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EDGE- DI SJO NT SPANNING TREES, DOM NATCRS,
AND DEPTH- FI RST SEARCH

by
Robert Endre Tarjan

Definitions

A graph G = (v,¢&) is an ordered pair consisting of a set of
vertices v and a multiset of edges e . Let V be the nunber of
vertices and E be the nunber of edges in G. In an undirected
graph, each edge is an unordered pair (v,w) of distinct vertices; in a

directed graph, each edge is an ordered pair (v,w) of distinct vertices.

(This definition allows nultiple edges but not |oops in graphs.) An edge
(vow) is incident to v and w. A directed edge (v,w) | eaves v

and enters w. If Gy =(V;,¢&) isagraphandv,cv, € cé,then
Gy is a subgraph of G. W define G-G; = G-& = (v,a-el) . f vV, v
and ¢, = {(1,3)](1,3) e € and 1,] ev2} (82 is amltiset), then

G, = (v2,62) is the subgraph of G induced by the vertices V,

A sequence of edges <vl’v2)’(v2’v5)’ - (vn_l,vn) in G is a
path from v, to v, - This path contains vertices Vs ee sV and
avoids all other vertices. .There is a path of no edges from every
vertex to itself. A path is sinple if all its vertices are distinct
except possibly vy and v, A cycle is a path such that v, =V,

A cycle nust contain at least two edges. Vertex w is reachable from

vertex v if there is a path from v to w . A directed graph is

strongly connected if every vertex is reachable from every other.

Aflow gragh, r ) is a graph with a distinguished vertex r such
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that every vertex in Gis reachable fromr . Vertex v dom nates

vertex w in flow graph (G,r) if v # wand every path from | tg
w contains v . An edge (v,w) is a bridge of a flow graph if every
path from rto w contains (v,w) .

Atree Tis a graph with a vertex r such that there is a
unique sinple path fromr to every vertexin T . If T is directed,

ris unique and is called the root of T ; if Tis undirected, r (gp

be any vertex of T . If T, Is a tree and Tl is a subgraph of T,

T, is called a subtree of T . |f T is a subgraph of a graph G

and T contains all the vertices of G then Tis a spanning tree

of G. If Tis a directed tree, the notation v - w neans (v,y)
is an edge of T; inthis case vis the father of wand w jg
a son of v . The notation v 2w neans there is path fromv to w

in T, v is an ancestor of w (proper if v #w) and wis a
descendant of v (proper if v £w . Using these conventions, every

vertexis a (non-proper) ancestor and descendant of itself.

H story
Let G be an undirected graph. Suppose we wish to find

(i) a maxinum nunber of spanning trees in G which are pairwise
edge-disjoint, or (ii) a mninmm nunber of spanning trees whose union
contains all the edges of G, or (iii) a set of k spanning trees
such-that the fewest possible edges are outside the union of the trees
(for some fixed constant k ). Problem (iii) for k = 2 has applications
in the solution of Shannon switching games and in the "mxed" analysis

of electrical networks. Many researchers, including Tutte[26],

- Ednonds [4,5], Nash-W | lians [16,17], and ot hers [3,9,10,15,18] have



studied one or nmore of these problens and have given efficient
algorithnms for solving them The best algorithm known has a tinme bound
of O(Ee) for problens (i) and (ii) and a tinme bound of o(k2V2)
for problem (iii) [25].
Less is known about anal ogous problens in directed graphs.
Edmonds has considered the problem of finding k nutually edge-disjoint
spanning trees rooted at a fixed vertex r . He has shown that there
exist k disjoint spanning trees rooted at r if and only if there
exist at least k edge-disjoint paths fromr to any other vertex v
[7]. Based on this result, one can use a network flow algorithmto
find k disjoint spanning trees, if they exist, in O(k2E2) time [24].
In this paper we consider faster ways of finding exactly two

directed spanning trees with fewest common edges.

Lemma 1: Let (G,r) be a flow graph. Each bridge in Gis in every
spanning tree rooted at r . There exist two spanning trees with only

the bridges in common.
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W can prove Lemma 1 using the al gorithm bel ow, which finds two spanning

trees ofa directed graph with only the bridges in comon.

(1) find a spanning tree T, rooted at r ;

find a tree Ty rooted at r in g-r, Wwith as many vertices

1
as possi bl e;

whi |l e T, IS not a spanning tree do begin

a: find an edge v ~w in T, such that veT,, ,w,éT2 , and

no descendants x, y of w in T1 satisfy X -y in Tl :
xeT, , and yéTe 5
b: if wis not reachable fromr in G-Tz—{(v,w)} then
duplicate (v,w) ;
comment (v,w) nust be a bridge;
repl ace T, by a spanning tree rooted at r in G-Tg—{(v,w)} ;

c. find a tree T, rooted at r in G-T, with as many vertices

1
as possi bl e;

end;

Lenma 2:  Step (1) finds two spanning trees rooted at r which have

only bridges of G in conmon.

Proof; At least one vertex (w) gets added to T, during each execution
of the while loop in step (1), so the while loop can be executed at nost
v-1 times. Thus the algorithm termnates. Cearly the algorithm works
correctly if the test in statement b fails whenever (v,w) is not a bridge.
Suppose (v,w) is not a bridge and the test in statement b is perforned

for some T, - There is a path p = (I‘,Ve)(vg,v5),...,(Vn_l,w) in




G-{(v,w)} . Let be the last edge on this path such that

(vi¥ipq)

v, € To Then (vi,vi+l) eT ot herw se (Vi’vi+l) woul d have been

1
added to T, during the last execution of statement a. Since
vi+l’£T2 » vy is not a descendant of win Tl by the condition
In statement a. Then w nust be reachable fromr in G-Tz-{(v,w)}
by a path of edges from r to vy in Tl followed by the path
(vi’vi+1)” 63 (vn_l,w) _ Thus the test in statement b fails. It

follows that step(l) conputes two spanning trees with only bridges in

comon.
QED.

