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An Analysis of Alpha-Beta Pruning

Put one pound of Alpha Beta Prunes
in & jar or dish that has a cover.
Pour one quart of boiling water over
prunes. The longer prunes soak, the
pluper they get.

- Alpha Beta Acme Markets, Inc.,
Le Hebra, California

Computer programs for playing games like chess typically choose their
moves by searching a large tree of potential continuations. A technique
called "alpha-beta pruning" is generally used to speed up such search
procesies without luss of information. The purpose of this paper is to
analyz: the alpha-beta procedure in order to obtain some quantitative
estimates of ita performance characteristics.

Section 1 defines the basic concepte associated with game trees.
Sectin 2 presents the alpha-beta method together with a related technique
which 18 similar, but not as powerful, because it fails to make "deep
cutoffs" The correctness of both metnods is demonstrated, and Section >
gives examples and fur:her development of tne algorithms. Several
suggestions for applying the method in practice appear in Section 4, and
the history of alpha-beta pruning is discussed in Section 5.

Section 6 begins the quantitative analysis, by deriving lower bounds
on the smount of searching needed by alpha-beta and by any algorithm which
solves the same generel yroblem. BSection 7 derives upper bounds, primarily
by considering the case of random trees vhen no deep cutoffs are made. It
is shown that the pro-edure is reascmably efficient even under these weak
assumptions. Section 3 shows how to introduce some of the deep cutoffs
{nto the analysis; and Section 9 shows that the eificiency improves when
there are dependencies bLetween successive moves. ml paper is eisentially
self-contained, except £ a fow matoematical results guoted in the later

sections.
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1. Games and position values

The two-person games we are dealing with can be characterized ty
a set of "positions"”, and by & set of rules for moving from one position
to another, the players moving alternately. We asscume that no infinite
sequence of positions is allowed by the rules,:/ and that, there are only
finitely many legal moves from every position. I+t follows from the
"infinity lemma", see [11, Section 2.3.h.3], that for every position »
there is a number N(p) such that no game starting &t p lasts longer
than N(p) moves.

If p is a position f'rom which there are no legal moves. there is
an integer-valued function f(p' which represents the value of this
position to the player whose turn it is to play from p ; the value to
the other playe.’ is astumed to be =f(p)

If p 1is a position from which there are d legal moves Pyre 2Py
where d > ) , the problem is to choosc the "best” move. We assume that
the best move is one which achieve: the zreatest possible value when the
game ends, if the opponent also cho:ses moves which are best for him.

Let F(p) be the greates: porsible value a.ch:l,évable from position p
against the optimal defensive strategy, from the standpoint of the player
who is moving from that position. Since the value (to this player)

/

after moving to position p, will be -F(;ii) » we have

f(p) it 4 =0 ;
F(p) - . (1)
m(-r(pl),-.-,'r(Pd)) > 1f d > 0 .
-

7 Strictly spealing, chesc does not satisfy this conditlom, since its
rules for rereated poesitions only nive the players the optiom to
seques’. & draw, in certain circumstances; if neither player actually
does ask for a draw, the gam: can go on forever. But this technicality
is of no practical importance, since compu:er chess programs only
look finitely many moves ahead. It 1s possible to deal with infinite
gmes by assigning appropriate values to raepeated positions, but such
questious arz veyond the scope of tnis paper.
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Tris formula serves to define F(p) <for all positions p , by inducticn
on the length of the iongest game playable from p .

In most discvssions of game-pleoying, a slightly difterent formalism
is used; the two playerz are named Max and Min , where all values
are given from Max's viewpoint. Thus, if p s a terminal position
with Max to move, its value is f(p) a5 before, but if p is a
terminal position with Min <to move 1its value is

gp) = -f(p) . (2)

Max will try to maximize the final value, and Min will try to minimize

1t. There are now two functions corresponding to (1), namely

f(p) ’ it 4=0 ’
F(p) = (3)
max(G(pl),...,G(pd)) , 1f a>o0 ,

vhich is the best value Max can guarante: starting at position p,
and

e(») » if 40 , )
G(p) = (%)
mm(r.(pl), L] .,F(Pd) ) ] if d > 0 »

vhich is the best that Min can be sure of achliaving. As before, we
assure that Pyy-:sPy are the legal moves from poeition p . It is
esay to prove by induction that the two definitions of ¥ in (1) md
(3) are identical, and that
G(p) = -F{p) (5)

for all p . Thus the two approaches are cquivalent.

Sometimes it is easier to reason about gmme-playing by using the
*ninimax” framework of (3) and (k) instead of the "negamax" approach
of Bquation (1); the reasom is that we are sometimes less confused if

we consistently evaluate the gase positions from one player's standpoint.
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On the other hand, formulation (1) is advantagecus when weire trying
to prove things about games, because we don't have to deal with two
(or scmetimes even 4 or 8) sepacate cases when we want to establish
our results. Equation (1) is analogous to the "NOR" operation which
arises in circuit design; two levels of NOR logic are equivalent to
a ler:1 of AND's followed by & level of OR's.

The function F(p) 18 the maximum final value that can be achieved
if both players play optimally; but we should remark that this reflects
a rather conservative strategy that won't always be best against poor
players or against the nonoptimal players we encounter in the real
world. For example, suppose that there are two mover, to positions
p; and p, , Where p; assures a draw (value O ) but camnot possibly
win, while P, give: a chance of either victory or defeat depending on
whether or not the opponent overlooks a rather subtle winning move.

Ve may b2 better off gambling on the move to Ps s which is our omly

chance to win, unless we are convinced of our opponent’s competence.

Indeed, humans seem to beat chess-playing prog:ams by adopting such a
strategy.



2. Develomment of the algorithm

The following algorithm (expressed in an ad-hoc AIGOL-like language)

clearly computes F(p) , by following definition (1):

integer procedure F (position P):
w integer myi,t,d;
determine the successor positions  JERE Py}
if d = 0 then F := £(p) else

begin m = ~m;

for 1 :=1 steR luntil d g_o_'
begin t := -F(pi);
‘i_._{‘t >m then m :=t;

end;

end.

L

Here ® denctes a value that is greater than or equal to |£(p)| for
all terminal p.sitions of the game, hence -=» is less than or equal
to + F(p) for all p . This algoritim is a "brute force" search
through all possible conmtinuations; the infinity lemma assures us that
the algorithm will terminate in finitely many steps.

It 15 possible to improve on the brute-force search by using a
"branch-and-bound” technique [1k], ignoring moves which are incapable of
being better than moves which are already known. For example, if
F(pl) = -10 then P(p) > 10 , and we don't have to now the exact value
of F(p,) if we can deduce that F(p,) >-10 (i.e., that -F(p,) <10).
Thus if paluclmlmﬁm P such that r(pal) <10, we reed
not bother to explore any cther moves from P - In game-playing
terminology, a move to p, can be "refuted” (relative to the alternative



move D, ) if the opposing player can make a reply to P that is at
least as good as his beat reply to P - Once a move has been refuted,
we need not search for tha best possible refutation.

This line of reasoning leads to & computational technique that
avoids much of the computation done by F . We shall define Fl as
a procedure on two parameters p and M', and cur goal is to

achieve the fcllowing conditions:

F1(p,bound) = F(p), if F(p) < bound;
F1(p,bound) > bound, if F(p) > bound. (1)

These relations do not fully define Fl , but they are sufficiently
powerful to calculate F(p) for any starting position p because they
imply that

F1(p,=) = F(p) . (2)

The following algoritim correspsids to this branch-and-bound idea.

integer procedure F1 (position p, integer bound):
begin integer m,i,t,4;
determine the saccessor positions Py’ T
ifd=0¢thea Pl := £(p) else
bagin » := o
fori:=1steplumtilddo
begin ¢ := -Pl(pl.-l);
it t >n tha' m := t;
AL m > bound then go to done;

-d;
done: Fl :=m;
-md;

it



We can prove that this procedure catisfies (1) hy e_rguing as follows:
£t the beginning of the i-th lteration of the £2£ loop, we have the
"invariant” condition
n = max(-F(p,),---»=F(p, ) (3)

just a8 in procedure F . (The max operation over an empty set is
conventionally defined to be -= .) For if 'F(Pi) is >m then
Fl(pi, -n) = F(Pi) » by condition (1) and induction on the length of the
game following p ; therefore (3) will hold on the next iteration.
And if max(-F(pl),...,-F(pi)) >bound for any i , then F(p) > bound .
It follows that comdition (1) holds for all p .

