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Problems of 3tructural isomerit'm in chemi~try have received much attention. 

But only occasional inroads have been made toward a Bystec&tic solutior. of 

the Ul"derlying graph theoretical problems of structuraJ. isomeri sm. Solutions 

in the past have been partial, with acyclic and cyclic s',;ructures being 

treated independently. Recently the "boundaries, &COre and limii.a"~ of 

the subject of structural isomerism of acyclic molecules have been defined 

by the DENDRAL algori tlun3 This algorithm pe~its an enumeration and 

representation of all possible acyclic molecular structures with a given 

empirical formula. 

Acyclic molecules represent only a subset of molecular structures, however. 

and it may be ar~ed that cyclic structures (including those possessing 

acyciic chain~) are of more general inte~est and importance to modern 

~hemistry from both a practical and theoretical standpoint. An approach to 

4 
cyclic structure generation has appeared in a previous paper in this series 

That approach, which operates on a set of prp.vious1y generated acyclic forms 

by labelling hydrogen atoms pairwise and connecting the atoms to Which they 

are attach~d with a new bond, has one serious drawback. The approach cannot 

make efficient use of the symmetry properties of cyclic graphs; hence an 

i!:ordinate amount of computer time nru.st be 

(3) J. L~derberg. G.L. Sutherland. B.G. Buchanan, E.A. Feigenbaum, 
A.V. Robertson, A.M. Duffield, and C. Djerassi, l. ~. ~. ~ .• 91. 
2973 (1969). --

(4) Y.M. Sheikh, A. Buchs, A.B. Delfino, G. Schroll, A.M. Duf~ield, 
C. Djerassi. B.G. Buchanan, G.L. Sutherland, E.A. Feigenbaum, and 
J. Lederberg, Org. ~ SEectrom.,~, 493 (1970). 
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·pont in r.trospectivl checking of tach candidatl Itructure with 

.~isting .tructure. to rl.ove duplicate •• For thil rlalon. an 

alternative approach to conltruction of cyclic .ol.cules has been 

developed. This approach is ~esigned to take Idvantage of the 

u~derluing graph theoretic considerationl. priearily ly .. etrW. to 

arrive at a aethod for .ore .fficient construction of a coaplete and 

irredundant liet of i.oaere for a given I~irical foraula. Central 

to the successful solution of this p~Oble. i, the generation of all 

positional isoMers obtained by substitutions on • giv.n ring IWltem. 

This topic has received attention for nearly 188 years. with li.ited 

success 5 It. lIore general raei f itationl go far beyond organic 

chemistry- ~raph th_oreticians hav. cr~liderld various 'Ipect, of 

thi;; topiC, frequently. but not nlcl ... rilw. in the contlJe: of 

organic ~olecul.s. Polya ha. presented a theore. 6 which per.it. 

nuaber of Itruetural ilo .. r. for a given ri,ng . calculation of the 

syste.. Hill 7a.,b ha. applied this theoreM to enu .. ration of 

i sOllers of simple ring coapound. and Hi II 7c and lawlor 8 haVI 

lSI Stle, for eXiliple, A.C. Lunn and J.K. Senior.:1.. Phil •• Q!a., 
33. 1027 (1929) and references ci ted therein. -

(6) a) G. Polya. ~. r.nd .• ~. 1167 (1935.; 
b) G. Polya. lim· fJli!J. ~. !1. 22 (1936); 
cl G. Poly •• I· !!JI.JJ. ~. 41S (1936); 
d) G. Po I wa, ActA f1. th •• §!. 145 <1937t. 

(71 al T.l. Hi II. -1... e.mu. lJJB. •• 9,.. 253 (19431; 
bl r.L. Hi II. ibid. •• p. 413. 

c) : .L. Hi II. ,1.. en... e!!JI1., U. 294 (1943). 

l81 !.I. J. Taylor -!..: eh ... Ph$JJ •• !!. 532 (1943), 

2 



pointed out that Polya's theorem permits enumeration of geometrieal and 

optical isomers in addition to structural isomers. More recently, formulae 

for enumeration of isomers of monoeyellc aromatie compounds based on graph 

theory, permutation groups and Polya' 5 theorem have been presented9a • This 

hL:.tory of interest and results provides only marginal benefit to the organic 

chemist. Although the number of isomers may be interesting, these methods 5- 9a 

do not display the structure of each isomer. Also, these methods do not 

provide information on the more general case where the ring system is 

embedded in a more complex structure. Even for simple cases the task of 

speci~ing each structure by hand, without duplication. is an ouerous one. 

Balaban has published a series of papers9 addressed, in part, to the problem 

of specification of isomeric structures. Although his method, which differs 

substantially from our own, involve~ significant manual effort and does not 

appear to encompass a mechanism for prospective avoidance of duplicate 

structures, his compilations of isomers of annu1enes9b •9c , represent an 

10 important contribution as extensions to the compilations of Lederberg • 

METHOD 

OVERVIEW 

'Framework. The fraJl'levork for this method is that chemical structures consist 

of some combination of acyclic chains and rings or ring SystemslO,ll. The 

problem of construction of acyclic isomers 

9a) A.T. Balahan and F. Harary, k v • ~ CJ:l,1a •• l.2.. 1511 (1961>0 b) ibid •• 
... 1091 (1966); Erratum. ibid •• ~. No. I, 103 (19~); c) ~ •• !I, 8 5 
(1972); d) ibid., 18, 635 (1973), and additional references cited therein. - -
10) J. Lederberg, DENDRAL-64, Part I. Notational Algorithm for Tree Structures, 
NASA Star No. N65-l3158. NASA CR-57029; Part II. Topology of Cyclic Graphs. NASA 
Star No. N66-l4014, NASA CR-68898; Part III. Complete Chemieal Graphs: Embeddins 
Rings in Trees, NASA Star No. N7l-7606l, NASA CR-123176. 

11) It is assumed that structures are completely connected by chemical bonds; 
thus catenates and threaded struetures are viewed as eoneisting of separate molecules. 
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{and radicalsl hU been lolved previoull,,3 • If.1I po .. ible ring 

systems can be conltructed frOM all or part of the ata.1 in the 

empirical for.ula, and .11 pOlsible acyclic partl are .vaillDl, froa 

the ac"clic generator, the ca.bination of ring 1"lt ... with .cwclic 

partl in al I unique wawl would yield the coaplete li,t of ilOierl. 

The aethod for conltruction of ring 1"lte •• i. d'lcribed below. Thi. 

description eaploys lOMe ter.1 which require definition. The 

definition. alia I.rve to illultr.t. the t,xonoIic principle. which 

under I ie the operation of the .tructure generator. The 

generator'l view of .olecular .tructur. differ. in 100e re,p.ct, frOM 

the che.i,t·s. 

po ••••• ing the 

generator workl 

A Che'ilt, for I • .-ple, Maw view Itructur •• 

laae functional group or ring a. related. The 
.0 at the .ore fundllllntal level of the varteM-graph , 

a. delcrib.d below. 

Che.ical Graph. A aolecular Itructure .. " be viewed II a graph • .... 
termed the che.ical graph, or Skeleton. A cheMical grlph conlilt. 

Of nodes. with associated atOM na.es. and edg •• , which corre.pond 

to cnemical conds. Consider al an e.aMple the .ub.tituted piperazine, 

1, whose cheMical graph is illustrated in Chart 1 18 J.: Note 

that hydrogen atoas are ignored by convention. while the SyabOl NU· 

is used to ~pecify the unlaturation. The degree (~iMary •• econdary, 

••• ) of a node in the cheMical graph hal its usual .. aning. i •••• the 
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number of (non-hydroyen) edgea connected to it. Tha valence at each 

atoM deterMine. its M •• iMu. degr •• in the graph. A. u"IIV diapl.ved 

Ow cheMistl in planar r.pr ••• nt.tion, the che_ical graph d.acrib •• 

the connect iyi tlJ r.ther thin the geoMt,.ie eonfiglM"'.tion of a 

Molecular Itrueture. 

Superatoa. In general. a ch •• ie,1 graph can b. ..p.rated into -- ........ --
eye lie and aeWe I ic PM'''. Each eWe lie ItruetlM"'.1 .Ub-unit •• V be 

The cheeical graph ~ ari.e. ,,.0. a COMbination of two carDon .toal 

wi tn r ing-.uperatoe 2. Ring-tupe,.,to.l po....... the inclicated 

free va lenees to which the ,. ... ining hydrogen and t .... thyl radical. 

will be a tt.ched (Chi" t J). 

Ci liated Skeleton. A ciliat.d ,k.,.ton I, a Ike/,ton with fr •• 
~ . 

yolences but without atom names. Ring-superotom 1 arises fn)m the 

ciliated skeleton 4 by associating the atom names of eight corban and two .,.. 
nitrogen atoms with the skeleton (Chart I). 

<;:lclic. Sk!'.!~. A chemical graph whose nodes are not allOCiated 

with atom names and which contains no acyclic ports and no free 

12) A free valence is a bond with on unspecified t...,..inul. Ally .ub.true"', 
cyclic or not, may be treated as a superotom; however, the term, in this 
paper, is generally restricted to cyclic (termed ring-) superatoms. 
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valenc., i, terMed a cuclic .~.,.ton. Ciliated 1k.I.ton 4 arie.a .. 
trOM one way of .slociating aixt.en free valen~.s with the nodi. on 

the eWcl it skeletonl (Chart lJ. 

ar. cyclic .keletons fro. which 

nodes of degr •• Ie.. than thrl. have be.n delet.d. Tna vlrte.-graph 

of the c\!lci ic ekeleton S is thl r.gular trivalent graph 10 of two -
nodes, 6. Not. that the reaaining nod.a of the cyclic akeleton 5 

.... -
are of degree two. Re.oval of thl' •• econdary nodi' frol S whil. -retaining the intlrconnecti~, of thl two tertiary nodi, yielda 6 -
(Chart J). 

