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1. Introduction

Algorithm 472 [5] provided a set of Algol () procedures for the
calculation of interpolating natural spline function: of degree om-1 .
Since the case of a cubic natural spline i1s of frequent occcurrence, a
procedure for this special case was also iuciuded. “he special procedure
is very much faster than the general procedure when used with m = 2 +to
produce the same results.

The next most useful case is that of the quintic natural spline
which can, of course, be obtaine” by using the general procedures of
Algorithm 472 with m = %5 . However, the calculations can be greatly
simplified by considering this special case as described below. The
procedure, QUINAT, which is given here, takes advantage of these simpli-
fications and is much faster than the general procedure with m = 2 .

An even faster procedure QUINEQ treats the case of equidistant knots.
Also included in the present set of procedures is the procedure QUINDF
which treats the case in which the first derivative as well as the

functional value is given at each of t':e knots.

2. Formulation of the Problem and Description of the Procedures

Let (xj,yi) s 1 =N1,Nlt+l, ..., N2 Dbe a set of data points where
it is assumed that le < le+l < eee < Xyo The interpolating quintic
natural spline function S(x) with the knots le,...,xN2 has the
following properties: (1) 8(x) is a polynomial of degree 5 in each

interval (xi,x i =Nl,...,N2=-0. . (1i) 8(x) and its derivatives

1+1) ’
S'(x) , 8"(x) , s'"(x) and $""(x) are continuous in (le’xNE) .

(111) 8" (xy) = 87 (1) = §™(xy) = 8"(g) =0 . (V) 8(xy) -y



i =Nl,...,N2 . It is known that if N2 > N1l+1 , then there i3 a unique
quintic natural spline function which has the properties (i) - (iv).
(See e.g. Greville [3,4].) This spline function can be reprecented

in the torm

) 2 SRR D
(2.1) S(x) = yi+Bit+Cit *D,t +Eit +I~it
with t = X=Xy for ¥, <x< Xit1 ? i = N1,...,N2-1 .

If at one or more of the knots X3 one also specifies the
derivative yi y thus requiring S'(xi) = yi then the conditlon that
S""(x) be continuous at the knot X need not hold. If the second
derivative y; is also specified thus requiring S"(xi) = y; then
S"'{x) also need not be continucus at X, - If the values of the
derivative yi are specified at all the knots Xy then S5""(x) need
not be continuous at the knots and alsc S""(le) and S""(XNQ) need
not be zero. Such a spline is said to be of deficiency 2 . It is not
of interest to specify the first and second derivatives at each knot
because in this case the gquintic polynomial is completely determined in
each interval independently of all the other intervals.

The procelure QUINAT computes the coefficlents Bi y C., , Di ’ Ei ’ Fi

i
of the quintic natural spline represented as in equation (2.1) for an
arbitrary set of data points (xi,yi) as specified ebove. The procedure
QUINEQ treats the case of equidistan® knots x5 o If the knots are known
to be equidistant QUINHEQ should be vsed as it is much faster then QUINAT.
In this case it is not nececsary to specify the velues of X - The

representation (2.1) is still used but now t = (x-xi)/h where

h = xi+l--xi , the constant spacing of the knots.



QUINAT can also be used for the case in which the first and second
derivatives are specified at an arbitrary set of the knots. To specify

the value of the first derivative yj at x, one increases the number

J

41 = X (and renumbering the knots and values

— 1 §
to the right). Then one chooses Vo1 = ¥y -

computed by QUINAT will have the property S(xj) =v5 S'(xJ) = Y541

of knots by one, setting x
Then the spline function

To specify also the second derivative, note that if xJ = xj+l =
= ar/f = " = .
then S(xj) vy S \xj) Vye1 ? s (xj) Yie2 For further
details see Section 3.2.
The procedure QUINDF computes the coefficients of the quintic
natural spline of deficiency 2 when the values of the function vy and

the values of the first derivative yi are given at each knot. QUINDF

is much faster than QUINAT.

5. Procedure QUINAT

A: in the general case of Algorithm 472 [5] the calculation of the
coefficients of the spline function is carried out in a numerically
stable manner following a method described by Anselone and Laurent [1].
The bagic ideas on which the method is based were given earlier by
Schoenberg [6]. The method is specialized to the case of the quintic
natural spline and uses minimum support B-splines [2,4] of degree 2 to
form a basis for the class of third derivatives of the quintic natural
splines. Instead of specializing the formulas of Algorithm L72 {5) by
setting m = 5 , we derive the necessary formulas directly and indeed choose

a different numbering and a different nc;ma.liza.tion for the B-splines.



3.1 Distinct Knots

We assume that the knots are strictly monotone increasing. In order
to simplify the notation we shall choose N1 =0 and let N2 =n so
that the data poinis are denoted by (xi,yi) , 1=01,...,n . This is
merely a translation of the subscripts and involves no loss of generality.

We denote the B-spline of degree 2 by Mi(x) and require that it

vanish outside the interval (:r_i

_l,x1+2) . Mi(x) and Mi(x) must be

continmuous at each of the knots. Let hi = X1 % t=x "Xy 40
U=X=X 5, V=X-X., . Then we must have
M, (x) = at® b <x<X
i i-1 - i
2 N - 2
(z.1) =B+Cu=-Du X SX<Xgyq
= E(veh )2 X <x <X
i+1 i+l - i+2
Hence also
14 - " .
Mi(x) = 2At Mi(x) = 2A Xgq $X <%
(3.2) =C -2Du = -2D X SX <Ko
= 2E(v-hi+l) = 2E Xipq SX <X -
Imposing the continuity requirements at Xy o J-:i_',l yvields
2 2 .2
Aui-l =B B+ Chi-Dh:,L = Ehi+1
2Ahi_l =C C -2Dhi = '2Eh1+1
Hence up to a cammon factor
A - 1 Bodl oL _2
by ,(b; ;+hy) by thy by * By
(3.3)
h, .+2h,+h
D = i-1 i “i+1 E 1 .

[CHRE W R CHEI|



Choosing these values of the coefficients we find that

j‘m M] (x)£* (x)ax

- 0

(-]
I Mi(x)f"'(x)dx
i X441 Xi42
2A [ f(x)ax-2p [ fr(x)ax+2E [ f£'(x)dx
X1 Xy X341

(3.4)

i

2(E(xga%y 10 %500) = Xy 19Xy 0%4y5))

using the usual notation for divided differences. This is a very
convenient choice of normalization of the Mi(x) .
Next we need the inner products of the basis B-splines. Since each

Mi(x) is different from zero in only 3 consecutive intervals it is clear

that

(3.5) J Mi(x)MJ.(x)dx=O ir i3] >2 .

