats to adentlfy the segments an one scan. Nine b1ts per tJOtnt 

would be adequate for us. In our system, with 333 x 2!16 image points. a storage of 2l.!IK, 36 bit 

words is required. which i~ not prohibJti"~- The me can be further reduced by vanations of hash 

coding.) The time req~irements of this mt:thod will be propc.rttonal to the boundary- iength. 

The compv:auonal effort r~uared for ~:.~:npuung antersecuons is inherent in ~~'e two 

dimensional nature of the problem. versu~ time tradeoff between the two methods descri~ here. 

Actual computation times for boundary cot•struction and expected improvements are discu»ed in 

sec. '1.2. 
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This appmdix pr.sents the algorithms used in this thesis These algorithms, the rusons 
behind choosing them and their performance have been discussed in the prev1ous chapters The 
purpose here Is to state them in one place in a concise form with all relevant details. The 
appendix is divided In the following sections paralleling chapters ·U and 6. 

l. Segmentation: Proj«tion, [;,tension of local cona, Descriptors for a cone, and selection ::of 
aegrnentaUons. 

2. Symbolic Descriptions: of pieces, jOints and object. Shadowed pieces. 

3. Recognition: Indexing, matching anc ~hoice of matches. 

A2.1 SEOMENTATION 

SOME D&:FINITIONS: 

!Hflnitions of some terms used 1n the fo!!owmg algorithms are repeated here. The term 
•cane• will mean a •pneralized cone·. A three-dimensional (two-dimensional) ~eralited cone is 
cen«lhd by sweeping a planar (linnr) cross-stttton along a curved line In 3-space (2-space). For 
a t~imertJional cone, the term •cmss..section• '·lilt mean a straight line segment entirely within 
an object, terminated by 111d·!*nts on the bouredart of the object. For three-dimensional cones, 
the natt-/*JtU of a cross-section -Mill mean the tw:> point of the cross-section that are on the 
boundary of the visible surface of the cone. 

A2.1A. PROJECTIONS. 

The projection procedure finds two dimensional local cones In the camera image, using 
the boundary. The following projection procedure is repeated for 8 dlrecficr.:. X :,X2,. .. x8• at 
22.~ dlll'ftl Interval from 0 to 180 decrees. The following describes the projectaon procedure for 
one of rhflse directiOnS. say x1. 

1. Tr~nsrorm Co-ordinates: 

Transform the coordinates of the points an the boundaries ot the object to a system with 
u• x1,Y1; where v1 is arthapnal to x1. (Note, the flpres to be presented here are all 
drawn With X1 polntlnf horizantall)'.) 

2. Form Crolwlcttons: 

Form ·cross-sections• (two-dimensional), parallel to Vi, such as shown in Fig. A2.1 by solid 
araipt liMa. at regularly spaced Intervals of 10 piCture unats (the comp~e picture as 330 
unlb w6de). F*f. 4.2 shows cross-sections for an actual example (Note that all cross-sections 
are not exactly parallel to tJM ·: 1 axis. because the ends of cross-sections are limited to pomts 
on the boundlf'J obtained from :.ct~o~~l laser K.an data.) The cross-section end points are 
......- In an array ot liltl indexed :-~ !he X1 coordinate. 
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t. Test cross-lfCiians for local canes: 

(a) Find llfilhboring crou-secuons: 

Two crou-seaiOnl are fMilhboring if tad end of one is connected to ant of the tnds or the 
ocher rhrou(h any part ot the baundary and no .xhtr cross-sectian ends IJe •lane chis pan of 
the boundary. For aample. in Fit;. A2.1, Cl and C2 art neighban and C7 and Ct are 
fttilhbon. but noc C5 and C7, 1.or C6 and C7. 

(b) T• tar loc_. t~ 

li the ltne pntnc thf mid-points of a pair of Mighbortftl cn~~~-secticJns forms an anp ot 
lea than t2-~ ctecr-s wtth x1, then these two crou-MCtians ur taken to form a local cone. 

If lither of the cross-sections belonp to a previous 1acal cone. add the ather crau-IKtiOn to 
the gme (OM, atherwlle indudt these two in a new (01\t. 

(c) Repntltllpl (a) and (b) for all pairs ot MtchboriftC CIO&&-J«tlans. 
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4. Retransform the co-ordinates (of the mid-points of those cross-sections that are part olf a 

local cone) to the original (X,Y) coordinate system. 

The output of t~.;s procedure IS a set of local cones. Each local cone 1s deftned by: a list 

of the mid-IMJints of the cross-sections comprising this cone and the parts of the boundary on thr. 

two sides of the cone. Fag. -t.S shows the axe~ of th~ local cones obtained from the cross-secuons of 

fig. 4.2. Fig. U shows the axes of local CGTies of the same doll, obtained by projection In 8 

different directions. Note that various parts of the body are described by different local cones for 

different projection directions. 

A2.1B. EXTENSION OF LOCAL CONES: 

1'he prc.le<:ti..'l'\s pro~ride us with a number of local cones. In thi~ section we describe 

procedures to extend thne cor.~ over larger parts of the object continuously. Before extension 

can pr~:. ·ftd, however, we ·refine· the axis of the local cones as explained be!~w. 

