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Abstract 

The method ot conjupte gradientl tor 801v1q .,.at .. ot l1near 

equatiODs With a IJIII\etric positive definite matrix A 11 siva u a 

J.osical developaent ot the LancZOI aJ.aorit1a tor tl'1~z1Ds A. 

Thi8 approach 8U88eats maerical aJ.col'1tbu tar 101Y1DS IUCh qst_ 

whell A is .,..etrie but iD4etmite. !be DW actboda CaD be applle4 

to llDear leut sq_rel probleu vtth or V1tboat ccaatra1Dt" with· 

.1IIpllt1eatiOl18 whflll there are DO e~.. !'beIe aethocle baft 

iDclu4ed. 
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1. Introductl00 

Here SCIIe aeth0d8 are cClrUIidered. tor solVing 

(1.1) Ax - b 

wbIIl the 11 X 11 real. a,.etric matrix A 1a large and JJp&1'ae. The 

lpeCial cue that arise_ vben a J.1Ilear least sqll&rea probl_ is trana­

tomell to a larller prob1_ ot the form (1.1) i. alao fIXW'ned. Unlike 

... trix factorization, the .etboda given here tor solv1l1g (1.1) rep.rd A 

&8 1111 opeator IUd oaq require _trix-nctor products, buU.dins up x 

as a ccab1D&tiCX1 ot vectors derived. frail a X17l.oY sequence. S<ae badc 

tb.eoI7 tor d1t1'ereat ae:tho4a ot thb tn»e ill g1 nil ill SectiOll 2. 

All -.ple o~ tb1._ 1i7Pe 1_ the lleth04 ot caajuptll! 8ftd1,ent- [2] I 

wbich i. ott_ uetul tor IOlriDa such probJ..II vb.a1 A i. polit1.,.. 

4eftD1te [11]. Al.thnuab ro.md1ns error. cau8e the coajupte sn41errt.1 

Mthocl to UpI.rt a1CD1ftcantq tr.a ita ia..:L path, 1t caD still be ft1:'T 

.u.cti va __ rtpI'CIecl U 1111 it ... ti ve aethocl, 11114 the 80bzticlft CtID ott .. 

'be t0aD4 to tale required accunq ill tar 1 .. _ tbaft 11 I'tepa. 

the IUtbOcl 4enlope4 b7 Lmc~ (II] tor tri~1Ds A is 

~ rel.ate4 to tile cOD.1uaate sn41errt.- aetbo4, &I 18 expla1De4 ill 

[5] .. l,), .. the :round1n, error ~i .. ot both ~ an 

c_.q nlate4. A 4HcriptiCll ot the I.-caoa proc ... is pYal 111 
, 

1eGt1ma " u4 the II8t.bo4 ot CCIljuaate &n41tDta 18 clenl.ope4 f'I'aI it SA 

8ectlca a.. 'IId._ pn. ccwpztatiaaal iIlatPts iIlto the aetbo4, ua4 J....sa 

to two JaW &l&ori:tlaa tbat ~ be u-ed when A baa both piti .. ua4 

...,..tift eiaeftJDeai the_e are de_cribell SA Sectlon 5 mel 6. !he aetbocl 

1n lect1C1l 6 eM &lIo be used it A is s1Dplar u4 (1.1) 18 DOt a 

a.nlDpI4 ill 8ectiOD 7. 
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When linear least squares problema are plt 111 tbe tona (1.1), .. 

in equation (8.2), the s~etr1c matriX A v1ll be :lII4eftD1te with acae 

zero sub-blocka. fto.1s is true for UDcOD8'trainecl probl_ [12], u4 

alao for problema with lin .. equal1ty constrainte [1]. If th .. e probl .. 

are large and sparse then tbe neW .ethodII gi'I'tID here CUl be uae4. liheD 

there are no constra1l1t8 the aJ.soritlaai CaD be d.pUtted to take 

adVU1tqe ot the 8J)eCia1 torm ot A, sav1D8 storace 8Dd ca.pztatiOll. 

'!'he ~ttlll 111 Section 5 i8 ext4Dcled to tUe W' 1Dto accOUDt 111 

Section 8, vher,_ tbe resulting aJ.&oritl:a i8 IhoIm. to be c~~ related 

to that aiY'eD 111 [10, Section ~]. 

Cc.plt&t1on&l result. tor the new &J&oritl-.. are 41acuee4 in 

Sect10ll 9, 1Dd1cat1D8 that they give ACcurate reaulte; bat wbUe the 

aetbodl ca otteD tue IlUCb lui tban nat., tbue are ............ 

thq take • great deal. lIOl'e. A l'OUD"'~na error ~s.. of taw.. 

&J.aor1tllu will. be given 111 • later report. 

Pol'tI'8ll IlUbrcut1D.. tor the nw aet!lo4 in Secttaa , .a4 ita 

ext_ion 'to tbe least squ&l"ea probJ.. 1D. 88CtiaD 8 an si~ 1D the 

Ap,peDdix. 

The .eth0d8 BiveD bere for .,..etric 1DdetSJdt. ~_ waal4 

&JIIP8U' to be superior to tboae ___ ed bJ' Lue1Ntrpr (1], (8), .. 

tile latter pre.eDt 80M 41tt1cult .. ettl.e4 QUft1Clll8 __ JaRS­

pn.ctlcal. &ppl.1catiOll i. COll.14eH4. fteB. JIU1;imI'- JII'&1b'.' cIo ~ 

ari.e bere, eiDee tbe 4e'V'el.opact ot th. aJaaritllle fIoca u.. t..c_ 

proces. al.l.on a &ood ~ ot 10Iaeir -.r1ca1 ...,..nu., ... 
ao IClM po.aible maer1cal 1Detabiliti_ .... "- &.old.e4. 
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In the text u:p,per cue a:..a letter. dEote ... trice., lowv cue 

... 4eDote vector., Uld. lower cue Greek deDote lCal.aI'.. fte 

acqliiou are c 8D4 • uee! to cImote coa1lle 8D4 .ine. fte 

.,abo1 11.11 cleDote. the 2-I101'Il ot a vector or II&triX. 



2. Ga1er&l !tI!C!)' 

G1WID the .et ot equ&tlou 

(2.1) r+Ax • b , Ar • 0 

where A iI a real D X D .,...tric _triz whicb ~ be both SD4et1Dite 

Ul4 11DsUlU', we will cou14er cc.plt1DC YV10ua apJItOXleetiCIM to x 

at the 1'ol'II. V."' Vt • [v1,v2,· •• ,vt ] , VbeI .. 'tM Vi an. linD .. 

at l4n-.rll' ~t vecton. In 1JU't1cul.v we wUllook tor 

IOlut10111 ~. V"'t whiCh 11ft 1tat1aMl7 ftlDM to 

(2.2) tt(7). (AV." - b)'.(AV." - b) 

.... I i. ICM 1) __ l'1c Mtr1X; tIaa tt(7) vUl be a __ of tM 

rea1da&l it I 1. p1t1ft 4etsD1te. •• tbat taat. 1a jQIt • tln:r-'laa1 

tool tbat vUl. 1-.1 to 41ftenat Mtbocla, .... tb&t I wU1 .. be 

NIIU1N4 a;pl.t.cltl¥. 

'1M faaatSal tt(7) b&I a 8t&t1GDU'J ~ at 7t 11 

(2.,) tiABl V"'t • ~Alb , 

tbat .1a 1t 

(2.~) V:A1rt. 0 , r t • b -~ , 

m1 tM .~ to be C0l1l148N4 wU1 .. ...t~ tl7 to 801ft (2.,). 

81aC. the .ecCDll 4er1ft'tift of tt(7) 1a "~Vt' 1t toUGn u.t 

1t AlA 11 p1t1 .... 4eftIdt. tbere 1. & 1miq1le 7 tbat _1n1wi_ 't(7) • 

It .AlA 1. CIIll¥ JM1ti ..... tU4eftD1t. 'tbm tbl .'nl-' dDI 7 18 DOt 

Dec_1&I'il¥ 1III1que, vId.le it AlA 1a 1ndeftD1te we CIIll¥ baft • 

ata'tiC111U7 pdlitot tt(7) • In ~ cue ~ 1a aD &RIIl'OKtM.t1GD to 

...... 1IOlIatiaD. in tile .... tbat tIae r.-idaal 1. reetI'1Cte4 to tIM mall 
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.,.e ~ yr~, ea4 V'll. em 'be eboem to reduce the dtMDa10D of th18 

.all .,.e nth 1Dcr-..las k. 

