
PB-229 616

ALGOL 60 PROCEDURES FOR THE CALCULATION
OF INTERPOLATING NATURAL QUINTIC SPLINE
FUNCTIONS

John G. He r r Iot , e t al

Stanford University

Prepared for:

National Science Foundation

January 1974

DISTRIBUTED BY:

III••" Tn~.II" ......
I. So IEPIItIEIIT • c••I.E
5215 Part ...,.. .... _ ....... VI. 22151



Algol &::J Procedures for the Ca.lculation of

Interpolating Natural Quintic Spline Functions

by

John G. Herriot and Christian H. Reinsch~

Abstract

Three Algol 60 procedures are desc~ibed for finding interpolating

natural quintic spline :f'unct~ons. The first procedure t1"eats the case

of an arbitrary set of knots and the second procedure handles the case

of equidistant knots. The third procedure finds the quintic natural.

spline, of deficiency 2 when t.he values of bot.h t.he function and iots

first derivative are given at the mots. These procedures are much

faster than more general procedures, which find interpolating natural

splines of degree 2m-I, when used with m = 3

~ Leibnitz-Rechenzentrum der Bayerischen Akademie der Wissenschaf'ten,
8 Miinchen 2, Germany.

This work was supported in part by the National Science Foundation
under grant number GJ 29988X •

.,
J..



allLlOGl.....C DATA 11. aepan No. 'l~ PB 229 616SHIIT STAN-CS-74-402 .
14. Tille aDd Sulltllie IS. a.pan Date

ALGOL 60 PROCEDURES FOR THE CAWULATION OF INTEJ:(P()LATlNG
JANUARY 1914

••QUINTIC SPLINE FUNCTIONS.

7. Alabor<:; .. Per'•••' Or.a.i_dOll Re p.
ohn G. Herriot and Christian H. Reinsch NO'STAN-CS-74-402

~. performint Oraanintion Na_ aad Adclre.. 10. Project/Taak/Work u.it No.
Sanford University
Computer Science Department 11. Co.ract /Gra.. No.
Stanford, California 94305

GJ 29988x
12. Sponaorina Orlluizstion NUle ud Addrna 130 Type of aepan ar Period

Coyered
National Science Foundation

technical.1800 G Street, N.W.
1...Washington, D. C. 20550

15. SuppluleDcary Noce.

116. Abatlsctl

Three Algol 60 procedures are described for finding interpolating
natural quintic spline fUnctions. The first procedure treats the case of
an arbitrary set of knots and the second procedure handles the case
of equidistant knots. The third procedure finds the quintic natural
spline of deficiency ~ when the values of both the function and its first
derivative are given at the knots. These procedures are . ". much
faster than more gendral procedures, which find interpolating natural
splines of degree 8m-l, when used with m=3.

117. Key Worda and Docu_nt A_lyaia. 11. Descripora

171a. ldeIKifiera/Open-Eaded Teraa

17. COSATI FieW!GrOtlP

- ~ Securicy Cia.. eTilia 21._' of Paa.a
I" A..illlbUiry St__nc

unlimited ac~L

Approved for public release; distribution r- Securaty C.... (11Iil
~,,~Sh. f/;.t;p~~~.. UIC_"D£ 14eea."u

I



1. Introduction . . .

Ta.ble of Contents

1

2. Fonnulation of the Problem and Description

of the Procedures 1

3.

4.

5·

t.

Pr-ocedure QunMT • •

':.1 Distinct Knots

5.2 Coincident Knots

Pr-ocedur-e Q,unUXt

Procedure QUINDF

Tests

3

4

12

14

17

26

Referencer . . . .
Appendix I. Algol (0 proc edure QUrnAT

Appendix II. Algol (:0 proc edure Qurn~,
Appendix III. Algol W procedure QUnIDF

...
HI

51

3?

57

59



1. Introduction

Algorithin 472 [5] provided a set of Algol /)') procedures for the

calculation of interpolating natural spline runct rone :>1' degree 2m-I.

Since the case of a cubic natural spl:lne is of frequf"nt occurrence, a

procedure for this special case was 1'\.1100 t:.<-~uded. "J.'he special procedure

is very much faster than the general procedure when used with m = 2 to

produce the s&ne results.

The next most useful case is that of the quintic natural spline

Which can, of course, be obtaine·: '-)y using the general procedures of

Algorithm 472 with m = ;, • However, the calculations can be greatly

simplified by considering this special case as described below. The

procedure, QUINAT, which is given here, takes advantage of these simpli-

fications and is much faster than the general procedure with m = 3 .

An even faster procedure QurnElt treats the case of equidistant knots.

Also included in the present set of procedures is the procedure QUTIIDF'

which ~reats the case in which the first derivative as well as the

functional value is given at each of t:~e knots.

2. Fonnulation of the Problan and Description of the Procedures

Let (x. ,Y
i

) , i = Nl, Nl+l, ... , N2 be a set of data points where
J.

it is assumed that ~l < ~l+l < •.• < ~2' The interpolating quintic

natural spline f'unction S(x) with the knots ~l'·· "~2 has the

following properties: (i) S(x) is a polynanlal of degree 5 in each

and S·... (x) are C ont inuous in

interval (xi'xi+ l) ,

S'(x) ,S"(x) ,S'''(x)

i = Nl, .•. ,N2-]' • (ii) S(x) and its derivatives

1

y .•
1



i = Nl, ••. ,N2. It is known that if N2 > Nl+1 , then there in a wlique

quintic natural spline fUnction which has the properties (i) - (iv).

(See e.g. Greville [3,4).) This spline fUnction can be reprecented

in the rorm

(2.1) s(x)
2 . 4 5

y.+B.t+C.t +D.t/+E.t +r'.t
~ ~ 1 1 1 ~

with t" x-xi for Xi ~ x < xi + l ' i '"' In, .•. ,N2-1

If at one or more of the knots xi' one also specifies the

derivat i ve y' , thus requiring
i

then the condition that

S"" (x) be continuous at the knot Xi need net hold. If the second

derivative yi is also specif"ied thus requiring S"(x
i)

'" yi then

S'" (x) also need not be continuous at x. . If the valuef: of the
1

derivative y! are ~pecified at all the knots
1

then S""(x) need

not be continuous at the knots and also S''''(~l) and S''''(~) need

not be ~ero. Such a spline is said to be of deficiency 2 It is not

of interest to specify the first and second derivatives at each knot

because in this case the quintic polynanial is c omp.Let.e.Iy detennined in

each interval independently of all the other intervals.

