STANFORD ARTIFICIAL INTELLIGENCE LABORATORY
MEMO AIM - 218

STAN-CS-73-393

PROOF TECHNIQUES FOR RECURSIVE PROGRAMS

BY

AD772063

JEAN E. VUILLEMIN

SUPPORTED BY

ADVANCED RESEARCH PRGJECTS AGENCY
ARPA ORDER NO. 2494 -
PROJECT CODE 3D30

OCTOBER 1973

COMPUTER SCIENCE DEPARTMENT
Schoo! of Humanities and Sciences
STANFORD UNIVERSITY

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

Proof Techniques for Recursive Programs

Jean Vuillemin

Abstract

The concept of least fixed-point of a continuous function can be
considered as the unifying thread of this dissertation.

The connections between fixed-points and recursive programs are
detailed in Chapter 2, providing some insights on practical implementa~
tions of recursion. There are two usual characterizations of the least
fixed-point of a continuous function. To the first characterization,
due to Knaster and Tarski, corresponds a class of proof techniques for
programs, as described in Chapter 3. The other characterization of
least fixed points, better known as Kleene's first recursion theorem,
is discussed in Chapter k. Tt has the advantage of being effective

and it leads to a wider class of proof techniques.

The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies,
either expressed or implied, of the Advanced Research Projects Agency of
the U.S. Govermment.

This research was supported by the Advanced Research Projects Agency, Dept.
of Defense under contract DAHC 15-73-C-0435

Reproduced in the USA. Available from the National Technical Information
Service, Springfield, Virginia 22151.

ib

Acknowledgments

First of all, I am grateful to Dana Scott, Robin Milner, and
David Park who, by their respective works, made this thesis possible.
I am deeply indebted to:

Donald Knuth for his reading of the manuscript; his
criticisms of Chapter 2 led to rewarding improvements
in the generality of the results.

Zohar Manna for his constant encouragement and help; he has
been a model adviser throughout my work.

Robin Milner for all the things I learned from him, and
the many interesting discussions we had.

T also want to thank my friends Jean Marie Cadiou, Ashok Chandra,
Cyril Grivet, Gilles Kahn, Lockwood Morris, Steve Ness, Mark Smith,

and Phyllis Winkler who all helped me in their many different ways.

ii

Introduction .
Chapter 1. Scott's Theory of Computation
1. Data-Types
2. Computable Functions Over Data-Types .
3. Fixed-Points .
Chapter 2. Fixed Points and Recursion .
1. Computations of Recursively Defined Funchions
1.1 Description of Lang S and Lang P
1.2 Conventions and Notations .
1.3 Computation Rule
1.4 Computation Lattice of a Program
2. Correct Implementations of Recursion .
2.1 Tncorrect Computation Rules .
2.2 Safe Computation Rules
3. An Optimal Implementation of Recursion in Lang S .
3.1 Never Do Today What You Can Put Off Until
Tomorrow
5.2 Optimallty of the Delay Rule
5.3 Sequential Functions
Chapter 3. Proofs Based Upon Monotonicity .
1. A Formal System for the Time Being .

Table of Contents

1.1 Synbax

1.2 Semantics

1.5 Axioms and Rules of Inference

1.4 Soundness .

1ii

.

.

.

o TR = G VR

15
15
15
16
18
20

22

33

5l
41

L1
ks
L6
53
55
55
54
5k
56

1.5 Pragmatics . « v v v v v e e e 0w e

1.6 A Possible Weakness of the System . .

2. Justification of Some Proof Techniques . .
2.1 Description of a Flowchart Language
2.2 The Inductive Assertions Technique .
2.5 Termination of Programs
Chapter 4. ©Proofs Based Upon Continuity
1. Description of ICF
1.1 Synbtax o ..
1.2 Axioms and Rules . . .« + « ¢ o« « + o .
1.5 Some Remarks About the Logicb. o e e .
1.4 Some Examples of Proofs . « + . . .
2. Modelling Some Proof Technigques Within ICF
2.1 Structural Induction . . « . . « . .
2.2 Truncation Induection«
ConCluSIon « « v o ¢ & o o o o o « o 2 e . o
References . e« .

iv

o7
61

oL
6L
67
68
70

71
72
Th

81
81
88
ol
95

Introduction

The goal of this work was to study and hopefully compare in a
precise way the various techniques for proving properties of programs
existing in the literature. Tt soon turned out that nothing interesting
could be sald if one did not state precisely what the various methods
really are within a common logical system. A perfectly adequate system
for doing so was the Logic for Computable Function of Milner [18], which
is based on the work of Scott [29] and [30].

In this framework, proof techniques fall rather nicely into two
classes: for the first class, which includes the methods of Burstall [1],
Floydv[Y], Hoare [9], Manna-Pnueli [16], the semantics needed for validating
the techniques only demand that programs be interpreted as monotone
functions in the sense of Scott [29]; for methods in the second class,
such as those of Scott [30] and Morris [2%], programs must be interpreted
as continuous functions.

The methods in the second class are then "more powerful' in that
they can be used for justifying the other techniques; furthermore,
provided that all methods are expressed within the same logical system,
we can exhibit properties of programs which are provable with the
proof-techniques in the second class, and not provable with the techniques
in the first class, and not vice-versa.

Before studying the various proof techniques, we present a minimal
background in Scott's Theory of Computation in Chapber 1. One of the
points of the theory which we thought needed clerification was the

relations between the abstract notion of least fixed-point and the

concrete notion of trace of a program. Chapter 2, which is the most
original part of this thesis, is devoted to this question. We believe
that Theorems 1, 3 and 4 are new while Theorem 2 is a generalization
of a result by Cadiou [2].

In Chapter 3, we study the proof-technique in the first class. The
formal system used is original, although a mere adaptation of Milner's
ICF to a different semantic domain. Reduction of the proof technigques
presented to the rule of fixed-point induction are due to Park [26].

In Chapter 4, we describe reductions of some methods to the rule
of induction of Scott [30]; some of these reductions are also used,
implicitly or explicitly in deBakker-Scott [6], Scott [30], Milner [18],

and Milner-Weyrauch [21].

Chapter 1. SCOTT'S THECRY OF COMPUTATION

In this chapter, we shall present an overview of Scott's theory
of computation, whose goal was to give a "mathematical as opposed to
"operational” semantics for high-level programming languages. Only the
parts of the theory which are relevant to this dissertation will be
described. In particular, one of Scott's most impressive achievements
was to construct a model for the A-calculus, which in turn provides a
mathematical semantics for programming peculiarities such as self-modifying
machine codes or procedures taking other procedures as arguments. We
shall not concern ourselves with this problem, and the kind of procedure
we are willing to consider has a definite type -- a function from
individuals teo individuals, or a functional from functions to functions,
ete. Limited as it is, the theory that we shall describe is nevertheless
powerful enough not only to describe the semantics of non-trivial subsets
of any programming language, but also to justify all the existing proof
techniques for those languages. The presentation of this chapter, whose
only purpose is to make the thesis more or less self-contained, is based
on Scott [29] except for some minor technical details.

We assume that the reader has some knowledge of.elementary lattice

and recursion theories.

1. Data Types
As a first step, let us consider some examples of what one would
like to call data types:

(a) the boolean values true and false;

(b) the set of integers;

(¢) the n-dimensional arrays of integers;

(d) the set of subsets of integers;

(e) the set of computable partial functions over some data-type;

(f) the set of non-negative real numbers.

Some of those sets contain as elements objects like total functions or
irrational real numbers, which we shall call "infinite elements". They
cannot be described entirely, but one can give better and better finite
approximations to what they reélly are. For example, the intervals
(3,47, [3.1,%.2], [3.14,3.15], ... form a sequence of approximations
of w .

This suggests that data-types ought to be partially ordered sets.

The notation X = y means that x approximates y , and T must
therefore be a reflexive, transitive and antisymmetric relation over
the data-type. For example, if A and B are some subsets of the
integers, A C B means that A is a subéet of B . Similarly, for
any two iptervals [x,x'] and [y,y'] of non-negative real numbers
[%,x'] = [y,y'] will mean that x <y and y' <x', i.e., [y,y']
gives us a better idea of where the real number lies than [x,x']
Considering now two integers k and £ , we do not wish to say
that one is an approximation of the other. However, it may be the

case that k 1s not explicitly known, but has to be determined as

the result of some computation. As we all know, this computation may
never terminate, in which case k i1s said to be undefined; we denote
this by k =UU and clearly UU = £ for any £ . We use g different
equality sign " = " in order to avoid confusions with the regular
equality " =" over the integers. Here, x =y means that xC y

and y = x , while x =y is true whenever x and y are the same
integer. TFor example, 1 =1 and 1 =1 are both true, while UU = 1
ig false and UU = 1 is undefined. To be precise, one should write
(uu. = 1) =UU, where the subscripts are here to remind us that uu,
is an undefined integer, while UUB is an undefined boolean.

To clarify those ideas, it i1s helpful to describe more precisely

the partial orderings over our favorite data types.

(a) TFor the boolean values, the data type looks like B FE B
\‘UU/

b

where N\ means that b covers a , i.e., aC b with a #b
a

and aZ c = b for some ¢ implies either a

ill
O
Q

>

(@)

il
o

(b) Although there are infinitely many integers, the corresponding

data type is not much richer:
1 2 cen n
=
\\\\\\\\\\§UU
Data types of this kind, where elements are elther completely specified

or undefined will be called discrete.

(¢) The data type of pairs of Boolean has already a richer

structure:
(T'T, TT>><<TT ST (FF, TT>><<FF, FF)
(TT,UU) (UU, T?<<UU,FF> (FF,UU)

\\UU/

(&) 1In the data type of subsets of some set, A T B means that A

is a subset of B ; the least element UU is the emply set.

(e) As indicated before, the elements of the data type of real
numbers are closed intervals [x,x'] with O <x <x' and
[x,x'] C [y,y'] whenever x <y and y' <x' . It is convenient
to complete the real line with an element <« , thus allowing [7.1, ®]
for example, to be a real number. The interval [0,x] reflects a
complete lack of information and should therefore be identified with

the undefined real UU .
(f) If S/ is a data type partially ordered by =, , the partial

2o
functions mapping £ into & are ordered by:

fog iff f(x) Sp g(x) for all x in 5 .

The minimal element TUU is the partial function which is everywhere

bF-b

~

undefined, i.e., UU(x) = UU for all x in 4 .

Infinite Elements as Limits

Let us contemplate again the sequence

(3,41, [3.1,3.2], [3.14, 3.15], We would like to be able to

define w as the "limit" of these intervals. Abstractly, this will

*
require that any chain—/

X, Cx,.C...Cx,&x, .C...
-1 - il =

has a limit y in the data type B , which is the least-upper bound

of the xi's , that is, xj Cy for every J and, for any z in the

data type, xj|E z for every J implies y T« z . We write y =

U Xi
i>0

According to this notation, in the data-type of real numbers

[1,2]

il

U [i/(i+1),(2i+1)/i] and for sets of integers,
1>0

{k|k is 0dd} = U {1,3,...,2i*1} . Let us define the constant
1>0

function one as one(x) = 1 for any integer x , while one(UU) = UU ;

this function can also be defined as a limit of partial functions

one = U [Ax. if x < i then 1 else UU]

Computability

Asking that the infinite object U X, be computable will
i>0
require that the X themselves be computable. We therefore postulate
the existence of an effectively given subset E of the data type 5,
such that any element of /& is the limit (not necessarily effective)
of some chain of elements of ® . Such a set E will be called a

recursive basis of /5 . TFor example, a data-type in which there are

no infinite ascending chains (booleans, integers, arrays) is its own

f/ Strictly speaking, we only need denumerable chains to have a limit.
However, when data-types have a denumerable basis (see below),
requiring that countable chains have limits implies that any chain
(and in fact directed set) also has a limit.

7

basis provided that it is recursive. The finite sets of integers
constitute a basis for the set of subsets of the integers. Similarly,
the set of functions which are undefined for all but a finite number
of arguments is a basis for the data type of partial functions.
Finally, a basis for the real numbers is the set of rational-end-point
intervals.

We can remark that the recursive basis of a data type H must be
denumerable. Consequently, all of its elements being obtained as
limits of denumerable chains in the basis, £ itself has at most a
continuum number of elements. In particular, since there are at most
denumerably many computable objects (i.e., objects defined as limits of
effectively given chains), a non-denumerable data-type will possess
many non-computable elements.

We can summarize the above discussion by the postulate

A data-type is a partially ordered set with a

minimal element, possessing a recursive basis

and in which every ascending chain has a 1limit.

Note: This notion of data-type is slightly different from the one
advocated by Scott [29], namely that data-types ought to be complete
lattices. The main technical reason for this choice was the difficulty
which seems to arise for defining our notion of sequential function

in Chapter 2, with complete lattices.

2. Computable Functions over Data Types

The next step is to consider programs as functions mapping data
types into data types, and to derive some mathematical properties of

such functions.

Programs as Monotone Mappings

Let f be a partial function computed by some program. Whenever
the input x is less defined than the input y , the output f(x) must
be less defined than f£(y) , i.e., x =y implies £(x) C f(y) . This

motivates the hypothesis that functions computed by programs are monotonic

mappings over the data type.

Examples
— The successor function [Ax. x+1] over the integers is monotone

if we choose UU+1 = UU .

— The conditional if p then x else y where

if UU then x else y = UU
if TT then x else y = X
if FF then x else y =y
is monotone with respect to p , x and y . (A function of several

variables is monotone when it is monotone in each of its arguments.)

— As for sets, the functions A U B and A N B are both monotone

in A and B .

— The following definition of division over the reals makes it

a monotone function:

ol
e
~
"
e
1l

[5;,%%] where

% =0 and = = « for all xcl[0,x]

Programs as Continuous Mappings

As it stands now, the theory is already quite.adequate for
expressing and proving properties of programs, and Chapter 3 describes
some results which can be derived from the assumption that mappings
between data-types are monotone functions.

However, we are still missing an essential property of computable
functions. Knowing the values of a monotone function over the basis of
a data-type does not determine in general its values over the data-type.
For example, the function

AUB if A or B is finite

funny-union(A,B) =
N if A and B are infinite

where A and B are two subsets of N , is monotone but clearly not
computable.

Intuitively, the value f(x) of a compubable function f at an
infinite object x should be obtained as the limit of the values
f(xi) over the finite approximation X, of x . More precisely, let
us consider an arbitrary chain

.LCe e

il

n nt+l
of elements in the basis of the data type. Since f 1is monotone, the

set {1 >0 f(ei)} is also a chain

f(eo) = f(el) C ... = f(en) c fle) C

ntl

10

and the computability of f demands that

£ u = it f(e '
(nzoen) 2 (e,) (a)

A monotone function satisfying equation (a) for arbitrary chains will

be called continuous. We shall therefore postulate that

Computable functions are continuous mappings between

data~types.

Again, a function of several arguments is continuous if it is continuous.

in each of its arguments.

