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Abstract 

The concept of least fixed-point of a continuous function can be 

considered as the unifying thread of this dissertation. 

The connections between fixed-points and recursive programs are 

detailed in Chapter 2, providing some insights on practical implementa-

tions of recursion. There are two usual characterizations of the least 

fixed-point of a continuous function. To the first characterization, 

due to Knaster and Tarski, corresponds a class of proof techniques for 

programs, as described in Chapter 3. The other characterization of 

least fixed pOints, better known as Kleene1s first recursion theorem, 

is discussed in Chapter 4. It has the advantage of being effective 

and it leads to a wider class of proof techniques. 
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Introduction 

The goal of this work was to study and hopefUlly compare in a 

precise way the various techniques for proving properties of programs 

eXisting in the literature. It soon turned out that nothing interesting 

could be said if one did not state precisely what the various methods 

really are within a common logical system. A perfectly adequate system 

for doing so was the Logic for Computable Function of Milner [18J, which 

is based on the work of Scott [29] and [30]. 

In this framework, proof techniques fall rather nicely into two 

classes: for the first class, which includes the methods of Burstall [lJ, 

Floyd [7], Hoare [9], Manna-Pnueli [16], the semantics needed for validating 

the techniques only demand that programs be interpreted as monotone 

fUnctions in the sense of Scott [29]; for methods in the second class, 

such as those of Scott [30] and Morris [23J, programs must be interpreted 

as continuous fUnctions. 

The methods in the second class are then "more powerfUl" in that 

they can be used for justifying the other techniques; fUrthermore, 

provided that all methods are expressed within the same logical system, 

we can exhibit properties of programs which are provable with the 

proof-techniques in the second class, and not provable with the techniques 

in the first class, and not vice-versa. 

Before studying the various proof techniques, we present a minimal 

background in Scott t S Theory of Computation in Chapter 1. One of the 

points of the theory which we thought needed clarification was the 

relations between the abstract notion of least fixed-point and the 
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concrete notion of trace of a program. Chapter 2, which is the most 

original part of this thesis, is devoted to this question. We believe 

that Theorems 1, 3 and 4 are new while Theorem 2 is a generalization 

of a result by Cadiou [2]. 

In Chapter 3, we study the proof-technique in the first class. The 

formal system used is original, although a mere adaptation of Milner's 

LCF to a different semantic domain. Reduction of the proof techniques 

presented to the rule of fixed-point induction are due to Park [26]. 

In Chapter 4, we describe reductions of some methods to the rule 

of induction of Scott [30]; some of these reductions are also used, 

implicitly or explicitly in deBakker-Scott [6], Scott [30], Milner [18], 

and Milner-Weyrauch [21]. 
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Chapter 1. SCOTT'S THEORY OF COMPUTATION 

In this chapter, we shall present an overview of Scott's theory 

of computation, whose goal was to give a "mathematical" as opposed to 

"operational" semantics for high-level programming languages. Only the 

parts of the theory which are relevant .. to this dissertation will be 

described. In particular, one of Scott's most impressive achievements 

was to construct a model for the ~-calculus, which in turn provides a 

mathematical semantics for programming peculiarities such as self-modifying 

machine codes or procedures taking other procedures as arguments. We 

shall not concern ourselves with this problem, and the kind of procedure 

we are willing to consider has a definite type -- a fUnction from 

individuals to individuals, or a fUnctional from functions to functions, 

etc. Limited as it is, the theory that we shall describe is nevertheless 

powerful enough not only to describe the semantics of non-trivial subsets 

of any programming language, but also to justify all the existing proof 

techniques for those languages. The presentation of this chapter, whose 

only purpose is to make the thesis more or less self-contained, is based 

on Scott [29] except for some minor technical details. 

We aSSTh~e that the reader has some knowledge of elementary lattice 

and recursion theories. 
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1. Data Types 

As a first step, let us consider some examples of what one would 

like to call data types: 

(a) the boolean values true and false; 

(b) the set of integers; 

(c) the n-dimensional arrays of integers; 

(d) the set of subsets of integers; 

(e) the set of computable partial functions over some data-type; 

(f) the set of non-negative real numbers. 

Some of those sets contain as elements objects like total functions or 

irrational real numbers, which we shall call "infinite elements". They 

cannot be described entirely, but one can give better and better finite 

approximations to what they really are. For example, the intervals 

[3,4], [3.1,3.2], [3.14,3.15], 

of TT • 

form a sequence of approximations 

This suggests that data-types ought to be partially ordered sets. 

The notation x ~ y means that x approximates y, and C must 

therefore be a reflexive, transitive and antisymmetric relation over 

the data-type. For example, if A and B are some subsets of the 

integers, A C B means that A is a subset of B. Similarly, for 

any two intervals [x,x'] and [y,y'] of non-negative real numbers 

[x,x'] ~ [y,y'] will mean that x:5 y and y' < Xf , i.e., [y,yf] 

gives us a better idea of where the real number lies than [x,x'] . 

ConSidering now two integers k and £, we do not wish to say 

that one is an approximation of the other. However, it may be the 

case that k is not explicitly known, but has to be determined as 
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the result of some computation. As we all know, this computation may 

never terminate, in which case k is said to be undefined; we denote 

this by k '= UU and clearly UU C l for any £ We use a different 

equality sign " = " in order to avoid confusions with the regular 

equality" = " over the integers. Here, x '= y means that x ~ y 

and y ~ x ,while x = y is true whenever x and yare the same 

integer. For example, 1 = 1 and 1 '= 1 are both true, while UU '= 1 

is false and UU = 1 is undefined. To be precise, one should write 

(UU
I 

= 1) '= DUB where the subscripts are here to remind us that UUI 

is an undefined integer, while UUB is an undefined boolean. 

To clarify those ideas, it is helpful to describe more precisely 

the partial orderings over our favorite data types. 

(a) For the boolean values, the data type looks like 

b 
where ~ means that b covers a, i.e., a C b with 

a 

and a C c c b for some c implies either a - c or c '= b . 

(b) Although there are infinitely many integers, the corresponding 

data type is not much richer: 

1 2 n 

~/ 
Data types of this kind, where el~~ents are either completely specified 

or undefined will be called discrete. 
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(c) The data type of pairs of Boolean has already a richer 

structure: 

(TT,TT) (TT,FF) (FF,TT) (FF,FF) 

1><><><1 (TT,UU) (UU,TT) (UU,FF) (FF,UU) 

~~ UU 

(d) In the data type of subsets of some set, A C B means that A 

is a subset of B ; the least element UU is the empty set. 

(e) As indicated before, the elements of the data type of real 

numbers are closed intervals [x,x' J with ° < x < x' and 

[x,x' J r::: [y,y' J whenever x:s y and y' < x' It is convenient 

to complete the real line with an ele.."'Uent 00, thus allowing [7.1, 00 J 

for example, to be a real number. The interval [O,ooJ reflects a 

complete lack of information and should therefore be identified with 

the undefined real UU . 

(f) If Jj is a data type partially ordered by ~Jj' the partial 

functions mapping Jj into j} are ordered by: 

f~g iff f(x) ~Jj g(x) for all x in Jj. 

The minimal element UU Jj->Jj is the partial function which is everywhere 

undefined, i.e., UU(x) - UU for all x in j}. 

Infinite Elements as Limits 

Let us contemplate again the sequence 

[3,4J, [3.1, 3.2J, [3.14, 3.15J , .... We would like to be able to 
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define TT as the "limit" of these intervals. Abstractly, this will 

require that any chain:J 

Xo C xl C '" ex. ex. 1 C .,. 
- - - l - 1'+ -

has a limit y in the data type JJ , which is the least-upper bound 

of the x.' s that is, x. C y for every j and, for any z in the 
l J -

data type, x. C z for every j implies yr;:: z . We write y - U x. 
J 

According to this notation, in the data-type of real numbers 

[1,2] == U [i/(i+l), (2i+l)/i] and for sets of integers, 
i >0 

tklk is odd} - U tl,3, ... ,2i+l} 
i >0 

Let us define the constant 

i >0 

function one as one(x) == 1 for any integer x, while one(UU) == UlT 

this function can also be defined as a limit of partial fUnctions 

one - U 
i >0 

[Ax. if x < i then 1 else UU] 

Computability 

Asking that the infinite object U 
i >0 

X. 
l 

be computable will 

require that the X. 
l 

themselves be computable. We therefore postulate 

the existence of an effectively given subset E of the data type JJ, 

such that any element of JJ is the limit (not necessarily effective) 

of some chain of elements of E Such a set E will be called a 

recursive basis of JJ. For example, a data-type in which there are 

no infinite ascending chains (booleans, integers, arrays) is its own 

*I 
~ Strictly speaking, we only need denumerable chains to have a limit. 

However, when data-types have a denumerable basis (see below), 
requiring that countable chains have limits implies that any chain 
(and in fact directed set) also has a limit. 

7 
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basis provided that it is recursive. The finite sets of integers 

constitute a basis for the set of subsets of the integers. Similarly, 

the set of functions which are undefined for all but a finite number 

of arguments is a basis for the data type of partial functions. 

Finally, a basis for the real numbers is the set of rational-end-point 

intervals. 

We can remark that the recursive basis of a data type » must be 

denumerable. Consequently, all of its elements being obtained as 

limits of denumerable chains in the basis, » itself has at most a 

continuum number of elements. In particular, since there are at most 

denumerably many computable objects (i.e., objects defined as limits of 

effectively given chains), a non-denumerable data-type will possess 

many non-computable elements. 

We can summarize the above discussion by the postulate 

A data-type is a partially ordered set with a 

minimal element, possessing a recursive basis 

and in which every ascending chain has a limit. 

Note: This notion of data-type is slightly different from the one 

advocated by Scott [29J, namely that data-types ought to be complete 

lattices. The main technical reason for this choice was the difficulty 

which seems to arise for defining our notion of sequential function 

in Chapter 2, with complete lattices. 
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2. Computable Functions over Dat~ Types 

The next step is to consider programs as functions mapping data 

types into data types, and to derive some mathematical properties of 

such functions. 

Programs as Monotone Mappings 

Let f be a partial function computed by some program. Whenever 

the input x is less defined than the input y, the output f(x) must 

be less defined than f(y) ,i.e., x ~ y implies f(x) ~ f(y) . This 

motivates the hypothesis that fUnctions computed by programs are monotonic 

mappings over the data type. 

Examples 

-- The successor function [~x. x+l] over the integers is monotone 

if we choose UU+l == UU . 

-- The conditional if p then x else y where 

if UU then x else y == UU 

if TT then x else y == x 

if FF then x else y == y 

is monotone with respect to p, x and y. (A function of several 

variables is monotone when it is monotone in each of its arguments.) 

-- As for sets, the fUnctions A U B and A n B are both monotone 

in A and B . 

-- The following definition of division over the reals makes it 

a monotone fUnction: 
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[x,y] / [Xl ,yl] 

X o and X 

o 

X Y 
[Y"X' ] where 

for all xc[ 0, (X)] • 

Programs as Continuous Mappings 

As it stands now, the theory is already quite adequate for 

expressing and proving properties of programs, and Chapter 3 describes 

some results which can be derived from the assumption that mappings 

between data-types are monotone functions. 

However, we are still miSSing an essential property of computable 

functions. Knowing the values of a monotone function over the basis of 

a data-type does not determine in general its values over the data-type. 

For example, the function 

U B if A or B is finite 
funny-union (A, B) 

if A and B are infinite 

where A and B are two subsets of N , is monotone but clearly not 

computable. 

Intuitively, the value f(x) of a computable function f at an 

infinite object x should be obtained as the limit of the values 

f(x. ) 
J.. 

over the finite approximation X. 
J.. 

of x . More precisely, let 

us consider an arbitrary chain 

of elements in the basis of the data type. Since f is monotone, the 

set [i > 0 \ f( ei )} is also a chain 
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and the computability of f demands that 

f( U e ) 
n >0 n 

U f( e ) 
n 

n >0 
( a) 

A monotone functior satisfying equation (a) for arbitrary chains will 

be called continuous. We shall therefore postulate that 

Computable fUnctions are continuous mappings between 

data-types. 

Again, a function of several arguments is continuous if it is continuous. 

in e~ch of its arguments. 

Examples 

-- The function [Ap,X,y. if P then x else y] is continuous. 

Addition of two integers, union of two sets, division of reals are also 

continuous operations. The functional [AF.[Ax. if x = 0 then 1 else x.F(x-l) 

over the data-type of natural numbers is continuous, both in F and in x . 

-- Let us define the mappings ax p(x) and Vx p(x) which associate 

a boolean to each function p from natural numbers to booleans as 

follows: 

-- ax p(x) is equal to TT if p(n) - TT for some natural 

number n and equal to UU otherwise. 

-- Vx p(x) is equal to TT if p(n) - TT for all natural 

numbers n ft UU and equal to UU otherwise. 

We shall verify that [Ap.(aX)p(x)] is continuous while [Ap.(VX)p(x)] 

is monotone but not continuous in general. 

11 
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be a chain of partial predicates over the natural numbers. We easily 

verify that ( u P.) (x) -
i >0 l 

u (p. (x)) . 
i >0 l 

Now, if ( U p.) (x) -
i >0 l 

u p. (x) == TT for some x, there must exist an iO such that i ~ iO 
i >0 l 

implies 

is an 

p. (x) - TT 
l 

such that 

otherwise, either 

p. (x) - FF or 
lO 

( 0 p.) (x) - FF and again there 
i >0 l 

( LJ p.) (x) - UU 
i >0 l 

and p. (x) == UU 
l 

for all i In all cases we have (ax) ( u p.) (x) == u (ax)p. (x) and 
i >0 l i >0 l 

a is indeed continuous. One shows that V is monotone in a similar way 

and the chain p.(x) == (x < i) provides a counterexample to the continuity 
l 

of V . 