If we use the representations of Mi(x) in (3.1) we obtain

hi h:|.-!»l

® §-1
0 [ 00 1%ax = 30 (at?) Zat + 50] (B+Cu - Du°)2du + 50]‘ E(v - hi+l)2dv .
KR o

If we substitute the constants from (3.3) and carry out the integrations

we obtain
I 2
(3.6) ;o_j;[mi(x)] ax = Ty+T 4T,
where
3 3
6hi-1 6h1+l
LT sn? T mn. 2
i-1 i i+l
T, =
2 .2
h 30H; _yhyyq+(hy _y*hy, )h, (¥Ohy 1 1+1+l’*h1)+h (16(n7_;+ 1+1)*"2h1 1Pt "h -
1

(b, y+8) (ngeny, )°



In the same way we find that

(3.7) %0 [ Mi(x)Mi+1(x)dx =Ty +T

5
where
, - b By_y(By *by,q) +3(hy 4 +hy) (g +3hy,,)
i )
(By_y+hy)(hy +hy )
o o p2  Dusa(PytRyg) ¥ 3By, vy, o) Ohy thy,,)
5 i+l 2
(hy +hy 1) (hyyy + By 0)
and
3
- h
(3.8) 30 [ M (M, (x)ax = i+l
Se ATTRE (b, +h,,.) (b, +h, )
1 ¥ B50) By *Byp

Note that all terms in these expressions are positive and consequently
no cancellatrions can occur.
Now the third derivative §"'(x) will vanish outside the interval
(xo,xn) and it can be expressed in terms of the basis functions:
n-2
(3.9) s (x) = L 607.Md(x) .
J=1 J ‘
1
2
we obtain a well-conditioned system of linear equations for the determina-

If we multiply equation (35.9) by Mi(x) y 1=1212,...,n-2 and integrate,
tion of the 7,j :

n-2 @ 1 ®
(3.10) ’.2=31 (BO-J; Mi(x)Mj(x)dx)yj =3 _J;Mi(x)s"'(x)dx , 1=1,2,0.0,n-2 .
If we use (3.4) and (3.5) we see that (3.10) is a pentadiagonal system

of linear equations and can he written in the form



- - r - F -
d'l el f:P. O 7'l cl
e 4 & I 72 €2
fl e2 d5 e5 f5 73 c3
(3.11) T, e 4, ¢, T, 7y = )
[ [ . . .
* ’ . . . * *
* . . . 4
O fn-s €n-k dn-} ®n-3 Tn-3 ®n-3
fn-h ®n-3 dn-2 Th-2 Cp-2
L - - o > -
where
® 2
4 = 50_J‘w (M (x)]%ax i=1,2,...,n-2
L--]
e = 50_‘]; Mi(x)Mi_._l(x)ﬂx s 1 =1,2,000yn-3
@
f, = 30_.]°° Mi(x)Mi*z(x)dx ’ i=122,...,n-h4

yi) i+1,i+2 -yi‘l)i) ivl ? i=42..,n2

The values of d, , e , f, are obtained fram (3.6), (3.7), and (3.8).
This system of equations can be solved for the 7 j by using

Gaussian elimination to reduce the matrix of coefficients to upper

triangular form. This is convenlently done by annihilating the elements

below the principal diagonal a row at a time. Note that the f, are

i
never changed. We use di » ei and d; » e; to denote the new values
of di 3 e1 as they are formed by the annihilation of fi-2 and ei_l

in the i-th row. Before the elimination process operates on the i-th row,

the form of the system is:



The equations for the annihilation of fi-2 are

and those

Note that

P =T /8,

' = - (]
€i-1 = €317 P18 2

ai =& -0

¢f =¢34 -Pi%ip

for the annihilation of ei-l are

? 1"t
a; =ej /9,
n o_ aqr . "
dy =a;-as859
wo_ -
ey =& -4f

ey =¢{-%%

c"

"

i-2

1
€1

e! need not be calculated because ei-l = e;_l . This

i-1

follows by induction because if e; , = e; ; then

o ha .
[
i di-l

1) — \i]
€y €11 T &




Thus g i = /d" . For the first step of the elimination
(operating on the 2-nd row) the above formulas are valid if we choose
P, = 0.

When the coefficients have been found, S"'(x) is given by

73
the equation (2.9). We want to find the coefficients of S(x) as

expressed in equation (2.1). Clearly

(3.12) D, = s"'(xi+o)/6 » By = s""(xi-»o)/zh s F

v
i = 8°(x,+0)/120 ,

i

i = O,l’ ...,n-l .

But because Mj(x) vanishes outside the interval ‘(x s" 1 (x)

j-1%3e2)
can be represented in the interval [xi’xhl) in the very simple form

1 "y =
(3.13) % S (xi-c»t) = 71-1Mi-1(xi+t) + 71Mi(xi+t) +71+1Mi+l(x1+t)
with 0 <t <hi sy 1=2,5,...,n=3 .
Then also

1l que _
(3.38) g5 S (xgrt) = vy g Mi g (xpat) + 7 M eyt 47 M (3548)

1 v " " "
(5:15) g5 87(x*) = 7y My (xg+t) + 7 My(xat) 47, My, (xg%8) -

On the right hand sides of equations (3.13) - (3.15) we insert the values

from equations (3.1) -(3.3). If we make use of (3.12) then we find that

\
(3.16) Dy naMtilg
10 B, ,*h
E Vg =7
i 17751
(3-17) T = 'h _'+'—h' } i = 2,3,5--,1’1-3
(5.18) F, = 7441 " 71 7370
1 B, *h,,, B _ +h
o



These formulas can also be used for 1 = 1,n-2,n-1 by adding the

convention that 7, =0 . Also (3.18) can be used for

=Th-1 =7
1 =0 by setting 7_, =0 . ((3.16) and (3.17) also yield the correct
required values DO = EO = O with these conventions.)