The procedure can be improved further if we introduce both lower

and upper bounds; this idea, which jis called alpha-beta pruning, is a

significant extension to the one-sided branch-and-bound method.
(Unfortunately it doesn't apply to all branch-and-bound algorithms, it
works only when a gane tree ir being explored.) We Aefine a procedure
F2 of three parameters p , alpha , and beta , tor alpha < beta,
satistying the fullowing conditi<ns analogous to (1):

F2(p,alpha,beta) < alpha, if F(p) < alphe;

F2(p,alpha,beta) = F(p), if alpha < F(p) < beta; (¥)
F2(p,alpha,beta) > beta, if F(p) > beta.

Again, these comditions do not fully specify Fe , but they imply that
F2(p,-=ya) = P(p) - ()
It turns oul that this improved algorithm looks only a little different

from the cthers, vhem it is exmressed in a programming languaye:



integer procedure F2 (position p, integer alpha, integer beta):

begin integer m,1,t,d;
determine the successor positions Pyr e -oPyi
gd=o%r‘2 :=1’(p)ﬂ£g
begin m := alphs;
fort:=lsteplumtilddo
begin t := 'F?(Pi:-_b_;e,ﬂs-m);
gt >n Mn 1= b3
if m > bets then go to done;
end

ity

done: F2 :=m

end;
end;

To prove the validity of F2 , we proceed as ve did with F1 .

The invariant relation analogous to (3) is now
m = max(alphs,-F(Py)s.:+» “F(py 1)) (6)

and m < beta . If -P(pi) > beta then -m(pi. -beta,-m) will also
be > beta, and i* m < -F(pi) < beta then -ra(pi,-l_:_-;t_a_,-) = -F(pi) ;
so the proof goes through as before, establishirg (4) vy inductiom.

Now that ve have found two improvements ¢f the minimax procedurs,
it is natural to ask vhether still further improvement is possible. Is
there an "alpha-beta-gamma" procedure FJ , which makes use say of the
seccnd-largest value found so far, or some other gimmick? Section 6
below chows that the auswer is no, or at least that there is a reasomable
sense in which proceture F2 is optimum.



3. Examples and refinements

As an example of these procedures, consider the tree in Figure 1,
which represents a position that has three successors, each of which
has three successors, etc., until we get to 5h = 81 positions possible
after four moves; and these 81 positions nave been assigned "random”

f values according to the first 81 digits of n . Figure 1 shows the
7 values camputed from the f£'s ; thus, the root node at the top of the
trec has an effective value of 2 after best play by both cicdes.

F:iqure 2 shows the same situation a2s it is evaluated by procedure
F1(p,=) . Note that only 236 of the 81 terminal positions are
examined, and that onc of “he aodes at level 2 now has the "approximate™
value * instead of iis %rue value 7 ; but this approximation does not
of course affect :he value at the top.

Figure 3 shows the sume situation as it is evaluated by the full
alpha-beta pruning procedure F2(p,-w,+=) will always examine the came
nodes as Fl(p,®) urtil the fourth level of lcokahead is reached, in
any game tree; this is a consequence of the theory developed below.

Oon levels L,5,..., however, procedure F2 is occasionally able to
make "deer cutoffs” which F1 15 incapable of finding. A comparison
of Figure 3 with Figure 2 shows that there are five deep cutoffs in this
exauple.

All of these ilinstrations present the results in temms of the
"negamax” model of Section i; if the reader prefers to see it in "mininax"”
tems, it is sufficient to ignore all the mimus signs in Figures 1-3.
The procedures of Section 2 can readily be converted to the minimax
conventions, for exsample by replacing F2 by the following two procedures:
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integer procedure F2 (position p, inmteger alpha, integer beta) :

2251'2. integer m,1,t,4;

determine the successor positicms Pyr e eoPys

if 4 = 0 then F2 := f(p) else

begln m := alpha;

for i := 1 gtep 1 wnbil 4 do
begin t := G2(pi,m,ﬁl_);
L{t >n leg;m = t3

;_.z_m > beta then ggﬁgdone;

end;
done: F2 := m;
od;
end;

integer procedure G2 (position p, integer alpha, integer beta):

begin integer m,i,t,d;
determine the successor positioms p,,--<»Ps5

Af 4 = O then G2 := &(p) glae
begin m := bets;
for 1= 1ateplmtilado
begin t := F2(p,,alpha,n);
L{t <m then m := t;
At m < alphe then go to dame;
od;
: R t=m

we

& §

end.
(o o o

It is a simple but instructive exercise to prove that (2(p,alphs,bets)
alvays equais -F2(p,-bets,-alpha) .

The above procedures have made use of a magic routine that determines
the successors Pya- 2Py o a given position p . If we want to be
more explicit about how positions are represented, it is natural to use

1



the fcrmat of linked recoréds: When Pp 1s a reference ty a record
dencting & poslition, let fi._rat.(p) be a reference to the first
successor of that position, or A (a null reference) if che position
ic terminal. Similarly if q references a successor Py of p,
let next(q) be a reference to the next successor Pis1 *
or A if 4 =d . Finally let generate(p) be & procedure that
create; the records for Pys e 2Py sets their ne¢xt fields, and makes
fivst(p) point to P, (or to A if d =0 ). Then the alpha-beta

pruning method takes the following more explicit form.

integer procedure F2 (ref (position) p, integer alpha, integer beta):
begin integer m,t; ref (poeiticn) q;

generate(p) ;
q := first(p);
if q = A then P2 := f(p) else

begin m := alpha;
while q f A and n < beta o
begin t :+ -F2(q,-beta,-n);
_:;_r_‘t >IMI 1= t3
3 := next(q);

It 18 interesting to coarvert this recursive pracedure to an
jterative (nonrecursive) fom. by a sagquence 5f mechanical transfor:ations,
and to apply simple optimizations which presarve program coxrrectness
(see [12]). The resulting procedure is surprisingly simple, but not

af oasy to prove correct as the recursive fourm:

15



integer procedure alphabeta (ref (position) p);
begin integer t; cament level of recursion;

integer array a{-2:L]: comment stack fcr recursion, where
[£-2], a[t-1]), a[t], A[2+1] denote respectively
alpha, -beta, m, -t in procedure F2;

ref (position) array r{O:L+l]; comment another stack for

recursion, wherz r{2] and R{#+1] dencte respectively
p and q in F2;
L :=0; a[=2] := a[-1] 1= ==; r{0] := p;
F2: gemerate (x[1]);
rl4+1] := first(r(1]);
if r(#+1] = A then ait] := £(r(2]) else
Ma[l] 1= a[2-2]3
loop: 4 := 1+]; E?.t,.g.}?;
resume: if -al1+1] > a[Z] then
begin a[t] := -al#+l];
if a[#+1] < a[2£-1]) then go to done;
end;
r(1+1] := next(r{a+l]);
Af r{#+21] £ A then go t> loop;

od;
done: f := f-]; y.:' t >0 them Egggnme;
alphabeta := a[0];
end.

This procedure alphabeta(p) will compute the same value as 'F2(p,-#,+=) ;

/
ve must choose 1 large enough so that the level of recursion never
exceeds L .

/

7
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¥hen a ooerufer is playing a complex game, it will rarely be able
to search »2' ~~sribllities until truly teiminal positions are reached;
even the alpha-*:ta “echnique won't be fast enough to solve the game
of chess! But we can still use the above procedures, if the routine
that generates all moves is modified so that sufficiently deep positions
are consifered to be terminal. For example, if we wish to look six
moves &'oad ‘turee for each player), we can pretend that the positlons
reachud »l leve: € have no successors. To compute f at such
artificially-.erminal positions, we must of course use our best guess
gbout the value, hoping that a sufficiently deep search will smeliorate
Lhe inaccuracy ol our guess. (Most of the time wi)i be spent in evaluating
these guessed valies for f , unless the determination of legal movec is
ecpucially difficult, so same quickly-computed estimate is needed.)

