
STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO A 1M - 218

STAN-CS-73-393

~
eJ:J ~.

o
.~,

PROOF TECHN IQUES FOR RECURS IVE PROGRAMS

l:­
t'"
~.
~

BY

JEAN E. VU I LLEM IN

SUPPORTED BY

ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 2494

PROJECT CODE 3D30

OCTOBER 1973

COMPUTER SCIENCE DEPARTMENT
School of Human ities and Sc iences

STANFORD UN IVERS ITY
Reproduced by

NATIONAL TECHNICAL
INFORMAT!ON SERVICE

us Department of Commerce
Springfield VA 22151

Proof Techniques for Recursive Programs

Jean Vuillemin

Abstract

The concept of least fixed-point of a continuous function can be

considered as the unifying thread of this dissertation.

The connections between fixed-points and recursive programs are

detailed in Chapter 2, providing some insights on practical implementa-

tions of recursion. There are two usual characterizations of the least

fixed-point of a continuous function. To the first characterization,

due to Knaster and Tarski, corresponds a class of proof techniques for

programs, as described in Chapter 3. The other characterization of

least fixed pOints, better known as Kleene1s first recursion theorem,

is discussed in Chapter 4. It has the advantage of being effective

and it leads to a wider class of proof techniques.

The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies,
either expressed or implied, of the Advanced Research Projects Agency of
the u.s. Government.

This research ,vas supported by the Advanced Research Proj ects Agency, Dept.
of Defense under contract DARC l5-73-C-0435

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

i,b

Acknowledgments

First of all, I run grateful to Dana Scott, Robin Milner, and

David Park who, by their respective works, made this thesis possible.

I am deeply indebted to:

Donald Knuth for his reading of the manuscript; his

criticisms of Chapter 2 led to rewarding improvements

in the generality of the results.

Zohar Manna for his constant encouragement and help; he has

been a model adviser throughout my work.

Robin Milner for all the things I learned from him, and

the many interesting discussions we had.

I also want to thank my friends Jean Marie Cadiou, Ashok Chandra,

Cyril Grivet, Gilles Kahn, Lockwood Morris, Steve Ness, Mark Smith,

and Phyllis Winkler who all helped me in their many different ways.

ii

Table of Contents

Introduction . . • . • •
Chapter 1. Scott's Theory of Computation

1. Data-Types . • . • . • •

2. Computable Functions Over Data-Types .

3.

Chapter 2.

1.

2.

3.

Chapter .5.

1.

Fixed-Points .

Fixed Points and Recursion

Computations of Recursively Defined Functions

1.1 Description of Lang S and Lang P

1.2 Conventions and Notations .

1.3 Computation Rule

1.4 Computation Lattice of a Program

Correct Implementations of Recursion .

2.1 Incorrect Computation Rules

2.2 Safe Computation Rules

An Optimal Implementation of Recursion in Lang S

3.1 Never Do Today What You Can Put Off Until

Tomorrow

3.2 Optimality of the Delay Rule

3.3 Sequential Functions

Proofs Based Upon Monotonicity

A Fonnal System for the Time Be:ing • .

1.1 Syntax

1.2 Semantics . • • • .

1.3 Axioms and Rules of Inference • .

1.4 Soundness

iii

1

3

4

9

13

15

15

16

18

20

22

33

33

34

41

41

45

46

53

53

53

54

54

56

1.5 Pragmatics

1.6 A Possible Weakness of the System

2. Justification of Some Proof Techniques

2.1 Description of a Flowchart Language

2.2 The Inductive Assertions Technique

2·3 Termination of Programs

Chapter 4. Proofs Based Upon Continuity

1. Description of LCF

1.1 Syntax

1.2 Axioms and Rules

1.3 Some Remarks About the Logic

1.4 Some Examples of Proofs

2. Modelling Some Proof Techniques Within D0F

2.1 structural Induction

Conclusion

References

2.2 Truncation Induction

iv

.

.

57

61

64

64

67

68

70

71

71

. . . 72

. . . 74

76

81

81

88

94

95

Introduction

The goal of this work was to study and hopefUlly compare in a

precise way the various techniques for proving properties of programs

eXisting in the literature. It soon turned out that nothing interesting

could be said if one did not state precisely what the various methods

really are within a common logical system. A perfectly adequate system

for doing so was the Logic for Computable Function of Milner [18J, which

is based on the work of Scott [29] and [30].

In this framework, proof techniques fall rather nicely into two

classes: for the first class, which includes the methods of Burstall [lJ,

Floyd [7], Hoare [9], Manna-Pnueli [16], the semantics needed for validating

the techniques only demand that programs be interpreted as monotone

fUnctions in the sense of Scott [29]; for methods in the second class,

such as those of Scott [30] and Morris [23J, programs must be interpreted

as continuous fUnctions.

The methods in the second class are then "more powerfUl" in that

they can be used for justifying the other techniques; fUrthermore,

provided that all methods are expressed within the same logical system,

we can exhibit properties of programs which are provable with the

proof-techniques in the second class, and not provable with the techniques

in the first class, and not vice-versa.

Before studying the various proof techniques, we present a minimal

background in Scott t S Theory of Computation in Chapter 1. One of the

points of the theory which we thought needed clarification was the

relations between the abstract notion of least fixed-point and the

1

concrete notion of trace of a program. Chapter 2, which is the most

original part of this thesis, is devoted to this question. We believe

that Theorems 1, 3 and 4 are new while Theorem 2 is a generalization

of a result by Cadiou [2].

In Chapter 3, we study the proof-technique in the first class. The

formal system used is original, although a mere adaptation of Milner's

LCF to a different semantic domain. Reduction of the proof techniques

presented to the rule of fixed-point induction are due to Park [26].

In Chapter 4, we describe reductions of some methods to the rule

of induction of Scott [30]; some of these reductions are also used,

implicitly or explicitly in deBakker-Scott [6], Scott [30], Milner [18],

and Milner-Weyrauch [21].

2

Chapter 1. SCOTT'S THEORY OF COMPUTATION

In this chapter, we shall present an overview of Scott's theory

of computation, whose goal was to give a "mathematical" as opposed to

"operational" semantics for high-level programming languages. Only the

parts of the theory which are relevant .. to this dissertation will be

described. In particular, one of Scott's most impressive achievements

was to construct a model for the ~-calculus, which in turn provides a

mathematical semantics for programming peculiarities such as self-modifying

machine codes or procedures taking other procedures as arguments. We

shall not concern ourselves with this problem, and the kind of procedure

we are willing to consider has a definite type -- a fUnction from

individuals to individuals, or a fUnctional from functions to functions,

etc. Limited as it is, the theory that we shall describe is nevertheless

powerful enough not only to describe the semantics of non-trivial subsets

of any programming language, but also to justify all the existing proof

techniques for those languages. The presentation of this chapter, whose

only purpose is to make the thesis more or less self-contained, is based

on Scott [29] except for some minor technical details.

We aSSTh~e that the reader has some knowledge of elementary lattice

and recursion theories.

3

1. Data Types

As a first step, let us consider some examples of what one would

like to call data types:

(a) the boolean values true and false;

(b) the set of integers;

(c) the n-dimensional arrays of integers;

(d) the set of subsets of integers;

(e) the set of computable partial functions over some data-type;

(f) the set of non-negative real numbers.

Some of those sets contain as elements objects like total functions or

irrational real numbers, which we shall call "infinite elements". They

cannot be described entirely, but one can give better and better finite

approximations to what they really are. For example, the intervals

[3,4], [3.1,3.2], [3.14,3.15],

of TT •

form a sequence of approximations

This suggests that data-types ought to be partially ordered sets.

The notation x ~ y means that x approximates y, and C must

therefore be a reflexive, transitive and antisymmetric relation over

the data-type. For example, if A and B are some subsets of the

integers, A C B means that A is a subset of B. Similarly, for

any two intervals [x,x'] and [y,y'] of non-negative real numbers

[x,x'] ~ [y,y'] will mean that x:5 y and y' < Xf , i.e., [y,yf]

gives us a better idea of where the real number lies than [x,x'] .

ConSidering now two integers k and £, we do not wish to say

that one is an approximation of the other. However, it may be the

case that k is not explicitly known, but has to be determined as

4

the result of some computation. As we all know, this computation may

never terminate, in which case k is said to be undefined; we denote

this by k '= UU and clearly UU C l for any £ We use a different

equality sign " = " in order to avoid confusions with the regular

equality" = " over the integers. Here, x '= y means that x ~ y

and y ~ x ,while x = y is true whenever x and yare the same

integer. For example, 1 = 1 and 1 '= 1 are both true, while UU '= 1

is false and UU = 1 is undefined. To be precise, one should write

(UU
I

= 1) '= DUB where the subscripts are here to remind us that UUI

is an undefined integer, while UUB is an undefined boolean.

To clarify those ideas, it is helpful to describe more precisely

the partial orderings over our favorite data types.

(a) For the boolean values, the data type looks like

b
where ~ means that b covers a, i.e., a C b with

a

and a C c c b for some c implies either a - c or c '= b .

(b) Although there are infinitely many integers, the corresponding

data type is not much richer:

1 2 n

~/
Data types of this kind, where el~~ents are either completely specified

or undefined will be called discrete.

5

,

(c) The data type of pairs of Boolean has already a richer

structure:

(TT,TT) (TT,FF) (FF,TT) (FF,FF)

1><><><1 (TT,UU) (UU,TT) (UU,FF) (FF,UU)

~~ UU

(d) In the data type of subsets of some set, A C B means that A

is a subset of B ; the least element UU is the empty set.

(e) As indicated before, the elements of the data type of real

numbers are closed intervals [x,x' J with ° < x < x' and

[x,x' J r::: [y,y' J whenever x:s y and y' < x' It is convenient

to complete the real line with an ele.."'Uent 00, thus allowing [7.1, 00 J

for example, to be a real number. The interval [O,ooJ reflects a

complete lack of information and should therefore be identified with

the undefined real UU .

(f) If Jj is a data type partially ordered by ~Jj' the partial

functions mapping Jj into j} are ordered by:

f~g iff f(x) ~Jj g(x) for all x in Jj.

The minimal element UU Jj->Jj is the partial function which is everywhere

undefined, i.e., UU(x) - UU for all x in j}.

Infinite Elements as Limits

Let us contemplate again the sequence

[3,4J, [3.1, 3.2J, [3.14, 3.15J , We would like to be able to

6

define TT as the "limit" of these intervals. Abstractly, this will

require that any chain:J

Xo C xl C '" ex. ex. 1 C .,.
- - - l - 1'+ -

has a limit y in the data type JJ , which is the least-upper bound

of the x.' s that is, x. C y for every j and, for any z in the
l J -

data type, x. C z for every j implies yr;:: z . We write y - U x.
J

According to this notation, in the data-type of real numbers

[1,2] == U [i/(i+l), (2i+l)/i] and for sets of integers,
i >0

tklk is odd} - U tl,3, ... ,2i+l}
i >0

Let us define the constant

i >0

function one as one(x) == 1 for any integer x, while one(UU) == UlT

this function can also be defined as a limit of partial fUnctions

one - U
i >0

[Ax. if x < i then 1 else UU]

Computability

Asking that the infinite object U
i >0

X.
l

be computable will

require that the X.
l

themselves be computable. We therefore postulate

the existence of an effectively given subset E of the data type JJ,

such that any element of JJ is the limit (not necessarily effective)

of some chain of elements of E Such a set E will be called a

recursive basis of JJ. For example, a data-type in which there are

no infinite ascending chains (booleans, integers, arrays) is its own

*I
~ Strictly speaking, we only need denumerable chains to have a limit.

However, when data-types have a denumerable basis (see below),
requiring that countable chains have limits implies that any chain
(and in fact directed set) also has a limit.

7

l

basis provided that it is recursive. The finite sets of integers

constitute a basis for the set of subsets of the integers. Similarly,

the set of functions which are undefined for all but a finite number

of arguments is a basis for the data type of partial functions.

Finally, a basis for the real numbers is the set of rational-end-point

intervals.

We can remark that the recursive basis of a data type » must be

denumerable. Consequently, all of its elements being obtained as

limits of denumerable chains in the basis, » itself has at most a

continuum number of elements. In particular, since there are at most

denumerably many computable objects (i.e., objects defined as limits of

effectively given chains), a non-denumerable data-type will possess

many non-computable elements.

We can summarize the above discussion by the postulate

A data-type is a partially ordered set with a

minimal element, possessing a recursive basis

and in which every ascending chain has a limit.

Note: This notion of data-type is slightly different from the one

advocated by Scott [29J, namely that data-types ought to be complete

lattices. The main technical reason for this choice was the difficulty

which seems to arise for defining our notion of sequential function

in Chapter 2, with complete lattices.

8

2. Computable Functions over Dat~ Types

The next step is to consider programs as functions mapping data

types into data types, and to derive some mathematical properties of

such functions.

Programs as Monotone Mappings

Let f be a partial function computed by some program. Whenever

the input x is less defined than the input y, the output f(x) must

be less defined than f(y) ,i.e., x ~ y implies f(x) ~ f(y) . This

motivates the hypothesis that fUnctions computed by programs are monotonic

mappings over the data type.

Examples

-- The successor function [~x. x+l] over the integers is monotone

if we choose UU+l == UU .

-- The conditional if p then x else y where

if UU then x else y == UU

if TT then x else y == x

if FF then x else y == y

is monotone with respect to p, x and y. (A function of several

variables is monotone when it is monotone in each of its arguments.)

-- As for sets, the fUnctions A U B and A n B are both monotone

in A and B .

-- The following definition of division over the reals makes it

a monotone fUnction:

9

[x,y] / [Xl ,yl]

X o and X

o

X Y
[Y"X'] where

for all xc[0, (X)] •

Programs as Continuous Mappings

As it stands now, the theory is already quite adequate for

expressing and proving properties of programs, and Chapter 3 describes

some results which can be derived from the assumption that mappings

between data-types are monotone functions.

However, we are still miSSing an essential property of computable

functions. Knowing the values of a monotone function over the basis of

a data-type does not determine in general its values over the data-type.

For example, the function

U B if A or B is finite
funny-union (A, B)

if A and B are infinite

where A and B are two subsets of N , is monotone but clearly not

computable.

Intuitively, the value f(x) of a computable function f at an

infinite object x should be obtained as the limit of the values

f(x.)
J..

over the finite approximation X.
J..

of x . More precisely, let

us consider an arbitrary chain

of elements in the basis of the data type. Since f is monotone, the

set [i > 0 \ f(ei)} is also a chain

10

and the computability of f demands that

f(U e)
n >0 n

U f(e)
n

n >0
(a)

A monotone functior satisfying equation (a) for arbitrary chains will

be called continuous. We shall therefore postulate that

Computable fUnctions are continuous mappings between

data-types.

