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Abstract 

Ar. Ana:cysis of Alphd.-Beta Pruning 

by Donald E. Knuth a.nd Ronald W. Me ore 

Stanford University 

The al~ll&-beta tecbnique for searching game tt·-les is analyzed, 

in an attempt t.o provide scme insight into its behavior. The first 

portion of this paper is an expository presentation of the method 

together with a proof of ita correctness and a historical diseuaaion. 

Th~ alpha-beta procedure 11 shown to be optimal in a certain sense1 

and boWld:; are obtained for its runnin.; time with vartous kinds ot 

rand(JII data. 

Kervo~:cla: &lJ?ha-bet& pnmiDc, p~~e trees, p!'Clot of eorreetD~ss, 

recunica ellainatian, ~silo o'f alforitms, 

~leHDtar.r UJ~~Ptotic method& 

CR categoriez: 3.66, 5-25 

This rese&l. .~'1\ wu ·~- in part b7 tbe B&t1on&l 8C1ence t'o'IJDI!aticm 
Wlder grant maber GJ 3S.73X emd bf the Otn.ce ot laval Bes.-rch \Dier 
contract HR o41i-lto2. Reproduc:t10D 1n vbole or ill ta:'"'t l8 pemit:ted 
for any Pl!'JX)&e ot the United States ~t. 
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An Analysis of Alpha-Beta Fr.ming 

Put one pound of Al~ha Beta Prunes 
in a jar or dish that has a cover. 
Pour one quart of boil1ng water over 
prunes . The lon,~er prunes soak, the 
plw:.per they get . 

- Alpba Beta AcMe Markets, Inc., 
La Habra, California 

COillputer programs for playing games like chess typically choose their 

moves by searching a large tree nt potential continuations. A technique 

cal11~ ,.alpha-beta pruning" is generally used to speE:d up such search 

proceat~es wi tnout l~•• ot into:mation. ThP purpose of this paper is t.o 

analyz·e the alpba-beta procedure in ordE!r to obtain sr.ue quanti.tativr! 

estimates or its pertor.ance charact-.r1at1cs. 

Se~tion l defines the baaic concepts asaoeiated with ~e trees. 

Secti~ 2 presents the alpba-beta method together with a. related teebnique 

which is similar, but not aa povertul., becauae it tails to aak.e ''deep 

cutotra" The conectness ot bot~ methods is dem:>nl!trated, and Section -' 

givea exuaplea and fl.'.r;hdr developDent ot tile a}8oritiJDs. Several 

ngeationa tor appqit:J the aetbod in practice appear in section 4, and 

tbe biatory ot &lp.&-bet& J)l'W'lins 11 disOWisecl in Section 5· 

Sectlaa 6 bec1U tbe quantitative ~ata, 'b7 derirtng lower bound8 

on tbe -.owat of a-.rcbiDC ne.de4 ~ al:pba-beta and b)'!:& aJ.goritba which 

aolvu the aae aee~ probl•. Sect 1m 7 deri vea upper hounda, pri.Ml"U~ 

'b7 c~ideri.DI th~ ca•e o~ raadaa trees llben no deep cutotr• are ude. It 

ia aban tbat tbe pro~ednre 11 nu<l~Dab~ et:ftciet eftll und.e:r theae weak 

u.-ptlcma. Sectlcn 8 abowa how to lntrodllce ICH ot the deeJI CU'totra 

tnto the aa&l:faia; 8114 lectiaa 9 8hcvs tb&.t tbe effi.cleDC7 iaprovea vbea 

there are clepell4eciea betvee succeaaive .,.,... !h1a Jl&l'M' 11 •~•ati~ 

aelt-coat&1De4, except t-,r a tw 11a~ticall·enlts quoted in the later 

aectima. 
2 



l. Games and position v~ 

The two-person games we are dealing with can be characterized t-y 

a set of ''positions'' 1 a.nd hy a :>et of rules for moving :t'r001 one positior! 

to another, tha players moving alternately. We ascu.'ne that no infinite 

sequence of positions is allowed by the ru.les,"!l and that there are e>nl.y 

finitely many lega.l moves from every position. It f'oll::n~s from the 

"int'inity lemma'', see [ll,Section 2 • .:•.h.3], that for every position p 

there is a number N(p) such tha.t no game starting at p lasts longer 

than N(p) moves. 

If p is a position 17om which there are no legal moves~ there is 

an integer-valued :t\metion f(P.' which represents the value of this 

position to the player whose turn it is to play from p ; the value to 

the other pl&ye:.· is asf.umed to bP -.f(p) • 

If p is a position from whi.ch ther€ are d .legal moves p1 , • • .,pd , 

where d > J. , the problem is to ·~boose the ''best" move. We &siiUIIle that 

the best move is one which achievu the greatest possible value when the 

game ends, if the opponent also cbo·1ses rr.oves which are beat for him. 

' 
Let F(p) be the grea.test pouibl~ value ach:!,evable f'ran position p 

against the optimal detensi ve strategy, from, the standpoint ot the player 

who is moving f'rom that poattion. Since th~ value (to tbia pJ..ayer) 

, ve have 

it d "'0 ; 
(l) 

if' 4 > 0 

;;g St.r.ict:Qr •pe&)~i.ns, cbe•& doe• not a.tisty thia c~lti~h aiDce its 
rulea r~r reneated p~altio~• Oftlr ~ive the ~s the aptiaa to 
;oequeaf.; a draw, in certain c~cea; it neither plqer aetua~ 
does uk tor a draw, the pmc cM go on forever. :s..xt thla tectmical1t7 
11 of no practi•:al iaportance, si.DCe c~·~er cheae prosruaa ~ 
l.ook t1nitel..}' 11UJ7 IIOYn ahead. It h poedbl.e to deal with int'inite 
lliiiH• b7 aa•tsnlng aJIPI'opriate values to Mpe&ted poait10IUI, bllt aueh 
qMI'tlou• ..,.~ oe;rODCl tbe •cope of tAla paptr. 



Ttis form.ul.a. serves to define F(p) fer a.ll positions p , by inducti'-n 

1_.~ the l'!ngth of the longest game playable frcm p • 

In n•ost discvssions of game-plJlying, a sli gbtly different formalism 

iB used; the two players are named Max and Min , wher~ all values 

are given :f'ran Max's ~o-!ewpoint. Thus, if p ::l.s a terminal posit ian 

with Max to move, its value is f'(p) ~s before, but if p is a 

te:nnina.l. positiora with Min to move its va.lue is 

s(p) = -r(p) (2) 

MaX will trJ to maximize the fina.l value, a.nd Min will try to minimhe 

it. 'fhere are now two f'unctions corresponding to ( 1), namely 

if' d=O, 
F(p) (3) 

, it d >0 J 

which is the best va.lue Max can guara.nte,~ starting at. position p , 

G(p) (4) 
it d > 0 , 

which in ~he best that Min can be sure ot achi.aving. As before, we 

&aBW\e that p1, •.• ,p4 are the legaliiOVes trc.e poeition p • It is 

•117 to prove by 1Dduction "tbat tbe two detinittone of' F :!.b (1) a.ud 

(3) are ideatic&l, and that 

G(p} =- ·l'{p) (5) 

tor all p . Tbua the two &pproMbee are equivalent • 

Sc.etiJiea lt 11 _.1er to reuon about aae-pl.q'S.Ds b7 uaiDI the 

"'d.D~" :tr.ework ot (') and (a.) inatead of tbe "JJ.,.mx" approach 

o~ Bqw.Ltioe (1); the re••ce 1a that ve are aaHtillea l.eaa contuaed it' 

w. caaai•teatq rt&baate tbe sue JOeittou :Dal one ~· s ataact;poiDt. 



On the other band, tol'IIL'Ul&t1on ( l) is &dvan1;aaeoua when w.- Ll'e trying 

to prove tbinal &bout guea, becauae ve don't have to deal with tvo 

(or a011etimea even 4 or 8) seJL-ate cases wben we waDt to eatabllsb 

our results. Equation (l) is anaJ.Ogoua to the "NOB" operativn which 

ariSes 1n circuit design; two levels of NOR losic are equivalent to 

a lf'".·~l of ARD' a followed by & level of OR' s. 

The tuncti<m F(p) is tht! maximum final val.ue that can be achievecl 

it both p.lay"ers play opMma.ll;y; but we ahou.lcl remark tbat this ref'lects 

a. rather cODaervative strategy that won't a.J.vaya be best a.ptnst poor 

pla)tera or against the nonopt1DI&l players ve encounter in the real 

world. For exaple, IUppole that there are two moveP, to poaiticms 

p1 Uld. p2 , · 'll~ere p
1 

assures & draw (value 0 ) but CMnot possibly 

vi..,, vMle p2 live: a cbaDce ot either victory or d.et•t depend!na 011 

Whether or not the oppc;IDent ovvlooka a rathe subtle winnins aove. 

We f1S:¥ 'b! better oft pabl1n8 on the move to p2 , which 11 our cmq 

chace to Yin, 'QDJ.eaa we &1'e ccmvillce4 ot our oppc:llent • a c~ence. 

ID4ee4, !ulanl • ._to b•t cheaa-plq1Da p!'Og"J:wa b7 adoptfD& ncb a 

lltft.teg. 

' 



2. Developnent o~ the alggritm 

The following algorithm (expressed 1.n an ad-hoc AIOOL-like l.cmgua.ge) 

clearJ.:.r comp.1tes F(p) , by folloving definition (1): 

!Jl,lE::f5_er ~edure F (E,sit}~ p) : 

bel~ inte~;.m,i,t,d; 

end. 

dete~m1ne the successor positions p1, ... ,pd; 

if d = 0 then F :: f(p' else ,.,.., ~ .. ..,..,.,., 
?~in m := -e~~; 

end· ___ , 

!2;:. i : = 1 s~e.R. 1 ~ d ~ 

b!~ t :a -F{p1); 

if t > 111 then m :"' t; - -end· _, 
F := m; 

Here • denote• a value that ia gree.ter than or equal. to I f(p) l for 

all tem1naJ. :p~..s1t1ona of the game, hence -~» is less tball. or e<!ua.l 

to + F(p} ror all p • This &J.&oritml ia a. "brute f'orce" search 

throu8h a.U possible continuations; the 1ntin1ty l.aama assures ua tbat 

the algoritba wUJ. term:1nate 1n tinite:Qr ~ ateps. 

It 1& poaaible to 1aprove Oft the brute-~orce ae&reh b7 uin~ a. 

"bftiiCb-aad.-bouncl" teem1que [ 1.~ ], iparing aovea vhich are :l.llCapable of 

i:>e:lll& bett.er tllaD aona ldl1ch are alr~r laloWft. rar .._.,., :U' 

F(P]_) • -JD thai P(p) ~ 10 1 Uld we dOD't lave to lmow the aact ftl.ue 

ot 1'(~) :11' we o• deduce tb&t J'(~) ~ -10 (i.e., tbat -1'(~) ~ 10 ) • 

'i1IWI if tn 11 a lepl ~~em~ f'l'CII ~ ncb that J'( p21) S 10 , we Jteed. 

JWt 'botber to explore _,. ot.h• .ana trc. ~ . In ---~ 

tumaol.og, a .an to ~ cube ":refuted" (rel&tin to tbe altenat1Te 

6 



move p1 
) it the opposing player con make a rep~ to p2 tbat is at 

least as good aa his beat reply to p1 • Once a move baa been refuted, 

we nP-ed not search tor the best possible refutation. 