1nstead of searching to a fixed depth, it is also possible to carry
some linas furtuer, e.g. to play out all sequences of captures. An
interscting approach was suggested by R. W. Floyd in 1965 [ €], but it
hes apparently not yet been tried in large-scale experiments. Each
move in Floyd's scheme is ascigned a "likelihood" according to the
following genera. plan: A forced move has "likelinood"” of 1, vhile
very implaucslible moves (like queen sacrifices ir chess) get .01 «r so.
In chess a "recaptur:" has "likelihood" greater than 1/2 ; and the best
strategic choice out of 20 or 30 possibilities geta a "likelihcod™
of about 0.1 , while the worst choices get say 0.02 . UWhen the
product of 211 "likelihoods" leading to a position becomes less thsn a

glven thresnhsld (say 10"'8 ), we consider that position to be terminal



and estimete its value without furthe: searching. Under this scheme,
the "most likely" branchesg of the tree are given the most attention.
Whatever method is used to producc a tree of reasonable size, the
alpha-beta procedure can be somewhat improved if we have an idea what
the value of the initial position will be. Instead of calling
F2(p, =»,+®) , we can try F2(p,a,b) where we expect the value to be
greater than a and less than b . For example, if F2(p,0,4) 1is used
instead of F2(p,-10,+10) in Figure 3, the rigbtmost " -L " on level 2,
and the " 4 " below it, d. not need to be considered. If our expectation
is fulfilled, we may have pruned off more of the tree; on the other
hané if the value turns out to be low, say F2(p,a,b) = v where v <a,
we can use F2(p,-=,v) to detuce the correct value. This idea has been

used in some versions of Greemblatt's chece program (8].

5. History

Before we begin to make quantitative analyses of alpha-beta's
efiectiveness, let us look briefly at its historical development. The
early history is somewhat obscure, because it is based on undocumented
recollections and because some people have confused procedure Fl with
the stronger procedure F2 ; therefore the following account is based
on the best information now availadle to the authore.

John MeCucthy [15] thought of the method during the Dartmouth
summer research conference on artificial intelligence in 1956, whem
A. Bernstein described an early chesc program [2] which didn't use
any sort of alpba-beta. McCarthy "criticized it on the c=pot for
this [reason], but Bernstein was not convinced. No formal specification
of the algorithm was givenm at that time." It is plausible that McCarthy's

18



remarks at that conference led to the use of alpha-beta pruning in
game-playing programs of the late 1950's. Arthur Samuel has stated that
the idea was present in his checker-playing programs, but he did not
aliude to it in his classic article [21] because he felt that the other
aspects of his program were more significant.

TLe firct published discussion of a method for game tree pruning
appeared in Newell, Shaw, and Simon's description [16] of their early
chess program. However, they illustrate only the "one-gided"” technique
used in procedure F1l above, so it is not clear whether they made use

of "deep cutofis’.

McCarthy coined the: name "alpha-beta” vhem he first wrote a LISP
program embodying the techmique. Iiis original appraach was sacevhat
more elaborate than the method described above, since he assumed the
existence of two functions " optimistic value(p) " and "pessimistic velue(p)
which were to be upper and lower bounds on the value of a positiom.
McCarthy's form of alpha-beta searching was equivalent to replacing the
above body of procedure F2 by

if optimistic value(p) < alpha then F2 := alphe

slse Af pestimistic value(p) > beti them F2 := beta

else begin (the above body of procedure F2) end.
Because of this claboration, he thought of alphs-bela as a (possibly
inaccurate) heuristic device, not realizing that it would also produce
the wame value as full minimaxing in the special case that

cptimistic value(p) = +» and prcsimistic vilue(p) = -» for all p -

19



He credits the latter discovery to T. P. Hart and D. J. Edwards, who
wrote a memorandum [10] on the subject in 1961. Their unpublished
memorandum gives examples of the general method, including deep cutoffs;
but (as usual in 1961) no attempt was made to indicate why the method
worked, much less to demonstrate its validity.

The first published account of alpha-beta pruning actually appeared
in Russia, quite independently of the American work. One of the developers
of an early Russian chLess-playing program, Aleksandr L. Brudno, deccribed
an algorithm identical to alpha-beta pruning, tcgevher with a rather
complicated proof. in 1963 [4].

The full alpha-beta pruning technique finally appeared in "Western"
canputer-science literature in 1968, within an article on theorem-proving
strategies by J. Slagle and P. Bursky [2Lk], but their description was
somewhat vague and they did not illustrate deep cutoffs. Thus we might
say that the first real English descriptions of the metiicd appeared in 1969,
in articles by Slagle and Dixon [25] and by Samuel [22]; both of these
articles clearlv mention the possibility of deep cutoffs, and discues
the idea in some detail.

The alpha-beta technique seems to be quite difficult to communicate
verbally, or in conventional mathemetical language, and the authors of
the papers cited above had to resort to rather complicated descriptions;
furthermore, considerable thought seems to be required at first exposure
to convince oneself that the method is correct, especially when it has
been described in crdinary language and "deep cutoffs” must be justified.
Perhaps this is vhy many years vent by before the technique war published.
However, we have seen in Sectiom 2 that the method is easily understcod

and proved correct wvhen it has been expressed in algorithmic language;
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this makes a good illustration of a case where a "dynamic" approach to
process description is conceptually supervior to the "static" approach
of conventional matheratics.

Excellent presentations of the method appear in the recent textbooks
by Nilsson [18, Section U] and Slagle (23, pp. 16-2k], but in prose
style instead of the easier-to-understand algorithmic form. Alpha-beta
pruning has became "well known"; yet to the ¢thors' knowledge only two
published descrivtions have heretofore been expressed in ar algorithmic
language. In fact the first of these, by Mark Wells (27, Section %.3.3],
isn't really the full alpha-beta procedure, it isn't even as strong ac
procedure FL . (Not only is his algorithm incapeble of making deep
cutoffs, it makes shallow cutoffs only on strict inequality.) The other
published algorithm, by Ole-Johun Dahl and Dag Belsnes [5, Section 8.1],
appears in a recent Norwegian-language textbook on data structures;
however, the alpha-beta method is presented using label parameters,

8o the corresponding proof of correctness becames somewhat difficult.
Another recent textbook [17, Section 3.3.1] contains an informal description
of what is called "alpha-bete pruning”, but again only the method of
procedure Fl 3js given; apparently many people are unavare that the
alpha-beta procedure is capsble of making deep cutoffs .:‘/ For these reasons,
the authors of the present paper do not feel it redundant to present a

new expository uccount of the method, even though alpha-beta pruning has

been in use for more than 15 years.

- Indeed, one of {he muthors of the precent paper (D. E. K.) 4id some of
the research deucribed in Sectiom 7 approximately five years before he war
aware that deep cutoffs were possivle. It is easy to understand
procedure Fl and to associate it with the term "alpha-beta pruning”
your colleagues are talking about, without discovering F2 .



6. Analysis of the best case

Now let us turn to a quantitative study of the algorithm. How
mach of the tree needs to be examined?

For this purpose it is convenient to assign coordinate numbers to
the nodes of the tree as in the "Dewcy decimal system" (11, p. 310]:
Every position on level f is assigned a sequence of poslitive integers
a 8, .--8, . The root node {the starting position) corresponds to the
empty sejuence, and the a successors of position 8y +-- 8, are
agssigned the respective coordinates 8y «-o all y seey a.l vee e.ld . Thus,
position 314 1s reached after making the third possible move from the
starting position, then the first move fram that position, and then the
fourth.

Let us call position a, ...a, critical if a, =1 for all even

1 2 i
values of i or for a1l odd values of i . Thus, positions 21412 ,
131512 , 11121113 , and 11 are critical, and the root position is
always critjecel; but 12112 is not, since it has non-1's in both even
and odd positions. The relevance of this concept is due to the following
theorem, which characterizes ithe action of alpha-beta pruning when we are

lucky enough to consider the best move first from every position.

Theorem 1. Consider a game trec for which the value of the root position
is not +e , and for which the first successor of every positiom is

optima; 1.e.,

f(al...l‘) ’ if & ..ca, s terminal;

l'(u..l . a‘) s (1)

-l?(tl cee l.'l) » otherwise.
The ~beta edure P2 examines is the critical itions

of this game tree.
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Proof. Let us say that a critical position &, ...a, 1is of type 1

1 4

if all the a, are 1; it 1s of type 2 if 45.J is its first entry
>1 and (-j ie even; otherwise (i.e., when (-j 1is odd, hence

a, = 1) 4L is »f type 3 . It is easy to establish the following
facts by inducti '. on the computation, i.e., by showing that they are

invariant assertions:

(1) A type 1 position p is examined by calling F2(p,-®,+=) . If
it 13 not terminal, its successor position Py is of type 1,
and P(p) = -F(p,) f += . The other successor positions
Ppsr---sPy Aare of type 2 , and they are all examined by calling

F2(p,,-=F(p,)) -

(2) A type 2 position p is exanined by calling F2(p,-=,beta) ,
vhere -o <beta <F(p) . If it !s ns* terminal, its successor
position p, is of type 3, and F(p) = “F(p,) ; hence, by the
mechanic™ of proceiure F2 as defined in Section 2, the other

successors Pe”""’d are not examined.