Again, a function of several arguments is continuous if it is continuous.

in e~ch of its arguments.

Examples

-- The function [Ap,X,y. if P then x else y] is continuous.

Addition of two integers, union of two sets, division of reals are also

continuous operations. The functional [AF.[Ax. if x = 0 then 1 else x.F(x-l)

over the data-type of natural numbers is continuous, both in F and in x .

-- Let us define the mappings ax p(x) and Vx p(x) which associate

a boolean to each function p from natural numbers to booleans as

follows:

-- ax p(x) is equal to TT if p(n) - TT for some natural

number n and equal to UU otherwise.

-- Vx p(x) is equal to TT if p(n) - TT for all natural

numbers n ft UU and equal to UU otherwise.

We shall verify that [Ap.(aX)p(x)] is continuous while [Ap.(VX)p(x)]

is monotone but not continuous in general.

11

Let Po c_ ... c p. c p. 1 c
- 1 - 1+ -

be a chain of partial predicates over the natural numbers. We easily

verify that (u P.) (x) -
i >0 l

u (p. (x)) .
i >0 l

Now, if (U p.) (x) -
i >0 l

u p. (x) == TT for some x, there must exist an iO such that i ~ iO
i >0 l

implies

is an

p. (x) - TT
l

such that

otherwise, either

p. (x) - FF or
lO

(0 p.) (x) - FF and again there
i >0 l

(LJ p.) (x) - UU
i >0 l

and p. (x) == UU
l

for all i In all cases we have (ax) (u p.) (x) == u (ax)p. (x) and
i >0 l i >0 l

a is indeed continuous. One shows that V is monotone in a similar way

and the chain p.(x) == (x < i) provides a counterexample to the continuity
l

of V .

Let us now discuss some properties of continuous functions. First

of all, it is possible to define a topology over data-types such that a

function is continuous in the above sense if and only if it is continuous

in the topological sense (see Scott [31]). Without describing the

topology, we can nevertheless say that a subset X of the data-type »
is directed if for all X,YEX, there exists a ZEX such that x c Z

and y ~ z. Together with the existence of a denumerable basis for g,

the fact that continuous functions preserve limits of denumerable chains

implies that continuous functions also preserve least-upper-bounds of

directed sets. Continuous functions do not however preserve least-upper-

bounds or greatest-lower-bounds (when they exist) of arbitrary sets.

12

3. Fixed Points

Let f be a function over a data-type ft. We say that XEft is

a fixed-point of f if x = f(x) ; we say that y is the least-fixed-

point of f if Y = f(y) and y ~ x for any other fixed-point x

Note that) whenever it exists) the least-fixed-point of f must be

unique; we shall denot~ it either by ~x.f(x) or by xf

Theorem (Kleene). Any continuous function over a data-type ft has

a least~fixed-point xf and

x = f U
n>O

~(uu)

Proof . . Here ~(UU) means

monotonicity of f) the set

prove that U ~(UU) is a
n>O

f(U ~(uu)) -
n >0

f(f(... (f(UU)) ...) (n times) and) by

n
£f (UU)} for n>O is indeed a chain. We

fixed point of f This is easy since

by continuity of f .

We now prove that U ~(UU) must be minimal. Let y be an
n>O

first

arbitrary fixed-point of f) i.e.) y - f(y) It is easy to prove by

induction that ~(UU) ~ Y for any n

follows immediately.

Examples

- In any data type)

The conclusion U ~(uu) ~ y
n>O

o

If ~ - ~f.[Ax. if x 0 then 1 else x.f(x-l)]

and a = ~f.[Ax. if x > 100 then x-10 else f(f(x+ll))] over the

natural numbers)

13

t ffn+l(UU) _ [, ' hen • ,-..x. if x S n then x~ else UU J

and an+l(uu) - [Ax. if x > 100 then x-10

therefore, f - [AX.x! J
'f

and

else if x-100 > -n then 91 else UUJ ;

f = [AX. if x > 100 then x-10 else 91J a -- ---- -.---

From these examples, the reader may already suspect that there

must be a relation between recursively defined functions and least

fixed points. The next chapter will be entirely devoted to this

question.

14

Chapter 2. FIXED-POINTS AND RECURSION

The object of this chapter is to detail the connections between

fixed-points of continuous functionals and recursively defined functions

in a very simple programming language. We first illustrate that the

semantics of recursively defined functions will depend on the implemen­

tation. A careless implementation of recursion will introduce unnecessary

computations, which may even prevent the program from terminating.

A general criterion for the correctness of an implementation will be

proved. We then describe an implementation of recursion which is both

correct and optimal in a general class of sequential languages and

therefore constitutes an attractive alternative to both "call by value"

and "call by name" .

1. Computations of Recursively Defined Functions

Before defining a computation rule, we must describe two programming

languages, lang Sand lang P . Although thos e two languages were

chosen for their extreme simpliCity, their use of recursion is as general

as any, and the results of this chapter provide some insight into

semantics and implementation of more complex programming languages.

Lang S permits only sequential computations, and corresponds

preCisely to a certain "typed" subset of Algol or LISP.

Lang P requires some parallel operations, and thus departs from

more classical programming languages) although we could undoubtedly

write an interpreter for lang P in any of those classical languages.

15

1.1 Description of lang S and lang P

Syntax

Both languages have the same syntax:

(program) ::= F(Xl , ... ,Xn) <= <term)

<term) ::= AIIA21 .. .

Ixll· .. Ixn

I Gl (term 1), ... , (term Pl»)

IGk((term 1), ... , <term Pk»)

\F(<term 1), ... , <term n»)

We limited ourselves to a single recursive equation, the extension

of the results in this chapter to systems of mutually recursive

equations being straightforward.

Here, A
l

,A2, ... ,Gl , ... ,Gk denote fixed constants and functions

respectively. It is convenient to use a more standard syntax, e.g.,

F(X) <= IF X = 0 THEN 1 ELSE X.F(X-l) instead of

F(X) <= Gl(Pl(X,AO),Al,G2(X,F(G3(X))))

The meaning of a program will be a continuous mapping in

simplicity, the

specified.

where each g. and g are some data-types; for
1

g. 's
l

will be identical to g unless explicitly

Semantics of terms in lang P

The meaning of a (term) is a (continuous) functional

Af.Axl , ... ,xn~«term») where the semantic function ~ is defined

inductively as follows:

(i) where a. EJ)
1

16

,,;(x) == X.
1

where

(ii)

(iii) ,,;(Gk (term 1), ... , (term Pk») == gk (,,;((term 1»), ... ,.I((term Pk»))

Pk is some continuous function in [» ~»].

(iv) ";(F((term 1), ... ,(term n»)) - f(,,;(term 1»), ... ,,,;«term n»))

Here we have to prove that this is continuous, i.e., that continuous

functions are closed under composition, A-abstraction and fixed-point

operation. The reader can find these proofs either in Scott [30] or in

Milner [19].

Semantics of Terms in lang S

The semantics of lang S is defined in precisely the same way as

that of lang P , the difference lying in restrictions on the interpreta-

tion of base functions. In lang S , we require functions to be sequential,

i.e., roughly that their arguments can be computed in sequence. We shall

give later a precise definition of this notion. For expository purposes,

however, we shall limit ourselves for the moment to studying a particular

sequential language.

The data-types on which our particular lang S is computing are

discrete, i.e., they look like:

or /3: tt ff

\/
uu

In what follows, we use w instead of uu» and 0 in place of uu» »
in order to help the eye avoid type confusions. Among the base functions,

we point out a particular one, denoted IF-THEN-ELSE whose interpretation

is the usual conditional, i.e., if uu then x else y == w ,

if tt then x else y == x and if ff then x else y == y .

17

All other base functions are required to be strict, i.e.,

g. (... , w, ..•) == W
l

they are undefined as soon as at least one of their

arguments becomes undefined. They are meant to correspond to the

II hardware " functions: add, addone, test-for-equality, ...

It will be shown that all functions definable in lang S are

sequential. The symmetric OR defined by the table:

~ uu tt ff

uu uu tt uu
x OR Y

tt tt tt tt

ff uu tt ff

or the symmetric multiply * where O*x - x*O == 0 are not sequential,

and are therefore not definable in lang S , nor in Algol for that matter.

Semantics of Programs in both lang S and lang P

The functional T == ~f.Axl' ... ,xn~«term») as defined in lang S

or lang P can be shown to be continuous. It must therefore have a

least fixed-point f and it would be nice to define the meaning '1l1. of
T

the corresponding program as '1l1.(program») == f .
T

This is unfortunately not true for all implementations of recursion,

and our goal will be to characterize the implementations for which the

computed function is equal to this least fixed-point.

1.2 Conventions and Notations

The reader has already noticed that syntactic entities are denoted

by upper case letters, while the associated semantic objects are

represented by the corresponding lower-case letters. We shall keep this

convention throughout this chapter. For example, if T is the term

18

IF X = 0 THEN 1 ELSE X.F(X-l) , then its meaning t is

~f.Ax if x = 0 then 1 else x.f(x-l) , where in this last expression

means the equality fUnction over the natural numbers, 0 the number 0,

etc.

From now on, we use upper case letters other than A, D , X , F

and G to denote (syntactic) terms. If T and S are terms, we denote

by TtS/X.} the result of replacing all occurrences of the letter X.
1 1

by the term S in T. By TtP/F} , we mean the term obtained by

replacing in ~ all subterms of the form F(Tl , ... ,Tn) by

P[Tl/Xl , ... ,Tn/Xn } . For example,

if T = Gl(F(Xl,F(Xl,X2))'Xl) and P = G(F(X2,X1)

Whenever we only wish to substitute P for some occurrences of F

in T , we rename, say Fl , the occurrences that we shall substitute

and F2 the others. The result of the substitutions is then

The same kind of notation also applies to semantic terms.

We use F(X) and f(x) as abbreviations for F(X1, ... ,X
n

) and

f(x
l

, ... ,xn) respectively.

Also, it will be convenient to consider only programs F(X) <= P

where P is of the form G(Pl , ... ,P
p

) with the additional restriction

that each of the letters F, Xl' ... ,Xn occurs at least once in P.

That is, P is required not to ignore any of its program variables,

to depend upon F (i.e., to be recursive) and not to be of the

uninteresting form F(X) <= F(Tl , ... ,Tn) . The main results of this

chapter generalize without this restriction, but the proofs are made

longer by an addition of special cases.

19

1.3 Computation Rule

A computation rule ~ is an algorithm for selecting some occurrences

of the letter F in each term. For any such rule and input D, we

construct the computation sequence TO,Tl , ... ,Tn, ... of the term T

by the program F(X) <~ P as follows:

result of substituting P for the F! S chosen by ~ in T .•
J.

For

example, if p:=: IF X < 2 THEN X ELSE F(X-l) + F(X-2) , the computation

sequence of F(X) according to "call-by-value" for input X:= 2 is:

Tl IF 2 < 2 THEN 2 ELSE E(l) + F(O)

T2 IF 2 < 2 THEN 2 ELSE (IF 1 < 2 THEN 1 ELSE F(O) + F(-1» + !:(O)

T3 IF 2 < 2 THEN 2

ELSE (IF 1 < 2 THEN 1 ELSE FeO) + Fe -1» +

IF 0 < 2 THEN 0 ELSE F(-1) + F(-2)

(Here, F(l) is in fact an abbreviation for F(2-l) , etc.)

In Tn' we underline the F's selected by the computation rule

for substitution. It is interesting to see precisely how the underlined

F is selected in this last example. For this purpose, we must introduce

the notion of simplification. The simplification mechanism is discussed

at length in Cadiou [2J) and we refer the interested reader to this

work. In our particular example, it is possible to define a simplifi-

cation mechanism ~T simpl(T) such that

20

Simpl(Tl) = F(l) + F(O)

Simpl(T2) 1 + F(0)

(Note that now, F(l) is no longer an abbreviation since simpl(2-1) 1.)

The rule "call-by-value" then selects the lei'tmost-innenuost

occurrence of F in simplified tenus. Similarly, "call-by-name"

selects the "leftmost-outenuost" one.

In its most general form, simplification can be an extremely

powerful computation tool. For example, if our program is

F(X) <= IF X o THEN 0 ELSE F(X-l) it is perfectly all right to use

F(X) ~ 0 as a simplification rule over the natural numbers, and there

is no room left for substitutions! Our purpose however is to study

computations which are performed by substitutions and not by

simplifications.

We must therefore restrict the power of simplifications which we

allow, and, for this purpose, we merely borrow Cadioufs notion of

standard simplifications (see Cadiou [2 J for a precise definition).

Roughly, standard simplifications force us to know everything about

base functions, and nothing a priori about the recursively defined

function F , since simplifications of the type F(i3) ~ A.
~

are not

permitted. In effect, we have to compute without any "built in" value

of the recursively defined function, stored for example in memory from

a previous computation.

We will not study standard simplifications in lang P , since this

would require describing completely the data-type on which computations

21

are performed but we will describe them in lang S .

For all constants A. l , ... , A. and base function G there
1 lP P

exists a standard simplification of the type

G (A. I' ... ,A.) -> A. P 1 lp J

In effect, this says that the values of the base-functions over the domain

are known, and these functions are total. Accordingly, the conditional

admits the simplifications

IF TRUE THEN B ELSE C -> B and

IF FALSE 'I'I-lEN B ELSE C -> C

These are the only standard simplifications in lang S and we say

that a term is simplified when all of its subterms have been simplified.

1.4 Computation Lattice of a Program

Instead of considering computation sequences for each input and

computation rule, we can apprehend the set of all possible computations

in one infinite diagram.

For example, the computation diagram of the term F(F(X)) by the

program F(X) <= G(X,F(F(X))) looks like

22

f\
)

\..
N

G

(F
X

,F
FF

X
)

G
(G

(X
,G

(F
X

,F
FF

X
))

,F
FF

X
)

j
...

\

FF
X

FG
(X

,F
FX

)

G
(F

X
,F

FG
(X

,F
FX

))

I G
(G

(X
,F

FX
),F

FG
(X

,F
FX

))

j
...

\
FG

(X
,F

G
(X

,F
FX

))

j
\

A computation rule is then an al{~orithm for selecting a path in such

a graph for each input. This computation diac;ram has a very rich

structur~ which we shall now study.

Computation of a term according to P

We say that B -+ C or simply B -+ C whenever C can be obtained
p

by substituting P for some occurrences of F in B

* * The notation B C or B -> C means that there exists a
P

finite sequence of terms DO,Dl , ... ,Dm such that DO = B)

and D. -+ D '+1 for 0 < i < m .
J. P J.