Let us now discuss some properties of continuous functions. First 

of all, it is possible to define a topology over data-types such that a 

function is continuous in the above sense if and only if it is continuous 

in the topological sense (see Scott [31]). Without describing the 

topology, we can nevertheless say that a subset X of the data-type » 
is directed if for all X,YEX, there exists a ZEX such that x c Z 

and y ~ z. Together with the existence of a denumerable basis for g, 

the fact that continuous functions preserve limits of denumerable chains 

implies that continuous functions also preserve least-upper-bounds of 

directed sets. Continuous functions do not however preserve least-upper-

bounds or greatest-lower-bounds (when they exist) of arbitrary sets. 
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3. Fixed Points 

Let f be a function over a data-type ft. We say that XEft is 

a fixed-point of f if x = f(x) ; we say that y is the least-fixed-

point of f if Y = f(y) and y ~ x for any other fixed-point x 

Note that) whenever it exists) the least-fixed-point of f must be 

unique; we shall denot~ it either by ~x.f(x) or by xf 

Theorem (Kleene). Any continuous function over a data-type ft has 

a least~fixed-point xf and 

x = f U 
n>O 

~(uu) 

Proof . . Here ~(UU) means 

monotonicity of f ) the set 

prove that U ~(UU) is a 
n>O 

f( U ~(uu)) -
n >0 

f(f( ... (f(UU)) ... ) (n times) and) by 

n 
£f (UU)} for n>O is indeed a chain. We 

fixed point of f This is easy since 

by continuity of f . 

We now prove that U ~(UU) must be minimal. Let y be an 
n>O 

first 

arbitrary fixed-point of f) i.e.) y - f(y) It is easy to prove by 

induction that ~(UU) ~ Y for any n 

follows immediately. 

Examples 

- In any data type) 

The conclusion U ~(uu) ~ y 
n>O 

o 

If ~ - ~f.[Ax. if x 0 then 1 else x.f(x-l)] 

and a = ~f.[Ax. if x > 100 then x-10 else f(f(x+ll))] over the 

natural numbers) 
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t ffn+l(UU) _ [, ' hen • ,-..x. if x S n then x~ else UU J 

and an+l(uu) - [Ax. if x > 100 then x-10 

therefore, f - [AX.x! J 
'f 

and 

else if x-100 > -n then 91 else UUJ ; 

f = [AX. if x > 100 then x-10 else 91J a -- ---- -.---

From these examples, the reader may already suspect that there 

must be a relation between recursively defined functions and least 

fixed points. The next chapter will be entirely devoted to this 

question. 
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Chapter 2. FIXED-POINTS AND RECURSION 

The object of this chapter is to detail the connections between 

fixed-points of continuous functionals and recursively defined functions 

in a very simple programming language. We first illustrate that the 

semantics of recursively defined functions will depend on the implemen­

tation. A careless implementation of recursion will introduce unnecessary 

computations, which may even prevent the program from terminating. 

A general criterion for the correctness of an implementation will be 

proved. We then describe an implementation of recursion which is both 

correct and optimal in a general class of sequential languages and 

therefore constitutes an attractive alternative to both "call by value" 

and "call by name" . 

1. Computations of Recursively Defined Functions 

Before defining a computation rule, we must describe two programming 

languages, lang Sand lang P . Although thos e two languages were 

chosen for their extreme simpliCity, their use of recursion is as general 

as any, and the results of this chapter provide some insight into 

semantics and implementation of more complex programming languages. 

Lang S permits only sequential computations, and corresponds 

preCisely to a certain "typed" subset of Algol or LISP. 

Lang P requires some parallel operations, and thus departs from 

more classical programming languages) although we could undoubtedly 

write an interpreter for lang P in any of those classical languages. 
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1.1 Description of lang S and lang P 

Syntax 

Both languages have the same syntax: 

(program) ::= F(Xl , ... ,Xn) <= <term) 

<term) ::= AIIA21 .. . 

Ixll· .. Ixn 

I Gl (term 1), ... , (term Pl») 

IGk( (term 1), ... , <term Pk») 

\F( <term 1), ... , <term n») 

We limited ourselves to a single recursive equation, the extension 

of the results in this chapter to systems of mutually recursive 

equations being straightforward. 

Here, A
l

,A2, ... ,Gl , ... ,Gk denote fixed constants and functions 

respectively. It is convenient to use a more standard syntax, e.g., 

F(X) <= IF X = 0 THEN 1 ELSE X.F(X-l) instead of 

F(X) <= Gl(Pl(X,AO),Al,G2(X,F(G3(X)))) 

The meaning of a program will be a continuous mapping in 

simplicity, the 

specified. 

where each g. and g are some data-types; for 
1 

g. 's 
l 

will be identical to g unless explicitly 

Semantics of terms in lang P 

The meaning of a (term) is a (continuous) functional 

Af.Axl , ... ,xn~«term») where the semantic function ~ is defined 

inductively as follows: 

( i) where a. EJ) 
1 
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,,;(x) == X. 
1 

where 

(ii) 

(iii) ,,;( Gk (term 1), ... , (term Pk») == gk (,,;( (term 1»), ... ,.I( (term Pk»)) 

Pk is some continuous function in [» ~»]. 

(iv) ";(F((term 1), ... ,(term n»)) - f(,,;(term 1»), ... ,,,;«term n»)) 

Here we have to prove that this is continuous, i.e., that continuous 

functions are closed under composition, A-abstraction and fixed-point 

operation. The reader can find these proofs either in Scott [30] or in 

Milner [19]. 

Semantics of Terms in lang S 

The semantics of lang S is defined in precisely the same way as 

that of lang P , the difference lying in restrictions on the interpreta-

tion of base functions. In lang S , we require functions to be sequential, 

i.e., roughly that their arguments can be computed in sequence. We shall 

give later a precise definition of this notion. For expository purposes, 

however, we shall limit ourselves for the moment to studying a particular 

sequential language. 

The data-types on which our particular lang S is computing are 

discrete, i.e., they look like: 

or /3: tt ff 

\/ 
uu 

In what follows, we use w instead of uu» and 0 in place of uu» ...... » 
in order to help the eye avoid type confusions. Among the base functions, 

we point out a particular one, denoted IF-THEN-ELSE whose interpretation 

is the usual conditional, i.e., if uu then x else y == w , 

if tt then x else y == x and if ff then x else y == y . 
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All other base functions are required to be strict, i.e., 

g. ( ... , w, ..• ) == W 
l 

they are undefined as soon as at least one of their 

arguments becomes undefined. They are meant to correspond to the 

II hardware " functions: add, addone, test-for-equality, ... 

It will be shown that all functions definable in lang S are 

sequential. The symmetric OR defined by the table: 

~ uu tt ff 

uu uu tt uu 
x OR Y 

tt tt tt tt 

ff uu tt ff 

or the symmetric multiply * where O*x - x*O == 0 are not sequential, 

and are therefore not definable in lang S , nor in Algol for that matter. 

Semantics of Programs in both lang S and lang P 

The functional T == ~f.Axl' ... ,xn~«term») as defined in lang S 

or lang P can be shown to be continuous. It must therefore have a 

least fixed-point f and it would be nice to define the meaning '1l1. of 
T 

the corresponding program as '1l1.(program») == f . 
T 

This is unfortunately not true for all implementations of recursion, 

and our goal will be to characterize the implementations for which the 

computed function is equal to this least fixed-point. 

1.2 Conventions and Notations 

The reader has already noticed that syntactic entities are denoted 

by upper case letters, while the associated semantic objects are 

represented by the corresponding lower-case letters. We shall keep this 

convention throughout this chapter. For example, if T is the term 
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IF X = 0 THEN 1 ELSE X.F(X-l) , then its meaning t is 

~f.Ax if x = 0 then 1 else x.f(x-l) , where in this last expression 

means the equality fUnction over the natural numbers, 0 the number 0, 

etc. 

From now on, we use upper case letters other than A, D , X , F 

and G to denote (syntactic) terms. If T and S are terms, we denote 

by TtS/X.} the result of replacing all occurrences of the letter X. 
1 1 

by the term S in T. By TtP/F} , we mean the term obtained by 

replacing in ~ all subterms of the form F(Tl , ... ,Tn) by 

P[Tl/Xl , ... ,Tn/Xn } . For example, 

if T = Gl(F(Xl,F(Xl,X2))'Xl) and P = G(F(X2,X1) 

Whenever we only wish to substitute P for some occurrences of F 

in T , we rename, say Fl , the occurrences that we shall substitute 

and F2 the others. The result of the substitutions is then 

The same kind of notation also applies to semantic terms. 

We use F(X) and f(x) as abbreviations for F(X1, ... ,X
n

) and 

f(x
l

, ... ,xn) respectively. 

Also, it will be convenient to consider only programs F(X) <= P 

where P is of the form G(Pl , ... ,P
p

) with the additional restriction 

that each of the letters F, Xl' ... ,Xn occurs at least once in P. 

That is, P is required not to ignore any of its program variables, 

to depend upon F (i.e., to be recursive) and not to be of the 

uninteresting form F(X) <= F(Tl , ... ,Tn) . The main results of this 

chapter generalize without this restriction, but the proofs are made 

longer by an addition of special cases. 
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1.3 Computation Rule 

A computation rule ~ is an algorithm for selecting some occurrences 

of the letter F in each term. For any such rule and input D, we 

construct the computation sequence TO,Tl , ... ,Tn, ... of the term T 

by the program F(X) <~ P as follows: 

result of substituting P for the F! S chosen by ~ in T .• 
J. 

For 

example, if p:=: IF X < 2 THEN X ELSE F(X-l) + F(X-2) , the computation 

sequence of F(X) according to "call-by-value" for input X:= 2 is: 

Tl IF 2 < 2 THEN 2 ELSE E(l) + F(O) 

T2 IF 2 < 2 THEN 2 ELSE (IF 1 < 2 THEN 1 ELSE F(O) + F( -1» + !:(O) 

T3 IF 2 < 2 THEN 2 

ELSE (IF 1 < 2 THEN 1 ELSE FeO) + Fe -1» + 

IF 0 < 2 THEN 0 ELSE F( -1) + F( -2) 

(Here, F(l) is in fact an abbreviation for F(2-l) , etc.) 

In Tn' we underline the F's selected by the computation rule 

for substitution. It is interesting to see precisely how the underlined 

F is selected in this last example. For this purpose, we must introduce 

the notion of simplification. The simplification mechanism is discussed 

at length in Cadiou [ 2J) and we refer the interested reader to this 

work. In our particular example, it is possible to define a simplifi-

cation mechanism ~T simpl(T) such that 
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Simpl(Tl ) = F(l) + F(O) 

Simpl(T2) 1 + F( 0) 

(Note that now, F(l) is no longer an abbreviation since simpl(2-1) 1.) 

The rule "call-by-value" then selects the lei'tmost-innenuost 

occurrence of F in simplified tenus. Similarly, "call-by-name" 

selects the "leftmost-outenuost" one. 

In its most general form, simplification can be an extremely 

powerful computation tool. For example, if our program is 

F(X) <= IF X o THEN 0 ELSE F(X-l) it is perfectly all right to use 

F(X) ~ 0 as a simplification rule over the natural numbers, and there 

is no room left for substitutions! Our purpose however is to study 

computations which are performed by substitutions and not by 

simplifications. 

We must therefore restrict the power of simplifications which we 

allow, and, for this purpose, we merely borrow Cadioufs notion of 

standard simplifications (see Cadiou [2 J for a precise definition). 

Roughly, standard simplifications force us to know everything about 

base functions, and nothing a priori about the recursively defined 

function F , since simplifications of the type F(i3) ~ A. 
~ 

are not 

permitted. In effect, we have to compute without any "built in" value 

of the recursively defined function, stored for example in memory from 

a previous computation. 

We will not study standard simplifications in lang P , since this 

would require describing completely the data-type on which computations 
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are performed but we will describe them in lang S . 

For all constants A. l , ... , A. and base function G there 
1 lP P 

exists a standard simplification of the type 

G (A. I' ... ,A. ) -> A. P 1 lp J 

In effect, this says that the values of the base-functions over the domain 

are known, and these functions are total. Accordingly, the conditional 

admits the simplifications 

IF TRUE THEN B ELSE C -> B and 

IF FALSE 'I'I-lEN B ELSE C -> C 

These are the only standard simplifications in lang S and we say 

that a term is simplified when all of its subterms have been simplified. 

1.4 Computation Lattice of a Program 

Instead of considering computation sequences for each input and 

computation rule, we can apprehend the set of all possible computations 

in one infinite diagram. 

For example, the computation diagram of the term F(F(X)) by the 

program F(X) <= G(X,F(F(X))) looks like 
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A computation rule is then an al{~orithm for selecting a path in such 

a graph for each input. This computation diac;ram has a very rich 

structur~ which we shall now study. 

Computation of a term according to P 

We say that B -+ C or simply B -+ C whenever C can be obtained 
p 

by substituting P for some occurrences of F in B 

* * The notation B ..... C or B -> C means that there exists a 
P 

finite sequence of terms DO,Dl , ... ,Dm such that DO = B ) 

and D. -+ D '+1 for 0 < i < m . 
J. P J. 

D = C 
m 

Definition 

The computation diagram of T by P is the set of terms U such 

* * that T -+ U , partially ordered by < where B < C whenever B -+ C . 
p p 

It is clear that < is reflexive and transitive. In order to prove 

that it is also antisymmetric, we notice that, if B -+ C , the size 
p 

\\C\\ (Where size is, say the number of symbols) of the term C is 

strictly larger than the size of B if at least one substitution has 

been performed (this is due to our restriction on p). It follows 

* * that B -+ C and C -> B implies B "" C . 

Clearly, the computation diagram of T by P has the Church-Rosser 

property of the A-calculus. (This follows from the work of Rosen [28] 

for example.) However, it also has a property which is not true of the 

A-calculus, namely: 
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Theorem 1 

The computation diagram of T by P is a lattice under the 

ordering .:;, and we shall name it the computation lattice of T by P. 

Proof. 21 In order to study the structure :f the computation diagram of 

a term TO by a program P, we need to relate the structure of C to 

* that of B when B -> C 
P 

Lemma 1 

( i) 

(ii) 

( iii) 

* * A. -> C 
~ 

if and only if C = A. and X. -> C if and only if C = X. ___ ~_--- J J 

* G. (B
l

, ••. ,B ) -> C 
~ 1\ if and only if C = G. (C l ' ... ,C ) and 

~ p. --

* B. -> C. for 1 < i < p .. 
~ l - - l 

if and only if C = F(C
l

, ... ,C
n

) 

~ 

* with B ...... C. 
l ~ 

Proof. Claims (i) and (ii) are easy 

* 

and we only prove (iii). 

If B = F(Bl ,·· .,En ) -> C and C is not of the form F(C l ,·· .,Cn ) 

* there must be a point in the computation B -> C where the outermost F 

* P[BJ/Xl ) ... ) B~/Xn} -> C with B! -> B'.' 
~ ~ 

(and therefore * B. -> B'.' ) for 
l l 

any l<i<n. 

