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Problems of structural isomerirm in chemictry have received much attention.
But only occasional inroads have been made toward a systematic solutior of
the urderlying graph theoretical problems of structural isomerism. Solutions
in the past have been partial, with acyclic and cyclic suructures being

3 of

treated independently. Recently the "boundaries, score and limiia"
the subject of structural isomerism of acyclic molecules have been defined
by the DENDRAL algorithm3 . This algorithm permits an enumeration and

representation of all possible acyclic molecular structures with a given

empirical formula.

Acyclic molecules represent only a subset of molecular structures, however,
and it may be argued that cyclic structures (including those possessing
acyciic chains) are of more general intevest and importance to modern
~hemistry from both a practical and theoretical standpoint. An approach to
cyclic structure generation has appeared in a previous paper in this seriesh .
That approach, which operates on a set of previously generated acyclic forms
by labelling hydrogen atoms pairwise and connecting the atoms to which they
are attached with a new bond, has one serious drawback. The approach cannot
make efficient use of the symmstry properties of cyclic graphs; hence an

irordinate amount of computer time must be

(3) J. Lederberg, G.L. Sutherland, B.G. Buchanan, E.A. Feigenbaum,
A.V. Robertson, A.M. Duffield, and C. Djerassi, J. Amer. Chem, Soc., 2&,
2973 (1969).

(k) Y.M. Sheikh, A. Buchs, A.B. Delfino, G. Schroll, A.M. Duffield,

C. Dierassi, B.G. Buchanan, G.L. Sutherlsnd, E.A. Feigenbaum, and
J. Lederberg, Org. Mass Spectrom., 4, k93 (1970).
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spant in retrospective checking of each candidate structure with
existing structures to ramove duplicates. For this rsason, an
alternative approach to construction of cyclic moiecules has been
developed. This approach is designed to take advantage of the
under lying graph theoretic considerations, prissrily symssetry, to
arrive at a method for more efficient construction of a compiete and
irredundant list of isomers for a given empirical formutla. Central
to the successful solution of this problem is the generation of all
positional isomers obtained by substitutions on a given ring system.
This topic has received attention for nearly 188 years, with limited
SUCCGSSS . Its more general ramifications go far beyond organic
chemistry. Graph theoreticians have cc~sidered various aspects of
‘thi-.'. topic, freguently, but not necessarily, in the contex: of

6

organic molecules. Polya has presented a theorem uhich permits

calculation of the number of structural isomers for a given ring

system., Hill 7“"’ has applied this theorem to enumeration of

Te 8

isomers of simpl'e ring compounds and Hill and Taylor have

- -

(5) Sece, for exampie, A.C. Lunn and J.K. Senior, .J. Phys. Chen.,
33, 1027 (1929) and references cited therein.

(6) &) G. Polya, Compf. rend., 28}, 1167 (1935);
b) G. Polya, Mely. Chiam. Acta. 13, 22 (1936);
¢) G. Polya, Z. Kryst. 92, 415 {1936);
@) G. Polya, Acta Math., B8, 145 (1837).

(7' a) T.L. Hill, J, Phys. Chem., &7, 253 (1843);
o) T.L. Hill, ibid., p. 413.
¢) T.L. Hill, J. Chem. Phys., 11, 23 (1%3).

(8) W.J. Taylor . Chew. Phys., 11, 532 {1343).
2



pointed out that Polya's theorem permits enumeration of geometrical and
optical isomers in addition to structural isomers. More recently, formulae
for enumeration of isomers of monocyclic aromatic compounds based on graph
theory, permutation groups and Polya's theorem have been presentedga . This
history of interest and results provides only marginal benefit to the organic
chemist. Although the number of isomers may be interesting, these methodss-ga
do not display the structure of each isomer. Also, these methods do not
provide information on the more general case where the ring system is
embedded in a more complex structure. Even for simple cases the task of
specifying each structure by hand, without duplication, is an ounerous one.

9

Balaban has published a series of papers addressed, in part, to the problem

of specification of isomeric structures. Although his method, which differs
substantially from our own, involves significant manual effort and does not
appear to encompass a mechanism for prospective avoidance of duplicate

9b,9¢

structures, his compllations of isomers of annulenes . represent an

important contribution as extensions to the compilations of Lederberglo .

METHOD
OVERVIEW
Framework. The framework for this method is that chemical structures consist
10,11

of some combinaticn of acyclic chains and rings or ring systems™ ° « The

problem of construction of acyclic isomers

9a) A.T. Balaban and F. Harary, Rev. Roum. Chim., 32, 1511 (1967); b) ibid.,
11, 1097 (1966); Erratum, ibid., 12, No. 1, 103 (19 ), c) ibid., 1T, 865
(1972); d) ibid., 18, 635 11973), and additional references cited herein.