Lemma 2 inplies the second half of Lemma 1; the first half of
Lenma 1 is obvious. Lemma 1 also follows from Edmond's nore general
result [7].

Statenents a, b, and c clearly require QE) execution time if
a set of adjacency lists is used to represent the graph, so the whole
algorithm requires O(VE) time and Q(V+E) space. W can inprove the
method's tine bound to O(Ve) by first finding a set of edges
partitionable into two disjoint spanning trees and then applying step (1).

However, depth-first search gives an even faster algorithm

Dept h-First Search

If Tis a directed tree rooted at r , a preorder nunbering [11]

of the vertices of T is any nunbering which can be generated by the

foll owing algorithm



begin
procedure PREORDER(V); begin
nunber v greater than any previously nunmbered vertex;
coment if v=r, v my be numbered arbitrarily;
for w such that v - w do PREORDER(W);
end;
PREORDER() ;

end,

Lemma 3: Let ND(v) denote the nunber of descendants of a vertex v
inadirected tree T. |If T has V vertices nunbered from1l to V
in preorder and vertices are identified by nunmber, then VowinT

iff v <w <v+ND(v) .
Pr oof : See [21].

Let (G,r) be a flow graph, and let T be a spanning tree of G
rooted at r which has a preorder nunbering. T is a depth-first

spanning tree (DFS tree) if the edges in GT can be partitioned into

three sets:

(i) a set of edges (v,w) wth wWiv inT , called cycle arcs,

(ii) a set of edges (v,w) with v TwinT , called forward arcs;

. . * *
(iii) a set of edges (v,w) with neither v -w nor w- v , and

w<v , called cross arcs.

A DFS tree is sonaned because it can be generated by starting at r

and carrying out a depth-first search of G, nunbering the vertices in

increasing order as they are reached during the search. A properly

T



inpl emented al gorithm [19,21] requires Q(V+E) tine to execute step (2)

bel ow.

(2) Carry out a depth-first search of G, finding a DFS tree, numbering the
vertices in preorder, calculating N(v) , and finding sets of

cycle arcs, forward arcs, and cross arcs.

Henceforth assune that step (2) has been applied to flow graph
(G,r) , that Tis the resulting DFS tree, and that vertices are identified
by nunber. An s-order nunbering s(v) of the vertices of T is a

preorder nunbering such that w- w, , w- L and W, < W, i nply

1

s(wl) > s(w An s-order numbering of T can be calculated during

2)
step (2).

Lemma 4: Let s(v) be an s-order nunbering of T . Then s(v) < s(w)
if (v,w) is atree arc, forward arc, or cross arc, and s(v) > s(w)

if (v,w) is acycle arc.
Proof : See [21].

If Gis acyclic, s(v) defines a topological sorting of the
vertices (an ordering such that all arcs run fromsnaller nunbered to
larger numbered vertices). . By examning the vertices of Gin s-order,
from largest to smallest, we can conpute the strong components[19],
the period [13], or the weak conponents [23] of G, each in Q(V+E)
tine. By examning the vertices of G in preorder fromlargest to
smal l est we can conpute the dom nators and bridges of ¢ in QV log V+ E)
tinme, as discussed in the next section. A third systematic method of
exploring a DFS tree allows us to find pairs of disjoint spanning trees

efficiently.



Let S be a set of vertices in Gand let vés . By collapsing
Sinto v we nean forming a new graph g' by deleting all vertices
in S and all edges incident to vertices in S, adding a new edge
(v,x) for each deleted edge (w,x) with x¢ SU{v}, and adding a
new edge (x,v) for each deleted edge (x,w) with x£s U {v} . Each
edge of G' corresponds to an edge of G, and each edge of G either
di sappears or corresponds to an edge of g'.

For any vertex w, let Qw = {v|(v,w)is a cycle arc} and | et
P(w) = (Vv | w v oand % EC(w such that there is a path fromv to z
whi ch contains only proper descendants of w} . Let w be the |argest
vertex of G such that C(w) #¢ . Let g' be forned by collapsing
P(w into w. Let T'be the subgraph of G' whose edges correspond

to the edges of T .

Lemma5: The subgraph of G induced by the vertices P(w)U {w} is

strongly connected.

Pr oof : Qobvi ous.
Lemma 6: 7', wth nunbering the same as that of T, is a DFS tree
of G' withroot r . Cycle arcs of g' correspond to cycle arcs

of G forward arcs of g' correspond to forward arcs or cross arcs

of G and cross arcs of g* correspond to cross arcs of G.

Pr oof : See [22].

Suppose we cal culate P(V) in G and collapse P(V) into V
to create a new graph ¢', calculate P(V-1) in g* and collapse

P(V-1) into V-1 , and so on, until we reach vertex 1 . Eventually



we collapse G into an acyclic graph whose vertices correspond to the
maxi mal strongly connected subgraphs of G. This idea gives a way to
test the reducibility of Gefficiently [22], and to efficiently find

a pair of edge-disjoint spanning trees (as we shall see).