The proce~ure QUINAT computes ~he coefficients Bi, c
i

• Di I Ei ' F
i

of the quintic natural spline represented as in equation (2.1) for an

arbitrary set of data points (Xi')i) as specified ~bove. The procedure

QUINEQ treats the case of equidistant lIJ10ts xi' If the knots are known

to be equidistant QUIN~ should be "sed as it is much fa.ster thl'.l1 QUIlIAT.

In this case it is not necetsary to specifY the values of x. . The
1

representation (2.1) is still used but now t = (X-Xi)/h where

h = xi+1 - Xi ' the c:lnstant spacing of the knots.

2



QUINAT can also be used for the ca.se in which the first and second

deriva.tives are specified at an arbitrary set of the knots. To specify

the value of the first derivative Yj at x
j

one increa.ses the number

of knots by one, Jetting x
j
+1 = x

j
(and renumbering the knots and values

to the right). Then one chooses Y
j
+l = Yj • Then the spline function

computed by QUINAT will have the property S(x.) = Yj' S' (x j ) = Y'+1 •
. J J

To specify also the second derivative, note that if x
j

= x
j
+l = x

j
+2

then S(Xj ) = Yj , S' (Xj ) = Yj +l ' S"(Xj ) = Y
j
+2• For further

details see Section 3.2.

The procedure QUINDF computes the coefficients of the quintic

natural spline o~ deficiency 2 when the values of the f'unction y. and
1.

the va.l.ues of ~he first derivative y! are given at each knot. Q.umDF
1.

is much faster than QUllfAT.

3 . Proc edure Q.U:mAT

A.: in the general case of Algorithm 472 [5] the calculation of the

coefficients of the spline function is carried out in a numericalJ.¥

stable manner following a method described by Anselone and Laurent [1].

The basic ideas on which the method is based were given earlier by

Schoenberg [6]. The method is specialized to the case of the quantdc

natural spline and uses minimum support B-splines (2,4] of degree 2 to

form a basis for the cla.ss of third derivatives of the quintic natural

splinE::3. InstE;ad. of specializing the formulas of Algorithm 472 [5] by

setting m = 3 , we derive the necessary tonnula.s directly and indeed choose

a different numbering and a different nonnalization for the B-splines.



3.1 Distinct Knots

We assume that the knots are strictly monotone increasing. In order

to simpl1fy the notation we shall choose Nl = 0 and let N2 = n so

that the data points are denoted by (xi,y
i

) , i = O,l, .•• ,n. This is

merely a translation of the subscripts and involves no lOSE of generality.

We denote the B-spline of degree 2 by Mi (x) and require that it

vanish outside the interval (x
i

_
1

, x
i
+2). M

i
(x) and Mi(x) must be

continuous at each ot the mots. Let hi = xi+l. - xi' t = x - xi_1 '

Then we must have

0·1)
2= B+Cu-Du

Hence also

M:i.(X) = 2At

=C-2Du

M"(X) = 2Ai

= -2D

= 2E

Imposing the continuity requirements at xi' xi+l. yields

Alli_l = B

2Ah
i

_
l

:; C

Henee up to a eamnon factor

4



Choosing these va~ues of the coefficie!'\ts we find that

0> CD

J Mi(X)f''' (x)dx :::: J Mi(x)ft(x)dx
_Q) -00

(3.4)
Xi xi +1 xi +2

:::: 2A J ft (X)dx - 2D S ft (x)dx + 2E J ft (x)dx
xi_~ xi x1+1

using the usual notation for d.ivided differences. This is a very

convenient choice of nonnalization of the M
i

(x) •

Next we need the inner products of the basis B-splines. Since each

Mi (x) is different fran zero in only .3 consecutive intervals it is elear

that
CD

J Mi(X)M.(x)dx:;:O
-co J

if \i-j\ >2

If we use the representations of M. (x) in (3.1) we obtain
~

co hi_1 hi hi+~ 2
30 J [Mi(X)]2dX:;: .301 (At2)2dt+30J (B+CU-Du2)2dU+30,[ E(v-h

i+1
) dv

-co 0 0 0

If we substitute the constants from (3.3) and carry out the integrations

we obtain

(3.6)

where

'"30 S [M
i(X)]2

dx
-0:>

5



In the same wa.y we find that

cD

(3.7) ;0 S Mi(x}Mi+1(x}dx '= T4 + T
5-co

where

and

(3.8)
""

30 S M1(X}Mi +2(x) dx
_a:>

Note t.hat. all terms in these expressions are positive and consequently

no cancella:~ions can occur.

Now the third derivative S", (x) will vanish outside the interval

(XO'Xn) and it can be expressed in terms ot the basis fUnctions:

n-2
(3.9) S'''(x) L; 6or.M

j
(X}

j=l J

1If we multiply equation (3.9) by 2 M
i
(x), 1 =1,2, ••• ,n-2 and integrate,

we obta.in a. well-conditioned system of linear equations for the determina-

(3.10)

tion O.L ~:':"e ., j :

n-2 Q)

.~ (30 J Mi(x}Mj(x)dx)r j =~
J=l -..,

CD

J Mi(x}S"'(x)dx ,
_CD

i = 1,2, .•. ,n-2

If we use (3.4) and (3.5) we see that (3.10) is a pentadiagemaJ. system

of linear equations and can be written in the tom

6



1 == 1,2, •.. ,n-2

1 == 1,2, ... ,n-4

==

1 = 1,2, ••• ,n-'

i = 1,2, ..• ,n-2

?'n-5 cn_3

?'n-2 cn_2

dl el f 1

0e1 ~ e2 f
2

f
l e

2 ~ e, 1'3

(3.1.1) f
2

e3 d4 e4 f 4
• .. ..

• •

0 f e 4 d en-5 n- n-3 n-3

f 4 e dn- n-3 n-2

where

CXl

[M
1

(X) ]2dxdi == 30 J
-CD

GO

e. == 50 S M1(x)Mi +l (x)dx ,
J.

-00

CIl

f i == 30 J M1 (X)M1-t2(x)dx
,

- QD

C == Y -y ,
i 1,1+1,1+2 1-1,1,1+1

The values of d
i

, e i , f i are obtained fran (3.6), 0.7), and (3.8).