D = C
m

Definition

The computation diagram of T by P is the set of terms U such

* * that T -+ U , partially ordered by < where B < C whenever B -+ C .
p p

It is clear that < is reflexive and transitive. In order to prove

that it is also antisymmetric, we notice that, if B -+ C , the size
p

\\C\\ (Where size is, say the number of symbols) of the term C is

strictly larger than the size of B if at least one substitution has

been performed (this is due to our restriction on p). It follows

* * that B -+ C and C -> B implies B "" C .

Clearly, the computation diagram of T by P has the Church-Rosser

property of the A-calculus. (This follows from the work of Rosen [28]

for example.) However, it also has a property which is not true of the

A-calculus, namely:

24

Theorem 1

The computation diagram of T by P is a lattice under the

ordering .:;, and we shall name it the computation lattice of T by P.

Proof. 21 In order to study the structure :f the computation diagram of

a term TO by a program P, we need to relate the structure of C to

* that of B when B -> C
P

Lemma 1

(i)

(ii)

(iii)

* * A. -> C
~

if and only if C = A. and X. -> C if and only if C = X. ___ ~_--- J J

* G. (B
l

, ••. ,B) -> C
~ 1\ if and only if C = G. (C l ' ... ,C) and

~ p. --

* B. -> C. for 1 < i < p ..
~ l - - l

if and only if C = F(C
l

, ... ,C
n

)

~

* with B C.
l ~

Proof. Claims (i) and (ii) are easy

*

and we only prove (iii).

If B = F(Bl ,·· .,En) -> C and C is not of the form F(C l ,·· .,Cn)

* there must be a point in the computation B -> C where the outermost F

* P[BJ/Xl) ...) B~/Xn} -> C with B! -> B'.'
~ ~

(and therefore * B. -> B'.') for
l l

any l<i<n.

* It follows from our definitions that B. -> B'.' for 1 < i < n
~ ~

* implies P[Bl/Xl)···) BjXn } -> P[BJ/Xl) ... , B~/Xn} and consequently

* P[BJX
l

) ...) En/Xn} -> C , as claimed in (iii). In order to get the

~ I am grateful to Jean-Marie Cadiou for his help with this proof.

25

other part of the implication (iii), we simply notice that

F(Bl , ... ,Bn) -> P[Bl/Xl , ... , Bn/Xn "\

F in F(B
l

, ... ,B
n

) .

by substituting P for the outer

o

If B ~ C , we can define a distance dist(B,C) between B and C

as follows:

(i)

(ii)

if B==A. or B==X. then C==B and dist(B,C)=0
l J

if B == G. (Bl ,· .. ,B) then C
l Pi

for 1 < i < p. and dist(B,C)
- - l

== G. (C l' ... , C) wi th B. < C .
l Pi l - l

max tdist(B.,C.)}
l<j<p. J J

- - l

(iii) if B == F(B
l

, ... ,B
n

) then (by Lemma 1), either C == F(C l' ... ,Cn)

and dist(B,C) == max
l<i <n

[di st (B. , C .) }
l l

or

It is easily seen that the distance between any two terms B < C is

finite.

Lemma 2

If B == F(Bl ,·· .,Bn), C == F(C l ,·· .,Cn) , B' == PtB/ Xl ,·· .,Bn/Xn}

and C' == PfCl/Xl , ... , Cn/Xn} then B < C implies B' < C I and

dist(B! ,C!) ~ dist(B,C) .

Proof. By a straightforward induction on Ilpll, one proves that

hence dist(B!,C!) < dist(B,C) .
o

26

We now start the proof of Theorem 1:

For any two terms B, C in the computation diagram of T by P,

we must show the existence of min(B,C) and max(B,C) such that

min(B,C)~ *
~ ~ B C

~max(B,C)~
and for any Q and H

Q :S min(B,C)

implies and

max(B,C) < H

Existence of max(B,C)

We shall describe an algorithm for computing max(B,C) and then

prove the correctness of this algorithm: let a(B,C) be defined

recursively as

(i) a(B,B) = B

(ii) a (G. (Bl , ... , B) , G. (C l' ... , C)) == G. (a (Bl , C 1)' .•. , a (B , C)),
l p. l p. l p. p.

l l l l

(iii)

(iv)

(v) in all the other cases, a(B,c) yields an error symbol, (say a

German gothic letter) which is not part of our set of letters.

27

We shall prove that cr(B,C) = max(B,C) in two parts:

Part 1. For any terms T, B , C

;Y"B
T

~C
implies

B

~cr(B'C)
C~

The proof is by induction on couples (dist(T,B) + dist(T,C), \\T\\> ordered

lexicographically by -<. Assuming the result to be true for all

triples T' , B' , C' with (dist(T',B') +dist(T',C'),iiT'li> -<

(dist(T,B) + dist(T,C), \\T\\> , we prove it for T, B , C by a case

analysis on the structure of T .

Case 1. T = A. or T = X ..
~ J

* * By Lemma 1, T -> B and T -+ C implies T = B and T = C hence

B = C = cr(B,C) * and indeed B -> cr (B,C) * and C -> cr(B,C) .

Case 2. T = G. (T
l

, ... , T) .
~ Pi

By Lemma 1, B = G. (B
l
,· .. ,B)

* * ~ Pi
and C = G. (C

l
' ... ,C), with

~ Pi
T. -> B. and T. -> C . for 1 < i < p. .
~ l ~ ~ - - l

Since dist(T.,B.)+dist(T.,C.) <
~ ~ ~ ~

dist(T,B) + dist(T,C) and iITi\\ < \\T\\ for any

*
1 < i < p. , the - - ~

* induction hypothesis tells us that B. -> cr(B. ,C.)
~ ~ ~

and C. -> cr (B. , C .)
l l l

for each

* B ->cr(B,C)

Case 3.

1 < i < p.
- - l

Regrouping everything, the conclusion

* and C -> cr (B, C) then follows from the definition

By symmetry, we only need consider the subcases:

28

Case :5 .l.

The proof is similar to that of Case 2.

Case 3.2. B = F(Bl ,· .. ,B
n

) and C = G(C
l

, ... ,C
p

) .

Let T' = ptTiXl'···' Tn/Xn} and BY = PtBJXl ,···, Bn/Xn}

* * By Lemma l, we know that T' --> C and T. -> B. for l < i < n , hence
1 1

* T' -> B' . By Lemma 2, we know that dist(T',B') ~ dist(T,B) . Since

dist(T',C) < dist(T,C) , we can apply the induction hypothesis to the

* * terms T', B' , C, i.e., B' --> cr(B' ,C) and C --> cr(B' ,C) . Since

B --+ B' and cr(B,C) = cr(B',C) by definition of r5, we have established

* * that B r5 (B,C) and C -> cr (B,C)

Case 3.3.

* By Lemma l, we know that T' -> B

* and T' -> C. Since dist(T',C) < dist(T,B) and dist(T',C) < dist(T,C) ,

* we can use the induction hypothesis in order to get B r5(B,C) and

* C --> cr(B,C)

Part 2. For any terms B, C , Q

B

~
Q

c~
implies cr (B,C) ~ Q

The proof is by induction on (dist(B,Q) + dist(C,Q,),iiQ,ii> .

Case l. Q = A. or Q = X. .
1 J

Th en Q = B = C = cr (B, C) * and cr (B,C) --> Q

29

Case 2. or Q = G. (Ql'" .,Q,) where G. is not G.
l p. l

l

The proof goes mutatis-mutandis as that of Part l, Case 2.

Case 3.

We only need consider the cases:

Case 3.l.

Back to Case 2.

Case 3.2. B = F(B
l

, ... ,B
n

) and C = G(C
l

, ... ,Cp) .

Let B' = PiBl/Xl J ••• , Bn/Xn} Since dist (B' ,C) < dist (B, Q) ,

* we lmow by the induction hypothesis that cr(B' ,Q) = cr(B,C) -+ Q •

Case 3.3.

Let

B = F(Bl , ... ,Bn) and

B' = PiBJXl J".J Bn/Xn}

C = F(C l , ... 'Cn) .

and C' = Ptcl / xl ,···, Cn/Xn}

The induction hypothesis tells us that cr(B',C') ~ Q. One then proves

by induction on Ilpll that cr (B' ,C') =

cr(PtBJXl , ... , Bn/xn},piCl/Xl' ".J Cn/Xn)} = Ptcr(Bl,Cl)/Xl ,···, cr(Bn,Cn)/Xn }

We conclude the proof by noticing that cr(B,C) -+ cr(B',cr) since

cr(B,C) = F(cr(Bl,C l),·· .,cr(Bn,Cn ») -+ Picr(Bl,Cl)/Xl ,···, cr(Bn,Cn)/Xn } =

cr (B' , C ,) .

Existence of min(B,C)

For any terms B, C in the computation diagram of T by P the

set tL I L ::s B , L ::s C} of lower bounds of Band C is not empty

because T < Band T < C and it is finite. We lmow from elementary

lattice theory that, if any two elements in a partially ordered set have

a least-upper-bound, any non-empty finite subset also has a least-upper-

30

bound. We then define min(B,C) as maxtL I L :s B, L :s C} and verify

easily that min has all the desired properties.
o

Relation Between the Computation Lattice and the Data-type of Continuous

Functions over»

In order to characterize computed partial functions in terms of the

semantic interpretation of a given computation lattice, we notice that

Lemma C

For any terms B, C in the computation lattice of T by P,

B < C implies b(O) ~ c(O)

Proof. The proof is straightforward by induction on \\B\\:

If B = A.
1

or B = X. th en B = C and b (0) := c (0) .
J

If B = G. (B
l

, ... ,B) ,
1 p. then C = G. (C

l
' ... ,C) and we know by

1 p.
1 1

induction that b .(0) C c .(0)
J - J

for 1 < j < p. Since
- - 1

[Ax
l

, ... ,x ,g. (xl' ... ,x)] is monotone with respect to any of its
p. 1 p.

1 1

arguments, b(Q) == g. (bl(O), ... ,b (0» c g. (cl(o), ... ,c (0»):= c(o).
1 p. - 1 p.

1 1

Finally, if B = F(B
l

, ... ,Bn) then b(O) := O~ c(O) .

In particular, to any computation sequence TO -> Tl -t ••• Tn -> Tn+l -> •••

according to some rule ~ and input D, we associate the chain

The corresponding computed partial function ~ is therefore
:....2.:

characterized as: ~:= Ad U t (0) (d)
p n >0 n

31

From these definitions follows an easy generalization of a theorem

of Cadiou [2]:

Theorem 2 (Cadiou)

Any fixed-point of the equation f = p(f) is an extension of an~

function computed by the program F <= P .

Proof. For any natural number m, let pm be defined as pO = F(X)

and pm+l = pipmjF}. It is easily seen that pi(O) = p(p(... p(O) ...))

(i times). Since Cadiou [2] proved that for any computation sequence

F(X) we have T. < pi for all natural
~ -

numbers i , it follows from Lemma C that for all i .

The funct ion p being continuous, f -
P

lJ pi(O) , hence
i >0

t. (0) c f
~ - p

for any i It follows that C- = U t. (0) c f and, since f c f
P i >0 ~ - p p -

for any fixed-point f of p, the conclusion

32

C- c f holds. p-
o

2. Correct Implementation of Recursion

In this section, we try to characterize the computation rules ~

such that for any program F <= P , called fixed-point

computation rules.

Here are some computation rules we shall consider, both in lang S

and lang P :

(1) Call by value: substitute for the leftmost-innermost occurrence

of F after simplifications.

(2) Call by name: substitute for the leftmost-outermost occurrence

of F after simplifications.

(3) Parallel innermost: substitute for the occurrences of F having

all of their arguments free of Frs.

(4) Parallel outermost: substitute for all the Frs which do not

occur in any argument of another F .

(5) Free argument: substitute for all the occurrences of F having

at least one of their arguments free of Frs after simplifications.

(6) Full substitution: substitute for all the occurrences of F .

2.1 Incorrect Computation Rules

Proposition l-

In lang P , the rules (1), (2), (3) and (5) are incorrect.

Proof. Consider the program F(X, Y) <= IF X = 0 THEN 0 ELSE

F(X+l,F(X,Y))*F(X-l,F(X,Y)) where * is the parallel multiplication

fUnction O*x = x*O = o. The least fixed-point over the integers

33

(considered as a discrete data-type) of the corresponding functional

is the zero function Ax,y if x = w then w else 0 The computation

of F(l,O) using (1), (2) or (3) is infinite. As for rule (5), we

can take the program F(X) <= X.F(F(X)) in the data-type of sequences

of letters as a counter-example. o

Proposition 2 (Morris [23])

In lang S the rules (1) and (3) are incorrect.

Proof. Consider F(X,Y) <= IF X = 0 THEN ° ELSE F(X-l,F(X,Y)) The

corresponding least fixed-point over the non-negative integers is again

the constant function ° while the computation of F(l,O) using rules

(1) or (3) is infinite. o

2.2 Safe Computation Rules

We now define the class of safe computation rules, and show that

they correspond to "correct" linplementations of recursion.

Let C- be a computation rule and B an arbitrary term in the

computation lattice of T by P. In order tq describe the effect

of e on B, we rename Fl the occurrences of F selected for

substitution by e in B for some input D, and F2 the others.

Definition

We say that C- is a safe computation rule if, for any term

BiF/Fl, F/F2 } in the computation lattice of T by P and for any

input D, biO/fl,fp/f2}(d) == biO/fl,O/f2}(d)

34

Intuitively, the computation is safe if the values of the F's

which are notsubstituted (renamed F2) are insufficient: as long as

more information is not obtained about the other arguments (the Fl's),

the information about B cannot be improved.

In order to clarify this definition, let us prove the safeness of

some of our computation rules.

Proposition 3

In lang S , the rules (2), i.e., call-by-name and (5), i.e.,

free argument are safe.

Proof. By induction on Ilc II where C = simpl(B) : we first notice

that, because of the semantic definition of lang S , if F occurs

in C then c(O)(d) - w (remember that C has been simplified and,

when a simplified term has the form IF Cl THEN C2 ELSE C3 ' we must

have F occurring in cl)·

Case C = A.
l

then any rule is safe.

Case C = G. (C l '" .,C) . The letter F occurs necessarily in C,
l Pi

otherwise we could simplify further. Since both rules select at least

one F on such terms, we know by our previous remark that

The safeness of rule (2) is straightforward

since the outermost F is substituted. For the same reason, rule (5)

is safe if at least one of the C.
l

is constant. If none of the C. r S
l

is constant, then c i to/fl' f/f2 }(d) == w for 1 < i < n and we must

prove that f (w, ••. , w) == w .
p

This is ensured by imposing in lang S

35

that all ~rogram variables Xl' ""Xn occur in sim~l(P) hence

f (OJ, ••• ,w) == ~(f) (OJ, ••• ,w) == OJ •
~ ~

Proposition 4

The rules (4), i.e., ~arallel outermost and (6), i.e., full

substitution are safe in both lang S and lang P .