_ o1n1au ebo1ce toz' B 1.8 Aa tor ... tJltepr a, ad we rill 

netrict oanel. ... to tb1. cue. Chooa1llc a. -2 woW4 ... ct1&l.q 

nqaS.n a bcIIIrledce ot x OIl the npt baD4 .14e ot (2.,), ad tar 

• < -2 IOlYSDc (2.,) woal4 aJll*l' to reqmre at l.eut u .ch 

c ... (a). -~ t'U11Ic a - -1 waal4 11ft B - A ,bat to allow tor tM 

... .-.nl cue ot .4"1"'''' A, .. tan B. A - ,wbere A - 1.8 a 

.... U.ed. laftne ot A mch tbat J.A,- 1.8 the art;q • ., pro.1eatar 

.. ..0 I(A) , tile ~ ot A. With tIda cbo1ce .... .,. baa (2.1) 

-' (2.,) __ •• 

(2.5) , 

1IIdcIa .. WIt be .01"" ~ tor 7'11. ~. a ftl8I tar til' 1. 

__ . w. wUl caq ccaaiUr tbe cu. {I'. 0 , .0 tM Mtbo4 v1ll. 

_ .. UoMle it 1'. 0 or "'1 c a(A), 5.. 1, .. • ,'11. , -. tta.a 

(2.6) ~AY"k· V: b , ~ - V~'II. 
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Cu. (b). 1'ak1D& •• 0 givea D. I aDd. we caD 'dDt-,.. '1r~1 

bJ 801Y1D8 

(2.7) , 

when 'T ball baeD replaCed. bT u to aWid ccmfaa1cll Witb (2.6). 

1'Ur'tIle!IlOre, it T1, ... ,Tt 8pIl I(A) tt.. ~ i. the II1n1 .. 

lAD8th l.eut 1q1I&l'e. aollltloG ot (2.1). V. vUl call aetbc4a .... e4 

CID (2.7) -1" __ re.1dua1...tboU. A .,..ible cIaIU nth tbM. 1. 

tbat it A i.}IOO1"~ cClD41t1CM4 tor aohtt1~ ot eqaattau, ~ tIM 

cal4itica ot the probl..- (2.7) can be IIQCh won.. V&l..uM of • > 0 

waal4 1.-4 to .oft poQl'~ cca41t1Cl1le4 problAM .tUl, m1 Will DCJt be 
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,. The LaDcZOI vectors 

It the vectors v1' ••• ,vk in Section 2 are cClllE,Pl'ted by the Lanczos 

al&Oritml [ .. ], the lOIIle 1mport&nt and ec:ap1tat~ useful s1Japlifi­

cat10u reault. In part1cul.ar, algori tma£ arise wb1ch are useful tor 

larS. QU"I. _trices: tor example the method ot cOlljugate gradients. 

!he 1Ditl&l vector we wl1l use in the Lanezoa algorltla n1l be 

tbeI'e are 1nd1catlona tbat this choice, aDd po.s1b~ vl • Ab / \\AbU , 
are the 1IO.t c~t.l~ viable CD.S tor 101vtDg large prob __ ot 

the :tol'Il (2.1), Uld there i. &J.so l<De tbeoretic&l justification tor (,.1) 

but this bU DOt been .~ r1gorous~. It we bave lID init1&! approxi-.' '.. ~ 

.... leD ~ to x 1Ji (2.1) theJ1 we cbaDge the probla to 

IIDIl poceed .. beme. With the eboiee ot v1 in (,.1) ve restrict 

0UJ'.e1T81 to the c:ase ot r. 0 in Seet1cla 2, cue <a>, tbouih there 

ia 110 ncb re.tricticm GIl cue (b). 

A I&tlatactol7 cClllpltatioDal variaIrt ot the LllDCzoa aJaoritllll, [9], 

baa ... it. 3-th .tap, det1D1Ds vo. 0 , 

(,.2) CS3+1v3+1 • AV.1- a jVj -1S.1v.1-1 ' (J.1. ~AV.1 

with '3+1 ~ 0 choae so that \Iv 3+111 • 1. After the It-th atep 
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, 
T • k I 

The process v11l be tendnated at the first zero IS 3 I .0 t.rc. DOW OIl 

we cm aalUle tbat ~j" 0 I ;I. 1, ••• ,k • 

Prall (,.,) ID4 (,.1) we have v!AVk • Tit uul ~b • "le1 ' 

and with this choice of vector. in Sect1<l11 2(&) equation (2.6) becc:aea 

where tile su;perac1'1pt c '1n41cate. that it ta the 8OlutlOD that woald 

be obta1De4 WliDI the aetbod of conjupte "cra41enta, .. wUl DOW be 

aplaiDe4. 
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~. Derivation of the Conjugate Gradieats Method from the lADez08 Process 

'!he conjupte gn41IDt8 JDetbocl (2) CID be devel.oped in & stra1ght­

tonar4 ltMI1er trail the LaDczos process. The purpose of s1 v1Dg tbis 

4eYelopaeut here is to divide the conjugate gradients method into 

1eJU'&'te caIlpItationaJ. algorltbllB whose n'UlDerical. properties are more 

c~~ 'UIlderstood; this leads to BaDe new and usetul. methods. 

It A is positive definite then 80 1s Tk :: ~ A Vk in (3.4)" 

l1li4 heee the Choleaq tactorizatioo 

a1.te. Bere "It is d1agonal with positive el.C!II1ms and z.. is unit 

lDnr b1d1accm&l" and theae can be developed as k increases. 

~.~ "k in (3.4) chauges ~ with each increa.ae in k, 

l1li4 80 V-rk cumot be acCWllUlated as k increases. '!'hiB difficulty 

CIIIl be overccae if' we define Pk == ~ "k aDd Ck • Vkt:;.T 80 that (3.4) 

beac:a .. 

!be CO~8 01' C
k 

can ~ tound in ascending order by sol.ving 

(~.') ~C~ • ~ 

tor the rowa of C~, and since Ptt c~,n. be devel.oped smilAr:q trca (4.2), 

It tol.l.owe that ~. CttPt can be acCl.B1l&ted as the aJ.&or1tta progresses 

-.4 the colmlDB 01' Vk and Ck need not be kept once thq have been 

1IH4 in the LancZ08 algor1:tl:II and in taming ~. the colmDa 01' Ck 

are A-ccmjugate, BiDce 

, 

1.0 



and a comparison with [~) shows that this method is mathllllat1c&l.l.y 

equivalent to the method of conjugate gradients. The approach here is 

computationa.l.l.¥ a little different, for example involving UlUlecessary 

normalization of the Lanczos vectors, but the advantages are that it 

emphasizes how the method is based on the Lanczos al&or1tbm, with the 

eigenval.ues, and therefore the spectral condition Il1IIlber, of Tk 

approaching those of A as k increases. Furthermore the role ot the 

Cho1esky decanposit1on becomes apparent, with the subsequent need tor A 

to be positive definite to ensure numerical. stability. 

If A is an inde:f'1n1te syametric matr1X, tbm the factorization (4.1) 

CM still be tried, otten With success, but it does not always exist 

and can no u,nger be relied upon numer1caD~. 
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5. An A.l.&oritbm tor Indet1nite S;yDIIletnc spt ... 

The poall1ble failure o~ the method at cOlljupte gradientB 1D 

problema 1Dvolv1ng 1DdetJnite rJllllletric matriceB leaveB & Deed tor & 

maer1c~ st.able method based on the LanCZOB vectorB. Several such 

methods are possible, UBing V&r1rus stable factorizations of Tk 1D 

(:,.4), but the method. we found to be molt theoretic~ and ll\IIleric~ 

B&tiB1',y1Ds iB that baaed OIl the ortbogonal. f'a.c ... ..orization 

(5·1) 

with ~ lDnr triangular. The bar iB used to 1nd1c&te that ~ diUerB 

:t.rca the k x k 1..,1 ug part at ~ 1 in the (k, k) e1_ct ~. As 

be:tore J'k'1D (3.4) Deed not be cc:aputedj instead" it we define 

then (, ... ) beccae8 

aDd. it turns out CDce more that the Vi and Wi CaD be :tol'llled, used" 

Ul4 di.carded one by ODe. Tb1s gives math_tic&J.:q the sae solution 

u doe. cOIljupte gradient., but here the tactorizatiCD is maer1.c&lly 

atable even whel Tk i. indeftnite. 

'!'be taCtorizatiCD (5.1) 11 best obtained by & Bertes at orthClDDmaJ. 

.atrices Q.i,i+l each o~ which differs 1'ram the unit _trix ~ 1D the 

elaleats ~1" ~+1,i+1 - c1 = cos 91 , Q1,i+l· Qi+1,1 • si - Bin 91 • 

1'ImI 
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1-
1 

&2 "2 
(5.5) Tk

Q1,2 ••• Qk-1,k .. 
T 

TkQk -~ . I, &, '" .. 

where in the next step we cOlllpIte 

In the tollowiDg discussion we w1ll uae ~ to cIaIote ~ With 7 k 

replaced by i'k. Similarly, f'ol.l.ov1ng (5.2) ad (5.')' we ~1'1A. 

zk ;: ( ':x.' .•. , 'k'f and Wk· [ W l' ... , W:It) , where zk 1_ tOUDd. tl"Ca 

(5·7) ~zk = ~le1 ' 

80 tram (5.4) and (5.6) 

. , 
t1Da.1.ly traa (5.2) and the t01'll ot ~kt-l 1D (5.5) we baft 

The aIaoritbm deftned by (5.1) to (5.4) _boIll4 DOt 'be _1 __ e4 

cl1rect,q, since it is wutetal. to update ~ fIIl.q __ at. ill (5.4), 

1fbUe it ~ 18 8iJlaul.ar :in (5.4) thea ~ 18 UDIletlae4. I'ut.-4". 