Dom nat or s

Lemma 7: Let (Gr) be a flow graph with G = (v,g) and let T be
a DFS tree of Gwith root r . Edge (v,w)is a bridge of Giff
(v,w) is atreearc, whas no entering forward arcs or cross arcs,

and there is no cycle arc (x,w) such that w does not doninate x .

Proof : If (v,w) is not a tree arc, or w has an entering forward arc

or cross arc, or there is a cycle arc (x,w) such that w does not

~domnate x , then there is a path fromr to w which avoids (v,w) ,

and (v,w) is not a bridge. If (v,w)is not a bridge, there nust
be a sinple path from r to w which avoids (v,w) . If the |ast

edge on this path is a tree arc, (v,w) is not a tree arc, if it is
a forward arc or a cross arc then w has an entering forward arc or
cross arc, and if it is a cycle arc (x,w) then w does not donminate x .

QED.

If v domnates w and no vertex larger than v donminates w,

then v is called the inmmediate dom nator of w, denoted v = d(w)

By- convention d(1) = 0 .

10



Lemma 8: The edges {(d(w),w)| weV-{1}} forma tree, called the

domnnator tree of G, such that v domnates w if and only if

* . .
v -w in the domnator tree.

Pr oof : See [2].

If we calculate d(w) for all vertices w, then we can use
Lermas 7 and 8 to find the bridges of G. Here is an QV log V+E)
algorithm for calculating d(w) values. The method is a greatly
sinplified and inproved version of [21]. W calculate d(w) by processing
the vertices in preorder fromlargest to smallest. Let
G = (LW [(vw)eeand w > K}) .« G .. Gy . (P L et
d, (w) = min{v | wis reachable from v in G} . Qearly d, (W <k

1y

for all w , and dk(W)<k if k<w and w>1.

Lemma 9: dk(k) = min({v | (v,k) is a forward arc or tree arc}

U {dk+l(v) | (v,k) is a cross arc or cycle arc)

if k>1.

Proof : Qobvi ous.
*

Lenma_10: Suppose w £k . If kx -w and d,,(w) > d.(k) , then
dk(w) = dk(k) . O herw se dk(w) = dk+l(w) .
Proof : I f w>k, then any path from k to w nust contain a
common ancestor of wand k . This result is proved in [21]. Thus
w 1S reachable from k in Gy iff k 2w . Hence

dk(w) = min(dk+1(w)’dk(k)) if k —»*w s dk(w) = dk+l(w) ot herwi se.

QED.

11



Lemal | : Suppose w # k and d(w) < k . If dk+l(w) = k then
dw =k . Qherwise dw < k .
Proof : If k does not domnate w, there is sone path from 1

to w which avoids k . Let (x,y) be the |ast edge on this path
with x<k. Then dk+l(w) <x <k. Thus if dk+l(w) =k,

w domi nates k , and since d(w <k , d(w =k . 1f dk+l(w) £k,
t hen dk+l(w) <k, and wis reachable from1 by a path of tree

arcs, to dk+l(w) followed by a path in a Since this path

k+l
avoids k , k doesn't dominate w, and since d(w <Kk ,

d(w) <k .
QE.D.

12



W use Lemmas 9, 10, and 11 to calculate domnators, working from
k=Vto k=21. The algorithm appears below in an A gal-like notation.
At the end of an execution of for loop d bel ow, each vertex w > k
wll be contained in a unique set. All vertices win the sane set
wi |l have the sane val ue of dk(w) . Each set will have a distinguishing
nane and a priority whose value is d,(w) for all elements w of the
set. In addition, given a set, either all its vertices have known
i medi ate domi nators or none have known immediate dom nators. Associ ated
‘wWith each vertex w > k such that v - w inplies v <k wll be a

priority queue named w containing all sets which have descendants of

w as elenents.

W use the follow ng set operations:

FIND(wW) returns the value (x,p) where x is the nane and p is
the priority of the set containing w as an el enent;

UNION(x,y) adds the elenments in set x to set y (destroying x)
The new set y remains in the same priority queue with the same

priority as the old set y .

W use the following priority queue operations:

HIGH(q) returns the value (x,p) where x is the nane and p the
priority of a set in queue q with highest priority (by convention
HIGH(q) returns (0,0) if queue g is enpty);

DELETE(x, q) del etes the set named x from queue q ;

QUNICN(g,r) adds the sets in queue q to queue r (destroying

queue ( ).



(3) d: for ki=V step -1until 1 do update: begin

e p:=mn((v]| (v,k)is a forward arc or a tree arc)
u(p' IE[x,y such that (y,k) is a cross arc or cycle arc
and (x,p') = FIND(y)} U {k-1});
coment p = d (k) if k#1 p=0if k=1
create a set {k} with nanme 2k-1 and priority p;
create a set ¢ with name 2k and priority p;
create a queue named k containing the sets naned 2k-1 and 2k;
for wsuch that k ~ w do QUNION(w,k)
(x,p') :=HIGH(k);
f: while p' > p do begin
g: > kifangt al | vertices win set x have d(w) = 0 then
for each vertex win set x do d(w :=k;
DELETE(X, k) ;
if all vertices win set x have d(w) = O_then UNION(x,2k-1)
el se UNION(x,2k);
(x,p") :=HIGH(k);
end;
if the set named. 2k is enpty_then DELETE(2k,Xk);

end

Steps (2) and (3) will conpute d(w) for every vertex w. Statement e
i npl enents Lemma 9, statement f (mnus statement g) inplenments Lemma 10,
and statement g inplements Lemma 11. The total time required by steps (2)
and (3) is Q(V+E) plus time for (V) set unions, QE) FINDs,

and Q(V) priority queue operations. The set operations require

1L
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QVlog V+ E) time using a nethod given in [8,20]. The priority
queue operations require QV log V) tine using Crane's nethod [12].
The total tine is thus QQV log V + E) . The storage space required
is QQV+E) . (See [21] for further details.)