Axis ·Refinemeru·: 

The axis of the local cones generated by the projection procedure Is not w··:essarlly 

normal to the cross-sections (is wilhln 22.5 degrees of it). Example, Fig. A2.2. shows cross-sections 

c 1 and ~ constructed during a projection, and the local cone axis gtven by JOining their mid-

points. M 1 and M2. The line M 1M2 was required to be only within 22.5 degrees of being normal 

to c 1 and c2. Starting from here, we wish to find another axis, and cross-sections such that: 

I. The cross-set:tons are normal to the axis. 

2) The axis passes through the mid-points of the cross-sections. 

First we Illustrate the procedure, by using the above example. Starting from the a;<ls 
• • 

M 1M 2• we compuce new cross-sections, C 1 and ~, normal to M 1M2 as st o•·:1 in Fig. A2.2. 

LET M 1' and w2' be the mid-points of these new cross-sections (not shown In the tlgure). 

• • 
.Jotnlnc M 1 and Mt, we get a new axis and thiS process is repeat~ until no significant changes 

• 
occur. (Note that In our example. the process conv..- IIMMdlately after ont iteration, u M 1 

lnCl M2' are lnduunauut~able from M 1 and M2). 

In the above example, we have dacrlbed the procedure In 2-d. for the sake of clarity. 

Actual camputattona are performed In S-ci space. The ci'OII-MCUons are now a planar area, 

......... '" wan compute only the end-points ol the croswectians (i.e. the points ~ the cross­

..aana an thl boundary). The folloWing clatriba more details of the algorithm used. 

Details of lXII refinement: 

This alprlthm starts from the local tane axes given by the projeCtions. The axis is 

tpiCifAid as a list ol pouus, known u .W ,..'Itt,. The S-d po&ltions of the points are used 

(obtaaned from the 2-d poliUons by a known callbrauon). Only the part of the boundary that is 
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Fig. A2.2 Axis Refanement 

usactated with the local cone, u supplied by the projKtlon procedure, Is used here. The goal of 

this process is to compute an axis and a Itt of cr0$5-sections such that: 

1). the axis is normal to the cross-sections and 

2) the axis passes through the mid-pointl of the line JOinanc the end points of the cross-

sections. 

The following ue the steps tn this proem. 

1. Compute axis dinction: Fit a straiJht line to the uis points (Least mean ~quares fit). 

2. ConMruct New Crou-SfttJonl: At each tA the uis polnta. construct a plane normal to the axis 

(u determined in step I above~ Compute intenec:Uons of each plane with the liven parts of 

the boundary an the two aides. These intersectiOns far each plane constitute the end-points 

of a new cross-section. Note that a normal plane at same uis point may not Intersect With 

ttte ~lven p:tns of the boundary on eittter one or both sides. In either of these cues this 

n..mnal plant· does noc contribute to a new cross-sectiOn. 

If the numbtr of new crass-sections falls to I or less (by not being able to find boundary 

intersections) .hen this procedure terminates and no cone results from this processing (the 

local cone we st.uted from is rejKted for any runhn proceuang). 

s. Compute new axas p~ints: Compute tht mld-poinn rtl tlw end-points of the new cross-sections 

constructed in seep 2. ThtM mid-points form tM new uis poinu. For nch new axis point, 

compute us dtstance fram the old axil poH\t Compute the averaae of these dillancea, call u 
the • ..,.,~ corr«t~Mt. 
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4. Evaluat~ th~ n~w axis and cross-sections: One of the follow•ng sr~s is taken next. 

a). Acc~table cone: Ir th~ av~ragr correction computed Ill step ~ is less than the ~·d d •~ranee 

corr~sponding to 2 p•cture un1ts (is relattd to th~ rxpe<tfd rangmg f'rror), then tne :~x1s 

refinement procedure terminates, with !U output beang the new cron.<,.,.uons and the new 

ax is points. 

b). Iterate: If the averagt correction is larger :han accepted 1n (a), tht'n Iterate by gomg to 
srep I (unlel (c) below holds). Use the newly found axu pomts (1n step 2) for iteration. 

c). Accept the cone: Jr the number of iteratic•r.s caused by (b) equals f1ve, the procedure 's 
r~rmlnated and th~ new axis points and the new cross-sections are accepted (regardless of the 
computed averag~ correction). 

The output of this algonthm 1s: a lilt of the axis points; a list or thf' ,..,c' pt>lnts of the 

corresponding cross-sections; and th>! assoc1ated bound:uies or th~ cone 

Extension: 

The t:ones from rhe above process are extft"'ded conllnuouslf at both ends. We w1ll ftnt 
illustrate the ~xtensiGn by an example. and again use a two-dimensional rxample for clanty. 
Details of the algonthm follow shortly. F1g. B. shows the axis of a cone to be rxtended. The ax1s 
Is extrapolated a small distance and a normal cross-section constructt'd. The m1d-pomt of tht' nt'w 
cross-section and Its distance from the extrapolated axis pomt is computed. If this distance is small 
the axiS extends to thts mid-point. If the distance iS large (as 1s the case in the example), a new 
direction for the extrapolated axis is comp ·-1 by includmg the new mad.polnt. A new cross. 
sectton normal to this n~ dlrettiO!l 1s constructed. This process could be iterated but we use only 
ont Iteration. The new cross-section Is then examined for w1dth continuity. 