Examples

— The function [Ap,x,y. if p then x else y] is continuous.
Addition of two integers, union of two sets, division of reals are also
continuous operations. The functional [AF.[Ax. if x = O then 1 else x.F(x-1)

over the data-type of natural numbers is continuous, both in F and in x .

— Let us define the mappings @x p(x) and ¥x p(x) which associate
a boolean to each function p from natural numbers to booleans as
follows:

™ for some natural

I}

— ax p(x) is equal to TT if p(n)

number n and equal to UU otherwise.

it}

— ¥x p(x) is equal to TT if p(n) =TT for all natural
numbers n # UU and equal to UU otherwise.
We shall verify that [Ap.(dx)p(x)] is continuous while [Ap.(¥x)p(x)]

is monotone but not continucus in general. Let inE = 0 55Pi+1 c ...

11

be a chain of partial predicates over the natural numbers. We easily

il

verify that (U p)(x) = U (p;(x)) . Wow, if (U ,)(x)
i>0 i>0 i>0

U pi(x) =TT for some x , there must exist an i, such that 1 >1
i>0

implies pi(x) = TT ; otherwise, either (U pi)(X) = FF and again there
1>0

is an i, such that p, (x) =FF or (U pi)(x) = UU and pi(x) =UU

0 i>0

i

for all i . In all cases we have (Ex)(U pi)(x) U (Hx)pi(x) and
1>0 i>0

d is indeed continuous. One shows that ¥V is monotone in a similar way
and the chain pi(x) = (x < i) provides a counterexample to the continuity
of V¥ .

Let us now discuss some properties of continuous functions. First
of all, it is possible to define a topology over data-types such that a
function is continuous in the above sense if and only if it is continuous
in the topological sense (see Scott [31]). Without describing the
topology, we can nevertheless say that a subset X of the data-type 5
is directed if for all x,yeX , there exists a zeX such that xC z
and y = z . Together with the existence of a denumerable basis for 5,
the fact that continuous functions preserve limits of denumerable chains
implies that continuous functions also preserve least-upper-bounds of
directed sets. Continuous functions do not however preserve least-upper-

bounds or greatest-lower-bounds (when they exist) of arbitrary sets.

12

3. Fixed Points

Let f be a function over a data-type £ . We say that =xep is

a fixed-point of f if x = f(x) ; we say that y is the least-fixed-

point of f if y = f(y) and vy C x for any other fixed-point x .
Note that, whenever it exists, the least-fixed-point of £ must be

unique; we shall denote it either by ux.f(x) or by x

P
Theorem (Kleene). Any continuous function over a data-type B has
a least-fixed-point Xp and
x.= U 1 (W)
n>o

Proof. . Here £ (UU) means £(£(...(£(UU))...) (n times) and, by
n
monotonicity of f , the set {f (UU)} for n>0 is indeed a chain. We first

prove that U fn(UU) is a fixed point of £ . This is easy since
n>0

(U) = U o) = U PUU) by continuity of £ .
n>0 n>0 n>0

We now prove that u fn(UU) must be minimal. ILet y be an
n>0

arbitrary fixed-point of f , i.e., v = f(y) . It is easy to prove by

induction that fn(UU)tg vy for any n . The conclusion U fn(UU)gg v
n>o0

follows immediately.
O

Examples
— 1In any data type, UU = [py.y] and x = [py.x]
If 7 = M. [Ax. if x = 0 then 1 else x.f(x-1)]
and o = M.[Ax. if x > 100 then x-10 else f(f(x+11l))] over the

natural numbers,

15

n+l
(

then 7 uvu)

i
>
&

. 1f x < n then x! else UU]

i

and On+l(

UU) = [Ax. if x > 100 then x-10

else if x-100 > -n then 91 else UU] ;

il

therefore, f% (Ax.x!] and f0 = [Ax. if x > 100 then x-10 else 91]

From these examples, the reader may already suspect that there
must be a relation between recursively defined functions and least
fixed points. The next éhapter will be entirely devoted to this

question.

14

Chapter 2. FIXED-POINTS AND RECURSION

The object of this chapter is to detail the connections between
fixed-points of continuous functionals and recursively defined functions
in a very simple programming language. We first illustrate that the
semantics of recursively defined functions will depend on the implemen-
tation. A careless implementation of recursion will introduce unnecessary
computations, which may even prevent the program from terminating.

A general criterion for the correctness of an implementation will be
proved. We then describe an implementation of recursion which is botﬁ
correct and optimal in a general class of sequential languages and
therefore constitutes an attractive alternative to both "call by value"

and "call by name'.

1. Computations of Recursively Defined Functions

Before defining a computation rule, we must describe two programming
languages, lang S and lang P . Although those two languages were
chosen for their extreme simplicity, their use of recursion is as general
as any, and the results of this chapter provide some insight into

semantics and implementation of more complex programming languages.

Lang S permits only sequential computations, and corresponds

precisely to a certain "typed" subset of Algol or LISP.

Lang P requires some parallel operations, and thus departs from
more classical programming languages, although we could undoubtedly

write an interpreter for lang P in any of those classical languages.

15

1.1 Description of lang S and lang P

Syntax
Both languages have the same syntax:

{program) ::= F(X ..,Xn) <= {term)

17
(term) ::= AlfAEI...
x|

lGl((term 1, ..., {(term pl>)

le((term 1y, ., (tem pk>)
|F((term 1), ..., (term n))
We limited ourselves to a single recursive equation, the extension
of the results in this chapter to systems of mutually recursive
equations being straightforward.

Here, Al’AQ""’Gl""’Gk denote fixed constants and functions
respectively. It is convenient to use a more standard syntax, e.g.,
F(X) <= IF X = O THEN 1 ELSE X.F(X-1) instead of
F(X) <= Gy (P (%80) 54,6, (X,F(G5(X)))) -

The meaning of a program will be a continuous mapping in
[ﬁlx "'Xﬁh - p] where each j& and f are some data-types; for
simplicity, the ﬁi‘s will be identical to F unless explicitly

specified.

Semantics of terms in lang P

The meaning of a (term) is a (continuous) functional
xf.hxl,...,xﬁy((term)) where the semantic function . is defined
inductively as follows:

(1) A(A)) = &, where aieﬁ

)

16

(11) S(X) = x;

(111) (G, ((bemn 1), ..., (tern D)) = g (A (bemm 1)), ...,#((tern D))

b
where is some continuous function in [ﬁAk - 5]

Ex
(iv) L(F({term 1), ...,{term n)))

f(A((term 1)), ...,2({(term n))) .

Here we have to prove that this is continuous, i.e., that continuous
functions are closed under composition,)-abstraction and fixed-point
operation. The reader can find these proofs either in Scott [30] or in

Milner [19].

Semantics of Terms in lang 8

The semantics of lang 8§ 1is defined in precisely the same way as
that of lang P , the difference lying in restrictions on the interpreta-
tion of base functions. In lang S , we require functions to be sequential,
i.e., roughly that thelr arguments can be computed in sequence. We shall
give later a precise definition of this notion. For expository purposes,
however, we shall 1limit ourselves for the moment to studying a particular
sequential language.

The data-types on which our particular lang S 1s computing are

discrete, i.e., they look like:

b or B[tt f

ay @y e & ... \\& z//
\\\\\>&“///// uu

In what follows, we use w instead of uu g and (in place of u%ﬁ—nﬁ

in order to help the eye avoid type confusions. Among the base functions,

we point out a particular one, denoted IF-THEN-ELSE whose interpretation

is the usual conditional, i.e., if uu then x elsey =w ,

if tt then x else y = x and if ff then x else y =y .

17

A1l other base functions are required to be strict, i.e.,
g.(veywy...) =w : they are undefined as soon as at least one of their
arguments becomes undefined. They are meant to correspond to the
"hardware'" functions: add , addone , test-for-equality ,

It will be shown that all functions definable in lang S are

sequential. The symmetric OR defined by the table:

| o | e | e
X

uu uu tt uu
x OR Yy

tt tt tt tt

ff uu tt f

i}

or the symmetric nmultiply ¥ where O%x = x¥0 = 0 are not sequential,

and are therefore not definable in lang S , nor in Algol for that matter.

Semantics of Programs in both lang 8 and lang P

The functional 7T = xf.xxl,...,xﬁy(<term>) as defined in lang S
or lang P can be shown to be continuocus. It must therefore have a
least fixed-point fT and it would be nice to define the meaning M of
the corresponding program as W({(program)) = fT
This is unfortunately not true for all implementations of recursion,

and our goal will be to characterize the implementations for which the

computed function is equal to this least fixed-point.

1.2 Conventions and Notations

The reader has already noticed that syntactic entities are denoted

by upper case‘letters, while the assoclated semantic objects are

represented by the corresponding lower-case letters. We shall keep this

convention throughout this chapter. For example, if T 1is the temrm

18

IF X = O THEN 1 ELSE X.F(X-1l) , then its meaning t 1is

Af.Ax if x = O then 1 else x.f(x~1) , where = in this last expression
means the equality function over the natural numbers, O the number_ o,
etc.

From now on, we use upper case letters other than A , D, X, F
and G to denote (syntactic) terms. If T and S are terms, we denote
by T{S/Xi} the result of replacing all occurrences of the letter Xi
by the term S in T . By T{P/F} , we mean the term obtained by
replacing in 4 all subterms of the form F(Tl,...,Tn) by
P{Tl/Xl,...,Tn/Xn} . For example,

if T = Gl(F(Xl,F(Xl,Xz)),Xl) and P = G(F(XQ,X:L))
then T{F/F} = G, (G(F(G(F(X5%7)),X))),%y)

Whenever we only wish to substitute P for some occurrences of F

in T , we rename, say F the occurrences that we shall substitute

17
and Fy the others. The result of the substitutions i1s then
T{P/Fl,F/Fe} . The same kind of notation also applies to semantic terms.

We use F(X) and f(x) as abbreviations for F(Xl,...,Xn) and
f(xl,...,xn) respectively.

Also, it will be convenient to consider only programs F(X) <= P
where P is of the form G(Pl,.
that each of the letters ¥ , X

..,Pb) with the additional restriction
l""’Xn occurs at least once in P .
That is, P 1is required not to ignore any of its program variables,
to depend upon F (i.e., to be recursive) and not to be of the
uninteresting form F(X) <= F(Tl,...,Tn) . The main results of this

chapter generalize without this restriction, but the proofs are made

longer by an addition of special cases.

19

1.2 Computation Rule

A computation rule ¢ is an algorithm for selecting some occurrences
of the letter F in each term. For any such rule and input D , we
construct the computation sequence TO,Tl,...,Tn,... of the term T
by the program F(X) <= P as follows: T, = T{D/X} and T,,, is the
result of substituting P for the F's chosen by ¢ in Ti . TFor
example, if P = IF X < 2 THEN X ELSE F(X-1) + F(X-2) , the computation

sequence of F(X) according to "call-by-value” for input X = 2 is:

TO =E(2)
T, = IF 2 < 2 THEN 2 ELSE F(1) + F(0)
T, = IF 2 < 2 THEN 2 ELSE (IF 1 < 2 THEN 1 ELSE F(0) + F(-1)) + F(0)
Ty = IF 2 < 2 THEN 2

ELSE (IF 1 < 2 THEN 1 ELSE F(0) + F(-1)) +

IF O < 2 THEN O ELSE ®(-1) + P(-2)

T = = e ee =
» = Ts T

(Here, F(1l) dis in fact an abbreviation for F(2-1) , etec.)

In Tn , we underline the F's selected by the computation rule
for substitution. It is interesting to see precisely how the underlined
F is selected in this last example. For this purpose, we must introduce
the notion of simplification. The simplification mechanism is discussed
at length in Cadiou [2], and we refer the interested reader to this
work. 1In our particular example, it is possible to define a simplifi-

cation mechanism AT simpl(T) such that

20

simpl(To) = F(2)
smmﬁ%):F@J+H®
sﬂmMTQ = 1+ F(0)

simpl(TB) = simpl(Tu) = v.. =1

(Note that now, F(1l) is no longer an abbreviation since simpl(2-1) = 1 .

The rule "call-by-value'" then selects the leftmost-innermost
occurrence of F in simplified terms. Similarly, "call-~by-name"
selects the "leftmost-outermost" one.

In its most general form, simplification can be an extremely
powerful computation tool. For example, if our program is
F(X) <= IF X = O THEN O ELSE F(X-1) it is perfectly all right to use
F(X) - 0 as a simplification rule over the natural numbers, and there
is no room left for substitutions! Our purpose however is to study
computations which are performed by substitutions and not by
simplifications.

We must therefore restrict the power of simplifications which we
allow, and, for this purpose, we merely borrow Cadiou's notion of

standard simplifications (see Cadiou [2] for a precise definition).

Roughly, standard simplifications force us to know everything about
base functions, and nothing a priori about the recursively defined
function F , since simplifications of the type F(D) - A, are not
permitted. 1In effect, we have to compute without any "built in" value
of the recursively defined function, stored for example in memory from
a previous computation.

We will not study standard simplifications in lang P , since this

would require describing completely the data-type on which computations

21

are performed but we will describe them in lang S .

For all constants A..,..
il

exists a standard cimplification of the type

"Aip and base function Gp there

Gy -

..,Aip) - Aj
In effect, this says that the values of the base-functions over the domain
are known, and these functions are total. Accordingly, the conditional
admits the simplifications

IF TRUE THEN B ELSE C - B and

IF FALSE THEN B ELSE C - C

These are the only standard simplifications in lang S and we say

that a term is simplified when all of its subterms have been simplified.

1.4 Computation Lattice of a Program

Instead of considering computaticn sequences for each input and
computation rule, we can apprehend the set of all possible computations
in one infinite diagram.

For example, the computation diagram of the term F(F(X)) by the

program F(X) <= G(X,F(Fr(X))) looks like

22

/

((XLI X)DI X)) D ((XILX) DAL (XIAX)D)D

(X1 €X)Dd

ADNS

((XEIX)DILKT)D

)/ e \$

(X328 ¢ ((RILLKI)DX)D)D

(XAAL (XALX)D)D

25

A computation rule is then an algorithm for selecting a path in such
a graph for each input. This computation diagram has a very rich

structure which we shall now study.

Computation of a term according to P

We say that B - C or simply B - C whenever C can be obtained
P !

by substituting P for some occurrences of F in B .

* *
The notation B - C or B - C means that there exists a

P
finite sequence of terms DO’Dl""’Dm such that DO =B, Dm =C
and Di ;Di+l for 0<i<m.
Definition

The computation diagram of T by P is the set of terms U such

*
that T - U , partially ordered by <« where B <(C whenever B
Lol P = > rucfaever

Mgk
o

It is clear that < is reflexive and transitive. In order to prove
that it is also antisymmetric, we notice that, if B 55 C , the size
lic|| (where size is, say the number of symbols) of the term C is
strictly larger than the size of B if at least one substitution has
been performed (this is due to our restriction on P). It follows
that B 5C and C 5B implies B = C

Clearly, the computation diagram of T by P has the Church-Rosser
property of the A-calculus. (This follows from the work of Rosen [28]
for example.) However, it also has a property which is not true of the

A-calculus, namely:

2k

Theorem 1

The computation diagram of T by P is a lattice u_nder the

ordering < , and we shall name it the computation lattice of T by P .