(3) Atyps 3 position p is examined by calling F2(p,alpha,+a)
where +e > glohe > F(p) . If it is not terminal, each of ite

successor positiona Py is of type 2 and they are all examined
b-v calmg m(pi”'b"w .

It follows by induction on £ thav every critical position is

exanined.
d



Corollary 1. If every position on levels O0,1,...,1-1 of a game tree

satisfying the conditions of Theorem 1 has exactly d successors, for

some fixed constant d , then the alpha-beta procedure examines exactly

I 6=l (2)

positions on level 1t .

Proof. There are dL‘/zJ sequences &, ..-a, , with 1 < a.i <4 for

all 1, such that a, =1 for all odd values of i ; there are

i
dr‘/ 2l such sequences with ai = 1 for all even values of i ; and
we subtract 1 for the sequence 1 ...1 which was counted iwice. -

This corcllary was first derived by Michael Levin in 1961, but no
proof was apparently ever written down at the time. 1In fact, the
informal wemo [10]by Hart and Edwards justifies the result by saying,

"For e convincing personal proof using the new heuristic band waving
techninque, see the author of this theorem."” A proof was later published
Ly Slagle and Tixon [25). However, none oy these authors pointed out

that the valu. of t{he root position must not equal +« . Although

this is a rare occurrence in nontrivial games, since it means that the
root position is a forced win or loss, it 18 a necessery hypothesis for
both the theorem and the corollary, since the number of positions examined
on level 1 will be a2 uhen the root value 15 +w , and it will

be aZl hen the root value is -= . Roughly speaking, we gain &
factor of 2 when the root value is +< .

The charscterization of perfect alpha-veta pruning in terms of
critical ypositions allows us to extend Corollary 1 to 2 much more gemeral
class of game trees, having any desired probability distritution for the

of legal moves on each level.
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Corcllary 2. Leb a random game tree be generated in such a way that

each positior on level j has prohability qJ. of being nonterminal,

and has an average of 4., successors. Then the expected number of

J

positions on level ! is do dl dt—l ; and the expected number of

positions on level ¢ examined by the alpha-beta technique under the

assumptions of Theorem 1 is

85018585 -+ 4y 0y 3+ 98y3585 - 3 o8y =99y - - Yy 0 EVenS

d 4, f odd. (3)

RS PR PIPC Rk PL SR PRCG PUC Bl (o DI PIR B

(More precisely, the asiumptions underlying this random bre..ching

process are that level j+1 of the tree is formed from level J as
follows; Each position p on level J 1is assigned a probability
distribution (ro(p),rl(p),...) » where rd(p) is the probability

that p will have d successors; these distributions may be different for
differert positions p , but each murt catisfy ro(p) = l-qj , and each must
have the mean value rl(p) +2ra(p) + .00 0= dJ. . The number of successor
positions for p is chosen at random from this distribution, independently

of the number of successors of other positions on level j .)

Proof. If x is the expected number of positions of a certain type
on level } , then xd g 13 the expected number of successors of these
positions, and Xxq 3 is the expected number of "nmumber 1" successors.
Tt follows as in Jorollary 1 that (3) is the expected numbter of critical
positiona on level ( ; for example, 999) **+ 9.1 is the expected
number of positions on level ! whose identifying coordinates are

sll l's .
J
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Note that (3) reduces to (2) when ay = 1 and d,j =d for
n<i<t.

Intuit:vely we might think that alpha-beta pruning would be most
affective when perfect-ordering assumption (1) of Theorem 1 holds; l.e.,
when the firs: scuccessor of every position is the best possible move.
But this is no" always the case: Figure L shows two game trees which
are identical except for the left-to-right ordering of successor
positions; alpha-beta search will investigate more of the lefthaad
tree than the rignthand tree, although the lefthand tree has its
positions perfectly ordered at every branch.

Thus the truly optimum order of game tree traversal isn't obvious.
On the other *and it is possible to show that there always exists an
order tor processing the tree ro that alpha-beta :xam:l.nes as few of the
terminal poeitions as possible; no algorithm can do better. This can
be demonstrated by strengthening the technique used tvo prove Theorem 1,

as we shall see.

Theorem 2. Alpha-beta pruning is optimum in the following sense:

Given any game tree and any algorithm which camputes the value of the

root position, there is a way to permute the tree (by reordering successor

sitions if necessary) so that every temminal position examined by the
alpba-beta method under this permutation is examined by the given
algorithm. Furthermore if the value of the root is not +e, the

alpha-beta procedure examines precisely the positicns which are critical
under this permutation. (It is assumed that all teminal positions have

independent values, or equivalently that the algoritm has no nowledge
about dependencies between the values of terminal positioms.)

An equivalent result has been obtained by G. N. Adel'son-Vel'skil
[1, Appendix 1]; a scmewhat simpler proof will be presented here.
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Figure 4. Perfect ordering is not always best.



froof. The following functions F! and Fu define the best possgible

bounds ¢n the value of any rosition p , bused on the terminal positions

examinec. by the given clgorithm:

-® |, £ p 1is terminal and not examined;

F,(p) = £(p) if p is terminal and examined; (%)
ma.x(-Fu(],l) geeny -Fu(pd)) R otherwise.
+o |, if p 1s terminal ard not examined;

r(® = { £fo) if p 1is terminal and examinad; (5)
m(-F‘(p),...,-F'(pd)) » otherwise.

Note that F‘(p) < F‘u(p) for ail p . By independently varying the
values at unexsmined terminal positions below p , we can make F(p)
assume any given value between F‘(p) and Fu(p) » but ve can rever
€0 beyond these limits. When p 1is the root position we must therefore
have F,(p) = F (p) = F(p) .
Assume that the root value 18 not +» . We will saow how to
permate the tree so that every critical temminal position (according
to the new numbering of positions) is examined by the given algoritim
and that precisely the critical positions are examired by the alpha-beta
procedure F2 . The critical positions will be classified as type 1,
2, or 3 as in the proof of Theorem 1, the root being type 1 . The
following facts can be proved by indu.tion:
(1) A type 1 vposition p has l"u;) =F (p) =Fp) £ t=, and it
is exanlied during the alpha-beta procedure by ctlling
F2(py=m+e) . If p is terminal, it must be examined by the given
algorithm, since r'(p) f -e . If it is not terminal, let j and
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(2)

(3)

k be such that :"(p) = -Fu(pd) and Fu(p) = -F'(pk) . ‘then
by (L) and (5) we have

Fy(p) = 7y(py) < Fulpy) = -F(p) = Fylpy)
hence Ft{pj) = F‘(pk) end we may assime that j = k . By
permuting the successor positions we may assume in fact that
J=k=1. Position p, (after permutation) is of type 1 ;
the other successor positions p2""’pd are of type 2 , and
they are all examined by calling FE(pi, ) -F(pl)) .
A type 2 position p has Fl(p) > -« , and it is examincd
during the alphu-beta procedure by calling P2(p,-=, beta) wicre

- < beta < Fl(p) . If p !t terminal, it must be examined by

the given algorithm. Ctherwise let 3 be such that F‘(p) -!‘u(pi3 .

and permute the successor positions if necessary so that j =1 .
Position p, (after permutation) is of typ= 3 and is examined
by calling }‘E(pl,-m,m) . Since F“(pl) = -F'(p) < -beta ,

this call returns a value < ~beta ; hence the other successors
1 SYRERPS N (which are not critical positions) are not examined

by the alpha-beta method, nor are their descendants.

Atype 3 position p has F n(p) <w®, and it is examined during
the alpha-beta procedure by calling F2(p,alpha,+=) where

F,(p) < alphe < @ . If p is terminal, it must be examined

by the given algorithm. Otherwise all its successor posjitions Py
are of type 2 , and they are all examined by calling m(pi,-n,-_g_m_) .
(There is no need to permute them, the ordering makes \bsolutely

no difference here.)



A similar srgoment can be given when the root value is +o

(treating it as a type 2 position) or - (type 7 ).

A surprising cornllary of this proof ie that the ordering of

successors 0 type > positions in an optimally-ordered tree has

absolutely no effect on th: behavior of alpha-beta pruning. Type 1

positions constitute the so-called "principal variation"”. corresponding
to the hest strategy by both players. The alternative responses to
moves on the principel variation ere of type 2 . Type 3 positions
occur when the best move is made from a type 2 position, and the
successors of type 5> positions are again of type 2 . Hence about half
of the critical positions of a perfectly ordered game tree are of type 3,
and current game-playing algorithms are probably wasting nearly half of
the time they now spend trying to put successor moves in order.

