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EDGE-DISJOINT SMNNING TREES, DOMINATORS,

AND DEPTH-FIRST SEARCH

bY

Robert Endre Tarjan

Definitions

A graph

vertices Y

vertices and

G = (v,&) is an ordered pair consisting of a set of

and a multiset of edges & . Let V be the number of

E be the number of edges in G . In an undirected

graph, each edge is an unordered pair (v,w) of distinct vertices; in a

directed graph, each edge is an ordered pair (v,w) of distinct vertices.

(This definition allows multiple edges but not loops in graphs.) An edge

(bW> is incident to v and w . A directed edge (v,w) leaves v

and enters w . If Gl = (y1' &I) is a graph and Ylc Y ,- cl5 & t then

Gl is a subgraph of G . We define G-G1 = G-E1 = (It,&El) . If If2 5 1/

and E2 = ((i,j))(i,j) E e and i,j EY2] (c2 is a multiset), then

G2 = W2d2) is the subgraph of G induced b_;r the vertices
1/2 '

A sequence Of edges (V~JV,),  Cv2>v3)>  l **> (Vn-l,Vn> in G isa

path from v1 to vn . This path contains vertices vl,...,vn and

avoids all other vertices. _ There is a path of no edges from every

vertex to itself. A path is simple if all its vertices are distinct

except possibly vl and vn . A cycle is a path such that v1 = vn .

A cycle must contain at least two edges. Vertex w is reachable from

vertex v if there is a path from v to w . A directed graph is

strongly connected if every vertex is reachable from every other.

A flow graph( G , r ) is a graph with a distinguished vertex r such
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that every vertex in G is reachable from r . Vertex v dominates

vertex w in flow graph (C,r) if v f w and every path from r to

W contains v . An edge (v,w) is a bridge of a flow graph if every

path from r to w contains (v,w) .

A tree T is a graph with a vertex r such that there is a

unique simple path from r to every vertex in T . If T is directed,

r is unique and is called the root of T ; if T is undirected, r can

be any vertex of T . If Tl is a tree and T1 is a subgraph of T ,

of G . If T is a directed tree, the notation v -) w means

Tl is called a subtree of T . If T is a subgraph of a graph G

and T contains all the vertices of G , then T is a spanning tree

hw>

isis an edge of T ; in this case v is the father of w and w

*
a son of v . The notation v -, w means there is path from v

L

t

to w

in T; v is an ancestor of w (proper if v 6 w) and w is a

descendant of v (proper if v h w) . Using these conventions, every

vertex is a (non-proper) ancestor and descendant of itself.

L

L Let G be an undirected graph. Suppose we wish to find

History

( >i a maximum number of spanning trees in G which are pairwise

edge-disjoint, or (ii) a minimum number of spanning trees whose union

contains all the edges of G , or (iii) a set of k spanning trees

such-that the fewest possible edges are outside the union of the trees

(for some fixed constant k ). Problem (iii) for k = 2 has amlications

in the solution of Shannon switching games and in the "mixed" analysis

of electrical networks. Many researchers, including Tutte [26],

Edmonds [4,5], Nash-Williams [16,17], and others [3,9,10,15,18]  have
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studied one or more of these problems and have given efficient

algorithms for solving them. The best algorithm known has a time bound

of O(E2) for problems (i) and (ii) and a time bound of O(k2?)

for problem (iii) [25].

Less is known about analogous problems in directed graphs.

Edmonds has considered the problem of finding k mutually edge-disjoint

spanning trees rooted at a fixed vertex r . He has shown that there

exist k disjoint spanning trees rooted at r if and only if there

exist at least k edge-disjoint paths from r to any other vertex v

[7]* Based on this result, one can use a network flow algorithm to

find k disjoint spanning trees, if they exist, in O(k2E2) time [24].

In this paper we consider faster ways of finding exactly two

directed spanning trees with fewest common edges.

Lemmalz Let (G,r) be a flow graph. Each bridge in G is in every

spanning tree rooted at r . There exist two spanning trees with only

the bridges in common.
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We can prove Lemma 1 using the algorithm below, which finds two spanning

trees of a directed graph with only the bridges in common.

(1) find a spanning tree Tl rooted at r ;

find a tree T2 rooted at r in G-T1 with as many vertices

as possible;

while T2 is not a spanning tree do begin- -

a: find an edge v dw in T1 such that VET2 9 w/T2 ., and

no descendants x, y of w in T
1 satisfy x dy in Tl ,

=T2 t ad ykT2 ;

b: if w is not reachable from r in G-T,-{(v,w)] then

duplicate (v,w) ;

comment (v,w) must be a bridge;

replace Tl by a spanning tree rooted at r in G-T2-{(v,w)]  ;

c: find a tree T2 rooted at r in G-T1 with as many vertices

as possible;

end;

Lemma 2: Step (1) finds two spanning trees rooted at r which have

only bridges of G in common.

Proof; At least one vertex (w) gets added to T2 during each execution

of the while loop in step (l), so the while loop can be executed at most

V-I& times. Thus the algorithm terminates. Clearly the algorithm works

correctly if the test in statement b fails whenever (v,w) is not a bridge.