*
Proof. —/ In order to study the structure of the computation diagram of

a term TO by a program P , we need to relate the structure of C teo

*
that of B when B - C
P

Lemma 1

* *
(i) A, »C if and only if C = A, and X, -»C if and only if C = X.
1 1L — J J

(ii) Gi(Bl

*
5e++.B_) »C if and only if C = G.(C;,...,C_) and
P, _ iv’l p,’ ——
1 1

2
B. »-C, for 1<i<p. .
1 i - 7 =71

(iii) F(Bl,...,Bn) - C if and only if C _F(Cl,...,Cn) with B; ~C,

) *
for 1 <i<n or P{Bl/Xl,..., Bn/Xn} - C

Proof. Claims (1) and (ii) are easy and we only prove (iii).
*
If B = F(Bl, ...,Bn) - C and C is not of the form F(Cl, ""Cn) s
*
there must be a point in the computation B - C where the outermost F
* *
of B is substituted, i.e., F(Bl,...,Bn) - F(B]'_,...,Br‘l) -

P{B"/X e BY/X ¢ with B! - B (and therefore B £ g) for
1 e e} i i i i

1’
any 1 <i<n.
*
It follows from our definitions that B, - B'j'_ for 1 <i<n

implies P{B,/X B /X } % prer/x .» B"/X_} and consequently
B ER R S o 0} S TAt R s s U o)

*
P{B:L/Xl s ey Bn/Xn} ~C , as claimed in (iii). In order to get the

*
—-/ I am grateful to Jean-Marie Cadiou for his help with this proof.

25

other part of the implication (iii), we simply notice that

F(B ..,Bn) - P{Bl/Xl,..., Bn/Xn} by substituting P for the ouber

1

F in F(Bl,...,Bn) . _

If B <C , we can define a distance dist(B,C) between B and C

as follows:

B and dist(B,C) =0 ;

=
~
N
'__b
os}

1
=

or B = Xj then ¢C

(ii) 4if B = G.(B

X l,...,Bp.) then € = G.(C

5 l""’Cp-) with B, <C,

1 L
for 1 <i<p, and dist(B,C) = max {dist(B.,C.)} 3
1<j<p. o
—Y ="
(iii) 4if B = F(Bl,...,Bn) then (by Lemma 1), either C = F(cl,...,cn)
and dist(B,C) = max {dist(Bi,Ci)} or
1<i<n

P{B,/X; +++» B /X } <C and dist(B,C) = 1+dist(P{B,/X;,-.-,B /X 1,C)

It is easily seen that the distance between any two terms B <C 1is

finite.

Lemma 2

If B = F<Bl’”"Bn> , C = F(Clﬁ"’)cn) > B' = P{Bl/Xl:“-;Bn/Xn}

and C' = P{C./X, ,...,C /X then B <C implies B' <C' and
and /%y 50050 /%) fhen B <C implies B' <C' and

dist(B',C') < dist(B,C) .

Proof. By a straightforward induction on HPH , one proves that

dist(P{Bl/Xl,..., Bn/Xn},P{Cl/XJ',..;,Cn/Xn}) <]-iﬁfgn{dist(Bi,Ci)} >

hence dist(B',C') < dist(B,C) .
O]

26

We now start the proof of Theorem 1:

For any two terms B, C in the computation diagram of T by P,

we must show the existence of min(B,C) and max(B,C) such that

and for any Q and H

/
\

Q < min(B,C)

implies and

\/

max(B,C) <H

Existence of max(B,C)

We shall describe an algorithm for computing max(B,C) and then
prove the correctness of this algorithm: let 0(B,C) be defined

recursively as

(i) O<B:B> =B ,

(ii) U(Gi(Bl, <. "Bpi)’Gi<Cl’ .. ':Cpi)) = Gi(U(Bl,Cl), .. "G(Bpi’cp.)) s

(155) O(F(Bp, - +B),F(Cyy - ,CL)) = FE(BLLC,), 00 (B,0))

1l

(iv) o(F(B

12 -JBn):G(Cl: . “:Cp)) G(P{Bl/Xl, T Bn/Xn}’G(Cl’ . ”,CP)) =

G(G(Cl,...,Cp),F(Bl,...,Bn)) 5

(v) in all the other cases, 0(B,C) yields an error symbol, (say a

German gothic letter) which is not part of our set of letters.

27

We shall prove that o(B,C) = max(B,C) in two parts:

Part 1. For any terms T , B , C

*
T, implies ::\\‘G(B,C)
N e
The proof is by induction on couples (dist(T,B) + dist(T,C),|T||) ordered
lexicographically by < . Assuming the result to be true for all
triples T' , B' , C' with (dist(T',B')+aist(T',C),||T!||) <
(aist(T,B) + dist(T,C),|[T||) , we prove it for T , B, C by a case

analysis on the structure of T .

Case 1. T=A, or T =X,
Ya25c L 1 3
* *
By Lemma 1, T -B and T -C implies T =B and T =C ; hence

* *
B =C =0(B,C) and indeed B - 0(B,C) and C - o(B,C) .

Case 2. T =G, (Ty,..-,T

Pi))

By Lemma 1, B = Gi(Bl,...,Bpi) and C = Gi(cl,...,cpi) , with
* *x
T, »B; and T, -C, for 1<i<p, . Since dlst(Ti,Bi)+-dlst(Ti,Ci) <
dist(T,B) + dist(T,C) and HTiH < |t} for any 1<i< p; » the
* *
induction hypothesis tells us that B, - o(B.,C,) and C, - 0(B.,C.)
1 17 1 1 1»1

for each 1 <1i < p; - Regrouping everything, the conclusion

* *
B - 0(B,C) and C - 0(B,C) then follows from the definition

O(Gi(Bl,...,Bpi),Gi(Cl,...,Cpi)) = Gi(U(Bl,Cl),...,O(Bpi,Cpi))

Case 3. T = F(Tl,-..,Tn)

By symmetry, we only need consider the subcases:

28

Case 3.1. B = F(Bl,...,Bn) and C = F(Cl,...,Cn)

The proof is similar to that of Case 2.

Case 3.2. B = F(Bl,...,Bn) and C = G(Cl,...,cp) .

Let T' = P{T,/X ,..., T /X } and B' = P{B;/X,,..., B /X 1} -
* *
By Lemma 1, we know that T' - C and Ti - Bi for 1 <1i<n, hence

*
T' - B' . By Lemma 2, we know that dist(T',B') < dist(T,B) . Since
dist(T',C) < dist(T,C) , we can apply the induction hypothesis to the

% *
terms T', B',C, i.e., B' -0(B',C) and C - o(B',C) . Since
B - B' and 0o(B,C) =o(B',C) by definition of o , we have established

* *
that B - o(B,C) and C - d(B,C) .
Case 3.3. B = G(Bl,...,Bp) and C = G(Cl,..,,Cp)
*
Let T' = P{Tl/Xl, ce s Tn/Xn} . By Lemma 1, we know that T' - B

*
and T' -C . Since dist(T',C) < dist(T,B) and dist(T',C) < dist(T,C) ,
*
we can use the induction hypothesis in order to get B - o(B,C) and

*x
C -»o(B,C) .

Paxrt 2. For any terms B , C , @

B
*'
Q implies o(B,C) <@
C/

The proof is by induction on (dist(B,q) +dist(C,q),llly -

Case 1. Q=A:.L or Q=XJ.

*
Then Q =B =C =0(B,C) and o(B,C) - q .

29

Case 2. @ = F(Ql,...,Qn) or Q = Gi(Ql,...,Q.p) where Gy is not G .
i

The proof goes mutatis-mutandis as that of Part 1, Case 2.

Case 3. Q = G(Ql,...,Qp)

We only need consider the cases:

Case 3.1. B = G(B .,Bp) and C = G(C

10
Back to Case 2.

Case 3.2. B = F(Bl',...,Bn) and C = G(Cl,...,c)
Let B' = P{Bl/Xl,...,Bn/Xn} . Since dist(B',C) < dist(B,q) ,

*
we know by the induction hypothesis that o(B',Q) = 0(B,C) - @ .

Case 3.3. B = F(Bl,...,Bn) and C = F(cl,...,cn) .
Let B' = P{B,/X;,...,B /X } and C' = P{cl/xl,...,cn/xn} .

The induction hypothesis tells us that o(B',C') % Q . One then proves

by induction on ||P|| that o(B',C') =

o (P{By /Xy 5oy B /X LP{C /Xy 5005 C /X)Y = P{o(B5C) /Xy 50005 0(B5C) /% T -
We conclude the proof by noticing that o(B,C) - o(B',C?) since

o(B,C) = F(9(B15C;)5---50(B_,C) ~ P{o(B),Cq)/X 5--.50(B,C)/X,) =

o(B,C1) -

Existence of min(B,C)

For any terms B , C in the computation diagram of T by P the
set L |L‘§ B, L <C} of lower bounds of B and C is not empty

because T < B and T <C and it is finite. We know from elementary

lattice theory that, if any two elements in a partially ordered set have

a least-upper-bound, any non-empty finite subset also has a least-upper-

30

bound. We then define min(B,C) as max{L|L <B,L <C} and verify

easily that min has all the desired properties.

O

Relation Between the Computation Lattice and the Data-type of Continuous

Functions over .0

In order to characterize computed partial functions in terms of the

semantic interpretation of a given computation lattice, we notice that

Lemma C

For any terms B, C in the computation lattice of T by P,

B <C implies b(Q) Cec(Q) .

Proof. The proof is straightforward by induction on HBH :

Iif B

1l
1

A; or B= Xj then B =C and b(Q) =c(Q) .

It

If B = Gi(Bl,...,Bpi) , then ¢ Gi(cl,...,cpi) and we know by
induction that bj(Q) = cj(Q) for 1<Jj<p, - Since

[XXl,...,xpi,gi(xl,...,xpi)] is monotone with respect to any of its

arguments, b(Q) = g; (by(Q)s .50y (Q)) = g;(cy(Q)s--sey () = c(q).
1 1

Finally, if B = F(Bl,...,Bn) then b(Q) = c(Q) -

In particular, to any computation sequence TO —»Tl - . Tn —’Tn+l

according to some rule ¢ and input D , we associate the chain

to(@) (@) =@ @) € o e (D) Tt (@) = ..

The corresponding computed partial function ¢ is therefore

characterized as: ¢ =Ad U tn(Q)(a) .
P n>0

31

From these definitions follows an easy generalization of a theorem

of Cadiou [2]:

Theorem 2 (Cadiou)

Any fixed-point of the equation f = p(f) is an extension of any

function computed by the program F <= P .

Proof. For any natural number m , let P" be defined as PO = F(X)
and BT = P{FY/F} . It is easily seen that p (Q) = p(p(...p(Q)...))
(i times). Since Cadiou [2] proved that for any computation sequence

= i
TysTys--+>T, where T, = F(X) we have T; <P for all natural

numbers i , it follows from Lemma C that ti(Q)gg p(Q) for all i .

The function p being continuous, £ = U p(Q) , hence +.(Q) = f

P oiso S

for any i . It follows that ¢ = U t.(Q) o f_ and, since f Cf
P 1>0 1 - P P -

for any fixed-point f of p , the conclusion cb = £ holds.

2. Correct Implementation of Recursion

In this section, we try to characterize the computation rules
such that ap = fp for any program F <= P , called fixed-point

computation rules.

Here are some compubtation rules we shall consider, both in lang 8
and lang P :

(1) Call by value: substitute for the leftmost-imnermost occurrence

of F after simplifications.

(2) cCall by name: substitute for the leftmost-outermost occurrence

of T after simplifications.

(3) Parallel innermost: substitute for the occurrences of F having

all of their arguments free of F's

(k) Parallel outermost: substitute for all the F's which do not

oceur in any argument of another F .

(5) Free argument: substitute for all the occurrences of F having

at least one of thelr arguments free of F's after simplifications.

(6) Full substitution: substitubte for all the occurrences of F .

2.1 Incorrect Computation Rules

Proposition 1.

In lang P, the rules (1), (2), (3) and (5) are incorrect.

Proof. Consider the program F(X,Y) <= IF X = O THEN O ELSE
F(X+1L,F(X,Y))*¥F(X-1,F(X,Y)) where * 1is the parallel multiplication

function O%x = x*0 = 0 . The least fixed-point over the integers

25

(considered as a discrete data-type) of the corresponding functional
is the zero function Ax,y if x = w then w else O . The computation
of F(1,0) wusing (1), (2) or (3) is infinite. As for rule (5), we
can take the program F(X) <= X.F(F(X)) in the data-type of sequences

of letters as a counter-example. -

Proposition 2 (Morris [23])

In lang S the rules (1) and (3) are incorrect.

Proof. Consider F(X,Y) <= IF X = O THEN O ELSE F(X-1,F(X,Y)) . The
corresponding least fixed-point over the non-negative integers is again
the constant function O while the computatioh of F(1,0) using rules

(1) or (3) is infinite. ‘.) _

2.2 Safe Computation Rules

We now define the class of safe computation rules, and show that
they correspond to "correct" implementations of recursion.

Let ¢ Dbe a computation rule and B an arbitrary term in the
computation lattice of T by P . 1In order to describe the effect
of & on B, we rename Fl the occurrences of F selected for

substitution by ¢ in B for some input D , and F, the others.

Definition

We say that (¢ 1is a safe computation rule if, for any term

B{F/Fl, F/FE} in the computation lattice of T by P and for any

b{Q/fl)Q/fg}(a) *

input D , b{Q/fl,fp/fE}(c-i)

5k

Intuitively, the computation is safe if the values of the F's
which are notsubstituted (renamed F2) are insufficient: as long as
more information is not obtained about the other arguments (the Fl's)>
the information about B cannot be improved.

In order to clarify this definitilon, let us prove the safeness of

some of our computation rules.

Proposition 3

In leng S , the rules (2), i.e., call-by-name and (5), i.e.,

free argument are safe.

Proof. By induction on ||C|| where C = simpl(B) : we first notice
that, because of the semantic definition of lang S , 1f F occurs

in C then c(Q)(a)

It

w (remember that C has been simplified and,
when a simplified term has the form IF Cl THEN C2 ELSE C5 , we must

have F occurring in C,).

Case C Ai then any rule is safe.