Next we want to find the values of Bi and Gi . Remembering that
S(x) and its first four derivatives are continuous at X, butr that

Sv(x) need not be continuous we can write polynomial expressions for

S(x) wvalid for the intervals on either side of x; ot

"

¥, +BE4C t+Dt5+Eth+Ft5 , X, <X <X,

5(x) 1t T Fy

2 % L 5
S = + + +EtL +F
5(x) yi"Bit Cit Dit Ei Bi—lt , X, < x < X,

with t = X=Xy in both cases, 1 = 1,2,...,n=-1 . Then
S(x,,,) =y =y +Bh+C;1?4—1)115<'-Ehb'+l"‘h5
i+l i+l i i i"i i1
and
_ v - 2 o0 Lo 5
S(x;3) =¥y 3 = vy -Byhy (+Chy ) -DR G HER PR,
Since Di » E‘.i ’ Fi and Fi-l are already known we can solve these two

equations for Bi and Ci obtaining

h, Ve, =Y. h, Vs =Y,
-1 i+l i i i i-1
(2.19) B, = E + - D,h, _,n,
i hi-l"hi hi hi_l-l-hi hi—l 11171
h, -h
i- l i 3
+ Eghy qhy(hy 5 -by) - h, . (Fy i g+ F hi)

and

10



Yiar =¥: Ya-¥
B 1 14179 I3T¥i i
(3.20) ¢ =g vE, ( B )+Di(hi-l hy)

§-1 1 by
3 3
h +h
1-1 4 1 L L
-E + (F, .h -F.h) .
D A TS W T s S A

These formulas are valid for 1 = 1,2,...,n-1 .
Finally we have to find the coefficients at the end points

_0)

In the interval (xo,xl) we have (since D, = Eo =

8(x) = y0+aot +cot2+ 0+0+ Fots

with t = x-xo . Hence also
[] - 5
s"(x) = 2C,+ 20F b
Since S(x) and S"(x) must be continuous at x = X, We have
2 2
Yot Bofg *Cobp* Folty = ¥
>
200+ 20Foho = 201 .
Therefore
(3.21) Cn. =C.-10F.h
0 1 00
Y- N
(3.22) B = e Cohg =Fohg -

xo,

In the 1nteml (x,_ys%,) ve have (since S"'(x ) = S""(xn) =0)

S(x) =y + an+cnt2+ C+0+ Fn_lt5

with t =x-x . (Here B =8'(x) , ¢, = S"(xn)/a .) Hence also

_ 3
s"(x) = X, +20F, t7 .

X

n



Since S(x) and S"(x) must be continuous at x = X _y We have
2 5
Yo" Bt Ot T Yaa
2C_ - 20F h3 = 2C .
n n-ln-1 n-1
Therefore
(3.23) C_ =C_ ,+10F . h’
: n n-1 n-ln-1
y -
, _"n"Yn-1 4
(3.24) By ===+ Cphyg Pt
n-1
5.2 Coincident Knots
By relaxing the condition that the set of knots Xy be strictly
monotone increasing and allowing two consecutive knots x 3° x 341 to be

equal we can use the procedure QUINAT to find a spline function for which
the first derivatives are specified at an arbitrary mmber of knots in
addition to the specification of the function values at the kmots. In

order to understand this situation consider two knots x 3 and x J+1

which are close together. Let x = ¢ where ¢ 1is small and

#17y
positive. Instead of specifying S(xj) .j+l) = Y1

may instead specify S(x j) = ¥y and the first divided difference

we

[t}

Y5 and S(x

S(xj,xjﬂ) = (y.j+1'yj)/‘€ =Yy, 401 ° The two data specifications are

completely equivalent. Now when ¢ 4s small, 8(x l) is very close

35+
to S'(xJ) and indeed S(xj,xd”_) —-S'(xj) as ¢ -0 . Hence if

b4 = X, iU is entirely reasonable to adopt the convention of

17



specifying S(x,) as y, and S'(x,) as y.,. . The procedure

J J J i
QUINAT has been written making use of this convention. For the spline
function produced by QUINAT iv this case, the fourth derivative S'""(x)

and the fifth derivative Sv(x) have jump discomtinuities at x

3

However S(x) , S8'(x) , s"(x) and 8"'(x) are all continuous at X .
Table 1 shows the imput and output values of QUINAT corresponding to the

subscripts j and Jj+1 .

yd = S(XJ) yj""l S (xd)
By = §'(x,) = By,
c, = S"(xj) = Cyp
D; = snv(xj)/c = Dj+1

E, = s""(xj-o)/ah E = s""(xj+o)/2u

i+l

o]
"

8" (x,-0)/120 F, . = 5V (x,+0)/120

J+l

Table 1. Double Knot x, = x

3 1

When one uses the equation (2.1) to calculate S(x) in the interval

(x ) one should remember that y 3¢1 appearing there is in fact

#1552
S(xy,1) = S(x;) =y, andnot the y,, of the input data. Rather

B hag the value of the input y 41

J+1
In the same way one may choose x.1 = xjﬂ. = x.j+2 in QUINAT and

specify S(xJ) 8 Y, S'(xj) 88 Vi and S"(xJ) 88 Yip -

For the spline function produced by QUINAT in this case, the derivatives

g"'(x) , 8""(x) and S'(x) all have jump discomtimuities at Xy .

15



However S(x) , S'(x) and 8"(x) are contimuous at x_, . Table 2

J
shows the input and output values of QUINAT corresponding to the subscripts

i, J+*1 and J+2 .

vy = Sx) Vgl = Sy ¥y = 87(xy)

BJ = S'(XJ) = B'j+l = B,j+2

c'j = S"(xJ)/2 = Cypy = cj+2

D, = S"'(xj-O)/6 Dyyg = O Dj+2 = S"'(xlj+0)/6

E; = s""(xj-o)/2h Eyy = O Eip = s""(xj+o)/2h
v v

FJ. = 8 (xj-o)/mo FJ+1 = 0 FJ+2 = 8 (xj+0)/120
Table 2. Triple Knot x, = x =x

J J*l1 - Tg+e

When one uses the equation (2.1) to calculate S(x) in the interval
{x j+27%5 4_3) one should remember that y o2 appearing there is in
fact S(xj+2) = S(xj+l) = S(xj) =y

data. Rather B

3 and not the yj+2 of the input

has the value of the input yj +1 and 2C has

J+2

the value of the lnput yj o0

j+2

L.,  Procedure QUINEQ
The calculation of the coefficients in QUINEQ for the case of

equidistant knots is carried out in the same manner as in QUINAT for
the general case. However, there are a number of simplifications which

result in considerable economy of computational effort. It is not

1k



4 Hence we can assume xi=i . Then h1=l

for all i and the coefficients of Mi are independent of i as are

necessary to specify x

also the inner products. Thus equations (3.1) reduce to

Mi(x) = % t° i-1<x<i
(b.1) = %+ u-u° i<x<i+l
= % (v-l)2 i+l <x < i+2

with t = x-(4-1) , u =x~i, v = x-(i+1) .