Proof. By induct ion on lIB I I .

Case B = A.
l

Any rule is safe.

Case B = G. (Bl ,· .. ,B)
l ~i

o

b
i

£qI f l , 0/ f 2}(d) for 1 ~ i ~ ~ in both cases, hence safeness is

also satisfied on b .

Case B = F(Bl , ... ,Bn) . Both rules select the outermost F hence

o

Note that the com~utation rules that we already recognized as

incorrect are all unsafe. In order to ~rove that safe rules are

correct, we need the following technical lemma;

Lemma S

If ~ is safe, then B ~ C and min(B,Q) = min(C,Q) im~ly

q(o) (d) ~ b(O)(d) for any terms B, C and Q in the computation

lattice of T by P, and input D

36

Proof. Let us first determine some properties of the min of two

terms:

Lemma 3

(i) min(G.(B1,···,B),G.(C1,···,c » = G.(min(B1,C1), ... ,min(B ,C » .
-. - l p. l p. l - - p. p.

l l l l

(ii)

where M
1

, ... ,M
n

are such that

F(M
1
,·· .,M) = min(F(B1,· .. ,B),G(C 1, ... ,C »

n - n p

Proof. Property (i) is easy and property (ii) follows from the fact

that

for 1 < i < n implies that M'

* * M. M! -> B. for 1 < i < n .
l l l o

We now prove Lemma S: Let us rename Fl the occurrences of F

selected by ~ in Band F2 the others. Let M = min(B,Q) = min(C,Q)

We first prove by induction on (dist(M,B) + dist(M,C), \\M\\> that

Q ~ B£F/Fl' pn/F2 } for some natural number m. (Here pn means

p£pn-l/F} for m > 0 and pO = F(X
1
,·· .,X

n
) .)

Case M = A. or M = X.
l J

In this case, M = B = C = Q and we can choose mO.

Case M = G. (M
1

, ... ,M)
l p.

l

By Lemma 1, B = G. (B
1

, ... ,B) ,
l Pi

C = G. (C l' ••• ,C)
l p.

l

and

By Lemma 3, M. = min(B.,Q.) = min(C. ,Q.) for
l - l l l l

37

1 S i:S p. It follows by induction that Qi S BitF/Fl' p
m
i/F2 }

We can then choose m = sup tm.} in order to get
l<i<p. l

- - l

By definition of min, we need only consider the cases:

M

f I
C Q!

C!

Let M' = PtMlI'Xl, ... , Mn/Xn} and

Q' = ptQlI'Xl ,···, Qn/Xn}' By Lemma 3,

M' = min(B, !) = min(C,Q') By Lemma 2,

dist (M' ,B) + dist (M' ,Q') < dist (M,B) + dist (M,Q)

so we know by induction that

Q! S BtF/ F
l , :tfU/F2 } and, a fortiori

Q S BtF/Fl' :tfU/F2 } for some m .

and Q = G(Ql' ... ,Q) p

Since min(B,Q) = min(C,Q) , the term C is also

of the form C = F(Cl , ... ,Cn) . Let

M' = PtMl / X
l , ... , Mn/Xn }, B' = PtBl / X

l , ... , Cn/Xn}

and C!= PtCl/Xl""'Cn/Xn}' By Lemma 3, we

know that M' = min(B ' ,Q) = min(C' ,Q) .

38

By Lemma 2, dist(M' ,B') + dist(M ' ,Q) < dist(M,B) + dist(M,Q) ,

and the induction hypothesis tells us that Q::S B' [F/Fl , r/F2} .

Since the outermost F has not been selected by ~ in B then

B' ::s B[P/F2}· Our last case is then treated since

Q ::s B[F/Fl , pn+l/F2} .

It is now easy to finish the proof of Lemma S.

For any m, pm(O) ~ fp implies b[O/fl , pm(O)/f2} ~ b[O/fl) fJf
2

}

By choosing m large enough, we know that q(O) ~ b[O/fl , pm(0)/f2}

andtherefore q(0)~b[O/fl,fJf2} Since ~ is safe,

b(O/fl , fJf2}(d) == b(O) (d) and the conclusion q (0) (d) ~ b(O) (d)

follows.
o

Theorem 3

Any safe rule is a fixed-point rule.

Proof. In the computation lattice of TO == F(n) by P, let

and SO' Sl' ... , Sn' . . . (where So == TO) be the computation

sequences corresponding to respectively some safe rule ~ and the

full substitution rule. Since s (0) == pn(O) then
n

u s (0) - U P n (0) == f
n >0 n n >0 p

We know by Theorem 2 that ~ (d) c f (d)
p - p

and it is therefore sufficient to show that U s (0) (d) cut (0) (d) ,
n>O n -n>O n

in order to prove ~ == f
P P

Let Sn be an arbitrary term in SO,Sl' Since there are only

finitely many minorants of S in the computation lattice, there exists
n

some m such that min(T ,S) == min(T +l'S) . The rule ~ being safe, -mn -ill n

it follows from Lemma S that s (O)(d) c t (O)(d) , hence n - m

39

u s (0) (d) cut (O)(d)
n >0 n - m >0 m

o

As a corollary, rules (2) and (5) are fixed-point in lang S and

rules (4) and (6) are fixed-point rules in both lang S and lang P .

40

3· An Optimal Implementation of Recursion in lang S

Among the correct implementations of recursion, we now try to

determine which ones are efficient. This proves unsuccessful in

lang P , but we shall describe an implementation of recursion for

lang S which turns out to be optimal.

We already know that, in lang S , "call-by-name" is a fixed-point

rule, while "call-by-value" is not. However, "call-by-name" is not an

efficient way of computing. For example, in the program

F(X) <= IF X > 0 THEN X-l ELSE F(F(X+2)) the "call-by-name" computation

of F(O) would be f(O) - f(F(2)) - IF f(2) > 0 THEN F(2)-1 ELSE

F(F(F(2)+1)) - f(2)-1 - 0

What happens here is that the term F(2) has been duplicated and

subsequently computed twice. We shall describe a computation mechanism,

called the delay-rule, which avoids those duplications, and prove its

opt imali ty .

3.1 Never Do Today What You Can Put Off Until Tomorrow

A natural way to keep track of duplications of terms is to assign

labels to all occurrences of F in a computation sequence, so that

copies of the same F will receive the same label. This can be

achieved by first labelling differently all F' s
in P ; then,

if F is labelled a in T and is to be substituted, we label each
n

occurrence of F after substitution by a followed by whatever

labelling this particular occurrence had in P. For example, using

the same computation as before, and the labelling

IF X > 0 THEN X-l ELSE Fl (F2 (X+2)) for P, the previous computation

can be described as:

41

simplifies to F (2)-1 -+ 0 -2

The whole idea of the delay-rule is to modify "call-by-name" so

that, whenever some occurrence of F is substituted, all the occurrences

having the same label will also be substituted. Hence, the "delay-rule"

selects for substitution the leftmost-outermost F in a simplified

term, as well as all the other F's having the same label.

Consequently, the delay rule computation of F(O) in the program

above is

simplifies to O. At this point, it is clear that the "delay rule" is

safe (proof similar to that of Proposition 1); what is not clear is that

the "delay rulef! should be more efficient than "call-by-name" and in fact,

in our last example, it was less efficient since it took four substitutions

versus three for "call-by-name" in order to obtain its result. When

"call-by-name" computed Fll(2) twice, the delay rule has been computing

it three times ~ It is a simple exercise in data structuring however to

avoid all those recomputations: instead of actually copying various

occurrences of some Fa in a term, we simply set some pointers to a

unique copy of the term Fa Whenever any occurrence of Fa is chosen

for substitution, the substitution is actually performed in the unique

copy of Fa so that all occurrences of Fa are substituted at the

price of one substitution.

42

Going a little bit away from our particular programming language

we can sketch an implementation of this idea for, say Algol. The

arguments of any procedure should be stored as pointers to formal

expressions, together with a tag indicating that those arguments have

not yet been computed. Whenever the value of an argument is explicitly

needed, (for the evaluation of a conditional or on the right-hand side

of an assignment), the tag is tested. If the value of the parameter is

already there, we use it; otherwise the corresponding formal expression

must be computed, its value kept for further references, and the tag

is to be changed. In a machine like the Burroughs B5000 (see, for

example, Lonergan-King [12]), the so-called "operand call syllable"

would do very nicely: depending on a tag stored with the operand, a

load operation on the B5000 gets its argument either directly or through

a subroutine call. The delay rule would modify this procedure so that,

after the subroutine call, the result would be stored in place of the

tagged subroutine descriptor. Of course, one would then have to abandon

"side-effects" altogether~

Before proving the optimality of the delay rule let us compare the

efficiency of various computation rules on the programs

Zer(X) <= IF X > 0 THEN X-I ELSE Zer(Zer(X+2))

Ack(X, Y) <== IF X == 0 THEN Y+l

ELSE IF Y o THEN Ack(X-l,l)

ELSE Ack(X-l,Ack(X,Y-l))

Ble(X,y) <= IF X == 0 THEN 1 ELSE Ble(X-l,Ble(X-Y,y))

Fib(X) <== IF X < 2 THEN X ELSE Fib(X-l) + Fib(X-2)

over the integers.

43

,- -

Zer(-2) ACk(2,1) Ble(8,2) Fib(5)

Delay rule 7 14 9 15

Call by name 25 29 9 15

Call by value 7 14 341 15

Free argument 7 23 '" 4000 15

Full substitution :J 11 23 '" 10000 15

The entries in this array indicate the number of substitutions

required for computing the values at the top of the corresponding

column, according to the rules at the left of the rows.

If he has been through those examples, the reader may feel quite

disappointed because he can beat the delay-rule in almost all cases.

For example, the hand-computation of Fib(5) only requires five

substitutions if we are careful never to recompute an argument twice.

It would be interesting to study a mechanism in which this type of

computation would be possible; namely one could imagine a set of

simplification rules which could be augmented dynamically, and allow

some computations to be performed by simplifications of the style

F(D) A. In our scheme of things, however, this type of flbuilt-inf!

values is not possible, since our only means of computation is through

substitutions, and we should blame inefficiencies on the program, not

on the computation rule.

~ Strictly speaking, we are using the full substitution only on
simplified terms, otherwise the computation would always be
infinite.

44

3.2 Optimality of the Delay Rule

So far, we know that the delay rule is safe, and that it never

recomputes copies of the same term. Using the same labelling as before,

we say that a label Fa is maximal in a term if a is not a proper

initial segment of ~ for any label F~ in the term. A term is simple

if all of its labels are maximal. In other words, a term is simple if

all computations of various copies of subterms have been pushed to the

same point. For example, if TO = F(F(X)) and TO = G(X,Fl (F2 (X)))

then G(G(X,Fl (F2 (X)),Fl (F2 (F(X))))) is not simple while

F(G(X,Fl (F2 (X)))) is simple.

A computation is sL~ple if all Frs with the same labels are all

treated alike in all substitutions (if one of them is to be substituted,

all of them are to be substituted). All terms in a simple computation

are necessarily simple. If we are to count for one a substitution of

all Frs with the same labels, as justified by our previous exercise

in data structuring, simple computations are more efficient than others.

* Namely, if we define length(T
O
~A) as the total number of substitutions

* performed during the computation TO ~ A , we have

Lemma E

For any term A, there exists a simple term A with A < A such

* that, for any computation TO ~A and simple computation

* - * length(To => A) :s length(To ~ A) .

Proof. Let r(C) be the number of maximal labels and s(C) be the

sum of the lengths of the maximal labels in a term C ,while q and p

mean respectively the number of occurrences of F in TO and P It

is easily proven by induction on

* length(TO -> C) 2: ~(C,p,q)

reC) -q
p-l In a similar way,

* length(T
o
~ C) = ~(C,p,q) .

where

(c

* length(T
O

.... C) that

~(C,p,q) = if P = 1 then ~
q

simple) * and (TO ~ C simple)

else

imply

Given any term A, we can flcomplete fl it into an A by substituting

P for all occurrences of F with non-maximal labels until there is none

left. An A constructed in this way will be simple and such that

A < A while rCA) = rCA) It follows that, for any computation

* TO -> A and simple computation * - -length(TO ~ A) = ~(A,p,q)

* ~ (A, p, q) :s length(TO -> A) .
o

The intuitive meaning of this lemma is very simple: nothing is to

be gained by working on individual copies of the same term. At the same

price, we get more information by substituting all copies of the same

occurrences. In particular, all the computation rules described so far

will be improved by "lumpingfl together occurrences of F with the same

labels, thus becoming simple rules. However they may still perform

unnecessary substitutions unless

Theorem 4

Any computation rule which is simple, safe and performs at most

one substitution at each computation step is optimal.

Proof. Let To be a term, F(X) <= P a program and ~ a safe and

simple computation rule performing only one substitution at a time.

the (simple) computation

sequence of To according to ~ for some input D .

46

If T is a term in the computation lattice of TO by P, let us

* consider an arbitrary computation TO - T , and prove that whatever

approximation t(O)(d) of to(fp) (d) is computed by T

will be computed faster by ~. For this purpose, we construct

T . * -as ~n Lemma E, and consider a simple computation TO ~ T

(the argument in Lemma E not only proves the existence of T but also

* -that of a simple computation TO ~ T).

Let i be some natural number such that Ti ~ T and Ti +l f T

Since ~ performs only one substitution at the time, this implies

T. = min(T.+I,T) = min(T.,T) . By Lemma S, we then know that
~ --- l --- ~

t(O)(d) c t. (0) (d) - ~
Using Lermnas E and C now, T < T implies

t(O) (d) ~ t(O)(d) * - * and length(To ~ T) ~ length(To ~ T) Since both

* - * -TO ~ T and T ~ T. are sim~le and. T. < T
~ ~ . ~-

, we have

* * -length(To ~ Ti) < length(To ~ T) hence t(O)(d) c t. (0) (d) - ~
while

* * length(T
O
~ T

i
) < length(To -> T)

o

We shall derive two applications of this theorem.

Corollary I

The delay rule is optimal in lang S .

Proof. The delay rule has all the properties required by Theorem 4.

o

Corollary 2

In lang S , "call by value" is optimal whenever the least fixed-

point f corresponding to the program F(X) <= P is a strict fUnction.
-p-

(The fUnction f
P

is strict if f (... , OJ, •••) - OJ .)
p

Proof. Since "call by value" is clearly a simple rule and performs

at most one substitution at each step, we only need proving that it is

safe whenever f is strict. We prove that the substitution B ~ B'
P

is safe in that case by induction on IIC II where C == simpl(B)

Case C A.
~

Any rule is safe.