As an illustration of thl vari't~ of .tructurl. which aaw be 

constructed froM a giv.n vlrt.x-graph and e.plrical for.ull, for 

e.aMple, C H N, 
10 28 2 

coneider that graph 6 il the vert.x-grlph·for ... 
• 

II I bicyclic ring IWlte •• (e.cluding .piro for •• l. Cyclic 1k.I.tonl 

7 and 8 (Chart I). for e ••• ple, .,~ be con,truct.d fro •• ight .. -
secondary node, and 6. Ther. are .any waye of a'ioclating ,i_te.n -
free valences with each cyclic Ikeleton, re.ulting in a larger nuaber 

of ci I iated Ikeletonl. For '.I.ple. 9 and 18 ari •• - - fro. 

cJj ffe,.ent allocations of ,i"teen free "alenee. to .!. (Chart U. 

There is onlw one WI", to associate eight carbOn ato.. and two 

nitrogen ato •• with each ciliated ,keleton to yilld tuplritOiI (I.g. 



Chart I 

Conventionol Representation. 

CDmPOItttan· CICI '\aNa 

Chemica I GrGIIh: 

Composition - CID Nz Uz 

Sup,ratoms 

Ring- superolqm Composition- c.N,U. 

Ac,clic Superatom ComposIfian- Cz 

Ciliated Skeleton: 

Cyclic Skeleton: 

vert •• Graph 
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11 and 12, Cha.rt 1). l-!oweve.·, several structures are obtained by - -
RRsociating the remaining two carbon atoms (in this example) with each 

superatom, 8.8 an ethyl or two meth,v1 groups. Chemical graphs 13 and 14, .... -
for example, arise from two alternative w~vs of associating two methYl 

groups with superatom l. 

Multiple Bonds. For the purposes or this program we adopt the formalism 

that all multiple bonds (double. tri:;'lle •••• ) are considered to be small 

rings by the program. Previous versions3 (acyclic generator) differ from 

this program in that double and triple bonds are regarded as Ilpeci&lly 

labelled edges. 

The structure generator must ~roduce a complete list of structures without 

duplication. By duplicate structures we mean structures which are 

equivalent in some well-defined sense. The class of isomers generated by 

the program includes only connectivity isomers. Transformations (utilized 

to determine equivalence) allowed under connectivity symmetry preserve the 

valence and bond distribution of every atom. Connectivity symmetry does 

not consider bond lengths or bond angl~s. Tnis choice of symmetr,y results 

in construction of a set of topologically ~nique isomers. A more detailed 

discussion of equivalence is discussed in Appendix A and in the accompanying 

paper13 ; a discussion of isomerism and symmetry is presented in Appendix B. 

13) L. Ma.sinter. N.S. Sridharan, J. Amer. Chem. Soc., 00, 0000 (1973). -
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STRATEGY ... 
The strategy behind the cyclic structure generato .. is stnJngly tied ~ the 

framework described above. The strategy is IUlMlarized in greatly simplified 

form in Figure 1. The vertex-graphs from which structures are constructed can 

be specified for a given problem by a series ~f calculations. Thus Port A of 

the program (Figure 1) partitions the pot of atoms in all possible ways; each 

partition consists of those atoms assigned to one or more llsuperatompoh" and 

a "remaining pot." Each superatompat is a collection of atoms from which all 

Obi ° ° tom 12-POSSI e, unique rlng-supera s can be constructed based on the 

appropriate vertex-graphs (Port 8, Fig. 1). Each ring-superatom will be a ring 

system in completed structures. The atoms in the remaining pot will form 

acyclic parts of the final stNctures when combined in all possibl., unique ways 

with the ring-superatoms from the corresponding initial partition (Part C, Fig. 1). 

DESCRIPTlat .... 
L.le are faced wi th the di fficul t\l of deec,.ibing a cOIIPle. cQllPUte,. 

prograM in the traditIonal .ade of pr •• entation in a Icientific 

journll. The narrative fora ie not the idlll .ediua for thie 

description; ei.ple,MI.pl.e do not Ilwa\le Indiclte .11 •••• nti.1 

aspech of a prograa. A de.per under.tanding of I progr_ could De 

engendered through the un of I large ftUIIbIt' of well chosen .",a.pl •• , 

but the length of luch I pre.entation WO'Jld be '1CCellive .wa would 

tl. the patience of even the .oet inter •• t~ relder. 

9 



We are thus aware of the insufficiency of considering only one example in the 

following written descriptiOl". We have adopted the strategy of presenting 

essential aspects of the procedure for structure generation in the main 

body of the text. Details of the description which might obscure the 

principal concepts are placed in Appendices C and D. Mathematical 

details are available elsewhere. 14, 15 We hope this .. rves the purpose of 

providing the casual reader with a deeper understanding of the method 

without having to contend with details wMch, on the other hand, are 

important to others who wish to make use of our approach. 

The example chosen to illustrate each step of the method is C6H8 (or C
6

U3 as 

there are three degrees of unsaturation). 

This example does not contain bivalent or trivalent atoms (e.g., oxygen and 

nitrogen, re~ctively) or atoms of valence greater than four, nor any 

univalent atoms other than hydrogen (e.g., chlorine, fluorine). 

fartiti.{!!!i.r~.a.2Il9. .LHlIiog. The mechanism feY. structure generation 

involves 0 series of "partitioning" steps followed by a series of 

(14» H. 8rown, L. Masinter ond L. Hjelmelend, Discrete Mathematics, in 
press; 

(b) Stanford Computer Science Memo STAN-CS-72-0318. 

(15) (Q.) H. Brown and L. Malinter, Discrete MathematicI, submitted; 
(b) Stanford Computer Science MemO STAN:CS-73"=0361. 

10 



"labelling" steps. Partitions are .ad. of it •• s which au.t be 

assigned to objects (u,uall~ graph structure, or Plrtt therlof) as 

the Moleeular structure. are built up froM the vert.x-gr.ph,. Th, 

process bW which it •• s Ire a.,igned to the graph. il ter.ed lab'lling~)~ 
Exaaination of Chart 1 rev,als the different typee of ite., 

involved. For eXI.ple. node. are partitioned aaong and labell.d upon 

the edges of the verteM-graph' to yield the cyclic ,kel.ton •• Fr., 

val,nc,. are partitioned a.ong and labelled upon thl node. of cyclic 

skeletons to yilld cili.te~ Ikll.ton •• and to forth. 

Partitioning ,teps in the .ubsequent dilcullion are carri.d out 

a,suMing that object, aMOng which ite" are partitioned Ir. indilt­

inguishable. Diatinguiihlbility of objects (edge., node., ••• ) i, 

specified during labelling and will 01 di,cuI.ed in • 1Ub,.quent 

section. lhe partitioning et.p, perfor.ed by the progr ... are . 
outlined in Tlole 1. Each step ie described in MOrt dltli! bllow. 

11 



Table 1. Partitior.ing Steps Performed by the StNcture Generator 

Step # 

2 

3 

4 

5 

6 

Partition 

Atoms and Unsaturations 
in Empirical Formula 

Free Valence 

Secondary Nodes 

Non-loop Secondary 
Nodes 

Loop Secondary Nodes 

Ring-superatoms and 
Remaining Pot 

Among 

Superatampats CWld 
Remaining Pot 

Atoms in Superatompot 

Loops / Non-loops 

Edges of Graph 

Loops 

Efferent Links 
(see Appendix D) 

-----------------------------------------------------------------

f!6fll..A: ~r;a.to!.. PAQ iJ"i 2!ls, 
Ring-superato •• are two-connect.o- .tructur.s, i.... the ring-

superatoll cannot be split into two parts by .cis.ion of a .ingle 

bond. The ato., in an •• pirie.1 foreula .ay be distributed a.ong 

froa one to .everal .uch two-connected ring-superato... A 

distribution which allot. ato •• to two or aore superatoapot. will 

yield (re.pectively) structure. containing two or acre ring­
Jb 

superatoa. linked together DW ,ingle bond. (or acyclic chain,) 

1~1 Chelllists an.· lIora fallili"r with terM& such as r.n9& or ring 
5u&h:ms. The tlnll two-connected i. u.eel here in conjunct ion wi th 
ring-superatoms for a eor. pr.cise description. For ellla.ple. 
biphenyl may be viewed al a lingle ring systeM or two rings depending 
on the cheaical context. In this work, howev.r. biphenVI conli.ts of 
t ... o r ing-Iuperatoa. (two phtnwl ring.) linked by • single bOnd. 

12 



In the generation proceu, one nNst find all pouible ways of partitioning the 

given formula into superatompots and a remaining pot, such that molecules can 

be constructed. The considerations in farming superatom partitions deal 

primarily with valence and unsaturation. This procedure is summarized in 

Appendix C, Superatom Partitions. The partitions which result are summarized 

in Table II. 

--------------------------------------------------------------------Table JJ. Allowed Part i t ion, of C U Into Superatoepot. and R ••• ining 
Ii 3 

Pot. 

Polrt j t ion NUMber of Superato.pot NuIIb.r Re.aining 
NUMber Supe,. a ta.po ts 1 2 3 Pot 

1 1 C U 
6 3 

2 1 C U C 
S 3 1 

3 1 C U C 
4 3 2 

4 1 CU C 
3 3 3 

5 2 C U • C U 
4 2 2 1 

6 2 C U C U C 
3 2 2 1 1 

7 2 C U C U C 
2 2 2 1 2 

8 2 C U C U 
4 1 2 2 

9 2 CU C U C 
3 1 2 2 1 

10 2 CU C U 
3 2 3 1 

11 3 C U C U CU 
2 1 2 1 2 ·1 

--------------------------------------------------------------------

13 



eAlU ~. run~~'t..eC!atg., Constr~!ion. 

Each part i t ion (lable J J) IIUst now be treated in turn. The couplet. 

set of ring-superato •• for each .up.rat~pot in I given partition 

must be constructed. The .ajar Itepi in the procedure ar. outlined 

in Figure 2. 