If the graph has no cross arcs, the priority queues are unnecessary
and dom nators can be calculated faster, using only disjoint set union

operations. (See [21] for details.)

Di sj 0i nt Branchings

The dom nators algorithm above forns an inportant part of an efficient
algorithm for finding two spanning trees having only bridges in comon.
W use the domnators algorithmto find all the bridges of G. W duplicate
the bridges and discard all but the edges which will form the spanning trees.

The following lema forms the basis for this calculation.

Lemma 12: Let w # 1 be a vertex of ¢ . Suppose the tree arc
entering w is not a bridge. There nust exist a non-tree arc
(x,w) with dw+l(x) = dw(w) . Formga' by deleting all edges
entering w except the entering tree arc and (x,w) . Let

d}'{(v) = min{x|v is reachable fromx in G}'{} wher e

G = (V, {(x,7)|(x,y) is an edge of G'and y > k}) . Then

dl'{(v) = dk(v) for all v and for all k .

Proof : Clearly dl'{(v) > dk(v) for all k and dl'{(v) = dk(v) for

all k >w . Suppose there is sone k <w and some v such that
d.}'{(v) > dk(v) ~ Then there is a sinple path containing w from dk(v)

to v in G, . Let p be the part of this path fromdk(v)

15



tow. |If thereis avertex yonpwthy<w, vYy# %Jv)

and y #w , then sone common ancestor z of y and wlies on p

by Lenma 8 of [21]. But the path of tree arcs fromz to wis

in Gy s and there is a path from dk(v) toving! , a contradiction.
If every vertex y on p other than dk(v) and w has y >w,

then p is a path ing_ , and dkho = dkhn = dw(w)' But clearly

dw(w) = d&(w) , and thus there is a path from dk(v) =d;(w) to w

to v in G& , a contradiction. Q.E.D.

To find two spanning trees with fewest conmon edges, we execute

step (2), which carries out a depth-first search of the problem graph G

Next We execute step (4) below, which uses statenent "update" of step (3).

(%) for k:=v step -1 until 2 do begin

m:=min{x|(x,k) is a forward arc} U
LJ{P'IHx,y such that (y,k) is a cross arc or a cycle arc
and (x,p') = FIND(y)} U {k};
coment m = min{d,,(x)|(x,;k) is a non-tree arc] U [k);
ifm =k then begin
coment the tree arc entering k is a bridge;
duplicate the tree arc entering Kk;
delete all other edges entering Kk;
end else begin
let (x,k) be a non-tree arc with dk*l(x) =m
delete all edges entering k except the tree arc and (x,k);

calcul ate d, val ues fromdk+ val ues using statement "update"

1
in step (3);

comment  statenent "update" may actually be sinplified somewhat
since dom nators are not needed, only dy val ues;

16



end end;

delete all edges entering vertex 1,

It is easy to prove by induction using Lemmas 7 and 12 that during
the k-th iteration of theﬂ loop in step (4), m=k if the tree
arc entering k is a bridge, m= dk(k) ot herwi se; and that after
step (4) is conpleted, the graph remaining is a bridgel ess graph with

exactly 2(v-1) edges, containing two copies of each bridge of the

.original graph. FExccution of step (4) requires Q'Vlog V + k) tine.

Henceforth assume that Gis a bridgeless flow graph with 2(v-1)
edges.

The idea of the remaining part of the disjoint spanning trees algorithmis
to collapse strongly connected regions of G until we create a bridgel ess
acyclic graph. W can easily find two disjoint spanning trees in the
resulting graph. Then we expand the col |l apsed regi ons, nodifying the
spanning trees accordingly, to produce two disjoint spanning trees of
the original graph.

Let ¢! = 6. For 2 <k <V, let ¢'®) be formed from

(k+1) G(k+l)

G by conputing P(k) in and collapsing P(k) into k .
For k = 2,3,...,7#1 , G(k) has a DFS tree T(k) corresponding to

the DFS tree T of G. G(E) is acyclic. The following | emmas show
t hat d, val ues are preserved during this collapsing process, and that

C—<V), G(V'D,,,.,G(g) have no bridges.

Lemma 13: Let G be a bridgeless flow graph and I et w be the highest
vertex of Gwith entering cycle arcs. et g' be formed from G by
collapsing P(wW) into w. Suppose dl'{(v) is defined in G'. Then

d}'{(v) = dk(v) for all v in ¢' and for all k <w.

17



Proof : If k<w, every path in Gp  (possibly containing W)
corresponds to a path in G, (possibly containing one or nore vertices

of P(w) u{w}) and vice-versa. It follows that d}'{(v) = dk(v) .

Q.E.D.

V+1) , V)

M 63

Lemma 1k: Let G be a bridgeless flow graph. Let G(

be defined as above. Then for k = 2,3,...,®1 , G(k) has no bridges.

Proof : G(V+l) has no bridges by assunption. Suppose for some k > 2,

k+1)

G< has no bridges. W show that G(k) has no bridges. The | emma

then follows by induction.