10) J. Lederberg, DENDRAL-64, Part I. Notational Algorithm for Tree Structures,

NASA Star No. N65-11158 NASA CR-57029; Part II. Topology of Cyelic Graphs, NASA

Star No. N66-140T4, NASA CR-68898; Part III. Complete Chemicel Graphs: Embedding
Rings in Trees, NASA Star No. N71-76061 NASA CR-123176.

11) It is assumed that structures are completely connected by chemical bonds;
thus catenates and threaded structures are viewed as coneisting of separate molecules.
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{and radicals) h2s beern solved proviou.ly3 . 1t all possible ring
systems can be constructed from aill or part of the atoms in the
empirical formula, and all possible acyclic parts are available from
the acyclic generator, the combination of ring systems with acyclic
parts in all unique ways would yisld the complete list of isomers.
The method for construction of ring systems ie described below. This
description employs some terms which require definition. The
definitions aiso serve to illustrate the taxonomic principles which
underiie the operation of the structure generator. The
generator’'s view of molecular structure differs in some respects from
the chenist's. A chemist, for exampie, =8y vieu structures
possessing the same functional group or ring 8s related. The
generator works at the more fundamental levei of the vortu-guph'o,

as described belou.

Chemical Graph. A molecular structure may be vieusd as & graph,

termed the chemical graph, or skeleton. A chemical graph consists
of nodes, with associated atom names, and edges, which correspond

to chemical bonds. Consider as an example the substituted piperazine,
], uhose chemical graph is illustrated in Chart | as 2. Note
that hydrogen atoms are ignored by convention, while the symbol “U®
is used to specify the unsaturation. The degree (primary, secondary,

...) of a node in the chemical graph has its usual meening, i.e., the



number ot {non-hydrogen) edges connected to it. The valence of sach
atom determines its maximum degree in thae graph. As wusally displayed
by chemists in planar representation, the chemical graph describes
the connectivity rather than the geometric configuration of a

molecular structure.

Superatom. In general, 2 chemical graph can Dbe separates into

cyclic and acyclic parts. Each cyclic structural sub-unit may be

deemed a superatos possessing any number of fres valmcn'z .
The chemical graph g arises from a2 combingtion of tuo carbon atoms
Witn ring-superatom 3. Ring-superatom 3 possesses the indicated
free valences to which the remaining hydrogen and tuo methyl radicals

will be attached (Chart 1),

Ciliated Skeleton . A ciliated skeleton ia a skeleton with frae
MAAAAAAAAAAANAS A s

valences but without atom names. Ring-superatom 3 arises from the
ciliated skeleton 4 by associating the atom names of eight carbon and two

nitrogen atoms with the skeleton (Chart 1).

Cyclic Skeleton. A chemical graph whose nodes are not associated

with atom names and which contains no acyclic ports ond no free

12) A free volence is o bond with an unspecified terminus. Any substructure,

cyclic or not, may be treated as a superatom; however, the term, in this
poper, is generally restricted to cyclic (termed ring~) superatoms.

5



valences is termed a cyc/ic skaleton. Ciliated skeleton .’.’. srises
trom one uay of associating sixtesn free valences nith the nodes on

the cyciic skeleton g (Chart 1).

Ver;gx-craph. Vortex-grapm'o are cyclic skeletons from which
nodes of degres less than thres have been deleted. The vertex-graph
of the cyclic ckelctoné is the regular trivalent grlph'o of tuwo
nodes, § Note that the remaining nodes of the cyclic skol.toni
are of degree tuo. Removal of these secondary nodes from $ while
retaining the interconnections of the tuo tertisry nodes yields &

{Chart 1}.

As an illustration of the variety of structures uwhich may be
constructed from @ given vertex-graph and empirical forauls, for

example, C H N, consider that graph B is the vertex-graph-for
16 28 2 . R

all bicyclic ring systems (excluding spiro formel. Cyciic skeletons
Z and 8 (Chart 1), for example, may be constructed from eight
secondary nodes and § There are many ways of associating sixteen
tree valences with each cyclic skeleton, resulting in a larger number
of ciliated skeietons. For example, §_ and }.?, ariss from
differant allocations of sixteen free valences to § (Chart 1),
There is only one wWay to associate eight carbon atoms and two

nitrogen atoms with each ciliated skeleton to yield superatoms (e.g.



