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Abstract

The method of conjugate gradients for solving systems of linear
equations with a symmetric positive definite matrix A is given as a
logical develomment of the Lanczos algoritim for tridiagonalizing A .
This approach suggests mmerical algoritims for solving such systems
when A is symetric but indefinite. The new methods can be applied
to linear least squares problems with or without constreints, with
simplifications when there are no constraints. These methods have

advantages vhen A 1is large and sparse. Fortran subroutines are
included.
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1. Introduction

Here scme methods are considered for solving .
(1.1) AX = b
vhen the nxn real symmetric matrix A 1is large and sparse. The
special case that arises when a linear least squares problem is trans-
formed to a larger problem of the form (1.1) is alsc examined. Unlike
matrix factorization, the methods given here for solving (1.1) regard A
&8 an operstor and only require matrix-vector products, building up x
as a cambination of vectors derived from a Krylov sequence. Some basic
theory for different methods of this type is given in Section 2.

An oxample of this type is the method of conjugate gradients [2],
vhich 18 often useful for solving such probleme when A 4is positive
definite [11]. Although rounding errors cause the conjugate gradients
method to depart significantly from its ideal path, it can still be very
effective vhen regarded as an iterative method, and the solution can oftem
be found to the required accuracy in far less than n steps.

The method developed by Lancsos (k] for tridiagomelizing A 4s
directly related to the conjugate gradients method, as is explained in
[5]) snd [3], and the rounding error properties of both methods are
closely related. A description of the Lanczos process is given in
Section 3, and the method of conjugate gradients is developed from it in
Section 4. This gives computational insights into the method, and leads
to two new algoritims that may be used vhen A has both positive and
negative eigmvalues; these are described in Section 5 and 6. The method
in Bection 6 can also be used if A 4is singular and (1.1) is not a
consistent set of equations, and some properties of this method are

developed in 8ection 7.



When linear least squares problems are put in the form (1.1), as
in equation (8.2), the syrmetric matrix A will be indefinite with some
zero sub-blocks. Tris is true for unconstrained problems [12], and
also for problems with linear equality comstraints {1]. If these problems
are large and sparse then the new methods given here can be used. When
there are no constraints the algorithms can be simplified to take
advantage of the special form of A , saving storage and computation.
The algorithm in Section 5 is extended to take this into account in
Section 8, wher. the resulting algorithm is shown to be closely relsted
to that given in [10, Bection &4].

Computational results for the new algoritims are discussed in
Section 9, indicating that they give accurate lrotultl; but vhile the
methods can often take much less than n -tejo, there are cases vhere
they take a great deal more. A rounding error analysis of these
algoritms will be given in a later report.

Fortran subroutines for the new method in Section 5 and its
extension to the least squares problem in Section 8 are given in the
Appendix.

The methods given here for symmetric indefinite systems would
appear to be superior to those suggested by Lumberger (7], (8], as
the latter present same difficult unsettled questions when routine
practical application is considered. These particular problems 4o not
arise here, since the development of the dmutl-‘tr- the Lamcsos

process allows a good understanding of their mmerical properties, amd
80 some possible nmmerical instabilities have been avoided.



In the text upper case Roman letters dencte matrices, lower case
foman dencte vectors, and lower case Greek dencte scalars. The
exceptions are ¢ and s used to denote cosine and sine. The
syabol ||| denctes the 2-norm of a vector or matrix.



2. (General Theory
G:lv'm the set of equations

(2.1) r+Ax b , Ar =0

where A is a real nxn symmetric matrix vhich say be both indefinite
and singular, we will consider computing various approximstions to x

of the form ka, Vkl[vl,va,...,vk] , where the \
of linearly independent vectors. In particular we will look for

are a given set

solutions ‘k' vk’k vhich give stationary values to

(2.2)  £,(y) = (A7 -b)'B(AVy -b)
vhere B is some symmetric matrix; thus fk(’) will be a nora of the
residual if B 1s positive definite. Note that this is just a theoretical
tool that will lead to different methods, and that B will not be
required explicitly.

The function fk(y) has & stationary value at y, 1if

(2.3)  VABAVy, = V;ABD
thet 1s if
(2.8)  VIABr, =0 , r = beAx

and the methods to be considered will essentially try to solve (2.3).
8ince the secand derivative of £,(y) 1s 2VLABAV, , it follows that

1f ABA is positive definite there is & wnique y that minimises f£.(3) .
If ABA is only positive semidefinite then the minimizing y 1is not
necessarily unique, vhile if ABA 1is indefinite we only have a

stationary point of fk(’) - Inany case x . isaen approximstion to

the solution in the sense that the residual is restricted to the mull



space of v{n,m [ can be chosen to reduce the dimension of this
oull space with increasing k .

An cbvicus choice for B 4is A" for some integer m , and we vill
restrict ourselves to this case. Choosing m = -2 would essentially
require a knowledge of x on the right hand side of (2.3), and for
IS>-2 solving (2.3) would appear to require at least as much
knowledge as solving the original problem. The choices m = -1, 0
appear to be the most useful, and will now be considered.

Case (s). Taking m = -1 would give B =A™l , but to allov for the

more gmneral case of singular A, vatake B=A , vhere A~ isa

gmeralised inverse of A such that AA~ 1is the orthogomal projector

onto R(A) , the renge of A . With this choice we have from (2.1)
AAD = AAPTHMAX = Ax

and (2.3) becomes

(2.5) v{avkyk-v:u-v{b-v:r ,

vhich cannot be solved directly for /9 unlsss a value for vir is
mom. Ve will only consider the case V:rno,lothouthotlvm

“Whif r=0 or '1“(A), 1-1,...,R.Iﬂ.thﬂ
@8  Gavg, - . n -y

sives & stationary value of (2.2) with B =A™ . If the columms of
Vy, pm R(A) then we have the lesast squares solution of minimum
lﬁll."'-



Case (b). Taking m =0 gives D = I and ve can minimize |r.|l
by solving

(2.1)  ViAvu = ViAD , x = VE o,

vhere y has been replaced by u to avoid confusion with (2.6).
Furthermore, 1f v,,...,V, span R(A) then x, 1s the minimm
length least squares solution of (2.1). We will call methcds based
on (2.7) minimm residual methods. A poesible danger with these 1is
that if A is poorly conditioned for solutions of equations, then the
condition of the problem (2.7) can be much worse. Values of m >0

would lead to more poorly conditioned problems still, and will not de
examined here.