From Lemma 12 we have dl({kﬂ)(x) = dl({k)(x) for all x . Let
(v,w) be a tree arc of G(k) . By hypothesis the tree arc entering w

G(k+l)

is not a bridge; we wish to show that (v,w) is not a
“bridge in G(k) - Two cases arise fromLema 7.

(i) Vertex w has an entering forward or cross arc in G(k+l) ‘

Then w has an entering cross or forward arc in G(k) , and (V,w)

Is not a bridge by Lemma 7.

(ii) Vertex w has an entering cycle arc (y,w) wth y not
dom nated by w'in G(k+l) .- Then w < k .

a) If w=%, let(l,vg),(vg,v5), o *XY (vn_l,y) be a path
from1l toy in G(kﬂ') which doesn't contain k . Let (Vi,vi+1)
be the last edge on this path with v, not a descendant of k in the
kt+1)

Then Virl

cross arc of G(k) , and (v,w) 1is not a bridge.

DFST- of G( eP(x) , so (vi,W) is a forward or

18



b) If w < k and y/P(k) , d&i(y) = dé_ﬁl) (y) < w by

o(k1)

Lemma 12 and the fact that w doesn't dominate y in Thus

(k)

w doesn't dominate y in G and (v,w) i s not a bridge.

e) If w< k and yeP(k) , (k,w) is a cycle arc of
(k) (k) _ 4(k+1) _ (k+1)
G , and dw+l(k) =4 (x) = d oy

fact that P(k) U {x} induces a strongly connected subgraph of G(k+l) s

(y) < w, by Lemma 12, the

and the fact that w doesn't dominate y in G(k+l) - It follows

that (v,w) is not a bridge.

Thus G(k) contains no bridges.
QED.

Now we have a systematic way to collapse the bridgeless flow graph

V1)

G = G( into an acyclic bridgeless flow graph G(g) . W need to find

two disjoint spanning trees of G(e) and to systematically expand them
to give two disjoint spanning trees of G .
For any edge (v,w) in G(e) let h(v,w) = 0 . For any edge

(vyw) in oD

let n(v,w) = k if veP(k) U{k} and weP(k) Uk} .
O herwi se |let h(v,w) = h(v',w') , where (v',w') is the edge in G(k)
corresponding to (v,w) . According to this inductive definition,
h(v,w) is the largest vertex into which both v and w are col | apsed
when form ng G(V+l),G(V),- - .,G(‘E) ; if v and w are never coll apsed
together, h(v,w) = 0 . The value h(v,w) is defined for all edges
(v,w) in all graphs G(k) , K= 2,3, 0,1 .

Si nce G(e) has no bridges, each vertex except 1 in G(g) has

2)

at least two entering edges. Let ng) :T(e) (T< is the DFS tree

of G(g)) and | et T£2) be any subgraph of G(e) -TI(E)

exactly one arc entering each vertex except vertex 1 .

cont ai ni ng
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For some k , 2 <k <V, suppose that TKk) and Ték) "have
been defined. T£k) and Ték) will be edge-disjoint subgraphs of
G(k) whi ch together contain all the T(k) -arcs of G(k) - Wt hout
loss of generality, suppose 7() contains the T(k) -arc entering k .
Let (vl,ve),(ve,v3),.. .,(vn_l,k) be a sinple path in G(k+l)

such that
(i) vl)éP(k) and Vs eP(k) for j = 2,3,...,n-1 ;

(ii) either (v ) corresponds to an edge of Ték) or

1(k+1) (k+1)

1°V2

(vl’v2) is a non- -arc of ¢ such that the

Ték) -arc entering n(v,,v,) is not a cycle arc; and,

o)
(iii) for all j =34 ...,n-1, there is a non- T(E*1) _ ..

(k+1)

(x,vj) of @ such that either x ¢ P(k) U {k} or

t he T:(Lk) arc entering h(x,vj) is not a cycle arc.

There nust be such a path since there is an edge (x,y) in g(¥1)

with x£P(k) U{k}, yeP(k) U {k}, corresponding to the Tgk) -arc

entering k ; and there is a sinple path fromy to k in G( k1)

which contains only vertices in P(k) Uf{k}. Some final part of this
path plus sone initial edge (vl,ve) must satisfy (i), (ii), and (iii).

(k+1)

Let Tl / and Tékﬂ‘) be defined as foll ows:

Ti§k+l)

For i =1,2 et contain all arcs in G(k+l) correspondi ng

to arcs in (TE)

(k+1)
5 .

Let (Vl’VE)’(VE’VB)’ ceey (vn_l,k) be in T (1If ("1"’2)

corresponds to an arc of ﬁ?;) it is already in Ték"'l) )
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For each vertex win P(k) with an entering arc (x,w) in
k+1)

Té , let (y,w) be another entering arc, g (&1 _gc it possi bl e,

such that either yeP(k) U{k} or the T,(k) -arc entering h(y,w) is

not a cycle arc. Add (y,w) to &?1).

For each vertex w in P(k) which still has no entering arcs in
T:E-k-i-l) or Ték‘-l) ' l et (x,w) be the entering T(k+1) -arc and |et
(y,w) be any other entering arc. |f y£p(x) U {x} and the T:(Lk) arc
entering h(y,w) is a cycle arc, then add (y,w) to '_‘Légkﬂ) and

() to TN qnervise, add- (xw) to I g (g

(kt1)
to T, :

Ve need to show that, for all 2 <k <wi, (k) .4 Ték) are
edge-di sjoint spanning trees of %) dearly TJ(_k) and Ték) are
edge-disjoint subgraphs of &%) ¢ is easy to show by induction that
Tik) and Ték) each contain exactly one edge entering every vertex
of ¥ except vertex 1 , and that T:(Lk) and Ték) together contain
all the T(k) -arcs of G(k) ‘

Because of the vay the %) +s are constructed, if (v,3) is
a cycle arc of G(j) , then for all k >j there is a corresponding
cycle arc (w,j) of G(k) .