* It follows from our definitions that B. -> B'.' for 1 < i < n 
~ ~ 

* implies P[Bl/Xl )···) BjXn } -> P[BJ/Xl ) ... , B~/Xn} and consequently 

* P[BJX
l 

) ... ) En/Xn} -> C , as claimed in (iii). In order to get the 

~ I am grateful to Jean-Marie Cadiou for his help with this proof. 
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other part of the implication (iii), we simply notice that 

F(Bl , ... ,Bn) -> P[Bl/Xl , ... , Bn/Xn "\ 

F in F(B
l

, ... ,B
n

) . 

by substituting P for the outer 

o 

If B ~ C , we can define a distance dist(B,C) between B and C 

as follows: 

( i) 

(ii) 

if B==A. or B==X. then C==B and dist(B,C)=0 
l J 

if B == G. (Bl ,· .. ,B ) then C 
l Pi 

for 1 < i < p. and dist(B,C) 
- - l 

== G. (C l' ... , C ) wi th B. < C . 
l Pi l - l 

max tdist(B.,C.)} 
l<j<p. J J 

- - l 

(iii) if B == F(B
l

, ... ,B
n

) then (by Lemma 1), either C == F(C l' ... ,Cn) 

and dist(B,C) == max 
l<i <n 

[di st (B. , C . ) } 
l l 

or 

It is easily seen that the distance between any two terms B < C is 

finite. 

Lemma 2 

If B == F(Bl ,·· .,Bn), C == F(C l ,·· .,Cn ) , B' == PtB/ Xl ,·· .,Bn/Xn} 

and C' == PfCl/Xl , ... , Cn/Xn} then B < C implies B' < C I and 

dist(B! ,C!) ~ dist(B,C) . 

Proof. By a straightforward induction on Ilpll, one proves that 

hence dist(B!,C!) < dist(B,C) . 
o 
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We now start the proof of Theorem 1: 

For any two terms B, C in the computation diagram of T by P, 

we must show the existence of min(B,C) and max(B,C) such that 

min(B,C)~ * 
~ ~ B C 

~max(B,C)~ 
and for any Q and H 

Q :S min(B,C) 

implies and 

max(B,C) < H 

Existence of max(B,C) 

We shall describe an algorithm for computing max(B,C) and then 

prove the correctness of this algorithm: let a(B,C) be defined 

recursively as 

( i) a(B,B) = B 

( ii) a ( G. (Bl , ... , B ) , G. (C l' ... , C )) == G. ( a (Bl , C 1)' .•. , a (B , C )), 
l p. l p. l p. p. 

l l l l 

( iii) 

(iv) 

(v) in all the other cases, a(B,c) yields an error symbol, (say a 

German gothic letter) which is not part of our set of letters. 
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We shall prove that cr(B,C) = max(B,C) in two parts: 

Part 1. For any terms T, B , C 

;Y"B 
T 

~C 
implies 

B 

~cr(B'C) 
C~ 

The proof is by induction on couples (dist(T,B) + dist(T,C), \\T\\> ordered 

lexicographically by -<. Assuming the result to be true for all 

triples T' , B' , C' with (dist(T',B') +dist(T',C'),iiT'li> -< 

(dist(T,B) + dist(T,C), \\T\\> , we prove it for T, B , C by a case 

analysis on the structure of T . 

Case 1. T = A. or T = X .. 
~ J 

* * By Lemma 1, T -> B and T -+ C implies T = B and T = C hence 

B = C = cr(B,C) * and indeed B -> cr (B,C) * and C -> cr(B,C) . 

Case 2. T = G. (T
l

, ... , T ) . 
~ Pi 

By Lemma 1, B = G. (B
l
,· .. ,B ) 

* * ~ Pi 
and C = G. (C

l
' ... ,C ), with 

~ Pi 
T. -> B. and T. -> C . for 1 < i < p. . 
~ l ~ ~ - - l 

Since dist(T.,B.)+dist(T.,C.) < 
~ ~ ~ ~ 

dist(T,B) + dist(T,C) and iITi\\ < \\T\\ for any 

* 
1 < i < p. , the - - ~ 

* induction hypothesis tells us that B. -> cr(B. ,C.) 
~ ~ ~ 

and C. -> cr (B. , C . ) 
l l l 

for each 

* B ->cr(B,C) 

Case 3. 

1 < i < p. 
- - l 

Regrouping everything, the conclusion 

* and C -> cr (B, C ) then follows from the definition 

By symmetry, we only need consider the subcases: 
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Case :5 .l. 

The proof is similar to that of Case 2. 

Case 3.2. B = F(Bl ,· .. ,B
n

) and C = G(C
l

, ... ,C
p

) . 

Let T' = ptTiXl'···' Tn/Xn} and BY = PtBJXl ,···, Bn/Xn} 

* * By Lemma l, we know that T' --> C and T. -> B. for l < i < n , hence 
1 1 

* T' -> B' . By Lemma 2, we know that dist(T',B') ~ dist(T,B) . Since 

dist(T',C) < dist(T,C) , we can apply the induction hypothesis to the 

* * terms T', B' , C, i.e., B' --> cr(B' ,C) and C --> cr(B' ,C) . Since 

B --+ B' and cr(B,C) = cr(B',C) by definition of r5, we have established 

* * that B ..... r5 (B,C) and C -> cr (B,C) 

Case 3.3. 

* By Lemma l, we know that T' -> B 

* and T' -> C. Since dist(T',C) < dist(T,B) and dist(T',C) < dist(T,C) , 

* we can use the induction hypothesis in order to get B ..... r5(B,C) and 

* C --> cr(B,C) 

Part 2. For any terms B, C , Q 

B 

~ 
Q 

c~ 
implies cr (B,C) ~ Q 

The proof is by induction on (dist(B,Q) + dist(C,Q,),iiQ,ii> . 

Case l. Q = A. or Q = X. . 
1 J 

Th en Q = B = C = cr (B, C ) * and cr (B,C) --> Q 
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Case 2. or Q = G. (Ql'" .,Q, ) where G. is not G. 
l p. l 

l 

The proof goes mutatis-mutandis as that of Part l, Case 2. 

Case 3. 

We only need consider the cases: 

Case 3.l. 

Back to Case 2. 

Case 3.2. B = F(B
l

, ... ,B
n

) and C = G(C
l

, ... ,Cp ) . 

Let B' = PiBl/Xl J ••• , Bn/Xn} Since dist (B' ,C) < dist (B, Q) , 

* we lmow by the induction hypothesis that cr(B' ,Q) = cr(B,C) -+ Q • 

Case 3.3. 

Let 

B = F(Bl , ... ,Bn ) and 

B' = PiBJXl J".J Bn/Xn} 

C = F(C l , ... 'Cn) . 

and C' = Ptcl / xl ,···, Cn/Xn} 

The induction hypothesis tells us that cr(B',C') ~ Q. One then proves 

by induction on Ilpll that cr (B' ,C') = 

cr(PtBJXl , ... , Bn/xn},piCl/Xl' ".J Cn/Xn)} = Ptcr(Bl,Cl)/Xl ,···, cr(Bn,Cn)/Xn } 

We conclude the proof by noticing that cr(B,C) -+ cr(B',cr) since 

cr(B,C) = F(cr(Bl,C l ),·· .,cr(Bn,Cn ») -+ Picr(Bl,Cl)/Xl ,···, cr(Bn,Cn)/Xn } = 

cr (B' , C ,) . 

Existence of min(B,C) 

For any terms B, C in the computation diagram of T by P the 

set tL I L ::s B , L ::s C} of lower bounds of Band C is not empty 

because T < Band T < C and it is finite. We lmow from elementary 

lattice theory that, if any two elements in a partially ordered set have 

a least-upper-bound, any non-empty finite subset also has a least-upper-
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bound. We then define min(B,C) as maxtL I L :s B, L :s C} and verify 

easily that min has all the desired properties. 
o 

Relation Between the Computation Lattice and the Data-type of Continuous 

Functions over» 

In order to characterize computed partial functions in terms of the 

semantic interpretation of a given computation lattice, we notice that 

Lemma C 

For any terms B, C in the computation lattice of T by P, 

B < C implies b(O) ~ c(O) 

Proof. The proof is straightforward by induction on \\B\\: 

If B = A. 
1 

or B = X. th en B = C and b (0) := c ( 0) . 
J 

If B = G. (B
l

, ... ,B ) , 
1 p. then C = G. (C

l
' ... ,C ) and we know by 

1 p. 
1 1 

induction that b .(0) C c .(0) 
J - J 

for 1 < j < p. Since 
- - 1 

[Ax
l

, ... ,x ,g. (xl' ... ,x )] is monotone with respect to any of its 
p. 1 p. 

1 1 

arguments, b(Q) == g. (bl(O), ... ,b (0» c g. (cl(o), ... ,c (0»):= c(o). 
1 p. - 1 p. 

1 1 

Finally, if B = F(B
l

, ... ,Bn ) then b(O) := O~ c(O) . 

In particular, to any computation sequence TO -> Tl -t ••• Tn -> Tn+l -> ••• 

according to some rule ~ and input D, we associate the chain 

The corresponding computed partial function ~ is therefore 
:....2.: 

characterized as: ~:= Ad U t (0) (d) 
p n >0 n 
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From these definitions follows an easy generalization of a theorem 

of Cadiou [2]: 

Theorem 2 (Cadiou) 

Any fixed-point of the equation f = p(f) is an extension of an~ 

function computed by the program F <= P . 

Proof. For any natural number m, let pm be defined as pO = F(X) 

and pm+l = pipmjF}. It is easily seen that pi(O) = p(p( ... p(O) ... )) 

(i times). Since Cadiou [2] proved that for any computation sequence 

F(X) we have T. < pi for all natural 
~ -

numbers i , it follows from Lemma C that for all i . 

The funct ion p being continuous, f -
P 

lJ pi(O) , hence 
i >0 

t. (0) c f 
~ - p 

for any i It follows that C- = U t. (0) c f and, since f c f 
P i >0 ~ - p p -

for any fixed-point f of p, the conclusion 
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2. Correct Implementation of Recursion 

In this section, we try to characterize the computation rules ~ 

such that for any program F <= P , called fixed-point 

computation rules. 

Here are some computation rules we shall consider, both in lang S 

and lang P : 

(1) Call by value: substitute for the leftmost-innermost occurrence 

of F after simplifications. 

(2) Call by name: substitute for the leftmost-outermost occurrence 

of F after simplifications. 

(3) Parallel innermost: substitute for the occurrences of F having 

all of their arguments free of Frs. 

(4) Parallel outermost: substitute for all the Frs which do not 

occur in any argument of another F . 

(5) Free argument: substitute for all the occurrences of F having 

at least one of their arguments free of Frs after simplifications. 

(6) Full substitution: substitute for all the occurrences of F . 

2.1 Incorrect Computation Rules 

Proposition l-

In lang P , the rules (1), (2), (3) and (5) are incorrect. 

Proof. Consider the program F(X, Y) <= IF X = 0 THEN 0 ELSE 

F(X+l,F(X,Y))*F(X-l,F(X,Y)) where * is the parallel multiplication 

fUnction O*x = x*O = o. The least fixed-point over the integers 
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(considered as a discrete data-type) of the corresponding functional 

is the zero function Ax,y if x = w then w else 0 The computation 

of F(l,O) using (1), (2) or (3) is infinite. As for rule (5), we 

can take the program F(X) <= X.F(F(X)) in the data-type of sequences 

of letters as a counter-example. o 

Proposition 2 (Morris [23]) 

In lang S the rules (1) and (3) are incorrect. 

Proof. Consider F(X,Y) <= IF X = 0 THEN ° ELSE F(X-l,F(X,Y)) The 

corresponding least fixed-point over the non-negative integers is again 

the constant function ° while the computation of F(l,O) using rules 

(1) or (3) is infinite. o 

2.2 Safe Computation Rules 

We now define the class of safe computation rules, and show that 

they correspond to "correct" linplementations of recursion. 

Let C- be a computation rule and B an arbitrary term in the 

computation lattice of T by P. In order tq describe the effect 

of e on B, we rename Fl the occurrences of F selected for 

substitution by e in B for some input D, and F2 the others. 

Definition 

We say that C- is a safe computation rule if, for any term 

BiF/Fl, F/F2 } in the computation lattice of T by P and for any 

input D, biO/fl,fp/f2}(d) == biO/fl,O/f2}(d) 
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Intuitively, the computation is safe if the values of the F's 

which are notsubstituted (renamed F2 ) are insufficient: as long as 

more information is not obtained about the other arguments (the Fl's), 

the information about B cannot be improved. 

In order to clarify this definition, let us prove the safeness of 

some of our computation rules. 

Proposition 3 

In lang S , the rules (2), i.e., call-by-name and (5), i.e., 

free argument are safe. 

Proof. By induction on Ilc II where C = simpl(B) : we first notice 

that, because of the semantic definition of lang S , if F occurs 

in C then c(O)(d) - w (remember that C has been simplified and, 

when a simplified term has the form IF Cl THEN C2 ELSE C3 ' we must 

have F occurring in cl )· 

Case C = A. 
l 

then any rule is safe. 

Case C = G. (C l '" .,C ) . The letter F occurs necessarily in C, 
l Pi 

otherwise we could simplify further. Since both rules select at least 

one F on such terms, we know by our previous remark that 

The safeness of rule (2) is straightforward 

since the outermost F is substituted. For the same reason, rule (5) 

is safe if at least one of the C. 
l 

is constant. If none of the C. r S 
l 

is constant, then c i to/fl' f/f2 }(d) == w for 1 < i < n and we must 

prove that f (w, ••. , w) == w . 
p 

This is ensured by imposing in lang S 
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that all ~rogram variables Xl' ""Xn occur in sim~l(P) hence 

f (OJ, ••• ,w) == ~(f ) (OJ, ••• ,w) == OJ • 
~ ~ 

Proposition 4 

The rules (4), i.e., ~arallel outermost and (6), i.e., full 

substitution are safe in both lang S and lang P . 

Proof. By induct ion on lIB I I . 

Case B = A. 
l 

Any rule is safe. 

Case B = G. (Bl ,· .. ,B ) 
l ~i 

o 

b
i 

£qI f l , 0/ f 2}( d) for 1 ~ i ~ ~ in both cases, hence safeness is 

also satisfied on b . 