This systElll of equations can be solved for the ., j by using

Gaussian elimination to reduce the matrix of coefficients to upper

triangular fom.. Th1s is convenlent~ done by a.nn1h1lating the elements

below the princ1pal. d1agonal a row at a time. Note that the f1 are

never changed. We use di' ei and di' ei to denote the new values

of di, ei as they are formed by the ann1hila.tion of f i _2 and ei_l

in the i-th row. Before the elimination process operates on the i-th row,

the form of the system 1s:

7



d" e" f
1

71
e"

1 1

0
1

d" e" f. 2 '1
i

_
2 c"

i-2 1-2 1.- 1-2
=

0 d" e" f
1

_
1 )'1-1 e"

i-1 1-1 1-1

0
f i _2

e
i

_
1 d

i
e

1
f

i )'i c
i

•

The equations for the ann1hilation of f i _2 are

d' =i d.-p.r. 2
1. 1. 1.-

and those for the annihilation of e i _1 ~re

q = e' I d"
i i-1 1-1

e"1

Note that ei_l need not be calculated because ei_l: ei_l' This

follows by induction because if e1_1 = e1_1 then

e'
i

f
e ...!:.! e" = e"1 - d" 1-1 i

1-1

8



Thus qi = ei_1/ di._l· For the first step of the el1Jnination

(operating on the 2-nd row) the above formulas are valid if' we choose

P2 = 0 •

When the coefficients 7
j

have been found, S"'(x) is given by

the equation (3.9). We want to find the coefficients of S(x) as

expressed in equation (2.1). Clearly

(3.12)

i :: 0,1, ..• ,n-1

But because Mj (x) vanishes outside the interval o(X
j

_1'x
j
+2), S'" (x)

can be represented in the interval [x
i,xi

+1) in the very silnp1e form

(3.13)

Then also

(3.14)

On the right hand sides of equations 0.13) - (3.15) we insert the values

fran equations (3.1) - (;.3). If we make use of (:3 .12) then we find that

(3.16)
D

i
7
i_1hi

+ 7
i hi_1

10 hi _l + hi

(;.17)
Ei

1
i

-7
i_1

i :: 2,3, ... ,n-3"5 hi_l + hi

(3.18) Fi
1('1'1-'i 'i-'i.,)::

hi hi + hi +1 - h
i

_l + hi

9



These fonnulas can also be used for i = 1,n-2,n-l by adding the

convention that "'0 = 'Y
n

_
1

= 7
n

= 0 Also (3.18) can be used for

i = 0 by setting 1_1 = 0 «3.16) and (3.17) also yield the correct

required values Do = Eo = 0 with these convent ronsv)

Next we want to find the values:)f B
i

and r;. •
1.

Rernemberj.ng that

sex) and its first four derivatives are continuous at Xi bu~ that

SV(x) need not be continuous we can write po~omial expressions for

sex) valid for the intervals on either side of Xi

" ,45sex) = s, +B.t+C.tc+D.t +Eit +Fit
111 1

2 • 4 5sex) = yi+B.t+C.t +D.t/+E.t + ~'. lt
1 1 1 1 1-

x , 1 < x < x ,
1- - - 1

with t := in both cases, i "" 1,2, ... ,n-1 . Then

and

and F. 1 are already known we can solve these two
1-

equations for Bi and C.
1.

obtaining

B.
1.

h. 11.-

h. 1+ b.
1.- 1.

Yi - Yi - 1
h - D.h. lh.
i-I 1. 1- 1.

and

hi_1hi 3 ~
+ E.hi lh. (hi I-h.) - h h (Fi lhi 1+ Fih....i )

1. - 1. - 1. i-I + i - -

10



(
y -s y -Y )1+1 1 _ 1 1-1 + D (h _ h )

h
1

h
i

_
1

1 1-1 1

These formulas are valid for 1 = 1,2, •.. , n-L .

FinaJ.l¥ we h&ve to find the coefficient.s at the end points xo ' xn

In the interval (xO'xl) we nave (since DO = EO = 0)

with t =x-xO• Hence also

S"(x) = 2Co+ 20Fot 3

Since Sex) and S"(X) must be continuous at x = xl we have

2 2
YO + Baha + COhO + Foha Yl

32C
O

+ 2OF
Oho = 2C

l

Therefore

(3.21)

(3.22)

In the interval (x l'x) we have (since S'" (x ) :: S""(x ) = 0 )n- n n n

with t = x-xn' (Here Bn:: S' (xn)

SIt(x) :: 2C + 20F t 3
n n-L

11

, C = S"(x )/2 .)n n Hence also



Since seX) and gil (x) must be continuous at x; x 1 we haven-

Y - B h + C h
2

• F h 5
n n n-1 n n-1 n-1 n-1 = Yn-l

~
2C - 20F I h 1 =n n- n-

Therefore

)
Cn = C 1 + 10F I h 1n- n- n-

Y -y 4
n n-1 + C h _ F h

h n n-l n-l n-1n-1

,.2 Coincident Knots

2Cn-1

By relaxing the condition that the set of knots xi be strictly

monotone increasing and a.llowing two consecutive knots x
j

' x
j
+1 to be

equal we can use the procedure QUlNAT to :rind a spline function for which

the :rirst derivatives are specified at an arbitrary number of knots in

addition to the specification of the function va.lues at the knots. In

order to understand this situation consider two knots x
j

and x
j
+l

which are close together. Let x
j
+

1
- X

j
= € where € is small and

positive. Instead of specifying S(X
j ) = Y

j
and S(x

j
+1) = Y

j
+1 we

may instead. specif'y S(x j ) "" Y
j

and the :rirst divided difference

S(xj,X j +l ) := (Yj +l - Y)/.f ~ Yj,j+l' The two data specU"ica.tions are

c::fllpletely equiva.lent. Now when E is small, S(xj,X
j
+

1
) is very close

to S· (x
j ) and indeed. S(xj,X

j
+1) - s' (xj ) as E .... 0 . Hence if

x
j
+1 = x

j
it is entirely reasonable to adopt the convention of

12



specifying S(x
j

) as Y
j

and S' (X
j

) as Y
j
+1• The procedure

QUmAT has been written making use of this calvention. For the spJ.ine

f'unction produced by QUINAT in this case, the fourth derivative srtlt(x)

and the fifth derivative SV(x) have jump discOI1tlnuities at x
j

.

However Sex) , S' (x) , slt(x) and S'" (x) are al.l continuous at x
j

Table 1 shows the iJrput and output values of QUINAT corresponding to the

subscripts j and j+ 1 .

Bj = S' (x
j

) .. Bj +l

Cj =stt(Xj )/ 2 = Cj+l

Dj = S" I (x j ) / (; Dj+1

E
j

= Stitt (xj -O)/ 24 Ej +1 = stt" (xtO)/ 24

F
j

= SV(X
j

-Q)/ l2O Fj +1 = SV(XtO)/ 120

Table 1.

When one uses the equation (2.1) to calculate Sex) in the interval

[Xj +l'Xj +2) one should remember that Yj +l appearing there is in fact

S(Xj +1) .. S(Xj ) = Yj and not the Y
j
+1 of the input data. Rather

Bj +l bas the value of the 1n~t Yj +l.