Case C

I

Gi(Cl,...,C) . The letter F occurs necessarily in C ,
1

otherwise we could simplify further. Since both rules select at least

one F on such terms, we know by our previous remark that

c{/f), £/7,3(8) = w = clo/fy o/ £,3(d)

Case C = F(Cl,...,Cn) . The safeness of rule (2) is straightforward

since the outermost F is substituted. For the same reason, rule (5)
is safe if at least one of the Ci is constant. If none of the Ci’s
is constant, then ci{Q/fl, fp/fg}(a) =g for 1<i<n and we must

prove that fb(w,...,w) = . This is ensured by imposing in lang S

55

that all program variables X -»X ~ occur in simpl(P) hence

170"

i
€

fp(u), ...,u)) = p(fp) (w, ...,w)

Proposition 4

The rules (4), i.e., parallel outermost and (6), i.e., full

substitution are safe in both lang S and lang P .

Proof. By induction on ||B||

1l
ja=3

Case B Any rule is safe.

i

Case B Gi(Bl,...,Bp) . By induction, bi{Q/fl, fp/fz}(d) =

i

bi{Q/fl, Qz/fg}(ﬁ) for 1 <i<p in both cases, hence safeness is

also satisfied on b

Case B = F(Bl,...,Bn) . Both rules select the outermost F hence

b{Q/fl 2 fyfg}(a) w = b{Q/fl 2 Q/fe}(a) ¢

1

a

Note that the computation rules that we already recognized as
incorrect are all unsafe. In order to prove that safe rules are

correct, we need the following technical lemma;

Lemma S

If ¢ is safe, then B SC and min(3,Q) = min(C,Q) imply

a(q)(d) = v(Q)(d) for any terms B , C and Q in the computation

lattice of T by P, and input D .

36

Proof. Let us first determine some properties of the min of two

terms:

Lemma 3

(l) IE_E(G]_(B]_) b '}Bpi))Gj_(Cl} M .)CPJ_)) = G‘i(l'_n_i_n(Bl,Cl) > .,m—iE(Bpi,Cpi))

(ii) QiE(P{Bl/Xl, cees Bn/xn},e(cl,...,cp)) = P{Ml/Xl',...,N%/Xn}

where M "Mn are such that

17

F(Ml,...,Mh) = Q;E(F(Bl,...,Bn),G(cl,...,CP))

Proof. Property (i) is easy and property (ii) follows from the fact

* * . *
fm¢P%ﬂy””%mgam'amyﬁp“&M%}mml%a%

for 1 <i<n implies that M' = P{M:'L/Xl, cees lel/Xn} where

* *
M., - M! - B, for 1 <i<n.
1 1 i -7 =
a
We now prove Lemma S: Let us rename Fl the occurrences of F
selected by ¢ in B and F, the others. Let M = min(B,Q) = min(C,q) .

2
We first prove by induction on (dist(M,B) +dist(M,C),|M||) that

Q < B{F/F,, Pm/FE} for some natural number m . (Here P means

P{Pm_l/F} for m >0 and P = F(Xl,...,Xn))

It

X.

Case M = A, or M
1 J

In this case, M =B =C =Q and we can choogse m = 0 .

Case M = Gi(Ml,...,Mbi)

By Lemma 1, B = Gi(Bl,...,BPi) , C = Gi(cl,...,cpi) and
Q =G <Ql’ ...,Qpi) . By Lemma 3, M, = mln(Bi,Qi) = m:Ln(Ci,Qi) for

o7

1 <i<p . It follows by induction that @, < Bi{F/Fl, Pmi/Fg} .

We can then choose m = sup {mi} in order to get
1<i< P;

Q <B{F/F,, P/F,} -

M)

Case M=F(Ml,... L

By definition of min , we need only consider the cases:

Case B = G(Bl, . .,Bp) and. Q = F(Ql, .. .,Qn)

M Let M' = P{M;/X{,---, Mn/xn} and
Ml' Q' = PlQy/%; 5-++5Q, /X } + By Lemma 3,
/ \ M' = min(B, ') = min(C,Q') - By Lemma 2,
B Q dist(M',B) + dist(M*,Q") < dist(M,B) + dist(M,q)
C! " 80 we know by induction that
Q

Q' < B{F/Fl, Pm/FE} and, a fortiori

o <B{F/F, Pm/FE} for some m .

Case B = F(B, ...,Bn) and Q = G(Ql, ce Q)

D
M Since min(B,Q) = min(C,q) , the term C is also
l of the form C = F(Cl,...,Cn) . Let
Mf
\ MY = PO /X5, M /XY, BY = P{BY/X 5., C /X)
Q and C'= P{Cl/xl,..., cn/xn} . By Lemma 3, we
B know that M' = min(B',) = min(C',Q) .
C\\B'
CY

38

By Lemma 2, dist(M',B')+dist(M',Q) < dist(M,B) + dist(M,Q) ,
and the induction hypothesis tells us that Q < B' {F/Fl, Pm/Fg}
Since the outermost F has not been selected by ¢ in B then
B' < B{P/FQ} . Our last case is then treated since

+1
Q <B{F/F, P /F,} .
It is now easy to finish the proof of Lemma S.
m . : m

For any m , p () = fp implies b{Q/fl, yo) (Q)/fg} C b{Q/fl, fp/fg}
By choosing m large enough, we know that q(Q) = b{Q/fl, pm(Q)/fg}
and therefore q(Q) = b{Q/f,, fp/fg} . Since (¢ is safe,

b{Q/fl, fI/fe}(a) = b(Q)(d) and the conclusion q(Q)(d) = b(Q)(d)

follows.
a
Theorem 3
Any safe rule is a fixed-point rule.
Proof. In the computation lattice of T, = F(D) by P, let
TooTyseesTpsees and 8,850,585 (where SozzTo) be the computation

sequences corresponding to respectively some safe rule (¢ and the

full substitution rule. Since sn(Q) = p(Q) then

U s () = U p(Q) =f . We know by Theorem2 that ¢ (d) c £ _(3)
n>0 n>0 P p P

and it is therefore sufficient to show that U s (Q)(d) = U tn(gz)(a) ,
n>0 n>0

in order to prove =f .

p e, = 1,

Let Sn be an arbitrary term in S Since there are only

O’Sl""
finitely many minorants of Sn in the computation lattice, there exists
some m such that mln(Tm,Sn) = mln(Tm+l’Sn) . The rule ¢ being safe,

it follows from Lemma S that sn(Q)(a) = tm(Q)(a) » hence

29

O

As a corollary, rules (2) and (5) are fixed-point in lang 8 and

rules (4) and (6) are fixed-point rules in both lang S and lang P .

Lo

5. An Optimal Implementation of Recursion in lang S

Among the correct implementationg of recursion, we now try to
determine which ones are efficient. This proves unsuccessful in
lang P , but we shall describe an implementation of recursion for
Jang S which turns out to be optimal.

We already know that, in lang S , "call-by-name" is a fixed-point
rule, while "call-by-value" is not. However, "call-by-name" is not an
efficient way of computing. For example, in the program
F(X) <= IF X > O THEN X-1 ELSE F(F(X+2)) the "call-by-name" computation
of F(0) would be F(0) - F(F(2)) - IF F(2) > 0 THEN F(2)-1 ELSE
F(F(F(2)+1)) = E(2)-1 -0 .

What happens here is that the term F(2) has been duplicated and
subsequently computed twice. We shall describe a computation mechanism,
called the delay-rule, which avoids those duplications, and prove its

optimality.

3.1 Never Do Today What You Can Put Off Until Tomorrow

A natural way to keep track of duplications of terms is to assign
labels to all occurrences of F 1in a compubtation sequence, so that

copies of the same T will receive the same label. This can be

achieved by first labelling differently all Fé in P ; then,

if T is labelled & in Tn and is to be substituted, we label each

occurrence of F after substitution by <« followed by whatever

labelling this particular occurrence had in P . For example, using

the same computation as before, and the labelling
IF X > 0 THEN X-1 ELSE Fi(Eé(X+2)) for P , the previous computation

can be described as:

L1

F(0) —*Eé(Fg(E)) - IF F,(2) > O THEN Fe(e)-l ELSE FllFlQ(F2(2)+2)

- IF 1 > O THEN F2(2)-l ELSE FllFlg(F2(2)+2)

simplifies to EQ(Q)—l -0 .

The whole idea of the delay-rule is to modify "call-by-name'" so
that, whenever some occurrence of F is substituted, all the occurrences
having the same label will also be substituted. Hence, the "delay-rule"
selects for substitution the leftmost-outermost F in a simplified
term, as well as all the other F's having the same label.

Consequently, the delay rule computation of F(0) in the program
above is

gl(o) —»El(FE(z)) - IF F2(2) > O THEN F2(2)—l ELSE FllFlg(F2(2)+2)
- IF 1 > O THEN 1-1 ELSE Fll(F12(1+2))

simplifies to O . At this point, it is clear that the "delay rule" is
safe (proof similar to that of Proposition 1); what is not clear is that
the "delay rule" should be more efficient than "call-by-name" and in fact,
in our last example, it was less efficient since it took four substitutions
versus three for "call-by-name" in order to obtain its result. When

"call-by-name" computed F_.(2) twice, the delay rule has been computing

11
it three times! It is a simple exercise in data structuring however to
avoid all those recomputations: instead of actually copying various
occurrences of some Fa in a term, we gimply set some pointers to a
unique copy of the term Ex . Whenever any occurrence of Fa is chosen
for substitution, the substitution is actually performed in the unique

copy of Fa so that all occurrences of Fa are substituted at the

price of one substitution.

Lo

Going a little bit away from our particular programming language
we can sketch an implementation of this idea for, say Algol. The
arguments of any procedure should be stored as pointers to formal
expressions, together with a tag indicating that those arguments have
not yet been computed. Whenever the value of an argument is explicitly
needed, (for the evaluation of a conditional or on the right-hand side
of an assignment), the tag is tested. if the value of the parameter is
already there, we use it; otherwise the corresponding formal expression
must be computed, its value kept for further references, and the tag
is to be changed. In a machine like the Burroughs B5000 (see, for
example, Lonergan-King [12]), the so-called "operand call syllable"
would do very nicely: depending on a tag stored with the operand, a
load operation on the B5000 gets its argument either directly or through
a subroutine call. The delay rule would modify this procedure go that,
after the subroutine call, the result would be stored in place of the
tagged subroutine descriptor. Of course, one would then have to abandon
"side~effects" altogether!

Before proving the optimality of the delay rule let us compare the
efficiency of various computation rules on the programs

Zer(X) <= IF X > O THEN X-1 ELSE Zer(Zer(X+2))

Ack(X,Y) <= IF X = O THEN Y+1

ELSE IF Y = O THEN Ack(X-1,1)

ELSE Ack(X-1,Ack(X,Y-1))

It

Ble(X,Y) <= IF X = O THEN 1 ELSE Ble(X-1,Ble(X-Y,Y))
Fib(X) <= IF X < 2 THEN X ELSE Fib(X-1) + Fib(X-2)

over the integers.

Lz

Zer(-2) Ack(2,1) Ble(8,2) Fib(5)
Delay rule 7 14 9 15
Call by name 25 29 9 15
Call by value 7 1 341 15
Free argument 7 23 ~ L4000 15
Full Substitutionf/ 11 23 ~ 10000 15

The entries in this array indicate the number of substitutions
required for computing the values at the top of the corresponding
column, according to the rules at the left of the rows.

If he has been through those examples, the reader may feel quite
disappointed because he can beat the delay-rule in almost all cases.
For example, the hand-computation of Fib(5) only requires five
substitutions if we are careful never to recompute an argument twice.
It would be interesting to study a mechanism in which this type of
computation would be possible; namely one could imagine a set of
gimplification rules which could be augmented dynamically, and allow
some computations to be performed by simplifications of the style
F(D) = A . 1In our scheme of things, however, this type of "built-in"
values is not possible, since our only means of computation is through

substitutions, and we should blame inefficiencies on the program, not

on the computation rule.

*

—/ Strictly speaking, we are using the full substitution only on
simplified terms, otherwise the computation would always be
infinite.

L

3.2 Optimality of the Delay Rule

So far, we know that the delay rule is safe, and that it never
recomputes copies of the same term. TUsing the same labelling as before,
we say that a label Fa is maximal in a term if @« 1is not a proper
initial segment of B for any label F in the term. A term is simple

p

if all of its labels are maximal. 1In other words, a term 1s simple if

all computations of various copies of subterms have been pushed to the
same point. For example, if T, = F(F(X)) and Ty = G(X,Fl(Fg(X)))
then G(G(X,Fy(F (X)), P (F,(F(X))))) 1is not simple while
F(G(X,Fl(Fg(X)))) is simple.

A computation is simple if all TF's with the same labels are all

treated alike in all substitutions (if one of them is to be substituted,

all of them are to be substituted). All terms in a simple computation
are necessarily simple. If we are to count for one a substitution of
all TF's with the same labels, as Jjustified by our previous exercise
in data structuring, simple computations are more efficient than others.

*
Namely, if we define length(T. - A) as the total number of substitutions

o)

*
performed during the computation TO - A , we have

Lemma E

For any term A , there exists a simple term A with A 5.@ such

* * -
that, for any computation T. — A and simple computation T . = A,

0 0
¥ o *
length(TO = A) < length(‘]?o - A)

Proof. Let r(C) be the number of maximal labels and s(C) be the
sum of the lengths of the maximal labels in a term C , while g and p

mean respectively the number of occurrences of F in TO and P . It

b5

*
— C) that
1 then Eégl else

is easily proven by induction on length(TO

* .
length(T, - C) > @(C,p,q) where @(C,p,q) = if p

i

4%

E%g%fg-. In a similar way, (C simple) and (T

0=C simple) imply
length(T, =€) = 9(C,p,q) -

Given any term A , we can "complete" it into an A by substituting
P for all occurrences of ¥ with non-maximal labels until there is none
left. An A constructed in this way will be simple and such that
A <A while r(A) =r(A) . It follows that, for any computation

* * - * - -
T - A and simple computation T. = A , length(TO = A) = ¢(A,p,q) =

0
*
?(4,p;q) < length(T, - A)

0

O

The intuitive meaning of this lemma is very simple: nothing is to
be gained by working on individual copies of the same term. At the same
price, we get more information by substituting all copies of the same
occurrences. In particular, all the computation rules described so far
will be improved by "lumping" together occurrences of F with the same
labels, thus becoming simple rules. However they may still perform

unnecesgsary substitutions unless

Theorem U4

Any computation rule which is simple, safe and performs at most

one substitution at each computation step is optimal.

Proof. Let TO be a term, F(X) <= P a program and ¢ a safe and
simple computation rule performing only one substitution at a time.

Let Ty=T;=...sT =T, the (simple) computation

0 1 l:)...

sequence of TO according to ¢ for some Input D .