The details of the extension are described in the following. Extension at one end is 
described her~. and the procedure is r~ated for the other end. 

1. Extrapolate tht ax1s: Starting from one end extrapolate the aKis '" the local darection 
(computed by fitting a least mean squares straight line through the last five points) by an 
amount equal to 0.02!1 the width of the cross-sectaon at thu md (limited by a mammum or the 
Sod distance correspondinc to 2 picture unats and a ma~eimum of the distall\:e corruponding 
to I piCture units). 

2. Construct a new cross-sectiOn: 

Construct "plane normal to the axis at the extrapolated point 

(a) Is the end of ob jKt reached ? 

Examine whether any part of thf boundlU'f or the objt'Ct ·~ beyond this plane in the 
direction we are extending, 1f not then the end of lht oby:ct h.s been reach4!CI and we try a 
half step (step 6). 

(b) Compute intersecteons or the plane with the boundary on both s1des of the cone. The 
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Intersections determine a new cross-S«tlon and the m•d·point ddermines a new axis poant. Ir 
no intersections can be found With the part of the boundary already auoct;utd wath the cone, 
th~ an add&taonal ~ngth of boundary (5 more boundary points) ts added. If add1Uon of 

three such boundary 1fngths sull do not produce an in~r~t&on then we try a hatf 'tep (step 
6). (Such condition •ndacates the boundary has changed darecuon abruptly, e.g. no 
antersections With the boundary may result when extem&ons of a con@ descrtbmg an arm of 
the do11 of Fig. ~-2, into the body are atttmpted, because of the sharp turn of the boundary. 
Note thar further te-sts apply, even 1f the ir!~rS«tions do result.) 

3. Examine the new Alds point: Jr the dastance of the new axis poart from the exuapolat•!d axas 
poants IS Within a distance 'orrespondang to 4 picture units then proceed to sttp -f. Otherwise, 
fat • straight lin. (kast mtan squares) 10 this new ui~ poant and four prev1ous axes po•nts to 
define a new axis direction. Co bad. to Slip 2 (to ret a new normal c.ross-sectton). After one 
such lteratton, accept the new uls point regardless of tne dlsrance. Note that this attp allows 
the cone axta direction to change. 

4. Examine boundary Crosstngs: Check that the stra•ght hne segment joming the two end-points 
of the new cross-section does noc 1nterS«t with the boundanes at ocher than the two ends. 
(Thas prennu the extension of l cone into holes) If ~ then go to half step (step 6). 

!1. Examine the Crou-stction width (dt!ftntcl to be the durance betwl!ftl the two tnd·points}: The 
:.1dth c/ the nrw cross-section n precllcttcl by a least mtan squarts. parabobc fit to the 
prevJt~l.!s five cross-srctJon wJdths. If the preaicted width differs from the width of the 
currftlr cross-J«tion by less than 0.2!1 '' current width, then thas crosS·S«tlon 1s acceptable and 
extensiOn contanUfS (step 1). Otht'rw•se rry a half srep http 6). 

6. Half Step: Thas step IS rn.ched becau" ext.:u1on with the extrapolated crosHect1ons failed at 
eather •eps 2,3.f or ~- Step I u repeated once with half the normally ulfti dastance for 
extrapolation. If' the current uep was ;lready a half step, extension term~nates (for one end 
of tht cone). Tht uae of thiS half St@'p 1llnws sharp changes In tht cone to be sampled cJowr 
and also to define t~• termmal crcm-SI!CUons more accurately. 

Each local cone iS extended 1n both darectiolts. The autput of thtH procedures is 
represented as fellowa: a hll of the JiO'&Uon of the axas points; the d&rection of the axis at each of 
rhele points; the wadlhs or the corresponding cross-settiOnS: anc1 the boundary segmenu on the two 

sides of the cones. 

F•~- -t.& st::.ws the •xes of the e:.:rfnded cones for all the local cones of FiJ. 4.i. Nott that 
wv«al areas or rhe ob jKt an descubed by more than one cone. This is clear for the cones 
dacr1bin1 the h •. H~ver, extfnsions of different lotal cones for the same \q or the same arm 
have rautted in nearly IdentiCal cones. In Fag. f.&, the uea of all rxtendtd cones are shown 
COCtthtr and the d•fferent overlapping cones for the Jtgs and the arms are ba~ty dattnguishable. 
Elonpted pans han cane descnpuons wath wtll clffined axes and u the rea11lf'l behind variou.; 
1ocal conn canverctnc to umtlar cones when exteiMied. The raotuuon tJf that rnulupw 
descriptklnS il discUSMd MXI. 
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A2.1C. DESCRIPTORS FOR A CONE: 

The followang summary snformauon IS stored for uch cone. 

I. Length of iu ax1s. 

2. The average width of the c:ross-secuons (the width cf a cross-section ss d'fsned to b' the 
chstance between its two md-poants) 

3. The average cross-section wsdths at both ends of the cone (computed by averagsng tht' Widths 
of the last five crou-secuons at each end). 

i. Length to width ratio (will be called LWRAT).Rauo of the quantities defaned in I and 2 
above. 

~- .~veragr Cane Antle- The cross-secuon w1dth at a posnt 1s 1 tunctlon of th~' length of the ax u 
up to that pomt. Thu funct1on n approximated by a strasght hne. The slope of th1' line 
detftMines the avPngt cone angll'. 