Suppose (v,w) is not a bridge and the test in statement b is performed

for some T2 . There is a path p = (r,v2)(v2,v3),...,(vn-1,w)  in



Go((v,w>)  l Let (Vi�Vi+l
) be the last edge on this path such that

vi E T2'
Then (v~,v~+~) eTl ; otherwise (v~,v~+~) would have been

added to T2 during the

Vi+l 1 ‘I’=! > Vi is not a

in statement a. Then w

by a path of edges from

( V �☺vi+l ) f l *�) (V1 n-ljW)  l

last execution of statement a. Since

descendant of w in Tl by the condition

must be reachable from r in G-T2-{(v,w)j

r to v. in T
1

1 followed by the path

Thus the test in statement b fails. It

follows that step(l) computes two spanning trees with only bridges in

common.
Q.E.D.

Lemma 2 implies the second half of Lemma 1; the first half of

Lemma 1 is obvious. Lemma 1 also follows from Edmond's more general

result [7].

Statements a, b, and c clearly require O(E) execution time if

a set of adjacency lists is used to represent the graph, so the whole

algorithm requires O(VE) time and O(V+E) space. We can improve the

method's time bound to O($) by first finding a set of edges

partitionable into two disjoint spanning trees and then applying step (1).

However, depth-first search gives an even faster algorithm.

Depth-First Search

If T is a directed tree rooted at r , a preorder numbering [ll]

of the vertices of T is any numbering which can be generated by the

following algorithm:
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begin

procedure PREORDER(v); begin

number v greater than any previously numbered vertex;

comment if v = r, v may be numbered arbitrarily;

for w such that v -+ w do PREORDER(w);

end;

PREORDER(r);

end;

Lemma 3: Let ND(v) denote the number of descendants of a vertex v

in a directed tree T . If T has V vertices numbered from 1 to V

*
in preorder and vertices are identified by number, then v + w in T

iff vsw <v+ND(v) .

Proof: See [21].

Let (G,r) be a flow graph, and let T be a spanning tree of G

rooted at r which has a preorder numbering. T is a depth-first

spanning tree (DFS tree) if the edges in G-T can be partitioned into

three sets:

( >
*

i a set of edges (v,w) with w + v in T j called cycle arcs;

( 1
*

ii a set of edges (v,w) with v +w in T , called forward arcs;

* *
(iii) a set of edges (v,w) with neither v -,w nor w --) v , and

w<v, called cross arcs.- -

A DFS tree is SO named because it can be generated by starting at r

and carrying out a depth-first search of G , numbering the vertices in

increasing order as they are reached during the search. A properly
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implemented algorithm [l9,2l] requires O(V+E) time to execute step (2)

below.

(2) Carry out a depth-first search of G , finding a DFS tree, numbering the

vertices in preorder, calculating ND(v) , and finding sets of

cycle arcs, forward arcs, and cross arcs.

Henceforth assume that step (2) has been applied to flow graph

(G,r) 9 that T is the resulting DFS tree, and that vertices are identified

by number. An s-order numbering s(v) of the vertices of T is a

preorder numbering such that w --) w1 , w + w2 , and w1 < w2 imply

SW > SW l
An s-order numbering of T can be calculated during

I L

step (2).

Lemma 4: Let s(v) be an s-order numbering of T . Then so < s(w)
- if (v,w) is a tree arc, forward arc, or cross arc, and s (4 > s(w)

if (v,w) is a cycle arc.

Proof: See [21].

If G is acyclic, s(v) defines a topological sorting of the

vertices (an ordering such that all arcs run from smaller numbered to

larger numbered vertices). . By examining the vertices of G in s-order,

from largest to smallest, we can compute the strong components  [19],

the period [13], or the weak components [23] of G , each in O(V+E)

time. By examining the vertices of G in preorder from largest to

smallest we can compute the dominators and,bridges  of G in O(V log V+ E)

time, as discussed in the next section. A third systematic method of

exploring a DFS tree allows us to find pairs of disjoint spanning trees

efficiently.

8



Let S be a set of vertices in G and let v# . By collapsing

S into v we mean forming a new graph G' by deleting all vertices

in S and all edges incident to vertices in S , adding a new edge

(v,x) for each deleted edge (w,x) with x{ S U (VI , and adding a

new edge (x,v) for each deleted edge (x,w) with x/S U {VI . Each

edge of G' corresponds to an edge of G , and each edge of G either

disappears or corresponds to an edge of G' .

For any vertex w , let C(w) = (v\(v,w) is a cycle arc] and let

.P(w) = (v 1 w *3 v and 3z EC(W) such that there is a path from v to z

which contains only proper descendants of w] . Let w be the largest

vertex of G such that C(w) # $8 . Let G' be formed by collapsing

P(w) into w . Let T' be the subgraph of Gf whose edges correspond

to the edges of T .

Lemma5: The subgraph of G induced by the vertices P(w)U {w) is

strongly connected.

Proof: Obvious.

Lemma 6: Tr , with numbering the same as that of T , is a DFS tree

of G' with root r . Cycle arcs of G' correspond to cycle arcs

of G, forward arcs of Gr correspond to forward arcs or cross arcs

of G, and cross arcs of G' correspond to cross arcs of G .

Proof: See [22].

Suppose we calculate P(V) in G and collapse P(V) into V

to create a new graph Gr , calculate P(V-1) in G' and collapse

P(V-1) into V-l , and so on, until we reach vertex 1 . Eventually
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we collapse G into an acyclic graph whose vertices correspond to the

maximal strongly connected subgraphs of G . This idea gives a way to

test the reducibility of G efficiently [22], and to efficiently find

a pair of edge-disjoint spanning trees (as we shall see).