Let us say that a gme tree is unjiform of degree d and height h
if every position an levels O0,1,...,h-1 has exactly d successors,
and if every poeition on level h is terminal. For example, Figure 1
is & uniform tree of height & and degree 3 , but the trees of
Figure 4 are not uniform. Since all permuations of a uniform tree are
uniform, Theorem 2 implicc the following gemerslization of Corollary 1.

LY

Corollary 3. Any algorithm which evaluates a uni form game iree of
height h and degree d must evaluate at least
a3, /2, (6)

terwinal positions. The slpha-beta procedure achicves this lower bound,

if the best move is ccnsidered first at each position of tyzes 1 and 2 .




Te Uniform trees without deenp cutofin

liow that we have determined the best case of alpna-beta pruning,
let's be more pessimistic and try to look at the worst that can happen.
Given any finite trce, it is possible to find a sequence of values for
the terminal positions so that the alplia-beta procedure will examine
every node of the tree, without making any cutoffs unless the tree
tranches are permuted. (To see this, arrange the values so that
whenever F2(p,aiphz;beta) is called, the condition
-alpha > F(pl) > F(Pe) > v > F(pd) > -beta is satisfied.) On
the other hand, there are game trees with distinct terminal values for
which the zipha-beta procedure will always find some cutorfs no matter
how the branches are permuted, as shown in Fipgure 5. (Procedure Fl
does not enjoy this property.)

Since gam~-playing programs usually use some sort of ordering
strategy in connection with alpha-beta pruning, these facts about the
worst case are of little or no practical significance. A more useful
upper bound relevant to the behavior we may expect in practice can be
based on the assumption of random data. S. H. Fuller, J. G. Gaschnig,
and J. J. Gillogly have recently undertaken & study (7] of the average
number of terminal positions examined vhen the alpha-beta procedure is
applied to a miform tree of degree 4 and height h , giving independent
random values to the terminal positions on level h . They have cbtained
formulas by which this average number can be camputed, in roughly dh
steps, and their theoretically-predicted results were only slightly
higher than empirically-observed data obtained from a modified chese-
playing program. Unforiumately the formulas turn cut to be extremely
complicated, even for this reasona>ly simple theoretical model, so that
the asymptotic behavior for large 4 andfor h seems to defy analysis.
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Figure 5. If lll(l-,,-n,la) < n:l.n(bl,...,be) , the alpta-beta
rrocedure will always find at. lesst two cutoffs, no matter
how wve permute the branches of this game tree.

3e



Since we are luoking for upper bouads ar;--.7. 3% in ratural 4o
consider the behavior of the weaker procedure ¥l . This method is
weaker since it doesn't find any "deep cutiilc™; tut it is much hetiaor
than comrlete minimaxing, and Figures 1 - > indicatec that de~p entolfs
probably have only a sexond-order effect on the efficiency. Furthermore,
procedure Fl has the great virtue that its analysis is much simpler
thar that of the full alpha-beta procedure T2 .

On the other hand, the anelysils »f F1 I: by L. means «s casy as
it lookz, and the methematics turns out to be cxtremely irtercsting.

In fact, the authors' first analysis was (->und ‘o be incorrect. although
several competent people had checked it without seelng any mistakes.
Since the error is quite instructive, we shali p esent our "riginal

(but fallacicus) analysis here, challenging the reader to "find the
bug"; then we shall study how to fix things up.

With this understanding, let us ccneider the tollowlng problem:

A uniform game tree of degree d and height h is constructed with
rendm values attached to 1tz a" terminal positions. What is the
expected mmber of terminal positions «xamined when procedure Fl 1is
applied to this tree? The answer to this problem will be denoted by
T(4,h) .

Since the search procedure depends only on tpe relative order of
the dh terminal values, not on their magnitudes, and since there is
zero probability that two different terminal posivions get the same
value, ve may assume that the respective values assigned to the terminal
positions are permutations of (1,2,...,d°] , each penmutation oceurring
with prodbability 1/ (dh)! . From this observation it is clear that the

Reproduced from
b)) best available copy




d' values o:’ positions on each level ¢ are also in random order,

tor 0 <f <h . Although procedure Fl does not always compute the
2xact F vaiues at every position, it is not difficult to veriry that
the declsions Fl1 makes uoout cutoffs depend entirely on the F velues
(not on the approximates values Fl(p) ); so we may ccnclude that the
expected number of positions examined on level ¢ is T(d,2) for
0 <2 <h. Thie justifies restricting attemiion to u single level h
when we count the number of positions examined.

In order to simplify the notation, let us conaider rirst the case
of ternary trees, 4 = 3 ; the general case will follow easily once thics
one ies understood. Ouar firast step is to classify the positions of the

tre: into types A, B , C as follows:

The root position is type A .
The first successor of every nonterminal position is type A .
The second successor of every nonterminal position is type B .

The third successor of every nomt.erminal position is type C .

Figure 6 shows the local "environment” «.f typical A, B, C positions,
a3 they appear below a nonterminal gosition p which may be of auy
type. The F-values of these three positions are x. , X5 » X3 5
respectively, and their descendani s have respective F-values Y- ”’733 .
Our assumptions guarantee ihat ¥yy70002¥33 are in rardiam order, ao
matter vhat level of the tree we sre studying; hence the values

%) = BAX(<¥y15°¥30:Yy3) s o0 Xy = MAX(<¥51s V3o ~¥33)

are also in randum order.
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Figure 6. Part of & uniform ternary tree.
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If position p is examined by calling F1(p,bound) , then position
will be examired by the subsequent call Fl(A,+w) , by definition of Fl
{see Section 2). Zventually the value Xy will be returned; and if
-+, © Lound , yosition B will be examined by calling Fl(B,xl) .
“ventually the value x, will be re“urned; or, if Yy 2 x, , any value

2

x> %) may be returned. If ma.x(-xl,-xé) < bound , position C will

é
be examined by celling Fl(c,min(xl,x,c,)) . Note that
-max(-x*,-xé) = min(xl,xz) : the precise value of x; i8 not involved
when C is celled.

This srgument shows that all three succesrors of an A position
are always examined (cince the corresponding bound is += ). Each B
position will examine its firsi successor, bat (since its bound is
x) = -min(yll,yle,yn) ) it will examine the second successor if and
only if -v,y < -min(yu,yle,yb) , i.a,, if and only if the values
sutisfy min(yn,ym,yu) < ¥y, - This happens with probability 3/L ,
since the v's are raadomly ordered and since the relation
min(yu,ylz,yja) > ¥,y Obvicusly holds with probability 1/ .
Similarly the third successor of a b position is evaluated if and
only if the values satisfy n:ln(yn,ym,yn) < -:ln(yal,yae) » and this
has probability 3/5 . The probability that the second successor of a
C position is evaluated is the probability that
max(min(y, ,,¥)0s¥y3) » M0(Y)s¥ps7p3)) < ¥3y » And this occurs 9/14
of the time; the third successor is examined with probability 9/20 .
(A general formula for these probabilities is derived below.)

Let An”n’cn be the expected mmber of positions examined n
levels below an A , B, or C position exsmined by procsdure Fl in

& random game tree. Ouwr discussion proves that
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0 o = “o

Aney = A11+:Bn+0n ’

B,y = A tEB, t2C,

Cpey = A * W Ba* 26 n 1)

and T(3,h) = A is the anever to our problam when a = %
The solution to these simultaneous linear recurrences can be
studied in many ways, and for our purposes the use of' generating functions

is most convenient. Let

A(z) = o Anzn , Blz) = 2 B 2, o = o2,
n >0 n>0 " n>o ®
so that (1) is equivmlent to
A(z) =1 = zA(z) + 2B(z) + zC(2)
B(z) =1 = zA(z) + % zZB(z) + :; 2 (z)
Clz) -1 = zA(z) + 3 @B(z) + 7% % (2) . (2)
By Cramer's rule, A(z) = U(z)/V(z) where
-1 2 2 z=1 2 z \\
U(z) = det] -1 221 22 viz) = det z £z-1 2z ' (z)
1 5 ’ z g < % z i
!
q o !
-1 %z %z-l/’ \‘- " i% ° -2-‘6._-_1//

are polynomials in z . If the equation :z°V(1/z) = 0 has distinct

roots

12 To3 r3 » there will be e partial fraction expansion of the

fora
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1 2 3
A(z) = l-rlz+l-rez+ l-r}z (4)
vhere
c, = -riU(l/ri)/V'(l/ri) . (5)

Consequently A(z) = Zn >o(c1(rlz)n+ c2(r2z)n+ c5.’r5z)n) , and we
have

by equating coefficients of 2z . If we number the roots so that
|r1| > |yl > |r3| (and the theorem of Perron [17] assures us that
this can be done), we have asymptotically

A~ (6)
Numerical calcuiation gives r, = 2.53%911 , ¢ = 1.162125 ; thus, the
alpha-beta procedure without deep cutoffs in a random ternary tree will
examine about as many nodes as in a tree of the same height with average
degree 2.53h instead of 3 . (It is worthwbile to note that (6)
predicts about 48 positions to be sxamined on the fourth level, while
only 35 occurred in Pigure 2; the reason for this discrepancy is
chiefly that the one-digit values in Figure 22 are nonrandom becsuse of
frequent equalities.)