3. The lanczos Vectors

If the vectors VyserosVy in Section 2 are computed by the Lanczos
algoritim (4], then some important and computationally useful simplifi-
cations reault. In particular, algoritilme arise which are useful for
large sparse matrices: for example the method of conjugate gradients.

The initial vector we will use in the Lanczos algoritbm will be

(3.1) v, =v/B, , B = bl

there are indications that this choice,and possibly v, = Ab/ ||ab|| ,

are the most camputationally viable ones for solving large problems of
the form (2.1), and there is also some theoretical justifjcation for (3.1)
but this has not been shown rigorously. If we have an initial approxi-
mation x, to x 1in (2.1) then we change the problem to

r+Ag-r0!b-Ax° y Ar = 0 , x-xo+g ’

and proceed as before. With the choice of v, 1n (3.1) we restrict
ourselves to the case of r = O in Section 2, case (a), though there
18 no such restriction cn case (d).

A satisfactory computational variant of the Lanczos algorithm, 191,

hll a8 1t' j"th .tcp’ d&ﬁning Vo B ] 2

0

(3:2)  ByyVaer =AYy Yy ByVsa 0 Y T 'g“;,

with B, >0 chosen 50 that ||v3+1]] =1 . After the k-th step



% P

T - By % P
AV =V T v B i Vin1® 0 Tk T ,

(3.3)
"ivx'l ol CYRRETL W B "i'm.'° g

The process will be terminated at the first zerc ﬂj » 80 from now on
we can assume that 53 FO, J=21..05k.
From (3.3) snd (3.1) ve have VAV, =T, sad Vb = B

and with this choice of vectors in Section 2(a) equation (2.6) becomes

(38) Ty =B, T = Wy o

where the superscript c¢ indicates that it is the solution that would
be obtained using the method of conjugate gradients, as will now be
explained.



k. Derivation of the Conjugate Gradients Method from the Lanczos Process

The conjugste gradients method [2] can be developed in a straight-
forward ianner from the lanczos process. The purpose of giving this
develomment here is to divide the conjugate gradients method into
separate computational algoritims whose mumerical properties are more
clearly understood; this leads to some new and useful methods.

If A is positive definite then so 45 T, = V AV, 1in (3.4),
and hence the Cholesky factorization

#.2) T, = 585

exists. Here .Dk is diagonal with pos:lfive elements and “k is unit
lower bidiagonal, and these can be developed as k increases.
Unfortunately y, in (3.4) changes fully with each increase in k,
and so kak cannot be accumulated as k increases. This difficulty
can be overcome if we define p_= £y, and C = V5T so that (3.h)
becames

(v2)  fam - Bye s G <Oy -

The columns of (.‘.k can be found in ascending order by solving

*3) g% = Y

for the rows of Ci s and since p, e be developed similarly from (4.2),
it follows that xi = C,p, ocan be accmmulated as the algorithm progresses
and the colmns of Vk and (3k need not be kept once they have been

ased in the Lanczos algorithm and in forming x‘; The columns of C,

are A-conjugate, since

T <1, T
(b.8)  Clac, = & 8t =8



and a comparison with [3] shows that this method is mathematically
equivalent to the method of conjugate gradients. The approach here is
computationally a little different, for example involving unnecessary
normalization of the Lanczos vectors, but the advantages are that it
emphasizes how the method is based on the Lanczos algorithm, with the
eigenvalues, and therefore the spectral condition number, of Tk
approaching those of A as k increases. Furthermore the role of the
Cholesky decomposition becomes apparent, with the subsequent need for A
to be positive definite to ensure numerical stability.

1f A 4s an indefinite symmetric matrix, then the factorization (4.1)
can still be tried, often with success, but it does not always exist

and can no longer be relied upon numerically.



5. An Algorithm for Indefinite Symmetric Systems

The possible failure of the method of conjugate gradients in
problems involving indefinite symmetric matrices leaves a need for a
nmerically stable method based on the Lanczos vectors. Several such
methods are possible, using various stable factorizations of Tk in
(3.%), but the method we found to be most theoretically and numerically
satisfying is that based on the orthogonal factorization

(5.) T, =LQ e =TI
with f.k lower triangular. The bar is used to indicate that f.k differs

from the kxk leading part of f‘ki-l in the (k,k) element only. As
before y, “in {(3.4) need not be computed; instead, if we define

(5.2) W = [w,eem i ] = V,Q)

(5'3) ;k = (;1""’;k_1!§k)T = Qkyk

then (3.4) becomes

(5.8) LE =B, » X =WE

and it turns out once more that the vi and '1 can be formed, used,

and discarded one by cne. This gives mathematically the same solution
as does conjugnte gradients, but here the factorization is mmerically
stable even vhen T, is indefinite.

The factorization (5.1) is best obtained by a series of orthonormal

matrices each of vhich differs from the unit matrix anly in the

Q, 541

elements qi:l = 'qi+l,1+1 = c:l = CO8 91 » q1,1+1 = q1+1’1 = 31 = gin 01 .
Thus



8% 7, .
T -
(3:5)  TRyo-Qk TR =L =] e 85 ’
% % 7y

where in the next step we compute
, 12 -
(5‘6) 7k = (7§+Bi"l) ’ ck - 7J7k ’ 'k - phl/7k

In the following discussion we will use L_ to denmcte f.k with ik
replaced by 7, . Similarly, following (5.2) and (5.3), we define
z, = (cl,...,;k)T and W, = ["1”""k] s where z, is found from

(57) Lz, = Bie;

so from (5.4) and (5.6)

(5:8) G = 78/ 7y = Oly

finally fram (5.2) and the form of Q’k,hl in (5.5) we have

®x B
8

-C

k k

] = Dhev,]l o, vith ey,

The algorithm defined by (5.1) to (5.4) should not be implemented
directly, since it is wasteful to update x: fully each step ‘n (5.h),
while if f‘x is singular in (5.4) then ik is undefined. Instead we
see fram (5.5) and (5.6) that L, 1s nonsingular if ’nl/‘"’ 0 =
16 defined in (5.7), and rather than updating x, each step ve update

L)



(5:10)  xy = Wz = K+ G

vhere L indicates we are using L, rather than i‘k . Since (5.k4)
and (5.10) show that

(5:1) ) = g+ i

ve are alvays able to obtain X . if 1t is needed. Because L has
better condition than L , solving (5.7) will probably also give
better mmerical results than solving (5.4).