Chart [

Conventionol Repraseniatiom
Composition = C, 49N,

Chemical Groph:
Composition = anz Uz

Superaotoms
Ring - superatom Composition= c.N,u,

Acyclic Supergtom Compositions Cp

Ciliated Skeleton:

Cyclic Skeleton:

Vertex Groph



2} and %2: Chart 1). Howeve., several structures are obtained by
associating the remaining two carbon atoms {in this example) with each
superatom, as an ethyl or two methyl groups. Chemical graphs l} and 23,
for example, arise from two alternative ways of associating two methyl

groups with superatom 2

Multiple Bonds. For the purposes of this program we adopt the formalism
that all multiple bonds (double, trinle, ...) are considered to be small
rings by the program. Previous versions3 (acyclic generator) differ from
this program in that double and triple bonds are regarded as specially

labelled edges.

AIMD

The structure generator must pLroduce a complete list of structures without
duplication. By duplicate structures we mean structures which are
equivalent in some well-defined sense. The class of isomers generated by
the program includes only connectivity isomers. Transformations (utilized
to determine equivalence) allowed under connectivity symmetry preserve the
valence end bond distribution of every atom. Connectivity symmetry does

not consider bond lengths or bond angles. Tnis choice of symmetry results
in comstruction of a set of topologically uvnique isomers. A more detailed
discussion of equivalence is discussed in Appendix A and in the accompanying

paperl3 ; a discussion of isomerism and symmetry is presented in Appendix B.

13) L. Masinter, N.S. Sridharan, J. Amer, Chem. Soc., 00, 0000 (1973).




STRATEGY
The strategy behind the cyclic structure generator is strongly tied fo the
framework described above. The strategy is summarized in greatly simplified
form in Figure 1. The vertex-graphs from which structures are constructed con
be specified for a given problem by a series of calculations. Thus Part A of
the program (Figure 1) partitions the pot of atoms in all possible ways; each
partition consists of those atoms assigned fo one or more *“syperatompols” and
a "remaining pot." Each superatompot is a collection of atoms from which all
possible, unique ring-superatoms ? can be constructed based on the
oppropriate vertex-graphs (Part B, Fig. 1). Each ring=superatom will be a ring
system in completed structures. The atoms in the remaining pot will form
acyclic parts of the final structures when combined in all possible, unique ways
with the ring-superatoms from the corresponding initial partition (Part C, Fig. 1).
DESCRIPTION
We are faced with the difficulty of describing a complex computer
program in the traditional mode of presentation in 2 scientific
journal. The narrative form is not the ideal mediua for this
description; simple examples do not aluays indicate all essentiai
aspects of a program. A deeper understanding of a progras could pe
engendered through the use of 3 large nusber of well chosen examples,
but the length of such a prasentation wuould be excessive and would

tax the patience of sven the most interested reader.



We are thus aware of the insufficiency of considering only one example in the
following written description. We have adopted the strategy of presenting
essential aspects of the procedure for structure generation in the main

body of the text. Details of the description which might obscure the
principal concepts are placed in Appendices C and D. Mathematical

detoils are available elsewhere.“’ 15

We hope this serves the purpose of
providing the casual reader with o deeper understanding of the method
without having to contend with details which, on the other hand, are

important to others who wish to make use of our approach.

The example chosen to illustrate each step of the method is céHB (or C6U3 as

there are three degrees of unsaturation).

This example does not contain bivalent or trivalent atoms (e.g., oxygen and
nitrogen, respectively) or atoms of valence greater than four, nor any

univalent atoms other than hydrogen (e.g., chlorine, fluorine).

Partitioning ond Lgbelling. The mechanism for structure generation

involves a series of "partitioning" steps followed by a series of

(M)@) H. Brown, L. Masinter and L. Hjelmelend, Discrete Mathematics, in
press;
(b) Stonford Computer Science Memo STAN-CS-72-0318.

(15) (@) H. Brown and L. Masinter, Discrete Mathematics, submitted;
(b) Stanford Computer Science Memo STAN-CS-73-0361.
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“labelling" steps. Partitions are made of items which must be
assigned to objects (usually graph etructures or parts thereof) as
the molecular structures are built up from the vertex-graphs. The
process by which items are assigned to the graphs is termed labnlling!a’
Examination of Chart | reveals the different types of items
involved. For exampie, nodes are partitioned among and labelled upon
the edges of the vertex-graphs to yield the cyclic skeletons. Free
valences are partitioned among and laballed upon the nodes of cyclic

skeletons to yield ciliated skyietons, and 90 forth,

Partitioning steps in the subsequent discussion are carried out
assuming that objects among which items are partitionsd are indiet-
inguishable. Distinguishability of objects (edges, nodes, ...) is
specified during labelling and will be discussed in a subsequent
section. The partitioning steps performed by the program. are

outlined in Taole 1. Each step is described in more detai! below.