L6

If T is a term in the computation lattice of T, by P, let us

0

*
consider an arbiltrary computation T. - T , and prove that whatever

0
approximation t(Q)(d) of to(fp)(a) is computed by T
will be computed faster by ¢ . For this purpose, we construct

T as in Lemma E, and consider a simple computation T i T

(the argument in Lemma E not only proves the existence of T but also
% -
that of a simple computation T, = T).
Let 1 be some natural number such that T, <T and T, . £T .
i-— i+l
Since (¢ performs only one substitution at the time, this implies
T, = min(Ti+l,T) = min(Ti,T) . By Lemma S, we then know that
t(Q)(d) = ti(Q)(a) . Using Lemmas E and C now, T <T implies
- - - * = *
t(Q)(d) £ 8(0)(d) and length(T, = T) < length(T = T) . Since both
- * -
T and T = Ti are simple and, Ti-S T , we have
* * - - -
length(TO = Ti) < length(To = T) hence t(Q)(d) = ti(Q)(d) while
* * ‘
length(T. = T.) < length(T. —T)
0 i’ - 0 0]

We shall derive two applications of this theorem.

Corollary 1

The delay rule is optimal in lang S .

Proof. The delay rule has all the properties required by Theorem L.

a

Corollary 2

In lang 8 , "call by value" is optimal whenever the least fixed-

point fp corresponding to the program F(X) <= P is a strict function.

(The function fp is strict if fp(...,w,...) =w .)

b7

Proof. Since "call by value" is clearly a simple rule and performs
at most one substitution at each step, we only need proving that it is
safe whenever fp is strict. We prove that the substitution B - B’

is safe in that case by induction on HCH where C = simpl(B) :

Case C = Ai Any rule is safe.
Case C = Gi(Cl,...,Cp) . Same argument as for the safeness of
i
"call by name'.
Case C = F(Cl,...,cn) . If F does not occur in any of the C;'s »

then the outermost substitutlion is performed, Which is clearly safe.
Otherwise, let Ci be the leftmost term in which ¥ occurs. Then,
Ci{Q/fl, fp/fz}(&) =w and C{o/f;, fp/fg}(a) = fp(...,w,...) = =

5.% Sequential Functions

The applications of Theorem L4 given in the previous section do not
quite match with the generality of the result. In particular, the data-
type on which lang S is computing has no chain of length more than two.
What we shall now sketch is a theory of sequential functions, ;here
Theorem L4 finds its full application.

The relevant notion here seems to be

Definition

A function le,...,xn.g(xl,...,xn) in [Dlx voe XD - D] is

sequential if, for all X €Dy e 5% €D there exists an ie{l,n] such

L8

that, for all SEEREREN M such that Xj c yj for Jjell,n] and

)

X, =y; _We have g(xl,...,xn) = g(yl,...,yn

Intuitively, g is sequential if, gt any given moment, the value
of (at least) one of its arguments is crucially needed in order to better
approximate the value of the result. For the purpose of our theory, we
need to check that sequentiality has the correct closure property,

namely

Proposition S

Sequentiality is preserved by composition of functions and

fixed-point operators.

Proof.

— Composition. If le,...,zng(zl,...,zn) and kxl,...,xmfi(xl,...,xm)
for 1 <i<n are sequential, then

Q= Xxl,...,xmg(fl(xl,...,xm),...,fm(xl,...,xm))

is also sequential: for any x X and ie[l,n] , let

170"

il

fi(xl,...,xn) ; since g is sequential zy,...,z ~ determines
some ioe[l,n] and, fi being also sequential, Xipee
0

some Jjel[l,m] which can then be used for the sequentiality of ¢ .

"Xm determine

— Fixed-point operator. If the functions le,...,xnfi(xl,...,xn)

are sequential for any natural number i , the function

P = AKseeesx U T(X,e0e,x)
1 n 1>0 ivi n

is also sequential: for any S ERERFE. N sequentiality of the fi*s

determines a sequence jo,jl,... where jie[l,n] . At least one of

k9

the ji’s must occur infinitely often in this sequence, and it can be
used for proving that ¢ 1is sequential.
|

For example, over a discrete data-type, conditional and strict
functions are sequential; hence, by Proposition 8, all functions
definable in lang S are sequential.

In a data-type which is a lattice, the functions Ax,y sup(x,y)
and MX,y inf(x,y) are not sequential in general.

The set =¥ of finite or infinite words over some vocabulary T
becomes a data-type under the partial ordering: X Cy whenever X
is an initial segment of y .

In £¥, the functions

Ax.first(x) (take the first letter of x),
Ax.rest(x) (erase the first letter of x),
and AN, V. XDy (append the first letter of x to y) are
sequential.y

This is clear enough for first and rest since any function of one argu-
ment is sequential. For x®y , if x= A, i.e., x is the empty word, then
the first argument is to be chosen for segquentiality since A@y = w ;
otherwise, x # A and any x' such that x C x' will have the same first

letter so that we can use the other argument y for sequentiality.

— Yet another programming language. We define a new language lang GS

similar to our previous ones except that all base functions must be

sequential.

*
—/7The relevance of these functions and data-type to parallel programs
is shown in Kahn [11].

50

Iet & be a cgmpﬁtation rule, called the generalized delay rule
(GDR) defined as follows:
First, using the same type of data-structuring as for the delay
rule, & will be simple.
In any term T , rule & will select at most one F (or rather
set of F's with the same labels) as follows:
If T = Ai , no F is chosen.

It T

Gi(Tl""’Tp) , the F will be the F chosen by &
s \

in Tj where J is the index corresponding to the sequentiality

of g, with the arguments tl(Q)(a),...,tp (Q)(d) . Of course,
1

this requires the choice of j to be effective; also, since we

want € to be simple, all F's with the same labels occurring

in other subterms are also to be substituted.

If T = F(Tl,...,Tn) the outermost F is selected by € .

We can apply Theorem 4 again in order to prove

Corollary 3

The generalized delay rule is optimal in lang GS .

Proof. Since the GDR is simple and performs at most one substitution
at each step, all we need to prove is that it is safe.

The proof is by induction on HBH where B is any term in the
computation lattice of

T, = T{D/X} by P

The cases B = A, or B = F(Bl,...,Bn) are easy.

If B = Gi(Bl,...,Bp) and j is the sequentiality index of
i

51

gi<bl<n)<c'1),---,bpim)(c‘l)) > then Db {0/f), /5, }(d) =0, (0)(3) Dby

induction. Since bk(Q)(&) c b {0/f fp/fg}(a) , the very definition

of sequentiality gives us b{Q/fl, fp/fg}(a)

1

nlo/t, > 0/£,1(3) -

Conclusion

The results of this chapter generalize quite nicely to a programming
language where we introduce assigmments, goto's and while statements.
What is less clear to the author is how to perform computation in a
"typeless" recursive language where procedures can be passed as arguments,
say in a full LISP for example. It might also be interesting to study
(or prove the non-existence of) optimal computation rules when the

simplifications allowed are less restrictive than the ones we chose.

52

)

Chapter 3. PROOFS BASED UPON MONOTONICITY

In this chapter, we investigate how far into the theory of
computation can one get from the mere hypothesis that programs
represent monotone mappings between data-types, thus ignoring continuity.

For this purpose, we introduce a formal system in which the methods
of "inductive assertions' and "structural induction" for proving
properties of programs can be expressed and justified.

The reader interested in the logic developed here is expected
to be familiar with the work of Milner [19]. However, a detailed
knowledge of the formalism should not be necessary for understanding
the various uses we make of it. In particular, the examples given are
described informally, despite the fact that all the proofs can be

expressed within the logical system.

1. A Formal System for the Time Being

1.1 Syntax
Terms, which are meant to denote monotone functions of some type,
are defined as follows:
(i) Typed identifiers are terms. (We shall almost always omit the
type subscript.)
(ii) If s is a term of type @ - p and t a term of type «,
then s(t) is a term of type B .
(1ii) If x is of type @ and t of type B , then [Ax.t] is a

term of type O -8 .

55

(iv) If P dis a wff, t a term of type « and x a variable,
then [U t] and [N t] are terms of type « .
{x| P} {x|P}

A well-formed-formula P is a conjunction of equalities or
inequalities between terms of the form pt=g,r =s, ...,uk %
A proof is a sequence of implications between wifs P + Q , each being
derived from the preceding implication by an axiom or a rule of inference.

Variables are bound by M , U and N . We write s{t/x} and

P{t/x} to denote the result of replacing all free occurrences of x

in & and P by t , after renaming the necessary bound variables.

1.2 Semantics
A standard model is a denumerable famlly of complete lattices Da s
one at each type & . Each Da has a minimal element UUa and maximal

element 00, - The two base types are I and B . The domain of

true
individuals D. can be any complete lattice while D_ 1is }
I B
false
If o and B are types, then & - B is also a type and Da-»ﬁ is
the set of monotone mappings from Da into DB . It is easily checked
that, whenever Da and DB are complete lattices, Da-aa is itself

a complete lattice. Terms of type « are intended to denote elements

of Da .

1.3 Axioms and Rules of Inference

Here x , v , 2 , £ represent variables s , t terms and P, Q , R

wffs. Axioms and rules are meant at all syntactically correct types.

.

5k

(a)

(b)

Axioms

(Reflexivity) D1:

(Transitivity) D2:

(Antisymmetry) D3:

(Minimality) Dh:

(Maximality) D5:

(Monotonicity) Fl:

(A-conversion) F2:

(bottoms-tops) F3:

(joins) Flh:
(meets) F5:
(Inclusion) Wl:

Rules of inference

(Conjunction)

(Cut)

(Substitution)

(Extensionality)

(Cases)

R1l:

R2:

R3:

RL:

R5:

1

i

%
%
IR
N
™ ™
I mn
N el

e
e
!

i

b
.
IS
i}
e

™
I
e
>
in
e
e
Il
™

FIMxs](t) = s{t/x}

b UU(x) = UU
Ply/x} +tt{y/x}e U ¢
{x|?}
Ply/x) b Ut biy/x)
fx|23
P o+ Q (@ is a sub-conjunct
of P)

Pt Qg P+R

Pt Q,R

Prq @Q&GFR

PFrR

Pt Q
Pis/x} + als/x}

P f(x) cg(x)

(x not free in P)

Pt fcg
P{false/x} F Q@ P{true/x} + Q

PtraQ

Here, false and true are abbreviations for UUB and

OOB respectively.

55

WPFryCSt

(meets) RO: T (x not free in @)

(x|}

WPty

Qr U tcy
{x|P}

(joins) RY: (x not free in Q)

1.k Soundness

In order to establish validity of the axiomé and rules of inference,
one first ought to make sure that terms without free variables indeed
denote elements of the complete lattice of the corresponding type. This
is easy for application and A-abstraction (see Milner [19]). For
meets and Joins , we have to prove iﬁ essence that if for each iel the

function fi is monotonic then N fi and U fi are also monotonic.
1eT iel

Let xcCy . For all i1eI , we have

nex) e fxciyc ufy)

jer * iel
It follows by definition of M and U that

nf(x) o nif(y) and Uf.(x) = uUf.(y) ,
. i . i . i - . i
ilel 1el iel iel

and by definition again

[nf£)(x) =[Nty
ieT + iel *

(U f1(x) = [ULl
ieT - ieT *

Using exactly the same approach as Milner [19], one can then go

through the axioms and rules of inference, and Justify their validity.

56

1.5 Pragmatics

We shall use the following abbreviations:

(1) By the Knaster-Tarski theorem, we can characterize the least-Ffixpoint
of Ax.f(x) as the greatest-lower-bound of {x | f(x) £ x} . We shall

therefore use px.f(x) as an abbreviation for n (x) . The
xl£(x) c x}

equivalents of rules F4 and R7 are then:
R8: FoE(px.£(x)) = px.£(x)
RO: f(y) =y F ux.f(x)cy

The rule R9 was named fixed-point induction by Park [26].

We shall use the notations f <= 1(f) and £, as alternatives
to [pfar(f)] .

true
(2) One should not confuse the domain Dy with the boolean
false

T FF
data-type . Here D should be interpreted as the
B
\w/

range of some semi-decision procedure.
Let us now suppose that the domain Da is characterized by a

semi-decision predicate Ax.fH(x) mapping D, into D, such that

BH(x) = false if and only if x = U, - We can then interpret the

logical formula Vyep: P(y) as (p(y)) , where P

n
vy|B(y) = true}

belongs to D, - D This justifies using Vyes.P(y) ,

5
or, when no confusion can arise, YVy.P(y) as an abbreviation for

M (P(y)) . Similarly, Hy.P(y) will abbreviate
{v]8(y) = true}

U (P(y))
r|a(y) = true}

o7

Rules FL4, F5, R6 and R7 then translate into the following equivalents

to the rules of first-order logic:

(1) Vy.P(y) = true, Ha) = true + P(a) = true

(ii) P(a) = true, H(a) = true + Hy.P(y) = true

(iii) from Q,8(y) = true + P(y) = true (y not free in Q)
infer Q Fovy.P(y) = true

(iv) from Q,B8(y) = true + P(y) = false (y not free in Q)
infer Q o d9y.P(y) = false

Examples of Proofs

Example 1. The proof that

[U £f()Ix)= U £(i)(x)
{1|13 {i|1}

is quite instructive, and we sketch it here:

First I+ fi)c U f£(4) (F)

{113

I+ fE) o[U £(1)1(x) (Appl)
{il1}

(The rule (Appl) f= g + £(x)C g(x) is derivable from F1l and F2.)

Food f)yx) el U £(1)1(x) (RT)
{il13 {ij1}
then I ¢+ fi)(x)= U £((i)(x) (Fh)
{i]1}
I b (i) xx U £(1)(x)] (RY)
| fifr}
- U f(i) =[x U £f1) ()] (RT)
1113 {il13
FoLoU fA)Ix) = U £(i)(x) (Appl) and (F2).
{ilm3 {111}

58

Example 2. Let us prove that

(a) pf.s(f,f) = uf.s(Lf,uf.s(f, 1))

(b) uf.s(f,£) = uf.s(f,s(£, 1))

In other words, we must establish the equivalence of the following
three programs:

f <= s(f, 1)

g <= s(g,f)

h <= s(h,s(h,h))

Proof of (a). Since s(f,f) = f , we know by fixed-point induction

that g f . By monotonicity of s , this implies s(g,8) = s(g,f)

Since g = s(g,f) , we have s(g,g) =g and fC= g follows by

fixed-point induction again.

Proof of (b). By definition, f = s(f,f) = s(f,s(f,f)) and therefore,

h o f by fixed-point induction.

In order to prove that f = h , let us use the auxiliary program
k <= s(h,s(h,k))
Since s(h,s(h,s(h,h))) = s(h,h) , the rule of fixed-point induction
tells us that
k = s(h,h) (1)
but we know by (a) that k = h , and (1) becomes h = s(h,h) .
By monotonicity of s , this implies s(h,h) = s(h,s(h,h)) which, by

definition of h , reduces to s(h,h) = h . One last application of

fixed-point induction and we prove f = h .

29

Example 3. For any functions s and t,

That is the programs f <= s(4t(f)) and g <= t(s(f)) are related

by £ =s(g) and g = t(f) . Since £ = S(t(fst)) we have
tfst = tstfst and, by fixed-point induction, f%s E'tfst By

symmetry fstlE Sf%s hence tfstig tsf%s = fts .