Cas e C = G. (C l' ... ,C)
~ p. Same argument as for the safeness of

~

"call by name".

If F does not occur in any of the C i 's ,

then the outermost substitution is performed, which is clearly safe.

otherwise, let C. be the leftmost term in which F
~

Ci [o/fl , fJf2Hd) == w

C [o/fl , o/f2 }(d)

3.3 Sequential Functions

occurs. Then,

o

The applications of Theorem 4 given in the previous section do not

quite match with the generality of the result. In particular, the data-

type on which lang S is computing has no chain of length more than two.

'. What we shall now sketch is a theory of sequential fUnctions, where

Theorem 4 finds its full application.

The relevant notion here seems to be

Definition

A function A.xl,· .. ,xn.g(xl,.··,xn) in [DlX ..• xDn ->D] is

sequential if, for all XlEDl , ... ,XnEDn there exists an iE[l,n] such

48

that, for all Yl' ""Yn such that x. c y. for jE[l,n] and
J - J

xi = Yi we have g(xl , ... ,xn) = g(yl , ···,yn)

Intuitively, g is sequential if, at any given moment, the value

of (at least) one of its arguments is crucially needed in order to better

approximate the value of the result. For the purpose of our theory, we

need to check that sequentiality has the correct closure property,

namely

Proposition S

Sequentiality is preserved by composition of functions and

fixed-point operators.

Proof.

- Composition. and !\xl"" ,x f. (xl' ... ,x) m ~ m

for 1 < i < n are sequential, then

is also sequential: for any xl' ""xm and iE[l,n], let

zi - fi(xl , ... ,Xn) ; since g is sequential zl' ... ,zn determines

some and, being also sequential, determine

some jE[l,m] which can then be used for the sequentiality of ~ .

- Fixed-point operator. If the funct ions Ax1, .. · ,x f. (xl' ... , x) n ~ n

are sequential for any natural number i, the function

~ = AX~, •.. , x U f. (xl' ... , x)
..L n i >0 l n

is also sequential: for any xl' ""xn sequentiality of the f. 's
l

determines a sequence jO,jl' ... where j.E[l,n] . At least one of
~

the j. I S must occur infinitely often in this sequence, and it can be
~

used for proving that ~ is sequential.
o

For example, over a discrete data-type, conditional and strict

functions are sequential; hence, by Proposition S, all functions

definable in lang S are sequential.

In a data-type which is a lattice, the functions AX,y sup(x,y)

and Ax,y inf(x,y) are not sequential in general.

The set z:U) of finite or infinite words over some vocabulary z:

becomes a data-type under the partial ordering: x ~ y whenever x

is an initial segment of y

In z:U), the functions

Ax. first (x)

Ax.rest(x)

and Ax, y.x (J)y

(take the first letter of x),

(erase the first letter of x),

(append the first letter of x to y) are

seqUential.V
This is clear enough for first and rest since any function of one argu-

ment is sequential. For x (J)y , if x == A , i. e., x is the empty word, then

the first argument is to be chosen for seC1uentia~ity since /\. $y == U) ;

otherwise, x r /\. and any Xl such that x c Xl will have the same first

letter so that we can use the other argument y for sequentiality.

-- Yet another programming language. We define a new language lang as

similar to our previous ones except that all base functions must be

sequential.

~ The relevance of these functions and data-type to parallel programs
is shown in Kahn [llJ.

50

Let e be a computation rule, called the generalized delay rule

(GDR) de~ined as ~ollo~s:

First, using the same type o~ data-structur~ng as ~or the delay

rule, e will be simple.

set

In any term T , rule e will select at most one F (or rather

o~ FI s with the same labels) as ~ollows:

I~ T = A.) no F is chosen.
1

If T = G. (T l' ... , T) , the F will be the F chosen by
1 p.

1

in T. where j is the index corresponding to the sequentiality
J

of gi with the arguments tl(O)(d), ... ,t (O)(d).
Pi

O~ course,

this requires the choice of j to be effective; also, since we

want e to be simple, all FI s with the same labels occurring

in other subterms are also to be substituted.

If T = F(Tl , ... ,T
n

) the outermost F is selected bye.

We can apply Theorem 4 again in order to prove

Corollary 3

The generalized delay rule is optimal in lang GS .

Proo~. Since the GDR is simple and performs at most one substitution

at each step, all we need to prove is that it is safe.

The proof is by induction on \\B\\ where B is any term in the

computation lattice of

TO = T [:5/X} by P

The cases B = Ai or B = F(Bl , •.. ,Bn) are easy.

I~ B = G.(Bl , ... ,B) and j is the sequentiality index of
1 Pi

5l

e

g.(bl(O)(d), ... ,b (o)(a)), then b.[o/fl , f /f2}(d) == b.(O)(d) by
1 Pi J P J

induction. Since bk(O) (d) ~ bk[O/fl , fJf2}(d) , the very definition

of sequentiality gives us b[o/fl , fJf2}(d) == b[O/fl , Ojf2 }(d) .

o

Conclusion

The results of this chapter generalize quite nicely to a programming

language where we introduce assignments, gotofs and while statements.

What is less clear to the author is how to perform computation in a

"typeless" recursive language where procedures can be passed as arguments,

say in a full LISP for example. It might also be interesting to study

(or prove the non-existence of) optimal computation rules when the

simplifications allowed are less restrictive than the ones we chose.

52

Chapter 3. PROOFS BASED UPON MONOTONICITY

In this chapter, we investigate how far into the theory of

computation can one get from the mere hypothesis that programs

represent monotone mappings between data-tY]?es, thus ignoring continuity.

For this purpose, we introduce a formal system in which the methods

of !!inductive assertions" and "structural induction" for proving

properties of programs can be expressed and justified.

The reader interested in the logic developed here is expected

to be familiar with the work of Milner [19J. However, a detailed

knowledge of the formalism should not be necessary for understanding

the various uses we make of it. In particular, the examples given are

described informally, despite the fact that all the proofs can be

expressed within the logical system.

1. A Formal System for the Time Being

1.1 Syntax

Terms, which are meant to denote monotone fUnctions of some tY]?e,

are defined as follows:

(i) TY]?ed identifiers are terms. (We shall almost always omit the

tY]?e subscript.)

(ii) If s is a term of tY]?e a - ~ and t a term of tY]?e a,

then s(t) is a term of tY]?e ~

(iii) If x is of type a and t of tY]?e ~,then [Ax.tJ is a

term of tY]?e a -> ~ •

53

(iv) If P is a wff, t a term of type a and x a variable,

then [u t]
[xlp}

and [n t]
[xlp}

are terms of type a .

A well-formed-formula P is a conjunction of equalities or

inequalities between terms of the form PC:: q , r == s, ... , u c:: t

A proof is a sequence of implications between wffs P r Q , each being

derived from the preceding implication by an axiom or a rule of inference.

Variables are bound by 'A., U and n . We write s [t/x} and

p[t/x} to denote the result of replacing all free occurrences of x

in sand P by t , after renaming the necessary bound variables.

1.2 Semantics

A standard model is a denumerable family of complete lattices Da ,

one at each type a. Each Da has a minimal element UUa and maximal

element OOa. The two base types are I and B. The domain of

individuals DI can be any complete lattice while DB is
true

+
false

If a and ~ are types, then a - t3 is also a type and Da _
t3

is

the set of monotone mappings from Da into D
t3

. It is easily checked

that, whenever Da and D~ are complete lattices, D is itself
a -t3

a complete lattice. Terms of type a are intended to denote elements

of D .
a

1.3 Axioms and Rules of Inference

Here x, y , z , f represent variables s, t terms and P, Q , R

wffs. Axioms and rules are meant at all syntactically correct types.

54

(a)

(b)

Axioms

(Reflexivity) Dl: f- x c x

(Transitivity) D2: xr::y, y r:: z f- x c z

(Anti symmetry) D3: x ~ y , y~x f- x=- y

x =- Y f- x ~ Y , y~x

(Minimali ty) D4: f- uu c x -

(Maximality) D5: f- xc 00 -

(Monotonicity) Fl: xr::y f- f(x) r:: f(y)

(A-conversion) F2: f- [Ax. s](t) r:: s [t/x}

(bottoms -tops) F3: f- uu(x) r:: uu

(joins) F4: p[y/x} f- t [y/x} ~ U t
[x\P}

(meets) F5: p[y/x} f- U t r:: t [y/x}
[x\p}

(Inclusion) WI: P f- Q (Q is a sub-conjunct

of p)

Rules of inference

(Conjunction) Rl:
P r Q P f- R

P f- Q,R

(Cut) R2: P f- Q Q f- R
P f- R

(Substitution) R3:
P f- Q

pts/x} f- Q (s/x}

P f- f(x) r:: g(x)
(Extensionality) R4:

Pf-fr::g
(x not free in

P[false/x} f- Q P[true/x} f- Q
(Cases) R5: p f- Q

Here, false and true are abbreviations for DUB and

OOB respectively.

55

p)

Q"P f- y ~ t
(meets) R6: (x not free in Q) Q f- y~ n t

[x\p}

Q"P \- t ~ Y
(joins) R7 :

Q \- U t~y
(x not free in Q)

[x \p}

l.4 Soundness

In order to establish validity of the axioms and rules of inference,

one first ought to make sure that terms without free variables indeed

denote elements of the complete lattice of the corresponding type. This

is easy for application and ~-abstraction (see Milner [l9]). For

meets and joins, we have to prove in essence that if for each iEI the

function f.
l

is monotonic then n f.
iEI l

and U f. are also monotonic.
iEI l

Let x ~ y For all iEI, we have

n f. (x) C f. (x) C f. (y) C
iEI l - l - l

U f. (y)
. I l lE

It follows by definition of nand U that

n f.(x) C n f.(y)
iEI l - iEI l

and

and by definition again

[n f.](x) C [n f.](y)
iEI l - iEI l

[u f.](x) C [U f.](y)
·I l - ·I l
lE lE

U f. (x) C
iEI l

U f. (y)
iEI l

Using exactly the same approach as Milner [l9], one can then go

through the axioms and rules of inference, and justify their validity.

1. 5 Pragmatics

We shall use the following abbreviations:

(1) By the Knaster-Tarski theorem, we can characterize the least-fixpoint

of A.x.f(x) as the greatest-lower-bound of [x \ f(x) ~ x} . We shall

therefore use ~x.f(x) as an abbreviation for n (x) The
[x \f(x) ~ x}

equivalents of rules F4 and R7 are then:

R8: ~ f(~x.f(x» c ~x.f(x)

R9: f(y) ~ Y ~ ~x.f(x) ~ y

The rule R9 was named fixed-point induction by Park [26].

We shall use the notations f <= "L" (f) and f-r as alternatives

to [~f.'r(f)] .

true --
(2) One should not confuse the domain DB: t with the boolean

false
TT FF

data-type ~ ~ Here DB should be interpreted as the
(J)

range of some semi-decision procedure.

Let us now suppose that the domain Da is characterized by a

semi-decision predicate A.x.JKx) mapping Da into DB such that

j)(x) == false if and only if x == UUa . We can then interpret the

logical formula VYEj): p(y) as n (p(y» ,where P
[y\JKy) == true}

belongs to Da -> DB . This justifies using VYEj).P(y) ,

or, when no confusion can arise, VY.p(y) as an abbreviation for

n (p(y» Similarly, ay.p(y) will abbreviate
[y\j)(y) == true}

U (p(y»
[y\j)(y) == true}

57

Rules F4, F5, R6 and R7 then translate into the following equivalents

to the rules of first-order logic:

(i) Vy.p(y) == true, J)(a) == true f- p(a) == true

(ii) p(a) == true, J)(a) == true f- 3:y.p(y) == true

(iii) from Q,J)(y) == true f- p(y) == true (y not free in Q)

f- VY.p(y) == true

(iv) from Q,J)(y) == true f- p(y) == false (y not free in Q)

infer Q f- 3y.p(y) == false

Examples of Proofs

Example 1. The proof that

[U f(i)](x) == U f(i) (x)
{i\I} {i\I}

is quite instructive, and we sketch it here:

First I f- f(i) C U f(i)
- {i\I}

(F4)

I f- f(i) C [U f(i)](x)
- {ill}

(Appl)

(The rule (Appl) f ~ g f- f(x) ~ g(x) is derivable from FI and F2.)

then

f- U f(i) (x) C [U f(i)](x) (R7)
{ill} - {ill}

I f- f(i)(x) C U f(i)(x)
- {i\I}

I f- f(i) C [f..x. U f(i) (x)]
- £ill}

~ U f(i) C [AX. U f(i) (x)]
{ill} - {i\I}

f- [U f(i)](x) C U f(i) (x)
{ill} - {ill}

(F4)

(R4)

(Appl) and (F2).

Example 2. Let us prove that

(a) ~f.s(f,f) - ~f.s(f,~f.s(f,f»

(b) ~f.s(f,f) ~ ~f.s(f,s(f,f»

In other words, we must establish the equivalence of the following

three programs:

f<=s(f,f)

g <= s (g, f)

h <= s(h,s(h,h»

Proof of (a). Since s(f,f) ~ f , we know by fixed-point induction

that g ~ f. By monotonicity of s, this implies s(g,g) ~ s(g,f)

Since g ~ s(g,f) , we have s(g,g) ~ g and f ~ g follows by

fixed-point induction again.

Proof of (b). By definition, f ~ s(f,f) - s(f,s(f,f» and therefore,

h ~ f by fixed-point induction.

In order to prove that f c h , let us use the auxiliary program

k <= s(h,s(h,k»

Since s(h,s(h,s(h,h») ~ s(h,h) , the rule of fixed-point induction

tells us that

k c s(h,h) (1)

but we know by (a) that k ~ h) and (1) becomes h ~ s(h,h) .

By monotonicity of s, this L~plies s(h,h) ~ s(h)s(h)h» which) by

definition of h) reduces to s(h)h) C h One last application of

fixed-point induction and we prove f c h

59

Example 3. For any functions sand t,

That is the programs f <= s(t(f)) and g <= t(s(f) are related

by f = s(g) and g = t(f) . Since fst = s(t(fst) we have

tfst = tstfst and, by fixed-point induction, f t C tf t s - s

symmetry ftC sft hence tf t C tsft = f t . s - s s - s s

By

Example 4. Let f(x) <= g(f(h(x), f(k(x» Y and y <= g(y,y) .