6. Axis direction and position at eich end of the cone (the cross-section at each end wsll be known 
u ~ ttfmiflal cross-secuon ). 

'7. The assoc1ated boundary wllh the two ssdes of the cone (storfd as lisrs c; boundary poanu). 

A2.1D. CHOICE OF SEGMENTATIONS: 

Any two cones which share any common part of the bounduy are compar~ to find the 
extent uf theer overlap. If the two cone descnbe much the same part of the ob Jftl then one of 
the cones is seiected based on chosen prefer:ncc criteria and the other cone is elimmat~ from 
further consideration as the choice for rtprettnhng a parr of the ob p:t. 

The foiiOwanr tests are performea on the ,,. o cone in tht order presented below (an 
ex•mple follows 1h1s description): 

If ttw LWRAT for either cone 1s tess than 0.33, the cone w1th the smal~r LWRAT 1s 
elimtnlltfd ':hGrt ;;una art assumed to be of not much internt 1f a longer cone describes part 
of rtw same ara). 

2. Is one cone largt-ly rncluded in the other~ 

Compute whether more than 0. 75 ol rhe boundary po1nts on each Sid@ of one cone are 
included m tither boundary lists for the Olhtr cone. Note it 1s pontble for both :on~ to be 
so included 1n each ex~. Abo make hsrs of boundary pomls for tlch cone that are not 
included in the other. 

If only one cone iS so Included, ehmmatt the included one. 
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Jf both art mcludf'd. onf' of thtm u St.>le<:ted as explamed in step i. 

3. Is one C:lne included m an extension of the other? 

Constder evaluation of whether cone I IS Included in the extensi·:m of cone~. Let the "center" 
of a cross-s~tion bt defmed to ~ the mid-point of the stratghr lint joinlni; the end-potnts of 
the c1oss-secuon. Construct two stra1ght, c1rcular cylinders. Wtth thetr ax1s starung from the 
centers of the two termmal cross-secuons of cone2 and pomting away from cone2. Let the 
length of the ax1s of the new cyhnders be 0.35 ~ length of the axu; of cone2 and the d1ameLer 
be the w1dth of the termmal cross-s.cuon at that end plus the 3-d distance correspondmg ro 
10 piCture units. (These cylinders are meant to be approximatJons of how cone2 would 
extend at each end with the radius mlarged to accomodate the effects of vanous errors). 

If each boundary pomt of cone! that 1s not included in COM2, lies withtn the volume of 
esther of the cyhnders descnbed above, thtn cone I is taken to be tn<luded tn the extens1on of 
cone2. Agam. both cone I and cone2 can mclude each other this way (see step t). If only one 
cone is Included, the included cone IS ehmmated. 

t. If both ronr.s mclude each other, then one of the -:ones u p1cked bas~i on rts descnptors. 
The bam for chore~ art the length to wadth rattos of rhe two con~s or thtlr averag~ con~ 
ang~s. dependang on wh1ch g1ves better dascraminataon. Compute lht rauo of the larg~r cone 
ang~ to the smaller cone angle and call 1t CON£. RA'!'IO. Compute the ratto of larger 
LWRAT to the s.malkr LWRAT and call it the !.W .RATIO. If the CONE.RATIO is 
h1gher than LW RATIO then pack the cone w~th thto smalltr cone anglt else pick the conr 
wilh the larger LWR \T. ., 

[umple: Fig. 'f.6 sn..,ws the ~:~xtendfd cones for a doll and Fig. i.l2 the selected cones 
obtainl!d by the above procrdurt. Most ovtrlapping cones were resolvfd by step 2 rn fM above 
(a.e. tt,e selected cones 1ncludPd the other cones describing the same area), with the following 
exceptions. The cone represenung the lihoulder area an Fig .•. 6 was JUdged to be included m rhe 
extension of the cone representing the body area (PI in Fig. i.l2). Nore that one of the legs m Fig. 
i.l2 cormsts of two cont'S, PS and P6. Here, P5 was noc jUdgtd to be includfd an tht t-Xten.sion of 
P6 (~xtended P6 does not mdude the lowrr part of pr,). Howver, P5 and P6 are judged to be 
conbnuous and merged anto a stng~ paece latt'T (this is desc:n~ an "M~gang f)( two Pieces" m 
sec. A2.2B of thiS Appendix). 

We have used the mclusaon of boundary in step 2 above. Use of area inclusion was 
diSCUssed and recommended for future use in sec. i.ii. Also, the ~Valuation of rhe "ones by 
ntensi'Jn an srep 3 as noc vtry robust ror resolving cones like the shoulder cone m the doll 
exantple. Red~ccnpuon t«hnaques ~xp«tfd to ''"~more reltable resuks were dascu~ in 5«. 4.~ 
(but have noc been Implemented). 

Note that in the abott' proctssmg of two cones Wtth ovrrlapping boundanes. one or the 
conn as not necessanly elammated. The resukang segmentataon havrng parts With small ~verlaps as 
quate acceptable. 
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A2.2. SVM BOLIC DESCRIPTIONS: 

A fJ:"tet IS d~ined to be a segmented :.ub-part of an ob jKt. llieces are represented by cones 

in the current amplemfntauon Howrver, the term will be usee! to allow for addmon of other 

types of pnmitives. 