11



Table 1. Partitioning Steps Performed by the Structure Generator

Step # Partition Among
1 Atoms and Unsaturations Superatompots and
. in Empirical Formula Remaining Pot
2 Free Valence Atoms in Superatompot
3 Secondary Nodes Loops / Non-loops
4 Non-loop Secondary Edges of Groph
Nodes
5 Loop Secondary Nodes Loops
é Ring=superatoms and Efferent Links
Remaining Pot (see Appendix D)

BABLA: Supcratom szi tions.

Ring-superatons are tuo-connected” structures, i.e., the ring-
superatom cannot be split into tuo parts by scission of a single

bond. The atoms in an empirical formula may be distributed among

from one to several such tuo-connected ring-superatoms. A
distribution which allots atoms to tuo or more superatompots will
yield (respectively) structures containing two or more ring-

6
superatoms |inked together by singie bonds (or acyclic chains) .

16) Chemists are more familiar with terms such as rings or ring
systems, The term two-connected is used here in conjunction with
ring-superatoms for a3 more precise description. For example,
biphenyl may be viewed 38 a single ring system or tuo rings depending
on the chemical context. In this work, however, bipheny! consists of
teo ring-supsratons (two phenyl rings) linked by 3 single bond.

12



In the generation process, one must find all possible ways of partitioning the
given formula into superatompots and o remaining pot, such that molecules can
be constructed. The considerations in forming superatom partitions deal
primarily with valence and unsaturation. This procedure is summarized in
Appendix C, Superatom Partitions. The partitions which result are summarized

in Table II.

U et e T L DL A LD D LT - -

Taole I]. Alloued Partitions of C U Into Superatompots and Remaining
& ‘

3
Pot.
Partition Number of Superatompot Number Remaining
Nuwmber Superatompots 1 2 3 Pot
1 1 cu - - -
63
2 1 cu - - c
53 1
3 1 cu - - c
43 2
4 1 cu - - C
33 3
S 2 cCu ,CuU - -
62 21 .
6 2 cCu cu - c
32 21 1
7 2 Cu cu - o
22 21 2
8 2 cu cu - -
41 22
9 2 cyu Cu - c
31 22 1
10 2 cv cu - -
32 31
11 3 cuv cu cv -

21 21 21

- - -

13



PART B. Ring-supcratom Construction.

Each partition (Table 11) must now be treated in turn. The couplete
set of ring-superatoms for each superatompot in 8 given partitioﬁ
must be constructed. The major steps in the procedure are outlined

in Figure 2.

Valence List. The first step in part B is to strip the superatompot of

atom names, while retaining the valence of each atom. The numbers of each
type of atom are saved for later labelling of the ciliated skeletons (Chart |).
A valence list may then be specified, giving in order the number of bi-, tri-,
tetra- and n-valent nodes which will be incorporated in the superatom. Thus
the superatompot C 6U3 is transformed into the valence list 0 bivalents, 0

trivalents, 6 tetravalents (0, 0, 6), and C 4U2 becomes (0, 0, 4) (Figure 2).

Calculation of Free Valence. From the valence list ond the associated

unsaturation count the number of free valences of each superotompot is
determined uniquely. (see Calculation of Free Valence, Appendix C). For
CéU3 the free valence is eight (Fig. 2). The free valence of a superatom
represents the number of bonding sites which can connect to hydrogen

atoms, other superatoms or atoms in the remaining pot.

Partitioning of Free Valence. The free valences are then partitioned

among the nodes in the valence list in all possible, unique ways. (see
Appendix C, Partitioning of Free Valence).

14



Dcegree List. Each partition of free valences alters the affective
valence of the nodes in the original valence list with respect to the
ring-superatom. In the example, assignment of one or two free
valences to a tetravalent node transforms this node into a tri- or
bivalent node respectively., As the ring-superatom is constructed,
those tetravalent nodes which have been assigned, Bsay, two free
valences, have then only two valences reuaiﬁinq for attachment to the
ring-superatom. These nodes are then of dcgrlon to and may be
termed secondary nodes, Thus the partition of free vaiences
2,2,2,2,0,00n six tetravalent nodes yields the degree list (4,0,2)
(Fig. 2) as four of the tetravalent nodes receive two free valences
each,yielding four nodes of degres tuo (secondary) and leaving tuo
nodes of degree four (guaternaryl. The program keeps track of the
nunber of free valences assigned to all nodes for use in & subsequent
step.

la,?'?-&’.‘ As will be clarified in the subsequent discussion, there are
several general types of ring-superatoms which cannot be constructed

from the vertex-graphs available in the CATALOG (described below).