The immer products become

[

(4.2) 0 | [Mi(x)]edx = 66/b

)

(k.3) 50 [ oM (M, (x) = 26/b

(4.4) 0 [ oMM (e = 14

The divided differences become ordinary differences so that equation (3.4)

becomes

@

(4.5) I M, (x) £ (x)ax

- 30

£(x,,0) = 38(x,,,) *+ 3£(x;) - £(x, ;)

3
)} f(xi_l)

If instead of equation (3.9) we take
" o
(4.6) s"(x) = 120y M., . (x)
jo dI

then the system of linear equations for the calculation of ¥ j can be

written in the fom

15



- . - - - 3 -
66 26 1 % [ &y,
3
26 66 26 1 7y &y,
3
1 26 66 26 1 75 &y,
1 26 66 26 1 75 Ky,
(h'7) . . . » - . =
1 26 66 26 y A3y
n-4 n-b
3
. 126 6 4 L 7!1-3 o -A yn-3 p

The solution of this system of equations is somewhet simplified
because the matrix of coefficients is a set of constants.

The equations for the determination of the spline function coefficients

then become

D,
1
(%.8) 0 ° 712t 7141
Ey
(h'9) —S_ = 71_1-71_2
(B.20)  Fy = vi-7s 07750t Y50
1
(311) By = 5 (Vg =¥y "Fyy oFy) oDy
1
(h.12) €y = 5 (Vyuq*¥y 3+ Fy y-Fy) -y -E

These formulas are valid for i =1,2,...,n-1 with the canvention that
Y1 =740 =7Yq3 =0 - Also equation (4.10) can be used for i =0
by setting 7_, =0 . (Bquations (L4.8) and (4.9) also yield the correct

values DO = Eo = 0 with these conventions.)

16



Finally the coefficients at the end points are given by

CO = C.1 - lOFO

By = ¥91-¥%-%"Fo

Cn = Cn_l"' lOFn-l

B = Y VnatChFaa

5. Procedure QUINDF

We now assume that s(xi) =y; and S'(xi) =y] are specified at

each of the knots. We must exclude the possibility that X, = Xip1

this would imply a multiplicity of fowr which is not feasible for

as

quintic splines.

As in Section 3 we shall use minimum support B-splines of degree 2
to form a basis for the class of third derivatives of the quintic
natural splines. Since the spline we are seeking is of deficiency two
because the derivatives are specified, so0 also our B-splines must be of
deficiency two. Specifying a derivative at a knot is equivalent to
considering a knot to be a double knot as we saw in Section 3.2. Hence
the desired deficient splines of degree 2 can be derived from those used
in Section 3.1 by permitting two knots to become coincident. However
we prefer to derive these B-splines directly. Two cets of such deficient
splines are possible.

As in Section 3.1 we assume that the knots are strintly monotone
increasing and we again choose N1l =0 , N2 = n . Tae specified data

are denoted by (xi,yi,yi) , 1=0,1,...,n.
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We denote a B-spline of one set by Mi(x) and require that it
vanish outside the in'terval (xi-l’xi+l) . Mi(x) and Mi(x) should

be contimious at X1 and X1 but continuity is required at Xy

only for Mi(x) and not for Mi(x) + As usual, let hy =X, -X
t = x-xi_l y U = x-xi . Then
(5.1) M(x):At2 x <x 7o
: i i-1 - i
=B(u-h)2 x, <X <x
i 1= i+1
Hence also
= " =
(5.2) Mi(x) = 2At Mi(x) = 24 Xy SX <%
= EB(u-hi) = 2B Xy <x< X401
Imposing the continuity requirement st xi yields
2 2
Ahi-l = Bhi .

(5.3) A= B = _%. .
n h
1-1 1

We denote a B-spline of the other set by Ni(x) and require that
it vanish outside the interval (xi’xi+l) . Ni(x) should be contimuous

at X5 X but no continuity is required for the derivative. We can

i+l
clearly choose

2
(5.4) Ni(x) = —he— u(hi-u) X SX <X
i
with u = x-xi « Then also
(5.5) N} (x) -—2-(11 - 2u) N"(x) .- X, <X<X
‘ i T4 i(x) = e g = 141
i i



Our choice of coefficients implies the following two relations

(5.6) I Mi(x)f"'(x) ax = - I Mi(x)f"(x)dx
= 2 f(xi) -f(xi-l) - ( 1 . i)ft (x,) + f(xi+l) -f(xi)
ns ) B By i n
(5.7) J N (x)ax = - [ Nj(x)£(x)
£ (x,) 2 £1(%4,1)
= 2 - —= (f -f + —
T () He)

The basis for the third derivatives of the deficient quiatic

natural splines is the set of B-splines

{No(x) :Ml(x) ,Nl(X) :Mg(x) ,NE(X) PR :%_1(1‘) ’Nn—l(x) }

We need the inner products of these basis functions. We easily find that

(5.8) ao-j: [Mi(x)]edx = 6(n,_;+h) 1 =1,2,...,n-1
(5.9) Bo_j: [Ni(x)]edx = b, | i=01,...,n-1
(5.10) Bo-j‘: N, (M, (x)ax = 20, i=0,1,...5n=2
(5.11) 50_1‘: N, (x)M; (x)ax = b, i=12...,n-1
(5.12) 50_]’: Mi(x)Mi+l(x)dx =h; i=12...,0n-2 .

211 the other inner products are zero.
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Now the third derivative S"'(x) can be expressed in terms of
the basis functions:
n-1 n-1
(5.3)  s"(x) =60 Z BM(x) + Z 7N, (x)
3= J=0
If we multiply equation (5.13) by %Mi(x) and %Ni(x) respectively and
integrate we obtain the well-corditlioned system of linear equations for

the determination of BJ and 7,j :

( n-1 o= n-l e
Z (20 [ MM (8R4 T (50 ] My 00N (1207,
- % _L M, (x)8"" (x)ax , 1 =1,2,...,n-1
(5.1%) *
n=-1 o n-1 ‘Q
Z (o [ m(xu(x)axe, + JZ;‘O (30 [ GOn(x)ax)zy
L = 12" -I: “1(x)s"'(x)dx » 1=0,1,...,n-1

This is a positive definite pentadiagonel system of linear equations.
The values of the non-zero coefficients are given by equations (5.8)-(5.12)
and the right hand sides by equations (5.6) and (5.7). The system can be

written in the form



where
a = 6(hi_l+ h)
ei = hhi ’
£y =2h
81 - 5h1 )
¥y, -y
i vi-1 1 1
bi— 5 - (hi-l'l'iq)yi'f
1-1
N Y
-1 __2 - i+l
¢y = 2 2 (Vyeg=¥4) *+ 2
i i 1

21

-pe T -
70
41
P2
72 =
By Bs
f’3 0 75
L L } .
. L) L] .
hn--2 fn--2 dn-l €n-1 Bn-l
0 €n-1 n-1 "n-1
-l b J =
1 = 1,2’00.,!’.-1
i-= 0,1,---,!1-1
i = 0,1,...,!1-2
i = l,2,...,n-l .
Yy =Y.
21, 1-132,..,00
h:L