Elamentary manipulation of dsterminants shows that the equation

zjv(l/r.) = 0 is the same as



[ 1-2 1 1

det 1 %-z
1l 3‘- -2%-z

hence r, 1s the largest eigenvalu: of the matrix

0 3

(1N
L]

i 1 1
> Z
1 % 3

We might have deduced this directly from equation (1), if we hxd lmown
encugh matrix theory to calculate the constant 2 by matrix-theoretic
means instead of function-theoretic neans.

This solves the case d = 5 . For general 4 we find similarly
that the expected number of terminal positicons examined by the alpha-beta
procedure without deep cutoffs, in a random uniform game tree of degree d
and height h , is asymptoiically

7(4,k) ~ ey(d)ry ()" (1)

for fixea 4 a8 h — = , where ro(d) is the largest eigemvalue of
e cortain dxd matrix



pu p12 e pld

Pyy Py '+ Poyg
M, = ) (8)

D

Pa; Pap -+ Pgq

rnd where co(d) 1s an appropriate constani. The general matrix element

Py is (3) is the probability that
max (min(Y .,...,Y,.)) < min Y (9)
1<k<i a kd 1<k<j X

in a sequence of (i-1)d+ (j-1) independent identically distributed
random variables Yll’ .o "Yi(d-l,‘ .
When 4 =1 or Jj =1, the probability in (9) is 1, since
the min over an empty set is +» and the max is -« . When i, >1
we can evaluate the probability in several ways, of which the simplest seews to

be cambinatorial: For (9) to bold, the minimum of all the Y's must be Y, .
171

for some k) <1, and this occurs with probability (i-1)a/ ((i-1)a+j-1) ;

removing Ykll’ . "’Ykld from consideration, the minimum of the remaining

Y's must be Y for some k.z <1, and this occurs with probability

kta

(1-2)a/ ((1-2)a*3-1) ; snd s0 on. Therefore (9) occurs with probability

3-1)a 1-2)d a
1-1)a+j-1 ~ T‘Lt-zho'}la"-'i R 7% P |
- 1/(1-»(34)/:1) ) (10)
1-1



Ths explicit formula allows us to calculate ro(d) numerically for
small d without much diff’lculty, and to calculate co(d) for small 4
with somewhat more difficulty using (5).

The form of (10) isn't very convenient for asymptotic calculations;

there is a much simpler expression which yields an excellent approximaticn:

Leema 1. When O <x <1 and k is a pogsitive integer,

(k'1+x) < K/r(ux) . (1)

(Note that 0.885603 < I'(1#x) <1 for O <x <1, with the minlmum
value oczurring at x = 0.461622 ; hence the simple fcrmula K is
alweys within about 11 per cent of the exact value of the binomial

coefficient.)
Proof. When 0 <x <1 and t >-1 we have

(+t)* < 14tx |, (12)

since the function f(x) = (l+t)x/(l+tx) satisfies f£(0) = (1) =1,
and since £7(x) = ((1n(1+t)=t / (1#4x))° + 2/ (2+tx)2)2(x) > 0 .

Using (12) for t =1,1/2,1/3, ... ylelds

1
polm e ZTBY o () (20 (mw) 1
X = 2* (3% T B=w " (e1)*
1
* T(x)

and the k-th temm of this series of inequalities is (k -1+x )/ .

L%}



For trees of height 2 , deep cutoffs are impossible, and procedurer
F1 and F2 have an identical effect. How many of the de positions
at level 2 are examined? Our analysis gives an exact answer for this
case, and Lemma 1 can be used to give a good approximate result which

we may state ac a theorem.

Theorem 3. The expected number of tenainal positions examined by the

elpha-bets procedure on level 2 of a random uniform gaume tree of

degree d is
1<i,j<d .
where the p” are defined in (10). We have
a® a?
¢y Tog 4 < T{d,2) < C, Tog @ (1%)

for certain positive constants Cl and C? .

Proof. Equation (13) follows fram our previous remarks, and from
l.ama 1 we Jnow that

Cs(d) < T(4,2) < 8(d)

vhere C = 0.88560% = inf

0<x<1 r(i+x) and

s(d) - 1"(:'1)/d



1/d

Now for k = d° we have k™79 - exp(-t In d/d) = 1-t In 4/ a+0{(log &/d)°) ,

-1/a

hence for Ja <k <d, (1-k1)/(1-k"7%) 1ies between d/Ind and

2d/ln @ times 1+0{(log 4/d) . The bounds in (1k4) now follow easily.
-
When the values of rU(d) for d <30 are p]:otted on log log
paper, they seem to be approaching a straight line, suggesting that
ro(d) is avproximately of order d'75 . In fact, & least-squares fit
for 10 <4 < 30 yielded 6'76 ag an approximate order of growth;
this can be campared to the lower bound 2d°’ of an optimum alpha-beta
search, or to the upper bound 4 of a full minimax search, or to the
estimate d''° obtained by Pulicr et al. [7] for rendam alpha-beta
pruning when deep cutoffs are included. However, we shall see that
the true order of growth of ro(d) as 4 -~ is really d/log d .
There is & moral to this story: If we didn't kmow the theoretical
asymptotic growth, we would be quite content to think of it as d'76
vhen d is in a practical range. The formula d/log 4 seems much worse

than 76

» until we realize the magnitude of log d in the range of
interest. (A similar pheromenon occurs with respect to Shell's sorting
method, see [12, pp. 93-95].) On the basis of thies theory we may well
regard the approximation a'T? 4 [7] with =ome suspicion.

But as mentioned chove, there is a much more significant =moral to
this story. Formula (7) is incorrect becsuse the proof overlooked what
appears to be a rither subtle question of conditional probabilities.
Did the readesr spot a fallacy? The authors found it only by comparing
their results to those of (7] in thecase h =3 , & = 2 , since

procedures Fl and F2 are egquivalent for heights <3 . lccording

A3



“o the analysis above, the alpha-beta procedure will examine an avereg:
of 6% nodes on Jevel 3 of a randan binary game tree, but according to
[7] the number is 6%% . After the authors of [7} were politely
informed that they must have erred, since we had proved that 6% was
correct, they politely replied that simulation results (including a test
on all 8! permutationz) had confirmed that the correci unswer is

8o
61-‘f5

Figure 7. A tree vhich reveils the fallacious reasoning.

A careful scrutiny of the situation explains what is going on.
Theorem 3 1s correct, since it deals only with level 2 , but trouble
occurs at level 3 . Jur theary predicts a cutoff on the right subtree
of every B node vith probability 2/3 , so that the terminal values

M



(£5--s 8) in Figure 7 will be examined with respectlive probabilitvies

(,1,1, %, 1,1, -25, g) Actually fg is examined with probability
%’% instead of —;- ; for fe is examined if and only if
f7 > m:l.n(fs,f6)
and min(fs,f6) < max(min(f,,f,) , min(£,,£))) - (15)

Each of these two events has probability 2/3 , but they are not
independent..

When the fallacy is stated in these terms, the error is nquite pl#in.
but the dependence wis much harder to see in the diagrams we had been
drawing for ourselves. For example, when we argued using Figure ¢ that
the second successor of a B position is examined with probability 3/L .
we neglected to consider that, when p 18 jitself of type B or C,
the B node in Figure 6 is entered only when min(yu,yle,ylj) is less
than the bound =t p ; so m(yn,ym.yu) is samcwhat smaller than a
random value would be. What we should have computed is the probabillty
that y,, > nin(yn,ym,yu) g.ven that position B 1s not cut off.
And unfortunately this can depend in a very complicated way on the
ancestors of p .