T'nia line or reasoning leads to a eanputati ~nal technique that 

avoids much of the Cc.mplt&tim d~ne by F • We shall define Fl as 

a procedure on two parameters p and ~ , and our goa.l is to 

achieve the followin~ conditions: 

Fl(p,~) = F(p), if F(p) <bound; 

Fl.(p,bound) 2: ~, it F(p) ~ ~· (l.) 

Th~se relatir.l\s do not fully define Fl , but they are suf'licient~ 

powerful to calculate F(p) for a.ny starting position p becauae they 

illpl.y that 

Fl(p1•) = F(p) 

Tbe tol.J.owing algoritbll eorre8J)O.'lds to this branch-and-b01111d idea • 

. ~s,.er.E2£eclur• 1'1 (i£•1t1ort p, 1ntser bound): 

~ ~ser a,i,t,d; 

cletumne the •ilCeeuor ~~iticms ~' ••• ,pd; 

1t 4 - 0 tiMn n :• f'(p) else - - -
~· =·--; 

a 1 =· 1 ~ 1 ~! 4 !2. 
~ t :• ·F1(p1,-a); 

11' t :>. tha.•. Ill :• t; - -!!.. ~ !e!!l lie£ !2. daM; 

!!!; 
claae: n :• a; 

7 
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We can prove that this procedure :;atisfies (1) l1y L-_rguing as follows: 

H the beginning of the i-th iteration of the t.f2L loop, we have the 

"invariant" condition 

(3) 

just a.s in procedure F • (The max operation over an elnpty set is 

conventionally defined to be _, . ) For if -F(p
1

) is > m then 

Fl(pi, -m) • F(p
1

) , by condition ( 1) and induction on the 1EIIlgth of the 

game following p ; therefore (3) will hold on the next iteration. 

And if' max(-F(p1), ... , -F(p1)) ~ ~ tor any i , then F(p) ~bound . 

It follows tbat condition (1) holds for a.ll p . 

Tbe procedure can be improved fUrther if we introduce both lower 

and upper buunds; this idea, which is called al;pha·betn eJUlinl• is a 

signif'1eant extension to the one-sided. branch-and-bound method. 

(UnfortU..''I&tely it doesn't apply to all branch-and-bound algoritbtts, it 

worm. onl¥ when a gane tree iF being explored.) We r\ef'ine a procedure 

F2 of th:"r"ee puoaaet81'8 p , ~ , &Dd beta , 1·or ~ < ~ , 

aatiatyiJlg the tt.;JloV1Dg condit1-;na analogous to (1): 

r.!(p,~beta) ~ ~~ it P(p) S !:!il!!!!i 

P"2(p,~,beta) • lo,(p), it~ < P{p) < beta; (4) 

P2(p1!!e!1beta) ~ beta, it P(p) ~ ~· 

Agala, tbeae caadJ:tiaaa do not fUlly s:peeifr P2 , but they impty' tll&t 
! 

P2(p,-1 ea) • P(p) (5) 

It tuma out. tbat this Wprovecl algoritbla 1ooks ~ a little clitterent 

1'1'011 the others, Wllea. it u exp-esaecl 1n a progr••1ng J.ar.guage: 

8 



J.nts.er ~~e F2 (~Bi~!~. p, intee!' !!~!:!!, !_nt.!lez:.. ~): 
~eta!, J.ntser m,i,t,d; 

detel'llline the suecessor positions p1, .. · ,pd; 

if d = 0 then F2 : = f(p) else - - -
?~ a :"" !!a!!; 

!2!. i : .. 1 ~ 1 ~t!-!, d ~ 

b!Jlip. t : .. -F2(p1
, -beta, .m) ; 

if t > m thllll m : • t; - -!!,• ~ ~ ~ 12,~ dcme; 

done: F2 :• m; 

To prove the validity of F2 , we proceed u we did with Fl . 

The invariant relAtioa UJ&losous tu (:~) is naw 

(6) 

aD4 • < ~ . It -P(p1) ~ ~ the -!'2(p1, -beta, -a) will also 

b~ ~ ~~ aru1 i~ • < -P(p1) < !!!!!, thea -F2(:pi'·beta,-a) • •F(p1) ; 

80 the proof aoe• 'tbrQQP .. before, eltabll•hi~g (4) by 1M:uetim. 

Bow tb&t ve have tcu4 tvo illpl'ov...tl Cit the ld.niaz procedur'!1 

' 

it is .tUNl. to Uk Vhetber Rill fUrther ~--t ~ :paible. Ia 

theft Ill "&l.Jba-btrtia1 a" proce4ure F3 , •"hich MJcel ue 8&7 ot the 

aeccm4-larpat wl.ue tcuacl ao :tar, or~ otber p.W:" Sectlc:a 6 

belalr shan tbat tbe &rl.IVW 18 DO, or •t least tbat tba'e 1.a a nuaaable 

... e 1D vbich procedul'e l2 b optS... 

9 



3. Examples and refinements 

As an exNn],.l1e of these procedures, consider the tree in Figure 1, 

which represents a position that has three succes~o;ors, each of which 

has three successors, etc., until we get to :;
4 = 81 positions possib.le 

after four moves; and these 81 positions have been assigned "randcxn'' 

f value& according to the first 81 digits of n • Figure 1 shows the 

? values canputed rrom the f' s thur.., the root node at the top of the 

tre•' has an efftocti ve val~e of 2 after be1;1t play by both sic!es. 

F.:.~re 2 shows the same sitUB.tion a.s it is evaluated by procedure 

Fl(p,=) . Note t.hat only 36 ::>f the 81 tenninal positions are 

exiY!lined, and tbll.t one ~f ":.h~ ~lodes at level 2 now has the "approximate'' 

value 3 instead of its true value 7 ; but this approxiJn&tion does not 

of CO'.ll'Se affect .~he value at the top. 

nsure 3 shows the ·~e situa.t1on 8.8 it is evaluated by the :f'ul.l 

alpha-beta pruning procedure F2(p, -w,+=) Will always ~xamine the same 

nodes a.a io'l(p1CD) ,;;1til the tourth level of lc.Jkahea.d is reached, in 

allY i,;41le tree; tbis is a consequence of the theory developed belav. 

On level&; 4, 5, •• • , hoWever, procedure t'2 is occaa1~ able to 

lll&ke "de~ cutoffs" which Fl 1& incapable of tind1»g. A Call'IJ&l"iSon 

o~ l'iguxe -, v):th Figure 2 shows tbat there are ftve deep cutoffs in this 

ezar.apl.e. 

All ot th••• 1llustraticm.: preset tbe remlt1 1n tema ot the 

·•nepax" aodel ot Sectioa .1.; if the reader~-- to IH 1t 1n "a1.D1uax" 

teJU 1 it ia 8Utttc1eut. to s.por. all the a1Dua lips 1D Figure• l - 3. 

ccnveatioaa, tor aMple - repl&ciDI P2 bJ the foJ.l.owiDg two procedure•: 

10 
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Figure 2. Tbe game tree of Figure l evaluated with procedure Fl (branch-a.nd-boomd stre.tegy). 
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~tse~ J!2!:.~~ F'2 (J2!il'~ p, .iDtei':.": !!2!!:• inteler beta) : 

~ J.n:st~ rra,i,t,d; 

end· -· 

det~!ne the successor positions p1, ••. ,p4 ; 

if d , 0 then F2 := ~(p) e1se - - -
~.· =-~; 
~ i : ... 1 ~ 1 l»l!il d !e. 

belin t ~= G2(p1,m,beta); 
it t > m then m : = t ; - --!!.m ~~~£~done; 

end· _, 
done: F2 : = m; 

1-1!,t.!J!r E2:..es'H!. G2 (l!2,~1tt0!! p, J.p.~,sw: ~~ i!t~~ beta) ; 

~~ ~;!;.!J!r a,i,t,d; 

tad. -

det~e the suceeaaor poaitiona p1, •.• ,pd; 

u· d • 0 then Ci2 :• g(p) e.tee - - __._... 
52]1• :• ~; 
~ 1 :• 1 .!1!2 1 ~!~. d ~ 

!»51! t :a:: !'2(p11!!J!!!!1•); 
itt <. tblll. :• t.; - -
.!!,a ~ aJ.p ~ 12. ~daDe; 

ed." _, 
4one: 12 :• a; 
ud· 
-~ 

It 1a a aSIIple 'blat lMtrtJctive avc:l.ae to JR'Oft that rJ2(p,!!~!:!f._,~) 

~· equals ·12(p,-bet!,.-!ll!ba) • 

The above procedures baft .-de ue ot a MCiC rcxtiM tbat deteatn• 

tbe 8\ICCeaaon 1\• ... ,p4 ~a 11.,... ~itioa p • It w wut to be 

.on ex:pUcit abalt bolf pitlaaa ar~ :repre•eatell, it 11 .:tural to ue 



the fermat of linked records: When p is a reterence t·J a record 

dencting a position, let t1rst(p) be a reference to the first 

succeasor of' that position, or A. (a nul1 referece) ~~-t t;he position 

iE tenninal. Similarly if q ref'eren.ces a successor p
1 

of p , 

let next(q) be a reference to the next guccessor pi+l , 

or 1\ if i .. d . Fina!4 let genel"l\te(p) be a J'rc>eedure that 

create:; the records for p1, ••• ,pd , sets their !!!& fiel.de, and ma.ltea 

fi'!:st(p) point to p1 (or to A. if' d = 0 ) . Then the alpha-beta 

pruning method takes the folJ.owing more explicit tom. 

~eu£ iD?£edurt F2 (!:!!, (position) p, wteier ~~ intser beta): 

~i_n .. ~-t:_~-:r., m,t; !.!£ (positicn) q; 

generate(p); 

q :• !!!:!!(P); 

it q • A thea :r2 :• f'(p) else ,..,., ,..,.. ' #tJ.,.,.,.,. 
~ • : .. !:.!J!!!; 

while q i A and n < beta 4o 
~ ~ -~ 

~ t : .. -F2(q,-~,-a); 

it t > • the m : • t; - -~ :• next(q); 

It 11 1Dtel'f!l't1DS to CCl:':ve:•t t.bil neurlift pr~e4ure to 8ll 

iteratin (ll<lnMC'Ur~ive) tom. by a I•JqUence ~~ aecbmlical t:rwaa~1;lcu, 

MO. to appq sillple agt:labat 1Dna ·lfbich pr•tUYe Jll'CCI• correctaesa 

(see [.C]). The remltiD& pt"OCe411re is aurp:-1•~ s1a1Wt, bu.t Dot 
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.:f:.!!.telet ~~ed1J!.!, alpbabeta (r,~ (position) p); 

b!!ta!!. ~~!~!. I ; ccmnen'! level of recursion; 

intea.er ~a[ -2:L]; CCJI!Bent stack fer recursion, where 

( 1-2], a[ f-1], a[ I], A[ Hl] denote respectively 

~~ -beta, m, -t in procedure F2; 

.!:!!, (position) ~ r[O:LH); ~CIIIIlent._ another stack fo1 

..-recursicm., vher~ r[l1 and R[l+l] denote respectively 

p and q in F2; 

I. :• 0; a[-2] := a(-1] := .-; r[O] := p; 

F2: generate (1·( I]) ; 

r[l.+l] := :t'irs't(r[l1); 

if r[l+l] = J. then all] := .f(r[f]) else 
,._ --
~ a[ I 1 :::. a[ I -2 1 ; 

loop: J := l+l; E,!:2_I'2; 

resume: it -a.[J+l] > a[l) then - -b::J.in a[ f) := -a{ 1+1]; 

1t a(t+l] $ a[t-1] ~e~ done; 

~ 

end· =-' 
r[ f+l] := ~(r[ J+l]); 

if r( I+ l] .1 A then tro t~ l~oop; .._, r ~ JiiiW #V'V 

dcxle: I :• 1-1; .!£. I ~ 0 ~ £ ~ l .. Slae; 

alllb&b!ta : • a[ o 1 ; 
mel. -

Thil procedure •lp.!!eta(p) will ce&pate the a•e value u / F2(p, -•,+<")) ; 

ve .at cbaoae L 

exceecll L • 

I 

lJuop ...,..,. .., - tbe l.owol ot /""'"'""" 

l.6 

/ 
/ 

~. 