Example k. Let f£(x) <= g(f(h(x),f(k(x))) and y <= g(y,y) -

We prove that f(x) =y . Since

(Mx.y1(x) , we know

g(.y1l(h(x)) , M.y 1((x))) = gly,y)

by fixed-point induction that f < [Mx.y] hence f(x) Ty . On

y

the other hand, g(£(UU),f(UV)) = g(£(h(UV)) , £(k(UU))) by monoctonicity,
and g(£(UU),£(UU)) < £(UU) follows from F(UU) = g(f(h(UU),£(k(UU))))
We conclude y C £(UU) by fixed-point induction and, since

£(UU) = £(x) , we proved that y C f£(x) .

Example 5. IT the two functions Af.s(f) and Af.t(f) commute, i.e.,

st = ts then Example 2 tells us that f s(f and f = t(f,)

st = st) t ts

(We can say that £ and f_ are

so that £ o f
s — '8 t

p and T f .

weakly equivalent.)

The similarity between some of those results and better known
ones in linear algebra should not surprise us since linear algebra
can be used as a model of our formal system. The base domain DI will

be the set of vector-space over some space | . The natural ordering

is inverted: V, EV

, holds whenever V, 1is a subspace of ¥, .

1
The minimal element UU corresponds to the space V¥ itself while

the vector space containing only 0 corresponds to 00 . Linear
transformations over V¥ are then monotone mappings in DI —»DI with
respect to that ordering, and, if the dimension of V is infinite, they
are not continuous in general. The least fixed-point of a linear

transformation A,ejE —»ﬁi is then the eigenspace of A having

maximal dimension.

1.6 A Possible Weakness of the System

Let us consider the inference rule

Pxcg(x) v £(x) cg(f(x)
RT : (x not free in P)
Pobopx.f(x) © g(px.£(x))

Is RT provable or not within our system? Although we have not

been able to settle this question, we shall be able to show that rule RT
must be valid in any standard model of our formal system.

Before doing so, let us point out that fixed-point induction can
be derived from RT and that using RT would somewhat simplify the
proofs in the previous examples. For instance, the proof that f T h ,
where f = px.s(x,x) and h = px.s(x,s(x,x)) could go as follows:

Let us assume y = h and yC s(y,y) - In order to apply rule RT ,
we shall prove that

yEh,y= s(y,y) + s(y,v) Ch, s(v,v) = s(s(y,y),8(¥5v))

and therefore conclude that + £ h, f s(f,f) so, a-fortiori

F £ h .

61

By monotonicity y < s(y,y) + s(y,y) C s(s(y,y),s(y,y)) and
v C s(y,y) + s(y,y) € s(y,s(y,y)) . Therefore, using monotonicity
three times again yC s(y,y),ySh t y= s(h,s(h,h)) . But

h = s(h,s(h,h)) and, putting everything together, we get

1

yeh,yes(yy) + s(¥y) € hs(yy) C s(s(y,y),s(yy) -
We shall now justify the rule. To each monotone function t
mapping B/ - 5 and ordinal number o , we associate an element

ta(UU) e p as follows:

(1) %) = w
(11)) = +(+%())

(1i1) If o = 1im(B) is a limit ordimal, +%(UU) = U {tP(uu)} .
B <o ‘ B <a

More concisely, ta(UU) =4(U {tB(UU) 1) , if we agree that U (§) = UU .
B <

This sequence has the properties that g <y implies

tP(Uu) © +7(00) = £, for all ordinels B and 7 , and t(UU) = 7 ~(UV)

fJG for any ordinal « .

Hence, if we choose ¢ +to be the first ordinal not embeddable

i

implies ta(ITU)

in 8 - B , the sequence tO(UU),tl(UU), .. .,’ca(UU) has "too many"

elements and ta(UU) = (See Cadiou [2] or Hitchcock-Park [8].)

Ty
Now, from the hypothesis F = s(F) + t(F) = s(t(F)) , we can

deduce that, for all ordinals o ,
(0 (04
tYw) o stHw)) . (1)

If & is not a limit ordinal, (1) is easy to establish. If o is a

limit ordinal o = lim (B) , then for all B < Q we know that
B <

62

tB(UU) = s(tB(UU)) . Since tB(UU) = ta(UU) we know that

tB(UU) = s(ta(UU)) and therefore ta(UU) = U {tB(UU)}E_:_ s(ta(UU)) .
B <

Choosing « such that ta(UU) =T

+ then yields the conclusion of

rule RT .

63

2. Justification of Some Proof Techniques

Suitable choices of the semantic definition of programming languages
allow to reduce most of the proof techniques described in the literature
to the rule of fixed-point induction. In particular, this applies to the
methods described in McCarthy [13], Naur [24], Floyd [7], Manna [1L],
Manna-Pnueli [16], and.Hdére {9]. ©Since Hoare's technique has béen
justified in Manna-Vuillemin [17], and the connections between fixed-point
induction and the Manna-Pnueli method have been explicited by Park [26],
we shall limit ourselvés to first indicating how the Floyd-Naur method
can be explained within our formal system and then sketch the connections

with structural induction. The basic ideas in this section are from Park [26].

2.1 Description of a Flowchart-language

A Tlowchart is a connected graph, with two distinguished nodes

and . Nodes can be of the type assignment
b

X, - F(X) or test m . Following Floyd [71, the

J’ T F

"meaning assigned" to such a program will be a relation ﬂf(iH) over

the values of the program variables, at the node. This

output relation is obtained by "carrying along" an input relation cp(}_cs) 5

holding of the program variables at the node. The

notation Vv =X | @, therefore means that, whenever we start

6L

the execution of [with inputs satisfying ¢ , the outputs, if any,
must satisfy V¥ .

As in Chapter 2, syntactic objects are representéd by upper-case
letters and associated sementic objects by the corresponding lower-case
letters.

The semantic f‘uhction 2 1is defined recursively as:

d
(1) =X, ~FE[| = @)@ Ax, =£@) A (A x, =y)]
cLa D J
J#i
I
B
S L L
(ii) 5 om, = &% n,Bl ,B2
1)l
(iii) = =, = 1if g thenZ| n A q, Bl elge & :r/\Nq,‘B2
’ 4
(iv) z<ir, = gA | porval~aA0, B
I

65

Equation (iv), expressing the semantics of goto's, defines the
"minimum valid inductive assertion' described in Manna [14]. There will
be essentially one such equation per loop in the program; this may
lead to systems of mutually recursive relations, depending on the
nature of nesting of the loops. According to this definition, we

have for example:

PN }\yl,yg.‘crue, (= D\yl’yE'(ylZ a) /\rt(yl,yg)]

HAIT

where t(r)(yl,yg) = [(yl = 0) A (y2 =11v

[E{Xl}xe'(xl < a‘) A r(lexg) A (yl = Xl+l> A (y2 = (Xl+l) 'Xg)]

Note that, in order to simplify our semantic description, we have in effect
limited ourselves to considering a flowchart in block-form. If loops do
not have this nice nested structure, the description would be slightly
more complex, and we would need to express the semantics of ill-nested

loops by systems of mutually recursive equations.

66

2.2 The Inductive Assertions Technique

The meaning of a flowchart program is now a (partial) predicate,
defined as the least-fixed point of some equation, say r = t(r) . If
we can find an "inductive assertion" g such that t(q) = g , the rule
of fixed-point induction allows us to infer that r.=4q - This shows

that whenever the program terminates, that is, if r,(d) = true for

i (

some input d , then we must also have ¢(d) = true .

This will be best understood by using the same example ag above:

The expression +t(q) =9 is

['yl =0) A (yg =1]v [HXJ_’XE' (Xl,é a) A q(xl,xg) A (yl :xl+l) A (y2 = (xl+l) .Xg)]
= a(yyvy)

Using the inference rules corresponding to those of predicate
calculus in Section 1, this formula is equivalent to
b a(0,1) = true
and

q(yl’yE) ATy Fa = true b q(yl+l, (Yfl) -3’2) = true

This last formulation is the direct translation within our formalism

of the verification condition derived by Manna [1k]. This justification
of the method gives us the additional insight that the inductive
assertions one may use for proving the partial correctness of some

program by the Manna-Floyd method are exactly the fixed-points of some

algorithmically constructed functional.

67

2.5 Termination of Programs

Following Park [26], we shall now prove that the rule of fixed-

point induction allows us to derive instances of (mathematical) transfinite

induction.
Let H be a domain, and < a partial cordering on f§ . For any
true
relation R mapping B/ into ! , let
false

t(R)(x) = [Vy. if y < x then R(y) else true] . The least fixed-point of t
is then the maximal well-ordered initial segment of the ordering <
over & . (Note that this is the first time that we use a monotone

function which is not continuous.)

Example. Let us consider some orderings over the integers, and the

corresponding R

e
If < is 1<2 <3 <... then R, = tY(uu) ana R.(n) holds for
every n .
If < is ... <3 <2 <1 then Rt = UU never holds.
If < is 1 <3 <5 ... 2<4 < ..., then Rt = tgw(Uu) and Rt(n)

holds for every n .

it

. W
If < is 1 <3 <5 ... <6<hk<2, then R, =% (0U) and R, (n)
holds only of the odd natural numbers.

ITf < is 1 <3 <5 ...2<6<10< ... 4<12<20<, then

2

R, =t (uy) eand Rt(n) holds for every n .

K =

If <« is a well-founded relation over & , then Rt(X) holds for
any element x of # , in which case the "program" R(x) <= t(R)(x)

can be thought of as defining recursively our domain.

8

In other words, if
WO = pR.n <,x.[(¥y) if y < x then R(y) else true] ,
the equality WO(<)(x) = B(x) characterizes the relation < as being
well-founded. (See also Hitchcock-Park [8] for a more elegant formula-
tion of this equality.)
No matter what kind of ordering < is, fixed-point induction

translates into the following rule:

((vy). if v < x then P(y) else true] = P(x) + WO(<)(x) © P(x)

And in particular, if < is well founded over # , then P(x) = true
will hold for any x in & . Depending on the interpretation of <,
this is a formuwlation of structural induction or transfinite induction
(see Chapter 4, Section 3).

For example, the termination of the program

F(n) <= if odd(n) then n else

H

i 6(n) = 1 then F(2) else F(zfis - Fln - 72y + 5y)

G(n) <= if even(n) then G(n/2) else n
over the natural numbers can be established using the well ordering
(L1<?3<5<...)<(2<6<10<...) <k <12<20 <...) <(...)

More examples of applications of this technique will be given in the

next chapter.

69

Chapter L. PROOFS BASED UPON CONTINUITY

The previous chapter was a first attempt at proving properties of
programs, based on a rather weak theory of computation. We shall now use
our knowledge that programs are continuous functions, and justify some
other proof techniques. The presentation will again be quite informal.
However, it should soén be apparent that all the proofs given can be
formalized in Milner's Iogic for Computable Functions (ICF), as described
in Section 1 of this chapter.

Obviously we wish to preserve all the results obtained in the
previous chapter. As far as formal sysbems are concerned, one could
achieve this by embedding ICF in the logic described in Chapter 3. In
this mixed system, terms would be (syntactically) recognizable as being
monotone or continuous, and the appropriate rules of inference could be
applied accordingly. The logic would not be very different from the
other two we describe in this work. TFor example, a good candidate for

the induction rule would be

P+ g(UU) = h(UU) P,g(x) S h(x) + g(f(x)) = h(f(x))

rule M:
Pt g(px.£(x)) C h(px.£(x))

where x must not be free in P and g must be continuous, while h
and f only need be monotone. (This ruie was independently suggested
by Hitchcock-Park [8].) TIts justification is very similar to that of
rule RT in the preceding chapter.

Remarkably enough, there seems to be no real need to get involved
in this rather camplex mixed system: as long as all the terms used in

the proofs denote computable functions, any of the results of Chapter 3

70

will still hold in ICF. For example, if we restrict ourselves to using
only computable assertions, the inductive assertions method can be
Justified in exactly the same way. The only technique for which this
constitutes a real problem is transfinite induction, and we shall give

it special attention in Section 2.1.

1. Description of ICF

The formal system that we shall use is, except for some trivial
changes, taken from Milner [18]. It is a typed A-calculus version of
a logic designed by Scott [30]. (We assume the reader who is interested

in the technical details to be familiar with Milner's work.)

1.1 Syntax

The terms of the logic are intended to denote the computable
functions of various types. Each term should therefore be subscripted
with its type, but we shall almost always omit this subscript.

Terms are defined recursively as:

(1) Identifiers: g,p,F,7,0,%X,y... (at each type) or constants:

UU (at each type) TT,FF (at the type Boolean) are terms.

(2) If s is of type & - pB and t of type o, then s(t) is a
term of type B
(3) If s is of type a , and x of type B , then [Ax.s] is a

term of type B - O .

() If p is of type boolean, s and t of type « , then

if p then s else t

is a term of type O .

71

(5) If f and s are of type o, then [uf.s] is a term of

type o .

As an alternative to [uf.s] , we shall also use the notations f'r s

f <=7(f) and 1: £ <= s , where 1 = [Nf.s]

A wff is a conjunction of equalities s =t or inequalities s ¢
between terms, separated by commas.

A proof is a seduence @O k YO PRI @n F \yn of implications
between wffs, each of which is obtained by application of the rules
of inference, or use of the axioms.

For any term s or wff & , we write s{t/x} and 3&{t/x} to
designate the result of substituting t for all the free occurrences

of x in s and & . An occurrence of x is not free if it is bound

by Ax or ux .

1.2 Axioms and Rules of Inference

In this description, x , ¥y, z , £ denote variables, s and %

terms, P, Q , R wffs.

(a) Axioms

About the Domains

(Reflexiviby) Dl: FoxCx
(Transitivity) D2: xCy, ySz +t xXCz
(Antisymmetry) D3: xCy,yCx + X=y
(Minimality) Dk FoUUCE x

72

(b)

About the Functions

(Monotonicity) Fl: XCTy
(Fixed point) F2:
(N-conversion) F3:
(bottoms) Fh:
(conditionals) F5:

About Formulaes

(Inclusion) Wl: Pt Q

Rules of Inference

PrqQq PEFR

(Conjunction) Ri: P+ Q,R
. PFrQ QtR
(Cut) R2: PrR
)) . PrQ
(Substitution) R>: P{s/x] t Qis/%}

P+ f(x) = g(x)

(Extensionality) Rh: Pt fCg

£(x) = £(y)
£ux.£(x)) = ux.(x)
[Ax.s](t) = s{t/x}
UU(x) = UU

if UU then x else y

if TT then x else y =

if FF then x else y =

(@ is a subset of

(x not free in

P{UU/x} + Q@ P{TT/x} + Q P{FF/x} t+ §

&

Il
™

i
]

P)

F)

(Cases) RS: P
(Computation . P Qf{uu/x} P,Q b Q{f(x)/x}
induction) RO: Pt Qiux.f(x)/x] (;inng)c free

75

1.5 Some Remarks Apout the Logic

Incompleteness

Using the fact that natural numbers can be defined implicitly
within the system, Scott [30] showed that the set of valid implications
Pt Q 1is not recursively enumerable, i.e., the logic is incomplete.