Dominators

Lemma7: Let (G,r) be a flow graph with G = (If,&) and let T be

a DFS tree of G with root r . Edge (v,w) is a bridge of G iff

w4 is a tree arc, w has no entering forward arcs or cross arcs,

and there is no cycle arc (x,w) such that w does not dominate x .

Proof: If (v,w) is not a tree arc, or w has an entering forward arc

or cross arc, or there is a cycle arc (x,w) such that w does not

_ dominate x , then there is a path from r to w which avoids (v,w) ,

ETl3-d. (VA is not a bridge. If (v,w) is not a bridge, there must

be a simple path fram r to w which avoids (v,w) . If the last

edge on this path is a tree arc, (v,w) is not a tree arc, if it is

a forward arc or a cross arc then w has an entering forward arc or

cross arc, and if it is a cycle arc (x,w) then w does not dominate x .

Q.E.D.

If v dominates w and no vertex larger than v dominates w ,

then v is called the immediate dominator of w , denoted v = d(w) .

By-convention d(1) = 0 .
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Lemma 8: The edges {(d(w),w) 1 w cY-(1)) form a tree, called the

dominator tree of G , such that v dominates w if and only if
*

v +w in the dominator tree.

Proof: See [2].

If we calculate d(w) for all vertices w , then we can use

Lemmas 7 and 8 to find the bridges of G . Here is an O(V log V+E)

algorithm for calculating d(w) values. The method is a greatly

simplified and improved version of [21]. We calculate d(w) by processing

the vertices in preorder from largest to smallest. Let

Gk = (v,[(V,W)  1 (V,W) E & and W > k}) l- Gl = G ; GV+l  = (�V,$)  l L e t

dk(w) = min{v I w is reachable frcm v in G,] . Clearly d,(w) 5 k

for all

LL LL

w,and dk(w)<k if k<w and w>l.-

Lemmag:

Proof:

d--&d = min(Cv  1 (VA is a forward arc or tree arc]

u idk+# 1 bk) is a cross arc or cycle arc)

if k>l.

Obvious.

*
Lemma 10: Suppose w # k . If k-+w and dk+lcw> > dk(k) > then

dk(w) = dk(k) . Otherwise dk(w) = dk+l(w) .

Proof: If w>k, then any path from k to w must contain a

common ancestor of w and k . This result is proved in [21]. Thus

*
W is reachable from k in Gk iff k dw . Hence

*
'kcw) = min(dk+l(w>,\(k)) if k * W Y dk(w) = dk+l(w) otherwise.

Q.E.D.

11



Lemmall: Suppose w # k and d(w) 5 k . If dk+l(w) = k then

d(w) = k . Otherwise d(w) < k .

.

Proof: If k does not dominate w , there is some path frcxn 1

to w which avoids k . Let (x,y) be the last edge on this path

with x<k. Then dk+l(w) < x < k . Thus if- dk+l (4 = k 9

w dominates k , and since d(w) < k , d(w) = k . If dk+l(w) # k 7

then dk+l(w) < k , and w is reachable from 1 by a path of tree

arcs, to dk+l(w) followed by a path in Gk+l . Since this path

avoids k , k doesn't dominate w , and since d(w) < k ,-

d(w) < k .

Q.E.D.
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We use Lemmas 9, 10, and 11 to calculate dominators, working from

k = V t o  k=l. The algorithm appears below in an Algal-like notation.

At the end of an execution of for loop d below, each vertex w > k-

will be contained in a unique set. All vertices w in the same set

will have the same value of dk(w) . Each set will have a distinguishing

name and a priority whose value is d,(w) for all elements w of the

set. In addition, given a set, either all its vertices have known

immediate dominators or none have known immediate dominators. Associated

'with each vertex w > k such that v 3 w implies v < k will be a-

priority queue named w containing all sets which have descendants of

W as elements.

We use the following set operations:

FIND(w) returns the value (x,p) where x is the name and p is

the priority of the set containing w as an element;

U-NION(XYY) adds the elements in set x to set y (destroying x) .

The new set y remains in the same priority queue with the same

priority as the old set y .

We use the following priority queue operations:

HIGwd returns the value (x,p) where x is the name and p the

priority of a set in queue q with highest priority (by convention

HIGfh) returns (w) if queue q is empty);

DELETE(x,q) deletes the set named x from queue q ;

QUNICN(q,r) adds the sets in queue q to queue r (destroying

queue q ).
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(3) d: for k:=V step

d(k) :=O;

e: p :=min((v I

-1 until 1 do- m update: begin

(v,k) is a forward arc or a tree arc)

U (p' I3x,y such that (y,k) is a cross arc or cycle arc

and (XYP') = flNNY)l u Ck-13);

comment p = 4,(k) if k f- 1, p = 0 if k = 1;

create a set (k] with name 2k-1 and priority p;

create a set fi with name 2k and priority p;

create a queue named k containing the sets named 2k-1 and 2k;

for w such that k -) w do QUNION(w,k)

(x,p') :=HIGH(k);

f: while p' > p

g: ifp'2 k and all vertices w in set x have d(w) = 0 then

for each vertex w in set x do d(w) :=k;

DELETE(x,k);

if all vertices w in set x have d(w) = 0 then UNION(x,2k-1)

else UNION(x,2k);

(x,p') :=HIGH(k);

end;

if the set named. 2k is empty then DELETE(2k,k);

end;

Steps (2) and (3) will compute d(w) for every vertex w . Statement e

implements Lemma 9, statement f (minus statement g) implements Lemma 10,

and statement g implements Lemma Il. The total time required by steps (2)

and (3) is O(V+E) plus time for O(V) set unions, O(E) FIND's,

and O(V) priority queue operations. The set operations require
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O(V log V + E) time using a method given in [8,20]. The priority

queue operations require O(V log V) time using Crane's method 1121.