Consi der-:

(A) Let (x,y) be an edge of G(k) whi ch corresponds to an edge
(x',y') of T:<Lj+l) UTé'jﬂ) for some j < k but not to any edge of
T:ij) UTéj) , and such that x' £p(3) U{j} . If h(x,y) has an entering

cycle arc in Ti(k) for i =1 or 2, then (x,y) is not in {E’j‘:)
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Lenma 15: For k = 2,3,...,#1 , T£k) and Ték) satisfy property (A

above and are edge-disjoint spanning trees of G(k) ‘

Proof:  The lemma is clearly true for k = 2 since c(2) is acyclic.
Suppose the lemma holds for integers from2 to k . W prove the
lemma for k1 . To prove that (A) holds, let (x,y) be an edge of
G(k+l) whi ch corresponds to an edge of T£'j+l) U TZS‘jﬂ) for some

] < k+t1 but not to any edge of Tij) UTéj) , and such that

x'#P(5)u {3} . If j =k, (A holds for (x,y) because of the

way T (1) and Tékﬂ) are constructed. If j<k, let (x'y')

(k1)

in G(k) correspond to (x,y) in @G Then h(x',y') = h(x,y) < k

k+1) UT§k+l)

and any cycle arc in T( entering h(y,z) corresponds

1
to a cycle arc in Tl(k) UTék) entering h(y',z'), so (A holds for
(x,y) by the induction hypothesis and the way T§k+l) and Tékﬂ)

are constructed.

Now we nust show t hat Tgkﬂ) and Tékﬂ) are spanning trees;
that is, that neither T,(k”‘) nor T%ﬁl) contains a cycle. Suppose
to the contrary that for some ie {1,2}, T(k+l) contains a cycle.

i
This cycle must contain sane vertex of P(k)U {k}, since T§k> cont ai ns
no cycles.

Suppose the cycle contains only vertices in P(k) U {k}.Then the

cycle must contain a cycle arc entering k , which neans the cycle is

in T(2k+l) But every vertex of G(k+l) has only one edge of Tékﬂ)

(k+1)
2

P(k) u{k}to k . This is inmpossible, so no T

-arcs from outside

(k1)
i

entering it, and there is a path of T

cycle containing

only vertices in P(k) U {k} can exist.
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Suppose the cycle contains one or nore vertices outside P(k)u{k} .

The cycle nust contain a cycle arc (v,w) such that all vertices on the
cycle are descendants of win T(k+1) . (This follows from Lenma8

in [21].) Let (x,y) be any edge of the cycle. W will show that in
G(W+1) either x and y are collapsed together or there is an edge

in I§W+l) corresponding to (x,y).Clearly, h(x,y) > W, since X
and y are descendants of w (in T(k"l) and in T(W+1) ), there is

a path fromx toy to win 1) uicn contains only descendants
of W, and sone path in alw1) corresponds to this path. If x and
y are not collapsed together in G(W+1) , then h(x,y) = w.If in
addition (x,y) corresponds to no edge in Ti(w+1) _ then for sone
wtl<Jj<k, (x7y nust correspond to an edge in T{I*L) yyep

x' P(3) U {3}, and to no edge in Ti(j) . But this is inpossible, since
then property (A) would inply that (x,y) is not an edge of Ti(kt1)
since a cycle arc entering wis in n{k1)

1)

Thus the cycle of Tim -arcs corresponds to a cycle of Té"’*l)

arcs, since v and w are not collapsed together in G(Wﬂ) )

(kt1)

T.(w+l) has no cycles. Thus Ti' can have no cycles, and T:{kﬂ-)

1
and T(k+l) are spanning trees. The lemm follows by inducti
5 : y induction.

QE.D.
W now have a very delicate but direct way to construct tw edge-
disjoint spanning trees in a bridgeless flow graph. W nust still find a way
to inplenment this construction so that it is efficient. There are two
steps to be inplemented. First, we nust collapse the graph, calculating
P(V) , P(V-1),...,P(2) and successively forning G(V+l),G(V),...,G(2)

During this process we gather enough information about each P(k) to
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enable us to later construct the paths necessary to give the spanning
trees. Then we nust expand the graph, constructing spanning trees for
G(g),GO),...,G(Wl) from the previously gathered information.

The al gorithm needs several arrays and other data structures. For
each edge (v,w) , h(v,w)is the first vertex into which both v and
w are collapsed, as defined previously. If v is a vertex, s(v) is
the s-nunber of v, as defined in the section on depth-first search.
Wth each vertex v is associated a p-set with name v , containing
all those vertices currently collapsed into v . W use the follow ng

operations on p-sets:

PFIND(w) returns the name of the p-set containing vertex w;

PUNION(x,y) adds the elements in p-set x to p-set y , tenporarily
destroying p-set y ;

_ SPLIT(x,y) undoes the operation PUNION(x,y) , if PUNION(x,y) is the

most recent PUNION not yet undone.