Valence List. The first step in part B is to strip the superatompot of 

atom names, while retaining the valence of each atom. The numbers of each 

type of atom ore saved for later labelling of the ciliated skeletons (Chart I). 

A valence list may then be specified, giving in order the number of bi-, tri-, 

tetra- and n-valent nodes which will be incorporated in the superatom. Thus 

the superotompot C
6
U

3 
is transformed into the valence list 0 bivalents, 0 

trivalents, 6 tetravalents (0, 0, 6), and C
4

U
2 

becomes (0, 0, 4) (Figure 2). 

Calculation of Free Valence. From the valence list and the associated ....,. . 
unsaturotion count the number of free valenees of each superotompot is 

determined uniquely. (see Calculation of free Valence, Appendix C). For 

C
6
U

3 
the free valence is eight (Fig. 2). The free valence of a superotom 

represents the number of bonding sites which can connect to hydrogen 

atoms, other superatams Ott atoms in the remaining pot. 

~rti!i~in.9 e!.Fl;!.e .. ~C!le!,c,. The free valences are then partitioned 

among the nodes in the valence list in all possible, unique ways. (1M 

Appendix C, Partitioning of Free Val,nce). 

14 



Oc~rce List. Each partition of free valenc •• alter. the .fiective 
~""""''''''. 

valence of the nodes in the original valenc. li.t with re&pect to the 

ring-superato •• In the exa.ple. as.ign.ent of one or two fr~. 

valences to a tetravalent node trans for •• this node into a tri· ~ 

bivalent node respectively. AI the ring-luperitOM il con.tructed. 

those tetravalent nodes which have been a.signed. say, two free 

valences, hav~ then only two valence. re.aining for attaChMent to the 

'" rlng-superato •• The.e node. are then of degree two and ~ay be 

terMed secondary nodes. Thu. the partition of free valence. 

2.2.2.2.0.00n SiM tetravalent node. yields the degree li't (4,0.2) 

(Fig. 21 as four of the tetravalent nodes receive two free valence' 

each, yielding four node, of degree two (s.condary) and I.aving two 

nodel of degree four (quaternary). The prograa keeps trICk of the 

nUlIlber of fr .. valenCII ... igned to all nodll for ~H in • IUbllqu.nt 

step. 

~. A, will be clarified In the .ubsequent discussion, there are 

several general types of ring-super.tOMs which cannot b. constructed 

fro~ the vertex-graphs .v.ilable in thl CATAlOG (described below). 

17) Use of the term degree with reference ta the degree list refers to the 
number of bonds other thon free valences, with double bonds being counted 
twice. A free valen(;e may or may not eventuaUy be attached to a hydrogen 
atom in the final structure. 
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These are al I cases of multiple extended unsaturations either in tne 

fornl of double bonds or rings. ExaMples are the following: 

1) bi-. tri- •••. n-cyclics with e)Coc~clic double bond.: 
2) some tvpes of ~ ring swsteu: 
3) al lenes e)Ctenged oW additional douDle DOnd., •• g •• 

C.C.C.C 

The concept of a loop, each loop cOl15istin~ of Q single unsaturation and at least 

one bivalent node, must be utilized for these cases. Examples of loops 

containing one, two and three bivalent nodes are shown in Chart II. Note thot 

the two remaining "end,u of the unsaturation will yield a -looped structure-

when attached to a single node in a graph (shown as.&.. Chort II). 

---------------------
Chart 11 

bi"alents • 1 2 3 

0 0 0 
The m~thod for specification of loops is disculsed in Calculation of 

Loop~. Appendi)C C. 

~tW~ 2f. ~9"'do.!X ~ ~ !e2e! ~ t!on;I~. The secondary 

nodes in the degree list are partitioned between the loops (if any) calculated 

in the previous step and the remaining non-loop portion of the eventual graph. 
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Aspects of this partitioning step are presented in Partitioning of Secondary Nodes 

Among Loops and Non-Loops, Appendix C. Results for the example cre 

indicated in Figure 2. 

~. This procedure ~ields tho reduced degre.liet 

~hich contains none of the secondar~ nodel orjginall~ pr •• ent in the 

oegree li~t. Anw secondar~ nodee appearing in the reduced degree I i.t 

are termed ~special" secondar~ nodes a. the •• nod •• will have loop. 

attached in subsequent steps. 

Vertex-Graphs. The reduced degree lilts are used to specifW I •• t 
~ .................. 

of verteK-~raph5 for the eventual ring-superatoM •• All two-connected 

structures can be described by their verteK-graphe. which are, for 

most structure&, regular trivalent yraphs. This concept has been 

described in detail bIJ LederberglC' who has also presented a 

gener,jtion and classification schue for such graph&. Given a set of 

a i i vertex-gr aphs. the se t 0 f a I I r j ng- supera loms .ay be spec if i ed IS 

irlc vertex-Qraphs are maintained b\j the prograll in the CATAlOG. 

ld1alo9 enlries for r~9ular trivalent graphs possessing two and four 

fIQC:"!:> ure pr~sented in Table 111. Thi, list Must be suppleMented by 

;htuition .. 1 vertel<-graphS to coyer seyeral special cases req\.l;r .. o for 

generation of al I structures for the exaMple. Theae are also 

presented in Table III. ~ith the reduced degree lilt Of • 



T ABLE III. Vertex-Graphs Necessary fo!' Construction of Isomers 
of C6HS' This is Q Partial listing of the Catalog. a 

Number of Nodes 
Planar 

b of Degree 
Reeresentation Name Three Four Remarks 

Q) l~ Regular trivalent graph 
(hosahedron) 2 0 of two nodes 

0 M~ 4 :} Regular trivalent graphs 

~ ~l of four nodes 
(tetrahedron ) 4 

A single ring composed 
"Singlering k" 0 0 of! secondary nodes 

CO) Tetravalent Two nodes of degree 
Dihedron 0 2 four 

00 
A single quaternary 

"Daisy" 0 node 

@ ~ 2 

(a; 'P)w li~,tini?; of reference 10 has been expanded to inc±'Bde vertex-graphs of 
other combinations of nodes of degree three and four a. The completeness 
ot' tr:t:' Catalog has beeo veJ'ified .... here possible by independent graph 9b 9 
consc:"lc-cion methods l~ and by comparison with Balaban '3 compilations I e 
W'hf'n .. appropriate. 

10 
(b) Nru~es, except those in quotation marks, taken fro~ Lederberg. 

18a.) N.S. Sridharan, unpublished results; b) L. Masinter, unpublished 
results. 
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superatOQlpot. the prograM reQuests the appropriate CATALOC entries. 

In the eK3nlpie (Fig. 2). the reduced degree li8t (0.0.2) lipecities 

verte~-graphs containing two quaternar~ nOdes (tetravalent dihedron). 

The reduced degree list (0,4,0) specifie, regular trivalent graph. of 

four node.. of which there are two: 4AA and 4SS (Table 
"""" - Ill), IoIhen 

on I!J secondary ;"Iodes are present in the recluced degre. I i It, the 

graph "Singlering" (Table Ill) il utilizecl. 

Int~rlude. Up to this point the program has .ffectiv.l~ decoMpo •• d 
~"4 • 

the problem into a seri •• of .ubprobl •••• ~orking down fro. the total 

IJot of <'tonlS througl, a series of partitions and aubpartitions to the 

set of possible verteM-graph.. In subsequent .tepi the Y.rte)(-gr~ph. 

are eKpanded to the final structures bW a •• ri •• of con.tructive 

graph label I ings (Table IV). 
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Table IV. 
Algorithm 

The Six Graph labelling Steps Performed by the Labelling 

Labelling Step 

2 

3 

4 

5 

6 

Function 

label Edges of Vertex-Graphs with 
Special Secondary Nodes 

Label Edges of Resulting Graphs with 
Non-Loop Secondory Nodes 

Label loops of Resulting Graphs witfl 
loop Secondary Nodes 

l.obel Nodes of Cyclic Skeletons with Free 
Valences 

label Nodes of Ciliated Skeletons with Atom Names 

Label Free Va:ences of Superatoms with 
Radicals (see Appendix D) 

~~ ~ ~ ~ ~ e,eeci!.1 ~~., ~od.!:. 

Special seconoar~ nodes are those that will have loop. attached. Th. 

soecification of the possible attachments of the nodes to the graph 

i a i:I "label I ingM procedure. This is the first ~f six such graph 

label I ing steps perforMed by the program. (Table IV). All of these 

label I ing steps involve the sa~e co~binatorial proble., that of 

associating a set Jf n labels. not neLessarily distinct. with a set 
1'3 

of oDjects wi th arbi trdry .ymaletry • The same lab,ll ing algori thm 

is utdized for each of the six labelling step&. A description of the 

underlying mathe~atic. and proof of completen ••• and irredundancy 

appears 6eparatelwl~ 
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Some aspects of the first labelling step indicate how equivalent labellings (which 

would eventually yield duplicate structures) may be avoided prospectively, 

by recognition of the symmetry properties of the graph; in the first labelling, 

the vertex-graph. These symmetry properties are expressed in terms of the 

permutation graup (see Appendix A and refs. 13 and 14) on the edges of the 

vertex-graph. This permutation group, which defines the equivalence of the 

edges, may be 5pecified in the CATALOG or, alternatively, calculated as 

needed by a separate part of the structure generator. As subsequent steps are 

executed, a new pormutation group (e.g., on the nodes for labelling step four, 

Table IV) is derived as necessary tl • Thus, only labelHngs which 

result in unique expansions of the structure are permitted. The reader 

examining Fig. 2 may note that for this simple example the symmetries of the 

vertex-graphs arid subsequent skeletons can be discerned easily by eye. For 

example, all edges of the tetravalent dihedron are equivalent, as are all the 

edges of the regular trivalent graphs ~ and also m. The ~ graph 

(Table II, Fig. 2) has four equivalent edges and one other edge, and so forth. 