The total time is thus O(V log V + E) . The storage space required

is O(V+E) l (See [21] for further details.)

If the graph has no cross arcs, the priority queues are unnecessary

and dominators can be calculated faster, using only disjoint set union

operations. (See [21] for details.)

Disjoint Branchings

The dominators algorithm above forms an important part of an efficient

algorithm for finding two spanning trees having only bridges in common.

We use the dominators algorithm to find all the bridges of G . We duplicate

the bridges and discard all but the edges which will form the spanning trees.

The following lemma forms the basis for this calculation.

Lemmal2: Let w { 1 be a vertex of G . Suppose the tree arc

entering w is not a bridge. There must exist a non-tree arc

(XYW) with dw+l (x) = dw(w) . Form G* by deleting all edges

entering w except the entering tree arc and (x,w) . Let

d;(v) = min[x( v is reachable from x in Gk} where

Gk = (Y, {(x,y)l(x,y) is an edge of G* and y 1 k}) . Then

dp) = dkc"> for all v and for all k .

b Proof:

i:

Clearly s(v) > dl(v) for all k and d.$v) = dk(v) for-
L-

all k >w . Suppose there is some k ,<w and some v such that

$�$d  > dk(v)  l
Then there is a simple path containing w from dk

to v in Gk . Let p be the part of this path from dk(v)
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to w . If there is a vertex y on p with y <w , Y f dk<4

and Y#w, then some ccznmon ancestor z of y and w lies on p

by Lemma 8 of [21]. But the path of tree arcs from z to w is

in Gi Y and there is a path from dk(v) to v in Gk , a contradiction.

If every vertex y on p other than ?k( )V and w has y>w,-

then p is a path in Gw , and \(v) = dl(w) = dw(w) . But clearly

dw(w) = d;(w) Y and thus there is a path from %( )
v = d;(w) to w

to v in Gk , a contradiction. Q.E.D.

To find two spanning trees with fewest common edges, we execute

step (2)Y which carries out a depth-first search of the problem graph G .

Next we execute step (4) below, which uses statement "update" of step (3).

(4) for k:=V step -1 until 2 do begin- -

m :=min(x)(x,k) is a forward arc] U

U {p* 13x,y such that (y,k) is a cross arc or a cycle arc

and (XYP') = F~(Y)] U ck];

comment m = min(dk+l(x)I(x,k)  is a non-tree arc] IJ [k);

ifm = k then begin

comment the tree arc entering k is a bridge;

duplicate the tree arc entering k;

delete all other edges entering k;

end else begin- - -

let (x,k) be a non-tree arc with dk+l(x) = m;

delete all edges entering k except the tree arc and (x,k);

calculate dk values from dk+l values using statement "update"

in step (3);

comment statement "update" may actually be simplified somewhat

since dominators are not needed, only dk values;
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end end;I_-

delete all edges entering vertex 1;

It is easy to prove by induction using Lemmas 7 and 12 that during

the k-th iteration of the for loop in step (4), m = k if the tree

arc entering k is a bridge, m = dk(k) otherwise; and that after

step (4) is completed, the graph remaining is a bridgeless graph with

exactly 2(V-1) edges, containing two copies of each bridge of the

original graph. Fxccution of step (4) requires O(V log V f E) time.

Henceforth assume that G is a bridgeless flow graph with 2(V-1)

edges.

The idea of the remaining part of the disjoint spanning trees algorithm is

to collapse strongly connected regions of G until we create a bridgeless

acyclic graph. We can easily find two disjoint spanning trees in the

resulting graph. Then we expand the collapsed regions, modifying the
j
I

I
spanning trees accordingly, to produce two disjoint spanning trees of

the original graph.

Let G('+') = G . For 2 < k < V , let G(k) be formed from

@+Qr by computing P(k) in -G(k'l) and collapsing P(k) into k .

For k = 2,3,...,V+l  , G(k) has a DFS tree T 04 corresponding to

I the DFS tree T of G . Gc2) -'is acyclic. The following lemmas show

that % values are preserved during this collapsing process, and that

,h), &-) G(2)
Y l l �Y have no bridges.

it -
Lerfllna 13:- - Let G be a bridgeless flow graph and let w be the highest

vertex of G with entering cycle arcs. Let G* be formed from G by

collapsinlg P(w) into w . Suppose * v
?A ) is defined in G' . Then

%( )’ v = dk(v) for all v in G* and for all k < w .-

17



Proof: If k<w,- every path in Gk (possibly containing w')

corresponds to a path in Gk (possibly containing one or more vertices

of P(w) U(w} ) and vice-versa. It follows that dk(v) = dk(v) .

Q.E.D.

Lemma 14: Let G be a bridgeless flow graph. Let G(v+l) ,G(') , . . . ,Gc2)

be defined as above. Then for k = 2,3,...,V+l  , G04 has no bridges.

Proof: G(v+l) has no bridges by assumption. Suppose for some k > 2 ,-

G( kc1) has no bridges. We show that G(k) has no bridges. The lemma

then follows by induction.