In the same way one may choose xj .. x
j
+1 .. x

j
+2 in QUINAT and

specify S(X j ) as Ya ' S' (Xj ) as Yj +l and S"(Xj ) as Yj +2 •

For the spline ftmction produced by QUINAT in this case, the derivatives

S'''(x) ,S""(x) and SV(x) all have jump discontinuities at X
j

•



However 6(x) , S' (x) and 6" (x) are continuous at x
j

. Table 2

shows the input and output v&1.ues of Q.UmAT corresponding to the subscripts

j , j+l and j+2 .

Yj
::: S(x

j
) Yj + l ::: S' (x j ) Yj +2

::: S"(x )
j

- - - - - - - - - - - - - - - ------ - - - -
B

j
::: S' (X

j
) Bj +l ::: Bj +2

C. ::: S"(X )/2 ::: Cj +l ::: Cj +2J j

D. ::: SIt, (x -0)/6 Dj +l = 0 Dj+2
gil, (xj+O) /6

J j

E. = sn" (x .-0}/24 Ej +1
0 Ej +2 S""(x +O}/24

J J j

F. =' Sv (x . -0) /)20 F j +l 0 Fj +2
S"·(x

j+O)/120J J

Table 2. Triple Knot x
j

::: x
j
+1 ::: x

j
+2

When one uses the equation (2.1) to calculate Sex) in the interval

[X j +2'Xj
+3) one should remember that Yj +2 appearing there is in

~act S(x j +2) ::: S(x
j
+l ) ::: S(xj ) ::: Yj and not the Y

j
+2 o~ the input

data. Rather Bj +2 has the value of the input Y
j
+ l and 2Cj+2 has

the value of the input Yj+2 •

4. Procedure QUmm

The calculation of the coefficients in Qum~ for the case ot

equidistant knots 1s carried out in the same manner as in Q.UINAT for

the general caae , However, there are a number ot simplifications which

result in considerable econany of ccmputational e:rtort. It is not

14



necessary to specify xi . Hence we can assume xi:: i. Then hi = 1

for all i and the coefficients of M
i

are independent of i as are

also the inner products. Thus equations (3.1) reduce to

Hi (x) = ! t 2 i-1 < x < 12

(4.1) 1 2 i < x < i+1= 2 + u-u

1 2
1+1 < x < 1+22 (v-l)

with t:: x-(i-1), u:: x-i, v:: x-(i+1) .

The inner products became

(4.2) 66/4

(D

(4.3) 30 S Hi(x)Mi +1(x) :: 26/4
-0>

(D

(4.4) 30 S Mi (X)Mi +2(x)dx = 1/4
_CD

The divided differences become ordinary differences so that equation (3.4)

becomes
Q)

J Hi (x) r .• (x)dx
_ :xl

S'" (x)

If instead of equation (3.9) we take

n-3
is 1201jMj+1(X)

j=O
(4.6)

then the system 01' linear equations for the calculation of ., j can be

written in the fonn

15



66 26 1 10
6"3y

0

26 66 26 1 11
6"3y

1

1 26 66 26 1 12 63y
2

1 26 66 26 1 )', 63y -
(4.7)

,
•

••
1 26 66 26 1n _4

3
6 Yn-4

1 2(, 66 'Yn. ) 6'Yn-3

The solution of this system of equations 1s somewhat simplified

because the matrix of coefficients is a set of constants.

The equations for the determination of the spline !'Unction coefficients

then becane

(4.8)

(4.10)

(4.11)

(4.12)

r i - r i-I - 1i-I + 1 i-2

These formulas are valid for i = 1,2, •.• ,n-1 with the convention that

1 -1 = J'n_2 = J'n-l = o. Al.so equation (4.10) can be used for i = 0

by setting 1.2 = o. (Equations (4.8) and (4.9) also yield the correct

values DO = EO = 0 with these conventions.)

16



F~ the coefficients at the end points are given by

= C 1+ lOF 1n- n-

Y -y +C - Fn n-l n n-l

5. Procedure QUINDF

We now assume that S(xi ) = Yi and S' (Xi) = yi are specified at

each of the knots. We must exclude the possibility that Xi = x
i
+1 as

this would imply a multiplicity of four which is not feasible for

quintic splines.

As in Section 3 we shall use minimum support B-splines of degree 2

to form a basis for the class of third derivatives of the quintic

natural splines. Since the spline we are seeking is of deficiency two

because the derivatives are specified, so also our B-spJ.ines must be of

deficiency two. Specifying a derivative at a knot is equivalent to

considering a knot to be a double knot as we saw in Section 3.2. Hence

the desired deficient splines of degree 2 can be dp.rived !rem those used

in Section 3.1 by pennitting two knots to beccee coincident. However

we prefer to derive these B-splines directly. Two .:ets of such deficient

splines are possible.

As in Section 3.1 we assume that the knots are st.ril'!tJ.:y monotone

increasing and we again choose Hl = 0 , 62 = n. The specified data

are denoted by (xi'Yi,yi), i = O,l, ••. ,n
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We denote a B-spline of one set by Mi (x) and require that it

vanish outside the interval (xi_1'xi +1)· Mi (x) ~d Mi (x) should

be ccntlnuous at xi_1 and x
i
+l but continuity is required at Xi

only for Mi (x) and not tor Mi (x) . As usual, let h i := xi +
1

- Xi '

t = x-x
i

_1, u = x-xi Then

(5.1) 2M1(X) = At Xi 1 < x ~'~- - ...

Hence also

(5.2) M"(x) = 2A1

'" 2B(u-h.)
1.

= 28

Imposing the continuity requirement at Xi yields

Hence up to a cc:mnon factor

1
A = -­2h

i
_1

B
1

h
2
i

We denote a B-spline of the other set by N
i

(x) and require that

it vanish outside the interval (Xi' xi +1) • Ni (x) should be continuous

a.t xi' xi + l but no continuity is required for the derivativp.. lie can

clearly choose

2
= - u(h -u)

h2 i
i

with u =x-xi. Then also

(5· 5)
2

Ni (x) = h2 (hi - 211)

i



OUr choice of coefficients implies the following two relations

• 00

(5·6)' J Hi (x)f'" (x) dx ,; - J Hi (x)f"'(x)dx
_GO _aD

_ (_l_+l:..)f'(X)+
hi _1 hi i

GO co

(5·7) J Ni(x)f"'(X)dx = - S Ni(x)f"(x)
_cc _=

The basis for the third derivatives of the deficient qUi~tic

natural splines is the set of B-splines

We need the inner products of these basis functions. We easily find that

(5·8)

(5·10)

(5·ll)

(5·12)

GD

,0 J Ni(x)Mi+1(x)dx = 3hi
-aa

CD

30 J Ni(x)Mi(X)dx: 3hi
-CD

co

30 J Mi(X)Mi+1(X)dx = hi
-CD

i = 1,2, ... ,n-1

i = 0,1, ••• , n-l

i = 0,1, ••• ,n-2

i ::: 1,2, ••• ,n-l

i ::: 1,2, ••• ,n-2 •

All the other inner products are zero.