In the general case, however, the symmetries of the vertex-graphs and 

subsequent expansions thereof ore not always obvious. 

With the group an the edges specified, the labelling of the vertex-
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graphs ~ith ~pecjal secondarw nod •• i. carried gut. The r •• ult. of 

this procedure for partitiont containing loop. are indicated in 

F i oure 2. 

~e!!i~g ~ t:i0n-L2?e ~ ~ The graphs which resulted hom 

the previous labeliing are now labelled with the partitions of non-loop 

secondary nodes (see Partitioning of Non-Loop Secondary Nodes Among 

Edges, Appendix C). Each of the five partitions for the tetravalent dihedron 

in Fig. 2 results in a single labelling, as all four 

edges of the graph are equivalent. When edges are distinguishable there may 

be several ways to label a graph with a single partition. There are, for 

example: for the EBCB graph, two woys to label with the partition 3,0,0,0,0, 

four ways with the partitioo 2,1,0,0,0 and three ways with the partition 1,1,1,0,0 

(Fig. 2). 

~ ~ ~ ~n~~ry ~ There remain unassigned to the graphs 

at this point only secondary nodes which were assigned to loops. These 

nodes are first partitioned among the loops. (see Partitioning of loop 

Secondary Nodes Among Loops, Appendix C). For example, 

following the path from the degree list (1t,0,2) through labelling 

with non-loop secondary nodes (Fig. 2), there Cl"e two ways of 

labelling the two equivalent loops with four secondary nodes. There 

is one way to label the two loops of the adjacent graph with three 
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s~conuar~ node, and one ~3y of lab.lling the two loop. of .ach of thl 

tl~O " •• aining O,..phS in thi, •• ction of Figl.lre 2 with two ,.condat'" 

nodes. in this ,MaMpl. (C U » the loops in .very ca •• are equivalent 
6 3 

or there is onlll one loop to be labelled. In thl g_ne,.al cale loope 

May not be equivalent, ,. •• ulting in a oreater nuab.r of way. to label 

loops with a given partition of •• condary node •• 

Cyclic SAeletons. The previous Ilbeiling .tep •• pecifi~d the nu.ber 
~~-

of seconda,.y nod •• on .ach edge of and loop attached to the verteK-

,raphs. AI I ato., in the orioinai luperatoapot are thus accounted 

fo,.. A r.p,. ••• ntation of the ,. •• ult i. the cyclic ,k.leton. where 

nodes and their connection. to one another are .pecifl.d. (The •• 

• kel.tons begin to r ••• mble conv.ntional ene-ieal .tructur ••• ) 

Labell ing wi th Fr.e Valence •• T.,e node. in a ewe I ie .k.,.ton ar. - ----..........-~ 
then labell.d with fr.e val.nce., Wielding cili.t.d .kel.ton •• Thi. 

labelling i6 triyial in the eKaaple, a. all .toa •• r. of the .... 

valence (four) (Figu,.e 2). Fr •• valence labelling I, perfor •• d with 

k"0~Iedge ,of how .any ato.. of .ach val,nce were pr.,ent in the 

original supe"atoMpot. but independent of the id.ntiti.s of the 

a tvOl!>. The COllbi nato,. ia I COllplllCi tw of thi. lab.11 ing p,.Oble. foilowl 

from the possible oc:c:urence of atoms with differing valences. In the 

general cose there may be several ways to perform this labelling on 0 
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single c~cl ic skeleton. wher.a. in the C U exa'ple thlre ie onlW one 
63 

Label ling with Ato. Na.e •. The nodes of a ciliated skeleton are 
~..- ~v---..... 

then labelled with atoM na.e. to yield the ring-superatol(s). Again 

this label ling i. trivial in the exa.ple, a. only one twP' of atol is 

present (carbon), yielding in each case only a singl. superato. (Fig. 

2). If th~re is more than one twpe of atol with the .a •• valence 

(e.g., si I icon and carbon), the labelling proble' il lore cor..~I.)C. 

Each node of appropriate val.nc •• ay be labelled with .ither twpe of 

atom. Duplicate structures are avoided bW calculation. involving the 

group pertaining to the let of nodi' of equal valence. 

PART C. 
~.--

~clic G!.-nerator. 

The superotom partition expanded in the example had no atoms assigned ~ 

acyclic chains (reRlOining pot). The set of ring-superatoms on completion of 

Part 8, above, thus yields the set of 36 structures on placement of 0 

hydrogen atom on each free valence (Fig. 2). If the superatom partition 

(partitions 2-11, Table .. lI) contoined more than one superatompot or 

ony atoms in the remaining pot, the acyclic generator must be used to 

connect the segments of the structure in 011 ways. This procedure is 

de5cribed in detail in ~pendix D. 
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DISCUSSl~ 

~tion of ~!!.~!. The .)CaMp'. (Fig. 21 ha, con,iderlel only 

expansion of a lingle super.toM partition. It .ight b. inltructi~e 

for the reader to atte.pt to generate .11, or It 1 •• lt the r'Mainin~, 

structures for C H . The nu~.r of lolutionl i. pr.,.nted in a 
G 8 

subsequent .ection. If the algorithM a. outlin.d in Figure 2 is 

follo~ed, it i. sugge,t,d that th. i~itial ,uplrat~ partition. in 

Table II be eKamined car.fullw. 11'1.,. partitionl yield '0.' 

indication of the types of structur •• which will r.lult froM .ach 

partition. For example. partition 4, C U in a aingle tuplrat~pot. 
3 3 

plus three carbone in the re.aining pot •• hould wield all Itructure. 

containing. three-•• mbered ring po •••• sing two dOUbI. bond. O~ a 

triple bond. As there are onlU t~o fr.e val.ne •• , the r •• aining 

atoms can be in a .ingle chain (~s a propyl or ilo-propy! radical) or 

.s a methyl and an ethWI grouP. but not I. three .ethul group •• 

~Ieten' •.• !;!!d Jr"~. Altholq\ a .. thMatleal proof of the 

f 
. 15 . 

completeness and irredundanc:W 0 the •• thod ex.,t, • there '1 no 

guarantee tnat the i_ple.entation of the algorith. in a coaputer 

program maintains these d.sir.d characteristic,. Confidence in the 

con1pleteness and irredundanc:y of a prograM of thil C:OIIPlexitw can be 

e~gendered in the following waus: 
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1) Verification of the program's performance by another, completely 

independent approach. An independent method has been developed which 

enumerates, but does not construct, all isomers of compositions containing 

C,H,N, and Ol8b. It is interesting that the program for simple counting 

of the solutions is significantly slower than construction of all of the 

solutions, despite some ef fort to improve the efficiency of t.he former 

program. Thus, due to li'lllitations of computer time, we have been limited 

to compositions containing only 5 or fever non-hydrogen atoms. For these 

cases, however, the numbers of isomers obtained by both programs agree. 

Balaban has presented lists of isomers of C4H4 , C6H6, C5He &nd C4H409d • 

These lists were derived from his tables9d of graphs of degrees 2-4 and 

orders (numbers of nodes) 1-5. Although we agree with his lists of 

hydrocarbon isomers, the list of isomers of C4H40 is incomplete. The 

structure generator provides 62 structures (as opposed to 59). The three 

missing structures are: o o 
These structures should have been produced following Balaban's method9d • 

The fact that they were not points out the difficulties inherent in any 

procedure for isomer generation in which manual steps are involved (see below). 

2) Testing by manual generation of structures. Several chemists, all 

without knowledge of the algorithm described above, have been given ~evera1 

test cases, including C6U
3

' from which structures were generated by hand. 

Familiari ty with chemistry is no guarantee of success, &8 evidenced by the 

performance of three chemists for the superficially simple case of 

25 



-----------------------------------------------------------------
* T able V. Performance of Three Chem; sts in Monua I Generation 

of Isomers of C6HS (C
6

U
3

). 'There are 159 lsomen. 

Number Generated Type of &ror 

Chemist 1 161 .. duplicoates; .. omissions 
2 wi It\ 7 coarbon atoms. 

Chemist 2 168 16 duplicates; 7 omissions 

Chemist 3 160 2 duplicates; 1 omission 

* One Ph 0 ond two graduate students. 

This example indicates that for R1OI"a than very trivial cases, 

it is extremely difficult to ovoid duplicates (tricyclics, for 

example, are difficult to visualiu when testing for duplicates) and 

omissions. Omissions appear to result from bolt\ carele.-ss and 

neglect of ring systems that are implausible or unfamiliar. The 

program seems better at testing the chemist than vice vena. In 

every instance of manual stRIcture generation, no one has been able 

to construct a legal structure that the program failed to construct. 

Na one has been able to detect an instance of duplication by the 

program. 'This performance builds some confidence, but ma,.,ol 

verification of more complicated cases is extremely tedious and 

difficult. Isomers for many empirical formulae have been generated, 

and some results are tabulated in Table VI. lhe choice of examples 
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has been motivated by a desire to test all parts of the program where 

errors may exist while keeping the number of isomers small enough to 

allow verification. In this manner all obvious sources of errcr hove been checked, 

for exomple, canstl'\lction of loops on loops, multiple types of atoms of the same 

valence (e_g_, CI, 8r, I) and examples containing atoms of severol 

different valences including penta- and hexavalent otoms. 

3) Varying the order of g.ner~tion. The ttructur. of the 

progra~ permit. additional t •• t. bw doing .0 •• opt~ation. in a 

different order. For exa.ple. on. variation allowed i, to I.av. 

h~drog.ns a.sociated with the ato.s in each partition rather than to 

strip theM away initially and plac. th •• on the r •• aining fr •• 

valencel in thl last stlp. Each such t •• t hli r.sult.d in the s ••• 

,.t of ilo.e,.. 