SPLIT(x,y) S necessary when we begin expanding the graph; we nust
undo each collapsing operation. The Appendix to this paper describes
a way to inplement PFIND, PUNION, and SPLIT so that each PFIND requires
0(log V) tine and each PUNION or SPLIT requires constant tine independent
of v .

Wth each vertex v is also associated an s-queue with name v .
This s-queue is a priority queue containing each original edge (x,y)
corresponding to an edge entering v in the currently collapsed graph.
The priority of edge (x,y) in the queue is s(x) . W use the

foll owi ng operations on s-queues:
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SHIGH(q) returns an edge (x,y) With highest priority in s-queue q ;

SDELETE( (x,y),q) del etes edge (x,y) from s-queue q ;

SUNION(q,r) adds all elenents in queue q to queue r , destroying queue q .

V¢ order s-queues by s-number for the follow ng reason: Suppose
k ie*v . Then all edges (x,y) such that k L x will be deleted from
s-queue v before edges (x,y) such that -(k 5 X) . This fact
facilitates determning the P(k) 's and makes the algorithm s running
time linear except for set and priority queue operations.

Each vertex v can be in at nost one P(k) . The array p is conputed

so that p(v) = k iff veP(k) .If visinno P(k) , p(v) =0 .

If vA1, T(v) is the T(V*1)

-arc entering v . If veP(k) for
some k, Nv) is an arc in ol ) corresponding to a non- T( &) o
entering v in G&1) g v£P(k) for any k , N(v) is an arc in

1)

q corresponding to a non- 73 are entering v in g2

Suppose veP(k) . Then there is sone path fromv to k through
vertices in P(k) . E(v) will be a (1) -edge corresponding to the ,

(k+1)

first g -edge on sone such path. That is, sone path

(V75)s (Vs ¥g), + s (v 1,0 i ¢ 1) {hrough vertices in P(k) will

correspond to edges E(v),E(vp),..,E(v, ;) in o(#1)

E(v) is
necessary to cal culate the-paths used in constructing the edge-disjoint
spanning trees.

Step (5), appearing below in A gal-like notation, collapses G = G(V+l)
into G(V), G(V'l), Co G<2) .It calculates the sets P(k) , in addition to
various data items described above. |t uses as a procedure SEARCH, which

is a recursively programred depth-first search for exploring any

particular P(k) .
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(5)  begin
procedur e SEARCH(k,v); begin
add v to P(k);
p(v) :=k;
(%,¥) = SHIGH(v) ;
if (Nv) =0)and (T(v) # (x,y)) then N(v) := (x,7);
while k = x do begin

SDELETE( (%, y) , v) 3
h(x,y) : =k;

W := PFIND(x)

comment if w has not been reached bhefore, search fromw

if (p(w) £ k) and (w £ k) then begin
E(w := (%¥);
SEARCH (k,w) ;
end;
(x,y) :=SHIGH(v);
if (Nv) =0) and (T(v) £ (x,y)) then N(v) :=(x¥);
end end;
comment initialization,
for v:=1 until V do begin
create a p-set {v} with nane v;
if v £1then let T(v) be the tree arc entering v;
create an s-queue naned v containing all arcs (u,v)

entering v, each with priority s(u);

N(v) :=0
P(v) :=p;
P(V) = 03
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comment col | apsi ng;

for k=V step -1 until
- P unt| 2 do begin

(%,y) :=SHIGH(k);
coment k has at nost one entering cycle arc;
ik % x dg Béain
SDELETE( (X,¥), k) ;
h(x,y) : =k;
coment find P(K);
SEARCH(k,PFIND(X)) .
comment collapse P(k) into k;
for vep(k) do begin
SUNION(v, k) ;
PUNION (v, k) ;

end end end end;

Step (6) bel ow takes the information calculated by step (5) and
Uses it to construct edge-disjoint spanning trees of
¢(® ¢(3) o (W1)

In the Process it undoes the PUNION operations performed 'n step (5),using’

operation ST The st "sathry 5 st of g .
path from outside P(k) through P(k) to k of the t e QL5

for the spanning tree construction.

(6) romrent conpute edge-disjoint spanning trees for G( )
2

for k:=2 until Vv do
— if p(k) = 0 then b g
—— Laen e in
T, (k) :=T(k)
(%,¥) :=SHIGH(k);
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if (x¥) = T(k) then begin
SDELETE ( (x, y) , k) ;
(x,y) := SHIGH(X);
end;
To(k) = (%,5) 3
end;
coment conput e edge-disjoint spanning trees for

s oM )

3
for k=2 until Vdoif P(k) £ then begin
for v e P(k) do SPLIT(v,k);
i f Tl(k) = T(k) then i:=2 else i :=1;
(x,7) :=T, () 3
w :=PFIND(y) ;
Ty ()= (5);
T, g () :=200) 5
path :=g;
while w# k do begin
add (x,y) to front of path;
(%,¥) :=E(W);
w :=PFIND(y) ;
end;
T, (k) := (%,3);
let (x,y) be first edge on path;
del ete (x,y) from path;
while (p(PFIND(x)) = k) and ((h(N(PFINX(y)) = k) or
(T5_i(h(N(PF]1\ID(y) ))) is not a cycle arc)) do begin