We prove that f(x) = y. Since

g([r.x.Y](h(x») , [r.x·Y](h(x») - g(y,y) = y = [AX.Y](X) , we know

by fixed-point induction that f ~ [r.x.y] hence f(x) = y. On

the other hand, g(f(UU),f(UU» ~ g(f(h(UU» ,f(k(UU») by monotonictty,

and g(f(UU),f(UU» ~ f(UU) follows from f(UU) = g(f(h(UU),f(k(UU»»

We conclude y ~ f(UU) by fixed-point induction and, since

f(UU) ~ f(x) , we proved that y ~ f(x) .

Example 5. If the two functions Af.s(f) and Af.t(f) commute, i.e.,

st = ts then Example 2 tells us that fst = s(fst) and f ts = t(fts)

so that fs ~ fst and f t '= f st ' (We can say that fs and f t are

weakly equivalent.)

The similarity between some of those results and better known

ones in linear algebra should not surprise us since linear algebra

can be used as a model of our formal system. The base domain DI will

be the set of vector-space over some space 1(. The natural ordering

60

is inverted: VI ~ V2 holds whenever V2 is a subspace of VI'

The minimal element UU corresponds to the space V itself while

the vector space containing only 0 corresponds to 00 Linear

transformations over V are then monotone mappings in DI ~DI with

respect to that ordering, and, if the dimension of V is infinite, they

are not continuous in general. The least fixed-point of a linear

transformation A E.&I ->.&1 is then the eigenspace of A having

maximal dimension.

1.6 A Possible Weakness of the System

Let us consider the inference rule

P,x ~ g(x) 1- f(x) ~ g(f(x))
RT:

P 1- fJX.f(x) ~ g(~x.f(x))

Is RT provable or not within our system?

(x not free in p)

Although we have not

been able to settle this question, we shall be able to show that rule RT

must be valid in any standard model of our formal system.

Before doing so, let us point out that fixed-point induction can

be derived from RT and that using RT would somewhat simplify the

proofs in the previous examples. For instance, the proof that f c h ,

where f = ~x.s(x,x) and h = ~x.s(xJs(x,x)) could go as follows:

Let us assume y ~ hand y ~ s(y,y) . In order to apply rule RT,

we shall prove that

y~hJY~ s(y,y) 1- s(YJY) ~hJ s(y,y) ~ s(s(y,y),s(y,y))

and therefore conclude that 1- f ~ h, f c s(f,f) so, a-fortiori

1- f c h

61

By monotonicity y ~ s(y,y) I- s(y,y) c s(s(y,y),s(y,y)) and

y:: s(y,y) I- s(y,y) r::: s(y,s(y,y)) Therefore, using monotonicity

three times again y ~ s(y,y) ,y r::: h I- y r:.: s(h,s(h,h)) . But

h = s(h,s(h,h)) and, putting everything together, we get

y ~ h, Y ~ s(y,y) I- s(y,y) r:.: h,s(y,y) r:.: s(s(y,y),s(y,y))

We shall now justify the rule. To each monotone fUnction t

mapping »~» and ordinal number a, we associate an element

a t (uu) E» as follows:

(i) to(UU) = UU

(ii) ta+l(UU) = t(ta(UU))

(iii) If a = lim(f3)
f3 <a

is a limit ordinal, ta(UU) - U [tf3(uu)}
f3 <a

More concisely, ta(UU) = t(U ~tf3(UU)}) , if we agree that u (¢) = UU .
f3 <a

This sequence has the properties that f3 < y implies

t f3 (UU) ~ tY(UU) ~ f t for allordinals f3 and y, and ta(uu) = t~l(UU)
implies ta(UU) - f t for any ordinal a .

Hence, if we choose a to be the first ordinal not embeddable

in »-+», the s equenc e ° 1 a t (UU), t (UU), ... , t (UU) has "too many"

a elements and t (UU) = ft (See Cadiou [2] or Hitchcock-Park [8] .)

NoW, from the hypothesis F ~ s (F) I- t(F) r:.: s(t(F)) , we can

deduce that, for all ordinals a,

If a is not a limit ordinal, (1) is easy to establish. If a is a

limi t ordinal a = lim (f3) , then for all f3 < a we know that
f3 <a

62

t i3 (uu) r:: s(tCX(UU)) and therefore tCX(UU) == U {ti3 (UU)} r:: s(tCX(UU))
i3 <CX

Choosing CX such that tCX(uu) == f
t

.then yields the conclusion of

rule RT

63

2. Justification of Same Proof Techniques

Suitable choices of the semantic definition of programming languages

allow to reduce most of the proof techniques described in the literature

to the rule of fixed-point induction. In particular, this applies to the

methods described in McCarthy [13], Naur [24], Floyd [7], Manna [14],

Manna-Pnueli [16], and Hoare [9]. Since Hoare's technique has been

justified in Manna-Vuillemin [17], and the connections between fixed-point

induction and the Manna-Pnueli method have been explicited by Park [26],

we shall limit ourselves to first indicating how the Floyd-Naur method

can be explained within our formal system and then sketch the connections

with structural induction. The basic ideas in this section are from Park [26].

2.1 Description of a Flowchart-language

A flowchart is a connected graph, with two distinguished nodes

and ~. Nodes can be of the type assignment

or test ~
V\T

Following Floyd [7], the

"meaning assigned" to such a program will be a relation 1jr(~) over

J.
the values of the program variables, at the CHALT::> node. This

output relation is obtained by "carrying along" an input relation cp(xs) ,

holding of the program variables at the node. The

notation therefore means that, whenever we start

64

the execution of B with inputs satisfying ~) the outputs) if any,

must satisfY W •

As in Chapter 2, syntactic objects are represented by upper-case

letters and associated semantic objects by the corresponding lower-case

letters.

The semantic fUnction ~ is defined recursively as:

feY) 1\ (1\ x. = y.)]
jJ:i J J

(ii)

(iii) t.: rr)

(i v)

Equation (iv), expressing the semantics of goto's, defines the

"minimum valid inductive assertion" described in Manna [14]. There will

be essentially one such equation per loop in the program; this may

lead to systems of mutually recursive relations, depending on the

nature of nesting of the loops. According to this definition, we

have for example:

where

F

Y -0 1

Y -1 2

Yl - Yl+l

Y2 - Y2 'Yl

Note that, in order to simplify our semantic description, we have in effect

limited ourselves to considering a flowchart in block-form. If loops do

not have this nice nested structure, the description would be slightly

more complex, and we would need to express the semantics of ill-nested

loops by systems of mutually recursive equations.

66

,

2.2 The Inductive Assertions Technique

The meaning of a flowchart program is now a (partial) predicate,

defined as the least-fixed point of some equation, say r = t(r) . If

we can find an "inductive assertion" q such that t(q) ~ q) the rule

of fixed-point induction allows us to infer that r t ~ q This shows

.that whenever the program terminates, that is, if rt(d) - true for

some input d, then we must also have q(d) = true

This will be best understood by using the same example as above:

The expression t(q) ~ q is

Using the inference rules corresponding to those of predicate

calculus in Section 1, this formula is equivalent to

f- q(O,l) = true

and

This last formulation is the direct translation within our formalism

of the verification condition derived by Manna [14]. This justification

of the method gives us the additional insight that the inductive

assertions one may use for proving the partial correctness of some

program by the Ma~~a-Floyd method are exactly the fixed-points of some

algorithmically constructed :functional.

2.3 Termination of Programs

Following Park [26], we shall now prove that the rule of fixed-

point induction allows us to derive instances of (mathematical) transfinite

induction.

Let J) be a domain, and -< a partial ordering on J). For any

true
relation R mapping J) into ~ ,let

false

t (R)(x) _ [ify. if Y -< x then R(y) else true] The least fixed-point of t

is then the maximal well-ordered initial segment of the ordering -<

over J). (Note that this is the first time that we use a monotone

function which is not continuous.)

Example. Let us consider some orderings over the integers, and the

corresponding Rt .

If -< is 1 -< 2 -< 3 -< ••• then Rt == tW(uu) and Rt(n) holds for

every n.

If -< is • .. -< 3 -< 2 -< 1 then Rt == UU never holds.

If -< is 1 -< 3 -< 5 ... 2 -< 4 -<

holds for every n.

2w
,then Rt == t (UU)

If -< is 1 -< 3 -< 5 .•• -< 6 -< 4 -< 2 , then Rt == tW(uu)

holds only of the odd natural numbers.

and Rt(n)

and Rt(n)

If -< is 1 -< 3 -< 5 ... 2 -< 6 -< 10 -< ••• 4 -< 12 -< 20 -< ••• ••• , then

2
R

t
== till (UU) and Rt(n) holds for every n .

o

If -< is a well-founded relation over J), then Rt (x) holds for

any element x of j), in which case the "program" R(x) <= t (R) (x)

can be thought of as defining recursively our domain.

68

In other words, if

WO == \-LR.:\-<,x.[(lfy) if y -< x then R(y) else true] ,

the equality WOe -<) (x) == .B(x) characterizes the relation -< as being

well-founded. (See also Hitchcock-Park [8] for a more elegant formula­

tion of this equality.)

No matter what kind of ordering -< is, fixed-point induction

translates into the following rule:

[(vy). if y -< x then p(y) else true] c p(x) ~ WOe -<) (x) ~ p(x)

And in particular, if -< is well founded over J), then p(x) == true

will hold for any x in .B. Depending on the interpretation of -<,

this is a formulation of structural induction or transfinite induction

(see Chapter 4, Section 3) .

For example, the termination of the program

F(n) <= if odden) then n else

. 3n n (2n) n) If G(n) = 1 then F(""2) else F(G(n) . F n - Gfrl) + 2G(n)

G(n) <= if even(n) then G(n/2) else n

over the natural numbers can be established using the well ordering

(1 -< 3 -< 5 -< ...) -< (2 -< 6 -< 10 -< •••) -< (4 -< 12 -< 20 -< •••) -< (•••)

More examples of applications of this technique will be given in the

next chapter.

Chapter 4. PROOFS BASED UPON CONTINUITY

The previous chapter was a first attempt at proving properties of

programs, based on a rather weak theory of computation. We shall now use

our knowledge that programs are continuous :functions, and justif'y some

other proof techniques. The presentation will again be quite informal.

However, it should soon be apparent that all the proofs given can be

formalized in Milner's LogiC for Computable Functions (LCF), as described

in Section 1 of this chapter.

Obviously we wish to preserve all the results obtained in the

previous chapter. As far as formal systems are concerned, one could

achieve this by embedding LCF in the logic described in Chapter 3. In

this mixed system, terms would be (syntactically) recognizable as being

monotone or continuous, and the appropriate rules of inference could be

applied accordingly. The logic would not be very different from the

other two we describe in this work. For example, a good candidate for

the induction rule would be

P I- g(UU) ~ h(UU) P, g(x) C hex) I- g(f(x)) C h(f(x)) - -
rule M:

P I- g(~x.f(x)) ~ h(~x.f(x))

where x must not be free in P and g must be continuous, while h

and f only need be monotone. (This rule was independently suggested

by Hitchcock-Park [8].) Its justification is very similar to that of

rule RT in the preceding chapter.

Remarkably enough, there seems to be no real need to get involved

in this rather complex mixed system: as long as all the terms used in

the proofs denote computable :functions, any of the results of Chapter 3

70

will still hold in LCF. For example, if we restrict ourselves to using

only computable assertions, the inductive assertions method can be

justified in exactly the same way. The only technique for which this

constitutes a real problem is transfinite induction, and we shall give

it special attention in Section 2.1.

1. Description of LCF

The formal system that we shall use is, except for some trivial

changes, taken from Milner [18]. It is a typed ~-calculus version of

a logiC designed by Scott [30]. (We assume the reader who is interested

in the technical details to be familiar with Milner's work.)

1.1 Syntax

The terms of the logic are intended to denote the computable

functions of various types. Each term should therefore be subscripted

with its type, but we shall almost always omit this subscript.

Terms are defined recursively as:

(1) Identifiers: g,p,F,'r,(),x,y... (at each type) or constants:

UU (at each type) TT,FF (at the type Boolean) are terms.

(2) If s is of type a ~ ~ and t of type a, then set) is a

term of type ~ .

(3) If s is of type a, and x of type ~, then [~.sJ is a

term of type ~ a .

(4) If p is of type boolean, sand t of type a, then

if p then s else t

is a term of type a.

71

(5) If f and s are of type ex, then [~f.s] is a term of

type ex.

As an alternative to [~f.s], we shall also use the notations

f <= 'f (f) and 'f: f <= s ,where '! == [t..f. s J .

f
'f

A wff is a conjunction of equalities s == t or inequalities set

between terms, separated by commas.

A proof is a sequence <.PO I- '1'0' ••• , <.Pn I- '¥n of implications

between wffs, each of which is obtained by application of the rules

of inference, or use of the axioms.

For any term s or wff <.P, we write s[tjx} and <.p[tjx} to

designate the result of substituting t for all the free occurrenCes

of x in sand <.P An occurrence of x is not free if it is bound

by f..x or ~

1.2 Axioms and Rules of Inference

In this description, x , y , z , f denote variables, s and t

terms, p , Q , R wffs.

(a) Axioms

About the Domains

(Reflexivity) Dl: I- xcx

(Transitivity) D2: x~y, y~z l- xc z

(Antisyrnmetry) D3: x ~ y , y~x l- x == y

(Minimality) D4: I- UU c x

72

About the Functions

(Monotonic ity) FI: x~y f- f(x) ~ f(y)

(Fixed point) F2: f- f(~xof(x)) ~ ~xof(x)

(A.-conversion) F3: f- [A.xos](t) == Stt/xJ

(bottoms) F4: f- uu(x) ~ uu

(conditionals) F5: l- if uu then x else y == uu

f- if TT then x els e y == x

f- if FF then x else y == y

About Formulaes

(Inclusion) WI: P f- Q (Q is a subset of p)

(b) Rules of Inference

(Conjunction) RI:
P f- Q P f- R

P f- Q,R

(Cut) R2: P f- Q Q f- R
P l- R

(Substitution) R3:
p f- Q

p[s/x} f- Qts/x}

P f- f(x) ~ g(x)
(Extensionality) R4: (x not free in p)

P f- f~g

(Cases) R5: p[uuLx} f- Q p[TTLx} f- Q P[FFLx} f- Q
P f- Q

(Computation R6: P f- Q[uuLx} P,Q f- Qif~x)Lx} (x not free
induction) P f- Qt~xof(x)/x} in p)

73

l.3 Some Remarks About the Logic

Incompleteness

Using the fact that natural numbers can be defined implicitly

within the system, Scott [30J showed that the set of valid implications

P r Q is not recursively enumerable, i.e., the logic is incomplete.

It also follows directly from the undecidability of equivalence between

program schemas that the set of valid theorems r P is not recursively

enumerable.