’ 1 =0,1,---,n-1 .

n-1

n-1




This system of equations can be solved for the B j and 7 3 by
using Gaussian elimination to reduce the matrix of coefficients to upper
triangular form. This is conveniently done by annihilating the elements
below the principal diagonal in two rows at & time. Note that the gi
and h, are never éha.nged. We use 4! , ei, fi and 4t , et , £Y to

i i i i i

denote the new values of di ) & fi as they are formed by the
annihilation of hi-l R fi-l and gi in the i-th pair of rows. Before
the elimination process operates on the i-th pair of rows the form of

the system is

p— - o - p— -~
1" | ] "
eo f'o 0 70 co

. . . O . .
i-1 811 By Bi1 bja1
" " - "
0 ey fia 741 cy-1
by %50 44 & by Py by
O 0 gi e1 fi o) 71 ci
L ‘ ' L - e

The equations for the annihilation of h are

i-1

uo= by ,/4f

* = -

£l = fio-wy8i
4 = dy-wh
by = b -wby .
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Those for the annihilation of fi-l are

-— "
ve = fia/ef
wo_ - '
di = di-vifi,
"o o_ - "
by = Bi-ViCia

and those for the annihilation of g:L are

wi o= g /a4y
®f = &5 "V¥i8
£l = £ -wh
c;{ = ci-wibi .

Note that f:'L-l need not be calculated because

i}

1o = Tiam(yg/df ey q = £y g-(gy /a5 )y, = T3

For the first step of the elimination (operating on the 2nd and >rd

rows) the above formulas are valid if we choose =0 .

ot 1

When the coefficlents Bj and 7, have been found, S5"'(x) 1is

J
given by equation (5.13). We want to find the coefficients of S(x) as

expressed in equation (2.1) with B Clearly

1 =95 ¢
(5.15) Dy = 8"'(x,+0)/6 , E, = §""(x,+0)/24 , F, = s"(xi+o)/120 ,

i=01...5n=1

But because Mj(x) vanishes outside the interval (xj-l’x;j+1) and

Nj(x) vanishes outside the interval (xj,x §"'(x) can be

j+l) b4

represented in the interval [xi,x ) in the very simple form

i+l



(5'16) % 8" (Xi"’t) = BiMi(xi+t) + Bi+lui+l(xi+t) + 71N1(xi+t) 1

0O<t<h , i=12...,n2

(5:17) g5 S™(xy+t) =BMj (X +) + B, Mi ) (x,+8) +7,N] (x,+t)

1 v " " "
(5.18) % S (xi+t) = BiMi(xiH‘.) + Bi+1M1+l(xi+t) +71Ni(xi+t) .

On the right-hand sides of equations (5.16)-(5.18) we insert the values

from equations (5.1)-(5.3). I[f we make use of (5.15) we find that

N
. Dy
E Y. =B
i i i
(5.20) 5 = hi > i=1212,...,n-2
B, -27.+B
i i i+l
(5.21) Fi = __}:5_
i J

These formulas can also be used for i = 0, n-1 by adding the convention
that eo=¢3n=o .

Next we want to find the values of the C We can write S(x)

i
in the form (2.1) for x, <x < "i+1 . Then we can use either
S(x1+l) = Vg4 OF S'(xi+l) = ¥i4y - We prefer the latter because the

resulting formula has less danger of cancellation. We have at once

yi..-Y;
I L2 B4
2Ci = =% BDih

LE, bE - 5Fin5 .
1

A e | i

2k



If we substitute from equations (5.19)-(5.21) this becomes

Vi1~ Yy
(5.22) x, = L}lli—l-hi(ISBilr 107, +584,9) -

This formula can be used for i = 0,1,...,n=1 but not for i =n .

In order to get C_ = we could write the polynamial for 8(x) in
(xn_l,xn) in powers of x-x  and then use S'(xn_l) = y}_, - However,
it is more convenient to obtain ancther formula for Ci valid for

i =1,2,...,n by writing the polynomial for S(x) in (x in

1-17%]
powers of x-x, and then using S'(xi_l) =yj_y - We have

S(x) = y;+yjt+ c*t2+prt” 4

+E*t +F')(>t5 b 4 <x <
i i i i x

i-1 =1

with t = x-xi . Then

* ¥* »*
D, = §"'(x,-0)/6 , E, =8§"(x,-0)/2k , F, = s"(xi-o)/leo s

i = 1,2’--.’11

Proceeding as in the derivation of (5.19)-(5.21) we find that

D, A
= =8
o = B
E B, -7
?i __.—.ih i-l > i = 2’5, . .-,n-l .
1-1
x Py -2y 4ty
F =
i =
1-1 )

These formulas can also be used for 1 = 1, n by adding the convention

BO=Bn=O'
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If we now use the relation S'(xi_l) =Y¥j_; » ¥e find

* ¥i-¥i.a * * 0 * 3
x, = ns + 3D;h, ) -MERY L+ 5FRY -
* * * '
Substituting the above values for Di ’ Ei ’ Fi yields
* ¥i=¥ig
(5.23) eci = hi_l(SBi_1+ 107i_l+ 155i) .

i-1l

This formula can be used for 1 = 1,2,...,n but not 1 =0 .

n

Since 8"(x) is continuous for x =X i=12,...,nl1l,

i )
formulas (5.22) and (5.23) must yield the same values for these values

of i . Weuse (5.23) only for i =n .

6. Tests

These procedures have been tested in Algol 60 on the Telefunken TR-4LO
computer at the Leibniz Rechenzentrum of the Bavarian Academy of Sciences,
Munich, and in Algol W on the IBM 360/67 at the Stanford Center for
Information Processing. The latter tests included timing tests of the
procedures with the number of knots N = N2-N1l+1 ranging up to 1000 .
The time was found to be approximately proportional to the number N of
knots. The time T 1in seconds for the execution of the procedure
QUINAT was found to be approximately T = .00212N whereas for the
procedure NATSPFLINE of Algorithm 72 [5] with m = 3 it was found that
T = .0132UN or over six times as great. For the procedure QUINEQ the
time was approximately T = .00073N whereas for the procedure NATSPLINEEQ

of Algorithm 472 with m = 3 it was T = .0OL1ON or nearly six times
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as great. For the procedure QUINDF the time was approximately

T = .0011éN whereas for the procedure QUINAT with 2N knots, consecu-
tive knots being equal in pairs, the time was T = .00360N or over three
times as great. Moreover, in order to compute the same results the
procedure QUINAT requires approximately 75 per cent more storage for
the arrays used than does the procedure QUINDF. Note also that from
the above formula for the time required by the procedure QUINAT, the
time for 2N distinct knots would be T = .00k24N which can be
compared with T = .00360N given above for N pairs of equal knots.
The reduction for the case of double knots probably occurs because some
calculations are omitted when knots are coincident.