Dtiferent pteces are connected at joints. (jomts are discussed In rr•ore detaal below). 

A2.2A. PIECF DESCRIPTIONS 

Descnpttons used for a ptece were covered under the head.r.g of cone descraptors, sec. 

A2.1C of this appendix. 

We now dtscuss the conmucuon uf the ptnu; the descnpuons of tt,e .JO!nts; and the 

descnpuons of a complete ob jtel. In the follow mg. we pronde the detatls of only tho~ oescnptors 

that we have found useful tn our recogmtton programs. Details of otht1 useful descriptors for 

future use are covered m cha1ner ~. 

A2.2B. JOINT DESCRIPTIONS 

The jOints of pteces (repre~ted by cones) are determmed f:"''ll the connections of thetr 

terminal cross-sections along the boundary. The pnt construchon ts dtscusSo'Ci only by pictorial 

examples. i-'ig 4.12 shows the selected cones for a doll. Ftg !>.2 shows the jo1nts constructed for 

these cones (the JOint area ts shown shaded). Joint J I, between the cOMs P I,Pt and P6 is an 

example of the jOint where the cones at a pint do not overlap each other. Tht~ boundary of thu 

joint includes part of the boundartes of the obJect and the term mal cross-sections of the cones. 

Joint J2 is similar; nOlP. that P7, representing the head is not connected to thas jlint {it belongs to 

a separate boundary because of shadows). Joint JS, between P!l and P6 show!; a jOint between 

two intersecting cones. Joint .)4 shows the jOint of a single cone (this cone did not extend to the 

end of the leg and the uncovned area constitutes the joint area; cones for the ariTis and the other 

leg do extend 'O th~ end of the ob Jm and hence are not attached to any pint at on~ !no). 

Two paeces (cones) belong to the same joint if on~ of th~ following holds. 

(a) The part of the boundary between an tnd-potnt of the ttrminal cross-otction of one piece and 

an end-point of tht ttrminal cross-sectiOn of the other peece is not included in any other 

piece. 

(b) The two pieces include a common part of the booo~ndary. 

The following dncnptions are aSSOCiated Wtth ncn jDla'\t: 

I. A list of the pieces attached to this jOint and thetr order (the order is determined by the order 

of the pieces 11 they appear in the image plane). Example: Order ol pieces at JOint J I in 

FIJ. !1.~ is Pl,P4,P6 or the reverse. We do not differentiate between the two orders. 

2. The wtdflt piece of the joint. 
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3. The relative Widths of the p1eces connected to this jOint (normalized by the w1dth of the w1deu 

plece). 

ot. Jottu type•: the jOint types wtre deKribed in sec. 5.2. No further details are prov 1ded here, as 

we have not used them for recognition, also for the reaSI.)Ils stated there. 

Merging of Two Pieces: 

If a .JOint hu only two attached pieces. the followinf' tests are made. 

(a) Are the terminal crou-3«Uons of the p1eces at the joint similar (measured by the1r widths 

beang within 2~ percent of each other) and 

(b) 1s the pint boundar,• covered m the extens1ons of both pieces (in the samt! .ense as in 

step :.\, cho1cr. ol segmentauons) ? 

If both of the above ue true. then an alternatiVe de~npuon as made by mergmg the two 

p1ec:es The cone descnpton an recomputed for the nwrged con' Note, the recogr.111on 

programs mvestigare both alttrnauves an:i c!1oose the one providmg the b~ter match. 

A2.2C. OBJECT DESCRIPTIONS: 

Some descriptions for the complete ob jKt are made. Only those descnpuons that have 

been used for recognition w11l be descnbed here. 

I. Number of well dtfintd paeces (a well defmed piece e1thtr hu a length to width rauo cf > S.O 

or IS a distangu1shfd paece, as descnbed be1ow). 

2. Dtsunguished piece descripuons: D•stlnguished pieces are determined in th~ following way: 

(a) Determine the two w1dest p1eces of the object. If the ratio of the Widest piece to the next 

wadest is lalt" than 2, then the largest piece 11 a disuncuashed p1ece. Otherwise both are 

considered distinguished. Such d1sungu1shed p~eca are defined to be of type Wide. 

Ixamp~: for the dell, both the head and the body art such paeces. 

(b) If one piKe has length to wadth rauo larger than twice the length to w1dth ratio of every 

other piece of the ob ]Kt. then th1s p1ece IS defined to be distanguashed and of type Long. 

Example: ror a hammer, the handle quilhflts as a long distinguished piKe. 

If one end of the dastmguished paf'Ce 11 d1fferent from the other end. in one of the followmg 

ways. thas property as aho associated with the dastmguuhed p1ece (helps 1n matching). 

(a) The wadth of the wld~st paece connKted ac one end IS more than twice the width of the 

wadest paece at the other end. 

(U) The muirnum of the len&th to wadth ratio ol the pseces conn«ted at one end is more 

than twiCe the muamum of the length lO width ratao of the paeces connected at the other 

(nd. 
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~. Balarer<tl Symmetry: See section !1.3. Not d1scussed here because not used for further proceumg 

A2.20. SHADOWED PIECES: 

Connections of shadowed p1e.:es to the rest of the ob j«t are not d&rectly a\ atl~ble from 

the boundal'y data. A p1ece wh&ch IS unconnrcted at both ends, wall be called an uolated p1Ke. 