On the other hand, if we just consider terms which correspond to

Ianov-schemas (Ianov [10]), the logic becomes complete. (This was

proved independently by J. W. deBakker and R. Milner.) Another

decidable sub-theory of LCF is described in Courcelles-Kahrr-Vuillemin [3].

The Induction Rule is a Generalization of McCarthy!s Recursion Induction

We shall use the fixed-point induction formulation of McCarthy! s

rule: f(y) ~ y r \-Lx.f(x) ~ y. This rule is easily derivable from

computation induction. In order to show that computation induction

cannot be derived from fixed-point induction,:! we shall exhibit a

theorem of the logic which cannot be proved by fixed-point induction.

One such theorem is:

0(-r(X)) == "!(a(x)) , 0(UU) == 1"(UU) r \-LX.0(X) =0 \-Lx.-r(x)

In order to prove that it cannot be derived using only fixed-point

induction, notice that after removing the induction rule, neither the

~ More precisely; if we replace the induction rule of LCF by fixed-point
induction, the set of theorems of this modified logic is a strict
subset of the theorems of LCF.

axioms, nor the inference rules require continuity in order to be

valid. We can thus define the following countermodel:

Terms will denote the hierarchy of monotone functions constructed

over the following base domain:

d /" b c ""'/ a

The counterexample to our theorem is provided by the functions f and g

defined by

f(a) == feb) == b

fCc) == fed) == g(b) - g(d) == d g(a) == g(c) == c

These two functions satisfy the hypothesis but not the conclusion

f(UU) == g(UU) , fg == gf while ~xf(x) ft ~xg(x) -- of our theorem,

which is therefore not provable within this system.21 Actually, the

same example can be used to prove that rule RT (see Chapter 3,

Section 1.6) is also less powerful than computation example.

The theorem is in itself an interesting one and gives in some cases

an elegant way for proving equivalence between programs. For example,

the funct ionals

~ With some slight changes, this counterexample can be used to answer a
question raised by Scott [30].

75

Pl(F) (x,y) == if x = 0 then y else F(x-l,y+l)

P2(F) (x,y) == if x = 0 then y else F(x-l,y)+l

and

P3(F) (x,y) == if x = y then y else x.F(x+l,y)

P4(F) (x,y) == if x = y then x,. else y .F(x, y-l)

over the natural numbers are such that:

The proofs of equivalence between F <= Pl(F), F <= P2 (F) and

F <= P
3

(F) , F <= P4(F) respectively then follow.

1.4 Some Examples of Proofs

In order to demonstrate some practical aspects of the method, we

shall present some examples of proofs by computation induction.

To improve readability, the following conventions will be adopted

from now on:

(1) We shall omit the proofs that f(... ,UU, ...) == UU whenever they

are straightforward.

(2) We shall use freely the equality

f(... , if P then a else b, ...) == if p then f(... ,a, ...)

else f(... , b, ...)

whenever it is easy to establish that f(... ,UU, ...) == UU .

(3) In the arguments by cases on some variable p, we shall omit the

case p == UU whenever it causes no problem.

76

(4) We shall use the parallel induction rule for systems of mutually

recursive definition. Let us describe the situation on

{

F <= a(F,G)
the example

G <= 'f (F,G)
the generalization to more complex

systems being straightforward. The rule we wish to use is

P r Q£UU/x}£UU/y}

(x, y not free in p)

Actually, a more accurate notation would be F = ~f.a(f,~g.7(f,g»

The justification of this rule in the general case can be

found in deBakker-Scott [6J or Hitchcock-Park [8J.

If F and G happen to have the same type, we can also use

the following more intuitive justification of the rule:

Using the pairing fUnction n = Ax,y.(~p.if P then x else y] ,

we can define ~ = n(F,G) The components are then retrieved as

F = ~(TT) and G = ~(FF) , and ~ can be defined by

~ <== n(a(~(TT),~(FF)),7(~(TT),~(FF))) . The previous rule is

then a direct translation of the ordinary computation induction

as applied to ~.

(5) For all the examples where computations are meant over some

specific data-type integer, natural numbers,

sets, lists, etc -- we assume implicitly that the axioms for

the corresponding data-types are put as premises of the

Ways to axiomatize those various domains are described in

Milner-Weyrauch [2lJ and in Newey [25].

77

Example 1. Let us consider the program schema

l' : f(x) <= if p(x) then x else r(h(x» n
,

where r(x) = f(f(... (f(x) ...) o (n times), and f (x) = x .

We wish to prove that the equality holds for all natural

numbers n > 1 and m > 1 . - -

We shall first prove that

Let P[f]

induction.

Base

fk+l = f
't' l'

for any k > 0 •
n n

We shall prove by computation

If f = UU then p(UU) is fk (UU) = UU , i.e.,
't'

n

f~ (UU(x») = UU(x) which is easily verified, assuming
n

p(UU) = UU .

Induction Assuming that P(f) is true,

fk ('t' (f)(x)-
l' n n

~ (if p(x) then x else r(h(x»)
l' -

n

(definition of l')
n

= if p(x) then x else fk ~(x)
-- -- T

n

(properties of f)
1'n

= if p(x) then x else rh(x)

(a)

(induction hypothesis)

=1'(f)(x)
n

Now that equation (a) has been proved, let us consider

'i (f)(x)
m 'f n

- if p(x) then x else rm h(x)
't'n

= if p(x) then x else f h(x) -- -- 't'
n

= if p(x) then x else fG h(x) -- -- 't'

f (x)
'!

n

n

(by (a))

(by (a) again)

It follows by fixed-point induction that f c f and by symmetry
't' 'f m n

o

Example 2. Let us consider the two "squaring" programs

'i: F(X,y,z) <= if x = ° then y else F(x-l,y+z,z)

and

cr: G(x,y) <= if x = ° then y else G(x-l,y+2x-l)

over the natural numbers. We wish to show that f'f(X'O,x) - gcr(x,O)

Let p(f, g) be
2 2

f(y, x(x-y), x) '= g(y, x -y) . If we can prove

P(f't',gcr) , the desired conclusion will follow by choosing x equal to y .

Base Proving P(UU,UU) is straightforward.

Induction Assuming P(f,g) , consider

T(f)(y,x(x-y),x) = if y = ° then x(x-O) else f(y-l,x(x-y)+x,x)

(definition of't')

- if Y = ° then x
2

else f(Y-l,x(x-(y-l»,x)

2 2 2 2 ° then x -0 else g(y-l,(x -y)+2y-l)

2 2 = cr (G) (y, x -y)

79

(induction hypothesis)

o

Example 3. (S. Ness) Let us consider the following two LISP

functions

F(x) <= if atom(x) then x.NIL else F(car(x» *F(cdr(x»

and

G(x,y) <= if atom(x) then x.y else G(car(x),G(cdr(x),y))

where * represents the append function. We shall prove by

computation induction that G(x,y) = F(x)*y (over the domain of lists) .

Base The equality UU = UU*y is a consequence of the definition

of *

Induct ion If

A(x,y) - (if atom(x) then x.NIL else f(car(x» *f(cdr(x))) *y,

then

A(x,y) = if atom(x) then (x.NIL)*Y else (f(car(x)) *f(cdr(x))) *y - -- --

= if atom(x) then x.y else f(car(x))*(f(cdr(x))*y)

(LISP axioms)

The conclusion

A(X,y) = if atom(x) then x.y else g(car(x),g(cdr(x),y)

follows then by using the induction hypothesis twice.
o

80

2. Modelling Some Proof Techniques Within LCF

Looking back at Chapter 3, we realize that Section 2.3 on termination

of programs is the only place where we actually used functions which are

not continuous. We therefore have to demonstrate how the technique of

structural induction, as described for example, in Burstall [1] or

Manna-Ness-Vuillemin [15] can be modelled within LCF.

Finally, a method which was not accounted for in Chapter 3, since

its justification requires continuity, is that of Morris [23] and we

shall study it in Section 2.2.

2.1 Structural Induction

Actually, the word structural induction covers two rather different

techniques. The first one is a simple generalization of the induction

principle on natural numbers, while the other one is a statement of

Noetherian induction applied to arbitrary well-founded sets, which is

the most general induction principle known to man.

Simple Structural Induction

(a) Mathematical Induction

The usual formulation of this principle for natural numbers is:

from p(O) and Vx(p(x) ~ p(x+l»

infer vxp(x)

Let the predicate n(x) <= if x = 0 then TT else n(x-l) characterize

the natural numbers in our system. (We assume the usual axioms about

o , 1 , = , + , - as described in Newey [25].) Let p(x) be any

predicate which can be expressed as a term of the ~-calculus.

81

From the premises

p(x) ~ TT , if x = ° then TT else p(x-l) ~ p(x)

we can infer by fixed-point induction that n(x) ~ p(x) , i.e., that

p(x) holds for any natural number x .

In other words,

from p(o) == TT and p(x) == TT I- p(x+l) == TT

infer n(x) == TT r p(x) == TT

This method applies to any data-type which is recursively defined by a

* semi-computable predicate. For example, the domain E of words over

some vocabulary r: can be characterized by

word(x) <= if x = A then TT else word(t (x»

and the corresponding prinCiple is:

from

infer

if nUll(x) then p(A) else p(t(x» == TT I- p(h(x) ·t(x}) == TT

word(x) == TT l- p(x) == TT

(We are again assuming axioms about A, =, . , h ,t .)

Example 4. Let us consider two programs for computing the factorial

fUnction:

F(x) <= if x = ° then 1 else x X F(x-l)

G(x,y) <= if x = y then 1 else (ytl) xG(x,y+l)

In order to show that G(x,O) == F(x) , we shall prove that n(x-y) ~ p(x,y)

where p(x,y) is G(x,y) X F(y) = F(X) Let r be defined as

r(x,y) <= if x = y then TT else r(x,y+l)

82

We first prove that r(x,y) = n(x-y) . Then, since

p(x,y) = if x = y then F(X) = F(Y) else (y+l)G(x,Y+l).F(y) = F(x)

= if x = y then TT else p(x,y+l)

we can conclude that r(x,y) ~ p(x,y) ,i.e., n(x-y) ~ p(x,y) This

last inequality is equivalent to y::; x = TT f- p(x,y) = TT .
o

This technique required p to be a computable predicate; if P

is an arbitrary well-formed-formula, a generalization (Milner [18])

yields:

Q f- PtO/x} Q,P f- P[(x+l)/x}
Q r n(x) ~ P (x not free in Q)

where q ~ s ~ t means if q then s else UU ~ if q then t else UU ,

Example 5. Let

rev(x) <= F(x,A)

F(x,y) <= if x = A then y else F(t(x),h(x)·y)

In order to show that rev(rev(x)) = x , one can prove that word(x) ~ P ,

where P is rev(F(x,y)) = F(y,x) o

(b) Course of Values Induction

Another formulation of the induction principle over the natural

numbers is the following:

from Vx[Vy[y < x ~ p(y)] ~ p(x)]

infer Vxp(x)

83

Whenever p is computable, this course of value induction can also be

modelled directly because the operation of bounded quantification is

computable and can be defined as:

"'(== \.Lf. [Ax,p. if x = 0 then TT else if p(x-l) then f(x-l) else UU]

According to this definition, '\f(x,p) "means" Vy(y < x ::) p(y)) . We

can define the partial predicate m = \.Lp.Ax[V(X,p)] and prove that

m == n where n == \.Lf.[Ax. if x = 0 then TT else f(x-l)] as follows.

(i) men
--

V(x,n) == if x = 0 then TT else if n(x-l) then V(x-l,n) else UU

e if x o then TT else n(x-l)

(by cases using the fact that V(x-l,n) ~ TT)

== n(x)

Hence, men follows by fixed-point induction.

(ii) n em.

Since x = 0 == FF I- m(x-l) == V(x-l,m) by definition of m, we

have x = 0 == FF I- (if m(x-l) then V(x-l,m) else UU) == m(x-l) (by

cases again, using the fact that m(x-l) e TT). It follows that

m(x) == if x = 0 then TT else if m(x-l) then V(x-l,m) else UU

== if x = 0 then TT else m(x-l) .

The conclusion n e m then follows by fixed-point induction again.

o
Having established the equivalence n == m , we can justifY the

following rule of inference:

84

from

infer

V(x,p) = TT ~ p(x) = TT

n(x) - TT ~ p(x) = TT

A similar rule can be derived for well-formed-formulas.

Example 6. Let us consider a modified version of McCarthy's 9l-fUnction:

F(x) <= if x < 0 then x+l else F(F(x-2»

In order to prove that n(x) = TT r (F(x) = 0) = TT , let p = ~.[F(x) = 0]

The equalities (F(O) = 0) = TT and (F(l) = 0) = TT have to be checked

first and then, assuming V(x,p) = TT and x > 1 = TT , we prove p(x) :

p(x) = (F(x) = 0) - (F(F(x-2)

- (F(O) = 0)

- TT

Transfinite Induction

0) (x < 0 = FF)

(p(x-2) = TT)

(separate check)

o

Let < be a well-founded relation over the domain g. We showed

in Chapter 3 how to derive the following principle:

from

infer

'\fXEg{VYE.&[Y < x ~ p(y)] ~ p(x)}

VXEg£p(X) }

The proof given precluded continuity and is therefore not applicable in

the present context.

We shall describe a technique for deriving in LCF any instance of

the above rule one may need in "practical" cases. Here, a "practical"

well-founded relation is either one of the basic orderings described in

the preceding section or an ordering constructed as a well-founded

collection of well-founded relations.:! Since we already know how to

handle the "base" case, all we need to model is the construction of

complex orderings from simpler ones.

Let < be a computable well-founded relation over the recursive
1

domain Bl , and, for any XEB1 , let < be a well-founded relation
x

over .f)2(x) . We then consider the domain JJ =[(x,y) IXEJJl , YEB
2

(x)}

together with the ordering < where (x,y) < (x',y') is equivalent

to x < x' or (x = x') A (y < y')
1 x

Assuming we already know that

the rules

Q"X' <x :::) Ptx'jx} I- P
(1) 1

Q. I- JJl(x) :::) P
(x and Xl free in Q)

and

Q.,y' < y :::) Pty' jy} I- P

(2)
x

Q. I- JJ2 (X,Y) :::) P
(y and yl free in Q.)

are valid, we want to justif'y the rule

Q,(i',y') < (x,y) P
(3)

Q I- O&(x,y) :::) P
(X , X I ,y and y I
free in Q)

where »(x,y) = JJl(x) A ~2(x,y) . Assuming rules (1) and (2) and the

hypothesis of rule (3), we shall prove that Q f- '&1 (x) A JJ2 (x,y) :::) P

in two nested inductions, by distinguishing between the following cases:

£J This is equivalent to multiplying the corresponding ordinals. The
operation corresponding to ordinal exponentiation can be modelled
just as well, although we could never find any practical application
for it.