~.;~ .. -.. 



\-!1-lell n ~·:~i"'r'"c.r 1::: playing a compl·~x eame, it will ra.rel,v be able 

to sear~h ~.~·~ ~~.l.':-.i.bil.itit:£ until truly te .. ·'1linal positions are reached; 

even the nJ.r,ha-~- eta -t.echnique won't be fast enough to solve the game 

of ches::: t Ru1 .... e eM still use the above procedures, if the routine 

that generates all moves is modified so that sutticiently deep positions 

are consif.ered to b.,: te:nnina.l. For example, if we wish to look six 

movel.' c;.!.<Jad ·: t,c·(,'e for each player), we can preter.d that the positions 

artificiaJ.ly-:.er:nin:l-1 positions, we must of' courst use ot.r be~t guess 

about the ·:alu-:::, hoping that a sufficiently deep search will ameliorate 

the in&.ccuracy :').!: our guess. (Nost of the tillle wiJ.l be spent in eva.luating 

these guessed .,a.l1es for f , unl.ess the det~rmination of legal move,; is 

espt'ciaUy difficult, so sane quieJt1¥-comp1ted estimAte is needed.) 

l"lstead of sea.rch:!.ng to a f!xed depth, it is also possible to carry 

some J..in<'!s furtl,~r, e.g. to play out &ll sequences or captures. An 

inter-ecting &lJPI'oach was suggested. by :R. w. Floyd in 1965 [6j, but it 

has a.-pp:u'entl.y n.ot yet been t:o:ied in lArge-scale experiments. Each 

move in Floyd':.; scheme is a.scigned a "11kel1bood" &<!CI.)rd:Jtlg to the 

follow'!.ng genera .... plan: A forced move bas "likell~" of 1 , while 

very ~mpla.usible movu (like queen sacri:ticea 11' cheaa) get .01 ·-r so. 

In chess a "recaptur·~·· b&a "likelihood" greater t'ban 1/2 ; and tile beat 

strategic choice out ot 20 or }{) poss1b1llt1es seta a "l1kel1hcod" 

<..t about 0.1 , while the vorllt choices get SIQ' 0.02 • Uhen the 

product of all "likelihoods" lMitiDS to a position bec0111ea :!..ess tb&.n a 

given thresllhold tsay l.O..a ), we ccxuicler tbat poait1on to be tt!l'llin&l 
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and estiJns.te its value vitbout f'urthe:.· searching. Under this scheme, 

the ''most likely" branches of the tree are given the most attention. 

Whatever method is used to produc~ a tree of rea~onable size, the 

u.l.pba-beta procedure c&n be somewhat imprr-;ved if we hAve an idea what 

the value of the initial positioo will be. Instead of calling 

Ji'2(p,-c~~,+a~) , we can try F2(p,a,b) where we eJC!)eCt the value to be 

greater than a and less than b . For example, if F2(p,o,4) is used 

instead of F2{p,-10,+10) in Figure .3, the rightmost " -4 " on level ~ 1 

and the ,. 4 " below it, d ... not need to be considered. If our expectation 

is f\&l.1'J.lled, we III&Y have pruned oft more of the tree; oo the other 

hanC:. if the va.lue turns out to be low, Lay F2(p,a,b) = v where v Sa , 

we can use F2(p, .-, v) to deduce the correct va.lue. Thls idea bas been 

used in scme versions of Greenblat.t' s chess program [8]. 

5. History 

Beton we begin to make quantitative ~see ot alp-beta's 

etieetivale88, let u look brie~ at ita historical developDent. The 

ear]3 h1st017 is eo.ewb&t obscure, becaue it 11 baaed on UDd.oc1aented 

recoll.ectiona ucl becauae ec:.e people b&ve c~ed procedure n vi th 

the atrc::acer FOCedilare n ; therefore the following account i• baaed. 

Oil the bMt 1Df'or.at1oa DOif aftllable to tb.e autbcrc. 

Jalm MaC .. ·ct.IJT (15] tlxJQsbt o-t tbe acUKxl cluriD& the Dart.aouth 

~_. reaeuch ccmt.:r.ce CD artiftc!al 1nteW,.nce 1n 1956. *• 
A. Bematellt dMCJ'ibed u euly Chese Jlll"'ClWl [2] which didn't use 

U17 sort ot &lpll'l-'bda. McC&r+.JI;J "crit1cbed it on the epet tor 

thia [ reuoa], but Bemat.eill wu DOt ecmviaCed. •o :tanl&l speciticati011 

ot tbe &J&orltla-.. PYa~ at t.lat tSae." It 11 pl.au.51.ble tbat *Cart~' a 



remarks at tbat ccmterence led to the use of alpha-beta pruning in 

game-playing programs of' the lAte 1950' 8. A..--thur Samuel has stated that 

the idea vas present in his checker-playing programs, but he did not 

allude to it in his classic arMcle [2lj because he felt tba.t the other 

aapect.s of h18 program were more significant. 

n.e :t'irF:t publiabed dhcusdon of a metbod for game tree pruning 

appeared in Newell, Shaw, and Simon' 8 description (16) of their e&rly 

chess progr•. Howeve:t:, they illustrate oncy the "one•dded" technique 

used in procedure F1 above, so it is not clear whether they made use 

of ''deep eutof"ts·'. 

Mc:Cartb:,• coined thf: nue "alpha-beta" when he first wrote a LISP 

~ -~ the technique. His origiDal. aPJU'(a ch vu aacewba~ 

more elaborate tbiUl tb.e aethod described above, aiDCe he U8Uilecl the 

existence ot two 1\mcti::na " optillilltic value(p) " ad "pe111111at1e w.lue{p) " 

vbieb were to be upper aDd lower bounds oa the value of' a JIC)ait101l. 

!! o,:ptillil't1C ftl.ue(p) ~ ~!!!!, F2 :• !!i!!! 
elae 1£ Rf1Ela11't1C ft.bae(p) ~ ~ ~ P2 : • ~ 

!.!!!, !!!~!!, (the aboft ~ ot Jli'(JCe4ure l2) .!!!,· 

Becaue of tbis el.aboi·atlon, h• tboqlrt ot &l]lba-bet.a u a (poaaib~ 

i~~Mcan.te) heuriltS.c clevic e, not r91izias tb&t it woul4 aJ.ao ~e 

c:pts.uttc ftl.ue{p) co .. ... rssillittlc -~(p) • -- rar all p • 
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He c:t-edits the latter discovery to T. p, Hart and D. J. Edwards, who 

wrote a. mfl!lorandum [ 10] on the subject 1n 19()1. Their 'Wlpublished 

m~orandum gives examples of the general method, including deep cutoffs; 

but (as U8U&l i."l 1961) no attempt was made to indicate why the method 

worked, much less to danonstra.te its validity. 

The first published account of allila-beta. pr'Wling actualJ¥ appeared 

in Russia, quite indepen<iently of the American work. One of the develope!·s 

of an early Ru"'liiBll ct.ess-pl.ayir.g program, Aleksandr L. Brudno, de::cribed 

an algorithm identical to alJb&-beta pl~ing, toge~her with a rather 

ccmplicated proof, in 1963 [ 4]. 

The !'u.ll alpha-beta pr'Wling tecbnique tinaJ..J.y appeared 1n "Western" 

caaputer-science llteraturoe in 1968, within an article on theort!ID-proving 

strategies by J. Slagle Uld p, Burslcy' [24], but their description was 

saaewb&t vague Uld they did not illuatrate deep cutoff's . 'I'bu8 we might 

aay that the first real English descriptions of the met:1od appear~ 1n 1969, 

in arttelea~ by Slagle Uld D1Xcm [25] Uld by Semu.el [22]; both ot these 

articles clearlv mention the poasibWt:r of rteep cutoffs, BDd discus 

the idea i."l aoae detai 1. 

'l'he a.l}ila-beta tecbnique sesa to be quite difi'ic\Ut to cOIIIIIIIUil1cate 

verbal..q, or in ccuvmtiaoal -.th-.tical J..aoguage, and the authors ot 

the papvs citecl abon bad. to re•ort to rather ccapl1cated descriptiona; 

turthemore, C<lUidenble tbought s._. to be required at fir!!t upoarure 

to ccmYiDCe ODetlelt that the af"tbod ia correct, eapeciall.7 when it bu 

bee clescribed ill ord1.nar7 t.ueuase 11114 "deep c-...V.otts" auat be juatit,.ed. 

Pvb&~ thia 11 Wb;JIIIQ )'eal'a went b7 before the techr11que _,. }Qblishcd. 

Howwer, we bave see in Oect1CD 2 tbat the a~bod. ia eaaU~ 'UDiler.tGOd 

and proved correct when it b1.8 beea expressed in &lcoritbaic l.aDiaAse; 
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this makes a good illustration of a case where a "dynamic'' approach to 

process description is conceptua.lly supedor to the "static" approach 

or conventional matheratica. 

Excellent presentations of the method appear in the recent textbooks 

by Nilsson [18, Section 4] and Slagl.e [2-', pp. 16-24], but in prose 

style instead of the eaaier-to-understand ~orithmic f'om. Alpha-beta. 

pruning has becaae "well known''; yet to the a...-tbors• knowledge on.l¥ two 

published descriptions bave heretofore been expressed in ~ algorithmic 

language. In fact the first ot these, by Mark Wells [27, Section 4.3.3 ], 

isn't really the full alpha-beta. procedure, it isn't even as strong ac 

procedure n . (Not only is his l'.lgoritbn incape.ble or making deep 

cutof1's, 1 t m:Ues sbal.low cutorts on.l¥ on strict inequality.) The other 

published a.lgorJ:tbm, lrJ Ole-Jobwl Dahl and DB8 Belane& [5, Section 8.1], 

appears in a recent Norwf'gian-l.anguage textbook 011 data structures; 

however, the alpha-bM;a method is prP.sented using label paraaeters, 

so the corresponding proof of correctness becaaea aaaewhat dif'i'icul.t . 

Another recent textbook [17, Section }.3.1] contains an intomal description 

of What is called "&lp•bettl. pruniDa", but ap1D ODl.1' the metbod of' 

procedure Fl j_s giva; &JIPU'ent~ Mil¥ people are unaware that the 

alp-beta prc.cedure ia e&JJUle or -.kiDg deep cutorra .Y For these reucn£, 

the authors of' the present paper do n;;Jt feel it rec!undant to present a 

llfJif expoai toey uceount or the ••tbod, even tboQsb &lpb&-beta lJ'!'Uilillg hu 

been in use tor 'ICY.re tMn 15 JM.l'•. 
!J Indae4, cme of Uw -.tbora of' tbe JN••t JIIIPir (D. E. 1.) did. some ot 

the reeeercb d.e:JCrtbed. SA Sec'ticiiJ 7 a~teq ti ve years before he W&£ 

ave that deep cutofta wre pat:ole. It 11 -.q to Ullderatand 
prccedare n eD4 to uaoci&te it with tbe tel'll "&lJJbt.-btrta ~ns" 
yow collea&'lel are t&lkJ.D8 &bout, without tiacover!Ds P2 • 
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6. Ana]ysis or the best case 

Now let us turn to a quantitative stu~ of the al.gori thm. How 

much of the tree needs to be eXI:Illined'? 