From Lemma 12 we have dk@l)(x) = dp)(x) for all x . Let

(v,w) be a tree arc of G(k) . By hypothesis the tree arc entering w

in GCk+') is not a bridge; we wish to show that (v,w) is not a

- bridge in G04 . Two cases arise from Lemma 7.

(i) Vertex w has

Then w has an entering

is not a bridge by Lemma

an entering forward or cross arc in Gk+U .

cross or forward arc in G(k) Y and (v,w>

79

(ii) Vertex w has an entering cycle arc (Y,w) with y not

dominated by w 'in G(k+l) -. Then w 5 k .

4 If w=k, ILet (lYv2)Y (v2Yv3)Y l **Y (V,-1YY) be a Path

from 1 to y in GON which doesn't contain k . Let (v~,v~+~)

be the last edge on this path with vi not a descendant of k in the

DFST-of G(k+l) . Then vi+leP(k) , so (vi,w) is a forward or

cross arc of Gw Y a+rd. tbw> is not a bridge.
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.

b) If w < k and ykP(k) , d$i(y) = d;yll)(y) < w by

Lemma 12 and the fact that w doesn't dominate y in G(w1) . Thus

w doesn't dominate y in G04 and (v,w) is not a bridge.

4 If w < k and yeP(k) , (k,w) is a cycle arc of

G(k) , and d;:;(k) = d($)(k) = d;zl)(y) < w , by Lemma l-2, the

fact that P(k) U (k] induces a strongly connected subgraph of G (k+l) Y

and the fact that w doesn't dominate y in Gw-1) . It follows

that (v,w) is not a bridge.

Thus G04 contains no bridges.
Q.E.D.

Now we have a systematic way to collapse the bridgeless flow graph

G = G('+l) into an acyclic bridgeless flow graph G(2) . We need to find

two disjoint spanning trees of G(2) and to systematically expand them

to give two disjoint spanning trees of G .

For any edge (v,w) in G(2) let h(v,w) = 0 . For any edge

twd in G(k+l) , let h(v,w) = k if veP(k) U(k} and weP(k) U(k} .

Otherwise let h(v,w) = h(v*,w*) , where (vT,wf) is the edge in G(k)

corresponding to (v,w) . According to this inductive definition,

h(v,w) is the largest vertex into which both v and w are collapsed

when forming G(v+l),G(v), . . .,G(?) ; if v and w are never collapsed

together, h(v,w) = 0 . The value h(v,w) is defined for all edges

(VY 4 in all graphs G(k) , k = 2,3,...,v+l .

Since G(2) has no bridges, each vertex except 1 in G(2) has

at least two entering edges. (2)Let Tl = T (2)
0

(2) is the DFS tree

of G(2) ) (2)and let T2 be any subgraph of G c2) ,Tc2)
1

containing

exactly one arc entering each vertex except vertex 1 .
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been

G(k)

loss

For some k , 2<k<V 04- - , suppose that Tl 04and T2 'have

defined. (k)
T1

wand T2 will be edge-disjoint subgraphs of

which together contain all the T04 -arcs of G04 . Without

wof generality, suppose Tl contains the T 04 -arc entering k .

Let (vl,v2),(v2,v3),..  .,(v,-1,k)  be a simple path in G(k'l)

such that

( >i vl{P(k) and vj eP(k) for j = 2J,...,n-1 ;

( >ii either (v,, v-2) (k)corresponds to an edge of T2 or

PyJ is a non- T w-1) -arc of G(k+l) such that the

(k)
T2 -arc entering h(vl,v2) is not a cycle arc; and,

(iii) for all j = 3,4,...,n-1 , there is a non- T (k+l) -arc

CxYvj) of G(k+l) such that either x E P(k) U {k) or

04the Tl arc entering h(x,vj) is not a cycle arc.

There must be such a path since there is an edge (x,y) k Gck+l)

with xkP(k) U(k] , yeP(k) U {k] , corresponding to the Tik) -arc

entering k ; and there is a simple path from y to k in G( k+l)

which contains only vertices in P(k) U(k] . Some final part of this

path plus some initial edge (v,,v,) must satisfy (i), (ii), and (iii).

L

Let Tik? and TiH1) be defined as follows:

For i=1,2 let T(k+l) contain all arcs in G@+l)i corresponding

04to arcs in Ti .

-Let (~,,v~),(v~,v~),...,(v~-~,k)  be in Tik+l) . (If by,>

04 k+Ucorresponds to an arc of T2 , it is already in T2 .)



For each vertex w in P(k) with an entering arc (x,w) in

w-1)
T2 Y let (y,w) be another entering arc, a T(wl) -arc if possible,

such that either yeP(k) U(k) or the Tl(k) -arc entering h(y,w) is

not a cycle arc. (WAdd (yyw) to Tl .

For each vertex w in P(k) which still has no entering arcs in

(k+G
Tl or Ti"') , let (x,w) be the entering T @+1) -arc and let

(y,w) be any other entering arc. If y[P(k) U {k) and the Tp) -arc

entering h(y,w) is a cycle arc, then add (y,w) to T(k+l) and

'(x,w) to Tik+')
2

@+a. Otherwise, add- (x,w) to T2 and (YY4

to Ty" .