These timing comparisons show that it is definitely advantageous
to have these special procedures for the quintic natural spline instead
of using the general cases given in Algorithm 472 with m =3 .

Tests of the accuracy and correctness of the coefficients computed
by the procedures QUINAT, QUINEQ and QUINDF were carrled out as
described in Algorithm L72 [5]. Table 3 shows the results of a typical
run using QUINAT for 5 equidistant points. The‘ first line of each box
gives the tabulated quantlities at the given value of x which is the
left-hand endpoint of the subinterval and the second line of the box
gives the tabulated quantities at the right-hand endpoint of the same
subinterval. The close agreement of the quantities S(x) , S'(x) ,
s"(x)/2 , 8"'(x)/6 and S""(x)/2h shows that the quintic spline
function and its derivatives satisfy the required continuity conditions.
This is a good indication of the correctness of the results. Almost

identical results were cbteined from the same data using QUINBEG. The



g2

x s(x) St (x) s"(x)/2 s"' (x)/6 gwe(xy/eh | sV(x)/120
1.000000 | 1.000000 -3.199998 2.299998 0 0 =0.09999990
0 0.8999977 1.299998 | -0.9999990 -0.4999995 | -0.09999990
2.000000 | © . 0.8999997 1.299999 | -0.9999996 -0.4999995 0.2999997
1.000000 ;.9073&9' -06 | -1.699997 L, 7683721 =07 0.9999990 0.2999997
3.000000 | 1.000000 5.6624417 07 | -1.699999 | -5.960L6kL! 07 $.9999990 | -0.2999997
5.364418'-07 | -0.9000010 1.299996 | 0.9999983 -0.4999992 | -0.2999997
4.000000 | © -0.8999985 1.299998 | 0.9999985 -0.4999992 |  0.09999985
0.9999982 3.19999k 2.299995 0 0 0.09999985
5.000000 | 1.000000
Table 3. Quintic Spline. 5 BEquidistant Knots. Coefficlents calculated by QUINAT.

(Machine precision approximately 7 decimal digits.)




procedures NATSPLINE and NATSPLINEBR of Algorithm 472 also produced
essentially the same results.

Table 4 shows the results of a typical run using QUINDF for 5
nonequidistant points. The values of the function and its first
derivatives were specified and the results are given in the same
format as in Table 3. Note that the fourth and fifth derivatives are
now discontinuous. Essentially the same results were obtained by using

QUINAT with 10 knots, equal in pairs.



o¢

x S(x) s*(x) s"(x)/2 s"* (x)/6 s"n(x) /24 8'(x)/120
-3.000000 7 000000 2.000000 -6.106372 0 2.956281 =0.7145936
11.00002 15.00002 7.674892 -k.933491 -4 .189653 -0.714593%6
=1.000000 11.00000 15.00000 7.674872 -4.932500 -8.157616 5.416246
26.00C00 10.00001 -1.908858 16.59850 18.92361 5.4162L6
C 26.00000 10.00000 ~1.908856 16.598L8 -9.059000 1.246089
55.99988 -27.00012 -5.26L510 20.038L7 9.632335 1.246089
3.000000 56.00000 -27 .00000 -5.264Lk4s5 20.03851 -21.28369 6.509629
29.00002 -29.99995 -T.754762 4.005432' -05 11.26L45 6.509629
L..000000 29.00000 «30.00000
Table L. Quintic Spline. 5 nonequidistant knots. Values and first derivatives

specified.

Coefficients calculated by QUINDF.

approximately 7 decimal digits.)

(Machine precision




(1)

(2]

(3]

(4]

(5]

(6]

References

Anselone, P. M. and Laurent, P. J., "A general method for the
construction of interpolating and smoothing spline functions,"
Numer. Math. 12 (1968), 66-82.

Curry, H. B. and Schoenberg, I. J., "On PSlya frequency functions.
IV. The fundamental spline functions and their limits,"” J. An se
Math. 17 (1966), 71-107.

Greville, T. N. E., "Spline functions, interpolation and numerical
quadrature,” in Mathematical Methods for Digital Computers, vol. II.
A. Ralston and H. S. Wilf (Eds.), Wiley, New York, 1967.

Greville, T. N. E., "Introductlion to spline functions," in Theory
and Applications of Spline Functions. T. N. E. Greville (Ed.),
Academic Press, New York, 1969, 1-35. (Pub. No. 22, Mathematics
Research Center, U. S. Army, University of Wisconsin.)

Herriot, John G. and Reinsch, Christian H., "Algorithm 472.
Procedures for natural spline interpolation," Comm. ACM 16 (1973),
763-768.

Schoenberg, I. J., "On interpolation by spline functions and its
minimal properties,” in On Approximation Theory. Proceedings of
the Conference at Oberwolfach, 1963. P. L. Butzer and J. Korevear
(Eds.), Birkhaiiser Verlag, Basel, 196L, 109-129.

31



APPENDIX I

Algol 60 procedure QUINAT

procedure QUINAT(N1,N2) data:(x,y) result:(B,C,D,E,F);
value Nl,Na, integer N1,N2; array x,y,B,C,D,E,F;

comment QUINAT computes the coefficients of a quintic natural spline
S(x) interpolating the ordinates y{i] &t points x[i], 1 = N1 through
N2. For xx in [x[1],x[i+1]) the value of the spline function S(xx)
is given by the fifth degree polynomial:
8(xx) = ((((F[i]xt + E[1])xt + D[1])xt + C[1])xt + Bl1])xt + y{i]
with t = xx - x[1].
Input:

N1,N2 subscript of first and last data poii\t respectively, it is
required that N2 > N1 + 1,

X,y[N1:N2] arrays with x[i] as abscissa and y[i] as ordinate of
i-th data point. The elements of the array x must be strictly
monotone increasing (but see below for exceptions to this).

Output:

B,C,D,E,F[N1:N2] arrays collecting the coefficients of the quintic
natural spline S(xx) as deseribed above. Specifically
B[1] = 8'(x[1]), cl1] = s"(x[1])/2, D[1] = 8"'(x[1])/6,
E[1] = s""(x[1])/24, F[i] = s¥(x[4]+0)/120. F[N2] is neither
used nor altered. The arrays B,C,D,E,F must always be distinct.