For this purpose it is convenient to assign coordinate numbers to 

the nodes of the tree as in the "Devey deciJMJ. system" (ll, p. 310]: 

Every position em. 1eve1 l is assigned a sequence of positive integers 

~ a
2 

.•• a
1 

. Tbe root node (the starting position) corresponds to the 

empty Se'luence, and the d successors of position a1 ... a1 
are 

assigned the respective coordinates a1 
... a

1
l, ... , a1 

... a.
1
d . Thus, 

position 31&. b reached e.f'ter ma.ldn£; the third poadble move from the 

starting position, then the first move fran that position, and then the 

fourth. 

Let ua call. position a1 .•• a.
1 

crU~.cal 11" a1 • 1 tor all even 

values of 1 Ol" t"or &:..1 odd val.uea of i . Thus, poai tiona 21412 , 

~1512 , lll2l.ll3 , and ll a.re critical, and the root poaiticm is 

alw.ya cri~.,~~; but 12ll2 11 not, aiDce it h&s ncm-1' s ill both even 

8Dd odd positi.Cllll. The releva.ace ot tbia COilcept is ctue to the foll.ovtng 

theor•1 vbich characterizes the actiClll ot alp-beta pruning when ve are 

lucq eDOU8h to C\Jftsider the beat lllOVe :tirat :r.rc. f!!Ve'r7 podtioo. 

'J.'beoNI 1 . 
•• 

Ccmalcler a pe tree tor vhich the value ot the root pi ticm 

P(~ • • • a,) 
:0 {1"("1_ ••. •,> ' 

-1'(~ .•• a11) , 

it ~ ••. a
1 

h te:nd.Dal; 

otbarwiae. 

'l'he !l.Jib&-bfta pyce41are P2 -J.aea J!"'?Ci•el¥ the critical pitiou 

ot thia J!e• tree. 

(1) 



Proof. Let us say that a critical position a.1 .•• a.
1 

is of type 1 

if all the a1 are l ; it is of type 2 if aj is its first entry 

> 1 and f-j is even; otherwise (i.e., when 1-j is odd, hence 

a 
1 

= 1 ) i L is '>f type 3 . It is easy to est~blish the following 

facts by inducti .:. on the cCXDputa.tion, i.e., by showing that they are 

invariant assertions: 

(l) A type l position p is exsmined by calling F2(p, -•,+•) . If 

it is not terminal, its successor position p1 is of type 1 , 

and P(p) • -F(p1) ~ ~- . The other successor positions 

p
2

, ••• , pd are .')f type 2 , and they are all examined by calling 

F2(pi,-•,F(pl)) • 

(2) A type 2 position p is ex&'\ined by ca11ing F2(p1 -a~, beta) , 

where -• < ~ :.; F(p) • It it !s n~~. terminal, its successor 

:pol4.tion pl ,11 or type 3 I and F(p) ... p(pl) ; hence, by the 

•ecb.aalti.'!' ot procedure F2 &8 det1necl in section 2, the other 

0) A t~ ~ pualtioll p is a.inecl _, callina P2(p,!!:J!!!,+•) 

llbttre +e > ~ ~ F(p) • If it is not tenWI&l, ..cb ot its 

successor ~itiaaa pi is ot tJl)e 2 IDil the, an &11 exaaJned 

by cal.lJng 'F2(p
1

, •·Ill, ~ • 

It tollaws by tndae·t:t<:~a oo J tb&t. eft17 critlcu pitlaa 11 

UU1lnecl. 



If every position on ~evels 0,1, ... ,1-1 of a game tree 

~i..!!J.:ing the conditions of Theoran 1 has exact!y d ~r.essors, for 

scme fixed constant d , then the alfba-beta procedure examines e.><:actly 

d Ll/2.\ + d; t.'2l _ 1 (2) 

positions on level ! . 

Proof. There are d l.f/2J sequences for 

all i 1 such that a.1 = 1 for all odd values of i ; there are 

such sequences with a
1 

= 1 for all even values of i ; 'llld 

we subtract 1 for the sequence 1 ... 1 which wac cour.ted twice. 

This corcllar~ was first derived by Michael LeVin in 19611 but no 

proof war. apparen-.;ly t:ver written down at the time. In fact 1 the 

informal i.&emo [ lO] by Hart and Edwards justifies the resv.lt by saying, 

•For a r.onvincing personal proof using the new heuristic band waving 

techn.ique1 see thtl author of thb theor•." A proof vas later lJilblished 

lJY Sl..a6le and ::-'lxon [25]. However, none o~ these authors pointed aut 

that the valu.: of th-e root position must not equal :!. .., • Uthougb 

this is a rare occurrence in nontrivial games, since it meana tbat the 

root poJition ia a forced win or loss, it is a necess&ry hypothesis for 

both the theor• and tbe corollAry, slDce the mllber of positions examined 

an ~vel f will be d LI/2J when the root value is +• 1 aad it will 

be drl/'dl when the root vdue ie -• • R~ apealdng, ve gain a 

factor of 2 vben the root value 11 + • • 

'l'be c~baracterization of perfect alpaa-beta }Inning in tenu of 

cri tieal !JOaitiCDa allows us to extend Coroll.ary 1 to a. INCh aore general 

Claal Of gae treea1 bavin8 U1;V delit·ed probabilit7 cliatribvtian tar the 

of le&al .ave• on each level. 



Coro!}~ ~· Let a ra.ndcrn game ,!:!ee be generated in such a. wa.y t.hat 

each podtioJ' on level j has prol>a.bility qj ~eing nonterminal, 

and has an average of dj successors. Then the exJ?E;cted nwnbe:r of 

position& on leYel l is d0 d1 •.• d
1

_1 ; and the expected number of 

positions on le~! I examined by the alph~-beta technique under the 

assumptions or Th..!_'>rertt 1 is 

d0ql~q3 • · · dt-2qf-l + qodlq2d3 · · · '~t-2dl-l- 9oql · · · 9 .1-1 , l even; 

d0ql~q3 ·'' ql-2df-l + q0dlq2~ · · · dl-2ql-l- qOql • • · ql-1 ' 1 odd. (5} 

(More precisely, the as:.:umptions underlyi:.g this ra.nd001 br~.:tcbing 

process are that level j+l of t~he tree is formed frar. level j as 

follows; EB.I'!b position p on level j is assigr.ed a probability 

distribution (r~(p),r1(p), ... ),where rd(p) is the probability 

that p will have d successors; these distributions ma.y be differe11t for 

different positions p , but e:\Ch murt Eatist'y r 0 (p) "" 1-qj , and each must 

have the mean value r 1 (p) + 2r2(p) + .•• "' dj • The nUI!lber of succ'-csor 

positi<ms for p is cbosen a.t ra.ud.om from this distribution, indel>4mdently 

of the mnber or IIUCCt-aaora of other poaitiODa ~ level j . ) 

Proof. It x is the expected maber of' poai tiona of' a certain tJ}M! 

011 lev,~l j , then. xd.j b the expected. naber of auccesaora Qf these 

poa1t1ona, lllCl xq j ia the ~ted n1.Rber of "m.ber 1 " auceeaton . 

It tollowa u in ~orol.l.a;t') 1 tb&t (') 11 the expected ma'ber ot critical 

poaiticma em. level l ; far aa.ple, 'loql ... q 
1 
•l il the expeeted. 

maber ot PQ~1t1ou Oil level l vhoae identif'yiDC coordinates are 

all 1•• . 
Cl 
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Note that (3) reduces to (2) when qj 

u:::;j<l. 

Intui t~·.vely we might think that alpha-beta pruning wouJ.d be most 

effective wh•m perfect-ordering assumption (l) of Theorem 1 holds; i.e., 

when the firs·~ ::uccessor of every position is the best :possible move. 

J:mt this is no .. ~ al.ways the case: ~'1gure 4 shows two game trees which 

are idtmtical e:tcept for the left-to-right orde.ring of successor 

positions; &lpha-beta search will investigate more of the lef'tha.-ui 

tree than the righthand tree, although the let'thand tree has its 

positions perfectly ordered at every bra.nc:h. 

Thus the truly optimum order of game tree traversal isn't o~vious. 

On the other ,_·<J.nd it ia poEtsible to sbow that there &lvays exists an 

--order !'or processing tbe tree ElO tb&t alpha-beta examines as few of the 

termin&.l positions as possible; no al.gorittn em do better. This can 

be demonstrated by strengthening tbe techni(!ue uaed ,;o provl! Theorem 1, 

as we shall see. 

!l':eoz:em 2. Alp-beta prupine; is optimulll in the fol.l.avins; B.!:!!!,!: 

Given any pme tree and !bY al.goritllll vbich ccawtea t.!le value of the 

root poeition, there is a Y!l to }!!l'!U.te tbe tree {by reorderinc: successor 

pc?sitiona if neeess&Iz) so that en:r;,y tend.nal position examined by tbe 

~-beta aetbcJCl UDder thil J)!!!'Etaticm 11 exMiDecl by the siven 

~r~. Plartheraore if' the w.l.ue of' the root 11 not '!:,• 1 ~ 

alp-beta :procedure fiXM!ioea preci1eg the ;poaitlODS vbich an critic&! 

under thil peJ'alt&t1crt· (lt is u8Uiled tbat all tentiD&l. poaitiOIUI have 

independent 'V&lues, ()r equivalent~ tbat the ~orit'ba hU no lalelWledae 

about de--..,endencies between tbe values of' tend.Dal poaitlCIIUI·) 

An equival..t reiUlt baa been obt&lned by a. 11. Mel'IOil-1el'ald.1 

[11 AI'PfJftdix 11; a KaeWb&t aDlpler p-oot V".a.ll be preactecl heft. 
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hoof. The followin@ functions F. and F define the best JXlSEible 
~ '.l 

bc~mds c·n the val.ue of' any fosition p , b.J.sed on the terminal :positions 

examinee. by the given c..lgor;. ttun: 

- ao ~r p is tennina.l and not examined; 

f(p) if p is terminal a.nd examined; (4) 

otherwise. 

+oo , if p is tenninal ~d not examined; 

f(p) if p is terminal and examin~; ( 5) 

otherwJse. 

Note that F,(p) ~ F\4(p) tor ail p • By independent}¥ varying the 

values at unexained terminal positions below p , we can make F(p) 

asBtllll.e any given val.ue between F1(p) and Fu(p) 1 but 'tre can r.ever 

go beyond these lildts. When p is the root position we JDUSt therefore 

AaiiUIIle that tbe root value is not + • • We will sl\:N bow to 

pera"te the tree so that every critical terminal position (according 

to the new m~~tbering of positions) is examined by the given a~oritta 

and tb&t precil~ the critical poa1t1011a are eaatud by tbe &l:pba-bet& 

procedure F2 • 'l'be critical positions will be cl.asditied as type 1 1 

2 , or 3 u in the proof' ot' 'l'heorea 1, tbe :root bei.Ds t)'JMI 1 • 'l'he 

. 
(1) A ty~ 1 t»>dtion p baa P, \P) • Fu(p) • P(p) f :!:. • , aad it 

11 ~lecl 4uz1.q the aJPaa•b.t& :pi'OCedure by Ct,JUng 

P2(p, -,+••) • If p is tendD&l, it auat be exa.ined by the g:lven 

It' it 18 not tendDal, let j aDd 



k be such that •••1 (p) = -Fu(pj) and Fu(p) = -F1(pk) . '!'hen 

by ( 4) and ( 5) we have 

F1(pk) ~ "'t(pj) ~ Fu(pj) = -F(p) = F1(pk) , 

hence F1(pj) "'F1(pk) and we may ass-.lllle that j = k . By 

pennuting the successor positions we may a.saume in ta.ct that 

j = k = 1 . Position p
1 

(a.t'ter permutation) is of type 1 

the other ~uccessor positions p
2

, .•• ,pd are of type 2, and 

they are all examined by calling F2(p1' -, -F(p1)) • 

(2) A type 2 pos.; t::.on p has F ,(P) > -c , and it is examiHe:d 

during the a1phLL-beta procedure by calling F2(p, -., ~.,!!:!) -~•c::-e 

-cc < ~ ~ F
1

(p) . It p .:.~ terminal, it muBt be examined by 

the given a~oritlln. ctherwise ~et J be such t.bat F1 (:p) = -E'u(p.i~ 

and permute the successor positions it necessary so that j = 1 . 