4) Using Polya enulleration 6 at the v.riou. labelling ,teps 

of th~ procedure to Ylrify the eorreetne •• of lub-partl of thl 

pr~gram. Using various co.oinltorial forMulae. one eln inlur. that 

the results of at least partl of the prograM are eon.ilt_"t with 

Independent caleulations. Thil approach wal ulld •• t.nliv.ly in thl 

uevolopment of the labilling algorithe. 
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In $u.~ary, the verification procedure. utilized have 

absence of errore in the cOMputer i.ple.entation of 

III indicated 

the'lgorithil. 

Also. there i. no clear reaeon why generation of larger .et. of 

i SOli"?!" (; thou I d no t a 160 proceed correc t I~. The f ina I yerd i ct 

however, Must await deveI op •• nt of new .ath •• atical toole for 

verification by enuMeration ( •• e above) or an alternative algorithM • 

. . 
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--------------------------------------------------------------------Table VI. Th. NUMber of rIO •• r. for Several Eapirical For~la. 

Enlpirical E)Campll NUliber of leo .. r. nerwa II II V.,. I f jed? 
Formula COMpound 

C H benzene 217 W" 
6 G 

C H 1,3-cyclone.adiene 
G 8 

159 W" 

C H cWclohexene 
6 10 

77 W" 

C H cwclohexane 2S W" 
6 :2 

C H heKane 5 W-' 
6 14 

C H 0 phenol 2237 no 
6 6 

C H a ewe I oheKanone 747 
5 10 

C rI 0 2-hexanone 211 " .. 6 12 

C H N p\lra:ole 155 no 
3 4 2 

C H ~ 2-pwrazol in. 1~6 W·· 362 

C H N tetrahwdropwrazole 62 no 
382 

C h ~ propyleroedia.ine 14 yel 
J 10 2 

C H P (pentavalent Pt 110 no 
491 
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CQI:!st.miab.. The structure generator is designed to produce a list 01 all 

possible graph isomers (Appendix B). This list cantoins maR)' structures whase 

existence seems unlikely based an present chemical knowledge. In addltian, 

the program may be called on to generate possIble structwes for an unknown 

in the presence of a body of data on the unknown which specify various 

features, e.g., functional groups) 01 the molecule. In such instances 

mechanisms are required for constraining the generator to produce only 

structures conforming to specified rulfts. The implementation of the 

acyclic generator possessed such a mechanism in the form of GOODLIST 

(desired features) and BADLISr (unwanted features)3 which could be 

uti lized during the course of structure generation. 

The complete structure generator is less tractable. As in pro.pective 

avoidance of duplicate structures, it is important that unwanted structures, or 

portions thereof, be filtered out as early in the generation process as 

possible. It is relatively easy to spec. ry certain general types 01 constraints 

in chemical terms, for example, the number of each of various types 01 rings 

or ring systems in the final structure, ring fusions, functional groups, sub-

structures ond so forth. It is not always so easy to devise on efficient scheme 

for utilizing a constraint in the algorithm, however. As seen in the 

above example (Fig. 2) the expanded superatom partition Ntults in what would 

be viewed by the chemist as several very different ring systems. 
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The design of the program facilitates same types of eonstraints. For 

example, the program may be entered at the level of combining superatoms to 

generate structures from a set of known sub-structures. If additional 

atoms are present in an unknown configuration, they can be treated as a 

separate generation problem, the results of which are finally combined in all 

ways with the known superatoms. This approach will not form additional two-

conner.ted structures, however. Constraints which disallow an entire 

partition may be easily included. For example, it is possible to generate 

only pure ring isomers by "turning off" the appropriate initial superatom 

partitions. 

Much additional work remains, however, before a reasonably complete set of 

constraints can be included. The implementation of each type of constraint 

must be examined and tested in detail to ensure that the generator remains 

thorough and irredundant. 

CONCLUSIONS 
~ .. 
Tile algorithm sununarized in this paper permits the substantial realization of 

the graphical structures that constitute the domain of organic chemistry. The 

version of the algorithm presented here ignores the tetrahedral s1mmetry 

of the valences of the carbon atom. However, the topological framework 

readily admits of systematic tests for asymmetric centers which can then be 

assigned to the dichotomous categories of the alternating group A4 • This 
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framework also provides a simple, systematic weighting of radicals for 

assignment of precedence that proves to be, if anything, even more 

straightforward, compr~hensive and free from ambiguity than the Cahn­

Ingolrl-Prelog conventions l9 

The mathetmatical framework of our analysis is a mapping of chem-

ical bonds onto the edges of topologic;al graphs. This simplification 

can lead to disparities, for example in t~e description of coordination 

complexes, the bond~ of which are non-equivalent. The symn~tries of 

such complexes are similar to those of certain superatoms. 3uggesting an 

obvious and easy way to extend the system. Likewise, the system does 

not now accommodate isorr~rism based on sterle hindrance, or the associa-

t i on of mole cules by secondary forces, or by non-covalent constrants. 

For example, from .J topological standpoint, threaded molecules, or 

catenanes, are disjoint graphs. Nor do we attempt to display the geo-

metric conformations of molecules: indeed, son~ topologically plausible 

structyres may be chemically unrealizable. 

Conversely, implausible constructs. such as carbon atoms possessing 

"inverted" tetrahedral geometry20 may become reality by empirical dis-

covery. The constraints on chemically plausible structures depend on 

(1.9) R. S. Cahn, C. K. IngOld, and V. Prelog, Angew. Chern. Internat. Ed., 
",385 (1966). 

(20) (a) K. B. Wiberg and G. J. Burgmaier. J. Amer. Chern. Soc. t ~. 
7396 (1972); 

(b) K. B. Wiberg, G. J. Burgmaier, K. Shen, S. J. LaPlaca, W. C. 
Hamilton, and M. D. Newton, J. Amer. Chern. Soc. , U. 7402 (1912) • 

the domain specified by the chemist. 3 A DENDRAL system for molecular 

structure elucidation25 (based on the structure generator described in 

this work) of molecules in frozen hydrogen matrices would have differ-

ent constrailts from a version useful to biochemists. 
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Chemists hitherto have been able to explore the de fa~~ boundaries of their 

domain without explicit maps. The exhaustive and efficient study of all 

~~sible structures can now be facilitated with the assi:tance of computer 

programs that can help assure that no possible construction has been 

at 
over I ooked • 
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~I'i"'l\lt i )(.",_(qll i v~Jc~c~_ ~I.l~~cS <lnd Fini to Pcraut.t ion ergs. 
j~ • .J ;'Cl"tJl'r::, of a :.et of pOSSible i6011eri u~ be defined to be 
i'c;UlvJI.-nt ;4 ... sp~.::ified tr.lnlforll3tion of one"lIbeI" cause. it to 
tee ~Up'l ,. i'OJ";'!, I e uj)on .lnother .eAlber of the .. t. Far ...,.Ie. there 
~rc fifteen possIble W~~I of attaching two Chlorine Ind four ~0IIft 
atoms to a ben:.n. ring (Chart III). 

----------------------------.. -----------------------------------

C 'H1rt m 
CI 

'~ "I X' IJl [~ C':t) " ' /1 
1:-..., 'I L.:: CI 

\' I 
CI/' /' CI ~ '" b 

CI CI 

(\ C\('t} C'y b I I '/ I I ~I 
I~ I :--"'1 CI" CI CI '" 

CI~I 

0 2 

CI 

CI 

tn 
....... ' , 

II 
~'C'O 

CI : I :-..... I '-CI 

-----------------------------------------------------------------

If rotations ~y multiples of 60 degrees are specified as allowed 
transformations, the fifteen stNctures fall logically into three 
classes. termed "equiyalen~e classes" (Chart 111). Within each 
equivalence class structures may be made superimposable by the 
rotational transformation. If one .Iement (in thll ca. a molecular 
structure) is chosen from each equivalence cICIII, .... COIIIp ..... t 01 
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p~$$iUI. structures is deterMined. without duplication It i. the 
ta$k 0: the label ling algorithM to produce one and oni y one graph 
IJuc11 Ing corre~pondino to one ••• ber of each .quival.nc. cl •••• 

The set of transformations which define on equivalence class is termed a 
"finite permutation group. It This permutation group may be calculated based 
on the symmetry properties of a graph (or chemical stNcture in the example 
of Chart III). This calculation provides the mechanism for prospective 
avoidance ?f duplicat~on. These ~rocedures ore described more fully in the 
accompanying paper • 
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Appendix 8. Isomerism and Symmetry. 

Appendix A introduced the concept of equivalence classes and finite permutation 
groups. The selection of transformation (Appendix A) directs the calculation of 
the permutation group ond thus defines the equivalence classes. DiFferent types 
of transformation may be allowed depending on the synwnetry properties of the cia. 
of isomers considered. This Appendix discusses several of the possible types of 
isamerism, most of which are familiar to chemists. The reader seeking a mare 
thoroug, discussion of some types of isomerism discussed below is referred tct an

22 exposition of molecular symmetry in the context of chemistry and mathematics. 

Isomers are most often defined as chemical structures possessing the same 
empirical formula. Different C:H1cepts of symrnefTy give rise to different 
classes of isomers, some of which art! described below. 

Permutational Isomers. Permutational isomers are isomers which have in 
common the same Skeleton and set of Iigands23They differ in ;, distribution 01 
ligands about the skeleton. Gillespie et 01. and KlempeNl' have used the 
concept of permutational isomers to probe into unimolecular rearrangement or 
isomerization reactions. 

Ste reoi somers. Ugi et 01. 22 
have defined the "chemical constitution" of an 

atum to be its bonds and bonded neighbors. ThO!;e permutational i.....-s which 
differ only by pennutations of ligands at constitutionally equivalent positions farm 
the class of stereoisomers. 

Isomers Under Rigid Molecular )~. If one perceives 
molecular structures as having rigiSeetons, the physical 
rotational (three dimensional) symmetries and transformations may be 
readily defined. Each transformation causes each atom (and bond) 10 

(22) I. Ugi. o. Marqu~rding. H. Klusacek. G. Coket. and P. Gill •• pie, 
~ . .c.tJB. int,rn, t. fJIll .• 9. 783 (1978) • ... 