Options: )

1. The requirement that the elements of the array x be strictly
monotone increasing can be relaxed to allow two or three consecutive
abscissas to be equal and then specifying values of the first and
second derivatives of the spline function at some of the
interpolating points. Specifically
12 x[J] = x[J+1] then S(x[J]) = y[3] and 8*(x[J]) = ylI+1],
1f x[3] = x[j+1] = x[j+2] then in addition 8"(x[j]) = yl[J+2].
Note that S""(x) is discontinuous at a double knot and in
addition S"'(x) is discontinuous at & triple knot. At a double
knot, x{J] = x[j+1], the output coefficients bave the following
values:
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B{J] = s*'(x[3]) = B{j+1]
clJ] = s"(xl31)/2 = C[J+1]
D(J] = s" (x[31)/6 = D[3+1]
E[J] = s""(x[j]-0)/2k E[J+1] = S""(x[]]}+0)/2h
F[3) = 8V(x{3]-0)/3ee F[4+1] = 8¥(x[j]+0)/120

The representation of S(xx) remains valid in all intervals
provided the redefinition y(j+1l] := y[j] is made immedistely
after the call of the procedure QUINAT. At a triple Imot,
x[j] = x{j+1] = x[j+2], the output coefficients have the
following values:

Bl3] = s'(x{J]) = B[j+1] = B[j+2]
cly] = s"(xliD/2 = C[3+1] = cj+2]
D[3] = s"'(x[j1-0)/6  DI(j+1] =0 n[j+2] = s"*(x[j1+0)/6
E[(§] = s""(x[j]-0)/2k E[3+1] = O E(J+2] = s""(x[j]+0)/24
Fl3] = 8¥(x[j]-0)/120 F[j*+l] =0 Fly+2] = 8¥(x[31+0)/120

The representation of S{xx) remains valid in all intervals
provided the redefinition y[j+2] := y{j+1] := y[j] is made
immediately after the call of the procedure QUINAT.
2. The array x may be monotone decreasing instead of increasing;
if N2 > N1 + 1 then
begin
integer i,m;
real bl,p,pq,paqr,pr,v2,p3,q,97,92,93, r,r2,8,t,u,v;
camment Coefficients of a positive definite, pentadiagonal matrix
stored in D,E,F[N1+1:N2-2];
m = N2 - 23
q ¢= x[N1+1] - x[N1]; r := x[N1+2] - x[N1+1];
Q2 :=gxq; r2 1= rxr; qr :=q + r;
D[N1] := E[N1] := 0.0;
D[N1+1] := if q = O then 0.0 else 6.0xqxq2/(qrxar);
for 1 := N1+ 1 step 1 until m do
begin
p t=q; q 1= r; r := x[i+2] - x[1+1];
P2 :=q2; Q2 :=1r2; r2 = rxr; pq :=qr; qr :=q + r;
if q = O then D[i+1] := E[1] := Fli-1] := 0.0

else
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begin
Q> := q2xq; pr := pXr; paqr := pqxqr;
D(i+1] := 6.0xq3%/(qrxar);
D{1] :=D[1i] + (q+q)x(15.0xprxpr + (p+r)xgx(20.0xpr + 7.0xq2)
+ q2x(8.0x(p2 + r2) + 21.0xpr + q2 + q2))/(pagrxpaar) ;
D{i-1] := D[1i-1] + 6.0xa3/(paxpa);
El1] := q2x(pxgr + 3.0xpax(qr+r+r))/(pagrxqr);
E{1-1] := B{4-1] + g2x(rxpa + 3-Oxarx(pa+p+p))/(paqrxra);
F(i-1] := q3/paqr
end q < >0
end i;
if r #£ 0.0 then D[(m] := D[m] + 6.0xrxr2/(qrxqr);
comment First and second order divided differences of the given
function values stored in B[N1+1l:N2] and C[N1+2:N2] respectively.
Take care of double and triple knots;
s := y[N1];
for 1 := N1+ 1 step 1 until N2 do
if x[i] = x[1-1] then B[i] := y[i]
else
begin
B{1] := (y[i] -8)/(x[1] - x[1-1]);
s :=yli]
end 1;
for 1 := Nl + 2 step 1 until N2 do
if x[(1) = x[1-2] then
begin C[4] := y[1]x0.5; B[4] := B{i-1] end
else C[1] := (B[1] - B[1-1))/(x[1] - x[1-2]);
comment Solve the linear system with C[i+2] - C[i+l] as right-hand side;
if m > N1 then
begin
p := C[N1] := E[m] := FIN1] := F{m-1] := F[m] := 0.0;
C[N1+1] := C[N1+3] - C[N1+2]; D[N1+1] := 1.0/D[N1+1)
end m > N1; '
for 1 := N1+ 2 step 1 until m do
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begin
q := D{1-1]xB[1-1];
D(1] := 1.0/(D[1] - pxFli-2] - qxE[1-1]);
E(1] := E(1] - qxF[1-1];
Cl1] :=Ccl1+2] - C[i+1] - pxC[1-2] - qxC[i-1];
P := D[i-1]xF[1-1)
end 1;
m := N1+ 1; C[N2-1] := C[N2] := 0.0;
for i := N2 - 2 step -1 until m do_
Cli] := (C[1] - E[1]xC4+1] - Fli]xc[1+2])xD(4];
camment Integrate the third derivative of S(x);
m :=N2 - 13

q := x[N1+1] - x[N1]; r := x[N1+2] - x[N1+1]; bl := B[N1+1l];

g3 :=gxgxq; 9qr :=q + r;
v :=1t := if qr = 0.0 then 0.0 else C[N1+1]/qr;
F[N1] := if q = 0.0 then 0.0 else v/q;
for i :=N1+ 1 step 1 until m do
begin
Pi=q5q =7T;
r :=if 1 = N2 - 1 then 0.0 else x[i+2] - x[1+1];
P> :=qd; @) :=qgxaxq; Pq :=gr; qr :=q + r;

8 :=t; t := if qr = 0.0 then 0.0 else (C[i+l] - C[i])/ar;

uss=v; vi=t - 8;
if pg = 0.0 then

begin C[i] := 0.5xy[i+1]; D[1i] := E[1] := F[4] := 0.0 end

else )

begin
F(1] := if q = 0.0 then F[i-1] else v/q;
E[1] := 5.0xs;
D[1] := 10.0x(c{i] - qxs);

C(1] :=Dlilx(p - q) + (B[i+1] - B[] + (u - E[1])xp3

- (v + E[1])xa3)/pa;
B[1] := (px(B[i+1] - wvxq3) + qx(B[1] - uxp3))/pq
- pxax(D[1] + E[1]x(q - P))
end pg < >0
end i;
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comment End points x[N1] and x[N2];
P := x[N1+1] - x[N1]; s := FI{N1]xpxpxp;
E[N1] := D[N1] := 0.0;
C[Nl] := C[N1+1l] - 10.0xs;
B[N1] := bl - (C[N1] + s)xp;
q := x[N2] -« x[N2-1]; t := F[N2-1]xaxaxq;
E[N2] := D[N2] := 0.0;
C[N2] := C[N2-1] + 10.0xt;
B[N2] := B{N2] + (C[N2] - t)xq
end QUINAT;
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AFPPENDIX I1

!