In theory the Lanczos iteration will stop with some pktl =0,
nd then x5 = XU = x , but in prectice 1t is rare to have even a very
mall B . , and some other stopping criterion must be used; here x:
and x will be different, and the cme which gives the smaller residual
would usually be chosen. xi is often a much better approximation to x
then xﬁ, and 80 (5.11) is usually carried out at the end of the
iteration; there iz no facility for doing this in the version of our
algorithm described by Lawsan (6], but it is included in the Portran
subroutine SYMMIQ in this report. Note that Hk has orthonormal columns,
50 that if '

(5.12) disx-xt , d;-x-x: »

then 4, but not df , wust decrease in 2-norm every step. Thus x-
is the best approximation to x lying in the space spamned by
WiseeosWy » and is monotonically increasing in size every step;
apparently this space is usually not as good an approximation space

as that spenned by wl,...,wk_l,ik .

1k



For the algorithm using (5.7) and (5.10) to be theoretically well
defined it is still necessary to show that there is no possibility of r*
being singular. Now from the discussion following equatiom (2.5) and’
the choice of v; in (3.1), we see that methods based an (3.4) will -
only be useful wvhen r = 0 1in (2.1), in which case (3.2) shows that
viea(A) s 1=1,...,k ; but the only possidility of Ly being °
singular is if B, =0, glving AV, = V.7, in (3.3), from vhich ve
see that T, camot be singular. We see then that L = L =1%ol
camnot be singular in (5.7), and therefors sz, = 3 must be well
defined st the final step, even if B . =0 .

In any practical camputatian we will be interested in momitoring
the size of the residual, usually to decide vhan to texminate, s0 vhen
f.k is nonsingular we see from (3.1), (3.h), snd (3.3), thet

¢ c
(5.13) Ty ® beAx = BV, -AVy,

T
= A" e P e 1%k T T P
vhere M is the k-th element of b (W The vector 49 is not

directly availsble in the computation, but since T, = T3 = Q1L ,
equation (3.h) gives

(5. By, - B1%e;
and from the last element of each side

(5.15) ;kntk = B85y ccc 8,

so with (5.6)

(5.16) r: = ~(p,8,8, ... 'k/ ¢ ) Ve

15



Tus |r]| 1s directly available vithout ever forming x; , and in
fact 41t will be shown in a later paper that wvhem rounding errors are
present the norm of the residual using (5.16) is within O(¢)|jl] Jjail
of the true residual nomm corresponding to the camputed xi, vhere ¢
specifies the relative accuracy of floating-point computation.

A slightly longer algebraic manipulation shows that

L
(5.11) rpy = "“": " T2 1o~ Se2CVae2
so that

(5:38)  Ipl® = 2hatha* e

is directly availadble during the camgatation, and may be used to decide
Whether to axit vith x{ or X . Pinally it is thecretically
interesting to compare these two approximstions to x . Prom (5.11),
(5.10), and (5.8) it follows that

R Y ALY
but from (5.9) '-'k -cw ¢ "k;ht-l » glving

c

(539) g = qt (8 / ey
and since from (5.2) ":"'»1 =0 wve see from (5.10) thet ¥, e
:{ are orthogonal, so that
(5.2) liggll < iisgh -

Yor later reference ve shall call the method of this sectiom
Algorithm STIOGR.



6. The Minimum Residual Method

We will now exsmine the simplifications that result wvhen we use
the Lanczos vectors in the minimum residual method described in
Section 2 (b). From (3.5) we see that

(6.2) "{‘2"1: - "i*’iu’k‘g ’

(6.2)  V,AD = VAV, = BTLe .

The matrix in (6.1) is pentadiagonal and at least positive semiderinite,
and so could be nsed directly in (2.7) with the Cholesky dscamposition,
in a very similar mamner to the method of conjugate gredients. TForming
the matrix in (6.1) and then factorizing would lead to an unnecessary
loss of accuracy, but fortunately there is & simpler appaoech.

I we carry out the orthogonal factorisaticm in (5.5) and use (5.6)
we see that

(6.3) T:*’iu’k‘: - r’k{i*”le»l'h‘: - I‘tl'ltx ’

s0 that we have the Cholesky factor directly from T, . In (2.7) we

then have to solve

(68 Lhu = elae

But since from (5.5) and (5.6)

(6.5) 1‘.k =LD, » D ® dieg(l,1,...53¢))

and since L 1is non-singular, (6.4) gives
(6.6) ILiu = BDQe, * (-rl,...,'rk)! =t

17



(6.7) T, EBC s Ty W B8y ...8 50 i =2,...,k ,

00 there is minimal error in computing L':u.k . Clearly w camnot be
found until the algoritim is campleted, but it is not really needed;
_4nstead ve fom

(6.8) M = [mp,..om] = VLT

column by colwmn (cf. (4.3)), and then in (2.7)

(6.9) 2 = v = GLTLu -k

where t, 1s developed in (6.7), and the superscript W shows this is
the vector whick gives the minimum residual. Again it can be seen that
Jrevicus vectors need not be held, and this is 1deal for very large
sparse matrices.

Note that much of the ill-conditioning suggested by (2.7) bas been
avoided, but nevertheless, as k increases the condition mmber of L
in (6.8) spproaches that of A , so that if A is ill-conditioned then
some of the vectors wm arising in (6.8) could be very large and
somevbat in error, lesding to errors in { in (6.9). In fact this
minimm residusl method has been found to suffer a little computationally
on very poorly comditioned problems, whereas no such trouble has been
found vith the method in Section 5. This is probably becsuse the
vectors @, m(s.m)mtmicdly orthonormal.

The minimum residusl method could also have been derived by
considering solving (3.4) using & QR factorization of T . For since
from (5.1) Tp =T, =Q L , (3.) becomes



(6.10) tz’k =BQe ‘i ® k(f‘k)-’rf’i’k

apd a small change to make the computation slightly faster by using (6.5)
leads to

(6.1) o = v (eDQe) .

In fact { could be found from (6.10), or via (6.11), but neither
wvay is as accurate as the method in Section 5, for the same reasons

that the minimum residusl method i+ suspect.
The minimm residual methcd will later be referred to as method

19



T. Scme Properties of the Minimum Residual Method

The minimum residual method described in Section 6 does not give
as accurate results as the method in Section S5 when the problem is
very ill-conditioned, but it still appears to give very good results in
other cases. It can also be used for inconsistent equations vhereas
the method as described in Section 5 camnot. Furthemmore, as the only
way ve have of deciding wvhen to terminate the iteration is by testing
the liz: of the residual, the method which minimizes this is likely to
take fewer iterations than other methods. The other methods occasionally
took a significant percentage more iterations than the minimm residual
method, and s0 it will be of interest to examine the ln.ttei further.