Case B = F(Bl , ... ,Bn ) . Both rules select the outermost F hence 

o 

Note that the com~utation rules that we already recognized as 

incorrect are all unsafe. In order to ~rove that safe rules are 

correct, we need the following technical lemma; 

Lemma S 

If ~ is safe, then B ~ C and min(B,Q) = min(C,Q) im~ly 

q(o) (d) ~ b(O)(d) for any terms B, C and Q in the computation 

lattice of T by P, and input D 
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Proof. Let us first determine some properties of the min of two 

terms: 

Lemma 3 

( i) min(G.(B1,···,B ),G.(C1,···,c » = G.(min(B1,C1), ... ,min(B ,C » . 
-. - l p. l p. l - - p. p. 

l l l l 

(ii) 

where M
1

, ... ,M
n 

are such that 

F(M
1
,·· .,M ) = min(F(B1,· .. ,B ),G(C 1, ... ,C » 

n - n p 

Proof. Property (i) is easy and property (ii) follows from the fact 

that 

for 1 < i < n implies that M' 

* * M. .... M! -> B. for 1 < i < n . 
l l l o 

We now prove Lemma S: Let us rename Fl the occurrences of F 

selected by ~ in Band F2 the others. Let M = min(B,Q) = min(C,Q) 

We first prove by induction on (dist(M,B) + dist(M,C), \\M\\> that 

Q ~ B£F/Fl' pn/F2 } for some natural number m. (Here pn means 

p£pn-l/F} for m > 0 and pO = F(X
1
,·· .,X

n
) .) 

Case M = A. or M = X. 
l J 

In this case, M = B = C = Q and we can choose mO. 

Case M = G. (M
1

, ... ,M ) 
l p. 

l 

By Lemma 1, B = G. (B
1

, ... ,B ) , 
l Pi 

C = G. (C l' ••• ,C ) 
l p. 

l 

and 

By Lemma 3, M. = min(B.,Q.) = min(C. ,Q.) for 
l - l l l l 
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1 S i:S p. It follows by induction that Qi S BitF/Fl' p
m
i/F2 } 

We can then choose m = sup tm.} in order to get 
l<i<p. l 

- - l 

By definition of min, we need only consider the cases: 

M 

f I 
C Q! 

C! 

Let M' = PtMlI'Xl, ... , Mn/Xn} and 

Q' = ptQlI'Xl ,···, Qn/Xn}' By Lemma 3, 

M' = min(B, !) = min(C,Q') By Lemma 2, 

dist (M' ,B) + dist (M' ,Q') < dist (M,B) + dist (M,Q) 

so we know by induction that 

Q! S BtF/ F
l , :tfU/F2 } and, a fortiori 

Q S BtF/Fl' :tfU/F2 } for some m . 

and Q = G(Ql' ... ,Q ) p 

Since min(B,Q) = min(C,Q) , the term C is also 

of the form C = F(Cl , ... ,Cn) . Let 

M' = PtMl / X
l , ... , Mn/Xn }, B' = PtBl / X

l , ... , Cn/Xn} 

and C!= PtCl/Xl""'Cn/Xn}' By Lemma 3, we 

know that M' = min(B ' ,Q) = min(C' ,Q) . 
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By Lemma 2, dist(M' ,B') + dist(M ' ,Q) < dist(M,B) + dist(M,Q) , 

and the induction hypothesis tells us that Q::S B' [F/Fl , r/F2} . 

Since the outermost F has not been selected by ~ in B then 

B' ::s B[P/F2}· Our last case is then treated since 

Q ::s B[F/Fl , pn+l/F2} . 

It is now easy to finish the proof of Lemma S. 

For any m, pm(O) ~ fp implies b[O/fl , pm(O)/f2} ~ b[O/fl ) fJf
2

} 

By choosing m large enough, we know that q(O) ~ b[O/fl , pm(0)/f2} 

andtherefore q(0)~b[O/fl,fJf2} Since ~ is safe, 

b(O/fl , fJf2}(d) == b(O) (d) and the conclusion q (0) (d) ~ b(O) (d) 

follows. 
o 

Theorem 3 

Any safe rule is a fixed-point rule. 

Proof. In the computation lattice of TO == F(n) by P, let 

and SO' Sl' ... , Sn' . . . (where So == TO) be the computation 

sequences corresponding to respectively some safe rule ~ and the 

full substitution rule. Since s (0) == pn(O) then 
n 

u s ( 0) - U P n ( 0) == f 
n >0 n n >0 p 

We know by Theorem 2 that ~ (d) c f (d) 
p - p 

and it is therefore sufficient to show that U s (0) (d) cut (0) (d) , 
n>O n -n>O n 

in order to prove ~ == f 
P P 

Let Sn be an arbitrary term in SO,Sl' .... Since there are only 

finitely many minorants of S in the computation lattice, there exists 
n 

some m such that min(T ,S ) == min(T +l'S ) . The rule ~ being safe, -mn -ill n 

it follows from Lemma S that s (O)(d) c t (O)(d) , hence n - m 
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u s (0) (d) cut (O)(d) 
n >0 n - m >0 m 

o 

As a corollary, rules (2) and (5) are fixed-point in lang S and 

rules (4) and (6) are fixed-point rules in both lang S and lang P . 
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3· An Optimal Implementation of Recursion in lang S 

Among the correct implementations of recursion, we now try to 

determine which ones are efficient. This proves unsuccessful in 

lang P , but we shall describe an implementation of recursion for 

lang S which turns out to be optimal. 

We already know that, in lang S , "call-by-name" is a fixed-point 

rule, while "call-by-value" is not. However, "call-by-name" is not an 

efficient way of computing. For example, in the program 

F(X) <= IF X > 0 THEN X-l ELSE F(F(X+2)) the "call-by-name" computation 

of F(O) would be f(O) - f(F(2)) - IF f(2) > 0 THEN F(2)-1 ELSE 

F(F(F(2)+1)) - f(2)-1 - 0 

What happens here is that the term F(2) has been duplicated and 

subsequently computed twice. We shall describe a computation mechanism, 

called the delay-rule, which avoids those duplications, and prove its 

opt imali ty . 

3.1 Never Do Today What You Can Put Off Until Tomorrow 

A natural way to keep track of duplications of terms is to assign 

labels to all occurrences of F in a computation sequence, so that 

copies of the same F will receive the same label. This can be 

achieved by first labelling differently all F' s 
in P ; then, 

if F is labelled a in T and is to be substituted, we label each 
n 

occurrence of F after substitution by a followed by whatever 

labelling this particular occurrence had in P. For example, using 

the same computation as before, and the labelling 

IF X > 0 THEN X-l ELSE Fl (F2 (X+2)) for P, the previous computation 

can be described as: 
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simplifies to F (2)-1 -+ 0 -2 

The whole idea of the delay-rule is to modify "call-by-name" so 

that, whenever some occurrence of F is substituted, all the occurrences 

having the same label will also be substituted. Hence, the "delay-rule" 

selects for substitution the leftmost-outermost F in a simplified 

term, as well as all the other F's having the same label. 

Consequently, the delay rule computation of F(O) in the program 

above is 

simplifies to O. At this point, it is clear that the "delay rule" is 

safe (proof similar to that of Proposition 1); what is not clear is that 

the "delay rulef! should be more efficient than "call-by-name" and in fact, 

in our last example, it was less efficient since it took four substitutions 

versus three for "call-by-name" in order to obtain its result. When 

"call-by-name" computed Fll(2) twice, the delay rule has been computing 

it three times ~ It is a simple exercise in data structuring however to 

avoid all those recomputations: instead of actually copying various 

occurrences of some Fa in a term, we simply set some pointers to a 

unique copy of the term Fa Whenever any occurrence of Fa is chosen 

for substitution, the substitution is actually performed in the unique 

copy of Fa so that all occurrences of Fa are substituted at the 

price of one substitution. 
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Going a little bit away from our particular programming language 

we can sketch an implementation of this idea for, say Algol. The 

arguments of any procedure should be stored as pointers to formal 

expressions, together with a tag indicating that those arguments have 

not yet been computed. Whenever the value of an argument is explicitly 

needed, (for the evaluation of a conditional or on the right-hand side 

of an assignment), the tag is tested. If the value of the parameter is 

already there, we use it; otherwise the corresponding formal expression 

must be computed, its value kept for further references, and the tag 

is to be changed. In a machine like the Burroughs B5000 (see, for 

example, Lonergan-King [12]), the so-called "operand call syllable" 

would do very nicely: depending on a tag stored with the operand, a 

load operation on the B5000 gets its argument either directly or through 

a subroutine call. The delay rule would modify this procedure so that, 

after the subroutine call, the result would be stored in place of the 

tagged subroutine descriptor. Of course, one would then have to abandon 

"side-effects" altogether~ 

Before proving the optimality of the delay rule let us compare the 

efficiency of various computation rules on the programs 

Zer(X) <= IF X > 0 THEN X-I ELSE Zer(Zer(X+2)) 

Ack(X, Y) <== IF X == 0 THEN Y+l 

ELSE IF Y o THEN Ack(X-l,l) 

ELSE Ack(X-l,Ack(X,Y-l)) 

Ble(X,y) <= IF X == 0 THEN 1 ELSE Ble(X-l,Ble(X-Y,y)) 

Fib(X) <== IF X < 2 THEN X ELSE Fib(X-l) + Fib(X-2) 

over the integers. 
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,- -

Zer( -2) ACk(2,1) Ble(8,2) Fib( 5) 

Delay rule 7 14 9 15 

Call by name 25 29 9 15 

Call by value 7 14 341 15 

Free argument 7 23 '" 4000 15 

Full substitution :J 11 23 '" 10000 15 

The entries in this array indicate the number of substitutions 

required for computing the values at the top of the corresponding 

column, according to the rules at the left of the rows. 

If he has been through those examples, the reader may feel quite 

disappointed because he can beat the delay-rule in almost all cases. 

For example, the hand-computation of Fib(5) only requires five 

substitutions if we are careful never to recompute an argument twice. 

It would be interesting to study a mechanism in which this type of 

computation would be possible; namely one could imagine a set of 

simplification rules which could be augmented dynamically, and allow 

some computations to be performed by simplifications of the style 

F(D) ...... A. In our scheme of things, however, this type of flbuilt-inf! 

values is not possible, since our only means of computation is through 

substitutions, and we should blame inefficiencies on the program, not 

on the computation rule. 

~ Strictly speaking, we are using the full substitution only on 
simplified terms, otherwise the computation would always be 
infinite. 
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3.2 Optimality of the Delay Rule 

So far, we know that the delay rule is safe, and that it never 

recomputes copies of the same term. Using the same labelling as before, 

we say that a label Fa is maximal in a term if a is not a proper 

initial segment of ~ for any label F~ in the term. A term is simple 

if all of its labels are maximal. In other words, a term is simple if 

all computations of various copies of subterms have been pushed to the 

same point. For example, if TO = F(F(X)) and TO = G(X,Fl (F2 (X))) 

then G(G(X,Fl (F2 (X)),Fl (F2 (F(X))))) is not simple while 

F(G(X,Fl (F2 (X)))) is simple. 

A computation is sL~ple if all Frs with the same labels are all 

treated alike in all substitutions (if one of them is to be substituted, 

all of them are to be substituted). All terms in a simple computation 

are necessarily simple. If we are to count for one a substitution of 

all Frs with the same labels, as justified by our previous exercise 

in data structuring, simple computations are more efficient than others. 

* Namely, if we define length(T
O 
~A) as the total number of substitutions 

* performed during the computation TO ~ A , we have 

Lemma E 

For any term A, there exists a simple term A with A < A such 

* that, for any computation TO ~A and simple computation 

* - * length(To => A) :s length(To ~ A) . 

Proof. Let r(C) be the number of maximal labels and s(C) be the 

sum of the lengths of the maximal labels in a term C ,while q and p 

mean respectively the number of occurrences of F in TO and P It 



is easily proven by induction on 

* length(TO -> C) 2: ~(C,p,q) 

reC) -q 
p-l In a similar way, 

* length(T
o 
~ C) = ~(C,p,q) . 

where 

(c 

* length(T
O 

.... C) that 

~(C,p,q) = if P = 1 then ~ 
q 

simple) * and (TO ~ C simple) 

else 

imply 

Given any term A, we can flcomplete fl it into an A by substituting 

P for all occurrences of F with non-maximal labels until there is none 

left. An A constructed in this way will be simple and such that 

A < A while rCA) = rCA) It follows that, for any computation 

* TO -> A and simple computation * - -length(TO ~ A) = ~(A,p,q) 

* ~ (A, p, q) :s length(TO -> A) . 
o 

The intuitive meaning of this lemma is very simple: nothing is to 

be gained by working on individual copies of the same term. At the same 

price, we get more information by substituting all copies of the same 

occurrences. In particular, all the computation rules described so far 

will be improved by "lumpingfl together occurrences of F with the same 

labels, thus becoming simple rules. However they may still perform 

unnecessary substitutions unless 

Theorem 4 

Any computation rule which is simple, safe and performs at most 

one substitution at each computation step is optimal. 

Proof. Let To be a term, F(X) <= P a program and ~ a safe and 

simple computation rule performing only one substitution at a time. 

the (simple) computation 

sequence of To according to ~ for some input D . 
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If T is a term in the computation lattice of TO by P, let us 

* consider an arbitrary computation TO - T , and prove that whatever 

approximation t(O)(d) of to(fp) (d) is computed by T 

will be computed faster by ~. For this purpose, we construct 

T . * -as ~n Lemma E, and consider a simple computation TO ~ T 

(the argument in Lemma E not only proves the existence of T but also 

* -that of a simple computation TO ~ T ). 

Let i be some natural number such that Ti ~ T and Ti +l f T 

Since ~ performs only one substitution at the time, this implies 

T. = min(T.+I,T) = min(T.,T) . By Lemma S, we then know that 
~ --- l --- ~ 

t(O)(d) c t. (0) (d) - ~ 
Using Lermnas E and C now, T < T implies 

t(O) (d) ~ t(O)(d) * - * and length(To ~ T) ~ length(To ~ T) Since both 

* - * -TO ~ T and T ~ T. are sim~le and. T. < T 
~ ~ . ~-

, we have 

* * -length(To ~ Ti ) < length(To ~ T) hence t(O)(d) c t. (0) (d) - ~ 
while 

* * length(T
O 
~ T

i
) < length(To -> T) 

o 

We shall derive two applications of this theorem. 