19



Now the third derivative S'" (x) can be expressed in terms of

the basis fUnctions:

respectively and

integrate we obtain the well-eor.ditioned system of linear equations for

the determination of ~j Md '1j :

n-l 00 n-L GO

~ DoJ Mi(x)Mj(X)dx)~.+ ~ (50J Mi(X)Nj(X)dx)-Yj
j=l _01> J j=O -'"

00

~ S Mi (x)S'" (x)dx , i = 1,2, •.. ,n-l
-00

(5.14)

n-l Ql) n-J, Ql)

L; (~o S Ni (X)M/X)dx)~j + L: (30 J Ni (X)Nj (x)dx)r j
j =1 - 00 j ::0 - CIl

ell

= ~ S Ni (x)S'" (x)dx , i = 0,1, •.. ,n-l •
-00

This is a positive definite pentad1agonal system of l.1near equations.

The vallOes of the non-zero coefficients are given by equations (5.8)-(5.12)

and the right band sides by equations (5.6) and (5.7). The system can be

written in the fom
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eo f O 0
"0 Co

f O d1 gl hI 0 l\ b1

0 f 1 0
"Igl e1 c 1

hI f 1
d2 g2 h2 l32 b2

0
~ e2 f 2 0 "2 - C2

h2 f
2 d

3 g3 h, l33 b
3

0 g" e3 f
3 0 " C,

.-'
... •

0 • •
•

h f d ~
13
n

_
1 bn-2 n-2 n-1 -1 n-1

0 ~-1 en_1 "n-l cn-l

where

1 = 1,2, .•• ,n-1

1 '"' 0,1, .•. ,n-1

1 = 0,1, •.• ,n-2

1 = 1,2, .•. ,n-1

1 = 1,2, ... ,n-1

21
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'I'his system of equations can be solved for the ~j and 7j by

using Gaussian e11mination to reduce the matrix of coefficients to upper

triangula.r fonn. This is conveniently done by annihilating the elements

below the prinCipal diagonal in two rows at a time. Note that the gi

and hi are never changed. We use di I ei' fi and di I ei I fi to

denote the new values of d
i

I e
i

' f
i

as they are fonned by the

annihilation of hi_I' q-1 and gi in the i-th pair of rows. Before

the e1:lmination process operates on the i-th pair ot rows the fOnD ot

the system is

e" f'.' 0 "0 e"
0 0 0

• • 0• •
• •

d" gi-1
h
i_1 131- 1

b"i-1 1-1

0 e" f" - e""1-1 -1-1 1-1 1-1

h
i

_
1

f
i

_
1 d

i gi hi Pi b
1

0
0 gi e

i
f

i
a 7i

c
1

..

The equations tor the annihilation of h
i

_
1 are

u i = h1_1/ di_1

ii-1 = f 1 _1 - u i
g
i-1

d' di -uih
i

_
1i

b' = b1 -ui bi_1i
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Those for the annihilation of fi_1 are

v = f' / e"i 1-1 1-1

btl
i

and those for the annihilation of gi are

Wi g / d"i i

elf e
i

- wi g11

r' f 1 - W1h ii

c n c i -Wibi1

Note that fi_1 need nat be calculated because

For the first step of the elimination (operating on the 2nd and 3rd

rows) the above fonnulas are valid i1' we choose "i " 0 •

When the coefficients 13 j and r j have been found, SIt, (x) is

given by equation (5.13). We want to find the coefficients of S(x) ~s

expressed in equation (2.1) with B1 = yi' Clearly

1 = 0,1, .•. ,n-1

But because M
j

(x) V&rlishes outside the interval (x
j

_1, Xj +1) and

N
j

(x) vanishes outside the interval (x
j

, X j +1), S"· (x) can be

represented in the interval [xl'xi +l) in the very simple form

23



(5·16) ,

Also

(5.18)

o < t < hi' i = 1,2, ..• ,n-2

On the right-hand sides of eqllations (5.16)-(5.~8) we insert the values

from equations (5.1)-(5.3). If we make use of (5.15) we find that

(5.20)
Ei 1i - ~i

i=1,2, ... ,n-2"5 =
hi

( 5.21) Fi
~i - 2')'i + ~i+l

h~
1.

These formulas can also be used for i = 0 , n-l by adding the conventdcn

that 130 = f3n = 0 .

Next we want to find the values of the Ci· We can write S(x)

in the form (2.1) for xi 5 x < x
1
+1. Then we can use either

S(x1+1) = Yl+1 or S' (x1+1) = Yl+1· We prefer the latter because the

resulting fomula has less danger of cancellation. We have at once

24



Ir we substitute from equations (5.19)-(5.21) this becomes

(5·22)

This rormula can be used for 1 = 0,1, ... ,n-l bu;t not for i = n

In order to get Cn we could write the po4'nania1 for S(x) in

(x l'x) in powers of x-x and then use S'(x 1) = Y' l' However,n- n n n- n-

it is more convenient to obtain another formula for Ci valid for

i = 1,2, ... ,n by writing the polynomial for Sex) in (x i _1, xi ] in

powers of x-xi and then using 5' (xi_l) = Yl-1 We have

with t = x-xi' Then

* * * vDi = 5'" (Xi-0)/6 , Ei = s"n(xi -0)/24 , F i = S (Xi -0)/120 ,

i = 1,2, ... ,n

Proceeding as in the derivation of (5.19)-(5.21) we find that

i ::. 2,3, ... ,n-l

These formulas can also be used for i::. 1, n by adding the convention

130 = 13n = 0 •
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If we now use the relation SI (xi_l) '" Yf.-l ' we find

*2C
i

.. * *Substituting the above values for Di , E
i

' Fi yields

*2C
i

This fonnula can be used for i = 1,2, ••. ,n but not i = 0 •

Since S" (x) i3 continuous for x = xi' i = 1,2, ... , n-l ,

fonnulas (5.22) and (5.23) must yield the same values for these values

of i. We use (5.23) only for i = n •

6. Tests

These procedures have been tested in AJ.gol 60 on the Telefunken TR-440

computer at the Leibniz Rechenzentrum of the Bavarian Academy of Sciences,

Mwlich, and in Algol W on the IBM 360/67 at the Stanford Center for

Information Processing. The latter tests included timing tests of the

procedures with the number of knots N '" N2 -Nl+ 1 ranging up to 1000 •

The time was round to be approximately proportional to the number N of

knots. The time T in seconds for the execution of the procedure

QUINAT was found to be approximately T '" .002J2H whereas for the

procedure NATSPLINE of Algorithm 472 [5] with m '" 3 it was found that

T = .01324N or over six times as great. For the procedure QUINBt the

time was approximately T '" .00073N whereas for the procedure NATSPLI:l'lEBt

of Algorithm 472 with m = 3 it was T = .004100 or nearly six times
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as great. For the procedure QUDIDF the tiJne wa.s approximately