T, (FFIND(y)) := (%,¥);
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(T (0y) A T(PFIND(y)) thenT; , (PFIND(y)): = 2(PFIND(y))
else T, . (PFIND(y)) :=N(PFIND(y});
let (x,y) be first edge on path;
del ete (x,y) from path;
end;
T5_; (PFIND(y)) :=T(PFIND(y)) ;
i1 P(PFIND(x)) # & then T,(PFIND(y)) := (x,7)
el se T, (PFIID(y)) :=N(PFIND(y)) ;

for vep(k) do if. Tl(v) i s undefined then begin

g (h(N(v)) # k) and TB i(h(N(v)) is a cycle arc) then begin

T, (V) :=N(v) ;
T3_; (V) :=T(v);
end else begin
T, (v) :=T(v);
T5_; (V) :=N(v);
end end end,

conment Tl

It is an elenmentary if tedious exercise to verify that steps (5)

and (6) correctly construct two edge-disjoint spanning trees of any

and T, now give two edge-disjoint spanning trees of G;

bridgeless flow graph with exactly two edges entering each vertex except

vertex 1 . It is also easy to show that the algorithmrequires (V)

time, plus tinme for QV) set operations and V) priority queue

operations. The set operations require QV log V) tinme using the method

described in the Appendix and the priority queue operations require

QVlog V) time using Crane's nethod [12].
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The total time required to execute steps (2), (&), (5), and (6),
which together construct two spanning trees containing only the bridges
of an arbitrary flow graph G, is thus o(vlog V + E). The total
space required is QVWE) . Figures 1-6 illustrate the application

of this algorithmto a flow graph.

Concl usi ons

This paper has presented a very sinmple QQVE) algorithm and a nuch
more sophisticated Q(V log V + E) algorithmfor finding two spanning
trees with fewest common edges in a directed graph. The latter method
applied depth-first search, a highly sinplified and streanlined version
of an efficient dominators al gorithm (presented for the first time here),
and a systematic cycle-shrinking nethod. The data structures necessary,
disjoint sets and priority queues, are sophisticated but quite easy to
implement. The o(v log V + E) algorithm although nore conplicated
than the 0(VE) algorithm is theoretically better by a factor of
V/log v . Conputational experience with sinilar algorithns suggests
that the QVlog V + E) algorithmw |l be conpetitive with or superior
to the Oo(VE) algorithmfor practical problems. Both algorithns can be
generalized to find two mnimlly intersecting spanning trees with
possibly different roots.

The depth-first search technique and the data manipul ati on nethods
used here are applicable to a variety of other graph problens. An
interesting open problem is whether the methods used here (or other
met hods) can be combined to give an ~ Q(E) algorithm for finding two
spanning trees with fewest conmon edges in an undirected graph. Such
an algorithm could be used to efficiently solve Shannon switching games
and to do "mxed" analysis of electrical networks.
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Appendi x: I nplenentation of Reversible Set Unions

Suppose we are initially given n disjoint sets, each a singleton
and each with its own name. We wish to inplement sequences of operations

of three types:

FIND(z) returns the name of the set containing z as an el enent;
UNION(x,y) adds the elements in set x to set y , tenporarily
destroying set x ; and,
SPLIT(x,y) splits set y into two parts, one part corresponding to

the old set x and the other corresponding to the old set y .

Any SPLIT(x,y) operation nust follow a UNION(x,y) operation and be
separated fromit only by FIND's and paired UNION and SPLIT operations.
To inplenment these operations, we represent each set as a directed
tree. [Each vertex in a tree corresponds to an element in a set; a
vertex contains the name of the corresponding elenment, a pointer to
its father (if any) in the tree, and a count of its descendants in
the tree. In addition, the root of a tree contains the name of the
set corresponding to the entire tree
To carry out FIND(z) , we locate the vertex corresponding to z
and follow father pointers to the root of the tree, there finding the
name of the set containing z .
To carry out UNION(x,y), We locate the roots corresponding to
x and y . If set x has nore elenments than set y , we conbine the
trees by making the root corresponding to y a son of the root corres-
ponding to x . CQherwise, we make the root corresponding to y a son

of the root corresponding to x . W update the nunber of descendants
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of the new root and change the nane in the root to y if necessary.
The new edge created corresponds to the UN ON operation.

To carry out SPLIT(x,y) , we break the edge corresponding to the
UNION(x,y) operation which precedes SPLIT(x,y) . W update the names
and nunbers of descendants of the new roots as necessary.

Cearly each UNON and each SPLIT operation requires constant time.
It is easy to prove by induction that any path in a tree with k
vertices created by this algorithm has length <1log k . (See [20].)
Thus each FIND operation requires 0(log n) tine.

In the application of this algorithm considered in the text, all
the SPLIT operations follow all the UNION operations. In this special
case it is possible to devise a slightly faster but nuch nore complicated
set union nethod, based on results in [8]. However, the nethod presented

here is sinple and is efficient enough for our purposes.
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Figure 1 A flow graph, with start vertex 1 . Edge (1,2) is a bridge.
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8(1T) cr 9 (6)

Figure 2: Depth-first search of graph in Figure 1. Tree arcs are
marked T , forward arcs F, cycle arcs Cy , and
cross arcs O . Vertices are nunmbered in preorder;
nunbers in parentheses give an s-order numbering.
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-Figure 3: Gaph after step (2*¢) applied. Bridge has been duplicated;
two cycle arcs remain.
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Figure 4: Conpletely col | apsed graph 6(5) = G(
di sjoint spanning trees, marked by e and nu

wth two edge-
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Figure 5: Partially expanded graph G(h) with tw edge-disjoint
spanning trees.
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Figure 6:  Conpletely expanded graph G(s) = Gwith tw edge-disjoint
spanning trees.
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