Corollary I 

The delay rule is optimal in lang S . 

Proof. The delay rule has all the properties required by Theorem 4. 

o 

Corollary 2 

In lang S , "call by value" is optimal whenever the least fixed-

point f corresponding to the program F(X) <= P is a strict fUnction. 
-p-

(The fUnction f 
P 

is strict if f ( ... , OJ, ••• ) - OJ .) 
p 



Proof. Since "call by value" is clearly a simple rule and performs 

at most one substitution at each step, we only need proving that it is 

safe whenever f is strict. We prove that the substitution B ~ B' 
P 

is safe in that case by induction on IIC II where C == simpl(B) 

Case C A. 
~ 

Any rule is safe. 

Cas e C = G. (C l' ... ,C ) 
~ p. Same argument as for the safeness of 

~ 

"call by name". 

If F does not occur in any of the C i 's , 

then the outermost substitution is performed, which is clearly safe. 

otherwise, let C. be the leftmost term in which F 
~ 

Ci [o/fl , fJf2Hd) == w 

C [o/fl , o/f2 }(d) 

3.3 Sequential Functions 

occurs. Then, 

o 

The applications of Theorem 4 given in the previous section do not 

quite match with the generality of the result. In particular, the data-

type on which lang S is computing has no chain of length more than two. 

'. What we shall now sketch is a theory of sequential fUnctions, where 

Theorem 4 finds its full application. 

The relevant notion here seems to be 

Definition 

A function A.xl,· .. ,xn.g(xl,.··,xn) in [DlX ..• xDn ->D] is 

sequential if, for all XlEDl , ... ,XnEDn there exists an iE[l,n] such 
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that, for all Yl' ""Yn such that x. c y. for jE[l,n] and 
J - J 

xi = Yi we have g(xl , ... ,xn ) = g(yl , ···,yn ) 

Intuitively, g is sequential if, at any given moment, the value 

of (at least) one of its arguments is crucially needed in order to better 

approximate the value of the result. For the purpose of our theory, we 

need to check that sequentiality has the correct closure property, 

namely 

Proposition S 

Sequentiality is preserved by composition of functions and 

fixed-point operators. 

Proof. 

- Composition. and !\xl"" ,x f. (xl' ... ,x ) m ~ m 

for 1 < i < n are sequential, then 

is also sequential: for any xl' ""xm and iE[l,n], let 

zi - fi(xl , ... ,Xn) ; since g is sequential zl' ... ,zn determines 

some and, being also sequential, determine 

some jE[l,m] which can then be used for the sequentiality of ~ . 

- Fixed-point operator. If the funct ions Ax1, .. · ,x f. (xl' ... , x ) n ~ n 

are sequential for any natural number i, the function 

~ = AX~, •.. , x U f. (xl' ... , x ) 
..L n i >0 l n 

is also sequential: for any xl' ""xn sequentiality of the f. 's 
l 

determines a sequence jO,jl' ... where j.E[l,n] . At least one of 
~ 



the j. I S must occur infinitely often in this sequence, and it can be 
~ 

used for proving that ~ is sequential. 
o 

For example, over a discrete data-type, conditional and strict 

functions are sequential; hence, by Proposition S, all functions 

definable in lang S are sequential. 

In a data-type which is a lattice, the functions AX,y sup(x,y) 

and Ax,y inf(x,y) are not sequential in general. 

The set z:U) of finite or infinite words over some vocabulary z: 

becomes a data-type under the partial ordering: x ~ y whenever x 

is an initial segment of y 

In z:U), the functions 

Ax. first (x) 

Ax.rest(x) 

and Ax, y.x (J)y 

(take the first letter of x), 

(erase the first letter of x), 

(append the first letter of x to y) are 

seqUential.V 
This is clear enough for first and rest since any function of one argu-

ment is sequential. For x (J)y , if x == A , i. e., x is the empty word, then 

the first argument is to be chosen for seC1uentia~ity since /\. $y == U) ; 

otherwise, x r /\. and any Xl such that x c Xl will have the same first 

letter so that we can use the other argument y for sequentiality. 

-- Yet another programming language. We define a new language lang as 

similar to our previous ones except that all base functions must be 

sequential. 

~ The relevance of these functions and data-type to parallel programs 
is shown in Kahn [llJ. 
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Let e be a computation rule, called the generalized delay rule 

(GDR) de~ined as ~ollo~s: 

First, using the same type o~ data-structur~ng as ~or the delay 

rule, e will be simple. 

set 

In any term T , rule e will select at most one F (or rather 

o~ FI s with the same labels) as ~ollows: 

I~ T = A. ) no F is chosen. 
1 

If T = G. (T l' ... , T ) , the F will be the F chosen by 
1 p. 

1 

in T. where j is the index corresponding to the sequentiality 
J 

of gi with the arguments tl(O)(d), ... ,t (O)(d). 
Pi 

O~ course, 

this requires the choice of j to be effective; also, since we 

want e to be simple, all FI s with the same labels occurring 

in other subterms are also to be substituted. 

If T = F(Tl , ... ,T
n

) the outermost F is selected bye. 

We can apply Theorem 4 again in order to prove 

Corollary 3 

The generalized delay rule is optimal in lang GS . 

Proo~. Since the GDR is simple and performs at most one substitution 

at each step, all we need to prove is that it is safe. 

The proof is by induction on \\B\\ where B is any term in the 

computation lattice of 

TO = T [:5/X} by P 

The cases B = Ai or B = F(Bl , •.. ,Bn ) are easy. 

I~ B = G.(Bl , ... ,B ) and j is the sequentiality index of 
1 Pi 

5l 

e 



g.(bl(O)(d), ... ,b (o)(a)), then b.[o/fl , f /f2}(d) == b.(O)(d) by 
1 Pi J P J 

induction. Since bk(O) (d) ~ bk[O/fl , fJf2}(d) , the very definition 

of sequentiality gives us b[o/fl , fJf2}(d) == b[O/fl , Ojf2 }(d) . 

o 

Conclusion 

The results of this chapter generalize quite nicely to a programming 

language where we introduce assignments, gotofs and while statements. 

What is less clear to the author is how to perform computation in a 

"typeless" recursive language where procedures can be passed as arguments, 

say in a full LISP for example. It might also be interesting to study 

(or prove the non-existence of) optimal computation rules when the 

simplifications allowed are less restrictive than the ones we chose. 
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Chapter 3. PROOFS BASED UPON MONOTONICITY 

In this chapter, we investigate how far into the theory of 

computation can one get from the mere hypothesis that programs 

represent monotone mappings between data-tY]?es, thus ignoring continuity. 

For this purpose, we introduce a formal system in which the methods 

of !!inductive assertions" and "structural induction" for proving 

properties of programs can be expressed and justified. 

The reader interested in the logic developed here is expected 

to be familiar with the work of Milner [19J. However, a detailed 

knowledge of the formalism should not be necessary for understanding 

the various uses we make of it. In particular, the examples given are 

described informally, despite the fact that all the proofs can be 

expressed within the logical system. 

1. A Formal System for the Time Being 

1.1 Syntax 

Terms, which are meant to denote monotone fUnctions of some tY]?e, 

are defined as follows: 

(i) TY]?ed identifiers are terms. (We shall almost always omit the 

tY]?e subscript.) 

(ii) If s is a term of tY]?e a - ~ and t a term of tY]?e a, 

then s(t) is a term of tY]?e ~ 

(iii) If x is of type a and t of tY]?e ~,then [Ax.tJ is a 

term of tY]?e a -> ~ • 
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(iv) If P is a wff, t a term of type a and x a variable, 

then [ u t] 
[xlp} 

and [ n t] 
[xlp} 

are terms of type a . 

A well-formed-formula P is a conjunction of equalities or 

inequalities between terms of the form PC:: q , r == s, ... , u c:: t 

A proof is a sequence of implications between wffs P r Q , each being 

derived from the preceding implication by an axiom or a rule of inference. 

Variables are bound by 'A., U and n . We write s [t/x} and 

p[t/x} to denote the result of replacing all free occurrences of x 

in sand P by t , after renaming the necessary bound variables. 

1.2 Semantics 

A standard model is a denumerable family of complete lattices Da , 

one at each type a. Each Da has a minimal element UUa and maximal 

element OOa. The two base types are I and B. The domain of 

individuals DI can be any complete lattice while DB is 
true 

+ 
false 

If a and ~ are types, then a - t3 is also a type and Da _
t3 

is 

the set of monotone mappings from Da into D
t3

. It is easily checked 

that, whenever Da and D~ are complete lattices, D is itself 
a -t3 

a complete lattice. Terms of type a are intended to denote elements 

of D . 
a 

1.3 Axioms and Rules of Inference 

Here x, y , z , f represent variables s, t terms and P, Q , R 

wffs. Axioms and rules are meant at all syntactically correct types. 
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( a) 

(b) 

Axioms 

(Reflexivity) Dl: f- x c x 

(Transitivity) D2: xr::y, y r:: z f- x c z 

(Anti symmetry) D3: x ~ y , y~x f- x=- y 

x =- Y f- x ~ Y , y~x 

(Minimali ty) D4: f- uu c x -

(Maximality) D5: f- xc 00 -

(Monotonicity) Fl: xr::y f- f(x) r:: f(y) 

(A-conversion) F2: f- [Ax. s ](t) r:: s [t/x} 

(bottoms -tops) F3: f- uu(x) r:: uu 

(joins) F4: p[y/x} f- t [y/x} ~ U t 
[x\P} 

(meets) F5: p[y/x} f- U t r:: t [y/x} 
[x\p} 

(Inclusion) WI: P f- Q (Q is a sub-conjunct 

of p) 

Rules of inference 

(Conjunction) Rl: 
P r Q P f- R 

P f- Q,R 

(Cut) R2: P f- Q Q f- R 
P f- R 

(Substitution) R3: 
P f- Q 

pts/x} f- Q (s/x} 

P f- f(x) r:: g(x) 
(Extensionality) R4: 

Pf-fr::g 
(x not free in 

P[false/x} f- Q P[true/x} f- Q 
(Cases) R5: p f- Q 

Here, false and true are abbreviations for DUB and 

OOB respectively. 
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Q"P f- y ~ t 
(meets) R6: (x not free in Q) Q f- y~ n t 

[x\p} 

Q"P \- t ~ Y 
(joins) R7 : 

Q \- U t~y 
(x not free in Q) 

[x \p} 

l.4 Soundness 

In order to establish validity of the axioms and rules of inference, 

one first ought to make sure that terms without free variables indeed 

denote elements of the complete lattice of the corresponding type. This 

is easy for application and ~-abstraction (see Milner [l9]). For 

meets and joins, we have to prove in essence that if for each iEI the 

function f. 
l 

is monotonic then n f. 
iEI l 

and U f. are also monotonic. 
iEI l 

Let x ~ y For all iEI, we have 

n f. (x) C f. (x) C f. (y) C 
iEI l - l - l 

U f. (y) 
. I l lE 

It follows by definition of nand U that 

n f.(x) C n f.(y) 
iEI l - iEI l 

and 

and by definition again 

[ n f. ](x) C [ n f. ](y) 
iEI l - iEI l 

[ u f. ](x) C [ U f. ](y) 
·I l - ·I l 
lE lE 

U f. (x) C 
iEI l 

U f. (y) 
iEI l 

Using exactly the same approach as Milner [l9], one can then go 

through the axioms and rules of inference, and justify their validity. 



1. 5 Pragmatics 

We shall use the following abbreviations: 

(1) By the Knaster-Tarski theorem, we can characterize the least-fixpoint 

of A.x.f(x) as the greatest-lower-bound of [x \ f(x) ~ x} . We shall 

therefore use ~x.f(x) as an abbreviation for n (x) The 
[x \f(x) ~ x} 

equivalents of rules F4 and R7 are then: 

R8: ~ f(~x.f(x» c ~x.f(x) 

R9: f(y) ~ Y ~ ~x.f(x) ~ y 

The rule R9 was named fixed-point induction by Park [26]. 

We shall use the notations f <= "L" (f) and f-r as alternatives 

to [~f.'r(f) ] . 

true --
(2) One should not confuse the domain DB: t with the boolean 

false 
TT FF 

data-type ~ ~ Here DB should be interpreted as the 
(J) 

range of some semi-decision procedure. 

Let us now suppose that the domain Da is characterized by a 

semi-decision predicate A.x.JKx) mapping Da into DB such that 

j)(x) == false if and only if x == UUa . We can then interpret the 

logical formula VYEj): p(y) as n (p(y» ,where P 
[y\JKy) == true} 

belongs to Da -> DB . This justifies using VYEj).P(y) , 

or, when no confusion can arise, VY.p(y) as an abbreviation for 

n (p(y» Similarly, ay.p(y) will abbreviate 
[y\j)(y) == true} 

U (p(y» 
[y\j)(y) == true} 
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Rules F4, F5, R6 and R7 then translate into the following equivalents 

to the rules of first-order logic: 

(i) Vy.p(y) == true, J)(a) == true f- p(a) == true 

(ii) p( a) == true, J)( a) == true f- 3:y.p(y) == true 

(iii) from Q,J)(y) == true f- p(y) == true (y not free in Q) 

f- VY.p(y) == true 

(iv) from Q,J)(y) == true f- p(y) == false (y not free in Q) 

infer Q f- 3y.p(y) == false 

Examples of Proofs 

Example 1. The proof that 

[ U f(i) ](x) == U f(i) (x) 
{i\I} {i\I} 

is quite instructive, and we sketch it here: 

First I f- f( i) C U f( i) 
- {i\I} 

(F4) 

I f- f(i) C [ U f(i) ](x) 
- {ill} 

(Appl) 

(The rule (Appl) f ~ g f- f(x) ~ g(x) is derivable from FI and F2.) 

then 

f- U f(i) (x) C [ U f(i) ](x) (R7) 
{ill} - {ill} 

I f- f(i)(x) C U f(i)(x) 
- {i\I} 

I f- f(i) C [f..x. U f(i) (x)] 
- £ill} 

~ U f(i) C [AX. U f(i) (x)] 
{ill} - {i\I} 

f- [ U f(i) ](x) C U f(i) (x) 
{ill} - {ill} 

(F4) 

(R4) 

(Appl) and (F2). 