T '" .OOll€fi whereas for the procedure QUINAT nth 2N knots, consecu­

tive knots being equal in pairs, the tiJne wa.s T = .OO36JN or over three

times as great. Moreover, in order to ccmpute the same results the

procedure QUINAT requires approx1Jn&tely 15 per cent more storage for

the arrays used than does the procedure QUDmF. Note aJ.so that fran

the above formula for the time required by the procedure QUINAT, the

tiJne for 2N diStinct knots would be T:;: .00424N which can be

canpared With T = .OO3WH given above for N pairs of equa~ knots.

The reduction for the case of double knots probab~ occurs because sane

calculations are anitted when knots are coincident.

These timing comparisons show that it is definitely advantageous

to have these special procedures for the quintic natural spline instead

of using the general cases given in Algorithm 472 with m = 3 .

Tests of the accuracy and correctness of the coefficients cCIDp.1ted

by the procedures QUlNAT, QUINE'( and QUINDF were carried out as

described in Algorithm 472 (5). Table 3 shows the results of a typical

run using QUINAT for 5 equidistant points. The first line of each box

gives the tabulated quantities at the given value of x which is the

lef't-hand endpoint of the subinterval. and the second line of the box

gives the tabulated quantities at the right-hand endpoint of the same

subinterval. The close agreement of the quantities S(x) , S' (x) ,

S"(x)/2 , S'" (x)/6 and S''''(x)/24 shows that the quintic sp~ine

:f\mction anei. its derivatives satisfy the reqUired continuity conditions.

This is a good indication of the correctness of the results. Almost

identical results were obt&ined fran the same dat& using QUIBBl. The



I\)
OJ

x S(x} S' (x) S"(x)/2 S'" (x)/6 S""(x)/24 SV(X)/120

1.000000 1.000000 -;.199998 2.299998 0 0 -0.09999990
0 0.89m77 1.299998 -0·99999'?J .0.4999995 -0.09999990

2.000000 0 0.8999997 1.299999 -0·9999996 -0.4999995 0.2999997.
1.000000 1.907~49' -06 -1.699997 4.768372' -07 0·9999990 0.29CJ99gl--

3·00000o 1.00000o 5. 6624~1' -07 -1.699999 -5.9W464' -07 0·9999990 -0 .29999J'{

5·364418' -07 -0·9000010 1.299996 0·9999983 -0.4999992 -0.2999997

4.00000o 0 .0.8999985 1.299998 0.9999985 -0.4999992 :>.09999985

0·9999982 3.199994 2.299995 0 0 0·09999985

5·000000 1.000000

Ta.ble :5. Q.uintic Spline. 5 EquidiStant Knots. Coefficients calculated by QUINAT.

(Machine precision approx1Jna.tely 1 dec:Una.l digits.)



procedures NATSPLINE and NATS~ ot Algoritbm 472 also produced

essentially the same results.

Table 4 shows the results ot a typical run using QUINDF for 5

nonequidistant points. The values ot the function and its first

derivatives were specified and the results are given in the same

format a.s in Table ". Note that the fourth and firth denvat1ves are

now discontinuous. Essentially the same results were obtained by using

QUINAT with 10 mots, equal in pairs.



'<!1

x S(x) S' (x) S"(x)/2 S'lt (x)/6 S""(x)/24 SV(x)/120

-3.o00ooo ooסס00·7 OOסס2.00 -6.108312 0 2·956281 -0.7145936

OO2סס.11 oo2סס·15 7·674892 -4.933491 -4.189653 -0.7145936

-1.000000 ar.ooooo 1,.00000 7.674872 -4.933500 -8.157616 5.416246

26.oocoo OO1סס.10 -1.908858 16.59850 18.92361 5.416246

C ooסס26.0 10.00000 -1·908856 16·59848 -9·059QOO 1.246089

55·99988 -27 .000J2 -5·264510 20.03841 9·632335 1.246089

3.o00ooo 56.00000 ·27 .ooooo -5.264445 20.03851 -21.28369 6·509629

oo2סס·29 -29·99995 .7.754162 4.005432'-05 11.26445 6.509629

4.000000 ooסס0·29 ooסס30.0-

Table 4. Quintic Spline. 5 nonequidistant knots. Values and first derivatives

specified. Coefficients calculated by QUINDF. (Machine prec is ion

approximately 7 decimal digits.)
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APIUlDIX I

Algol 60 procedure QUINAT

procedure QUINAT(Nl,N2) data:(x,y) result:(B,C,D,E,F);

~ N1,N2; integer Nl,N2; array x,y,B,C,D,E,F;

ccmnent QUINAT compu.tes the coefficients of a quintic natural spline

Sex) interpolating the ordinates y{i] at points x[1], i =Nl through

N2. For xx in [x{i],x[1+1]) the value of the spline function S(xx)

1s g1ven by the firth degree polynanlal:

S(xx) = ««F[1]xt + E[1])xt .. D[l])xt + C[iJ)xt + B[i])xt + y[i]

with t = xx - xli].

Input:

N1,N2 subscript of first and last data point respectively, it is

required that N2 > Nl + 1,

x,y[Nl:N2] arrays with xli] as abscissa and y[l] as ordinate of

i-th data point. The elements of the array x must be strictly

rr.onotone increasing (but see below for exceptions to this) .

outPlt:

B,C,D,E,F[Nl:N2] arrays collecting the coefficients of the quintic

natural spline S(xx) as described above. Speclt1ca~

B[i] = S'(x[i]), C[i] = S"(x[i])!2, D[il = S'''(x[i])!6,

E{i] = S""(X[i))/24, F[i] = SV(X{i]+O)/l2O. F[N2] is neither­

used nor altered. The arrays B,C,D,E,F must a.lways be distinct.

Options:

1- The requirement that the elements of the a.rra.y x be strict~

monotone increasing can be relaxed to allow two or three consecutive

abscissas to be equal and then specifying values of the first and

second derivatives of the spline fUnction at some of the

interpolating points. Specifically

if x[j] = x[j+l] then S(x[j]) = y[j] and S· (x[j]) = y[j+l],

it x[j] = x[j+l] ... x[j+2] then in addition S"(x[j]) = y[j+2].