To make matters worse, our error is in the wrong direction, it
doesn't even provide an upper bound for alpha-beta searching; it yields
only a lower bound on an upper bound (i.e., nothing). In order to get
information relevant to the behavior of procedure F2 on randax data,
wa need at lcast an upper bound on the behavior of procedure Fl .

A correct analysis cf the binary case (d = 2) involves the

solution of recurrences

hs



- (0)
Aw1 = At By
(k) _ (k+1) .
Chil © An+ p.KBn » for k>0 ;

- g0 | g(1) _ o(2)
A =B =BT =B
“nivre the P are appropriate probabilities. For example, P, = 2/3 ;
p p, is the probability that (15) holds; and poplp,) is the probability

that fifteen independent random variables eatisfy

Tig > fp=A Sy,

f:DA £, < (fgl\tlo) v (fu/\rm;

(16)

(rg/\rlo)v(ru/\rm) > ((flAfe)V(_t‘}/\fh))/\((fsl\fa)v(f7Af8)) ,»  (27)

writing v for max and A for min . These probabilities can be
computed exactly by evaluating appropriate integrals, but the formulas
ure camplicated and it is eazsier to look for upper bounds. We can at
irusl show eaeily that the probability in (17} 18 < 4/9 , since the
“ivst and third conditions are independent, and they each hold with
reobability 2/3 . Thus we obtain an upper bound if we set
pqnp2=ph=...=2/3 and p1=p5=...-l;thilisequivulent

+0 the recurrence

A0=B =1 3

An-'l n

2
Bl At 3A

"
>
-
-]

we

(18)



Similarly in the case of degree 2 , we cbtain an upper bound on
the average number of nodes examined with: it deep cutoffs by solving

the recurrence

Ay =By =Cq =1 ;

Al © At Ba*Ch

Bn+l : An * %An * ";An

Corr = A '].%An * Té%An (19)

in place of (1). This is egquivalent to

_ 242 2
A1 = An*(l*li*s.*l*l%*eo)“n-.\

and for general degree 4 we get the recurrence

A1 = Aa*Sahn (29)
where AO=1,A1=d,a.nd
S, = 2 De. e (21)
d <1<d 13
<J<d

This gives a valid upper bound on the behavior of procedure Fl , because
it 1s equivalent to setting bound ~ += at certain positions (and this
operation never decreases the number of position: examined). Furthermore
we can scive (20) explicitly, to obtein an asymptotic upper bound on
T(a,h) of the fum el(d)rl(d)h , where the growth ratio is

r(a) = Jsd+ 1k + 12 . (22)
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Urnfortunately it turns out chet Sd is of order d.?/log d , by
Theosrem ?; so (22) is of order d/‘[l?gTi , while an uppe. bound of
order dflogd 1is desired.

Another way to get an upper bound relies on a more detailed
enalysis of the structural behavioral of procedure ¥l , as in th2

following theorenm.

Theorem 4. The expected rnumber nf terminal positions examined by

the alpha-beta procedure without deep cutoffs, in a random un!.form

game tree of degree 4 and height h , satisfies

T(4,h) < e (d)r ()P , (23)

where r*(d) is the largest eigenvalue of the matrix

",ql VP1p rre VPyy
* NPpy VP e J’ed
My = : ) : ’ (24)

‘\pdl ‘de2 cee vpdﬂ

and c"(d) is an appropriate constant. (The Py in (Z4) are the same

a~ in (8).)

Proof. Assign coordinates LY to the positions of the tree as
in Section 6. For ¢ >1, it is easy to prove by induction that

position a,...a, has bound - min{#(a,...a, K) |1 <k <a,] vhen
it 18 exsmined by procedure F1 ; hence it is examined if and only if

;1...a'_1 is examined and

- min F(nl. .l

k) < min Fla,...a, . K) or 2 =1. (25)
1<k<a, RER L

-1
1<k <;'_1

48



It follows that a terminal position R is examined by Fl if

!
snd only if (25) holds for 1 <! <h . Let us abbreviate (25) by P, s

8o that 8. -8 holds if and only 4f F, and ... and Pl .

1
Condition P! by itgels for 1 > 2 holds wlth probability Py 0

vhere 1 = and j = a,, because of definition (9); hence if

fp-1
the P' were independent we would have L examined with

probability Pa.'a) Py gt pah &
152 TeTE -

to the analysis leadinrg to (7). However, “he F, aren't independent,

, and thils is precisely equivalent

as we have observed in (15) and (17).

Condition P' .8 a function of the teminal. values
f(al...a'_ejka”l...ah) ,
where Jj <a or j=a,. and k<a, . Hence P, ir independent
1-1 1= )  §

of PysPyseeesPy o - (This generalizes an observation we made about
(17).) Let x be the probability that position a, ...a 1is examinecd,
and assume for convenience in notati.n that h 1s odd. Then oy the

partial independence of the P

": » We have

’

* S PajayPaney, Pay a g

S Pagay P P,
hence
< ”E’w"w AR

and the thecrem follows by choosing c'(d) large enocugh.
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Now we are ready to establish the correct asymptotic growth rate

of the brancaing factor for procedure Fl .

Theorem 5. The expected number T(d,h) of terminal positions examined

by the alphe~-beta procedure without deep cutoffs, in a randam uniform

game tree of degree d and height h , has a branching factor

1m (e, " - ra) (26)
h—o
which satisfles
a d
CB logd -~ r(d) < Cy log d (21)

for certain positive constants C, and C) .

Proof. We have
T(d,h; +hy) < T(d,h))T(4,h;) (28)

since the righthand side of (28) is the number of poritions that would
be examined by F1 if bound were set to += for all positions at

height hl . Furthemmore the argurents above prove that

I ~ *
1im inf T(4,h) > ro(d) » lim sup T{d,h) < rl(d),r (d)

h-wﬂ h-oO

By a standard argument about subadditive functions (see e.g. [20, Problem I.98})
it follows that the limit (26) exists.

To prove the lower bound in (27) we shall show that r(d) 3c5d/1°g d .
The largest eigenvalue of a matrix with positive entries Py 3 is known
to be > nini(ZJ pij) , according to the theory of Oskar Perron [19];
see [25, Section 2.1] for a modern account of this theory-y Therefore

by Lemxa 1,

Y We are indebted to Dr. J. H. Wilkinson for suggesting this proof of
the lower bound.
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-f3a
ro(d) > C min DIREEE R l)/d)
1<i<d \(1<ji<d
-1
1l-1i
= C min
2515&1(‘1-1'1;(1)
-1 :
_ 1-a d-1
_Cl-d-ld>c—"d ’
where C = 0.885603 = inf, . _, T(1+x) , since d.'l‘/‘i = exp/-ln d/d) >

l-1n d/d .

To get the upper bound in (27), we shall prove that 1-*(d) < Chdflog i,
using a rather curious matrix norm. If s and t are rositive real

numbers with

1.1
;+:t--_-]_ (29)

then all eigenvalues A of a matrix A with entries aid satisfy

M o< (Z(z w;da)”t)l/’ : (50)
N O

To prove this, let Ax = Ax where x is a nonzero vector; by Hblder's

inequality [9, Section 2.7],
()" - (gl )
(2Ga) )
(26ma)" ) )

IA

and (30) follows.



If we let s =t = 2 , inequality (30) ylelds = (d) = o(afog a)
while if &8 or t - =» the upper bound is merely 0{(d) . Therefore
some care is necessary in selecting the best s end t ; fer our
purposes we choose ; = f(d) and t = £(d)/(£(a)-1) , vhere
£(d) =310 d/inlnd . Then

r(d) < z L gt-n/a /t e
- <igd\(1<J<d

s/t
< («’d a*t+ (a-va) (le fa‘t(i"l)/“)/ )l L (m)
>

The inner sum is @(d) = 1/(1-2"%"%) = (La/1n d)(1+0(1n 1n 4/1n 4)) ,
so d a(d)s/'c = df(d)‘l/e exp(!a'-ln Lblnd/lnnd+ 1nlnd+ 0(1)) .
Hence the righthand side of (31) is

exp(lnd - In In d + In b + 0({ln 1n a)2/1n a)) ; we heve proved that

+*(d) < (84 /1in Q)(1+0((1n In A)°/1n d)) as d-~=.
a

Table 1 shows the various bounds we have cbtained on r(d) .
nsmely the lower bound ro(d) and the upper bounds rl(d) and r*(d) .
We have proved that ro(d) and r'(d) grov as d4/log d . and that rl(d)
—
grows as 4/Nlog d ; dut the table shows that rl(d) 18 actually a
better bound for d < 2k .