Example 2. Let us prove that 

(a) ~f.s(f,f) - ~f.s(f,~f.s(f,f» 

(b) ~f.s(f,f) ~ ~f.s(f,s(f,f» 

In other words, we must establish the equivalence of the following 

three programs: 

f<=s(f,f) 

g <= s (g, f) 

h <= s(h,s(h,h» 

Proof of (a). Since s(f,f) ~ f , we know by fixed-point induction 

that g ~ f. By monotonicity of s, this implies s(g,g) ~ s(g,f) 

Since g ~ s(g,f) , we have s(g,g) ~ g and f ~ g follows by 

fixed-point induction again. 

Proof of (b). By definition, f ~ s(f,f) - s(f,s(f,f» and therefore, 

h ~ f by fixed-point induction. 

In order to prove that f c h , let us use the auxiliary program 

k <= s(h,s(h,k» 

Since s(h,s(h,s(h,h») ~ s(h,h) , the rule of fixed-point induction 

tells us that 

k c s(h,h) (1) 

but we know by (a) that k ~ h ) and (1) becomes h ~ s(h,h) . 

By monotonicity of s, this L~plies s(h,h) ~ s(h)s(h)h» which) by 

definition of h) reduces to s(h)h) C h One last application of 

fixed-point induction and we prove f c h 
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Example 3. For any functions sand t, 

That is the programs f <= s(t(f)) and g <= t(s(f) are related 

by f = s(g) and g = t(f) . Since fst = s(t(fst ) we have 

tfst = tstfst and, by fixed-point induction, f t C tf t s - s 

symmetry ftC sft hence tf t C tsft = f t . s - s s - s s 

By 

Example 4. Let f(x) <= g(f(h(x), f(k(x» Y and y <= g(y,y) . 

We prove that f(x) = y. Since 

g([r.x.Y](h(x») , [r.x·Y](h(x») - g(y,y) = y = [AX.Y](X) , we know 

by fixed-point induction that f ~ [r.x.y] hence f(x) = y. On 

the other hand, g(f(UU),f(UU» ~ g(f(h(UU» ,f(k(UU») by monotonictty, 

and g(f(UU),f(UU» ~ f(UU) follows from f(UU) = g(f(h(UU),f(k(UU»» 

We conclude y ~ f(UU) by fixed-point induction and, since 

f(UU) ~ f(x) , we proved that y ~ f(x) . 

Example 5. If the two functions Af.s(f) and Af.t(f) commute, i.e., 

st = ts then Example 2 tells us that fst = s(fst ) and f ts = t(fts ) 

so that fs ~ fst and f t '= f st ' (We can say that fs and f t are 

weakly equivalent.) 

The similarity between some of those results and better known 

ones in linear algebra should not surprise us since linear algebra 

can be used as a model of our formal system. The base domain DI will 

be the set of vector-space over some space 1(. The natural ordering 
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is inverted: VI ~ V2 holds whenever V2 is a subspace of VI' 

The minimal element UU corresponds to the space V itself while 

the vector space containing only 0 corresponds to 00 Linear 

transformations over V are then monotone mappings in DI ~DI with 

respect to that ordering, and, if the dimension of V is infinite, they 

are not continuous in general. The least fixed-point of a linear 

transformation A E.&I ->.&1 is then the eigenspace of A having 

maximal dimension. 

1.6 A Possible Weakness of the System 

Let us consider the inference rule 

P,x ~ g(x) 1- f(x) ~ g(f(x)) 
RT: 

P 1- fJX.f(x) ~ g(~x.f(x)) 

Is RT provable or not within our system? 

(x not free in p) 

Although we have not 

been able to settle this question, we shall be able to show that rule RT 

must be valid in any standard model of our formal system. 

Before doing so, let us point out that fixed-point induction can 

be derived from RT and that using RT would somewhat simplify the 

proofs in the previous examples. For instance, the proof that f c h , 

where f = ~x.s(x,x) and h = ~x.s(xJs(x,x)) could go as follows: 

Let us assume y ~ hand y ~ s(y,y) . In order to apply rule RT, 

we shall prove that 

y~hJY~ s(y,y) 1- s(YJY) ~hJ s(y,y) ~ s(s(y,y),s(y,y)) 

and therefore conclude that 1- f ~ h, f c s(f,f) so, a-fortiori 

1- f c h 
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By monotonicity y ~ s(y,y) I- s(y,y) c s(s(y,y),s(y,y)) and 

y:: s(y,y) I- s(y,y) r::: s(y,s(y,y)) Therefore, using monotonicity 

three times again y ~ s(y,y) ,y r::: h I- y r:.: s(h,s(h,h)) . But 

h = s(h,s(h,h)) and, putting everything together, we get 

y ~ h, Y ~ s(y,y) I- s(y,y) r:.: h,s(y,y) r:.: s(s(y,y),s(y,y)) 

We shall now justify the rule. To each monotone fUnction t 

mapping »~» and ordinal number a, we associate an element 

a t (uu) E» as follows: 

(i) to(UU) = UU 

(ii) ta+l(UU) = t(ta(UU)) 

(iii) If a = lim(f3) 
f3 <a 

is a limit ordinal, ta(UU) - U [tf3(uu)} 
f3 <a 

More concisely, ta(UU) = t( U ~tf3(UU)}) , if we agree that u (¢) = UU . 
f3 <a 

This sequence has the properties that f3 < y implies 

t f3 (UU) ~ tY(UU) ~ f t for allordinals f3 and y, and ta(uu) = t~l(UU) 
implies ta(UU) - f t for any ordinal a . 

Hence, if we choose a to be the first ordinal not embeddable 

in »-+», the s equenc e ° 1 a t (UU), t (UU), ... , t (UU) has "too many" 

a elements and t (UU) = ft (See Cadiou [ 2 ] or Hitchcock-Park [ 8 ] .) 

NoW, from the hypothesis F ~ s (F) I- t(F) r:.: s(t(F)) , we can 

deduce that, for all ordinals a, 

If a is not a limit ordinal, (1) is easy to establish. If a is a 

limi t ordinal a = lim (f3) , then for all f3 < a we know that 
f3 <a 
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t i3 (uu) r:: s(tCX(UU)) and therefore tCX(UU) == U {ti3 (UU)} r:: s(tCX(UU)) 
i3 <CX 

Choosing CX such that tCX(uu) == f
t 

.then yields the conclusion of 

rule RT 
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2. Justification of Same Proof Techniques 

Suitable choices of the semantic definition of programming languages 

allow to reduce most of the proof techniques described in the literature 

to the rule of fixed-point induction. In particular, this applies to the 

methods described in McCarthy [13], Naur [24], Floyd [7], Manna [14], 

Manna-Pnueli [16], and Hoare [9]. Since Hoare's technique has been 

justified in Manna-Vuillemin [17], and the connections between fixed-point 

induction and the Manna-Pnueli method have been explicited by Park [26], 

we shall limit ourselves to first indicating how the Floyd-Naur method 

can be explained within our formal system and then sketch the connections 

with structural induction. The basic ideas in this section are from Park [26]. 

2.1 Description of a Flowchart-language 

A flowchart is a connected graph, with two distinguished nodes 

and ~. Nodes can be of the type assignment 

or test ~ 
V\T 

Following Floyd [ 7 ], the 

"meaning assigned" to such a program will be a relation 1jr(~) over 

J. 
the values of the program variables, at the CHALT::> node. This 

output relation is obtained by "carrying along" an input relation cp(xs ) , 

holding of the program variables at the node. The 

notation therefore means that, whenever we start 
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the execution of B with inputs satisfying ~) the outputs) if any, 

must satisfY W • 

As in Chapter 2, syntactic objects are represented by upper-case 

letters and associated semantic objects by the corresponding lower-case 

letters. 

The semantic fUnction ~ is defined recursively as: 

feY) 1\ ( 1\ x. = y.) ] 
jJ:i J J 

( ii) 

(iii) t.: rr) 

(i v) 



Equation (iv), expressing the semantics of goto's, defines the 

"minimum valid inductive assertion" described in Manna [14]. There will 

be essentially one such equation per loop in the program; this may 

lead to systems of mutually recursive relations, depending on the 

nature of nesting of the loops. According to this definition, we 

have for example: 

where 

F 

Y -0 1 

Y -1 2 

Yl - Yl+l 

Y2 - Y2 'Yl 

Note that, in order to simplify our semantic description, we have in effect 

limited ourselves to considering a flowchart in block-form. If loops do 

not have this nice nested structure, the description would be slightly 

more complex, and we would need to express the semantics of ill-nested 

loops by systems of mutually recursive equations. 
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2.2 The Inductive Assertions Technique 

The meaning of a flowchart program is now a (partial) predicate, 

defined as the least-fixed point of some equation, say r = t(r) . If 

we can find an "inductive assertion" q such that t(q) ~ q ) the rule 

of fixed-point induction allows us to infer that r t ~ q This shows 

.that whenever the program terminates, that is, if rt(d) - true for 

some input d, then we must also have q(d) = true 

This will be best understood by using the same example as above: 

The expression t(q) ~ q is 

Using the inference rules corresponding to those of predicate 

calculus in Section 1, this formula is equivalent to 

f- q(O,l) = true 

and 

This last formulation is the direct translation within our formalism 

of the verification condition derived by Manna [14]. This justification 

of the method gives us the additional insight that the inductive 

assertions one may use for proving the partial correctness of some 

program by the Ma~~a-Floyd method are exactly the fixed-points of some 

algorithmically constructed :functional. 



2.3 Termination of Programs 

Following Park [26], we shall now prove that the rule of fixed-

point induction allows us to derive instances of (mathematical) transfinite 

induction. 

Let J) be a domain, and -< a partial ordering on J). For any 

true 
relation R mapping J) into ~ ,let 

false 

t (R)(x) _ [ify. if Y -< x then R(y) else true] The least fixed-point of t 

is then the maximal well-ordered initial segment of the ordering -< 

over J). (Note that this is the first time that we use a monotone 

function which is not continuous.) 

Example. Let us consider some orderings over the integers, and the 

corresponding Rt . 

If -< is 1 -< 2 -< 3 -< ••• then Rt == tW(uu) and Rt(n) holds for 

every n. 

If -< is • .. -< 3 -< 2 -< 1 then Rt == UU never holds. 

If -< is 1 -< 3 -< 5 ... 2 -< 4 -< 

holds for every n. 

2w 
,then Rt == t (UU) 

If -< is 1 -< 3 -< 5 .•• -< 6 -< 4 -< 2 , then Rt == tW(uu) 

holds only of the odd natural numbers. 

and Rt(n) 

and Rt(n) 

If -< is 1 -< 3 -< 5 ... 2 -< 6 -< 10 -< ••• 4 -< 12 -< 20 -< ••• ••• , then 

2 
R

t 
== till (UU) and Rt(n) holds for every n . 

o 

If -< is a well-founded relation over J), then Rt (x) holds for 

any element x of j), in which case the "program" R(x) <= t (R) (x) 

can be thought of as defining recursively our domain. 
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In other words, if 

WO == \-LR.:\-<,x.[(lfy) if y -< x then R(y) else true] , 

the equality WOe -<) (x) == .B(x) characterizes the relation -< as being 

well-founded. (See also Hitchcock-Park [ 8] for a more elegant formula­

tion of this equality.) 

No matter what kind of ordering -< is, fixed-point induction 

translates into the following rule: 

[ (vy). if y -< x then p(y) else true] c p(x) ~ WOe -<) (x) ~ p(x) 

And in particular, if -< is well founded over J), then p(x) == true 

will hold for any x in .B. Depending on the interpretation of -<, 

this is a formulation of structural induction or transfinite induction 

(see Chapter 4, Section 3) . 

For example, the termination of the program 

F(n) <= if odden) then n else 

. 3n n ( 2n ) n) If G(n) = 1 then F(""2) else F(G(n) . F n - Gfrl) + 2G(n) 

G(n) <= if even(n) then G(n/2) else n 

over the natural numbers can be established using the well ordering 

(1 -< 3 -< 5 -< ... ) -< (2 -< 6 -< 10 -< ••• ) -< (4 -< 12 -< 20 -< ••• ) -< ( ••• ) 

More examples of applications of this technique will be given in the 

next chapter. 





Chapter 4. PROOFS BASED UPON CONTINUITY 

The previous chapter was a first attempt at proving properties of 

programs, based on a rather weak theory of computation. We shall now use 

our knowledge that programs are continuous :functions, and justif'y some 

other proof techniques. The presentation will again be quite informal. 

However, it should soon be apparent that all the proofs given can be 

formalized in Milner's LogiC for Computable Functions (LCF), as described 

in Section 1 of this chapter. 

Obviously we wish to preserve all the results obtained in the 

previous chapter. As far as formal systems are concerned, one could 

achieve this by embedding LCF in the logic described in Chapter 3. In 

this mixed system, terms would be (syntactically) recognizable as being 

monotone or continuous, and the appropriate rules of inference could be 

applied accordingly. The logic would not be very different from the 

other two we describe in this work. For example, a good candidate for 

the induction rule would be 

P I- g(UU) ~ h(UU) P, g(x) C hex) I- g( f(x)) C h(f(x)) - -
rule M: 

P I- g(~x.f(x)) ~ h(~x.f(x)) 

where x must not be free in P and g must be continuous, while h 

and f only need be monotone. (This rule was independently suggested 

by Hitchcock-Park [8].) Its justification is very similar to that of 

rule RT in the preceding chapter. 

Remarkably enough, there seems to be no real need to get involved 

in this rather complex mixed system: as long as all the terms used in 

the proofs denote computable :functions, any of the results of Chapter 3 
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will still hold in LCF. For example, if we restrict ourselves to using 

only computable assertions, the inductive assertions method can be 

justified in exactly the same way. The only technique for which this 

constitutes a real problem is transfinite induction, and we shall give 

it special attention in Section 2.1. 

1. Description of LCF 

The formal system that we shall use is, except for some trivial 

changes, taken from Milner [18]. It is a typed ~-calculus version of 

a logiC designed by Scott [30]. (We assume the reader who is interested 

in the technical details to be familiar with Milner's work.) 

1.1 Syntax 

The terms of the logic are intended to denote the computable 

functions of various types. Each term should therefore be subscripted 

with its type, but we shall almost always omit this subscript. 

Terms are defined recursively as: 

(1) Identifiers: g,p,F,'r,(),x,y... (at each type) or constants: 

UU (at each type) TT,FF (at the type Boolean) are terms. 

(2) If s is of type a ~ ~ and t of type a, then set) is a 

term of type ~ . 