Position p
1 

{af't~r perauta.tion) is ot t;;-pe ~ aDd is exMine6. 

• Since Fu(p1) • -F,(p) ~ -beta , 

this call returns a value ~ •beta ; hence the other successors 

p2,. • .,pd (which are not critical positlau) are not exMlinecl 

by the alp.&-beta •etbod, nor are their descendants. 

(:~) A tJPe ~ poaitioo 'P has F (p) < • , &Dd it 1• examinecl during 
u 

the alpha-beta procedure by calliDc F2(p1~1+•) vbere 

Fu(p) ~ ~ < • • It p is tera1Dal, it must be .. iDed 

by the liven &J&or1tbl. otherwise all ita IUCCeuor poait1ons p
1 

are of type 2 , Uld tbq are all. a.ille4 b)- cal Hug F2(p
1

, -,-alpha) 

('l'bere is no neecl to pel'IIIUte tbe, the ord.m'iD& .Us ·\bsolutely 

no dltterence here.) 



A simila,. s.Tg111ftent can be given wl1en the root value is +o> 

(treating it as a type 2 position)~~ -• (type 5 ). 

A surprising cornl.lary of this pr:>Of is that the ordering of 

successors ~o type j posit~J.ns in a~ optimally-ordered tree bas 

absolutely no ef'f'ect on th.~ behaVior of alpha.-beta. prunin6- l'ype 1 

positions cCilstitute the so-ct..lled "principal. variation" .• corresponding 

to the best strategy by both players. The alternative responses to 

moves on the principal variation are of type 2 • Type 3 positions 

occur when the best move is made frcm a type 2 position, and thE: 

successors of type ' positiCill are again of type 2 . Hence about half 

of the critical positions o-r a perfectly ordered game tree are of type ~ , 

and current g•e-pl.a7ing ~or·itbu are probably wasting nearly h&lt' or 

the time they now aped tl')'inl~ to pzt successor moves in order. 

Let us say tbat a paoe tree is unifol'lll or degree d ud height h 

if ~ery position an levela O,l, •.. ,h-1 baa exact}3· d succeasora, 

and if' every position en level b ia tend.nal.. For exaap1e, Figure 1 

is ~ a11'ol'll tree or b.eigb.t 1J and desree ' , but the trees ot 

Figure ~ are not YDitora. Si.rlce all pemua.ticrta ot a Ullitom tree are 

unitom, 'lheor. 2 illpli-c:.; tbe toll.ovina geeralization ot Corollary 1. 

Coro~ .. .{· ADJ &lcor1U. which evt.luates & UDifom pe :!,e~ 

~ h 11114 4!p'ee d IIUt naluate at least 

d fh/1\ + d 1Jl/2J - l {6) 

term1Dalpoaiticma. The alJ!ba-~ :proce&are achieves this lower bound, 

it the be•t 110n 1a ccuidered t'irat at each p1tiOD o:r tn~• l. aDd 2 . 



'7. 'Jnif'onn trees lfi thaut dee-p_ ~tofi'r: 

now that we have determined the best. case 01" alpna.-beta pruning, 

let's be more pessimistic a.nd try to look at tllt! w0rst that can happen. 

Given a.ny finite tree, it is possible to find a sequence of values for 

the terminal positions scJ tha.t the alp~la-beta :procedu ... e will examin~ 

every node o1' the tree, without making any cut·:>ffs unless the tree 

"t:~ches are ~muted. (To see this, arran~e the values so tha.t 

wheneve:r F2(p1 a.J..}A~; beta) is called, the condition 

-~ > F(p1) > F(p2) > . . . > F(pd) > -~ is satisfied.) oa 

the other hand, th~re are game trees wi~.h 1istinct terminal values for 

which tbe a.1.pha.-beta procedure will always :find some cutot'fs no mattt~r 

how the branches are permuted, as shown in Fip;ure 5. (Procedure Fl 

do~s no~ enjoy this property.) 

Since pm'!-playins prosrams usually use z::me sort of ordering 

strategy in connection with alpba•beta pruning, these faCts about the 

worst cue are of little or no practir.al signit'ica.."lce. A more usetul. 

upper bound relcVBllt to the behavior we may expect in practice can be 

based em the as81Dpt1on of randCIII data. s. H. Fuller, :r. G· c;aachnig, 

and J. J. Gi~ have recently u.,dertaken e. atud.;r ["( 1 of the a.ve~e 

maber or tea1Dal poait.icnl examined 'When thlo! alpha-beta procedure is 

applied to a unifol'll tree or degree d and height. h , &i viD& independent 

rand.ca values to the teminal poaitiona on level h • ibey bave obta.iDed 

tonmlu b7 which thia averase maber can be CCIIlplted, 1n roughly ~ 

atep, and their t.hfi0Nt1e&.~-pred1cted results vcre only aught.cy 

biltler t.baD -nncalq·cbaUTed data abt&illecl trua a 110dif'1ecl cbeaa­

pl.ayln& prop •. Untortunat~ the foi'IIIUl.&s tum <Nt to be extr•el.y 

c011lpl1cated, even tor thil reuona!1ly ailllple theoretical. aod.el, eo tbat 

the ~otic belaavior 1'or larp d end/ or h se_. to det) ~1•. 

51 



Fi81lft 5· It' .a(~, ••• ,as) < aiD(bl.' ••• ,b8) , the &l.lf".a-bet.A 

Tl'OCe.lun will alJiqa 1'1.B4 at. 1P....It two cutoffs, DO Mtter 

hOW ve pemute the 'b1wlches ot th1• §lllae tree. 
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consid'.!:r the behavior of the weaker pr.)CPciure Fl . This method is 

weaker since it doesn't find a:n.y ''deep cut.:.l.~· ... ··; :'.1+ H ;~ rnurh hPt~~:-

than com:plete m1nimaxing, &."'ld Figures 1-;; indicate that ac"p cdo~fs 

probab:cy have only a se•:ond-order effect on the efficiency. Furthennore, 

proeed.ure Fl ha.s the great virtue that its analysi3 is much s:Ur.pler 

thar. that o:f' the full alpba-beta procedure F2 . 

On the ether ha.nd, the analysis .,r Fl :1: b:, Ji •. ~rnn:: <•.:; easy n::: 

it !I)OJte, and the me.thar,atics turns out to lw r·:d.r~f'ly it•t.""'!"•'St:inp;. 

sev~ral competent people had checked it without seP.ing any rr.istakes. 

Since tbe error is quite instructive, we shall I- esent ,;ur -wl~~inn.l 

(but f'all.acioua) an&lya1a bere, ehAllen_e:in~ the reader tn ,, find the 

bug,. ; then we shall at~ how to fix th lngs up. 

With this underst.mcling, let us cc.n£ider the following problem: 

A unitc,rm gMe tree ot degree d rmd heiliht h is constructed with 

raM. -:a values attached to its dh. terminal positions. What is the 

expeetecl .-ber ot tent,...:t politiana t:?'Minri when procedure Pl ia 

applied to th!1 tree? The MI.Ner to ·this problem will be denoted by 

T(d,b) • 

Since the •eareh procedure 4epends onl.v tm the rl"'lat1 ve order ot 

h the d te:ra1Da1 valuea, not Cl1 th~~r magnitudes, &nd s t.nee thet-e 11!1 

zero probabili't7 tb&t two d.~.t1'e...-ent teraiD&l poa:i~iona get the s•e 

value, we .,- u-.e tbat t!~e reep~Ctive values uaisnec:l to the terainal 

h p:>eiti<ml are pe!'lllUtattona ot {1,2, ••• ,d ] , each pP.mutntion oceuJTi"l& 

Yitll pro'babUit;r 1/ ( /!) t • hal th11 obaervaticm it is cleat• tbat the 

Reproduced from 
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d1 val.ues ot positions on each level. l are al.so in random order, 

.for 0 < l < h . Al.thollgh procP.dure Fl. do"!& not always compute the 

~xact F values at every position, it is not ditricul.t to verily that 

the decisions Fl. makes 400Ut cutoffs depend entirely on the F values 

(not on the approximat!! val.ues Fl(p} ) ; so we may .:.onclude that the 

e}~ted number ot positions examined on level. l is T(d,l) tor 

0 :5 1 :5 h • This justifies restricting attention to 11. single level h 

when we count the DUIIlber of positions examined. 

In order to aimpl.ity the notation, let us conaider first the case 

of '\: ernar,y trees 1 :i = 3 ; the general case will follow easily once thiG 

one is understood 0",11' first step is to classify thf! positions of the 

tre-s into type• A , B 1 C aJS tol.l.owa: 

T!le root poal tion ia type A • 

Tbe f'1rat auccessor of' every nootendD&l. position is type A . 

The second successor ot eYe1'Y UODtel'llin&l position ia type B • 

The tbird succesaor ot every nootemihal poaition is type C • 

Figure 6 mow• the local "eviroaae'lt" c~t typical. A I B I c poaitiCll18, 

aa tb~ appear below a naatermiD&l !l.-1t1on p llhi.ch ..ay be of a:1y 

type. 1~e P-valaea ot these tbne poaitiou an x1 , ~ , x3 , 

rel])eC't1ve:q, aa4 their desceadlm1.a bt.n respective F-value• ;r11, ..... ;r
33 

Ov u..p.:loaa p&l'8tH '\.bat 7n' ••• ,733 are 1D rar..~ order, ao 

•tter aat 1..-.1 ot tbe tree were~; hence the vaJ.uu 

"'I • .u(-711,-712;-713l 1 ••• 1 x3 ., -.x(-731~-7~,-y,}) 



v. 7 
~'.J 

Pipre 6. P&rt ot a unitan. tem&l"y tree. 
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If posi·:.ion p is examined by cal.llng Fl(p,~) , then position A 

will be examir:en by the subsequent call. 1-'l(A,+co) , by definition of Fl 

I see Section 2). Eventually the value x
1 

will be returned; and if' 

-.,.L .., ~ 1 rosition B will be examined by calling Fl(B,x
1

) 

·~ventual.l¥ the value x
2 

will be re";urned; or, if x2 ~
 x

1 
, any value 

x2 ~ x1 
may be returned. If max( -x1, -T2) < bound , :PQdtion C will 

be e.Y.amined by calling Fl(C,min(xl'~)) • Note that 

-max(-x.~.,-x,?) = min(x1,x2) : the preclse value of x2 is not involved 

when c is cP..lled. 