It 1s streightforvard to campare X, with X, , for (3.4) and (6.8)

give
-T._ T

o VLU Ly, - "kr'iyk ’
oI, = Ly, - P12
so with (6.5) and (6.6)

1D - n - maf
- e "k(";a‘l)"k - Ll /e)’n .

Note that X, can easily be obtained during the computation of {,
but the reverse is not true. The n, and v

mamner, for if the Lanczos process stops with pm-l = 0 , then Avm = vnTm ’

T, =L, s wd W =V s

are related in a simple



(7-2) A = VDL o= Vo =W

Using this result with (7.1) gives

(3 vy o= A -2 = ‘k(’k/ck)z"k

go that with (5.16) and (6.7)
rl: =0 -A:{ = By8y6y veo By (80 = Vi) /ey

but from (5.9) Virl * 0% " i 7 8O

78 e eni,, o Nl =1

which shows clearly how the residual norm decreases each step. Also
using (5.16)

(7.5) W = Al lizgll < U5l

except at the last step, where theoretically sk =0 .

Tt is interesting to note from (5.16) and (7.4) that the size of

the residuals r;

the 1Q decomposition of kal , and so are immedietely available

and r:: are given directly by the size of © and

whichever of these algoritims is used. Equatiwn (5.18) shows that
I ri || is also available if (5.7) is solved.

21



8. The linear least Squares Problem

For general matrices A and C , the constrained least squares

problem

min |b - Ax||,
subject to
Cx =4

can be converted to the symmetric indefinite system of linear equations

I A b o b
(8.1) ci| ¢ =1 d
AT ot x 0

vhere r is the vector of residuals and ¢ is the set of lLagrange
multipliers. If A 18 mxn and C is pxn , system (8.1) has a unique
solution if rank(C) =p and nnk(é) =n . In this case the procedure
SR can be applied directly, and should be efficient if the matrices

A and C are large and sparse.

If there are no constraints, system (8.1) reduces to

I A r b
(8.2) T =
A" - x 0]

wvhich again could be solved by SYMMIQ given any starting point (ro,xo) .
However, computation and storage requirements can be halved by using a

special choice of I, as follows. If we define

T -b-Axo

for sny given xo » then the solution of (8.2) is given by
r.- ro+6r
x sxo-l-bx



where

I A or 0
(8.3) - -
AT Bx ATy
o
0
When the Lanczos process is started with the vector of (8.3)
ATI‘O

it can readily be shown that the orthogonal matrix V has zeros alter-

nately in the top and bottom halves of its columns, while tun~ tridiagonal

matrix T has alternately O and 1 on its diagonal. The resulting

simplification in the Lanczos process leads directly to the bidiagomaliza-

tion procedure used by Paige [10, Section 4]. A corresponding simplifi-

cation occurs in the fuctorization T = I1Q as performed in STNMIQ, and

this leads to a new algoritim for solving the least squares problem.
Without loss of generality we shall henceforth take X, = 0,

ry = b . The bidiagomalization procedure, using AT‘b as initial

vector, is defined as follows:

(a) By = A vy =My
(8.%)

T
(b) ByUy =AWy =%y 0 Yy m My By, o
(1 = 2)5’0.-’k) .

The scalars @, >0, B, >0 are chosen so that iy llp = Weglip = 2 -
It is shown in [10, Section 2] that 1if

U = [ul’...,‘lk] 2 al 52
% Py

J = . . H

Vs [vl,...,vk] »

23



then
VU = ViV =1 ,

(8.5) AU = w5 ,

T T T
AV = T 4By W %

and in [10, Section U] it 1s shown that none of the ai can be zero,
and that the minimum-length least squares solution of (8.2) is given
by the equations

(8.6) Jy = g, , Jp=y , x=Up , T=b-Vy
where k is the first integer for which Byey =0 in (8.5). with

(51') .(“") this also solves equations (8.3). Now the elements
&x x

of y can be computed as the bidiagonalization proceeds but p camnot
be found similarly. In (10, Section 4] Paige computed successive

1

colmns of N = W~ by forward substitution, giving the algoritim inplied

by the following equations:

Algoritim 1SCG
@7 Ty-pe , IN-T , xew .

Here x is built up progressively as a linear cambination of the
columns of M , the k-th approximation Xy mininizing the 2-nom of
the residual rk!b-Axk over all vectors x lying in the space
spamned by the first k colums of U .

18CG is very strajghtforwvard and economical, ard lLewson in his survey
of algoritims of this type [6] has indicated his intent to test it more
widely. It does have ane possible failing, and that 4s if J in M = Ut
is poorly conditioned then the columns of M could be very large, and

2k



serious cancellation could occur in forming X = My . This iz the smme
sort of trouble that occurred with the use of algoritbm MINRES in
Section 6, and led us to favor SYMMIQ for symmetric systems. For
similar reasons, SYMMARQ adapted for least squaresz may well be more
mumerically stable than ISCG, so it will ba examined further.

The simplification resulting vhen SYMMRQ is applied to the least
squares problem leads us to the orthogonal factorization |

(8.8) J=I8 , QQ=I , L lower-bidiagomal ,
and hence to the algorithm implied by the following equations:
Algoritim 1SIQ

(8.9) JTv-Blel , ey , WESW , xa=us

where x can still be built up from the colums of W as the algoritim
progresses. This algoritim takes a little more storage and computation
per siep than algorithm LECG, but it has the advantage that WOW = I
which ensures that there is negligible cancellation in forming X = WS .