(23) P. Gi Ilespie. P. Hoff.an. H. Kluucek. D. Marqu .. ding. S. 
Pfohl. F. Rallirez. E. A. holi., and J. Ugi. ~. ~ 
;nt~rn.t. Edit •• 18.687 (971). - -

(24) (a) 
(b) 
(c) 
ld} 

&.I. G. Kle.perer, ~. due. '-bI!!. 1&. 
&.I. G. Kleaperer • .iJz.i.A. p. 8368; 
w. G. Klemperer, ibid, ~ 380 (1973); 
W. G. Klemperer, ibid; p. 2105. 
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occupy the position of another or sa •• ato. (and bond) 10 that the 
rotated structure can physicall~ occupy its for.er po.ition .nd at 
the same time be indistinguishable froM it in any way. Thi. i. the 
most fami I iar for. of aw.metry. Und.r thi. type of Iy ••• try 
conformers are distinguishabl. and b.long in distinct equivalence 
elasse.. Every tr.nsforaation i. orthogonal and pr •• erv •• bOnd 
angles and bond length. al well '1 .aintaining trut chir.llt". 

Ii one ailo~s other orthogonal transformationl that .Iter chiral 
properties of structures. equivalence clalses r •• ult that trelt bOth 
the left-handed and right-hand.d for •• of chiral aollcule. to be the 
"same". lhus a "mirror i.age" transfor.ation when .ui tlbly defined 
pel"ali t& the left-handed forM to e"actty .uperiapo.. the right-handed 
form and vic. ver'a. 

Isorne.s Under Total nalecular Sw!aatrw. If in addition to the above 
mentioned rigid .olecular transforMation. one recogniz •• the 
fle~ional move.ents of a nonrigid sk.l.ton. a dwnaaic lya .. try group 
m~y be defined. Under this definition, differ.nt conforaer, now are 
grouped together. Thus the ·chair- and -boat- confor.ations of 
cyclohewane belong t~ the ••••• quivalence cia •• under dyn .. ic 
symftletry. The perlllutation gro~p of skeletal flalCiDility i. 
computable feparatel~ and independently oi rigid aolecular ava •• trU. 
One can then view total Mol.cular .y ... trw a. the prodUct ~f the two 
finite per.utation groups. 

Ispmer. Under Connectivity Su ... try. Th. concept of conn.ctivitw 
symmetry was introduced pr.~iousIW (METHOD I.ction). Ev.rw 
permutation of atoms and bondl onto th .... I v •• i. a .~ ••• trw 
transformation for connectivity sU .. etry if. 

a) each atom i$ mapped into another of like speci ••• e.g •• N to 
N. C to C. 0 to O. and 

bl for eY(lry pair of atollls, the connectivity (none. single. 
no"t)ie • triple .... 1 is preserved in the upping. i.e. the the 
connectivity of the two atoms il identical to the connectivity 
of the atords they are Mapped into. 

One can readily recognize that transforMations a. defined 
auto"\aticall~ preserve the valence and bond distribution of evarw 
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atonl. It is very probable that readers accustoud to th,.ee 
di",~n5io,.al rotational and reflectional syaetri •• will tend to 
eqllate thell wi (h the 5\Jllmetrie. of connectivi til. It il •• pha.ized 
again that connectivity s~ •• etrw do.s not consider bond I'ngths or 
bond angles. and it include. certain transfora,tions that art 
conceivaole but have no phylic.1 int.rpret.tion IIV. thlt of 
permuting the ato •• and bondl. 
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.Appendix C 

Superatom Partitions. The first step is to replace the hydrogen count with the 
degree of unsaturation. The number af unsaturations (rings plus double bands) is 
determined from the empirical formula in the normal way, as giwn in equation 1. 

n 
U = 1/2 (2+1: (i-2)a.) 

i=l I 

U = unsaturatian 
= valence 

n = max:mum valence in composition 
a. = number of atoms with valence i 

I 

If the unsaturatian count is z.o, the fOl"lYllla is passed immediately to the 
acyclic generator. Specifying the unsaturations as U's, the example C6Ha 
becomes C

6
U

3 
(hydrogen atoms are omitted by convention). 

There are several rules which are used during the partitioning scheme, as 
follows: 

I. The resulting formula is stripped of other univalent atoms (e.g., 
chlorine) as such atoms camot be part of two-connected ring­
superatoms. These univalent atoms are relegated to the pot af 
remaining atoms. 

II. The remaining pot in a given partition (those atoms not allocated to 
superatompats) can contain no unsaturatians. Thus all rings and/or 
multiple bands will be geneiQted from the superatompots. 

III. It follows that every superatompot in the partition must 
contain at least two atoms of valence two or higher plus at least 
one unsaturation. If there are no unsaturatians then no rings could 
be built. In addition, an unsatwation cannot be placed on a 
single atom. This rule defines the minimum number of atoms and 
unsaturatians in a superatompot. 
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IV. The maximum number of unsaturations in a superatompot is given by 
Equation 2. Superatoms must f)O'5eSS at least one free valence .l ,10 

that superatompots with no free valences, e.g., 02Ul or ~3' are not 
allowed, unless the superatampot contains all atomi in the .rical 
formula (since no univalents, and thus no hydrogens, are allowed in a 
superatompot, this is indeed a rare occurance.) 

n 
U = 1/2 (I (i-2)a.) 

max i=3 I 
(2) 

U = maximum unsahWation of a suf*"Otompot 
max 

n = maximum valence in composition 
= valence 

o. = number of atoms with volence i 
I 

V. The maxi011Um number of superatompots for a given formulo is defined by 
equation 3. 

n 
S = 1/2 I o. 
max '=2 I 1-

n = maximum valence in composition 
S = maximum number of superatompots in a Slperatom partition 
max 

a. = number of atoms with volence i 
I 

note: the summation is over all atoms of valence> 2; univalents are 
not considered. 

(3) 

Rules I-V define the allowed partitions of a group of atoms into superatompots. 
These Nles do not, however, prevent generation of equivalent partitions, which 
would eventually result in duplicate sINctures. By defining a canonical 
ordering scheme to govem partitioning, we prevent equivalent partitions. One 
such canonical ordering is as follows: 

Canonical Ordering for Partitioning. 

o. Partition in order of increasing number of Slperatompots. 
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b. For each entrv in eaCh part of (a), partition in order of 
decreiling size of super.toapot bW allocation of atOll one at a 
tiMe to the reM,ining pot. 

c. Each individual partition containing two or aore 
superato.pots Must be in order of equal or decrea.ing .iz. of 
the superatoMpot. In other words, the nuaber of .to •• and 
unsaturat ions in f:;.IperatOllpOt.!!:tl .Ult be equal to or 1 •• 1 than 
the nUMber in luperltoMpart~. The progrl. note. thl equalitW 
of superatoMpotl in a partition to Iyoid repetition. 

The appl ication of rule, I-V i, be.t illustrated through reference to 
the aKa.pla of CU. The "Ki~ nu.o.r of super,teapot. for this 

S 3 
eKlmple is th,.ee (Equation 3), The,., i. on ... III to partition C U 

G 3 
into one sup.ratompot ~ith no reMaining pot. partition 1, Table 11. 
Subsequent assignment of carbon atoMs one at a ti .. to the ,.eaain;ng 
pot results in partition. 2-4. Table 11. The neMt partition 
fol lowing the .equence 1-4 would D. C U with C , •• igned to the 

2 3 4 
reMaining pot. This partition i, forbidden I. C U hal no fr •• 

23 
valences. The three waws to partition C U into tuo .uperat~pot. 

6 3 
are indicated along with the co,.responding partitions following 
a$sign~ent of atOM' to the re8aininQ pot, ,~partition. 5-18. Table 
11. Ther. is only one unique ~aW of partitioning C U into thr •• 

. 63 
5uperatoMpotS. partition 11. Tabl, 11. 

Calculation of Free Valence. The expression for thl fr •• yalence of 
a superato.pot is giyen bW equation 4. 

n 
FV - (2 +% (i-2), )-20 

j-3 

u • u.,~.:tturat ion of superatollpot 
i • v.,lC'ncc 
n • ma~jmu. valence in co.position 
a • number of atea. with valence 

i 
FV • free valence 
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Parti tioni'!!L......of F .. e. V31c~ Because ring-supe .. atOils ar. t ... o­
cvnne~ted structures two valences of each .to. of a sup ... atoapot Must 
be used to connect the atOll to the ring-superatOll. T~. no f .... 
valences can be .ssigned to bivalent nodes in the valance li,t, a 
IlIa)(iMUIll of one to each tr ival.nt, a .'Mi.UII of two to each 
tetravalent, and so forth. The ewa.ple (Fig. 21 i, fu .. the .. 
simpl ified in that there are only tet .. avalent nodes in the valence 
I ist. Inclusion of t .. ivalent nodes (e.g" nitrog.n ItOllS) ..... Iy 
eKtends the nUlllbe .. of possible parti t ions. The fr •• vllenees a ... 
p~rtition.d a.ong the tetravalent nod •• in ali way', a. il lu.t .. at.d 
in Figure 2. It i, iMportant to note that .... oval of .to. na ••• 
Illakes all n-valent (n-20 .. 3 0 ..... ) nodes in the vllenee Ii,t 
eqUivalent at this stage. Thus the pa .. titions (of eight f .... 
Y~lences among ,iM tetravalent nooesl 222200, 222020, 2l2OCe. ,., •••• 
002222 a .. e all equivalent. Only on. of the.. partitions ., 
considered to avoid eventual dupl ieatlon of .tructure,. 