We determane, whach ends of an asol~ated p1ece are in shadow of some other pam of the objeCt (by 

converting the postttons of rhe (10ints on the ob j«t to a system centertd at the laser sot..rce, and 

determimng whether part occludes the other). Connections for each Isolated p1ece are investtgated 

as follows. 

For each shatiowed end, compute :he closest dtsnmce of the termtnat cross-section from 

the boundary of each JOint The shadowed end thaL " closest ro a pmt ts pd.ed and as 

hypothesazed to connect to th1s JO'"'· The recognttaon programs anvesugate the connection of the 

shadowed p1ece according to thts hypotheSIS. If a saushctory match IS found for thts ptece v. tth 

this assumed conne• uon durmg ~ecogmuon, ihen the connect1on hypothesiS 1s consadered to t.eo 

conf1rmed. If th1s .a1ls. no furthe-r attempts are made to deteormtne the connectivity of th1s p1ecc. 

More sophisticated alternauves for hypothe-siZing connecuons and dlff;c.ultues m theu 

unplt'tnentauon are d1scussed m sec. 5.i. 

A2.2E. NOTES ON DATA STRUCTURES. 

The connection of different JOints and pteces IS stored. For each JOint we store the other 

JOints that it is connected tO, and the p1ece connecung the two. Also stored are the p1ece. pant and 

object properues as descn~ prevtously m thiS sec11on. Note that we have com~lete mformauon 

~bout the structure, and summary descnpttons of p1eces and JOints Th • anglt'5 between d1fferenr 

pieces at ~ JOint ue not expliCitly uored but are computable from the axts dtrecuons at the ends 

of p1eces. The angle 1nforma11on has not bt!en used in our recogmuon programs, as we have 

allowl'd free limb artu:ulauon. The angle mformat1on is of obVIOUS value in the recognition of 

unarticulared ob,JKtS. or where the articulauon Iimas are known. Computer storage of 

de"npuons 1s dascuued 1n detatl1n Appendtx 3. 

A2.S. RECOGNITION: 

In the followmg we present de~crap~1ons of algonthms used for recognltton. A detailed 

example is m sec. 61, and performance results are discussed in chapter 7. 

A2.~A. INDEXING: 

The fust step m recogntuon 1s to find a set of hk.ely models. The followmg describes 

the implemented algonthm. This &ndexmg scheme has been a prehmmary effort and extenstons of 

the method are discussed in sec. 6.t 

For each disunguished p1ece of an ob .JKt or a model, we form a "dftenption code~ 

cc~sisting of the followtng three btts. 

I. Is the disunguJShed piece connKted at both mds. A model ptece IS connected at an end tf 1t ts 

connected to any other piece at rhat end. An ob.JKt piece IS so connectfd, only 1f It Is 

connected to a Dllll drfiratd p1ece at that end (for reasons discussed below). 
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2. Is this piece conical (is the av~ragr cone angle > O.S radians). 

3. Is the tyfM of distinguish~ paecr long (otherwise it as of type widl!). 

Let N 1 be ~he number of p1eces c:onnecttd to one end of the dasunguashed piece and N2 

the number of paeces connected at th~ oth~r end (again use wtll dtfintd pieces if cons1dermg the 

objeCt toM recognized). Let: N2s N I. All models h~ving the same description cocie are stored in a 

lisr: ordered by the value of N I. 

For each distinguashed p1ece of the objeCt, retrieve the last of models having the same 

description code. Search along th1s hst for modell whose values for N I and N2 are at least as 

large as for ttle object. Sance the list IS orderK., we need search along this list only until we find 

the flrst modl!l With value of N I smaller chan acceptable. 

Here, we are assummg that the ob j«t can not contaan more piece~ than the model, but 

can have an arbitrary numl,er mmmg b«ause of occlusion. Also only well defmed paeces have 
bnn used an coonung th~ p1eces roa the ob,Jtct, since such pieces are elongated and unlikely to 

appear prroneously in the descriptaons. 

If th~ obj!Ct CIStanguJShl'd paece IS connected at one end only. we abo retrieve the 

models that would have been obtaanl'd, assum1ng that at were connected at both ends. Further 

modifications to the descnptton code could be made based on the confidence With which the 

distinguished piece is known to be comcal (thu is not implemented). As a further test, if i.he total 

numbft' of well defined paeces of a retneved model is las than the total number of visible, well 

defined pitc:H of the ob jeet. then thcs model is not cons1dereo for a match. 

For an estamate of the effectiveneu of the current implementation, and us exten£ions, see 

sec. 6.'7. 

A2.SI. hfATCHINC: 

The objea dncnptton IS comFarec! to each model found by inc!exing . . lt. matcA is 

defined to mean a It! of corrPSpondl!nces between the pieces and the JOints of an ob JfCt 
dacrtption and the pieces and th~ pants of a tn.)(lel dHCriprion. Associat~ with each match is a 

dGCriptaon of tM dlfftrftKfl. The ma~chmg process is described beklw, the first four \teps are 

cancemal wnh matching the ob ,~«t dtscrapuon to OM model dncriplion. 

1. Form a patr of dtsnnguashed p&Kes, one each from the model and the obJKt dev.riphor; One 

march rewks from each such pair. Steps t through t are carried our for each pa1r of 
distinguished p1«es that sahsfy the followmg condattons. 