The quantities involved in the k-th step of algorithm LSIQ are
exactly analogous to those given in equations (5.1), ..., (5.11). We
have
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P -
4 B
% B
Jk = = iqu ’
@1 B
L %
-
7 7
& 7,
) 7
= 3 3
Ly = ;
(8.10) L 5 Tx
T T
U = Yo%3 " %ax 2 Y "I

Uk = [u].""’;‘k-l’“k] ’

[

. T
B = Dopeeov ol = 08

'k ['l’ reey 'k-l ? 'k] 1

end L is defined as the kxk leading part of f‘xu' The system
(8.11) Ty, = B
is solved by forward substitution, and tha pcints that would be computed

by algorithm 18CG 4in (8.7) are given by

- c -
(8.12) D = n o oo = Wk
but as with SYOORQ it is more efficient to work vith the sequence defined by
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(8.13) Lty = % > X o= W

sincc x can be obtained cheaply from z{_l as 1in (5.10). At all
stages it is possible to move from zz to x:._l as in (5.11).
In order to find a stopping criterion it is maturel to define

rpEboA ri’b-n{

and to monitor the size of the vectors A'ry , A'ry . From equaticns
(8.4), (8.10), ..., (8.13) we can show that

T

C
ATy = BTV
L -
Argy = 7 b B8 1 B

vhere y, = (f,...,3)" and 2y ® (G eeesCy08)T 5 s0 that

(8.2%) W= - (e, W°

(8.15) (T PR R A LY U N L
There is no obvious relstionship between (8.14) and (8.15), but both cen
be readily calculsted at the (k+1)-st stage of the bidiagonalisatica.
The final requirement is to sstimate a reasonabls size for these
quantities, given that the computation will be carried out with scome
finite machine precision ¢ . In the case of SYOUR (Sectiom 5) we
would expect the vector ;{ to be an acceptable approximation to the
solution of Ax =b 1if [b-Ax] vere smaller then [jAllfixfc . 8ince
VAV, =T, and XU =Wz, with V, and W, orthogonal, we can use
el ana [is,|| as estimates of [A] ana ||| respectively, and in
practice ve terminate if either [rd| or |5,,[| (as estimatea from
(5-13), (5-18)) 1s mmaller than [T, liz)ll; ¢
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Similarly with ISIQ, the residuals for system (8.3) involve Ax
and ATbr » Where the approximations to 8r are ari = bri . -kak .

Since VIAU =J, end L =Wz with U, V, asd W orthogomal,

we can use

TR A

to estimate
TR
respectively. In practice we terminate if either |A'r}| or a2,

(as estimated from (8.15), (8.1k)) is smaller than

Iyl (3 + iy DY2 ¢



9. Computational Experience
Algoritims SYMMIQ, MINRES and LSIQ have been programmed and tested
on various systems of equations in order to obtain an impression of their

mmerical properties. A comparison has also beeen made in some cases
with Reid's version 2 of the conjugate gradiemts method (CGM) [11]. We
make the following observations.

(1) On symmetric positive definite systems, SYMMQ gives essentially

the same results as CGN. PFor example, the problem involving the laplacian
matrix of order h0B0 (15x16x17 grid) was solved with SYMMIQ under the
same conditions as described by Reid (11] for CGM, viz. single precision

on the IBM Bystem/360. A graph of ilx-xﬂl lagged markedly behind the

curve for CGM shown in (11, Figure 3], but SYMIR terminated at the seme
point as CGM by taking & final step from X. to x5, s in equatin (5.1).
Por test purposes all points ":*1 mcmdmmm. {, snd
the quantities |x-xi|| were sem to follow the curve in [11, Figure 3)
almost exactly.

(2) Although SR obtains the ssme final point as CGM, it is ciear
that for positive definite systems CGM is to be preferred as it is more
efficient.

(3) The variant of CGM described in Section b gave almost idemtical
results for positive definite matrices as CGM in [1]. This confirms that
the derivation of CGM from the Lanczos vectors and the Cholesky factori-
sation of T, is computationally similar to CGNM, aside from their
mathematical equivalence.

() Algoritim MINRES has behaved well cn scme examples imvolving the
2-dimensional Laplacian matrix, giving & rapid snd very smooth decrease
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in both [}l and jlx-2f| . on other very 111-conditioned problems
the estimate of ||rh| in (7.4) decreased stesdily but departed from the
true ||r:“ and thus caused premature temmination. In such cases it was
also cbserved that if iterations were continued, the true || steyed
essentially constant while the true error [x-2| continued to decrease
wntil it reached quite an acceptably low level.

(5) An excellent application of SYMMIQ and MINRES is in solving symmetric
systems of the form (A-uI)x = b in the style of inverse iteratiom,
since if . 1is near an interior eigemvalue ) of A , the matrix

A-puI 1is indefinite. If . 1is sufficiently close to A and b is
chosen eppropriately then the computed x will be o good approximstion
to an eigemvector of A , and in practice it appears that the mmber of
iterations required by SYMMIQ or MINRES is very small.

(6) Figure 1 illustrates the behavior of SYIORQ on & symmetric system
(3%-uI)x = b of crder n = 50, vhere 4 =/3 1s not near m eigemvalue
of 3° but was chosen to make the system indefinite. The matrix B is
tridiagonal with typical non-serc rov elmeats (-1, 2, -1) , so that B°
is pmtaciagomal with typical row (1, -b, 6, -b,1) . Computation vas
performed on a Burroughs BET00 with flosting-point precision
¢ =82 L aassc07 .

Bstimates of the sise of the residual vectors r:, r: and !: are
all available from SYMMIQ, and these were used to give estimates of

logy e}l 5 ogy liefll » oIl vhich are plotted in Pigure 1 agatnet
iteration mmber k . Of interest is the sharp reduction in residual
obtained by taking & final step from x;‘e to the CQM poimt x3, (see



dotted line in Figure 1). Note also the sharp jumps in jirS|| st

k=11 and 2k . These indicate regions of instability in the COM
sequence xi , s described mare fully in the next section, and if the
standard method of conjugate gradients were used to compute the points
X, 1t 18 to be expected that the iterstes |zl would diverge from the
path shown.

The final residual norm cbtained vas 7.83x10™> , while the compated
estizate of |ir5|| vae 7.65x1077 . This 1llustretes that the computed
estimste of |}l remains a good measure of the residual for the coxpited
point xi, in spite of the fact that the computed points are significantly
different from those that would be obtained with exact computation. The
same is true of the camputed estimate of [|r}]] , and similarly for the
estimates of “Arr:u ’ ||Arrlk‘|| in algoritm ISIQ.

(7) Algoritim LSIQ has bdeen tested on least squares problems of the form
2% D b

)

vhere D = diag(d,) 1san nxn diagonal metrix with 4, = (/n)?

for scome integer p >0 . The simple form of the problem allows the
condition mmber P to be altered sasily, and the axact solution to be
found from Dx = (b) +Dh,)/2 . The system is compatible iff b, = b, ,

but incompatibility has no computational effect since the bidiagomalisation

is essantially the same az if the problem were the compatidle system

2Dx = by +D, .
On & series of problems with n =20 and p = 34,...,8 the mmber
of iterstions taken by LSIQ (machine precision ¢ = 102' epproximately)

were 78, 79, 77, 71, 6, 60, which shows a Qistinct decrease as the
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b to 10:Lo . This may or may not be

condition number increases from 10
typical of realistic problems, but it illustrates a tendency of the
algoritim to ignore singular values which are smaller than 51/2 (in
this case, to ignore any 4, < 1072 ), and to comverge on the minimum-
length solution of a modified problem of correspondingly lower rank. This
effect has also been cbserved by C. L. Lawson (private cammmication). In
the above sequence of problems the number of negligible di was lncreasing
steadily, and it could be expected that the number of iterations should.

decrease with the effectively decreasing rank.