We need to show that, for all 2 5 k 5 V+l , 04Tl 04

04

and T2 are

edge-disjoint spanning trees of G (k). Clearly Tl 04and T2 are

edge-disjoint subgraphs of G04 . It is easy to show by induction that

04
Tl

04and T2 each contain exactly one edge entering every vertex

of G04 except vertex 1 , and that T (k) 04
1 and T2 together contain

all the T 04 -arcs of G04 .

Because of the way the G04 9 are constructed, if (v,j) is
.

a cycle arc of Gw , then for all k > j there is a corresponding

cycle arc (w,j) of G(k) .

Consider-:

(A) Let (x,y) be an edge of G(k) which corresponds to an edge

(X?,y') of Tij+l) uThj+l) for some j < k but not to any edge of

,!j) uT(j>
2 , and such that x, kP(j) U (j] . If h(x,y) has an entering

cycle arc in T (k)
i for i =lor 2, 04then (x,y) is not in Ti .
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Lemma 15: For k = 2,3,...,V+l  , wTl wand T2 satisfy property (A)

above and are edge-disjoint spanning trees of G(k) .

Proof: The lemma is clearly true for k = 2 since G(2) is acyclic.

Suppose the lemma holds for integers from 2 to k . We prove the

lemma for k+l . To prove that (A) holds, let (x,y) be an edge of

Gck+‘) which corresponds to an edge of Tl(j+'> u ,(j+')
2 for some

j < k+l but not to any edge Of ,!j) uT(j)
2 , and such that

x'{P(j)U [j} . If j = k , (A) holds for (x,y) because of the

way ' T ck+') and TLk+l)
1 are constructed. If j<k, let (xl,y')

in G04 correspond to (x,y) in G(k+-l) . Then h(x,,y') = h(x,y) < k

and any cycle arc in Tl
ck+') UT@+')

2 entering h(y,z) corresponds

to a cycle arc in Tlck) (JTck)2 entering h(yf,z,)  , so (A) holds for

(x,y) by the induction hypothesis and the way Ty') and TLk+')

are constructed.

@+QNow we must show that Tl and Tik+') are spanning trees;

that is, that neither (k+l)T, nor T(k+l) contains a cycle. SupposeQ

to the contrary

This cycle must

no cycles.

I L

that for some ie [1,2) , Tck+')i contains a cycle.

contain sane vertex of P(k)U {k) , since Tfk) contains

Suppose the cycle contains only vertices in P(k) U {k] l Then the

cycle must contain a cycle arc entering k , which means the cycle is

in TCk+‘) (k+l) @+1)
2 l

But every vertex of G has only one edge of T2

entering it, @+l)and there is a path of T2 -arcs from outside

P(k) U{k] to k . (krt-1)This is impossible, so no Ti cycle containing

only vertices in PO4 u CM can exist.
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i

L

Suppose the cycle contains one or more vertices outside P(k)U(k} .

The cycle must contain a cycle arc (v,w) such that all vertices on the

cycle are descendants of w in Tw-1) . (This follows from Lemma8

in [21].) Let (x,y) be any edge of the cycle. We will show that in

G(w+l) either x and y are collapsed together or there is an edge

in T(w+l)
i corresponding to (x,y) l Clearly, h(x,y) > w , since x

and y are descendants of w (in Tb-1) and in T(*') ), there is

a path from x to y to w in G(k+l) which contains only descendants

or w, and some path in G(w+Q corresponds to this path. If x and

y are not collapsed together in G(w+l) , then h(x,y) = w l If in

addition (XY Y) corresponds to no edge in Tb-4
i , then for some

w+l<j <k,- _ bb Y> must correspond to an edge in Ti(j+'> With

x' iwJ> u EdI Y and to no edge in T (3)
i

. But this is impossible, since

then property (A) would imply that (x,y) is not an edge of Ti(W J

since a cycle arc entering w is in Ti(W .

Wl>Thus the cycle of Ti (w+l)-arcs corresponds to a cycle of Ti

arcs, since v and w are not collapsed together in Gbw l But

T cw+�)

id

has no cycles. Thus T(k+l)

Tdk '1
i can have no cycles, and T @+1)

+
1

are spanning trees. The lemma follows by induction.

Q.E.D.

We now have a very delicate but direct way to construct two edge-

disjoint spanning trees in a bridgeless flow graph. We must still find a way

to implement this construction so that it is efficient. There are two

steps to be implemented. First, we must collapse the graph, calculating

p(v) Y PO-1) ,...,P(2) and successively forming G(v+l),G(v) ,Gc2)y... .

During this process we gather enough information about each P(k) to
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enable us to later construct the paths necessary to give the spanning

trees. Then we must expand the graph, constructing spanning trees for

G(2),G(3) y... ,G(v+l) from the previously gathered information.

The algorithm needs several arrays and other data structures. For

each edge (v,w) , h(v,w) is the first vertex into which both v and

W are collapsed, as defined previously. If v is a vertex, s(v) is

the s-number of ‘v , as defined in the section on depth-first search.

With each vertex v is associated a p-set with name v , containing

all those vertices currently collapsed into v . We use the following

operations on p-sets:

PFIND(w) returns the name of the p-set containing vertex w ;

RlNION(x,y)  adds the elements in p-set x to p-set y , temporarily

destroying p-set y ;

_ SPLIT(x,y) undoes the operation KlNION(x,y)  , if PUNION(x,y)  is the

most recent RINION not yet undone.