Note that S.... (x) is disc31tinuous at a double knot and 1n

addition S'" (x) is discontinuous at a triple knot. At a double

knot, x[j] = x[j+l], the output coef't1c1ent. have the following

values:
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B[j) "S'(x[j)) =B{j+1)

C[j] =S"(x[j])/2 .. C[j+l)

D[j) = Sf" (X[j ])/6 = D[j+l)

E[j) = S""(x[j )-0)/24 E[j+l) .. S""(x[j )+0)/24

F[j] .. SV(x[j]-O)/~'F[j+l] = SV(x[j]+O)/l20

The reprt..3entation of S(xx) remains valid in all intervals

provided the redefinition y(j+l] := y[j I is made inmediate1¥

after the call of the procedure QUINAT. At a triple knot,

x(j] .. x[j+l] = x[j+2], the output coefficients have the

following values:

B{j] = S' (x[j)} .. B[j+l) .. B(j+2)

C[j] = S"(x[j ]}/2 = C[j+l] .. C[j+2]

D[j] = S'''(x[j]-0)/6 D[j+l] = 0 D[j+2] = S"'(x[j]+0)/6

E[j] = S""(x[j ]-0)/24 E[j+l] = 0 E[j+2] = S""(x[j ]+0)/24

F{j} = SV(x{j}-0)/120 F[j+l] = 0 F[j+2] = SV(x[j)+O)/120

The representation of S(xx) remains valid in all intervals

provided the redefinition y[j+2] := y[j+l] := y[j] is made

immediately after the call of the procedure QUINAT.

2. The array x may be monotone decreasing instead of increasing;

if N2 >Nl + 1~

begin

integer 1,m;

real bl,p,pq,pqqr,pr,p2,p;,q,qr,q2,q3,r,r2,s,t,u,v;

acmnent Coefficients of a positive definite, pentadiagonal matrix

stored in D,E,F[Nl+l:N2-2];

m := 62 - 2j

q := x[Nl+l] - x[N~]; r : .. x[Nl+2] - x[Nl+l];

q2 := qXq; r2 := rxr; qr : .. q + rj

D{Nl] := E[Nl] := O.Oj

D[Nl+l] := it q = 0~ 0.0~ 6.0xqxq2!(qrxqr);

for i := N1 + 1 step 1 until m !!£
begin

p := q; q := r; r : .. x[i+2] - x[i+l)j

p2 := q2; q2 := r2j r2 := rxr; pq : .. qrj qr : .. q + r;

!! q .. 0~ D[l+l) := Eli) := F[i-~) := 0.0

else



begin

q; := q2Xq; pr := pxr; pqqr := pqxqr;

D[1+1] := 6.0xq3/(qrXQr);

D[1] := D[i] + (q+q)x(15.0xprxpr + (p+r)xqx(20.0XPr + 7.0Xq2)

+ q2x(8.ox(p2 + r2) + 21.0xpr + q2 + q2»/(pqqrxPQqr);

D[ i-1.] := D[i-l] + 6.oxq3!(pqxpq);

Efi] := q2x(pxqr + 3.0xpqx(qr+r+r»!(pqqrxQr);

E(i-l] := E[i-l] + q2x(rxPQ + ;.Oxqr)«pq+~p»/(pqqrxpq);

F(i-l] := q3/pqqr

~q <>0

~ i;

if r F0.0 then D[m] := D(m] + 6.0xrxr2!(qrxqr);

camnent First and second order divided differences of tbe given

function values stored in B[Nl+l:N2] and C[Nl+2:N2] respective~.

Take care of double and triple knots;

s := y[Nl];

!2!: i : = Nl + 1 step 1~ N2 ~

if xli] = x(i-l)~ B(i) := y(1)

else

begin

B[i] := (y(i] -S)/(X[i] - x(i-l);

s := y( i]

end i;

.!:2!: i : =Nl + 2~ 1~ N2 do

if xl t l = x(i-2}~

begin eli] := y[i]xo.5; B[i] := B[i-l) ~

else C[i] := (B[i] - B[i-l)!(x[i] - x[i-2]);

canment Solve the linear system with C[ 1+2] - C[i+l) as right-band side;

if m >Nl~

begin

p := C[Nl] := E[m] := F[Nl] := F[m-l] : ... F[m] := 0.0;

erNl+l] := e[Nl+;] - C[Nl+2]; D[Nl+l] := loO/D[Nl+l)

end m > Nl;

!2!: 1 : = Nl + 2 step 1~ m~



begin

q := D[1-1]xE[i-l];

ri[l] := 1.0/(D[i] - pxF[i-2] - qxE[i-l]);

E[l] := E[i] - qxF[1-1l;

C[i] :: C[i+2] - C[i+l] - pxC[i-2) - qxC[i-l];

p := D[i-l]xF[i-l]

end l'- ,
m := Nl + 1; C[N2-1] :: C[lf2] :: 0.0;

~ i : = N2 - 2 step -1~ m~

C[i] := (C[i] - E[i]xC(i+l] - F[i]xC[1+2])xn[i];

cCllll1ent Integrate the third derivative or Sex) ;

m := N2 - 1;

q := X[lf1+l] - x[Nl]; r := x[lfl+2] - x[lfl+l]; b1 := B[lf1+l];

q' := qxqxq; qr := q + r;

v := t := U qr = 0.0~ 0.0~ C[Nl+l]!qr;

F[N1] := if q = 0.0 then 0.0~ v/q;

for 1 := 1f1 + 1 step 1 until m do

begin

p := q; q := r;

r := if i =1f2 - 1 then 0.0 else x[i+2] - x[i+l];

p3 := q3; q3 := qxqxq; pq := qr; qr := q + r;

s := t; t := if qr = 0.0 then 0.0 else (C[i+l] - C[1])/qr;

u := v; v := t - s;

1f pq = 0.0 then

~ e[i] := 0.5xY[i+l]; D[i] := Eli] := F[i] := 0.0 end

else

~

F[i] := if q = 0.0 then F[1-1] else v/q;

E[i] := 5.0xs;

D[l] := lO.Ox(e[l] - qxs);

C[i] := D[i]x(p - q) + (B[i+1] - B[i] + (u - E[i])xP3

- (v + E[i])xq3)/pq;

B[l] := (px(B[i+l) - vXq,) + qx(B[i) - uxp3»/pq

- Pxqx(D[i) + E[i]x(q - p»

~pq<>O

~i;
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ccmnent End points x[II) and x[ N2) ;

P := X[II+I) - x[NI]; s := F[NI)xpxpxP;

E[NI) := D[II) := 0.0;

C[Nl] := C[NI+I) - 10.Oxs;

B[NI] := bl - (C[Nl] + s)xp;

q := X[N2) - x[N2-1); t := F[N2-I)Xqxqxq;

E[N2) := D[N2) := 0.0;

C[N2) := C[N2-1) + 10.Oxt;

B[N2) := B[N2) + (C[N2j - t)Xq

end QUlNAT;



APPDIDIX II

Algol60 procedure QU~

prOCedure QUDmt(N1,N2) data:(y) resu1t:(B,C,D,E,F);

~ N1,N2; integer N1,N2; array y,B,C,D,E,F;

ccmnent Q~ computes the coettlclents of a quintic natural spline

S(x) interpolating the ordinates y[1] at equidistant points xli],

1 = N1 through N2. For xx in [x[i),X[i+1]) the value of the spline

f'unction S(xx) is given by the fifth degree po!.yncmial:

S(xx) = ««F[i)xt + E[i])xt + D[l)xt + C[l])xt + B[l])xt + y[l]

with t = (xx - x[i])/(x[i+l] - x[l).