8ee trca (5.5) and (5.6) that ~ 18 ncu,nplv 1t ~l" 0 ,80 ~ 

18 det1Ded in (5. 7), and rather thaD updat1q ~ 8IICIl at. we uplate 



(5·10) 

where L 1Dd.1catel ve are using ~ rather thaD ~. S1nce (5.4) 

MId. (5.10) mow that 

, 

we are ~ able to obta1n ~1 It it i8 needed. Becaue ~ baa 

better cCD41t1cm than ~,.01v1ng (5.7) wUl probab~ &180 sive 

Mtter _ .. lcal result. thaD 101vins (5.4). 

In th8Ol7 tbe LaDcSOl Iteration nll stop nth .cae ~kt1. 0 , 

IDCl ~ x: -~ -x , but 1n practice 1t 11 rare to have evm a TerJ 

.all ~1' UlCl IClM other atopp1ns criter1cm .aut be used; here x: 
IDCl ~ v1ll be d11'terlDt, &DIl the cme which siva the _"er residual. 

1IOUl4 ual.q be choam. x: 1. ottm a 1IUCb better ~t1cm to x 

tbm {, IDCl 10 (,.11) 1. uaual.:q carried out at the eDd ot the 

1'teNt!al; there 11 DO tacU1't7 tor do1Da th1. 1n the vera1cm ot our 

alp'ita. clMcribec1 bJ' Lancm [6], but 1t 11 1Dcla4e4 1n the Partrul 

Rbroatille S!IIIIQ 1n W. report. .ote tbat Wk !au ortballom&1 co],",, 

10 tbat 1f' 

~. x-~ , ~. x-~ 

thtI1 .s;, 'bat DOt ~,.uat decre&lle in 2-DOl'a 8ft17 atap. !laP { 

1. the but &ppl"aduticm to x ~ in the IpCe apumed. bF 

Y1, •• "YlE: ' aa4 1 • ..atCG1calq 1ncreu1Da ill .1&e fIIIIfIr7 .tap; 

aap.nat~:tb1l ll'IoCe 1. uaualq not as SOO4 Ul awzac'eet.1C11 apece 

.. tbat qane4 bJ v1'·· ·,yk-l,WIt • 

11l 



For the &l.8oritla ua1Dg (5.7) aDd (5.10) to " tMaNtl~ nll. 

def1ned it il atill necelaar:y to lhow tbat then 11 DO pdbWt7 o~ "'k 
being .'nga"v. Now trca the cl11CU111C11l tol.lDlr1Da ecpatSaa (2.5) 1114' 

the cho1ce ot v1 in (,.1), we lee that .~ 'bu_ OIl (,.a.) wUl .. 

oa4 be uaetul. wh. r. 0 in (2.1), ill wb1ch C3H (,.2) ..... t.Iat 

v 1 € a(A) , 1 - 1, .•• , k ; lNt the CIILq pl1bWq. ot ~ MiDI' 

amguJ.&r 11 it ~1 - 0 , 11v1D& AVk • Vk'k Sa (,.,), fI'cII vld.ob we 

lee tbat Tk cazmot be .1Dplar. We I" tt.. tbd "'k. ~ • 'k~ 
clIDDot be 11nS"lar 1D (5.7), U14 thvetor. ~. ~ -' __ w11 

4et1Ded at the ftDal atep, enD it '\..1. 0 • 

In ~ pn.ct1C&l. CCllpltat1C1l we 1f1ll. " Sat_eft_ Sa..ttarillc 

the aise cd the reddua1, unal.q to 4ect4e .... to~, 80 __ 

~ i_ DQDIiDplar we I .. tl"Oa (,.1), (,.a.), _ U.'), tIIIIt 

.ere 1kk 11 tbe k-th ela.t ot 7k. !be ftCtor Tit 11 DOt 

cl1rectq ava1lable Sa the CCIIpIt&t1C11l, 1Nt a1Dce 'k - ~ • ~ r.: ' 
equ.t101l (,. It.) 11 YH 

(5.]) ~7k - ~l~el 
_ trca tile lut e1.eat ot MCIl .ide 

(5.15) 7k,'\t. ~11112··· I k_1 

10 with (5.6) 

(5.16) r:. -(~111-2··· Ikl ck)vJtto1 
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t!IU III': II 1. 41nct~ aftUAble v1tlMMt ever fcmI1Dc ~, IDl 1n 

fIM:t it v1ll. be AoIm in a later J)&peI' tbat vbtll l"OUD41Dc eI'Z'Ol'. a:re 

~- tM nom of the ru14u&l uSDa (5.16) 18 within O(&)IIA1IIIx11 
of tM tne re.14u&l nom COI'I'HJXW'tng to the c~ed ~,where , 

~1f1 .. the relative ACcuracy ot tloat1Da-po1Dt cc:.prtat1cm. 

A .uptq l.cmCC' aJ.cebraic UD1pal.a;tlcm Don 'tbat 

(5.17) 1';. b -~ • 'lttl'lttlvltt1 - 'kt-2~vItt2 

1. 41nc'tl¥ a¥&1lable clmi.DC the cClllpltat1CD, aD4., be UHd to cleci4e 

1IMtibG' to alt with x: 01' ~. riM11;, 1t i. tbearet:l.ca1l;r 

sat...nillc to ccapIft th ... two ~icma to z. h'ca (5.11), 

(5.10), .. (5.8) it tol1on tat 

x: • ~+'k(ik/ck-·~ 

• 

... • iDe. t.rca (5.2) V:-Ittl. 0 ..... ~ (5.10) tb&t i llt1 .t 

~ an ~1, ao 1ib&t 

• 



Ve vUl DOW' __ ~ ... tbe 'D»llttcat1ou tbat re..ut vhc ". ue 

tbe I.-csoa vector. in the a1D.Sa\a re.14u&l. aetb04 4ucnbe4 SD 

Sect1cm 2 (b). rrc:a (,.,) we .ee tbat 

'!he _trtx 111 (6.~) 1. l*l'tadi .... J a4 at l.ut pitift • .u.n.u .... , 
aDd 10 COQl4 be 1I.e4 4iNctq 1D (2.1) with the ChDluq _ ..,.11~1cIl, 

in a YeZ7 .'JII1lar ........ to the aetba4 of ~e 1N4l-'. I'andII& 

the -.tnx :In (6.~) m4 thal factorislq waal4 1eK to - ~-IU'J' 

loa. ot acCQftC7, but tortuaatel¥ there 1 .... SII;pl.e IIJJ)II'OMh. 

It ". e&rrJ aut 'lobe ~' tac'to11.at1<a 1D (5.5) .. ue (5.6) 

"..ee that 

(6.,) , 

ao tbat we bave toM CboleIlI;r faCtor 41reCtq b'ca !)t. III (2.1) ... 

tile baw to aoly. 

(6.6) 

11 



10 tMn 1. -1n5-1 error in ecapztbJa xi ~ . Cl.e&rq ~ cmmot b. 

toaD4 UDtU th. aJ&or!:t.la 11 cc:apleted, but 1t 11 DOt r-.ll¥ needed; 

1Dat.-4 we tom 

... tit 11 Unlope4 in (6.7), 8D4 the nper~ .. ... tb1a 18 

the ftCtor vh1ch 81 .... th. -5n 5-..... 1clu&l. Ap1n It CD b .... that 

)InY1Gu ftC'tor8 n-.4 DOt b. hel4, ad tld.. 11 14e&l. tor ftr7 l.uIe 

..... ..tnc ... 

JIGte tIIa't INCh of tM 1ll-ccm4it1Cl1l1D8 ___ ned bT (2.7) .. 'b-. 

&wi4eI, but ~"'" It 1DCreU •• the C<ID41t1OD ,. ..... of ~ 

m (6.8) ~be. tbAt of A, 80 tllat if A 1. 1l1-cCDd1t1clDeI the 

~ of th. vectora ~ u1..1Dc m (6.8) caa14 be "IW7 lara. aD4 

8CIIft'b&t in error, 1.,,'5"1 to error. m ~ m (6.9). III fact tb1' 

OIl YW7 »OOl'q ccm4ltioaed problal, ..... DO ncll troablA baa bee 

toaD4 with the a.tboclin Sect10D 5. 1'h1I 1. pI'ObUq bee ... the 

ftCtQr. -if1 111 (5.10) are tbeoret1cal.l¥ ~_'. 