This srg-..nent shows that all three succes~tors of an A !!OSition 

are a.lweys examined (~:l.nce the conespo~ng bound is +co ) • Each B 

position will exaine its first successor, b11t (since ita ~ is 

x1 = -min(yll,y12,y
13

) ) it will examine the seeond successor if and 

only if -:-r21 < -min(yll,yl2,yl3) , 1.~., if and ::111cy if the values 

satisfy m1n(y11,v12,y1
_,) < y21 • This happens with p!'Obabillty 3/4 1 

since t.he -y' .s are ra·~ orclere4 and since the relatioo 

min(yll,yl2,y.ij) > y21 ooviouaq h.Jlda with probability 1/4 • 

"' Similar~ the ·tcird. euccenor of a B poaitian ia en.l.uated if anlli 

O!lly it" the vUU88 Satid':r ain(J'111J'l2JJ'l..}) < JU.n(y2J.,y22) J 3..\1d thia 

has proba.bility ~/5 . The probability that the aecood auccesaor ot" a 

C poeitian is eval..ilated is the }II'Otlab1lit7 tb&t 

aax(ldn(yu,,-12~y~) , llin(721172'l112_,>) < 7,1 , ad this occurs 9/l;. 

ot tbe tiae; the th1l"'cl IUCCeaaor 11 MMined vlth ~111t;y 9/20 • 

(A gmeral tonula for tbeae probabillti• 1• clerbecl below.) 

Let Au 1 Bn 1 CD 'be tbe exp!Cted. m.b«r of pMit10118 eamned n 

levels bel.alr an A , B 1 or C :po81t1<lll PMiltecl bJ' p:roc:edure Fl in 

a rancka saa• tree. OlD' diacu•im provea tbat 



An+l 

B n+l 

-= A +:B +C n n n 

and T(3,h) = ~ is the anewer to O'.tr probl(JII when d ,. ~· . 

The solution to these simultaneous linear recurrence~ can be 

'1) 

studi~d in many ways, and for our purposes the •1se of' 12:eneratiuf: :t'.mctions 

is most convenient. Let 

A( z) = E A zn 1 B( z) = 
n >O n 

so that (l) is equivalent to 

A(z) -1 zA(z) + zB(z) + zC(z) 

B(z) •1 = zA(z) + t zB(z) + ~ 7£(z) 

C(z) -1 = zA(z) + f4 zB(z) + ~ ..C(:z:) 

By Cramer's rule, A(z) = U(z)/V(z) where 

z ;.; =" 
n >0 n 

(2) 

' -1 z z r-1 
1et -

z z 
\ 

3 ~z ' 
U(z) '"'det -1 Ii' z-1 V( ;:;) - ;:; tz-1 ~z 

5 c:: 

\ 
" ' 

*z ~z-1 1 
(\ () 

I 
I 

·1 rt:: '"""-z-1 1 
20 I ... 20 .I 

7 

are po~~ial.• 1n z • It the 8'1UAt1on ~"'vr 1/ z) "' o baa di'ltinct 

roots r 1 , r 2 1 r_, 1 there vill be e. partial ~tion expnnsion of the 

}7 

(:;} 



A(z) 

where 

Consequently A(z) '"' L..n~0(c~(r~z)n+ c2(r2z)n+ c3
rr3z)n) , and we 

have 

n 
by equating coefficients of z . If we number the roots so that 

(4) 

( 5) 

lr~l > lr2 l ~ lr31 (and the theorem of Perron [~71 assures ua that 

this can be dooe), we have aEyllpf'.otic~ 

(6) 

11\aerical. cal.culation gives r 1 • 2.53'911 , c1 = 1.162125 ; thus, the 

al.pb&-beta procedure without deep cuto:tf'1 in a randall ternar,y tree will 

exaine about u many nodes u in a tree ot the same height with average 

degree 2. 5~ iUteM ot .3 • (It is vortbvbile to note that ( 6) 

predicts about 48 positions to be ~ined on the tourth level, while 

~ '5 occurred in FiiUre 2; the reason tor this dillcreJIUlCT is 

chiefly tb&t the oae-diglt value• in Figure ~! are nonrandc. becauae of 

t.requmt equalities • ) 

U•mtar.Y .anipW.ation ot datemiDallte lhon that the equation 

,/>v(l/r.) • o 1a the -. u 



rl-z 1 1 

det 1 3 ' 0 . 4- z 5 = ' 

l. & ..2.. ... z 
20 

hence rl 11 the largest eisenva.lu':_ of the matrix 

l. .L 1 

' 
;· 

1 .:::. 
4 5 

1 rt; ..2.. 
20 

We aigbt have deduced this direct~v frO"' equation ( 1), if' we blr.d known 

•CN8b utrix theory to calculate the constant c
1 

by matriX-theoretic 

means instead ot tunct1an-theoret1c ceana. 

!hi: •<Uvea the caae d • 3 . :ror sene:ral d we t1nd aiJnilarl;f 

tb&t tbe expected m.ber of tend.D&l poaiticna exaained by 1;he .U.Jba-beta 

:procedure without deep cutoth, in a nndal unit<mD _. tree of degree d 

and hdigbt h , ia uylipt;at.ical.q 

T(d,h) ~ c0(d)r0(d)h 

tor fixed d. u h ... • , Vbere r 0(4) ia the l&rgut eiganalue of 

a CertaiD d. X 4 Mtrix 



p21 p22 p2d 

Xvid ,. (8) 

':..."ld where c
0

(d) is an appropriate constant. T'ht. ~enera.l matriX element 

pij i.s (8) is the pr-,bability that 

m&X (min(Ykl' •.. , Ykd)) < min Yik 
l<k<i l!:k<j 

(9) 

1n a sequence of (i-l)d+ (j-1) independent identic~ distributed 

random vari~b1es 

When i = 1 or ,1 = l , the probabilit) 1n (9) ;&.s 1 , since 

the min over an .pty set is +» and the max ia - . When 1, j > 1 

ve can evaluate the probability in se.veral. vq-a, of which the simplest seevs to 

be cCIIlb!.natorial.: For (9) to bold, the min:S.Iaa ot all the Y'a lllU8t be Yk t 
11 

tor aoae ~ < i , and this occurJJ with probability (i-l)d.i ((1-1)dt-j-1) 

reaortDg Y~1, ••• ,Y~4 :trca c<mai.cleratiClll, tbe aiuilala of the reuining 

Y'a IIWit be Y~t2 tor acae ~ < i , U1d this occurs with probability 

(1-2)4 / ((1-2)dt-j-l) ; ad ao on. 'l'tdtretore (9) occurs with probability 

pij .. 
(i-2)4 

(i-2)1!tj-l 
cl . Ci+Fi 

(10) 



Th"!.a explicit formula a.llmrs us to calculate r 0
(d) numerically for 

small d without I'ILUCh dif't"iculty, and to calculate c0( d) for small d 

with somewhat more difficulty using (5)· 

The form of (10) isn't very convenient for asymptotic calculations; 

there is a much simpl!r expression Which yields an excellent approximati~n= 

Lenn& 1. ---- When 0 < x < 1 ~ k is a positive integer, 

(k-l+x) 
k-1 

(11) 

(Note th&t 0.885603 < f(l+x) ~ 1 for o ~ x ~ 1 , with the minimum 

va.l.:.~e ~~-urring at x = 0 .4616~2 ; hence the simple fcrmula kx is 

alVP.ys within about ll per cent or the exact value o~.' the binanial 

coefficient.) 

~. When 0 < x < 1 and t > -1 ve have 

{l+t)x ~ 1 + tx , (12) 

aince the 1\mction t(.x) '"' (l+t)x / (l+tx) aat'tafies f'(O) = f{l) '"' l , 

and Iince t"(x) • ( (lD(l+t)•t / (l+tx))2 + t 2 I (l+tx)2)t'(x) > 0 . 

Using (12) tor t • l, l/2, l/', . . . y1ehb 

1 

1 
• r(l+x) 

aa4 the k-th tel'll ot thia aerie• ot iDequ&l.itiea 11 ( t;~~x ) / kx • 

.:l 

~1 



For trees of height 2 , deep cutoffs are impossible, and procedurec 

? 

Fl and F2 have an identica.l effect. How many of the d- positions 

at level 2 are examined? our. analysis giv~s an exact answer for this 

cue, and LeamA 1 can be used t~ gl ve a good approximate result v!1ich 

ve may state ae a theorem. 

'l'heo;sn ).: The expected DWDber of teru.~nal positions examined bY the 

e.l.p-beta procedure on level 2 of a rancl!B uni.form pe tree of 

degree d is 

T(d,2) = 

Where the pij &rl'! defined 1n (10). We have 

j>roof'. Equation (1}) follows trc:m our previous remarks, and t.rcm 

1:.- l we know tbat 

C S(d) < T(d,2) ~ S(d) 

S(d) • E i·(j-l)/d 
l<i,j <d - -

d ( l k-l.) 
• 4 + L - -l/d 

~ l.-k 

(13) 

(14) 



Now ~or k = dt we have k··J-/d = exp(-t ln d/d) = l-t ln d/d+O((log d/d) 2) 1 

hence for .fd ~ k ~ d 1 (1-k-1)/(l·k·l/d) lies between d/ln d anri 

2d/Jn d times 1 + O(log d./d) • The bounds in (14) now foll011i easily . 

.:J 

When the values of rl,(d) for d ~ 30 are plotted on log log 

Jl&per, they seem to be approachin@ a. straight line, suggesting th&t 

ro(d) is &pproximatezy or order d·7 5 . In tact, a least-squares fit 

for 10 ~ d :5 ~ yielded d • 76 
ep an approximate order of growth; 

this can be ccapared to the lower bound 2d • 5 of an optimum alpha-beta 

sea.rcb, or to the upper bound d of a tUll minim&x search, or to the 

eatil'llate d · 72 obtained b7 Fllll.::r et a.l. [ 7] for randan a.lP'l&-beta 

pruning when deep cutoff's are included. However, we shall see that 

the true order of growth of r0 (d) u d ... <» is real.J¥ dflog d . 

There ia a moral to this story: It we diem 't lmov tbe theoretical. 

O!r,lllptotle srowth, ve would. be quite content to think ot it u d · 76 

when d ia in a practical. ranse. The formula d/log d aeS£ much worse 

than d·76 , until we realize tbe magnitude or log d 1n the range of 

inteHat. (A lillilar Jlhcca•oa occur• with respect to Shell' a •orting 

aetbod., aee ( 12, pp. 9'-95).) OD tbe bu11 of thla theory ve mq well 

np.rcl the &pprodaatioa 4"72 in [7] with rCIIle suaplci011. 

But u aeatiCIDed lbcmt, there 11 a aw::h 110re ai&Dif'lcant ~to 

tM• atQI")'. FrmiUl& (7) u lneornct beeauae the proof' overlooltecl vbat 

appear• to be a rr.ther aubtle quenS.ca ot eCIDtitS.Oil&l probabU1t1••· 

Did the reader q:rt a fal.laey'l '!he autbara found 1 t Olll4' by cQIPILI"i.Jig 

their reau1ta to tbose of [ 7] in tbe cue h • ~ , d -= 2 , a1Dce 

procecbarea Fl aD4 F2 are equival&t tor hetpts < 3 • :.ccordiDg 



~ o thf! analysis above, the alpha-beta procedure will examine an averag ~ 

of 6~ nodes on level 3 of a randan binary game t1:ee, but accordinb t.o 

f 7] tne nWilber is 6 ~S . After the authors of [ 7) were politely 

infomed that they JD\l&t bavf> erred, since we bad prwed that 6 ~ was 

correct, they politely replied tba.t simulation re&ults (ir.;.cluding a test 

em all 8 t pen~Utr..tions) had confirmed that the correci.. h.nsw~r is 

Bo 6105 

r, ... 