Input:
N1,N2 subscript of first and last data point respectively, it Is

required that N2 > N1 + 1,

y[Nl:N2] the given function values (ordinates).

output:

B,C,D,E,F[Nl:N2] arrays collecting the coef'1"lcients or the quintic

natural spline S(xx) as described above. Speeit1cal.ly

B[l] = S'(x[i), C[l] = S"(x[i])/2, D[i) = Sft'(X[i)/6,

E[i] = S""(x[i])!24, F[l] = SV(x[i)+0)/120. F[N2] is neither

used nor altered. The arrays y,B,C,D must always be distinct.

If E and F are not wanted, the call QU~(Nl,N2,y,B,C,D,D,D)

may be used to save storage locations;

if Ii2 > Nl + 1 then

~
integer 1,n;

real p,q,r,s,t,u,v;

n := N2 • ,; p := q := r := s := t := 0.0;

~ i := Nl~ 1~ n ~

~

u := p~r; B[l] := 1,0/(66.0 - uxr - q);

C[i) := r := 26.0 - u;

D[i) := y[1+'] - 3.0x(y[1+2] • y[1+1)) - y[i) - uxs - qxt;

q := p; p := B[l]; t := s; s := D[l]

~i;
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D[Nl+l] := D[H1+2] := 0.0;

f2!. i := n~ -1~ HI ~

D[1] := (D[i] - C[1]xD[i"'1] - D[H2])xBl1];

n := N2 - 1; q := 0.0; r := t := v := D[Hl];

!2!: 1 :"" HI + 1~ 1 \U1til n do

begin

p := q; q := r; r := D[i]; 8 := t;

F[i] := t := p - q - q + r;
E[i] := u := 5.0x(-p + q);

D[i} :- lO.Ox(p + q);

C[i] :- O.5x(y[1+1] + y[1-1] + s - t) - y[t] - U;
B[l] := O.5x(y[1+1] - y[i-1] - s - t) - D[1]

~i;

F[Nl] := V; E[N1] :- E[N2] := D[Nl] := D[N2] := 0.0;

C[Nl] := C[Nl+l] - 10.Oxv; C[N2] := C[N2-1] + lO.Oxt;

B[Nl] := y[Nl+1] - y[Nl] - e[Nl] - V;
B[N2] := y[N2] - y[N2-1] + C[N2] - t

~Q~;



APPmDIX III

Algol €IJ procedure QUmDF

procedure QUINDF(Nl,N2) da"ta:(x,y,yp) resul"t:(C,D,E,F);

value Nl,N2; in"teger Nl,N2; array x,y,yp,C,D,E,Fj

cClllJllent QunmF canputes the coefficients of a quintic natural spline

Sex) for which "the ordinates y[i] and the firs"t deriva"tives yp(i]

are specified at points x[ i], i = Nl through N2. For xx in

[x] iJ,x( 1+1]) the value of the spline function S(xx) is given by

the fifth degree polynomial:

S(xx) = ««r[i]xt + E[i)xt + D[i)xt + C[i)xt + yp[i)xt + y[i]

with t = xx - xl i ) .

Input:

Nl,N2 subscript of first and last da"ta point respectively, it is

required that N2 > Nl,

x,y,yp[Nl:N2] arrays with xli] as abscissa, y[i] as ordinate and

yp[ i] as first derivative at the i-th data point. The

elements of the array x must be strictly monotone increasing

or decreasing.

output:

C,D,E,F[Nl:N2) arrays collecting the coefficients of tbe quintic

natural spline S(xx) as described above. E[N2] and F[N2] are

nei"ther used nor altered. The arrays e,n,E,F must always be

distinct;

if N2 > Nl then

begin

integer i,ml,m2;

!!!! g,b,bh,p,pp,q,qq,t,u,v,w;

a.rray B(Nl:N2);

ml := Nl + 1; m2 := N2 - 1;

h := x[ml) - x[Nl]; E[Nl] := 4.0xh; F[Nl] := 3.0xb;

u := 0.0; v := 0.15;

p := (y[ml) - y[Nl)!(hxh)j q := yp[ml]/h;

BUll] := O.Oj e[Nl] := q - p - p + yp[Jlll!hj

for i :- ml~ 1 !!!!i!! m2 ~
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begin

bb := h; h := x[i+l] - xli];
.P.P := p; P := (y[i+l] - y[i])/(hxh)j
qq := q; q := yp[i+l]/h; t := yp[i]/h;
D[i] := 6.0x(hh + h) - uXbh - vxF[i-l];
B[i] := p - t - qq + P.P - uxB[i-l] - v~[i-l];

g := 3.Oxh; w := slD[i];

E[i] := 4.0xb - WXg; F[i] := g - wxh;

C[i] : = q - p - p + t - wxB[ i];

u := h/D[1]; v := F[i]/E[i]

~ i;

B[N2] := 0.0; t := C[m2] := C[m2]/E[m2];

!2!: 1 : = m2~ -1~ ml do

begin

B[l] := (B[i] - (3.0~[i] + B[i+l])x(x[i+l] - x[i]»/D[l];
C[i-l] := (C[i-l] - F[i-l]xB[i])/E[i-l]
~i;

for i : '" Xl~ 1 !!!!ll! m2 do

begin

h := x[i+l] - xli];

F[i] := (B[i+l] - C[i] - C[i] + B[i])/(hxh);

Eli] := 5.0x(C[i] - B[i])/h;
D[l] := 10.OxB[1];
C[i] := 0.5x(yp[1+1] - yp[l])!h - (7.5xB[i] + 5.0~[i] + 2.5xB[1+1])xh

end 1;

D[N2] := 0.0;
C[N2] := 0.5x(yp[N2] - yp[m2])/h + 2.5x(B[m2] + t + t)xh

end QUnIDFj