!b •• ;Sn;S-. l'U1dua1 .etb04 coal4 &lao ban bee cIa1.ftIl bT 

~1cJerJDa ~viDs ('.~) Wl1II& & Q1l factori.&atlOil of ,. Jar 81DC. 

t'.rca (5.1) ti· 'It • ~ri ' ('.~) beccae. 



(6.10) , 

l.a4a to 

(6.ll.) ~. V.x(~1DkQke1) 

III fIIat ~ caal4 be f.'oaD4 :t.rca (6.10), or na (6.11), but D8!.tM1" 

W&7 11 .. accurate u the aetbod. :bl Sect1aD 5, tar tile ... realOllI 

tMt tile II1IdIaa ral4u&l MtbOd 1~; napect. 

'!'he -1"'_ I'8Ildual. IMrtbc4 vU1 later be ntvn4 to .. aetbocl 

AD ... 
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7 • Sale Prot!!rt1el ot the M1niDNID Rea1dual Method 

'!'he IliJdJaum rel1du&l method described in 8ect1on 6 ~el not give 

a. accurate re8U1tl &I the method in Section 5 when the probl_ 11 

'Vf!a7 1ll-cCllld1t1oned, but it st1ll appears to give very good results in 

other cues. It CaD alao be used tor incona1Rtent equat10ns whereas 

the aethoc1 u described in Sect10n 5 cannot. rurthemore, &8 the ~ 

Wir we bave ot dec1ding whe to terminate the iteration is bJ teat1ns 

the .ize ot the rel1dual, the .ethod. which miDiJllizes th1a il 1i~ to 

take fewer iterat1on. thin other methoda. 1he other met.bods occu1ma11;y 

took" •• 1p1ftc8Dt l'UCentase .,re 1teratlO118 thIm the minBa. r~l1c1ual. 

IMtbod, all 110 it rill be ot mterest to exam,"e the latter fUrther. 

It i • .traishtto:rn.rci to caapa.re { With X:' tor (3.4) &Del (6.8) 

~'l~k - ~ 7k • ~lQkel ' 

10 v1th (6.5) Ul4 (6.6) 

.Gte that x: can eaa~ be obtained cblr1Ds the cc.rpxtation ot X:' 
but tbe rever.e 1_ DOt true. !be ~ &Del wk are related in a .1IIple 

... _, tor it the LEczol proce •• stops with ~"'l - 0 , th_ AVm • V.Tm ' 

-T 
f. • x..~ , 8DCl ... - v.x.. ,10 

20 



(7.2) AM = V T L-T = vaT = W m m m m Jr."'m m 

Using this result with (1.1) gives 

M c _ C M) 2 
(7.3) r k - r k = A(~ - ~ = Tk(sk l ck) wk 

10 that With (5.16) and (6.7) 

{ • b -~ • ~lslIti2'" Ik('kwk -vkt1) / ck 

, 

Which shows ~l.earq how the residual. norm decreases each st-:p. Al80 

using (5.16) 

(7.5) U {\I • lcklli r~ \I < II r~ II 

except at the last step, Where theoret1eal.l¥ sk 11: 0 • 

It is iDtereat1ng to note fran (5.16) aDd (7.4) that the size ot 

the residuals r~ and { are giVeD d:1rect~ b7 the s1ze ot "0 BDd 

the IQ decomposition ot Tktl I and so are iJIIDed1etel¥ avaUab1e 

wb1chever at these algoritbll8 is used. Equat1CG (5.18) ~. that 

II r; \I is also available it (5·7) is solved. 
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8. ~ear Least Squares Problem 

Por general matrices A and C , the constrained least squares 

min lib -Axll2 

subject to 

ex • d 

C_ be cOI1verted to the ~etric indef'1nite system of linear equations 

I A r b 

(8.1) c = d 

x o 

where r 1s the vector of rea1dua1s and , i8 the set of LagraDge 

-.1.tipl1erl. It A 18 m x n and C is p x n , qltaa (8.1) baa a unique 

8OlutiOll it rck(C) • P and ran{~). n. In this cue the procedure 

B!IIIIQ c_ 'be appUe4 d1rect~, aDd should be etftc1.t 1t the _trice. 

A aDIl C are larse aDd sparse. 

It there are no cOlUltratnts, syat_ (8.l.) recluces to 

1IId.Ch apiD could be aolved b;y SDmQ. dVeD 8DY start1Dg point (ro'Xo) • 

BOIIMYe1", cc.prtat1on and storace requ1r_eDts can be balve4 b)' WllDg & 

81*=1&1 choice ot rO u tol.l.on. It we denne 

rO - b-Axo 

tor ~ liYeD ~, then the solutiOl1 ot (8.2) 18 given b;y 

r - ro+&r 

x • ~+&x 



where 

(8.;) 

[
: ] of (8.3) 

A rO 

When the LanCZOB process is started with the vector 

. 
it can readil\r be sbovn that the orthogonal. III&trix V baa zeros alter-

na.tel\r in the top 8I1d bottca b&lves ot its col.umD8, while th~ tridiagonal 

matrix T has aJ.tem&tely 0 8I1d 1 on itl d1aaOn&l. '!'be resulting 

simpl1fic&tian in the Lanczos procels leads directl\r to the bicJ1aaoa&l1za.­

tton procedure used by Paise [10, Section 4]. A correapcmdiDg lSapliti-

cation occurs in the tactorizaticm T... IQ. &8 pert01'lled 1D SDIIIQ, aDd 

tb1s leacla to a nell' aJ.aoritm tor solving the least squares problMa. 

Without loll ot general1ty we sball henceforth take ~ - 0 , 

rO - b. The bicU.qoaalizatiOD procedure, ua1Dg A~ as iD1t1&1 

vector, 1. 4eftDecl as fallon: 

Ca) 
(8.4) 

(b) 

(1 • 2", ••• ,k) 

i'he SCalaz'1 at > 0, "i > 0 are chosen 10 that ilu1 112 - lIv:l.II2 • 1 • 

It i. sboWn 1D [10, Section 2] that it 

J - , 
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thea 

t!u ... vrv .. I , 

(8.5) AU. VJ , 

T T T 
A V - UJ + 1\...1 '1£+1 ek 

UI4 in [10, SectiOll 4] it 1. sbow.n t.bat llOIle ot the Q
i 

can be zero, 

UI4 that the 1Ilin:1mum-l.ength 1eut square •• ol.utlCD of (8.2) is given 

117 the equat101l. 

(8.6) 

where k is the first 1nteser tor vbieh ~l. - 0 111 (8.5). With 

(:)-(-:) _. o.l8o ooJ.v .. _u_ (8.,) ..... tbe .-. 

~ ., caa be cc.plted. u the bid!..,.,.., :iu.tiClll practHlllla 1Nt p C8IIIlot 

be fbaD4 .mnvq. In [10, SectiClll ~J ~ cc.pate4 nce ... 1ft 

Alp1.tbllB'O 

(8·1) r., -~l.l. ' ;tNt - u'f , x • .., 

Bere - x 1. ba1l.t up pzocre.a1vel¥ u .. l1Dear ccab1Dat1C11l of tile 

eo~ of II, the k-tb &pp'OXiMtlCD ~ -111
'
•

'
&1Ds the 2-... of 

tbe re.14ual. r k • b -~ over all. ftCtor. ~ l¥1DI 1D tile ._-

1IJIUIIle4 'b7 the tint k eolmma c4 U • 

lB'G 1. ~ ltraS.Ptto1'W&l'd Ul4 8CCDca1cal, ud LanaD 1D Id.. 8aZW7 

ot aJaaritbu of thl. tJ'P8 [6] hal iD41cated. hi. 1Dt..t to t..t 1t .an 

1I'1daq. It doe. ban 011_ pl1bl.e ta,1l1ll8, UI4 tbat 1. if J in II. w-l. 

1. poarq cClDClit101led thea the colmlDa of II COIll4 be YeI7 lar&e, aDd 



serious caneellation eould oceur in fOl'lling x - ICY. 'l'b.il 18 'tile _e 

sort of trouble that occurred With the use of aJ.sw1tla MI ••• 111 

Secticm 6, and led U8 to favor ~ for .,..etr1c qat... lor 

s1m1l.&r reasons, ~ adapted for leut aqua.r_ ~ vell be IlIOn 

DUIIlerically stable than LSCG, 10 it will btl "",,"ed. 1\lrtber. 