SPLIT(x,y) is necessary when we begin expanding the graph; we must

undo each collapsing operation. The Appendix to this paper describes

a way to implement PFZYD, RJNION, and SPLIT so that each PFIND requires

O(log V) time and each KJNION or SPLIT requires constant time independent

of v .

With each vertex v is also associated an s-queue with name v .

This s-queue is a priority queue containing each original edge (x,y)

corresponding to an edge entering v in the currently collapsed graph.

The priority of edge (x,y) in the queue is s(x) . We use the

following operations on s-queues:
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1
L

SHIa(q) returns an edge (x,y) with highest priority in s-queue q ;

SDELETE((X,~),~) deletes edge (x,y> from s-queue q ;

SUNION(q,r) adds all elements in queue q to queue r , destroying queue q .

We order s-queues by s-number for the following reason: Suppose

*
kdv. Then all edges (x,y) such that k 5 x will be deleted frcrm

s-queue v before edges (X,Y) such that +k 'A, x) . This fact

facilitates determining the P(k) % and makes the algorithm's running

time linear except for set and priority queue operations.

Each vertex v can be in at most one P(k) . The array p is computed

so that p(v) = k iff veP(k) l If v is in no P(k) , p(v) = 0 .

If v#l, T(v) is the T(a -arc entering v . If veP(k) for

some k, N(v) is an arc in G ( v+l> corresponding to a non- T ( k+l) -arc

entering v in G(k+l) . If VIP(~) for any k , N(v) is an arc in

G( '+'> corresponding to a non- T (2) '-arc entering (2)vinG .

Suppose veP(k) . Then there is some path from v to k through

vertices in
P(k) l E(v) will be a G(v+1> -edge corresponding to the ,

first Gck+') -edge on some such path. That is, some path

(v,~,),(v~,v~),  ...,(vn,lyk) in G(k'l) through vertices in P(k) will

correspond to edges E(v),E(v2),...,E(vn  1> in G('+') . E(v) is

necessary to calculate the-paths used in constructing the edge-disjoint

spanning trees.

Step (5), appearing below in Algal-like notation, collapses G = G('+l)

intO ,('I, G('-l) , . . . , GC2) l It calculates the sets P(k) , in addition to

various data items described above. It uses as a procedure SEARCH, which

is a recursively programmed depth-first search for exploring any

particular P(k) .
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(5) begin

procedure SEAEH(k,v); begin

add v to P(k);

p(v) :=k;

(x,y) := sHIGH(v) ;

if (N(v) = 0) and. (T(v) # by)) then N(v) := (XYY);
*

while k I

SDEUTE( ('b Y) Y v> ;

h(x,y) :=k;

W :=PFDD(x)

comment if w has not been reached before, search from w;

g (P(W) tc: k) and (w h k) then begin- -

E(w) := by);

SEAlXH(k,w);

end;

(XYY) :=SHIGE(v);

if (N(v) (T(v) # (x,y)) then N(v) :=(x,y);

end end;- -

comment initialization;

for v:= 1 until V do begin

create a p-set {v) with name v;

if v # 1 then let T(v) be the tree arc entering v;

create an s-queue named v containing all arcs (u,v)

entering v, each with priority s(u);

N(v) :=O;

P(v) :=@;

P(V) = 0;

end;
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comment collapsing;

for k- :=V step -1 until

(XYY> :=SHIC;H(k);

2 do begin

comment k has at most one entering cycle arc;

*
if k -,x do be l

-S

SDEmTE( (XY Y> , k) ;

h(x,y) :=k;

comment find P(k);

sEARcH(k,pFnvD(x)) ; -

Comment collapse P(k) into k;

for wP(k) & begin

SUNION(v,k);

-WNION(v,k);

s end end end;

Step (6) below takes the information calculated by step (5) and

Uses it to construct edge-disjoint spanning trees of
G c2), Gc3> , . . .,G('-) .In the Process it undoes the HJNION operations performed in step (5), using

operation SPLIT. The list "path" l1s a list of de ges used to find a
path from outside P(k) through P(k) to k of the type necessary

for the spanning tree construction.

(6) ;comment compute edge-disjoint spanning trees for G
(2)

for k :=2 until V+

Tl(k)
=O*-

:=T(k)

(XYY) :=SHIGH(k);
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if b,Y> = T(k) then begin

SDEmm ( (x, Y> Y k) ;

(x,y) := SHIGH(k);

end;

T2W := (XYY> ;

end;

comment compute edge-disjoint spanning trees for

G(3),,(4) , . . . ,G(v+l) = GoY

for k = 2 until V do if P(k) # $ then beginm-

SPLIT(v,k); -

if Tl(k) = T(k) then i:=2 else i :=l;

CxYY) '=Ti(k);

w:=PFIND(y);

Ti(wl ‘= (xYY);

T3-i(~) :=T(w);

path :=@;

while w # k do begin

add (x,y) to front of path;

(XYY> :=E(w);

W :=PFIND(y);

end;

Ti(k) := (XYY>;

let (x,y) be first edge on path;

delete (x,y) frcxn path;

while (p(PFIND(x)) = k) and ((h(N(PFIND(y)) = k) or

(T3-i(h(N(pm(Y) > > 1 is not a cycle arc)) do begin- -

Ti(PmCY)) '= (xYY>;
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.
if (%Y> { T(PF~(Y)) then T3 &PFIND(y))  :=T(PFIND(y))

else T3_i(P'm(Y)) :=N(Pm(sy));

let (x,y) be first edge on path;

delete (x,y) from path;

end;