Algol 60 procedure QUINEQ

procedure QUINBEQ(N1,N2) data:(y) result:(B,C,D,E,F);
value N1,N2; integer N1,N2; array y,B,C,D,E,F;
camment QUINEQ computes the coefficients of a quintic natural spline
S(x) interpolating the ordinates y[i] at equidistant points x[i],
i = N1 through N2. For xx in [x[1],x[i+1]) the value of the spline
function S(xx) is given by the £ifth degree polynomial:
S(xx) = ((((P[1]xt + E[1])xt + D[1])xt + Cl[i])xt + B{1])xt + yl1]
with t = (xx - x[1])/(x[i+1] - x[1]).
Input:‘
N1,N2 subscript of first and last data point respectively, it is
required that N2 > N1 + 1,
y[N1:N2] the given function values (ordinates).
Output:
B,C,D,E,F[N1:N2] arrays collecting the coefficients of the quintic
natural spline S{xx) as described above. Specifically
Bli] = 8'(x[1]), (4] = s"(x[1])/2, D[] = 8" (x[11)/6,
E[1] = s""(x[1])/2h, F(1] = sV(x[1]+0)/120. F([N2] is neither
used nor altered. The arrays y,B,C,D must always be distinct.
If E and F are not wanted, the call QUINEQ(N1,N2,y¥,B,C,D,D,D)
may be used to save storage locations;
1f N2 > N1 + 1 then
begln
integer i,n;
real p,q,r;s,t,u,v;
t=N2 «3; pi=qz:=r :=38
for 1 := N1 step 1 wntil n do
begin
u 3= pxr; B[i] := 1,0/(66.0 - uxr - a);
C[1] :=r :=26.0 - u;
D[1] := y[1+3] - 3.0x(y[1+2] - y[i+1]) - y[i] - uxs - gxt;
g :=p; P :=B[i)s ¢t := 8; s :=D[1)
end 1;
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D[N1+1] := D[N1+2] := 0.0;
for 1 := n step -1 wntil N1 do
Dfi] := (DI1}) -~ c[i)xp[i+1] - D[1+2])xBi1];
n:=N2 -1;q :=0.03 r :=t :=v :=D[N1];
for i := N1 + 1 step 1 until n do
begin
P:=q;q:
Fli] :=t :=p-q -q + r;
El1) :=u := 5.0x(-p + Q)3
D[i] := 20.0x(p + q);
Cli]} := O.5x(yli+1] + yli-1] + 5 = t) - y[i] - u;
Bl1i] := 0.5x(y[4+1] - y[i-1] - s - t) = D[1i]
end 1;
FIN1] := v; E[N1] := E[N2] := D[N1] := D[N2] := 0.0;
C[N1] := C[N2+1]) = 10.0xv; C[N2] := C[N2-1] + 10.0xt;
B(N1] := y(N1+1] - y[N1] - CIN1] ~ v;
B[N2] := y[N2] - y[N2-1] + C[N2] - ¢
end QUINEQ;

[

r; r :=D[i]; 8 := 13



APPENDIX IIT

Algol 60 procedure QUINDF

procedure QUINDF(N1,N2) data:(x,y,yp) result:(C,D,E,F);
value N1,N2; integer N1,N2; array x,y,yp,C,D,E,F;

comment QUINDF camputes the coefficients of a quintic natural spline
S(x) for which the ordinates y[i] and the first derivatives yp(i]
are specified at points x[1], 1 = N1 through N2. For xx in
{x{1],x[4+1]) the value of the spline function S(xx) is given by
the fifth degree polynamial:
s(xx) = (({((Fli)xt + E[1])xt + D[i])xt + C[1])xt + ypl1])xt + yl1]
with t = xx - x[1i].
Input:

N1,N2 subscript of first and last data point respectively, it is
required that N2 > N1,

x,y,yp[N1:N2) arrays with x[1] as abscissa, y[i] as ordinate and
ypli)] as first derivative at the i-th data point. The
elements of the array x must be strictly monotone increasing
or decreasing.

Output:

C,D,E,F[N1:N2] arrays collecting the coefficients of the quintic
natural spline S(xx) as described above. E[N2] and F{N2] are
neither used nor altered. The arrays C,D,E,F must always be
distinct;

if N2 > N1 then

begin
integer i,ml,m2;
real g,h,hh,Dp,Pp,q,9q,t,u,V,W;
array B(N1:N2];
ml := N1+ 1; m2 := N2 - 1;
h := x[ml] - x[N1]; E[N1] := 4.0xh; F[N1] := 3.0xh;
u = 0.0; v 2= 0.753
p := (ylml) - y[N1))/(bxh); qQ := ypiml])/n;
B[N1] := 0.0; C[N1] :=q - p - p + yp(N1]/h;
for i := ml step 1 until m2 do
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begin
hh := h; b := x{1+1l] - x[1];
PP = p; p := (yli+l) - y[1])/(bxh);
qq :=q; q := ypli+1l]/n; t := yp(1]/h;
D[1] := 6.0x{bh + h) - uyhh - vxF{i-1];
Bl1] :=p -t - gq + pp - uxB[1-1] - vC[i-1];
g := 3.0xh; w :=g/D[i];
E[i] 2= 4.0xh - wxg; F[1] := g - wxh;
Cli] :=q -p -p+ t - wxB[1];
u := h/D{1); v := Fl1]/E[1]
end i;
B(N2] := 0.0; t :=C[m2] := C{m2])/E(m2];
for i := m2 step -1 until ml do
begin
Bl1] := (B[1] - (3.0xc[4] + Bli+1))x(x{3+1] - x[1]))/D{1];
C[i-1] := (C[i-1] - F[4-1]xB[1])/E[1-1]

end 1;
for i := N1 step 1 until m2 do
begin

h := x[4+1]} - x[1];
F[1] := (B[4+1] - C[4] - C[1] + B[1])/(hxb);
E[1] := 5.0x(c[4] - B[1])/h;
D[i] := 10.0xB[1);
C1] := 0.5x(ypli+1] - yp(11)/h - (T.5xBl1] + 5.06C[1] + 2.5xB[1+1])xh
end i; '
D[N2] := 0.0;
cx2] := 0.5x(yp(N2] - yp(m2])/nh + 2.5x(B(m2] + ¢t + t)xn
end QUINDF;