The 8:1apl.1t1caticm reaultiDs vb_ SDICr4 il applied. to the. leut 

aquare8 prob~ lead8 us to the ~ taetor1s&tlCD 

(8.8) J -~ , 

U1d bence to tbe algoritla 1apl1ed. lrT tbe fol..l.cM.ac equat1cma: 

La - J' , V. UQ'l , & -Va 

wIlere x ca nUl be 'bUlt up tl'CII tile Col,.,.,. of • u till alp1._ 

JIZ'OSN •• e •. 'lId.. &lp1.tiIa fi&kM & l1ttle.an nonp MIl c~'" 

JIG' .. ::ep tua. &lFr1ta. 1&:0, bat it ... the _~ tbat n =- I 

wh1cJa .....uNI tb&t tbare 18 ....".,b1.. C*ICe"·td.aa Sa tamt'll &. Va • 

!be quaDtltl .. iDvolve4 1a the it-til at. of &lp1.tbI L8Ul an 

eact~ NIA'OFQI to tboll. 11" 1a eq1atlCD1 (5.1), ... , (5.11) ••• 

baw 
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I 

(8.10) 

, 

(8.11) 

18 801"" by torw.rcl nbatltutlcm, UMl the p'illt. tbat 1fCRIl4 be CClaPIte4 

.., alpri*- Ltl'G ill (8.7) are linD 'q 

(8.12) 

26 



(8.13) 

.1nc~ x; can be o'bt&1.necl ch_pq rrc. {-1 u 111 (5.1O). At &l.l 

etase. it i. po .. ible to move f'rca X; to x:.1 .. 111 (5.11). 

III order to t1nd & stopping criterian it i. D&tuftl. to ~ftDe 

and to .om.tor the lize ot the vectorl A'!r~, A'!~ • I'I'ca eq1I&tlou 

(8.~), (8.10), •.• , (8.~) we CaD show tbat 

1'c 
It. r 1t • - Ski-1 '\ 'b 1 ' 

A'!r~_l • ~;kek~-~l&JtCk-l~l 

Where J'k· ('fit, .•. ,,\>' Uld. ~. (C1", "~-1'~! , 10 tllat 

(8.~) IIA'r~1I2 - (~1 \;)2 , 

(8.15) IIA!r~_1112 - (~;k ,~2+ ('\.1 ~'k_1)2 • 

!hen 11 DO obrtoaa rel&t1Olllblp ~ (8.") l1li4 (8.1S), 1Nt 1K*Ia _ 

be reey'tl.7 calculated at tba (_l)-at Rap of ... b1dl .... U MI;lcrA. 

!be t1D&l requiramt la to ..t-.t. a r •• .."",. at_ tar -u... 
quIIIltltl .. , Ii" tllat the ccapatatlC11l wU1 be CIU'I"1e4 alit wi:tIl ... 

ftDtte ...:1d.Il. Jll'cll1C11l I • III t.be cue of ~ (8eatiaD S) ,.. 

V'CQl4 expect the ftCtor ~ to be _ -MJlbable ...... ,eetla to tbe 

8Ol1ltlan of Ax • b it ilb -~I were msller ~ 1IAII1zI1. liDO. 

v'~Vk - Tk m1 ~. Wk~ With Vk m1 Wk ~l, .. ca ... 

II-!~I aM II-kll u e8ttaat .. ot IIAiI ~ liz" r .. ,_U~, aa4 1a 

JNCtlce we t...,-t. it eitbe' II~I 011' IIr:'ll1 (u en-.te4 fraa 

(5.15), (5.18» is mell er tbUl 'I'rJJ11 U~12 I • 



8DllA1'~ with ~" the red<luala tor .,.at- (8.,) 1DvOlve Ax 

aDd A'ler I where the approxSllatiC1118 to tar are or~ - &r; • -VkYk • 

8iDee yr~k· JIt aDd X; - Wkzk with Uk t VIt aDd Wit ortbcJOMl, 

to utlMte 

RAil , ,~" , Ii&rll 

re8peCtlvel¥. In pnctlce ve t8l'lliDate it either '\AT~I or IIA'r:'lU­

(u e8'twate4 tfta (8.15), (8.lA» 1_ ne"ar thaD 

11.r~ll(I~It\l: + li~II:)1/2 I • 



9. Ccaprt&tional b:pr1_ee 

AlFritbu SDIG4, MDUB m4 LBIJ;l bave b ... ~ md te.ted 

CD var10u qllt .. at eqatiou 111 order to obt&1n m SIIjpnIIdOll ot their 

maerieal. propertiel. A ca.p&ri.CD bu &1.10 b .... .-de 1D ... cu .. 

With Reid' • .,...iCD 2 ot the eaajupte sn41aJt •• .tbocl (CCII) [ll]. V. 

__ the tol.l.ari.nI ob.enatiou. 

(~) OIl .,..etrie politi" 4et1D:l.te qat .. , B!IIIUl siV811 e •• _t~ 

the IDe renlt. AI CCII. l'or aaaple, the probJ... :I.DYol~ the Tap'ec1M 

_triX of order IlO8O (~5 x 1.6 x ~7 p1.d) .. .,lve4 v1th S!IIa4 UDder the 

.. e eOD41tiou AI 4e.cribe4 b7 Reid [11] for Cell, ria. 11D&le prec1liCD 

CD the 1111 B78t-l}(IJ. A sraPl ot ilx - ~I laged MJ'~ beb1II4 tbe 

aurYe tar CCII .bawn in [ll, naure '], but 8!IIIIQ t4D'll1Dltecl at the ... 

pW1t .. CCII b7 taldDa • t1D&l lItep tzca X; to x:.1 AI 1D eqaat~ (5.ll). 

1'ol' t.at parpo.el aU po1Dt. ~1 .... ~ecl t.rca tIle.,sat. ~. ad 

the quatltl.. Ilx -~I wre I .. to tollaw tbe cvn Sa [ll.. naan ,) 
&lIa't ex.act~. 

(2) ~t.bnn&b ~ obt&iDI the ... ftDal »01Dt AI Cell, lt 11 ~ 

tbat tor pitl" c1etlD1t. qd_ CClil. to be pcehfte4 AI lt 11 .... 

• mei_t. 

(,) '!be varia ot C(JI uacribed 1D StctloD ~ .... ~ ~1O&l 

renlt. tor pltl" c1efSDlt. _trie .. AI C<II 1D [1]. !Ida cc:atbII tIII* 

the 4er1ftt1CD of COlI traI tbe IMICso. ftCtan IIDIl tIae C~_ ftIIctar1-

_tiCD ot 'k 1. CC91't&t1c.aJlI .'111 lAP to CCII, ui4e tra. tbdr 

_tb.atica1 equ1ftl..c •• 

(~) AlaOritlil M"'. baa bebaft4 well CD ........ ,. SInal.u. tIM 

2-cU11 ... icmal Iap1ecla _triX. I1nac a zoapl4 ... ftII7 ....tIl Wi T 'e 



in both I\{II and ilx - {II. On other WJr7 ill-cODd1tial1ed probl._ 

the ntDate o~ II~I in (7.4) de<.reued stead1q but departed hca tile 

t.l'\18 Ur:U aDd t!me caued pr_ture tea1Dation. In nch cue. it wu 

&l8o ob8ene4 that i~ iteratiODI were ccmt1nued, the true "~n ~ 

... IIIt~ eClllatut ¥hil.e the true error liz - {II cont1maed to deer .. e 

.tU It re.c::aecl quite aD acceptU~ l.ow level. 

(5) All ea:e1.1eat application o~ SDIIIQ aDd MIDIS 18 in .,l.Yiq .,.aetna 

.,.t- ot the tOJW (A - ~)x • b in the -vle o~ iIl""e lten.tlcm, 

dDce U ~ 18 Dear aD interior e1c_vallle A. o~ A, the-.tnx 

A - ..z 18 1D4et1n1te. I~ ~ i. aumeieat~ ewe to A. ud b 1. 

~.. apJIl"Opl"1.at~ tbe the C<aplted x vtll be & aood &JIlIIl'ClIX1MtiOD 

to _ eialllftCtor o~ A, an4 111 practice It &JIlIMI'I tbat the maber o~ 

ltaat1au NIpire4 bJ' SDIIIQ or MD1IIS 1. ~ ..n. 

(6) naan l. 1l1uatrate. the beb&Y1or ot 1!*14 GIl & .,..tzic apt_ 

(~ - ..z)x • b of CIII'Ur D. 50 ,.... ~ • ." 1. ~ D.u' - eta-.:1M 

of ~ 'bat .. cllioe_ to .alia tM qat_ iDI.eftId.t.. !be..ut.x • 1. 

'IiftcU....... vltll tJplcal DaD-UI'O rolf .1 -..ti. (-1., 2, -1) , 10 t;b&t -a2 
la ,..we'I..." nth twJ.cal rolf (1,..a., 6, ~, 1) • C..,..,tlOD ... 