10. Sumary
We can now distinguish two reasons why the method of conjugate
gradients (CGM) ma.y fail to solve the symmetric system Ax =b if A is
not positive (or negative) definite. Recall that CGM attempts to compute
a sequence of approximations {xi} satisfying
e

' -1
(J-o-l) H = vak alel ? k = l,2,-..,m

for some m > 0 , vhere vivk = Ik » kaAVk =T  and the matrices Tk

k
are tridiagonal, with Tk+1 having Tk as its kxk principal submatrix.

Recall also that CGM effectively computes the Cholesky factorization of

each T The basic problem we must contend with is the following:

k

If A 4is indefinite, it is possible for some Tk

to be singular or nearly singular (k <m) , even
it Tm is well conditioned.

Now if Ty is nearly singular it happens that the Cholesky factorization

of T, 41s poorly determined numerically for all J >k . Even more

J
seriously, if T, 1s singular the corresponding poimt x; 4n (10.1) is
not properly defined. Thus we gee that CGM's use of equation (10.1) is
doubly doamed to failure.

The main features of algorithms SYMMIQ and MINRES can now be pat imto
perspective. First of all, the orthogonal factorization T, = iqu is
well defined regardless of any near-singularities in TJ for J<k.

In fact, as equations (5.11) and (5.19) show, we could compute the CGM

sequence of points using

(10.2) x; = "i-l* (8 - Cx18-1/%x-1) %k
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without the aid of the Cholesky factorizatiom, but the more fundamental
difficulty remains that X does not exist if T, and hence L, are
singular. In such cases tk in (10.2) is undefined.

SBecondly, them, instesd of using I, to compute the CGM sequence x| ,
we define two new sequences xi and ){ in terms of a matrix "'l: which
is the kxk principal submatrix of f‘kfl and is guaranteed to be
non-gingular. By this means we effectively step around any irrelevant
intermediate singularities in the CGM sequence (10.1l). Some near-
singularities are shown by the peaks in ||r}]| in Figure 1. We see from
(5.6) and (7.5) that ||r;|| = hr!:""'k” |7 | 80 we will get a large
jomp in |iry|| when T, is neerly singular but A is not.

?hul];{ we note that the CGM points x; are not to be discarded
completely, since at least half of them are well defined by (10.l).

This can be seen from the fact that if both '.l'k and Tk+1 are singular
then soareall T, , j>k , hence if A 1s non-singular there cannot
be two singular T,'s in 2 row. (In fact the limiting case is attained
vhen A is the symetric least squares matrix in (8.3), since 4n this
case only the even rambered matrices Ta’Th’ .+ are nom-singular.) Thus
in algoritms SYMMIQ and ISIQ provision is made to terminate iterations
ot a CAGM point whenever advantageous.
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Figure 1. Solution of an indefinite symetric system of equations
(32 -pl)x =1 , using subroutine SYMMIRQ.

Notes

1. Dimension of system is n = 50 ; u 1is not close to an eigenvalue otne.

2. =, 2, 1} are residusl vectors for iterstion paths taken by algorithms
SYMMIQ, CGM, MINRES respectively. Eetimates of the norms of these
quantities are all camputed by subroutine SYMMRQ.

3. Note large jumps in the size of ||r§|| , reflecting intermediste
near-singularities which would cause the standard method of conjugate

gradients to break down.
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Appendix

The following are listings of Fortran subroutines SYMIRQ and ISIQ,
along with subroutine NORM which is used by both. These routines were
developed on a Burroughs B6700 at the Victorial University of Wellington.
For machines with shorter word-length the routines should preferably be
converted to double precision. This can be achieved by changing REAL to
REAI*8 or DOUBLE PRECISION, ABS to DABS, and SQRT to DSQRT throughout.

As noted in the listings, it is assumed that subroutines ATIMES and
ATRARS are avsilsble for computing products of the forn Au and Aly
respectively. These subroutines could be included as parameters to SYMMIQ
and 1I8IQ, with appropriate use of the EXTERNAL statement in the calling
rrogram.

A positive value of the parameter ISTOP indicates that iteration was
terminated at a point xi (see text). A negative value indicates that

the final solution is & point x» .



ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬁﬁﬂﬁﬁﬁﬁﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂ.

SUBROUTINE SYMMLO( NoloBoPoVIDVZDUONACHEP'ACCYOITNNAXJISTUP b )
INTEGER N» ITHMAX, ISTOP .

REAL XCN)s BCNDs PCNDs VICNDs V2(N)» WCEN)» MACHEP» ACCY
REAL ALPHA» BETA» GAMMA» DELTA» EPSLN» CS» SN» 01, D0 4]
. GBAR» DBARs ZBARs QLDB» EPS» EPSAe EPSXs S» T»

” NORMA, NORMX2s LGNORMs CGNORMs QRNORMs BESTNM

SOLVES THE SYSTEM OF LINEAR EQUATIONS
AsX ® B
WHERE A IS AN NeN WMATRIX WMICH IS SYMMETRIC
BUT NOT NECESSARILY POSITIVE OEFINITE.
FOR EFFICIENCY A SHOULD BC SPQRSE.

PARAMETERS?
N THE DIMENSION OF Ae
- X AN N=VECTORe CONTAINING AN INITIAL APPROXIMATION

TO X ON ENTRY CUSUALLY X s 0)s AND THE FINAL
APPROXIMATION TO X ON EXITVe
[ ] AN N=VECTOR CONTAINING THE RMS VECTOR 8¢
PovVisVer N '
N=VECTORS FOR WORK=SPACE.
MACHEP THE MACHINE PRECISION. '
ACCY A USER=SPECIFIED TOLERANCE:. ITERATION IS
TERMINATED IF IT APPEARS THAT NORMIR) <o ACCY,
WHERE R IS THE RESIOUAL VECTOR B = Aele
TTNMAX LIMEIT ON THE NUMBER OF ITERATIONS.
1870P INDICATES THE REASON FOR TERMINATION.
ABSCISTOP) RETURNS ONE OF THE FOLLONWING VALUES!
1 ®> NORMC(R) WAS REOUCED BELOW THE TOLERANCE ACCY,
2 s> NORM(R) WAS REOUCED T0 A REASONASBLE LEVELe i
3 8> THE LINIT ON ITERATIONS WAS REACHED BEFORE TWE
PREVIOUS CRITERIA wERE SATISFICD.