Calculation of Loops. Ther. are several rule. which Must be 
fol lo~ed in consideration of loop as.ignment to ring-luperltOl'. The 
mini iliUM (MINLOOPS) and .aJCi.u. U1AXLOOPS) ~ ... , of loop. for I 
given valence list are designated by equation, SandS. 

n 

MIN lOOPS = max (0 , 02 + 1/2(2n - 1: Ja.)} 
j=2 ~ 

n 

MAXlOOPS = min [°2 I 1/2 I: (j-2) oj 
J=' ,J 

MINlOOPS 
MAXLOOPS 

Q. 

JJ 
n 

= minimum number of loops 
= maximLim number of loops 
= number of nodes with degreeJ 
= degree 
:::: highest degree in list <an I 0) 

The form of the equations results from the following consideratiON: 

1) Only secondary nodes moy be assigned to loops. Nodes of 

(5) 
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higher aegree yj \I alY~s b. in the non-loop porUon of the 
ring-super.to •• 

2) A loop. by definition, ~.t b. attached by two bond. to. 
single node in the r •• ulting ring-superato., The loop cannot 
be attached through the free valences. Thu. the dig,. .. list 
must possess a sufficient nu.b.r of quat.,.".,.., or higher degree 
nod •• to .upport the loop(s}. 

3) Each loop .ust hay. at least one •• condary node, which ia 
the reason MAXlOOPS is restrict.d to be at ltO.t the ~ of 
.econd.rw nodll in the degr.e li.t (Equation SI. 

4) ·,here Must be avai lable one unsaturltion for .ach loop 
{this i. i.plicit in the calculation of M1NlOOPS and nAKlOOPS, 
II .ach loop .ff.ctiv.,W for •• a new ring. 

fgriitioning of Secondo!'Y Nodes between loops and Non-l~ Far 8\Jch of 
the possible numbers of loops (0, 1, ••• ) the secondary nodes are removed from 
the degree list and partitioned among the loops, remembering that the loops are 
at present indistinguilhable and each loop must receive at least one secondary 
node. In the example (Fig. 2), starting with the degree list (4, 0, 2), the ... ere 
three ways of partitioning the four secondary nodes among two loops and the 
remaining non-loop portion. Removal of the four secondary nodes from the 
degree list and assignment of two, three or four of th .... to two loops r.sulh in 
the list specified in Figure 2 as the "reduced degree list". Specification of two 
loops transforms the two quaternary nodes in the degree list into two secondary 
nodes. This results from the fact that I'#t':l valences of a quotemary or higher 
degree node .... st be u$8d to support each loop. These or. "special" secondary 
(or higher, for atom5 with v'.1lence ) 4) nodes, howev., os these particular nodes 
will have loops attached as the structure is built up. Thus, in the example, 
any secondary nodes which are found in the reduced degree list will have a 1Gq) 
attached in 0 subsequent step. The degree li5t (4, 0, 2) thus becomes the 
reduced degree list (2, 0, 0) in the partition specifying two loops (Fig. 2). 
Similarly, the partition of one loop for the degree list (3, 2. 1) results in a 
reduced degree list of (1 t 2, 0) with the three original secondary nodes 
partitioned among loop and "on-loop portions (Figure 2). 

If, after the first, second, ••• nth loop partition, there ..... in OM 



or Mor~ quaternary or higher degree nodes in the reduced degr •• lilt. 
the I.st Must be tested again for the pos'iDility of .dditionil 
loops. Each loop partition will r.,ult in an Idditionel .et of 
structure •• The leCOnd pa •• will wield those Itructure. po ••••• ing 
loops on loop., and 10 forth. One such IUper.tOll "'iCh WOUld be 
generat.d in thie .anner 'rOIl. coapc.ition of ,.t '''It) CUi. lit 

S S 

c.c·c·c-c·c 
IS .... 

.Partitioning of Non-loop Secondary Nodes among Edges. The secondary nodes 
which were not assigned to loops ("non-loop seconda,y-;;'odes") are partitioned 
among the edges of the graphs after labelling with special secondc:wy nodes, or 
loops. loops are not counted as edges. There are, for example, five ways to 
partition four non-loop secondary nodes among the edges of the vertex-graph 
possessing two quaternary nodes (Fig. 2). 

Partitioning of lqog Secondary Nodes among Loops. This partitioning step is 
carried out os~ming indistinguishability of the loops. Each loop ftJst receive 
at least one secondary node, which limits the number of possible pcrtitions. 
Results are presented in Figure 2. 



Appendix 0 - Acyclic generator 

A method of construction of structures similar to the method for acyclic 
isomers is utilized to join multiple ring-superatoms and ~niJ! ~. 
The DENDRAL algorithm for construction of acyclic isomers' , 
relied on the existence of a unique central atom (or bond) to every molecule. 
The present acyclic generator uses the same idea. The present algorithm, though 
simpler in not having to treat interconnection of atoms or ring-superaloml through 
multiple bends, is more complex because of the necessity to deal with the 
symmetries of the ring-superatoms. 

01. Method for the caae wi th even ~ of total at.s. 

The superato. partition C U IC U I-IC (,.rtition 7, TIOI. II and 
2 2 2 1 2 

Figure 2) wi I I be used hire to illultrat. thil procedure. The 
superato.pot, C U and C U hlv. eXlctly one po.,ibl. ring-lUPIratoe 

2 2 2 1 
for each , ••• Table VII). 

-------------------------------------------------------------------. Table VII. 
Superato.pot 

C U 
2 2 

C U 
2 1 

-c=c-
>C=c< 

-------------------------------------------------------------------. 

ThuS aeycl ic structure. are to b. b~ilt with -C!£C- , ~::C< and two 
C's. 

There are an even nUMber of a tOIl I and ring-luperatOilI. The 
~tructures to be venerated fill into two clt~i"1 (I) tho •• with 
bond c.ntroid; (b) tho •• with an at~ c.ntroid. 

(25) 8. C. Buchanan, A. M. Duffield, and A. V. Roberhon, in -na •• 
spectrometry. Techniquel and Applicationl,- G. W. A. nilne, .d •• John 
Wi lew and Son •• Inc •• 1971. p. 121. 
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Category A. B(N) CENTROID (Me Fig. 3) 

Step 1. Partition into Two Part •• 

The atom. and ring-superlto •• in the li,t of 'uperltO.' Ire 
p~rtitioned into two parts, with each part hiving eKletlv hllf the 
total numbe .. of it.... Eac.t\ at. or ring-super.tOll il •• ingle It ... 
Each part M. to utl.fy equation 7, called the Rntrlctlon on 
Univalent •• 

Re.triction on Uni".lente, 

n 
a 1 < [1: (i-2)o.) - 1 

- i=2 1 

i = ''Glence. 
a. = number af atoms or superatoms of valence i. 
n

l = maximum valence in CGftIIJOSition. 

There are two WG'fs of partitioning the four items into two parts (Fig. 3). The 
restriction on univalents is satisfied in each ca.. The restriction will disallow 
certain partitions that have "too many·· 26 univalent. other than hydrogens and 
therefore is essential only in partitioning CIOfI1)OSitions that contain any number 
of non-hydrogen univalents. 

Step 2. Generate Radicals from Each Part. 

Using a procedure described in Section 03, radicals ant generaNci from each part 
in each partition. The result of application of this proc:ecMw tv the .... 1. Is 
shown in Table VIII. 

(26) The form of equation 7 results from the fact that the number of univalents (a.) 
cannot exceed the number of free valences necestary to connect the 1 

superatoms, leaving one wl.nee free for the radical valence. 

(7) 



---------------------------------------------------Tabl. VIII. Radicals Generated from Giyen Parts 

Part Radicals 

----------------------~-~------.---------------.-. ~-.---------

(10) -C5-C- , ) C ::C< ... 

-----------------------------+-----------------------
... 

----------------~------------+-------------------~-----------_._-----
(2~ -CsC- , C ... -CSC-CH

3 

-CH
2 
-C !!!CH 

-----------------------------+------------------~---------
(2b) ) C=C< , C ... -CH=CH-CH 

3 

-C-CH3 
/I 
CH2 

-CH
2
-CH=CH

2 

--------------------------------------~--------------------Step 3. For. Molecules F..- Radic.' •• 

T .... e radicalfl ar. cOlllbined in unique pai,.,. within each initial 
partition. Each pair give, ,.i .. to I uniqul IOltcule. for each of 
which the centroid i, a DOnd. Tt\et'e are nine euch 1IO'.cul.. for the 
._aMple chosen (Fig. 3). 
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Category 8. ATOM CENTROID <see Fig. 4). 

step 1. Selection of Centroid. 
One nust consider every IInique atom or ring-~ratom that has a free 
valenee of three or higher as an atom centroid ~ .' In the example, 
of three candidates available: -CEC-, ) C=C< and C, the fint is not 
chosen for it has a free valence of only two. 

step 2. PArtition the Rest of the Atoms. 
The atom or ring-superatorn chosen for the eentroid is remowd from the set 
and the rest are partitioned into a number of parts less than or eqllal to the 
valence of the central atom. Each part must have less than half the 
total numb.r of items being partitioned (again a ring-superatom is a 
single item). Each part must satisfy the restriction on univalents (equation 7). 

Thus, for the case where a carbon is the eentroid, four partitions are 
attempted. The condition that each part has I.ss than or equal to ane-half 
the number of S'Jperatoms remaining after sel.ction of the central clan nust 
be satisfied, or at most on. for this example. There is .xactly one 
partition for three parts, i.e., one in each. The partitions are shown in 
Figure 4. 

5..., 3. Gen.rat. Radicals. 
Once again, using the procedure described in Section 03, radicals are 
constructed for each part in each partition. For example, the partition 
-c-c- gives rise to .xactly on. possible rodical -C.cH (Fig. 4). 

Ship 4. Combine Radicals. 
Although in the .xample shown ev.ry part generates only one radical, in the 
g.neral case there will be many radicals for each part. If so, the radicals 
must be combined to give all unique combinations of radicals within each part. 