T3-i(pm(Y)) '=T(pm(Y));

if p(PF1M)(x)) # k then Ti(PFIM)(y)) :=(x,y)

else Ti(PFIND(y)) :=N(PFIND(y));

for veP(k) do if Tl(v) is undefined then begin- -

g (h(N(v)) h k) and T3 i(h(N(v)) is a cycle arc) then begin

T&v) :=N(v) ;

T3-i(v) :=T(v);

end else begin- -

TiO :=T(v);

T3-i(v) :=N(v);

end end end;P-P

comment Tl and T2 now give two edge-disjoint spanning trees of G;

It is an elementary if tedious exercise to verify that steps (5)

and (6) correctly construct two edge-disjoint spanning trees of any

bridgeless flow graph with exactly two edges entering each vertex except

vertex 1 . It is also easy to show that the algorithm requires O(V)

time, plus time for O(V) set operations and O(V) priority queue

operations. The set operations require O(V log V) time using the method

described in the Appendix and the priority queue operations require

O(V log V) time using Crane's method [El.
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The total time required to execute steps (2), (4), (5), and (6),

which together construct two spanning trees containing only the bridges

of an arbitrary flow graph G , is thus O(V log V + E) . The total

space required is O(V+E) . Figures 1-6 illustrate the application

of this algorithm to a flow graph.

Conclusions

This paper has presented a very simple O(VE) algorithm and a much

more sophisticated O(V log V + E) algorithm for finding two spanning

trees with fewest common edges in a directed graph. The latter method

applied depth-first search, a highly simplified and streamlined version

of an efficient dominators algorithm (presented for the first time here),

and a systematic cycle-shrinking method. The data structures necessary,

disjoint sets and priority queues, are sophisticated but quite easy to

. implement. The O(V log V + E) algorithm, although more complicated

than the O&E) algorithm, is theoretically better by a factor of

V/log v l Computational

that the O(V log V + E)

to the O(VE) algorithm

experience with similar algorithms suggests

algorithm will be competitive with or superior

for practical problems. Both algorithms can be

generalized to find two minimally intersecting spanning trees with

possibly different roots. - '

The depth-first search technique and the data manipulation methods

used here are applicable to a variety of other graph problems. An

int-eresting  open problem is whether the methods used here (or other

methods) can be combined to give an N O(E) algorithm for finding two

spanning trees with fewest common edges in an undirected graph. Such

an algorithm could be used to efficiently solve Shannon switching games

and to do "mixed" analysis of electrical networks.
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Appendix: Implementation of Reversible Set Unions

Suppose we are initially given n disjoint sets, each a singleton

and each with its own name. We wish to implement sequences of operations

of three types:

FIND(z) returns the name of the set containing z as an element;

UNION(x,y) adds the elements in set x to set y , temporarily

destroying set x ; and,

SPLIT(x,y) splits set y into two parts, one part corresponding to

the old set x and the other corresponding to the old set y .

Any SPDIT(x,y)  operation must follow a UNION(x,y) operation and be

separated from it only by FIND's and paired UNION and SPLIT operations.

To implement these operations, we represent each set as a directed

tree. Each vertex in a tree corresponds to an element in a set; a

vertex contains the name of the corresponding element, a pointer to

its

the

set

and

father (if any) in the tree, and a count of its descendants in

tree. In addition, the root of a tree contains the name of the

corresponding to the entire tree.

To carry out FIND(z) , we locate the vertex corresponding to z

follow father pointers to the root of the tree, there finding the

name of the set containing z .

To carry out UNION(x,y) , we locate the roots corresponding to

-x and y . If set x has more elements than set y , we combine the

trees by making the root corresponding to y a son of the root corres-

ponding to x . Otherwise, we make the root corresponding to y a son

of the root corresponding to x . We update the number of descendants
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of the new root and change the name in the root to y if necessary.

The new edge created corresponds to the UNION operation.

To carry out SpLIT(x,y)  , we break the edge corresponding to the

UNION(x,y) operation which precedes SELIT(x,y) . We update the names

and numbers of descendants of the new roots as necessary.

Clearly each UNION and each SPLIT operation requires constant time.

It is easy to prove by induction that any path in a tree with k

vertices created by this algorithm has length slog k . (See [20].)

Thus each FIND operation requires O(log n) time.

In the application of this algorithm considered in the text, all

the SPLIT operations follow all the UNION operations. In this special

case it is possible to devise a slightly faster but much more ccxnplicated

set union method, based on results in [8]. However, the method presented

here is simple and is efficient enough for our purposes.
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1

Figure 1: A flow graph, with start vertex 1 . Edge (1,2) is a bridge.
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Figure 2: Depth-first search of graph in Figure 1. Tre'e arcs are

marked T , forward arcs F , cycle arcs Cy , and

cross arcs Cr . Vertices are numbered in preorder;

numbers in parentheses give an s-order numbering.
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-Figure 3: Graph after step (2s) applied. Bridge has been duplicated;

two cycle arcs remain.
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Figur-e 4: Completely collapsed graph G (3) = G(2) with two edge-

disjoint spanning trees, marked by m and ~(1 .
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Figure 5: Partially expanded graph G(4) with two edge-disjoint

spanning trees.
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Figure 6: Completely expanded graph G (5) = G with two edge-disjoint

spanning trees.
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