.. ~ ell 011 a IarI'oaIbI J6r00 vtth tl.oatilll101IIt IIftCl.10D 

I • 8-12 • 1."" JC 10 -ll • 

IRS.. of tile 11 •• of tIM re.1daa1 ftCton ~, 1": .. r: an 

all &at Jehle f100a a.aa, ad tbM ...... ueel to 11ft _ .. _. of 

lGcwIIl"~l, ~III':II, ~I~I 1Iblch an plDt'teel ill naun 1 ,.tan 
It.,.tlG1l IIIIiIIIMr k. ot ~ 1. tile IbaIt» J'eIIuatlca 1D nelc1aal 

cMaSae4 _ tM1 .. a n.l atep baa Z; to the cc. J01IIt X;, ( ... 



4otte4 liDe 1D ncare 1). .ate alao tbe Ibarp ~ 1D ii1'~1 at 

It • 11. and 2". Th .. e 1D41cate rectODll ot 1D8't&bU1tJ' 1D tbe COlI 

.equeDCe ~,,, 4e.cribe4 aore ~ ill the next .ect1C1G, M4 1t the 

8'tacJaft aethod ot ccm.1,.ate pU.ient. wre 118_ to c~te tbe po1JIt. 

~ it 18 to 'be expected tbat the lterat. 1I1':tI 1ftMIl4 cI1ft1'p ~ tIM 

J&th abaIm. 

!he t1Dal. reddu&l Dana obtaiu4.. 1.8,)( lD -9 , 1Ib1le the ccapaH4 

nts.at. ot 11r;,1I 1fU 7.65)( ]0-9. '!b18 1l.lutft,t .. tbat tbe CGipit_ 

.atDate ot 1\1':11 1'_1D.. a &004 aeuure ot the rulda&l tar the ~ 

JOint ~, 1D ap1t. ot th. tact that the CCBpIt- JOiDU ar •• ~~ 

41tter«at trc:. tbo •• that VOUl4 be obta1Ded nth GIICt oc1W,lldat1cll. !be 

... 1. tru ot the ca.pate4 .1t1a&t. ot IlztJl , l1li1 .:IIdl.&rlJ" tar tile 

.8tSaat •• of 1\A!1':II, 1"!1'~1 1D 1Jpi,t!a LBI4. 

(7) AJcoritla LII4 hu bee t..te4 011 l...t aqaMW probt.. of tile lOa 

[::}[:} .[~] 
...... D • .u..(~) ia _ 11)(11 41 ...... ~ Vltll \ - (1/a)'P 

tor ... mt.pr p > O. !be dap1a foa of 10M 1ftbla allon 10M 

OGDIlt1cD""'" .v to 'be alten4 .. ~, aDIl tile ...at aolat:I.aD to 'be 

foal fJoa ... ('1 + b2)/2. !he apt. 18 c·..,nlble 1ft '1 - '2 ' 

1m 1D'!U ptDWt,. hu .. a ____ 1ca.l efteot naoe tIM b1~1~'QD 

1 •• ...t~ tbe ..... it tile 1ftbla .... tIM ~ .,n. 

2DIl • '1 +'2 • 

OIl a HI'i_ of JII'Ob,1.IM v1t1l D. 20 IID4 'P.,/It, ••• ,8 tbe .... 

of 1t .. t1au taka '" LII4 (pecMn. JlHCldaB 1_10-
11 

.... -tMt~) 

.... 78, 19, 17, 71, Q, 60, 1Ib1cIl aJaowa a dinlMt ~ .. tbe 

'1 



4 10 
cOlld1t~cz maber incr-.aes f'raIl 10 to 10 • This may or may not be 

tJPical ot reali.tic problema, but 1t illustrates a tendency ot the 

alcoritta to isnore singular values Which are lIIII&l.ler thaD £1/2 (in 

thi. case, to isnore ~y 41 < 10-5 ) I and to CO'lverge 011 the min1.ma­

leagth lolut1cz ot a modified problem ot corre8pond1ng~ lover r&Dk. Thi8 

eNact baa &l.ao been ob.erved by C. L. LawsOD (private cQ'!IIDm1catlcz). In 

the above sequence ot problas the nllDber ot negligible di .... 1ncr-.s1ng 

It~, 8Dd it cou.ld. be expected that the number ot iteration8 8hou.ld. 

decreue with the e:rteetive~ decreasing rank. 



10. s.a.ry 

We can now dist1ng1lish two rea.sons wby the method of conjugate 

gradients (CGM) may fa.1l to solve the syIIIIletr1c system Ax .. b it A is 

not positive (or negative) definite. Recall thAt CGM attempts to cc:apute 

a sequence ot approximations {x!: J A ... __ 
.It satls"'J~ 

(lO.l) 

tor sCIIle m > 0 I where viVk:: I k , vr0VIt:= Tit and the matrices Tit 

are tridiagonal., with Tlt+l having Tk as its k)( k principal. sullllatriX. 

Recall alBo tbat CGM effect1 vely cCDpItes the Chol.esq factorization ot 

each Tit. The basic problem we must contend with iB the fol..l.ow1.n&: 

It A is indefinite, it is possible tor Bane Tit 

to be singular or nearly singular (It < Ill) , .!!!!! 

it T _i;;;;B;;....;.;.v.;;;e';;;;;l~c..;;;CXl;;;;di=.;.t.;;;.;ion=ed.;;;. - m 

Bow it Tk is nearly singular it happens that the Cholesq tactar1sat101l 

ot T.1 is poorq deteJ.'lll1ned n'IDericaJJ.y for all .1 > k. BV'tD JIOl'e 

seriously, it Tk is.1ngul.ar the corr*,sponcUns po1Dt x: in (JO.l) 18 

not proper~ defined. 'l"bus we see that CaM' 8 use cd equation (lD.l) 1s 

doubq doaaed to failure. 

The main teatures ot algoritbns ~ and MIDIS CaD now b~ pdi tDto 

perspective. First of all, the orthogooaJ. tactorizatlcm Tk - ~ 18 

well de:fined regardl.ess of any near-singUl.ar1ties in T
j 

tor j ~ k • 

In tact, as eq'IWtiODs (5.1l) and (5.19) mow, 1Ie cou.l4 c:c.pate the C~ 

sequtnee ot points using 

(10.2) 



Without the aid ot tbe Cbo1esll;y tactorizatlO1l, but the lIlore tandamentll 

Utt1culty r_iDa tbat ~ doe. nat exi8t if Tk and hence ~ are 

•'nI'11M. In such cu.. ~ in (10.2) i8 undetined. 

Sec~, then, instead ot using ~ to caapIte the CGM sequence {I 
we 4eftDe two new .equences ~ and { in tefts of a matrix ~ which 

i. the k x k principal. BUlIutrix ot ~ 1 and is guaranteed to be 

1ICD-81D8Ul&r. By this means we etfecti v~ step around a.ny irrelevant 

mtemed1&te siDgularities in the CGM sequence (10.1). Baae near-

81Dpl.&r1t1es are .hown by the peaks in Hr~1I in Figure 1.. We Bee f'raIa 

(5.6) ad (1·5) that IIr~1I = lir~II'17k' / l7kl 80 we Yill set & large 

j1aJ) in lir~1I when Tk 1s near~ singular but A 18 not. 
. c 
P1nal..q we note that the CaM points ~ are not to be discarded 

cc.;plete~, .:lnce &t least b&1t of them !!:! well det1ned by (10.1). 

'!bi. C8D be seen trt. the :tact that it botb Tk ud Tkfo 1. are 81.Jl8W,ar 

th_ 10 are all If j' j ~ k ; hence 1t A 18 DOD-s1DgulAr there cannot 

be two.1D&uJ,ar Tkls in do raw. (Ill tact the lla1t:lDg case is attained 

ft_ A 1& the a,Bietrlc 1e&st squares IIILtriz in (8.,), since 111 th'1a 

cue ~ the even raabered Jl&trices '12,'14, ••• are nClll-s1ngul.&r.) T1nu 

1D &l&Orit!IH ~ aDd LS~ proviaicn is made to tem1Date iterations 

at a Cc. po1Dt whenever advurtageoua. 



2 

o 

-2 

. L 
(SDItfIR) -4 - l.ogJ.OII~1I 

......... loglOlIr~\\ (CGM) 

-6 ...... ~og101l~1 (MIBRES) 

-8 
k .. iteration DO. 

5 10 15 20 25 

Figure ~. Sol.ution ot an illdef'1Dite .,..etr1c I7st- ot equt10u 
2 . 

(B - j.i.I)x = b , us1ns subl'OQt1ne SDEQ. 

~ 

1. D1m.eDsion ot syst_ 18 n = 50; 110 i. not c~e to an eipavalue ot .2 . 
2. r; I r~ , r: are res14u&l vector. tor lteratiOil J8th8 t&keD 'b7 al&arttllu 

~, CaM, MDBI2J respectiveq. EatS-tes ot the JMJm8 ot t ..... 

quantities are all c~ted by subroutine SDIII4. 