B 

1'8 

:rtgu.re 1. A tree Vbich reval.a the t'&l.laeioua :reuoniDg. 

A CU'ef\al ICI'IItiJV of the aitw.tlaD ~iDa vbat ia saiD& ca. 

fteol"• ,. 11 cOJ'HC't, a:lnce it 4e&la ~ w1tb level 2 , Wt t.roQble 

occun at lenl 3 • ~ tiMer 1 ~eta a cutoff on the ri&bt aubtree 

ot .,_., :a ~ Vith JII"'OIUWt7 2./' 1 ao tM.t the tuoainal. values 



(r1~···,t8) in Fi~~~ 7 will be examined with respective probabil1tiez 
2 2 4 

(1, 1, 1, 3, 1, 1, 3' 1 §) . Actually .r8 is examined with probability 

J.8 lJ ;s instead of § ; for r8 is examined if' and only if 

r
7 

> min(t
5
, t 6) 

and m1n{r
5
,r6) < max(llin(r1,t2), min(t3't4)) ( 15) 

Each of these two events has probability 2/"5 , but they are not 

inclependent • 

When thf! fallacy iB stated in these terms, the error is I"JU1te pl~il"'. 

but the dependence 'WU much harder to see in the diagrams we bad been 

drawing tor ourselves. For exurple, when lfe argued using Figure f. that 

th- second sueceeeor ot a B position is examined with probability 3/4 . 

ve neslected to consider tb&t, men p is itself of type B or c , 

the B nocle 1D Figure 6 11 etered only when min(y11,y12,y15) 1B less 

t.bM the bound .... t p ; so a1D(7ll',.12,y~) is aancwat mr.aller than a 

rUidal value vculd be. Vb~t ve sbaul.d have CClii}Uted ia the probability 

tbat ;,21 > llin(yll,,.l2,yl3) (!ven ~ JIC)eition B 1• not cut ot'f'. 

ADd ~artuDat~ this C8l'l 4epeD4 1n a very callplica.ted way on the 

aaeeston ot p . 

1'o ~e ll&ttera worse, our error is 1D tb.e wrong direetion.. 1 t. 

4oea 't ena ]II'OY'.l4e a UJI!PW bouD4 tor &Jpaa•beta aearcbinp, ; it yhlda 

Cll'll7 a l.oller bam4 CD an upper bound (t.e., DOthiDS). In order to get 

~tiCXl relevut to the 'beb&Yior o~ procahlre P ? ca l"&Ddal1 data, 

we need at le~ an upper holD\ on th• behavior ~t procedure F1 . 

A cornet &D&l.J'ai• e·t tbe biD&ry cue ( d .. 2) 1.Dvolves the 

., 



An+l 
A + B(O) 
n n 

~(k) A + - D(k:H) for k > 0 Ln-; 1 n P.tt n 

Ao "' B(O) - B(l) = 
B(2} 1 0 - 0 0 

.;no;I't' ttl~ pk are appropriate probabilities. For example, p0 .. 2/3 ; 

p p, is the probability t.bat (15) holds; and PoP
1
p 2 is the probability 

tr~t fifteen independent ~~dam variables fatisfY 

f15 > f13" rl4 

rl3" rl4 < ( r9" f1o> "<ru" rl2) 

(16) 

(r9 Ar10)v(t11 Atll!) > ((t1 At2)v(r~Ar4))A((t5 Ar~;>v<r7 At8)), (17) 

1t.Tit1ng v for max and 1\ :tor min • These p!'Obabilit:l.ea can be 

c:llllputed exact~ by eval.uatin8 appropriate inte~, but the tolWUlas 

:...rt- canplieated and it is easier to look for upper bounds. We can a.t 

.:.•·t&~l. show eadly that the probability in (17) U ~ 4/9 1 sinCe the 

•·h·at and tt.ird cODditiCM ~ i.Ddepe.llden.t, ancl they ear.b boJ.d with 

l""')b:l.bility 2/3 . Thus ve obtain an upper bound if' ve aet 

PI') .. P2 = }\ .. • • • "' 2n aad ~ • p3 = .•• • 1 ; this is equi'Valent 

~o the recurrence 

Ao = Bo = 1 ; 

~l = A ·1-B ; n n 

Bn+l 
2 

"' ".. + ~A ,n (18) 



Similarly in the case of deljl'ee 3 , we obtai:l an upper bound on 

the average number of nodes examined with( J.t deep cutoffs by solvi!lC 

the recurrence 

Ao Bo = co 1 

A An+ Bn +C 
n+l n 

7 

:Rn+l = A + iA + n n 5An 
cn+l A + *An+ toAn n 

(19) 

1n place of ( 1) • 7his is equivalent to 

and for gener&l degree d we get the ~ecurrence 

A 1 = A + SdA. 1 nt- n n-
(20) 

wber~ A0 = 1 , A1 = d , and 

(21) 

Tb;;.a givea a val.id upper bound on the bellavio1· ot procedure F~ , because 

it is equive..!.ent to aett1ng ~ ... +• at certain position• (and thil! 

operation n~v..tr decreut:s the DW~ber at position.~ exaained). FurtllelW>re 

we <".an ac-.lve (20) expl:1citJ.7, to obte.iD an U)'llll't.ot1c upper bCWld. 011 

T(d,h) ~r ~he r~1w c1(4)r~(d)h, Where the growth ratio i• 

(22) 



? 

UnfortWlatP.ly it turns out cbet Sd is of order d")lug d , by 

The-::lrem 3; so (22) is of o~der df'fiog d• , while a.11 u:ppe:.: boWld of 

order d/log d is desired. 

flnother ~ to get an upper bound relies on a more detailed 

s.na.l:,rsis of thf= structural behavioral of p:r.oceU.ure Jt'l , as in th~ 

following theorE:m . 

'I'h•~orem 4. The expected ril.ll!lber "r t~rm:Lnal positions examine<~ 

tht: alph&-beta ;procedure without deep cutoffs, in a randan Wl:'.fo:rm 

game tree of de1p-ee d and he:i.@t_ h , satisfies 

(23) 

* where r (d) is the l.argest eigenva.llle of the matrix 

r~ ..)pl2 ~pld 

~p: 
* 

..}p22 ~p2d 
Md • 

(·~ ..)pd2. .Jpd4 

(24) 

and c .w ~d) is an o.:wropriat <! constant. (The pij in ( 24) are the same 

... 1n (8).) 

~· Aadgn coordiDatee ~ ... a1 to the )1081tiou of the tree as 

1D SectiClll 6. For I ~ l , it 15 euy to FOVe by iDduction tbat 

podticm a1 ... a 1 baa ~ •llin(l'(~ ... a 1_1k) ll ~ k < a1 ) vb.eD 

it is exaa1nl:d by p:l'QCedure Fl. ; hence it 1• eDilined it IUld only if 

~ •• . a
1

_1 1a eaainc &Dd 

- II1D F(a1 ... a1_1k) < min F(~· •• a
1

_2k) •>r 1 • 1 • (25) 
l~k<a1 l~k<a1_1 



It follows that a terminal position a1 .• -~ is exarr.inP:~ by Fl if 

s.na only 11' (25) holda for 1 ~ l ~ h . Let us abbreviate (25) by P 
1 1 

so tb&t a
1 

•• -~ holds if a.."'.d onl_v if F 1 aml . . . and P1 • 

Condition P
1 

by ttseli' for I ~ 2 holds -with p:-obability pij , 

where 1 = a
1

_
1 

and j = a
1

, because of definition (9); hence if 

the P1 
were ind~endent we would have a.1 •. ·'\t examit'l.ed with 

probability p ., ii ... p ~ , and this is precisely equivalent 
a 1 ... ,) a,,a% a. _1 _,_c..) n 

to the an~·sis lea.d.ir.g to (7). However, the F
1 

aren't independent, 

as we nave observed in (15) and (17). 

Condition P 
1 

::.a a tunetion of the term ina!. values 

f(a.1 ... a 1_2 j k al+l ••• ~) , 

where j < a1_1 or j = af•:i. and k < a 1 • Hence P1 is independent 

of P
1
,P2

, ••• ,P
1

_
2 

. (Thil generalizes an observation we made about 

(17).) Let x be the probabiUty that poeition a1 .•. ~ il saminl"d, 

and u~nate tor conveniece in not&ti. :1 that h is odd. Tben ·oy the 

partial i.Dd.ependence c:lr tbe P 
1

' 1 , ve bave 

; 

heee 

* mel the t~ toll.awll by chooaiag c (d) large~· 
Cl 



Now we ~u-e ready to establish the correct asymptotic growth rate 

of the branching factor for procedure Fl . 

TI:~c::r:,em i_· The expected number T(d,h) of terminal positions examined 

~l.l_ the al;ph&-beta procedure without deep ..:uto:f':f's, in a randan uni:f'onn 

~we tree of degree d and height h , has n branchini factor 

lim T(d,h)J/h ;; r(d) (26) 
h-... 

which satisfies 

(27) 

for certain positive constants c3 !!!!! c4 . 

Proof. We have 

(28) 

sinee the rightb&od side of' (28) is the maber of' pol'itions tbat would 

be ex.ined by Fl it ~ were set to +"" tor all :positions at 

height h1 . Furtbemore the argurents above prove that 

lim int T(d,h) ? r0 (d) , 11m sup T(d,h) s r 1 (d),r*(d.) 
h-• h~ ... 

By a standard arg~.aent about 1Ubad41tlve :1\mcticas (see e.g. [20, l'roblem 1.98]) 

it f'ollon tbat the Uai·t (26) exists. 

To :prove ~he l.ower boulld in (27) ve sball sbow tbat r 0(d) ~ C~d/log d. 

'l'be lArgeat eigenvalue ot a Mtrix with poaiti..,.e entries pij is known 

to be ~ a1n1 ( 1:: j p
1

.1) , ac~ordi.Dg t.o the theoey ot Oskar Perron [19]; 

see [26, SectiQil. 2.lj tor a ll04el'l1 accouat of this theory.'!/ 'l'beref"on 

b)" I.-a 1, 

9 Ve are indebted to Dr. J. H. Wil.ld.n&at tor suggesting tbis }JtOOt ot 
the lower bowad.. 



= c 1- d-l > c d-1. 

1 _ u:~fd 1n d 

'Where C "' 0.8856o3 = in:f'Q '-"X <l f(l+X) , SinCe d-1/d = expf -ln d/d) > 

1-ln d/d • 
·/;-

To get the upper bo\Uld 1n (27), we shall prove that r (d) < c4djloL rl , 

using a rather curious matriX no:rm. If s and. t are r.osithe real 

IIUIDbers Vi th 

(29) 

then all eigenvalues A of a matrix A with entries a1j satisfY 

(30) 

To prove tbi1, let Ax ~ A:lt .mere x is a naJzero vector; by H8lder' s 

inequal.i ty [ 91 Section 2. 7 ] , 

,,.l(r lx~l ) 11
" - ( flf ·~..ll J'" 

< ( Rr la~j' )''t( ~ 1x;1))11
" 

- (f(r la~jl)"'t r·c~ lx~l r· 
UJ4 (~) tollova. 