(a) Tt.~ tY~W of the two dastm~uuhed pttces (such as long or wide) is the sa~. 

(b) If the ob jtCt p1ece 11 connected at both ends, then so as the model piece. 

Comt~ute the /li«l' motclt trror resulung from matchtng this paar and auocaate With the 

match. Pt«e march error 1s an ~valuauon of how well two pittn mar.:h, ~nd 11 a function of 

the dilf'erencea An the wadths. lfnaths ~d tM avtract cone antles of lht 1wo pieus; this 

funaion 11 fully specified in s«. 6.3. 
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NOTE: The average width of each distinguished piece used to form a pair hert is used to 

normaUze the sizes (lengths and w1dths) of the other paeces belonging to the sar1e ob.)t'ct or 

the same model. This makes the following matchang process insensitive to scaling of the 

COCTiplete ob jeet. 

2. Match the ends of the given pair of distinguished pieces: Let the distinguished p1eces be called 

MDP and ODP. Let the joints at the two ends ot MOP be MJI and MJ2; and at the ends of 

ODP be Ojl and Oj2. These joints can be matched In two ways: 

(i) MJI with OJ I, and MJ2 with OJ2 or 

(h) MJI with OJ2, and MJ2 with OJ I. 

We test whether one or the other can be selected without a comple~e evaluation or these 

matches (as an step 9 below). The following tests are performed to determme whether the 

two ends of ODP and MOP are •unsymmetrical• in the same way: 

(a) If both ODP and MDP have the property tnat the average width at one end is at least 

twice the average width at the other end, then the match wath corresponding ends is selected. 

(b) Jf both pieces have the property that the widest piece attached to the pint at one end is 

at least twice as wide as the wadest piece arrached to the pint at the other end, then the 

corresponding ends are matched. 

(c) Similar to (b), but use the length to width ratio of the attached pieces, instead of •he 

width. 

If a choace between (i) and (ii) above can not be made here, than in the following step, we 

evaluate both alternatives, else we evaluate only the chosen alternative. 

5. Evaluate matchln( of distinguished pieces, with spec1fied JOint correspondencei: 

This involves mate hang the two pa1n or pints (such as M j 1 wath 0 J I and M j2 with 0 j2). 

Now con.>ide:- matching of two ;oants (suet~ as M J I and 0 J 1). W1th each JOmt is associated 

an ordered list of paeces attached to at. Note that the distinguished pieces attached to these 

joints (MDP and ODP) have already been matched. The remaining pieces are ma~ched with 

th~ following constraints: 

(l) the order of pieces in one list must be the same (or reverse) as the order of the pieces they 

are matched to an the list. 

(ii) the matching ls •OFtimal·. 

The optimal matching was described in sec. 6.~ and is not r>!peated here. It is based on 

picking best matches for individual paeces and minimizing the tMal piece match error. 

With each matching of two pmu, we associate the resulting piece correspondences and the 

following evalu&tklns of the rr.atch: 
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(i) the average and maximum piece match error of the pieces matr.hed. 

(U) a list of the unmatched pieces of the objeCt and the model that are connected to the 

matched joints. 

If a shadowed object piece Is hypothesized to c.mnect to the objeCt joint being matched ~u 

explained in sec. A2.20), then match this p:ece to an unmatched piece of the model joint -:, f 

any) If the piece match error of this match does nat exceed the maximum of the piece 

match errors of the other pieces matched at tnts pant, then auocaate this match with th.: 

jOint match. Otherwise, Ignore this match. 

A pair of pint matches is samply represented by two joint matches as described above. 

NOTE: th! evaluation of thesr matches does noc contain a term depending on the angles 

between the pieces, i.e. the articulation of different pieces is assumed to be completely free 

Also note lPat the length and wid:h of the pieces are relatively insensitive to articulation, 

since we are using 3-d data. Small variations may occur in the width depending on what part 

of the cross-secuon is seen. 

i. Select one pair of pint matches: If in step 3 above, we evaluated both pairs (suggested in step 

2) then one of them I$ selected now (based on the above descrabed evaluations, details are 

provided in the next section of thas appendix). If one pair can be selected conftdentl). then 

the other one is not used for further matching. Otherwise, we maintain an ordereJ hat 

..:Jntaining bolh options. 

&. Choose between different matches resulting from different pairangs of dtstinguished pieces (the 

selection procedure Is the same as used in step i). If some pamngs are clearly preferable, 

only these are retained. All retained paarlngs are arranged in a list ordered by their 

preferences. Note that the models that are very different from the object are excluded from 

further consideration and this list is n.:lt expected to be 1ong e~en if aany models are present 

(the indexing procedure is expected to have !lrtady reduced this number considerably). 

6. seeps I thru ~ ilre repeated for each rnoclel with wnich the objeCt is to be compared. The 

pmerred models are selected based on best match with each modet (again, the same self!ction 

procedure applit~). 

7. Extend matchei: In step 6, we were choosang based only en the matching of • distinguished 

piece, au twll jOints and assocaated pieces. Now each match Is extended to include ocher pieces 

if any. 

for each pair of pieces matched so far, at least the JOants at their OM end were matched. If 

the joanU at ttle O:h~ end are not matched, do so now. This may require the matching of' a 

jOint agatnst a null joint, it ou.; cf the pieces is connected to iJlher pieces at one end only. 