,. Note larg~ jmapa 1D the size ot IIr~1I I ret1ect1DC 1nt ..... s.at. 

nee.r-s1ngularitl •• Which vcW.c1 c&WIe tile sta4u4 aetbod ot cClDjupte 

gradients to break ~. 
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Appendix 

The toll.ori.DC are Ust1nss of Fortran subroutineB ~ and L9~, 

&loas with subroutine BOlli which 1s Uled by both. TheBe routines were 

cleYelDpe4 em a Burrou8ha 86700 at the Victori&! Un1Ye1'sity ot Wel..l.1DgtoD. 

lor Jl8Ch1Des v1th sborter word-length the routines shoW.d preterab~ be 

caaverted. to dauble precision. This can be achieved by cban&,"g REAL to 

1llALtt8 ~ DOODLE FRJ!X:ISIOl'f, ABS to DABS, BDd. SQRr to DSQKr throu8bOllt. 

,. noted ill the l1ltings, it is &88\11led that subroutines ATDO!:S and 

ATBAlE are av&.1lable tor comput1Dg products ot the torm Au BDd. ATv 

reapecti~. These subroutines could be included as parameters to ~ 

ad L8J4, v1th appropr1ate use ot the EXTERiiAL stat_eat in the ca11 :Sns 

pJ'08I'_. 
A poaitlve value of the paraaeter ISTOP iD41.catea that IteratlCXl .. 

tem1D&ted at a point ~ (Bee text). A nesatl ve v&l.ue 1nd1catu that 

the ftD&l. aolutlCXl Is a point ~. 



• • c 
c 
c 
c 
c 
c 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 

• • "F 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE SYMMLI( N.X.8.P,~1.V2.M.MACH".ACCY.ITNNAX.ISTDP ) 
INT£IER N. ITNMAI. 15TOP . 
REAL XCN). 8CN). PCN). V1C~). V,CN' •• CN', MACHE', ACCY 
REAL ALPHA, BETA. GAMMA, DELTA. EPSLN. CS, iN' 01, DI. z. 

IBAR. OBAR, ZBAR, OLD •• EP5, EPIA, EPII. I. T, 
NORMA' NORMxa, LI~ORM. CINORM. .R~DRM. .'ITNM 

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• . 
SOLVES THE SYSTEM OF LINEAR EQUATIONS 

A-X • I 
MHERE A IS AN N-N MATRtx .HICM II SYMMETRIC 
aUT NOT NECESSARILY POSITIVE DEFINITE. 
'DR E"ICIENC, A SHOU~O IE SPARIE. 

". 

'ARAMETERSI 

N THE DIMENSION OF A. 
X AN N·VECTOR~ CONTAININI A~ INITIAL A'PHOXIMATION 

TO I ON ENTRY CUSUAL~Y X •• ,. AND THE "NA~ 
APPROXIMATION TO • ON EIIT. 

I AN N·VECTOR CONTAININI THE IHI VECTOR I. 
II,VhVI,N 

N·VECTORS FOR MONK·S'ACE • 
MACHEP THE MACHINE PRECISION. 
'CCY , USER·SPECIFIEO TOLERANCE. ITERATION II 

TERMINATED I' 'T APPEARS THAT NORMC.) ce Ace" 
MHERE R IS THE RESIDUAL VECTOR I '. , ••• 

ITNMAX LIMIT ON THE NUMIER 0' ITER'TIONI. 
liTO' INDICA rES THE ~EASON 'OR TERMINATIO'" 

AISCISTO" RETU~NS ONE 0' THE 'OLLONI", VALUIsl 
1 .~ NORM'R) WAS REDUCED IELOM THE TOLER'NCE Ace,_ 
I .~ NORMCR) WAS REDuCtO TO A REASONAILE LiVEL. 
I .~ THE LIMIT ON IT£RATION' NAI REACHED IIfORI fMC 

'REVIDUS CRITERIA .ERE 'A'II'IID. 

'HE ITATEMENT 
CALL ATIMESC X. ,. N ) 

SMOULD liVE THE PRODUcT 
.. • AeX. • ........................................................... 



C 
C 

c 
c 

IRIT'CI, 1000) N 
['S ••• O.MACH" 

C COM'UTE 'ESIDUAL VECTOR 8· AeX 
C AND INITIATE THE LANC.ZOS 'ItOCESI 
C 

C 
C 

CALL ATIMESC a. , •. N ) 
DO 10 I • 1, H 

V1CI) • ICI) • 'CI' 
ao CONTINUE 

CALL NORMC va. N' "I, oa ) 
IItNORM • 01 

C SECOND ITERATION OF LANCZOS 
C 

c 

C 
C 

CALL ATIMESC VI, P, N ) 
".'HA • 0.0 
DO 20 I • I, N 

"CI) • VUU 
AL'HA • V"I).'CI) • AL'H' 

ao CONTINUE 

DO 30 I • II N 
VICI) • 'CI) • AL'H,eVICI) 

10 CONTINUE 
CALL NOR-C va. N' E'I. lETA , 

C INITIALIZE OTHER IUANTITIEI 
C 

'I,R • ALPHA 
DIAR • lETA 
01 • •• 0 .'f' 

NOItMI •• 0.0 • 
NOItMA • AIS(AL'HA' • lETA 
£'SA • NaRMAeE'1 
E'SX • £'IA 
IT .. • 0 . 
IIT.P • 0 



c 
c 
c 
C 
c 
C 
c 
c 

c 
c 

•••••••••••••••••••••••••••••••••••••••••••••••••••••• 
MAJN ITERATION LOOP ...................................................... 

'.' TEST rOR CONVe~GENCE 

50 LGNOlN • 581'(01 •• 2 • Ole_,) 
CINORM • GRNORM.8ETA/CABSeG8AI).EPIA) 
IESTNM • AMIM1C~GNOIN, CGNORM) 
Ir (ITM .EI. ITNNAX) ISTOP., 
Ir CIESTNM ,LE. EPSI' ISTOP • , 
I' (IESTNM .LE. ACCY) JSTOP • 1 
I' (15TOP .NE. 0) GO TO '100 
WRITE(6, 1010) ITN, XCI), LONDRN, CINDRM 

C COMPUTE THE NEXT COLUMN Dr v (LANCZDI' 
C 

C 

c 
c 

CALL ATIMEse va. " N , 
A&-PHA • 0.0 
DO 60 I • 1. N 

ALPHA. VICI).PCI) • AL'"A 
60 CONTINUE 

DO 70 I • " N 
T • VIC 1) 
V2CI) • PCI) • AL'HA-T • IETA-WiCI) 
ViC I) • T 

70 CONTINUE 
OLDI • lETA .. 
CALL NOIMC VI, N, EPSA' lETA ) 

C COMPutE 'LANE ROTATION 
C 

IAMMA • 50lTCG8AI-.2 • aLai--I) 
CI • 18AR/GAMMA 
IN • OLOI/IAMMA 
DELTA. CSeOIAR • SN-AL'HA 
18AI • INe08AR • CI*AL'HA 
EPIU •• SNelETA 
08AI • 'CI-8ETA 
OINOIM • INeOINOIM 

"1 



c 
c 
C U'OATE A"ROXIMATIDN TO • 
C 

c 
C 

Z • Ol/GAMMA 
S • zees 
T • ZeSN 
DO 10 t • I. N 

XCI) • '.'I,e5 • VICI'.T) • X(I) 
weI) • MCI).IN • V1CI).CS .0 CONTINUE 

e EITIMATE NORM(A). GO ROUND AlAIN 
e 

c 

I • OLOI • AIS(ALPHA) • BET. 
I' (NORMA ,LT, S) NORMA. I 
NORMX! • Z •• 2 • NORMX! 
E'SA • NORMA-[PS 
"S' • SORTCNORMI!).E'SA 
01 • 02 • OELTA-Z 
D2 • ·E'SLN-Z 
ITN • ITN.' 
aD TO '0 

C •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
e INO 0' MAIN ITEMATION LOO' 
C •••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 
C 
C TIlT 'OR MOVE TO tG 'OINT 
C 

100 I' CLINORM .LE, CINORM' liTO' • ·IITO' " ",ro, ,LT, 0) 10 TO 12. 
liAR. OllllAR 
DO 110 , • II N 

ICI) • NCI'.ZIAR • XCI) 
UI CONTINUE 



C 
C 
C DISPLAY STATUS AT END 0' ITERATIONS 
C 

c 
c 
C 

c 

120 MRITEC6, 1010) ITN, XCI', LONORM, CINCRM 
MRITEC', 1020) ITN, ISTOP, ACC't. E'Sh .E.T ..... 
MRITEC6, 10'0) CINORM, LONORM, IRNORM 
RETURN 

1000 'ORMATC I, • SYMMLO. DIMENSION 0' SYSTEMI', I'. " , 
1010 'ORMATC 18, IPE20.10, IP6EI5., ) 
loao 'ORMATC ',', 

• ,,' NO. 0' ITERATIONS' ., Ie., .110, 
• ,,' STO"INa CONDITION NA51', Ie., 110, 
• ,,' NORM 0' RESIDUAL NAS R[QUIRED TO lEI', I'EI'." 
• ,,' ESTIMATE 0' REASONABLE NORMI " l'EI'." • I.' [STIMATE 0' NO~M ACTUALLY DBTAINEDI I, I'EI~., ) 