(3) If s is of type a, and x of type ~, then [~.sJ is a 

term of type ~ ..... a . 

(4) If p is of type boolean, sand t of type a, then 

if p then s else t 

is a term of type a. 
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(5) If f and s are of type ex, then [~f.s] is a term of 

type ex. 

As an alternative to [~f.s], we shall also use the notations 

f <= 'f (f) and 'f: f <= s ,where '! == [t..f. s J . 

f 
'f 

A wff is a conjunction of equalities s == t or inequalities set 

between terms, separated by commas. 

A proof is a sequence <.PO I- '1'0' ••• , <.Pn I- '¥n of implications 

between wffs, each of which is obtained by application of the rules 

of inference, or use of the axioms. 

For any term s or wff <.P, we write s[tjx} and <.p[tjx} to 

designate the result of substituting t for all the free occurrenCes 

of x in sand <.P An occurrence of x is not free if it is bound 

by f..x or ~ 

1.2 Axioms and Rules of Inference 

In this description, x , y , z , f denote variables, s and t 

terms, p , Q , R wffs. 

( a) Axioms 

About the Domains 

(Reflexivity) Dl: I- xcx 

(Transitivity) D2: x~y, y~z l- xc z 

(Antisyrnmetry) D3: x ~ y , y~x l- x == y 

(Minimality) D4: I- UU c x 
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About the Functions 

(Monotonic ity) FI: x~y f- f(x) ~ f(y) 

(Fixed point) F2: f- f(~xof(x)) ~ ~xof(x) 

(A.-conversion) F3: f- [A.xos](t) == Stt/xJ 

(bottoms) F4: f- uu(x) ~ uu 

( conditionals) F5: l- if uu then x else y == uu 

f- if TT then x els e y == x 

f- if FF then x else y == y 

About Formulaes 

(Inclusion) WI: P f- Q (Q is a subset of p) 

(b) Rules of Inference 

(Conjunction) RI: 
P f- Q P f- R 

P f- Q,R 

(Cut) R2: P f- Q Q f- R 
P l- R 

(Substitution) R3: 
p f- Q 

p[s/x} f- Qts/x} 

P f- f(x) ~ g(x) 
(Extensionality) R4: (x not free in p) 

P f- f~g 

(Cases) R5: p[uuLx} f- Q p[TTLx} f- Q P[FFLx} f- Q 
P f- Q 

(Computation R6: P f- Q[uuLx} P,Q f- Qif~x)Lx} (x not free 
induction) P f- Qt~xof(x)/x} in p) 
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l.3 Some Remarks About the Logic 

Incompleteness 

Using the fact that natural numbers can be defined implicitly 

within the system, Scott [30J showed that the set of valid implications 

P r Q is not recursively enumerable, i.e., the logic is incomplete. 

It also follows directly from the undecidability of equivalence between 

program schemas that the set of valid theorems r P is not recursively 

enumerable. 

On the other hand, if we just consider terms which correspond to 

Ianov-schemas (Ianov [10]), the logic becomes complete. (This was 

proved independently by J. W. deBakker and R. Milner.) Another 

decidable sub-theory of LCF is described in Courcelles-Kahrr-Vuillemin [3]. 

The Induction Rule is a Generalization of McCarthy!s Recursion Induction 

We shall use the fixed-point induction formulation of McCarthy! s 

rule: f(y) ~ y r \-Lx.f(x) ~ y. This rule is easily derivable from 

computation induction. In order to show that computation induction 

cannot be derived from fixed-point induction,:! we shall exhibit a 

theorem of the logic which cannot be proved by fixed-point induction. 

One such theorem is: 

0(-r(X)) == "!(a(x)) , 0(UU) == 1"(UU) r \-LX.0(X) =0 \-Lx.-r(x) 

In order to prove that it cannot be derived using only fixed-point 

induction, notice that after removing the induction rule, neither the 

~ More precisely; if we replace the induction rule of LCF by fixed-point 
induction, the set of theorems of this modified logic is a strict 
subset of the theorems of LCF. 



axioms, nor the inference rules require continuity in order to be 

valid. We can thus define the following countermodel: 

Terms will denote the hierarchy of monotone functions constructed 

over the following base domain: 

d /" b c ""'/ a 

The counterexample to our theorem is provided by the functions f and g 

defined by 

f(a) == feb) == b 

fCc) == fed) == g(b) - g(d) == d g(a) == g(c) == c 

These two functions satisfy the hypothesis but not the conclusion 

f(UU) == g(UU) , fg == gf while ~xf(x) ft ~xg(x) -- of our theorem, 

which is therefore not provable within this system.21 Actually, the 

same example can be used to prove that rule RT (see Chapter 3, 

Section 1.6) is also less powerful than computation example. 

The theorem is in itself an interesting one and gives in some cases 

an elegant way for proving equivalence between programs. For example, 

the funct ionals 

~ With some slight changes, this counterexample can be used to answer a 
question raised by Scott [30]. 
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Pl(F) (x,y) == if x = 0 then y else F(x-l,y+l) 

P2(F) (x,y) == if x = 0 then y else F(x-l,y)+l 

and 

P3(F) (x,y) == if x = y then y else x.F(x+l,y) 

P4(F) (x,y) == if x = y then x,. else y .F(x, y-l) 

over the natural numbers are such that: 

The proofs of equivalence between F <= Pl(F), F <= P2 (F) and 

F <= P
3

(F) , F <= P4(F) respectively then follow. 

1.4 Some Examples of Proofs 

In order to demonstrate some practical aspects of the method, we 

shall present some examples of proofs by computation induction. 

To improve readability, the following conventions will be adopted 

from now on: 

(1) We shall omit the proofs that f( ... ,UU, ... ) == UU whenever they 

are straightforward. 

(2) We shall use freely the equality 

f( ... , if P then a else b, ... ) == if p then f( ... ,a, ... ) 

else f( ... , b, ... ) 

whenever it is easy to establish that f( ... ,UU, ... ) == UU . 

(3) In the arguments by cases on some variable p, we shall omit the 

case p == UU whenever it causes no problem. 
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(4) We shall use the parallel induction rule for systems of mutually 

recursive definition. Let us describe the situation on 

{

F <= a(F,G) 
the example 

G <= 'f (F,G) 
the generalization to more complex 

systems being straightforward. The rule we wish to use is 

P r Q£UU/x}£UU/y} 

(x, y not free in p) 

Actually, a more accurate notation would be F = ~f.a(f,~g.7(f,g» 

The justification of this rule in the general case can be 

found in deBakker-Scott [6J or Hitchcock-Park [8J. 

If F and G happen to have the same type, we can also use 

the following more intuitive justification of the rule: 

Using the pairing fUnction n = Ax,y.(~p.if P then x else y] , 

we can define ~ = n(F,G) The components are then retrieved as 

F = ~(TT) and G = ~(FF) , and ~ can be defined by 

~ <== n(a(~(TT),~(FF)),7(~(TT),~(FF))) . The previous rule is 

then a direct translation of the ordinary computation induction 

as applied to ~. 

(5) For all the examples where computations are meant over some 

specific data-type integer, natural numbers, 

sets, lists, etc . ... -- we assume implicitly that the axioms for 

the corresponding data-types are put as premises of the 

Ways to axiomatize those various domains are described in 

Milner-Weyrauch [2lJ and in Newey [25]. 
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Example 1. Let us consider the program schema 

l' : f(x) <= if p(x) then x else r(h(x» n 
, 

where r(x) = f(f( ... (f(x) ... ) o (n times), and f (x) = x . 

We wish to prove that the equality holds for all natural 

numbers n > 1 and m > 1 . - -

We shall first prove that 

Let P[f] 

induction. 

Base 

fk+l = f 
't' l' 

for any k > 0 • 
n n 

We shall prove by computation 

If f = UU then p(UU) is fk (UU) = UU , i.e., 
't' 

n 

f~ (UU(x») = UU(x) which is easily verified, assuming 
n 

p(UU) = UU . 

Induction Assuming that P(f) is true, 

fk ('t' (f)(x)-
l' n n 

~ (if p(x) then x else r(h(x») 
l' -

n 

(definition of l' ) 
n 

= if p(x) then x else fk ~(x) 
-- -- T 

n 

(properties of f ) 
1'n 

= if p(x) then x else rh(x) 

(a) 

(induction hypothesis) 

=1'(f)(x) 
n 



Now that equation (a) has been proved, let us consider 

'i (f )(x) 
m 'f n 

- if p(x) then x else rm h(x) 
't'n 

= if p(x) then x else f h(x) -- -- 't' 
n 

= if p(x) then x else fG h(x) -- -- 't' 

f (x) 
'! 

n 

n 

(by (a)) 

(by (a) again) 

It follows by fixed-point induction that f c f and by symmetry 
't' 'f m n 

o 

Example 2. Let us consider the two "squaring" programs 

'i: F(X,y,z) <= if x = ° then y else F(x-l,y+z,z) 

and 

cr: G(x,y) <= if x = ° then y else G(x-l,y+2x-l) 

over the natural numbers. We wish to show that f'f(X'O,x) - gcr(x,O) 

Let p( f, g) be 
2 2 

f(y, x(x-y), x) '= g(y, x -y) . If we can prove 

P(f't',gcr) , the desired conclusion will follow by choosing x equal to y . 

Base Proving P(UU,UU) is straightforward. 

Induction Assuming P(f,g) , consider 

T(f)(y,x(x-y),x) = if y = ° then x(x-O) else f(y-l,x(x-y)+x,x) 

(definition of't') 

- if Y = ° then x
2 

else f(Y-l,x(x-(y-l»,x) 

2 2 2 2 ° then x -0 else g(y-l,(x -y)+2y-l) 

2 2 = cr ( G) (y, x -y ) 

79 

(induction hypothesis) 

o 



Example 3. (S. Ness) Let us consider the following two LISP 

functions 

F(x) <= if atom(x) then x.NIL else F(car(x» *F(cdr(x» 

and 

G(x,y) <= if atom(x) then x.y else G(car(x),G(cdr(x),y)) 

where * represents the append function. We shall prove by 

computation induction that G(x,y) = F(x)*y (over the domain of lists) . 

Base The equality UU = UU*y is a consequence of the definition 

of * 

Induct ion If 

A(x,y) - (if atom(x) then x.NIL else f(car(x» *f(cdr(x))) *y, 

then 

A(x,y) = if atom(x) then (x.NIL)*Y else (f(car(x)) *f(cdr(x))) *y - -- --

= if atom(x) then x.y else f(car(x))*(f(cdr(x))*y) 

(LISP axioms) 

The conclusion 

A(X,y) = if atom(x) then x.y else g(car(x),g(cdr(x),y) 

follows then by using the induction hypothesis twice. 
o 
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2. Modelling Some Proof Techniques Within LCF 

Looking back at Chapter 3, we realize that Section 2.3 on termination 

of programs is the only place where we actually used functions which are 

not continuous. We therefore have to demonstrate how the technique of 

structural induction, as described for example, in Burstall [1] or 

Manna-Ness-Vuillemin [15] can be modelled within LCF. 

Finally, a method which was not accounted for in Chapter 3, since 

its justification requires continuity, is that of Morris [23] and we 

shall study it in Section 2.2. 

2.1 Structural Induction 

Actually, the word structural induction covers two rather different 

techniques. The first one is a simple generalization of the induction 

principle on natural numbers, while the other one is a statement of 

Noetherian induction applied to arbitrary well-founded sets, which is 

the most general induction principle known to man. 

Simple Structural Induction 

(a) Mathematical Induction 

The usual formulation of this principle for natural numbers is: 

from p(O) and Vx(p(x) ~ p(x+l» 

infer vxp(x) 

Let the predicate n(x) <= if x = 0 then TT else n(x-l) characterize 

the natural numbers in our system. (We assume the usual axioms about 

o , 1 , = , + , - as described in Newey [25].) Let p(x) be any 

predicate which can be expressed as a term of the ~-calculus. 
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From the premises 

p(x) ~ TT , if x = ° then TT else p(x-l) ~ p(x) 

we can infer by fixed-point induction that n(x) ~ p(x) , i.e., that 

p(x) holds for any natural number x . 

In other words, 

from p(o) == TT and p(x) == TT I- p(x+l) == TT 

infer n(x) == TT r p(x) == TT 

This method applies to any data-type which is recursively defined by a 

* semi-computable predicate. For example, the domain E of words over 

some vocabulary r: can be characterized by 

word(x) <= if x = A then TT else word(t (x» 

and the corresponding prinCiple is: 

from 

infer 

if nUll(x) then p(A) else p(t(x» == TT I- p(h(x) ·t(x}) == TT 

word(x) == TT l- p(x) == TT 

(We are again assuming axioms about A, =, . , h ,t .) 

Example 4. Let us consider two programs for computing the factorial 

fUnction: 

F(x) <= if x = ° then 1 else x X F(x-l) 

G(x,y) <= if x = y then 1 else (ytl) xG(x,y+l) 

In order to show that G(x,O) == F(x) , we shall prove that n(x-y) ~ p(x,y) 

where p(x,y) is G(x,y) X F(y) = F(X) Let r be defined as 

r(x,y) <= if x = y then TT else r(x,y+l) 
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We first prove that r(x,y) = n(x-y) . Then, since 

p(x,y) = if x = y then F(X) = F(Y) else (y+l)G(x,Y+l).F(y) = F(x) 

= if x = y then TT else p(x,y+l) 

we can conclude that r(x,y) ~ p(x,y) ,i.e., n(x-y) ~ p(x,y) This 

last inequality is equivalent to y::; x = TT f- p(x,y) = TT . 
o 

This technique required p to be a computable predicate; if P 

is an arbitrary well-formed-formula, a generalization (Milner [18]) 

yields: 

Q f- PtO/x} Q,P f- P[(x+l)/x} 
Q r n(x) ~ P (x not free in Q) 

where q ~ s ~ t means if q then s else UU ~ if q then t else UU , 

Example 5. Let 

rev(x) <= F(x,A) 

F(x,y) <= if x = A then y else F(t(x),h(x)·y) 

In order to show that rev(rev(x)) = x , one can prove that word(x) ~ P , 

where P is rev(F(x,y)) = F(y,x) o 

(b) Course of Values Induction 

Another formulation of the induction principle over the natural 

numbers is the following: 

from Vx[Vy[y < x ~ p(y)] ~ p(x)] 

infer Vxp(x) 
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Whenever p is computable, this course of value induction can also be 

modelled directly because the operation of bounded quantification is 

computable and can be defined as: 

"'( == \.Lf. [Ax,p. if x = 0 then TT else if p(x-l) then f(x-l) else UU] 

According to this definition, '\f(x,p) "means" Vy(y < x ::) p(y)) . We 

can define the partial predicate m = \.Lp.Ax[V(X,p)] and prove that 

m == n where n == \.Lf.[Ax. if x = 0 then TT else f(x-l)] as follows. 