& ry(a) Q) r(a) a1 (@)  r(Q) r ()

2 1.8h7 1.884 1.912 17 8.97€¢ 11.378 11.470
2 2,534 2.666 2.722 18 9.358 11.938 12.021
Yy 3.2 3.397 3.473 19 g.72h  12.hok  12.567
5 3.701 L.095 4.186 20 10.106 13.0ks  13.108
6 h.22% 4.767 L.871 21 10.473  13.593 13.6LL
7  h.7oL 5.421 5.532 22 10.836 14.137 1k.176
8 5.203 6.059 6.176 23 11.19k 1h.678  14.70k
9 5.66h 6.684 6.8c5 oL 11.550  15.215 15.228
10 6.112 7.298 7.420 25 11.901 15.750 15.Tu8
11 6.547 T-.902 8.02L 26 12.250 16.282 16.265
12 6.972 8.498 8.618 27 12.595 16.811 16.778
13 17.%288 9.086  9.203 28 12.937 17.337 17.208
bk 7.795 9.668 9.781 29 13.277 17.86L 17.796
15 8.195 10.2k3 15.350 30  12.6.4 18.383 18.300
16 8.589 10.813 10.913 31 13.948 18.903 18.802

Table 1. Bounds for the branching factor in a random tree when no
cutof'fs are performed.

8. Discussion of the model

The theoretical model we have studied gives us &n upper bound on
the actual behavior sbtained in practice. It 1s an upper bxund for

four separate reasons.

(a) the deep cutoffs are not considered;
(b) the ordering of successor positions is random;
(c) the terminal positicns are assumed to bhave distinct values;

(d) the terminal values are assumed to be independent of each other.
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Each of these conditions makes our model pessimistic; for example, it
is usually possible in practice to make plausible guesses that saome
moves will be better than others. Furthermore, the large number of
equal terminal values in typical gze- ps to provide additional
cutoffs. The effect of assumpt] 8 less clear, and it will be
studied in Section 9.

In spite of all these pessimistic assumptions, the results of our
calculations show that alpha-beta pruning will be reascnably efficient.

Let us now try to estimate the effect of deep cutoffs vs. no deep
cutoffs. One way to study this is in terms of the best case: Under
ideal ordering of successor positions, what is the analcgue for
procedure F1 of the thecry developed in Section A? It 1is not difficult

to see that the positions a, ...&, examined by Fl in tlLe best case

1
are precisely those with no two non-1's in a row, l.e., those for which

8y >1 implies Biy1 = 1.

In the ternary case under best ordering, we obtain the recurrence

(1)
B1't+f! An *
Caed = Ay 3

hence %ﬂ_ = %-0- 2An_l . For general d the corresponding recurrence

is

Ag =1 53 Ay =d ;3 A, = A.m1+(d-1)an . (2)

The solution to this recurrence is

S



A = J—h-;__-—_}_( d-3/h + 1/:3)11*2 -(-w/d_-i-/-h* 1/2)n+2 )s (3)

80 the growth rate or effect.ve branching factor is Ja - 3/ + 1/2,
not much higher than the value Ja obtained for the full method
including deep cutoffs. This result tenrds to support the contention
that deep cutoffs have only a second-order effect, although we must

admit that poor ordering of successor moves will make deep cutoffs

increasingly valuable.
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J. Dependent terminal values

Our model gives independent velues to all the terminal positions,
but such independence doesn'i hapnen very often in real games. For
«xample if f£(p) is based on the piece count in a chess game, all the
positions fcllowing a blunder will tend to have low scores for the
player who loses hls men.

In this section we shall try tu aceount for such dependencizs Ly

cor. .idering a total dependency model, which has the following property

for all nonterminal positions p : For each i and J , 21l of the
terminal successors of Py either have greater value than all. terminal
successors of p T or they all have lesser value. This model is
equivalent to assigning a permutation of {0,1,...d4-1] to the moves at
every position, and then using the concatenation of &ll move numbers
leading to a terminal position as that position's value, considered as
a radix-d mmber. For example, Figure 8 shows a uniform ternary game
tre> of height 2 constructed in this way.

Another way to loox at this model is to imagine assigring the
values 0,1, ..., @5-1 in d-ary notation to the terinal positions,
and then t5 epply a random permutation to the branches emanating from
every nonterminal positicn. It follows that the F wvalue at the roct
of a ternary tree i3 always -(0202 ... 20)5 if h 4is odd,

+(2°20"'2°)) if h is even.
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Theorem 6. The expected number of terminal positions examined by tkhe

alpha-beta procedure, in & random totally dependent uniform game tree
of degree d and height h , is

d-H
d /21 h/2j b+l _h
_—a-ue(d /2) ony a3 gt -ud)nﬁ , (1)

-

1
where Hd-l‘lé‘v cee t

Proof. As in our other proofs, we divide the positions of the tree
jnto a finite number of classes or typer for which recurrcnce relations
can be given. In this case we use three types, somewhat as in our
proof of Theorems 1 and 2.

A type 1 position p is exsmined by calling F2(p,alpha,beta)
where all terminal descendants q of p have alphe < +f(q) < beta ;
here the + or - sign is used according as p is an even or an odd
number of levels from the bottom of the tree. If p is nonterminal,
its successors are assigned a definite ranking; let us say that Py
is relevant if P(pi) < P(pj) for al1 1 <j <1 . Then all of the
relevant successors of p are exsained by zlling F?(pi,-p_g‘.;_a, -m)
where F(pi) lies between -beta and -m , hence the :clevant p,
are again of type 1 . The irrelevant py ere examined by celling
Fe(pi,-bﬂ,-n) where r(pi) > -a , and we shall call them type 2 .

A type 2 position p 1is examined by calling F2(p,alpha,beta)
where all terminal descendants q of p have +r(q) > beta . If P
is nonterminal, it furst successor p) is classified as type 3,
and it is exsmined by calling F2(p1, -beta,-alpha) . This procedure

call eventually returns a value < -beta . causing an imnediate cutof?.
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A type > position p 1is examined by calling F2(p,alpha,beta)
vwhere all terminal descendarts q of p have +f(q) < alpha . 1If
p 1is nonterminal, all its successors are classified type 2 , and they
are examined by calling F2(pi, -beta,-alpha) ; they all return values
> -alpha .

Let 1‘-\'1 ’ Bn ’ Cn se the expected number of 4erminal positions
examined in a random totally dependent uniform tree of degree d and
height n , when the root is of type 1,2, or 3 respectively. The

above argument shows tha*t ihe following recurrence relations hold:

0 (0] C
Ane1 = At (;c‘]:An‘.'%Bn)+ (%An+%3n)+ et %An+gil3n)
=HGA ¢ (d-H)E 3
Bre1 = Cp
cn+1 = dBn ) (@)

Consequently Bn = d"-n/ a , and A'h has the value stated in (1).
3

Corollary b. When d >3, the average mmber of positions examined

-beta sesrch under the assueption of totally de&dent. terminal

values is bounded by a constant times the optimum nmumber of positions
specified in Corollary 3.

Proof. The growth of (1) as h =« is order Y2 . e stated
constant is approximately
" 2
(d-Hy)(1+H,y) /2(a-Hy) -

(When d = 2 the growth rate of (1) is order (3/2)P instead of ,2".)
-
»



Incidentally, we can also analyze procedure F1 under the same

assumptions; the restriction of deep cutoffs leuds to the recurrence

Ay=1 , Aj=1, A, = HdAn_.’l+(d-'Hd)An ’ (3)

—_— h
and the correspording growth rate is of order (J:— Hd+ Hs/h + Hd/e)

3o again the branching factor is approximalely /a for large 4 .

The authors of [7] have suggested another modael to account for
dependencies between positicas: Each branch (i.e., each arc) of the unitform
game tree is assigned a random number between O and 1 . and the values
of terminal positions are taken to be the sums of all values on the branches
above. If we apply Lhe naive epproach of Section 7 to the analysis
of this model without deep cutoffs, the probability needed in place of

Fquatison (9) in that section is the probability that

) <X,+ min Y

(4
1 1<k<y

max (X

+min(Y, o5 --sY
1<k<i kl

k kd) ik ’

where as before the Y's are independent and idemtically distributed

random variables, and where xl, .e+3X, are independent uniform random

i
quriables in [0,1] - G. Balkena [ ] has showr that (k) never occurs
vith greater probability than the value D, 4 derived in Section 7,

r ess of the distribution of the Y's (as long as it is comtimuous).
Therefore we have good grounds to believe that dependencies between
position values tend to make alpha-beta pruning mcre efficient than it

irould be if all terminal positions had independent values.
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