1010 FORMATC 'OESTIMATES OF NORM 0' 'INAL REIIDUAL", 
• I,' COMPLETED LOI', 1'£1'." 
• I,' INCOM'LITE LI.', "E15.5. 
• I,' OR' " "EI5., » 

C END 0' ,'.MLI 
1-0 



SUI~OUTIN[ NO~.' V, N, t'S, lETA : 
INT['E~ N 
~[A~ VeN), [Pi, I[TA, S 

C 
C NOR.A~IZ[S THE VECTOR V AND RETuRNS THE NORM 
C AS lETA. CA~L'D IY SUBROUTINES sy •• ~e AND Ls~e. 
c 

C 

c 

s • 0.0 
DQ 10 I • 11 N 

S • V ( J) -.2 • S· 
10 CONTINUE 

lETA • SeRT( I) 
I' 'lETA .LT. E'I) lETA • E'S-0.5 

S • 1.0/1ETA 
00 20 I • S. N 

VUJ • y(U-S 
10 CONTINUE 

; RETURN 

C END 0' NOR. 
INO 



c 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

SUBROUTINE LSL8( M.N.X,~.P'V.U,~.MACHE"ACCY.IThMA.,IIT~P ) 
INTEGE~ M, H, ITNMAX, ISTOP 
REAL XCN), 8(M), P(~). ~(M)' UCN), ~(N)'. MAtHE', 'CC1 
~EAL ALPHA, 8£TA. GANMA, DELTA' CS', S'b DlI 01. " ZI 

• GBAR, lIAR, EP5, £PSA, EPSX, 5, T, 
• NORMA, NORMX2, LQ~ORM. eGNORM. I£STNM 
•••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

SOLVES THE LINEAR LEAST S~UARES PRO~LEM 
NI~IMIZE R'R, " • 8 • A •• 

WHERE A IS AN M*N MATRIX. M~.N' AND SMOU~D IE ,'A ... C. 

'ARAMETERS' 

8 
p# V 
U, M 

, N'CHEIt 
ACCY 

ITNN'X 
IITOP 

1 .,. 
2 •• 
J .~ 

DIMENSIONS OF THE MATRIX A, 
AN N-VECTOR, CONTAININQ AN INITIAL 'P'"O.IMATI~ 
TO X ON ENTRY (USUALLY X. 0), 'NO THE 'L_A~ 
APPROXIMATION TO ~ ON [XIT. 
AN M-VECTOR CONT'INIHG THE R"S ~ECTOR I. 
TNO M-VECTDRS FOR NaRK-SPACE. 
T~O N·VECTORS FOR NORK·SP_CE. 
THE MACHINE 'RECISION. 
A USER·SPECIFIED TOLERANCE. ITERATION II 
TERMINATEO IF IT APPEARS THAT NOR.CA'M) C. ACCY. 
, LIMIT ON THE NUMJER OF ITERATIONS TO I' DGNI. 
INDICATES TME REASON FOR TEMMINATION. 
A85CISTOP) RETURNS ONE OF T"! FOLLONINI VALUls' 
NORM(A'R) NAS REDUCED IELON THE TOLERANCE ACC'. 
NOR~("R) "AS REDUCED TO A REASON"LI LIVIL. 
THE LIMIT ON ITERATIONS .A. R['CMEG 1"0.' 'ME 
PREVIOUS CRITEAIA MERE SATIIFIED. 

'HE STATEME .. TS 
CALL ATINESC U, p, N_ N ) 
CALL AfRANSC v, P~ M# N ) 

SMOULD GIVE TME PHooueTS 
P • A.U 
, • ACTRANSPOS£).V 

~E'PEC'IVELY. ........................... ~~ ............ -................ . 



c 
c 

c 
c 

WIITE'., aOOO) M. N 
E'. • I.O.M~C"E' 

e caM'UTE IESIDVA~ VECTOR I· ,-_ 
e A~D I~ITIATE TH' 8IDIA'UN'~'I'TION 
e 

C 

C 
C 

CA~~ ,TIMEse x. " M. N ) 
DO ao I • ,_ M . 

"1) • leI) • 'CI) 
'I caNTI~UE 

CA~~ ATRANse " UI MI N ) 
CA~~ NORMe U, N, EPS_ lETA ) 

CA~~ ATIMEie VI V. M. N ) 
CA~L NOIMe v, M_ EPI. A~'"A ) 

e INITIALIZE OT"EI IVANTIT',. 
C 

. DO 20 J • a. N 
.CI» • u(1) 

II caNUNUE 
•• AI • 'LPH' 
, • IET",I.'"' 
Da • , 
DI • 0.0 
NO ..... , • 0.0 
NORM, • A~'HA 

"SA • NORM'-," 
'PSX • "I' 
ITN • 0 
liTO,. • 0 



C 
C •••••••••••••••••••••••••••••••••••••••••••••••••••••• ~ .... 
C MAIN ITERATION ~OO' 
C ........................................................ ... 
C 
C 
C FIND NE~ COLUMN OF U 
C 

C 
C 

,. CALL ATRANS' y, " M, N ) 
DO 60 I • I, N 

uel) • P'I) • AL'HA*UCI' 
60 CONTINUE ~ 

CALL NORMe U, M, E'SA, lETA J 

C TEsT FOR CONVERGENCE 
C 

C 
C 

La NORM • SORTCCAL'"A.OI' •• Z • 'IETA*D2)**2) 
CGNORM • '8~C8ET~.Y' 
8ESTNM • 'MIN1C~ONORM' CGNORM) 
IF CITN .EO. ITNNAX) 15TO'.' 
IF C8ESTNM .LE. EPSX' 15TO' • 2 
I' '.ESTNN .LE. Ace" liTO' • I 
IF (ISTO' .NE. 0) 10 TO 100 
MRIT'(', 1010) ITN, .(1), LINORN, c,.o .. 

C FINO NEN COLUMN OF Y 
C 

C 
C 

CAL~ ATIMES( U, p, N, N J 
DO '0 I • 1, M 

vel' • P(I) • IETA.vel) 
'0 CONTINUE 

CALL NORMe v, M, IPSA, ALPHA ) 

C COM~UTE 'LANE RoTATION 
C 

GANMA • SQRTCG8AR •• ! • IETA •• 2) 
CS • G'AR/GAMMA 
SN • I'TA/aANNA 
DELTA • SN.ALP"A 
.IAR • -CSeALP"A 



c 
c 
C U'DATE A'PRO-IMATION TO X 
C 

c 
C 

Z • DI/IiAM .. A 
I • ZeCS 
T • ZeiN 
00 10 I • h III 

'(1) • eMCl'.$ • UCl).T) • XiI) 
.(1) •• 'I'.SN • UCI).CI 

10 CDNTIN"E 

C ESTIMATE NOMM(A), aD ROUND AGAIN 
C 

c 

IF (NOIM~ .LT. AL'"A •• ETA' NOR .. A • A~'~A.'ETA 
NO ... II • , •• , • Z •• Z • MO~"'2 
"SA • HO •••• ',. 
£'11 • s •• T'NGRMlz,eE'SA 
, • ·,ET,.V/AL'"' 
02 • OELT,eZ 
01 • V • 02 
IT,. • IT ... , 
10 TO SO 

c ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 'NO OF MAIN ITER'TION LGO' 
C ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• 
C 
C 
C TEIT FOR MOVE TO ca 'OINT 
C 

aoo IF CLINOR ... ~E. C ... OR.,) ISTO' • ·"TD' 
IF CIITD' .LT. 0) 10 TO 110 
Za,,. • Ol'I.AR 
DO no I • " N 

"1' •• "'e'IAR • XCII a,o COflTI .. ~e: 



c 
c 
C DIS'LAY STATUS AT END Of ITERATIONS 
C 

C 
C 
C 

c 

120 NRITEC6, 1010) ITN, XCI), L~NORM' CGNORM 
NRITEC6, 1020) ITN, ISTOP, AttY, E'SX, IESTNM 
RETURN 

1000 rORMAT' /, ~ LSLI,- DIMENSIONS OF SYSTEMI', 
1010 rORMATC II, l'E20.10, 1'6EI'., ) 
1010 rORMATC 'I', 

• I,' NO. Of ITERATIONS' " IIX, 110, 
• I,' STOPPING CONDITION WAS'~' I.X, 110, 
• I,' NORM OF A' •• T)I MAS REOC TO .,. 
• /,' ESTIMATE or REA iON AILE NORMI 
• /,' ESTIMATE or NORM ACTUALL' O'TAINE'~ 

211, // ) 

" &,t15." 
" l'£15.S, 
:' l'~llil ) 

C END or LILI 
END 