THE STATEMENY

CALL ATIMESC X» Po» N )
SHOULD GIVE THME PROOUCT

P s Ae)e .



[ o X g}

O O®

OO0

10

WRITECS,» 1000) N
EPS = B, 00MACHEP

COMPUTE PESIDUAL VECTOR 8 = AeX
AND INITIATE TME LANCZ0S PROCESS

CALL ATIMESC X» Po N )
00 10 I = 1» N

vicl) = (1) = PCD)
CONTINUE .o
CALL NORMC Vie Ns EPS» 01 )
OQRNORN = D1

SECOND ITERATION OF LANCZ0S

CALL ATIMESC V1, P» N )
ALPHA & 0,40
00 20l = 1, N
i) s vi(])
ALPHA 8 VIC(I)eP(I) ¢ ALPHA
CONTINUE

00 30 1 =1, N

V2(1) = PCI) = ALPHARVI(])
CONTINUE
CALL NORNC V2o Ns EPS» BETA )

INITIALIZE OTHER QUANTITIES

GBAR = ALPHA

OBAR s QETA

02 = 00 r

NORMX2 = 040

NORMA = ABSCALPHA) ¢ BETA
EPSA = NORMASEPS

EPSK = EPSA

It = 0 -

1$70P = O



OOOOTHON

[ X s N W o)

OO

60

70

MAIN ITERATION LOOP

TEST FOR CONVERGENCE

LONORM = SQRT(Dine2 ¢ D2%e2)

CONORM = QRNORMNeBETA/(AUS(GBAR)*EPSA)
BESTNM u AMINLICLONORM, CGNORM)

IF CITN o€QGs ITNMAX) 1ISTOP = )

IF CBESTNM +LE¢ EPSX) ISTOP = 2

IF C(BESTNM +LEs ACCY) ISTOP = }

IF CISTOP «NEs O) GO TO 100

WRITEC(S, 1010) ITNs» X(1)» LONORM, CGNORM

COMPUTE THE NEXT COLUMN OF V (LANC20S)

CALL ATIMESC V2, P» N )
ALPHA = 0,0
DO 60 I = 1 N
ALPHA & V2(1)eP(1) ¢ ALPHA
CONTINUE

00 701 = 15 N
T s v2A1)
V2C(I) s PCLI) = ALPHACT = BETAsvi(])
Vi cl)y = ¢

CONTINUE

OLDB = BETA .

CALL NORMC V2» No EPSA» BETA )

COMPUTE PLANE ROTATION

GAMMA = SORT(GBARe22 ¢ OLDO#*2)
€S = GOAR/GANMA

SN = OLOB/GAMMA

DELTA = CSeDBAR ¢ SNeALPHA
GBAR = SNeDBAR = (BoALPHA
EPSLN ® SNeBETA

DBAR = =CS*BETA

QANORM = SN*QRNORM

b1



OO0

OO

OOOOOHOONKONHO

UPDATE APPROXIMATION TO X

Z = DI/7GANMA
S » 2«(8
T = ZeSN
00 60 I = 1 N
XCI) = (w(I)eS ¢ VICI)eT) ¢ X(I)
WI) » n(t)-su e ¥1(1)eCS
CONTINUE

ESTIMATE NORMCA)» GO ROUND AGAIN

S » OLD8 ¢ ABSCALPHA) +» BETA -
IF (NORMA :LTs S) NORMA s §
NORNMX2 = Zee2 ¢ NORMX2

EPSA = NORMASEPS

EPSX = SORT(NORMX2)sEPSA

01 = D2 = DELTAe2

D2 = =EP3LNeZ

ITN = JTNe)

60 TO S0

END OF MAIN ITERATION LOOP

TEST FOR MOVE TO CG POINT

IF (LONORM «LEs CGNDRM) ISTOP = =I5TOP
IF (ISTOP «LT4 O) 6O TO 120
Z8AR = D1/GBAR
00 110 2 = 1» N
XCE) ® NCIDeZBAR ¢ X(1)
ConTINuE



DISPLAY STATUS AT END OF ITERATIONS

oSOOO

120 WRITE(6, 1010) ITNs XC1)s LONORM» CGNGRM '
WRITECG6,» 1020) ITNs ISTOP» ACCYs EPSX» BESTNM
NRITEC6» 1030) CGNORMs LONORMs QRNORM
RETUAN

c
c . .
1000 FORMATC 75 * SYNMLO OIMENSION OF SYSTEMEI') L8s 77 )
1010 FORMATC 18, 1PE204¢10» 1PGE1SS ) '
1020 FORMATC '3Y,
/o ' NOs OF JTERATIONSS s 18Xs 110»

STOPPING CONDITION wWASS', 18Xs 110,
NORM OF RESTODUAL WAS REQUIRED 70 BEs'»s» 1PE1S¢9s
ESTIMATE OF REASONABLE NORMS 's LPELS.S»
ESTIMATE OF NOARM ACTUALLY OBTAINED! *'» 3IPEL3S )
1030 FORMAT( *OESTIMATES OF NORM OF FINAL RESIDUALL',
/o ' COMPLETED LOt', 1PEL1%S»

* /o * INCOMPLETE LOt', 1PE1S.:S»

. /o ' ORS *s 1PE1%¢S )
c v
¢ END OF SYMNLO

End

L 2 IR BN N J
~ ~

. L ]
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20

SUBROUTINE NORMC Vs No EPSs» BETA
INTEGER W
REAL VEN)» EPSs BETA, S

NORMALIZES THE VECTOR V AND RETURNS THE NORM
AS BETAe CALLED B8Y SUBROUTINES SYMMLO AND LSLGe

S = 0,0
DO 10 I = i»r N
S 5 V(l)ee2 ¢ §
CONTINUE
BETA = SQRT(S)
IF CBETA JLTe EPS) BETA = EPSe0.S

$ s 1,0/BETA

00 201 = 1s N
VEI) = ¥(])e§

CONTINVE

*_ RETURN

END OF NORM
END



OOODOOODOOHDOOOODHOOOOOOAOOOOOOOOOONO

SUBROUTINE LSLOC MaNsXsBsPsVoUrWsMACHEPSIACCYs ITNMAXS ISTCP )
INTEGER M» N» LTNMAX, ISTOP
REAL XCN)Y» BCM)s» P(M)s VC(M)» UCN)s w(N)s MAUCHEP, ACCY
REAL ALPHA» BETA» GAMMA, DELTAs CS»s SN» D1s D20 Yr 20
: GBAR» ZBARs» EPS» EPSA» EPSX» S» T»
NORMA, NORMX2, LONORM» CGNORM» BESTNM

SOLVES THE LINEAR (EAST SQUARES PROMLEM
MINIMIZE R'R» Ru B o Aok
WHERE A IS AN MeN MATRIXs M>mNs AND SHOULD BE SPARSE,

PARAMETERSS

Ms N DIMENSIONS OF THE MATRIX A

X AN N=VECTORs CONTAINING AN INITIAL APPROXIMATION
TO X ON ENTRY (USUALLY X = Q)» AND THE FLNAL
APPROXIMATION TO X ON EXIT.