It also follows directly from the undecidability of equivalence between
program schemas that the set of valid theorems + P i1s not recursively
enumerable.

On the other hand, if we Jjust consider terms which correspond to
Tanov-schemas (Ianov [10]), the logic becomes complete. (This was
proved independently by J. W. deBakker and R. Milner.) Another

decidable sub-theory of ICF is described in Courcelles-Kahn-Vuillemin [3].

The Induction Rule is a Generalization of McCarthy's Recursion Induction

We shall use the fixed-point inductbion formulation of McCarthy's
rule: f(y)Cy b ux.f(x) =y . This rule is easily derivable from
computation induction. In order to show that computation induction
cannot be derived from fixed-point induction,f/ we shall exhibit a
theorem of the logic which cannot be proved by fixed-point induction.

One such theorem is:
o(r(x)) =71(o(x)),0(U0) =7(00) + px.0(x) = ux.7(x)

In order to prove that it cannot be derived using only fixed-point

induction, notice that after removing the induction rule, neither the

*

:77More precisely, if we replace the induction rule of ICF by fixed-point
induction, the set of theorems of this modified logic is a strict
subset of the theorems of ICF.

74

axioms, nor the inference rules require continuity in order to be
valid. We can thus define the following countermodel:
Terms will denote the hierarchy of monotone functions constructed

over the following base domain:

b’//,d\\\\c
N,

a

The counterexample to our theorem is provided by the functions f and

defined by

f(a) = f(b) = b

H
TN
o
S
il

Joje!
~~
o
g

I

.) = a, :
i i+1 °

il
[uje]
—~

[¢]
~—r

[l

(@]

£(e) = £(a) = g(b) = g(d) =d ; g(a)

These two functions satisfy the hypothesis but not the conclusion --
£(UU) = g(UU) , fg = gf while uxf(x) # uxg(x) =~ of our theorem,
which is therefore not provable within this system.f/ Actually, the
same example can be used to prove that rule RT (see Chapter 3,
Section 1.6) is also less powerful than computation example.

The theorem 1s in itself an interesting one and gives in some cases
an elegant way for proving equivalence between programs. For example,

the functionals

*
—/ With some slight changes, this counterexample can be used to answer a
question raised by Scott [30].

[

I
-
H

Pl(F)(X,y) = X = 0 then y else F(x-1,y+1)

!
B
H
ke
fl
@]

then y else F(x-1,y)+1

PQ(F) (x,y) =

and

!
=
b
b
N

PB(F)(X,y) = v then y else x.F(xt+1l,y)

it

Pu(F)(x,y) if x = vy then x else y.F(x,y-1)

over the natural numbers are such that:

Pl(UU) = PE(UU) > PP, = PP and PB(UU) = PL(UU) » PePy = PAPB :

The proofs of equivalence between F <= Pl(F) s F <= PE(F) and

F <= PB(F) , F <= PM(F) respectively then follow.

1.4 Some Exemples of Proofs

In order to demonstrate some practical aspects of the method, we
shall present some examples of proofs by computation induction.
To improve readability, the following conventions will be adopted

from now on:

(1) We shall omit the proofs that £(...,UU,...) = UU vwhenever they
are straightforward.
(2) We shall use freely the equality
f(..., if p then a else b, ...) = if p then f(...,a,...)

else £(...,0,...)

whenever it is easy to establish that £(...,UU,...) =UU .
(3) In the arguments by cases on some variable p , we shall omit the

case p = UU whenever it causes no problem.

76

(k) We shall use the parallel induction rule for systems of mutually

recursive definition. Let us describe the situation on
F <= o(F,Q)

the example , the generalization to more complex
G <=1(F,0)

systems being straightforward. The rule we wish to use is
P+ Q{uu/x}{uu/y}

2Q) Xy ' il
P,Q t %{T(Q%}ﬁ%é%} 0/l (x,y not free in)

Actually, a more accurate notation would be F = pf.o(f,pug-7(f,g))
and G = pg.-v(pf.o0(f,g),g)

The justification of this rule in the general case can be
found in deBakker-Scott [6] or Hitchcock-Park [8].

If F and G happen to have the same type, we can also use
the following more intuitive justification of the rule:

Using the pairing function m = Kx,y.[Kp.iE p then x else y} ,
we can define % = n(F,G) . The components are then retrieved as
F = F(TT) and G = %(FF) , and F can be defined by
F <= m(o(F(TT),F(FF)),7(F(TT),%(FF))) . The previous rule is
then a direct translation of the ordinary computation induction
as applied to % .

(5) For all the examples where computations are meant over some
specific data-type =-- integer, natural numbers,
sets, lists, etc. ... -~ we assume implicitly that the axioms for
the corresponding data-types are put as premises of the
Ways to axiomatize ﬁhose various domains are described in

Milner-Weyrauch [21] and in Newey [25].

17

Example 1. Let us consider the program schema
T, f(x) <= if p(x) then x else Pux)) ,
£ _ . 0 -
where (x) = £(£(...(f(x)...) (n times), and £ (x) = x .

We wish to prove that the equality f% = fT holds for all natural

n m
numbers n >1 and m >1 .
We shall first prove that
f}fl =z, for any k > O (a)
n n
Let P[f] be ﬁf f=1f . We shall prove P[fT] by computation
n n
induction.
Base If £ =UU0 then P(UU) is f? (W) =w , i.e.,
n

ff (UU(x)) = UU(x) which is easily verified, assuming
n

p(UU) = UU .

Induction Assuming that P(f) is true,

it

£5 (7 (£)(x)) = £ (if p(x) then x else (n(x)))
n n

(definition of Tn)
= if p(x) then x else f? h(x)
n

(properties of f%)
n

then x else fnh(x)

i
=
Hy

3
~~
™
S’

(induction hypothesis)

il
A
ja}
TN
H
g
N
b
N

78

Now that equation (a) has been proved, let us consider

Tm(f%)(x) = if p(x) then x else f? h(x)
n n

= if p(x) then x else £ h(x) (oy (a))
n

= if p(x) then x else f: h(x) (by (a) again)
n

=1, (5)(x) = £ (%)

n n

It follows by fixed-point induction that f% EEf% and by symmetry

m n
fT = f% .
n m O
Example 2. Let us consider the two "squaring'" programs
7: F(x,y,2) <= if x = O then y else F(x-1,y+z,z)
and

o: G(x,y) <= if x = 0 then y else G(x-1,y+2x-1) ,
over the natural numbers. We wish to show that fT(X,O,X) = gc(x,o) .
2 2
Let P(f,g) be fly,x(x-y),x) = g(y,x -y~) . If we can prove

P(f&,gg) , the desired conclusion will follow by choosing x equal to y .

Base Proving ©P(UU,UU) is straightforward.

Induction Assuming P(f,g) , consider

]

7(£) (y,x(x-y),x) = if y = O then x(x-0) else f(y-1,x(x-y)+x,x)

(definition of 7)

then x° else fy-1,x(x-(y-1)),x)

I
H
=
o
{
e

then x°-0° else g(y-l,(xg-y2)+2y-l)

il
H
b

%

i
e

(induction hypothesis)

1l

o (@) (y,x°-5°) . -

79

Example 3. (S. Ness) Let us consider the following two LISP
functions

F(x) <= if atom(x) then x.NIL else F(car(x)) * F(cdr(x))
and

G(x,y) <= if atom(x) then x.y else G(car(x),G(cdr(x),y)) ,

where * represents the append function. We shall prove by

computation induction that G(x,y) = F(x)¥y (over the domain of lists).

Base The equality UU = UU¥y i1s a consequence of the definition

of * .

Induction If

A(x,7) = (if ston(x) then x.NIL else f(car(x)) * £(cdr(x))) ¥y ,
then
A(x,y) = if atom(x) then (x.NIL)*y else (f(car(x)) *f(cdr(x))) *y

11
=

atom(x) then x.y else f(car(x))*(f(cdr(x))*y)

(LISP axioms)
The conclusion
A(x,y) = if atom(x) then x.y else g(car(x),g(cdr(x),y))

follows then by using the induction hypothesis twice.
a

80

2. Modelling Some Proof Techniques Within ICF

Looking back at Chapter 3, we realize that Section 2.3 on termination
of programs is the only place where we actually used functions which are
not continuous. We therefore have to demonstrate how the technique of
structural induction, as described for example, in Burstall [1] or
Manna-Ness~-Vuillemin [15] can be modelled within ICF.

Finally, a method which was not accounted for in Chapter %, since
its justification requires continuity, is that of Morris [23] and we

shall study it in Section 2.2.

2.1 Structural Induction

Actually, the word structural induction covers two rather different
techniques. The first one is a simple generalization of the induction
principle on natural numbers, while the other one is a statement of
Noetherian induction applied to arbitrary well-founded sets, which is

the most general induction principle known to man.

Simple Structural Induction

(a) Mathematical Induction

The usual formulation of this principle for natural numbers is:

from p(0) and ¥x(p(x) = p(xtl))

infer vxp(x)

Let the predicate n(x) <= if x = O then TT else n(x-1) characterize

the natural numbers in our system. (We assume the usual axioms about
0,1, =,+, - as described in Newey [25].) Let p(x) be any

predicate which can be expressed as a term of the y-calculus.

81

From the premises

p(x) ©TT , if x = O then TT else p(x-1) = p(x)

we can infer by fixed-point induction that n(x) = p(x) , i.e., that
p(x) holds for any natural number x .
In other words,

from p(0) =TT and p(x)

il

TT + p(x+l) =TT

infer n(x) =TT + p(x) = IT

i

This method applies to any data-type which is recursively defined by a

*
semi-computable predicate. For example, the domain & of words over
scme vocabulary X can be characterized by

word(x) <= if x = A then TT else word(t(x))

and the corresponding principle is:

from if null(x) then p(A) else p(t(x)) =TT + p(n(x)-t(x)) =TT

infer word(x) = TT + p(x) =TT

(We are again assuming axioms about A , =, - , h , t .)

Example L. Let us consider two programs for computing the factorial
function:

F(x) <= if x = 0 then 1 else x x F(x-1)

G(x,y) <= if x = y then 1 else (y+1) x G(x,y+1)
In order to show that G(x,0) = F(x) , we shall prove that n(x-y) C p(x,y)

where p(x,y) is G(xy) xF(y) = F(x) . Let r Dbe defined as

r(x,y) <= if x = y then TT else r(x,y+l) .

82

i

We first prove that r(x,y) = n(x-y) . Then, since

|
|
'_b
>
I}

p(x,y) = ¥y then F(x) = F(y) else (y+1)G(x,y+1) .F(y) = F(x)

v then TT else p(x,y+l)

I
H
Hh
b
Il

we can conclude that r(x,y) = p(x,y) , i.e., n(x-y) c p(x,y) . This

last inequality is equivalent to y <x =TT t p(x,y) =TT
. £

This technique required p to be a computable predicate; if P
is an arbitrary well-formed-formula, a generalization (Milner [18])
yields:

Q r P{O/x} Q,Pt P{(x+1)/x}
Q F n(x) = P

(x not free in Q)

where g = st means if g then s else UU = if g then t else UU ,

and g = Wi W, means g =W, , 4= W, .

Example 5. Let
rev(x) <= F(x,A)

F(x,y) <= if x = A then y else F(t(x),h(x) y)

In order to show that rev(rev(x)) = x , one can prove that word(x) = P,

where P is rev(F(x,y)) = Fly,x) . .

(b) Course of Values Induction

Another formulation of the induction principle over the natural
numbers is the following:
from ¥x[¥yly <x = p(y)] = p(x)]

infer Vxp(x)

83

Whenever p 1is computable, this course of value induction can also be
modelled directly because the operation of bounded quantification is
computable and can be defined as:

¥V = uf.[Ax,p. if x = O then TT else if p(x~1) then f(x-1) else UU]

According to this definition, V(x,p) "means" Vy(y <x = p(y)) . We
can define the partial predicate m = pp.Mx[V(x,p)] and prove that

m=n where n =pf.[Ax. if x = 0 then TT else f(x-1)] as follows.

(i) mcn .

¥(x,n) = if x = 0 then TT else if n(x-1) then V(x-1,n) else UU
= if x = O then TT else n(x-1)
_ (by cases using the fact that V(x-1l,n) = IT)
= n(x)

Hence, m T n follows by fixed-point induction.

(ii) ncm .

Since x =0 = FF t m(x-1) = ¥(x-1,m) by definition of m , we

It

have x =0 = FF + (if m(x-1) then V(x-1,m) else UU) = m(x-1) (by

cases again, using the fact that m(x-1) = TT). It follows that

M
| aad
H
>
I

m(x) 0 then TT else if m(z-1) then V¥(x-1,m) else UU

I
'—J
i_b
"
1l

O then TT else m(x-1) .

The conclusion n = m then follows by fixed-point induction again.

ad
Having established the equivalence n =m , we can justify the

following rule of inference:

8L

from V(x,p) =TT + p(x) = 1T

infer n(x) =TT + p(x) =TT

A similar rule can be derived for well-formed-formulas.

Example 6. Let us consider a modified version of McCarthy's 9l-function:

F(x) <= if x < O then x+1 else F(F(x-2))

il

In order to prove that n(x) =TT ¢ (F(x) =0) =TT , let p
The equalities (F(0) =0) =TT and (F(1) = 0) =TT have to be checked

first and then, assuming V(x,p) =TT and x >1 =TT , we prove p(x) :

p(x) = (F(x) =0) = (F(F(x-2)) = 0) (x <0 = FF)
= (7(0) =0) (p(x-2) = TT)
=TT {separate check)
d
Transfinite Induction
Let < be a well-founded relation over the domain B . We showed

in Chapter 3 how to derive the following principle:
from Vxed{vyedly < x = p(y)] = p(x)}

infer Vxed{p(x)}

The proof given precluded continuity and is therefore not applicable in
the present context.

We shall describe a technique for deriving in ICF any instance of
the above rule one may need in "practical" cases. Here, a “"practical"
well-founded relation is either one of the basic orderings described in

the preceding section or an ordering constructed as a well-founded

85

Az [F(x) = 0]

*
collection of well-founded relations.J Since we already know how to
handle the "base'" case, all we need to model is the construction of

complex orderings from simpler ones.