1) x' -< x - TT .
1

The hY}lothesis of (3) is then Q,x' -< x ~ PtX' Ix} f- P;
1

hence rule (1) implies that Q f- .171 (x) ~ P and, a-fortiori, ft(x,y) ~ P .

2) x' -< x - FF .
1

Since (x,x') -< (y,y') = TT is the only interesting case, one

can assume that x = x' and y' -< y. The hypothesis of (3) then becomes
x

Q,y' -< y ~ Pty'/y} f- P which, by rule (2), implies that
x

Q f- f}2(x,y) ~ P and the conclusion Q f- f}(x,y) ~ P then follows.

o

Example 7. Using the technique we just described, we shall prove that

Ackermann's i'uncti:Jn

A(x,y) <= if x 0 then y+l else

if y = 0 then A(x-l,l) else A(x-l,A(x,y-l»

is defined over the natural number.

Let P be n(y) ~ n(A(x,y» , where

n - ~f.[~x. if x = 0 then TT else f(x-l)] We shall prove that

n(x) f- P which "means" that, whenever x and yare natural numbers,

A(x, y) must also be a natural number, is true.

The main proof is by induction on x

Base: x = 0 . In this case, PtO/x} is n(y) ~ n(y+l) which is

always true, as a consequence of the axioms about 0, 1 and + .

Induction. Assuming Ptx-l/x}, that is n(y) ~ n(A(x-l,y» we must

prove P, i.e., n(y) ~ n(A(x,y» Let us argue by cases on

the predicate y = 0 :

87

case y = 0 = TT . Since in this case A(x,y) = A(x-l,l) , it

is sufficient to prove that

nCO) ~ n(A(x-l,l» (a)

We know by the induction hypothesis that n(l) ~ n(A(x-l,l» and

equation (a) follows, since nCO) = n(l)

case y = 0 = FF. Choosing y = A(x,y-l) in the induction

hypothesis P[x-l/x} gives us:

n(A(x,y-l» ~ n(A(x-l,A(x,y-l»

Since in this case A(x,y) = A(x-l,A(x,y-l» the last inequality

implies that n(A(x,y-l» ~ n(A(x,y» . Hence, by a "nested"

fixed-point induction applied to the predicate q(y) = n(A(x,y»

we conclude that n(y) ~ n(A(x,y»
o

2.2 Truncation Induction

Recalling Kleene's first recursion theorem, we can characterize the

least fixed-point of the program F <= ~(F) as the least upper bound

of the sequence of functions fO,fl , ... ,fn, ... defined by fO = UU

and fn+l = T(fn) . The rule of truncation induction, as Morris [23]

named it, can be formulated as

Rule TI

from Q, r Ptfn/f} for any natural number n

infer Q, !- Ptf,/ f}

Actually Morris [23J used the formulation

from Q" 'fm(m < n ~ Ptf If}) r Pt f If}
ill n

infer for all n

88

which is equivalent to ours since Section 2.1 of this chapter shows

how to obtain the missing step, namely:

from Q, trm(m < n => p[f j f} r p[f j f}
m n for all n

infer Q r P[f j f}
n

for all n .

A first problem which arises with rule TI is that, since it

requires knowledge about the integers in its formulation, it cannot

even be expressed in pure LCF. (This should be regarded as an advantage

of Scott's formulation of the rule.)

More dramatic is the fact that, even in an LCF with integers

(where TI can then be expressed), there does not seem to be any way to

justify it, despite the fact that it is clearly valid in any standard

model. It is possible to get around this difficulty by slightly extending

the logic. What is needed is a formal way to talk about limits. This

can be achieved by embedding data-types into complete lattices, thus

going back to the original definition of data-types in Scott [29]. This

idea entails the following extensions to LCF:

(1) Introduce constant terms 00 (for overdefined) at each type. The

corresponding axioms are I- x c 00 and 00 ~ OO(x) . In

the case-rule, the case p[oojx} r Q should be added to the premise.

(2) If s and t are terms of type ex , then sup(s, t) should also be

a term of type ex It is axiomatized by l- x ~ sup(x,y) ,

I- Y ~ sup(x, y) and x~z,y~z sup(x,y) ~ z

(3) We could introduce inf(x,y) in the same way, although we won't

need it. Also, one should make up his mind as to what

if 00 then x else y ought to mean. Two extreme possibilities are

if 00 then x else y ~ 00 or r if 00 then x else y = sup(x,y)

In this extended logic (along with the natural numbers) we can then

justify rule TI:

First of all, one needs to express the rule within the formal

system, and we shall define as iter(1") (n) where

Definition 1.

iter = ~f.[A-r,n. if n = 0 then UU else -r(f(n-l))]

Using this definition, it is easy to prove that

Lemma 1.

iter (-r) (n) c it er (-r) (n+ 1)

and

Lemma 2.

it er (-r) (n) C f -r

We now wish to prove that

Definition 2.

f --r U tf} n
n>O

u == ~f.[At3,n. sup(t3(n),f(t3(n+l)))]

and, for this purpose, let

Using an induction on this formal definition of U , one can then

prove that

Lemma 3.

and

Lemma 4.

t3(n) ~ t3(n+l) r l(U(~,n)) = U(Ax.l(~(x)),n)

Note that Lemma 4 is particularly interesting since it proves that

any function y which can be expressed within the logic must be

continuous. Kleene's first recursion theorem may now be expressed as

f == U(iter(T),n)
'f

and proved in two steps.

Firstly, combining Lemmas 2 and 3 yields

U(iter(T),n) ~ f-r

(K)

Then, the other half of the proof is a little bit more complicated.

-r(U(iter(-r),n» '" U(Ax.-r(iter(r) (x»,n)

'" U (Ax. iter (-r) (x+ 1) , n)

~ U(iter(-r) ,n)

The conclusion

feU (it er (T) , n) or -

follows by fixed-point induction.

(Lemmas 1 and 4)

(Definition 1)

(Lemma 1)

We now have all the machinery required for justifying truncation

induction. Assuming for simplicity that the well-farmed-formula we want

to use is of the form a(f) ~ g , we must prove that

a(iter(-r) (n») ~ g

Lemmas 1 and 4 tell us that

U(;\.x.a(iter(-r)(x»),n) '" a(U(iter(-r),n» ,
and therefore

a(iter(T)(n» ~ g r a(U(iter(T),n» ~ g

91

Since f == U (iter ("t') , n)
'f

by Kleene's theorem, this last implication

reduces to

CX(iter(-r) Cn)) ':: g f- CX(f
1
,) ~ g

which is what we wanted to prove.

Applications

-- First of all, some equivalence proofs seem to be more natural

(and may in fact require) using truncation induction.

For example, if two fUnctionals sand t satisfy s(UU) = t(UU)

and st == t 2s ,21 the natural truncation induction predicate would be

2n_l n
t (UU) == s (UU) , and therefore ~f.s(f) = ~f.t(f) . If one uses

the machinery we just developed, this informal proof can very easily

be carried through within the extended logic. Actually, a more elegant

proof (not using natural numbers) would be the following:

Define

M(g,f)(x) <= sup(f(x),M(g,f) (f(x)))

and

N(g,f)(x) <= sup(f(x),N(Ax.g(g(X)),f) (g(x)))

(M(S,Af.f) (UU) represents U sn(UU) and N(t,Af.f) (UU) represents
n>O

n
U t 2 -\UU) .) One can then prove that f = M(s,Af. f)(UU) and

n >0
s

ft = N(t,Af.f) (UU) and finally that

~(UU) == t(UU) ,Af.s(t(f)) = Af.t(t(s(f))) f- M(s,i\f.f)(UU) == N(s,Af.f)(UU)

£/ This example is due to J. W. deBakker. Robin Milner has a proof of
it in pure LCF. The reader may find out for himself how tricky it is,
and fUrther away from the intuitive proof than the one presented here.

92

-- Similarly, let us consider the following version of the induction

rule

rule R6 r

Q f- h c fT,P~h/f} Q,P f- P~'L'(f)/f}

Q f- P[f,/f}
(f not free in Q)

where the base of computation induction is not taken at the undefined

element UU but at any element hef
- l'

Informally and assuming P to be a(f) ~ ~(f) for simplicity,

the hypothesis of the rule implies that a(Tn(h)) ~ ~('fn(h)) for any n .

On the other hand,

therefore U
n>O

We h c f
l'

implies n n
'1' (UU) c T (h) c f

- - l'

The conclusion a(f) c ~(f)
l' - l'

and

then

follows easily from the continuity of a and monotonicity of ~ .

This argument can be carried through formally within the extended LCF.

In particular, it applies to the following theorem

1'(f) c f f- T(0(f)) ~ 0(f)

f- T(f0)~f0

which is provable in the extended logic; the author does not know how

to prove it (and conjectures are not provable) in pure LCF.

93

Conclusion

In the actual state-of-the-art, Scott's approach to the semantics

of programming languages seems to be the most promising one. The

theoretical foundations are sound, and a natural step would now be to

describe fUlly the semantics of a fUll:size programming language, along

the lines of scott-Strachey (32), Milner-Weyrauch [21J, or Reynolds [27].

Another wide open and promising area seems to be that of semantics

of operating-systems and parallel processes. Steps in this direction

were taken by Kahn [11], Milner [20), and others.

Finally, the question of a 1Ibest1l logic for expressing a theory

of computation remains. As alternatives to LCF, the systems of

Hitchcock-Park [8) and deBakker - deRoever [5] have some interesting

features; in an unpublished work, Scott and Milner also considered the

possibility of extending LCF to a "type-free" logic whose semantic

domain is one of Scott's models of the ~-calculus.

In any case, more efforts should be put in studying the existing

systems. In particular, LCF provides a nice framework for the area of

schematology, where existing results can be expressed and sometimes

simplified, and where new and interesting questions arise. (See

deBakker [4] and Courcelles-Kahn-Vuillemin [3].)

References

[lJ R. M. Bursta11, "Proving Properties of Programs by structural

Induction," Computer Journal, Vol. 12, (1969), 41-48.

[2J J. M. Cadiou, "Recursive Definitions of Partial Functions and

Their Computations," Ph.D. Thesis, Computer Science Department,

Stanford University, (1972).

[3] B. Courcelles, G. Kahn, and J. Vui11emin, "A1gorithrnes d~Equiva1ence

pour des Equations Recursives Simples," Rapport LABORIA, IRIA,

78-Rocquencourt, France, (1973).

[4 J J. W. deBakker, "Recursive Procedures, IT Mathematical Centre

Tracks 24, Amsterdam, (1971).

[5] J. W. deBakker and W. P. deRoever, "A Calculus for Recurs i ve

Program Schemes," Proceedings of IRIA Colloquium, North-Hoiland,

(1972) .

(6] J. W. deBakker and D. Scott, "A Theory of Programs," Unpublished

memo, (1969).

[7] R. W. Floyd, "Assigning Meanings to Programs," Proceedings of a

Symposia in Applied Mathematics, Vol. 19, American Mathematical

Society, (1967), 19-32.

[8] P. Hitchcock and D. Park, "Induction Rules and Proofs of Termination,"

Proceedings of IRIA Colloquium, North-Holland, (1972).

[9] c. A. R. Hoare, "Procedures and Parameters: an Axiomatic Approach,"

Symposium on Semantics of Algorithmic Languages, Vol. 188,

Springer-Verlag, (1971), 102-116.

[10] y. I. Ianov, "The Logical Scheme of Algorithms," Problems of

Cybernetics, Vol. 1, Pergamon Press, (1960), 82-140.

95

[11] G. Kahn, "A Preliminary Theory of Parallel Programs," Rapport

LABORIA, IRIA, 7S-Rocquencourt, France, (1973).

[12] W. Lonergan and P. King, "Design of the B5000 System," Datamation,

Vol. 7, No·5, (May 1961), 2S-32.

[13] J. McCarthy, "A Basis for a Mathematical Theory of Computation, II

Computer Progr~~ing and Formal Systems, (Eds., P. Braffort and

D. Hirshberg), North-Holland, (1963), 33-70.

[14] Z. Manna, "The Correctness of Programs," Journal of Computer and

System Sciences, Vol. 3, No.3, (1969), 119-127.

[15] Z. Manna, S. Ness, and J. Vuillemin, "Inductive Methods for

Proving Properties of Programs," Proceedings ACM Conference, ACM,

New York, (1972).

[16] Z. Manna and A. Pnueli, "Formalization of Properties of Functional

Programs," J.ACM, Vol. 17, No.3, (1970), 555-569·

[17] Z. Manna and J. Vuillemin, "Fixpoint Approach to the Theory of

Computation," C.ACM, Vol. 15, No·7, (1972), 52S-536.

[lS] R. Milner, "Implementation and Applications of Scott I s LogiC for

Computable Functions," Proceedings ACM Conference, ACM, New York,

(1972) .

[19] R. Milner, "Models of LCF," AIM-1S6jcS-332, Computer Science

Department, Stanford University, (1973).

[20] R. Milner, "An Approach to the Semantics of Parallel Programs,"

Edinburgh Tech. Memo, University of Edinburgh, (1973).

[21] R. Milner and R. Weyrauch, "Proving Compiler Correctness in a

Mechanized Logic, If Machine Intelligence 7, Edinburgh University

Press, (1972).

[22] J. H. Morris, "Lambda-Calculus Models of Programming Languages,TI

Report MAC-TR-57, Mass. Inst. of Technology, (1968).

[23] J. H. Morris, "Another Recursion Induction Principle," C .ACM,

Vol. 14, No.5, (1971), 351-354.

[24] P. Naur, "Proof of Algoritbms by General Snapshots," BIT, Vol. 6,

(1966), 310-316.

[25] M. Newey, Ph.D. Thesis, Computer Science Department, Stanford

University, (to appear).

[26] D. Park, "Fixpoint Induction and Proofs of Program Properties,!!

Machine Intelligence 5, Edinburgh University Press, (1969), 59-78.

[27J J. C. Reynolds, "Definitional Interpreters for Higher Order

Programming Languages," Proceedings ACM Conference, ACM, New York,

(1972) .

[28 J B. K. Rosen, "Tree-Manipulating Systems and Church-Rosser Theorems,"

J.ACM, Vol. 20, No.1, (1973), 160-187.

[29 J D. Scott, "Outline of a Mathematical Theory of Computation,"

Oxford Mono. PRG-2, Oxford University, (1970).

[30J D. Scott, Unpublished paper.

[31] D. Scott, "Continuous Lattices,!! Oxford Mono. PRG-7, Oxford

UniverSity, (1972).

[32] D. Scott and C. Strachey) "Toward a Mathematical Semantics for

Computer Languages," Oxford Mono. PRG-6, Oxford University, (1972).

97