( i) men 
--

V(x,n) == if x = 0 then TT else if n(x-l) then V(x-l,n) else UU 

e if x o then TT else n(x-l) 

(by cases using the fact that V(x-l,n) ~ TT ) 

== n(x) 

Hence, men follows by fixed-point induction. 

(ii) n em. 

Since x = 0 == FF I- m(x-l) == V(x-l,m) by definition of m, we 

have x = 0 == FF I- (if m(x-l) then V(x-l,m) else UU) == m(x-l) (by 

cases again, using the fact that m(x-l) e TT ). It follows that 

m(x) == if x = 0 then TT else if m(x-l) then V(x-l,m) else UU 

== if x = 0 then TT else m(x-l) . 

The conclusion n e m then follows by fixed-point induction again. 

o 
Having established the equivalence n == m , we can justifY the 

following rule of inference: 
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from 

infer 

V(x,p) = TT ~ p(x) = TT 

n(x) - TT ~ p(x) = TT 

A similar rule can be derived for well-formed-formulas. 

Example 6. Let us consider a modified version of McCarthy's 9l-fUnction: 

F(x) <= if x < 0 then x+l else F(F(x-2» 

In order to prove that n(x) = TT r (F(x) = 0) = TT , let p = ~.[F(x) = 0] 

The equalities (F(O) = 0) = TT and (F(l) = 0) = TT have to be checked 

first and then, assuming V(x,p) = TT and x > 1 = TT , we prove p(x) : 

p(x) = (F(x) = 0) - (F(F(x-2) 

- (F(O) = 0) 

- TT 

Transfinite Induction 

0) (x < 0 = FF) 

(p(x-2) = TT) 

(separate check) 

o 

Let < be a well-founded relation over the domain g. We showed 

in Chapter 3 how to derive the following principle: 

from 

infer 

'\fXEg{VYE.&[Y < x ~ p(y)] ~ p(x)} 

VXEg£p(X) } 

The proof given precluded continuity and is therefore not applicable in 

the present context. 

We shall describe a technique for deriving in LCF any instance of 

the above rule one may need in "practical" cases. Here, a "practical" 

well-founded relation is either one of the basic orderings described in 

the preceding section or an ordering constructed as a well-founded 



collection of well-founded relations.:! Since we already know how to 

handle the "base" case, all we need to model is the construction of 

complex orderings from simpler ones. 

Let < be a computable well-founded relation over the recursive 
1 

domain Bl , and, for any XEB1 , let < be a well-founded relation 
x 

over .f)2(x) . We then consider the domain JJ =[(x,y) IXEJJl , YEB
2

(x)} 

together with the ordering < where (x,y) < (x',y') is equivalent 

to x < x' or (x = x') A (y < y') 
1 x 

Assuming we already know that 

the rules 

Q"X' <x :::) Ptx'jx} I- P 
(1) 1 

Q. I- JJl(x) :::) P 
(x and Xl free in Q) 

and 

Q.,y' < y :::) Pty' jy} I- P 

(2) 
x 

Q. I- JJ2 (X,Y) :::) P 
(y and yl free in Q.) 

are valid, we want to justif'y the rule 

Q,(i',y') < (x,y) P 
(3) 

Q I- O&(x,y) :::) P 
(X , X I ,y and y I 
free in Q) 

where »(x,y) = JJl(x) A ~2(x,y) . Assuming rules (1) and (2) and the 

hypothesis of rule (3), we shall prove that Q f- '&1 (x) A JJ2 (x,y) :::) P 

in two nested inductions, by distinguishing between the following cases: 

£J This is equivalent to multiplying the corresponding ordinals. The 
operation corresponding to ordinal exponentiation can be modelled 
just as well, although we could never find any practical application 
for it. 



1) x' -< x - TT . 
1 

The hY}lothesis of (3) is then Q,x' -< x ~ PtX' Ix} f- P; 
1 

hence rule (1) implies that Q f- .171 (x) ~ P and, a-fortiori, ft(x,y) ~ P . 

2) x' -< x - FF . 
1 

Since (x,x') -< (y,y') = TT is the only interesting case, one 

can assume that x = x' and y' -< y. The hypothesis of (3) then becomes 
x 

Q,y' -< y ~ Pty'/y} f- P which, by rule (2), implies that 
x 

Q f- f}2(x,y) ~ P and the conclusion Q f- f}(x,y) ~ P then follows. 

o 

Example 7. Using the technique we just described, we shall prove that 

Ackermann's i'uncti:Jn 

A(x,y) <= if x 0 then y+l else 

if y = 0 then A(x-l,l) else A(x-l,A(x,y-l» 

is defined over the natural number. 

Let P be n(y) ~ n(A(x,y» , where 

n - ~f.[~x. if x = 0 then TT else f(x-l)] We shall prove that 

n(x) f- P which "means" that, whenever x and yare natural numbers, 

A(x, y) must also be a natural number, is true. 

The main proof is by induction on x 

Base: x = 0 . In this case, PtO/x} is n(y) ~ n(y+l) which is 

always true, as a consequence of the axioms about 0, 1 and + . 

Induction. Assuming Ptx-l/x}, that is n(y) ~ n(A(x-l,y» we must 

prove P, i.e., n(y) ~ n(A(x,y» Let us argue by cases on 

the predicate y = 0 : 
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case y = 0 = TT . Since in this case A(x,y) = A(x-l,l) , it 

is sufficient to prove that 

nCO) ~ n(A(x-l,l» ( a) 

We know by the induction hypothesis that n(l) ~ n(A(x-l,l» and 

equation (a) follows, since nCO) = n(l) 

case y = 0 = FF. Choosing y = A(x,y-l) in the induction 

hypothesis P[x-l/x} gives us: 

n(A(x,y-l» ~ n(A(x-l,A(x,y-l» 

Since in this case A(x,y) = A(x-l,A(x,y-l» the last inequality 

implies that n(A(x,y-l» ~ n(A(x,y» . Hence, by a "nested" 

fixed-point induction applied to the predicate q(y) = n(A(x,y» 

we conclude that n(y) ~ n(A(x,y» 
o 

2.2 Truncation Induction 

Recalling Kleene's first recursion theorem, we can characterize the 

least fixed-point of the program F <= ~(F) as the least upper bound 

of the sequence of functions fO,fl , ... ,fn, ... defined by fO = UU 

and fn+l = T(fn) . The rule of truncation induction, as Morris [23] 

named it, can be formulated as 

Rule TI 

from Q, r Ptfn/f} for any natural number n 

infer Q, !- Ptf,/ f} 

Actually Morris [23J used the formulation 

from Q" 'fm(m < n ~ Ptf If}) r Pt f If} 
ill n 

infer for all n 
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which is equivalent to ours since Section 2.1 of this chapter shows 

how to obtain the missing step, namely: 

from Q, trm(m < n => p[f j f} r p[f j f} 
m n for all n 

infer Q r P[f j f} 
n 

for all n . 

A first problem which arises with rule TI is that, since it 

requires knowledge about the integers in its formulation, it cannot 

even be expressed in pure LCF. (This should be regarded as an advantage 

of Scott's formulation of the rule.) 

More dramatic is the fact that, even in an LCF with integers 

(where TI can then be expressed), there does not seem to be any way to 

justify it, despite the fact that it is clearly valid in any standard 

model. It is possible to get around this difficulty by slightly extending 

the logic. What is needed is a formal way to talk about limits. This 

can be achieved by embedding data-types into complete lattices, thus 

going back to the original definition of data-types in Scott [29]. This 

idea entails the following extensions to LCF: 

(1) Introduce constant terms 00 (for overdefined) at each type. The 

corresponding axioms are I- x c 00 and 00 ~ OO(x) . In 

the case-rule, the case p[oojx} r Q should be added to the premise. 

(2) If s and t are terms of type ex , then sup(s, t) should also be 

a term of type ex It is axiomatized by l- x ~ sup(x,y) , 

I- Y ~ sup(x, y) and x~z,y~z sup(x,y) ~ z 

(3) We could introduce inf(x,y) in the same way, although we won't 

need it. Also, one should make up his mind as to what 

if 00 then x else y ought to mean. Two extreme possibilities are 

if 00 then x else y ~ 00 or r if 00 then x else y = sup(x,y) 



In this extended logic (along with the natural numbers) we can then 

justify rule TI: 

First of all, one needs to express the rule within the formal 

system, and we shall define as iter( 1") (n) where 

Definition 1. 

iter = ~f.[A-r,n. if n = 0 then UU else -r(f(n-l))] 

Using this definition, it is easy to prove that 

Lemma 1. 

iter ( -r) (n) c it er (-r ) (n+ 1) 

and 

Lemma 2. 

it er ( -r) (n) C f -r 

We now wish to prove that 

Definition 2. 

f --r U tf} n 
n>O 

u == ~f.[At3,n. sup(t3(n),f(t3(n+l)))] 

and, for this purpose, let 

Using an induction on this formal definition of U , one can then 

prove that 

Lemma 3. 

and 

Lemma 4. 

t3(n) ~ t3(n+l) r l(U(~,n)) = U(Ax.l(~(x)),n) 



Note that Lemma 4 is particularly interesting since it proves that 

any function y which can be expressed within the logic must be 

continuous. Kleene's first recursion theorem may now be expressed as 

f == U(iter(T),n) 
'f 

and proved in two steps. 

Firstly, combining Lemmas 2 and 3 yields 

U(iter(T),n) ~ f-r 

(K) 

Then, the other half of the proof is a little bit more complicated. 

-r(U(iter(-r),n» '" U(Ax.-r(iter(r) (x»,n) 

'" U (Ax. iter ( -r ) (x+ 1) , n) 

~ U(iter(-r) ,n) 

The conclusion 

feU ( it er (T ) , n) or -

follows by fixed-point induction. 

(Lemmas 1 and 4) 

(Definition 1) 

(Lemma 1) 

We now have all the machinery required for justifying truncation 

induction. Assuming for simplicity that the well-farmed-formula we want 

to use is of the form a(f) ~ g , we must prove that 

a( iter(-r) (n») ~ g 

Lemmas 1 and 4 tell us that 

U(;\.x.a(iter(-r)(x»),n) '" a(U(iter(-r),n» , 
and therefore 

a(iter(T)(n» ~ g r a(U(iter(T),n» ~ g 
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Since f == U ( iter ( "t' ) , n) 
'f 

by Kleene's theorem, this last implication 

reduces to 

CX(iter(-r) Cn)) ':: g f- CX(f
1
,) ~ g 

which is what we wanted to prove. 

Applications 

-- First of all, some equivalence proofs seem to be more natural 

(and may in fact require) using truncation induction. 

For example, if two fUnctionals sand t satisfy s(UU) = t(UU) 

and st == t 2s ,21 the natural truncation induction predicate would be 

2n_l n 
t (UU) == s (UU) , and therefore ~f.s(f) = ~f.t(f) . If one uses 

the machinery we just developed, this informal proof can very easily 

be carried through within the extended logic. Actually, a more elegant 

proof (not using natural numbers) would be the following: 

Define 

M(g,f)(x) <= sup(f(x),M(g,f) (f(x))) 

and 

N(g,f)(x) <= sup(f(x),N(Ax.g(g(X)),f) (g(x))) 

( M(S,Af.f) (UU) represents U sn(UU) and N(t,Af.f) (UU) represents 
n>O 

n 
U t 2 -\UU) . ) One can then prove that f = M( s,Af. f)(UU) and 

n >0 
s 

ft = N(t,Af.f) (UU) and finally that 

~(UU) == t(UU) ,Af.s(t(f)) = Af.t(t(s(f))) f- M(s,i\f.f)(UU) == N(s,Af.f)(UU) 

£/ This example is due to J. W. deBakker. Robin Milner has a proof of 
it in pure LCF. The reader may find out for himself how tricky it is, 
and fUrther away from the intuitive proof than the one presented here. 
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-- Similarly, let us consider the following version of the induction 

rule 

rule R6 r 

Q f- h c fT,P~h/f} Q,P f- P~'L'(f)/f} 

Q f- P[f,/f} 
(f not free in Q) 

where the base of computation induction is not taken at the undefined 

element UU but at any element hef 
- l' 

Informally and assuming P to be a(f) ~ ~(f) for simplicity, 

the hypothesis of the rule implies that a(Tn(h)) ~ ~('fn(h)) for any n . 

On the other hand, 

therefore U 
n>O 

We h c f 
l' 

implies n n 
'1' (UU) c T (h) c f 

- - l' 

The conclusion a(f) c ~(f ) 
l' - l' 

and 

then 

follows easily from the continuity of a and monotonicity of ~ . 

This argument can be carried through formally within the extended LCF. 

In particular, it applies to the following theorem 

1'(f) c f f- T(0(f)) ~ 0(f) 

f- T(f0)~f0 

which is provable in the extended logic; the author does not know how 

to prove it (and conjectures are not provable) in pure LCF. 
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Conclusion 

In the actual state-of-the-art, Scott's approach to the semantics 

of programming languages seems to be the most promising one. The 

theoretical foundations are sound, and a natural step would now be to 

describe fUlly the semantics of a fUll:size programming language, along 

the lines of scott-Strachey (32), Milner-Weyrauch [21J, or Reynolds [27]. 

Another wide open and promising area seems to be that of semantics 

of operating-systems and parallel processes. Steps in this direction 

were taken by Kahn [11], Milner [20), and others. 

Finally, the question of a 1Ibest1l logic for expressing a theory 

of computation remains. As alternatives to LCF, the systems of 

Hitchcock-Park [8) and deBakker - deRoever [5] have some interesting 

features; in an unpublished work, Scott and Milner also considered the 

possibility of extending LCF to a "type-free" logic whose semantic 

domain is one of Scott's models of the ~-calculus. 

In any case, more efforts should be put in studying the existing 

systems. In particular, LCF provides a nice framework for the area of 

schematology, where existing results can be expressed and sometimes 

simplified, and where new and interesting questions arise. (See 

deBakker [4] and Courcelles-Kahn-Vuillemin [3].) 
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