Let < be a computable well-founded relation over the recursive
1

domain ﬁl > and, for any Xeﬁi , 1let ; be a well-founded relation
over ﬁé(x) . We then consider the domain ﬁ-:{(x,y)‘xeﬁi, yef%(x)}
together with the ordering < where (X,y) < (x',y') is equivalent
to x f x' or (x=x') A(y ; y') . Assuming we already know that

the rules

Q,x' <x = P{x"/x} + P
1

(1) ; ;
T ﬁi(x) = (x and x' free in Q)
and
Qy' <y = P{y'/y} ¢ P
(2) = (y and y' free in Q)

are valid, we want to justify the rule

Qs (x',y") < (xy) = Plx'/x}y'/y} ¢+ P

(3) (x,x",y and ¥y
Q F Hxy) =P free in Q)

where B/(x,y) = ﬁi(x) A ﬁé(x,y) . Assuming rules (1) and (2) and the
hypothesis of rule (3), we shall prove that Q + ji(x) A ﬁé(x,y) > P

in two nested inductions, by distinguishing between the following cases:

*

—/ This is equivalent to multiplying the corresponding ordinals. The
operation corresponding to ordinal exponentiation can be modelled
Just as well, although we could never find any practical application
for it.

- gL

1) x' <x =TT

The hypothesis of (3) is then Q,x' f x = P{x"/x} v P

hence rule (1) implies that Q + &

l(x) =» P and, a-fortiori, ®{x,y) = P .

2) x' <x = FF .
1

TT is the only interesting case, one

]

Since (x,x') < (¥,¥")
can assume that x = x' and y' <y . The hypothesis of (3) then becomes
X
Qy' <y = P{y'/y} + P which, by rule (2), implies that
X

Q F f%(x,y) » P and the conclusion Q + B(x,y) = P then follows.
O

Example 7. Using the technique we just described, we shall prove that
Ackermann's function

A(x,y) <= if x

i

O then y+1l else

if y = 0 then A(x-1,1) else A(x-1,A(x,y-1))
is defined over the natural number.
Let P be n(y) = n(A(x,y)) , where

n = pf.[Mx. if x = 0 then TT else f(x-1)] . We shall prove that

n(x) + P which "means" that, whenever x and y are natural numbers,
A(x,y) must also be a natural number, is true.

The main proof is by induction on x .

Base: x = 0 . TIn this case, P{0/x} is n(y) = n(y+l) which is

always true, as a consequence of the axioms about 0 , 1 and +

Induction. Assuming P{x-1/x} , that is n(y) = n(A(x-l,y)) we must
prove P, i.e., n(y) = n(A(x,y)) . Let us argue by cases on

the predicate y =0 :

87

case y =0 =TT . Since in this case A(x,y) = A(x-1,1) , it

is sufficient to prove that
n(0) € n(A(x-1,1)) . (a)
We know by the induction hypothesis that n(l) = n(A(x-1,1)) and

equation (a) follows, since n(0) = n(1)

il

case y =0 FF . Choosing vy = A(x,y-1) in the induction

hypothesis P{x-1/x} gives us:

n(A(x,y-1)) € n(A(x-1,A(x,y-1))
Since in this case A(x,y) = A(x-1,A(%,y-1)) the last inequality
implies that n(A(x,y-1)) = n(A(x,y)) . Hence, by a "nested"
fixed-point induction applied to the predicate q(y) = n(A(x,v))

we conclude that n(y) = n(A(x,y)) -
d

2.2 Truncation Induction

Recalling Kleene's first recursion theorem, we can characterize the
least fixed-point of the program F <= 7(F) as the least upper bound

of the sequence of functions fo,fl,...,fn,... defined by fo = UU

and fn+l = T(fn) . The rule of truncation induction, as Morris [23]

named it, can be formulated as

Rule TI
from Q ¢+ P{fn/f} for any natural number n

infer Q P{fT/f} .

Actually Morris [23] used the formulation
from Q,¥m(m <n = P{fm/f}) b P{fn/f}

infer Q ¢+ P{fn/f} for all n

88

which is equivalent to ours since Section 2.1 of this chapter shows
how to obtain the missing step, namely:

from Q,¥m(m <n = P{fﬁ/f} F P{fn/f} for all n

infer @Q + P{fn/f} for all n .

A first problem which arises with rule TT is that, since it
requires knowledge about the integers in its formulation, it cannot
even be expressed in pure ICF. (This should be regarded as an advantage
of Scott's formulation of the rule.)

More dramatic is the fact that, even in an ICF with integers
(where TI can then be expressed), there does not seem to be any way to
justify it, despite the fact that it is clearly valid in any standard
model. It is possible to get around this difficulbty by slightly extending
the logic. What is needed is a formal way to talk about limits. This
can be. achieved by embedding data-types into complete lattices, thus
going back to the original definition of data-types in Scott [29]. This

idea entails the following extensions to ICF:

(1) 1Introduce constant terms 00 (for overdefined) at each type. The
corresponding axioms are t x = 00 and t 00 00(x) . In
the case-rule, the case P{00/x} } Q should be added to the premise.
(2) 1If s and t are terms of type « , then sup(s,t) should also be
a term of type « . Tt is axiomatized by + x < sup(x,y) ,
by Cosup(x,y) and xCz,yCz b osup(x,y) C z
(3) We could introduce inf(x,y) in the same way, although we won't
need it. Also, one should make up his mind as to what

if 00 then x else y ought to mean. Two extreme possibilities are

b if 00 then x else y = 00 or F1f 00 then x else y = su@(x,y)

89

In this extended logic (along with the natural numbers) we can then

justify rule TI:

First of all, one needs to express the rule within the formal

Tn(UU) as iter(t)(n) where

system, and we shall define fn

Definition 1.

iter = uf.[M,n. if n = O then UU else 1(f(n-1))]

Using this definition, it is easy to prove that
Lemma 1.
iter(1)(n) = iter(r)(nt+l)

and

Lemma 2.
iter(t)(n) © £

= U [fn} and, for this purpose, let
n>0

We now wish to prove that fT

Definition 2.

U = uf.[M,n. sup(8(n),f(B(n+l)))]

Using an induction on this formal definition of | , one can then
prove that

Lemma 3.
B(n) =g + U(Bn) Eg

and

Lemma L.

B(n) € 8(ntl) + y(U(B,n)) =uU(x.7(B(x)),n)

90

Note that Lemma Y4 is particularly interesting since it proves that
any function 7 which can be expressed within the logic must be

continuous. Kleene's first recursion theorem may now be expressed as
£ = U(iter(t),n) (K)

and proved in two steps.

Firstly, combining Lemmas 2 and 3 yields

U(iter(t),n) = £

Then, the other half of the proof is a 1little bit more complicated.

7(U(iter(r),n)) = U7 (iter(r)(x)),n) (Lenmas 1 and L)
= (. iter(r)(x+1),n) (Definition 1)
c U(iter(7),n) . (Lemma. 1)

The conclusion

£ = U(iter(t),n)

follows by fixed-point induction.

We now have all the machinery regquired for justifying truncation
induction. Assuming for simplicity that the well-formed-formula we want
to use is of the form «(f) = g , we must prove that

a(iter(r)(n)) =g + a(ﬁr)t; g
Lemmas 1 and 4 tell us that
U(ax.a(iter(r)(x)),n) = a(U(iter(s),n)) ,
and therefore

a(iter(r)(n)) = g + a(U(iter(r),n)) =g

ol

Since fT = U(iter(r),n) by Kleene's theorem, this last implication
reduces to

a(iter(r)(n)) T g + alf) c &

which is what we wanted to prove.

Applications

-- First of all, some equivalence proofs seem to be more natural
(and may in fact require) using truncation induction.

For example, if two functionals s and t satisfy s(UU) = t(UU)
and st = tgs ,f/ the natural truncation induction predicate would be

n
2 _1(UU) = s"(UU) , and therefore uf.s(f) = uf.t(f) . IF one uses

t
the machinery we just developed, this informal proof can very easily
be carried through within the extended logic. Actually, a more elegant
proof (not using natural numbers) would be the following:

Define

M(g, T) (x) <= sup(£(x),M(g,f) (£(x)))

and
N(g,f) (%) <= sup(£(x),N(rx.g(g(x)), 1) (g(x)))

(M(s,\f.£)(UU) represents U s (UU) and N(t,Af.f)(UU) represents
n>Q0

i >
2 -
0 t° Tt)
n >0

One can then prove that f_ = M(s,N£.£)(UU) and

£, = N(t,Nf.f)(UU) and finally that

s(UU) = t(UU) , M.s(£(£)) = Af.b(t(s(£))) F M(s,Mf.£)(UU) = N(s, E.£) (UU)

*

;77This example is due to J. W. deBakker. Robin Milner has a proof of
it in pure ICF. The reader may find out for himself how tricky it is,
and further away from the intuitive proof than the one presented here.

92

-~ Similarly, let us consider the following version of the induction

rule

rule R6'

Q t he fL,PR/E) QP b Pl (0)/f)
Q + P /1]

(f not free in Q)

where the base of computation induction is not taken at the undefined
element UU but at any element h E?f%

Informally and assuming P to be a(f) = B(f) for simplicity,
the hypothesis of the rule implies that a(Tn(h))vg B(t"(n)) for any =n .

On the other hand, UUC hC £, implies 18UU) = t(h) = £ and

It

therefore U {Tn(h)}

f . The conclusion o(f_) = B(f.) then
n>0 T i

T
follows easily from the continuity of & and monotonicity of B .
This argument can be carried through formally within the extended ICF.

In particular, it applies to the following theorem

which is provable in the extended logic; the author does not know how

to prove it (and conjectures are not provable) in pure ICF.

95

Conclusion

In the actual state-of—the-art, Scott's approach to the semantics
of programming languages seems to be the most promising one. The
theoretical foundations are sound, and a natural step would now be to
describe fully the semantics of a full-size programming language, along
the lines of Scott-Strachey [32], Milner-Weyrauch [21], or Reynolds [27].

Another wide open and promising area seems to be that of semantics
of operating-systems and parallel processes. Steps in this direction
were taken by Kahn [11], Milner [20], and others.

Finally, the question of a "best" logic for expressing a theory
of computation remains. As alternatives to ICF, the systems of
Hitchecock-Park [8] and deBakker - deRoever [5] have some interesting
features; in an unpublished work, Scott and Milner also conéidered the
possibility of extending ICF to a "type-free" logic whose semantic
domain is one of Scott's models of the A-calculus.

In any case, more efforts should be put in studying the existing
systems. In particular, ICF provides a nice framework for the area of
schematology, where existing results can be expressed and sometimes
simplified, and where new and interesting questions arise. (See

deBakker [4] and Courcelles-Kahn-Vuillemin [3].)

9L

References

[1] R. M. Burstall, "Proving Properties of Programs by Structural

Induction,"”" Computer Journal, Vol. 12, (1969), 41-48.

[2] J. M. Cadiou, "Recursive Definitions of Partial Functions and
Their Computations," Ph.D. Thesis, Compuber Science Department,
Stanford University, (1972).

[3] B. Courcelles, G. Kahn, and J. Vuillemin, "Algorithmes d Equivalence

pour des Equations Récursives Simples," Rapport LABORTA, IRIA,

78-Rocquencourt, France, (1973).

[4] J. W. deBakker, "Recursive Procedures,' Mathematical Centre

Tracks 24, Amsterdam, (1971).
[5] J. W. deBakker and W. P. deRoever, "A Calculus for Recursive

Program Schemes,'" Proceedings of IRTA Colloguium, North-Holland,

(1972) .
[6] J. W. deBakker and D. Scott, "A Theory of Programs," Unpublished
memo, (1969).

[7T] R. W. Floyd, "Assigning Meanings to Programs," Proceedings of a

Symposia in Applied Mathematics, Vol. 19, American Mathematical

Society, (1967), 19-32.
[8] P. Hitchcock and D. Park, "Induction Rules and Proofs of Termination,"

Proceedings of IRIA Colloquium, North-Holland, (1972).

[9] C. A. R. Hoare, "Procedures and Paramebers: an Axiomatic Approach,”

Symposium on Semantics of Algorithmic Languages, Vol. 188,

Springer-Verlag, (1971), 102-116.
{107 Y. I. Ianov, "The Logical Scheme of Algorithms," Problems of

Cybernetics, Vol. 1, Pergamon Press, (1960), 82-140.

95

[11]

[12]

[1h]

[(15]

[17]

(18]

G. Kahn, "A Preliminary Theory of Parallel Programs," Rapport
LABORIA, IRIA, 78-Rocquencourt, France, (1973).

W. Lonergan and P. King, "Design of the B5000 System," Datamation,
Vol. 7, No. 5, (May 1961), 28-32.

J. McCarthy, "A Basis for a Mathematical Theory of Computation,

Computer Programming and Formal Systems, (Eds., P. Braffort and

D. Hirshberg), North-Holland, (1963), 33-70.

Z. Manna, "The Correctness of Programs," Journal of Computer and

System Sciences, Vol. 3, No. 3, (1969), 119-127.

Z. Manna, 8. Ness, and J. Vuillemin, "Inductive Methods for

Proving Properties of Programs," Proceedings ACM Conference, ACM,

New York, (1972).

Z. Manna and A. Pnueli, "Formalization of Properties of Funcltional
Programs," J.ACM, Vol. 17, No. 3, (1970), 555-569.

Z. Manna and J. Vuillemin, "Fixpoint Approach to the Theory of
Computation," C.ACM, Vol. 15, No. 7, (1972), 528-536.

R. Milner, "Implementation and Applications of Scott's ILogic for

Computable Functions," Proceedings ACM Conference, ACM, New York,

(1972) .

R. Milner, "Models of ICF," AIM-186/CS-332, Computer Science
Department, Stanford University, (1973).

R. Milner, "An Approach to the Semantics of Parallel Programs,"
Edinburgh Tech. Memo, University of Edinburgh, (1973).

R. Milner and R. Weyrauch, "Proving Compiler Correctness in a

Mechanized Logic,'" Machine Intelligence 7, Edinburgh University

Press, (1972).

96

[28]

[29]

[30]
[31]

(32]

J. H. Morris, "Lambda-Calculus Models of Programming Languages,™
Report MAC-TR-57, Mass. Tnst. of Technology, (1968).

J. H. Morris, "Another Recursion Induction Principle," C.ACM,
Vol. 14, Wo. 5, (1971), 351-35k.

P. Naur, "Proof of Algorithms by General Snapshots," BIT, Vol. 6,
(1966), 310-316.

M. Newey, Ph.D. Thesis, Computer Science Department, Stanford
University, (to appear).

D. Park, "Fixpoint Induction and Proofs of Program Properties,”

Machine Intelligence 5, Edinburgh University Press, (1969), 59-78.

J. C. Reynolds, "Definitional Interpreters for Higher Order

Programming Languages," Proceedings ACM Conference, ACM, New York,

(19712) .

B. K. Rosen, "Tree-Manipulating Systems and Church-Rosser Theorems,"
J.ACM, Vol. 20, No. 1, (1973), 160-187.

D. Scott, "Outline of a Mathematical Theory of Computation,"

Oxford Mono. PRG-2, Oxford University, (1970).

D. Scott, Unpublished paper.

D. Scott, "Continuous ILattices," Oxford Mono. PRG-T7, Oxford
University, (1972).

D. Scott and C. Strachey, "Toward a Mathematicél Semantics for

Computer Languages," Oxford Mono. PRG-6, Oxford University, (1972).

97