SteD 5. Fonn Molecules from Central Atom and Radicals. 
If the centroid is not a ring-superatom but is a simple atom, then each 
combination of radicals derived in Step 4 defines a single molecule that is 
unique. Thus for example when C is chosen as the centroid, step", gives one 
combination of radicals which determines a single molealle when connected 
to the central C (see Figure 4). 

If tf,e centroid is a ring-superatom and the valences of the ring-superatom 
are not identical then different ways of distributing the radicals around the 
center may yield different molecules. Labelling of the free valences of the 
central ring-superatom with radicals treated as labels (suppl ... nted with 
adequate number of hydrogens to make up the total free valence of the ring­
superatom) generates a complete and irreclundont list of molecules. Thus 
) C=C( is labelled with tf,e label set: 

ane of -C!!ICH, two of -CH
3
, and one of -H. 

There are two unique labelllngs as shown in Figure 4. 

02. Method for odd number af total atoms. 

With an odd number of totol atoms, no structures can be generated with a bond 
centroid. Only atom centroids are possible 10,'&5 • However, it is 
possible for structures to be built with a bivalent atom at the centroid. Thus 
the procedure outlined in Category 8 above is followed, in this case alsa 
allowing a bivalent atom as the centroid. 

p3. Generation of Radicals. 

The gaol of tf,is procedure is to generate all radicals from a list of 
atoms and ring-superatoms. A radical is defined to be an atom Oft 

superatom with a single free valence. When a composition of atoms and 
ring-superatoms is presented, from which radicals ore to be constructed, two 
special cases are recognized. 

Spedal Case J. Only One Atom in list of Atoms. 
When only one atom whi~h is not a ring-superatom is in the list, only one 
radical is possible. For example, with one C, the radical -CH3 is the 
only possibility. 
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Special Case 2. Only One Ri"s-superotom in List of Rinrsuperatoms. 

In this case, depending upon the symmetry of the ring-superatom, several 
radicals may be possible. This is determined by labelling the free valences 
of the ring-superatom with ane label of a special type, a "rodieal-valenee". 

Example: A list of ring-superatoms consists of one ring-.uperatam, .l.A: 

1& -
Two radical, result fro. libelling with one radical ¥.Ience. 

../' 
c-

~CH 
17 - 18 -

Genera I Case 

Radicals have uniquely defined centroids as welllO,tS • The centroid is 
always an atom of valence two ar higher. The steps for eonstrvctim ttl 
radicals are as follows. 

Step 1. Selection of Atom Centroid. 

Ally bivalent or higher valent atom or ring-superatom is a valid candidate to 
be the centroid of a radical. Thus, far example, for the composition 
-e.c-, ) C=C( (see peri 1a in Figure 3) both are valid centroids (Figure 5). 

so 



StiR 2. Partition the Rest of the Atoms. . 
The atom chosen for the centroid is removed from the list of .. ,.-atoms. One 
of the valences or the centroid is to remain frH (the radical val ... ce). 
Therefore, the rest of the atoms in the list are pc:riitioned Into Ie .. than or 
equal to (valence of centroid - 1) parts. Of Caufte, each part should 
satisfy the restriction on univalents (equation 7) but for COftItructing 
radicals there is no restriction on the size of the parts. 

S. 3. Fcxm Radicals from Eoc;h Part. 
The procedure to eonstNct racficals is freshly invoiced on each part thus 
generating radicals. Each part in Figure 5 gives rise to only one radical, each 
arising from special case 2. 

Steg 4. Combine Radicals in Each Part. 
For the example in Figure 5, each part yields only one radical. In a men 
general situation, where the rest of the list of SUf*'Gtoms after selection of a 
centroid is partitioned into several parts, and where each part yl.1ds 
several radicals, the radicals are combined to detwmine all unique combfnatlclns 
of radicals. 

S5 5. Label Central Atom with Radic;als. 
If the center is an atom (not a ring-superatom) then each unique combination 
defines a single unique molecule. 

If the center is a ring-superotom, the radicals en deta'mined by labelling the 
center with a set of labels which includes: i) the radicals; iI) a leadtng 
radicol-valencei iii) on adequate number of hydrogens to make up the 
remail'ing free valences of the ring-superatom. One selection of center g"" 
one radical and the other gives 1W0 more, to comple .. a list of three 
radicals for the example chosen (Fige 5). 

For the example chosen to iIIustraht the operation cA the acyclic 9I"*Vtar, 
twelve isarn .. are generated, nine shown in Figure 3 and th ... shawn in 
Figure 4. 
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FIGURE CAPTIONS 

Figure 1. 

Figul'f! 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Outline of th strategy for structure generation. 

Major steps in the generation of isomers as illustrated for 
C6HS. This exomple outlines the method for one 
superatom partition, that which allocates all atoms to 
a single superatompot with no atoms in the remaining pot. 

Operation of the acyclic generator for the ease of a bond 
as a centroid for the stNctUres. 

Operation of the acyclic generator for the ease of an 
atom or superatom as a centroid for the structures. 

Outline of the method for generation of radicals whic" 
are eventually t'~""ined by the acyclic generator to yield 
final stNctures. 

- S2-



Part A: Form Superatom Partitions 

Partition No.: 

Consists of: 

VI 

W Part B: Construct R ing-superatoms 

R ing-superatoms: 

Part C: Construct Structures 

Combine R ing-superatoms 
with Remaining Pot 

Empirical Formula 

~--------1 \-.. 2 ___ 

Superatompot 
1 

a, b, c, .... 

1,11,111, •.. 

Remaining 
Pot 

- ~ 3 ... 

----~ 

Superatompot 
I 

I 

1 
j, k,l, ... 

2 , \ 
\ 
\ 
\ 

~ \ 

!':~>/ 
CI,CII,CIII, ... 

Remaining 
Pot 
! 



~Igure 2 
Po" & 

Sue,raIOm PartitIOns 
(_ TOIII.lI) -

Rl'la§ypt!q!om Con"'lIet,," 

COlCu_ Fre. YoI __ • 

Pat'lhOfI "'" VOllnce 

(0.0"'0,···) 
~ 

.r=- ~ 

~r rr r 
(0,0,311 

• 
(O.OI4KO,Q2) 

• • 
(0,0.5) (0.0.4) (0.0,5) 

+ , ~ 

(01 min ,::~:.n~.) I~~)I ~l~1~~~========~~~~========~2;~~~====~l.~,~~~t~a.~=====~~ 
2'22.~2nl-;P 

Combine fitll'Q· Suprotaml' 
WI"t'! Rema,ntl'\Sl ~, 
( S.e Appendl. 0) 

Final Structur., 
(St_'" enema I 

NOlo""') 

1 1 

-- - ----------.0-

,I,I,e 

54 



-
----0-__ 

10,4,01 

~ ~,[~~~ 

~'-r -j ~.~.~ 
",',0.0 o.o.otJ ~o.o.o ZPtJIJ I,J,O,() z.o,oQP.o I,IAW apPIJPIJ IJIJIJIJSJ 

" .! ~ \ ~ / \ \ \ \ '\. ~ 4 \ • \'~ " J \ 
l~ ~®®<>1 <>i1~' olt~~ g D lill!2'¢"g i!z:lo »11 

I II \ ~ i~\? ! ~"tE\ lllli r j j 
)<& 'V'I) 'n' ¢'t U ~ -n-{J;::-t> t:J ~ R' 't -0 6 ~ ~ 
I I I I I I I I I I I I I I I I I I I I I I 
iii I I I I I I I I I I I I I I I I I I I 
I : I I : I I I I I i I I i I I I I I I I I 
I I : I I I I I I I I I I I I I I I I I I I 
i I I I I I I I I I I I I I I I I I I I I I 
I i I I I I : I I I I I I I I I I I , , I I 
I I I I I I I I I I I I I I I ! I I I I I I 

. ; j j j i1 i l j j j ii j I j j i j i j 
)'9~e®()<t ilt><!>C1Hf<{j1iP\)(t"P(>0 0 e () 0 0 0 ~ q:, 

[6] ~ ~ 

55 



Floure :3 

Coteoory A. 

List of Superatoms 

Partition into 

2 parts 

Part Number 

Generate Radicals 

for each port 

[ See Tobie VIII ] 

Combine Radicals 

in pairs to form 

Molecules 

BONO CENTROID 

[-CI.C-, }C-C(. C,C", 

-C~C-. ) C8C< / Cz 

la Ib 

1 ! 
3 radicals I radical 

\/ 
(3lC I 8) 3 molecules 

CHJ - CHz - C AC-CH - CHz 

CHI -CHz-CH-CH-CaCH 

CHI - CHz -1- C • CH 
CHz 

56 

-CaC-, C / > C -C( ,C 

2a 2b 

1 
2 radicals 3 radlcoll 

\/ 
CH,-CH - CH-C aC-CHI 

CH,- CH 8 CH- CHrCICH 

CH -C - CaC-CH 
J ~Hz J 

CHJ- C -Ct\-CaCH 

~Hz 
Ct\ - CH-CHiCa C - CH, 

CM; CH- CHz-CH.-C.CH 



Fioure 4 

Coteoory 8 

List of Superatoms 

Select Atom Centroid 

Partition Rest into 

up to (free YOIe:lCe) parts 

Part 

Generate Radicals from 

ecel'l part 

Combine Radicals in 

each port 

Label Atom Centl'oid 

with radicals 

ATOM CENTROID 

.. 
[-C.C-. >C-C<. c. C] 

>C-~C 
.-".21~ -k·l~ 

VOD \ VOD v: '\. VOID 

-C.C-/C/C >e-C< 1-e.C-/C 
1~23 I~ 23 

-CaCH/ -CH,/-CHs 

! 
~ 

only I way 

CH!EC- C .. CH- CH;s 
I 
CH;s 

57 

only I way 

( -CH-CHz ,-CaCH,-CHs) 

l 
CHz'"CH-CH-C.CH 

CH3 



Figure 5 
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