-] AN MeVECTOR CONTAINING THE RNS VECTOR Be
Pr Vv TWO M=vECTORS FOR WORK=SPACEe.

Us W THQ N=VECTORS FOR wORK=SPACE,

MACHEP THE MACHINE PRECISION,

ACCY A USER=SPECIFIED TOLERANCE. ITERATION IS

TERMINATED IF 1T APPEARS THAT NORMCA'R) <= ACCY,
ITNMAX A LIMIT ON THE NUMBER OF 1TERATIDNS TO B8E DONE,
1870P INDICATES THE REASON FOR TERMINATIONS
ABSCISTOP) RETURNS ONE OF THE FOLLOWENG VALVUESS
1 ®> NORMCA'R) wWAS REDUCED BELOW THE TOLERANCE aCCYe
2 => NORM(A*R) WAS REDUCED TO A REASONABLE LEVEL.
3 %> THE LIMIT ON ITERATIONS WAS REACHED ntroat ™E
PREVIOUS CRITERIA WERE SATISFIED.

THE STATEMENTS

CALL ATINESC Usr Py Mo N )

CALL ATRANSC VYo Ps Mo N )
SHOULD GIVE THE PRODUCTS

P s Ay

P = ACTRANSPQOSE) »y
RESPECTIVELY.

ks



WRITECE, 1000) Mo N
EPS & 3,0+MACHEP

COMPUTE RESIOUAL VECTOR @ = AeX
AND INITIATE THE BIOTAGUNALIZATION

CALL ATIMESC %o P M)
00 10 I = %) N :

P{1) o B(]) = PL])
CONTINUE

CALL ATRANSC Ps Us M»
CALL NORMC Us» N» EPS)

CALL ATIMESC us Vo MWy
CALL NORMC Vo Mo EPSH,

N)
8ETA )

N
ALPHA )

INITIALIZE OTHER QUANTITIES

00 201 = 1, N
wCI) = UCI)

CONTINVE

GBAR = ALPHA

Y = BETA/ALPHA

Dl s Y

02 ® 040

NORMX2 = 000

NORMA = ALPHA

EPSA = NORMACEPS

EPSX & EPSA

ITn = O

I$TOP » O



OO N OOOOODONN

OO0

OO0

70

MAIN JTERATION LOOP

FIND NEW COLUMN OF V

CALL ATRANSC Vs Py Mp N )
00 60 I = 1» N
UCE) o PCI) = ALPHArU(])
CONTINUVE >
CALL NORM( Us No EPSAs BETA )

TEST FOR CONVERGENCE

LONOGRM = SQRT((ALPHA®D1)e#2 ¢+ (BETA®D2)ee2)
CGNORM = ABSC(BETA+Y)

BESTNM = AMINICLONORM» CGNORM)

IF CITN +EQe JTNMAX) ISTOP = 3

IF CBESTNM <LEe EPSX) ISTOP = 2

IF CDESTNM oLEe ACCY) ISTOP = |

IF CISTOP oNEse 0) 60 TO 100

WRITECG6, 10100 ITNs XC1Ds LONORMs CGNORN

FINO NEW COLUMN OF V

CALL ATIMESC Us Ps Mp N )
DO 701 = 1, M
v$l) = PC1) = BETA«V(])
CONTINUE
CALL NORMC Vs Mo EPSAs ALPHA )

COMPUTE PLANE ROTATION

GAMMA = SQRT(GBARee2 ¢ BETARe2)
CS = GBAR/GANNMA
SN & BETA/GAMMA
OELTA & SN*ALPHA
GBAR & oC3eALPHA
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UPDATE APPROXIMATION TO X

2 ® DI/GANMA
S » ZeCS
T s oSN
D0 00 I = 1s» N
XCI) o CHCI)eS @ UCIDdeT) o XNILI)
wiid) s H(I)OSN ® Yild)e«CS
CONTINUE

ESTIMATE NORMCA), GO ROUND AGAIN

IF CNORMA oLToe ALPHACGBETA) NORMA = ALPHA®BETA
NORMX2 = Yan2 ¢ Za92 o NORMA2

EPSA = NORMASEPS

EPSX u SORTI(NORMXZ)*EPSA

Y s oBETAY/ZALPHA

02 = DELTAeZ

DL = Y = D2

ITN & [Tnel

¢0 T0 %0

ENO OF MAIN ITERATION LaOP

TEST FOR NOVE T0 CG POINY

IF CLONORM «LEs CGNORN) [STQOP ® =[3TOP
IF CISTOP oLTe 0) GC TO 120
I8AR s D1/7GBAR
00 110 I = i» N
X(I) » WCI)aZBAR o X(])
COnTInGE
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OISPLAY STATUS AT END OF ITERATIONS

120 WRITECS6, 10100 ITN» XC1)s LUNORM, CGNORM
‘ WRITECG6» 1020) ITNs ISTOPs ACCYs EPSXs BESTNM

RETURN

1000 FORMAT(
1010 FORMAT(
1020 FORMAT(

/» ' LSLQ¢- ODIMENSIONS OF SYSTEMI®s 2100 /7 )
50: 1PE20+10, 1PGELS5¢S5 )
1'%

/o ' NOs OF ITERATIONSS ‘s 18X, 110»
/o ° STOPPING CONDITION wASS'» 18X» 110»
/o ' NORM OF ACe«TIR WAS REQC TO BEs  0» 2PE1354%»
/o * ESTIMATE OF REASONABLE NORNM? ‘s APELSS,
/5 ' ESTINATE OF NORM ACTUALLY OBTAINEG: '» 1PE1SeS )
END OF LSLO
END