If we let s = t = 2 , inequality (30) yields !' * (d) -= 0( d/•hog d) , 

while if s or t - • the upper bound is merely O(d) Therefore 

some care is necessa.ry in selecting the best s and t fer our 

purposes we choose ; = f(d) and t = f(d)/(f(d)-1) , where 

1 
f(d) -= 2 1n d/.ln 1n d . Then 

r* (d) $ ( ~ ( L. 1-t(j-l)/2d·y/t )1/s 
l$1$d l$j$d ) 

< ( /d •• ,. + ( d -.fd) ( j ~ 1 .r.-t(j-1)/2~J'' )'' ( 31) 

The inner Blft is g(d) • 1/(1-d-t/l.;.d) = (4djln d)(l+ O(ln 1n d/ln. d)) , 

so d fl{d)s/t = df(d)-l/2 exp( ~ln. 4 ln d/ ln 1n d + ln ln d + O(l)) 

Hence the rignthand side of (~1) is 

exp(lD d - ln ln d + ln 4 + 0( (ln lD d) 2 / ln d)) ; we have proved that 

* ,, 
r (d)$ (ltd/ln d)(l+O((ln ln d)' /J:n. d)) u d- •. 

0 

Table 1 abow8 tbe YViou ~ we bave obt&ined 011 r( d) , 

* n.ely the lower bound r 0 (4) .a the uwer bouDd.s r
1

(d) 8Dd r (d) • 

* We baft ]ll"OV'ed tbat r 0(4) •4 r (d) grow u 4/l.og 4 • aad tbat r 1 (cl) 

,...-. 
growa u 4/~lD& d ; 'tNt the table &bowl that r 1(d) 11 act~ a 

better bound tbr 4 < 2a. • 



*' r 0
(d) r 1

(d) * 
d r 0

(d) r 1 (d) r (d) d r (d) 

2 1.847 1.884 1.912 17 8.97f 11.378 11.470 

7, 2.5.34 2.666 2.722 w 9-358 11.938 12.021 
./ 

4 ).142 3-397 ;.47) 19 9-7~4 12.494 12 ·567 

5 3.701 4.095 4.186 20 10.106 1).045 13.108 

6 4.226 4.767 4.871 21 10.473 13-593 1~ .61!4 

7 4.724 5.421 5-532 22 10.8~6 14.137 14-176 

8 5-203 6.059 6.176 23 11.194 1h.678 14.704 

9 5-664 6.684 6.8c5 24 11.550 15.215 15.2213 

10 6.112 7·298 7.420 25 11.901 15· 750 15.748 

11 6.547 7-902 8.024 26 12-250 16.282 16.265 

12 6.972 8.498 8.618 zr 12.595 16.811 16.778 

1.3 7·388 g.o86 9.203 28 32-937 17 ·337 17.268 

14 7 ·795 g.668 9-781 29 13.277 17.861 17 ·796 

15 8.195 10.24) 1_'). ~50 30 13.6::.4 18.;8; 18.300 

16 8.589 10.813 10.913 31 13-948 18.9()3 18.802 

Table 1. Bnunda tor the branching factor in a randan tree when no 

cutoffs are performed. 

8. DiBCUBBiOD ot tbe .odel 

Tbe t.beoretlcal aodel ve 1-Uave studied givea us &.n upper bound em 

tb.e actual. behavior obtained iD practlce. It is an upper b~d tor 

t'OQ!' separate reaaoa•. 

(a) the d.eep cutom are not ccms1clere4; 

(b) the oJ'deriDg of ncceasor :poaitioae 11 nndc:la; 

(c) t.be terainal politiona are u~ to bave diatinct values; 

(d) the tenainal val..uu a.re UBlaed to be 1n4ependmt of each other. 
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Each of these conditions makes our model pessimistic; for example, it 

is usually possible in practice to make plausible guesses that s~e 

moves will be better than others. Furthermore, the Jarge number of 

equal terminal values in typical gar .ps to provide additional 

cutoffs. The effect of assumpt:l .s less clear, and it will be 

studied in Section 9. 

In spite of all these pessimistic assumptions, the results of our 

calculations show that alpha-beta pruning will be reasonably efficient. 

Let us now try to estimate the effect of deep cutoffs vs. no deep 

cutoffs. One way to study this is in terms of the best case: Under 

ideal ordering of successor positions_, what is the analogue for 

procedure Fl of the th~r:y d.eveloped in Sec-cion 6? It is not difficult 

to see that. the positions a1 .•• a1 examined by Fl in tl;.e best case 

are precisely those with no two non-l's in a row, i.e., those for which 

a1 > 1 implies ai+l = 1 • 

In the tern&ry case under best ordering, we obtain the r'!CUI'I'ence 

Aa = Bo :!: co -- l 

"'n+l =·\t-13+C n n (1) 

Bn+l =-'n . • 
cn+l ·-'n . 

' 

hence ~l ,.. "n + 2An-l • For gm~ral d the corresponding recurrence 

18 

(2) 

The ao1ution to thll recurrence 11 



{j( _ )n+2 ( )n+2 ) ~~-3 ~ .Jd: 3/4 + 1/2 • • ~d- 3/4 T 1/2 ; (3) 

so the growth rate or ef'fect.:. ''e branching factor is .J'd- 3/4 + 1/2 , 

not much higher than the val.ue I Cl obtained for the :tUl.l mett.od. 

incllldiJJg deep cutoffs. This result te.~ds t~ support the contention 

that deep cutott'a have only a second-oz·der effect, i!i.lthough we must 

admit that poor ordering of successor moves will make deep cutoffs 

increastnsly valuable. 
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). Dependent terminal values 

Our model g1ves independent values to all the terminal positions, 

hut such independence:: dot!sn 1 t ha.p:nen very of't:.en in real games. Fc1r 

example if f(p) is based on the piece count in a chess game, an the 

l~~itions fcllowing a blunder will tend to have low scores for the 

player who loses his men. 

In thiz section we shall t~y t~ account t"or such dependenci~a ty 

cor. ~iuering a total dependencl' modf' l, which has the following p1:operty 

for all nonte:minal positions p : For each i and j , a.ll c•f the 

terminal successors of pi either have greater value than aD. terminal 

successors of :pj , or they all have lesser value. This modt'l is 

equiva.lP.nt to assigning a permutation of {o, 1, ... d-1} to the moves at 

every posit:!.on, and r.hen using the concatenation of all move nUIIIbe:rs 

leading to a teminal position as that position's value, considered as 

a :radix-d maber. For example, Figure 8 shows a unif'orm ternary game 

tre~ of height 2 constructed in this wa.y. 

Another ~ to look at this model is to tmagine assigr.ing the 

h values o, 1, ••• , d -1 in d-ary notation to the teni&iu.l. pol1t1oua, 

and then to apply a raadal permutation to the branches em&Dating from 

every nC'I'ltel'llin&l. poaition. It f'ollova tbat the F value at the roct 

ot ~ tema.r,y tree ia al~a -( 0202 .•• 20); U' h ia odd, 

+{2020 ••• 20)
3 

it h is even. 



. 
C() 
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T~eorem §. The expected number of terminal positions examined by tte 

!!P,ha-beta. procedure, in a. randan totall,y dependent rmiform game tree 

;.}f degree d JJll.d heigl!t b , i! 

(1) 

1 l 
where Hd = 1-t 2 -t ••• + d . 

Proof. As in tJUr other proofs, we divide the positions of the tree 

,.nto a. finite nunber of classes or typeF for which recurrc.nce relations 

can be given. In this case we use .three types, sanewhat a.s in our 

proof of Theorems 1 and 2. 

A type l. position p i'3 examined by calling F2(p,~1~) 

w~ere all terminal descendants q or p have ~ < !_f(q) < beta 

bert= the + or - aign is used according as p is an even or an odd 

number or level.l f'roll the bottom of the tree. It" p i& nonterminal, 

its suceesaora are a.aaigned a definite ranking; let us say that p1 

ia rele'I'Ult if' F(p1} < F(pj) 'for a.ll. 1 ~ j < 1 • Then all of the 

relewnt BUCeesson of' p are excined by cc.U.:!.~ F2(pi, -be'.oa, -11) 

where F(p1) lie• betveea -~ and -m , hence the 1 d•vant p1 

are ap1D ot type 1 . 'l'he 1rre1ewmt pi are exemned by c.:; lling 

F2(p1,-~,~) where F(p1
) > 1 , and we sb&ll call them type ~ • 

A t;ype 2 ~itioa p ia euptne4 by caluq F2(p,alpa,beta.) 

Ybere all tera1D&l 4Hcelldallta q of' p baft !_t(q) > !,!!.! . It p 

1a nonteratD&l, ita t~r&t auc~eaaor p1 ia elaa•1t1ed aa type 3 , 

aad it ia ena1De4 'gy caltlDs F2{p1, -~, -alRb&) . 'l'tli• procedure 

call eventual.l.f returu a Y&lue ~ -~ .• cautng an s.ae4t.ate cutot!'. 



A type 3 position p is exami.ned by calling F2(p,alpha.,~) 

where a.ll t.ermina.l desc€,ndar!ts q of p have :_f(q) < a.lpha . 1f 

p is nonterminal, all its successors are classified type 2 , and they 

are examined by calling F2(p1,-beta,-~) ; they all return values 

2! -alfha . 

Let An , B , C ~e the expected number of ~erminal positi.:>ns 
n n 

examined in a rand.cm tot•llly dependent uniform tree of degree d and 

height n , when the roo1~ is of type 1, 2, or 3 respectively. The 

above argument shows tha~ the following recurrence relations hold: 

A =B =C =1 
0 0 0 

1 l. 1 2 1 d-1 
A 1 =A +(-2 A +-2 3)+("'i:A +-yB)+ ••. +(-dA +-dB) 
n+ n n n _, n _; n n n 

(2) 

Consequent~ Dn "' dLn/2
J , and ~ bas the value stated in (1). 

Coro~ 4. Wh'! d ~ 3 , the a·'er.!!e D'.Dlber ot ;poaitions examined 

by &lp-beta aee.reh under the UanDption ot totalq dependent te.-womina1 

va1uea is bcnmded by a. constant tiaes the optiaull number of ;pos-Lti~ 

specified in Coroll.ary 3. 

!!22!· The g1"0Vtb of (1) as h - • is order dh/2 • The stated 

constant is app~·oxiateq 

{d -Hd)(l+Hd) I ~(d -H~) 

(Vbm d • 2 the growth re.te ot (1) 11 order (3/2)h inatead ot /2 h.) 

Cl 



Incidentall3, we can also analyze procedure .i"l under the same 

a~:n.unptions; the restriction of deep cutoffs leudoJ to the recurrence 

and the correspor.ding growth rate is of order ( r.- Hd + H~4 + Hd/2 )h 

So again the branching facto:~ is a.pproxima.J~el:y / d for l. a.rge d . 

The authors of [7 ) have suggested another mooel to account .for 

dcpend.en·.:ies between positio:1s: Each branch (i.e., each arc} of the unifonr. 

game tree is assigned a ra.nd.:llll number between 0 a.nd 1 : and the va.l.ues 

o1' ternlina.l positions are taken to be the sums of a.ll vsJ11es on the branches 

above. If we all1ll:y r.he nat ve approach of Section ·r to the analysis 

of this model without deep cutoffs, the probability needed in place of 

F.quati.."ln (9) in that section is the Jll"ObabUity that 

where a.s before the Y's are independent and ideotical.J¥ distributed 

randan vviables, and where x
1

, .•• ,xi are :l.ndependent unii'o:m r&ndom 

r.ai.ables in [0,1) . G. Balke"M [ ] bas sholra that (4) never occurs 

vith greater probability than the vall1e p1 j derived in Secti<lll 7, 

regardl.us ot the distributiOD ot the Y'a (u l.Cilg as it is continuous). 

TherC~:f'ore ve bave good grounds to believe that depeDdellciea between 

position values tead. to make alpb&-beta pnming aore etticient than it 

;rould be it all t8111linal positi01l8 lwt iDdepeDdent values. 
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