This process 15 repeated until all joants (ancl hence .a:: pie!!!) t-.ave been mmhed. 

8. Choose between matches With dafferent models acain, based r.n the extended matches. Output 

the preferred matches in order. One or fn('J'C models may resuk as the output of this 

recccnition scheme. 

The selectiOn between two matches is discuued next. 
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A2.SC SELECTION OF MATCHES: 

A match between two descriptions consasts of a num~r of JOint matches. The JOint 

matches were aeKribed In the previous section. The selection of matches is inde~nd•mt of the 
number of joint matches included, and htnce the same procedure is applicable for choosing at 
differ.mt staps of matchi11g. 

The following quantities are computed for a match from its component pint matches: 

(i) tot"ll numbfr 0: wtll dtfin•d pittes of the object that are not matched (ulled NEXCESS) 

(li) The average piece match error (averaged over all JOint matches), called AVER R. 

(iii) The maximum !>•«• matct. error (m~liamum over all joint matches) called MAX ERR. 

A choict helwten ~~·o marches is bided on these evaluauons. The followang tests are 
performed il'l th~ order presented here. 

I. If ch:: , alut of NEXCESS for two matches is different, then choose the match with lower 

"alue. 

2. If the AVERR for one match is less than half that for the other match then choose the 
match with the lower value. 

3. If the MAXERR for one match is less than half that for the other match then choose the 
match with the to;.,.er value. 

4. Compute the ratio of AVER~ for the match with the higher value to that with the lower 
value, call this AVRAT. Do the same fur MAX ERR, and call this ratio MAX RAT. 

If AVRAT is larger than M"'XRAT thtn chtlOSe the match with lower AVERR. Otherwise, 
choose the match with lower MAXERR. 

In addlllon to the preferred mat:-h, this procedure al$o outputs 11 bmary confidence 
rating for the choace. If the choace was made at either of the first thrte steps. than the choace ts 
considered to be made with confidtnce. otherwise not. This confidence jUdgement was used an 
matching described prevaously to derermane whether to keep the alternative matches. 

Note that rhis ~l«tion procedurt does nor use any evaluation of the number of 
unmatched pieces In the modeL It as assumed that occlusion can hade an arbitrary number of such 
pieces. Also the angles between differtnt pieces were not used in making a choice. We have 
assumed arbltrar, articulation of the limbs. 

This selection procedure is desagned to cllfferentiate between two grossly different 
ob.JICU. Approaches for using model information to make finer choaces are discussed ir. \fC, 6.6 



APPENDIX 3 
DATA STRUCTURES 

liS 

We brteny describe the data structure of symbolic descriptions. Symbolic faCilities of 

LEAP ([Feldman)) are used. Each Piece and pint of an obJect is an "Item", an atomic primary of 

LEAP. Each ob,JKt is also an item. With each piece item we associate its summary descriptors as 

the datum of the item. The list of descriptors is the same as in sec. A2.1C of Appendix 2. 

Joint items have a list of component p1eces assowued to them. Relations of jOints and 

component pieces ue in the form of the following LEAP "triples" (for the hammer of fig. -t.7): 

RELATIONS e JOINTl ! [COLLINEAR e PCl : PC2) 

RELATIONS e JOINTl! [TYPE e jOJNTl!! T .JOINT] 

Note m the above the relations in enclosed brackets are "Sracketed Triples". They are 

asserted as associations themselves. The relations used are: the different types of pints described 

In sec. 5.2, the collinearity, orthogonality and s1milanty of paeces. 

Linking of two pints by a common paece is also stored as a triple, permitting easy 

traverse of the connection graph. E.g. for the doll tn Fig. 5.2: 

LINK. [LINKED. JOINT!• JOINT1] E PIECEl 

This relation asserts that the JOINTI and JOINT2 are linked and that the link as 

PIECE I. 

Object descriptions are in terms of distinguished pieces as follows: 

DIST _DESCRIPTIONS e DOLL • { DESCRIPTJO,'U, DESCRIPTION2 } 

DIST _PIECE • DESCRIPTION!• BODY 

TYPE_DIST a DESCRIPTION!• WIDE_PIECE 

REL_ WIDS • DESCRIPTIONl • { set of relativ• widths at two ends or main 
piece} 

In the above, a description item corresponds to each dastinguashed piece and indicated 

type of associations are made. One JOinr of the distinguished piece may have distinguishing 

features compared to the other, such as one joint has much longer pieces than thr other, or has 

much wider pieces than the other. These are represented by the following type of assertions. 

LONC_PIECE.JOINT e DESCRIPTION!• JOINTI 

WIDE_PIECE_JOINT e DESCRIPTION!• JOINTJ 

Isolated pieces hav., associated informauon about the closest joint and a possible 

cannection, if more evidence for linktng is available. E.,. ror doll in Fig. 6.3: 
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CLOSEST JOINT • I'IEC£6 • JOINTl 

CLOSDT JOINT • PIECES • JOINn 

POSSIILLCONNECTION • PIECE6 • JOINT! 

H7 

Th lut ISIII'tion ia for I ltfOnl'l' hypothais for ClOIIM<.lioft, In our CIN pn«ated by '"""'*"' conlklerati\lnl (sec. !4). 
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