17)  Use of the term degree with reference to the degree list refers to the

number of bonds other than free valences, with double bonds being counted
twice. A free valence may or may not eventually be attached to a hydrogen
atom in the final structure.

15



Tnese are all cases of multiple extended unsaturations either in the
fornt of doublie bonds or rings., Examples are the following:

1} bi-, tri-, ... n-cyclics with exocyclic double bonds:

2)  some types of gpiro ring systems;

3} allenes extended by additional double bonds, e.g.,
CeCsCaC

The concept of a loop, each loop consisting of a sinéle unsaturation and at least
one bivalent node, must be utilized for these cases. Examples of loops
containing one, two and three bivalent nodes are shown in Chart [1. Note that
the two remaining "ends" of the unsaturation will yield a “looped structure*
when ottached to a single node in a graph (shown as X, Chart I1).

R e e T Y

Chart 11
bivalents = 1 2 3

Trhe method for specification of loops is discussed in Calculation of

Loops, Appendix C.

Partitioning of Secondary Nodes amaeng Loops and Non-loops. The secondary
nodes in the degree list are partitioned between the loops (if any) calculated

in the previous step and the remaining non=loop portion of the eventual graph.

16



Aspects of this partitioning step are presented in Partitioning of Secondary Nodes

Among Loops and Non-Loops, Appendix C. Results for the example are

indicated in Figure 2.

Reduced Degreu List. This procedure yieids the reduced degree list

which contains none of the secondary nodes originally present in the
cegree list, Any secondary nodes appearing in the reduced degree |ist
are termed "speciai® secondary nodes as these nodes Will have loops

attached in subsequent steps.

Ver tex-Graphs. The reduced degree 1lists are used to specify a set
of vertex-gyraphs for the eventual ring-superatoms. All tuo-connected
structures can be described by their vertex-graphs, which are, for
most structures, regular trivalent yraphs. This concept has been
described in detail by Lederbcrg'o . who has also presented a
generation and classification scﬁene for such graphs. Given a set of
aii vertex-graphs, the set of all ring-supera.oms may be specified's .
ine vertex-graphs are maintained by the program in the CATALOG.
Catalog entries for regular trivalent graphs possessing two and four
fnours are presented in Table [11. This list must pe suppliemented by
additional vertex-graphs to cover several special cases regquirea for
generation of all structures for the exampie. These are also

presented in Tabie [ll. Hith the reduced degree list of a

7



TABLE 111, Vertex-Graphs Necessary for Construction of Isomers

of C6H8' This is a Partial Listing of the Ccmalog.‘:I
Number of Nodes
Planar b of Degree
Representation  Nome Three Four Remarks
(D 2A Regular trivalent graph
(hosahedron) 2 0 of two nodes
o= o«
Regular trivalent graphs
488 of four nodes
(tetrahedron) 4 0
A single ring composed
"Singlering k" 0 0 of k secondary nodes
Tetravalent Two nodes of degree
Dihedron 0 2 four
A single quaternary
(:)(:) “Daisy” 0 1 node
@ 53868 2 -

{(a) ™e lictinz of reference 10 has been expanded to incigge vertex-graphs of
sther combinations of nodes of degree three and four . The completeness
ot tne Catulog has be$8 verified where possible by independent graph 9b,9¢
consiruction methods * and by comparison with Baleban's compilations !

where appropriate.

{v) Names, except those in quotation marks, taken from Lederberg.10

18a) N.S. Sridharan, unpublished results; b) L. Masinter, unpublished
results.
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superatompot, the program reguests the appropriate CATALOG entries.
ln the example (Fig. 2}, the reduced degree tist (0,0,2) specifies
ver tex-graphs containing two quaternary nodes (tetravalent dihedron) .
The reduced degree |ist (0.4,0) specifies regular trivaient graphs of
four nodes, of which there are two: 4AA and 488 (Tanie 111). Hhen
onli; secondary sodes are present in the reduced degres tist, the

grapn "Singlering" (Tabie 1]} is utilized.

Interlude. Up to this point the program has effectively decomposed
VAP mAAAA A

the problem into a series of subprobiems, working down from the total
pot of atoms through a8 series of partitions and subpartitions to the
set of possible vertex-graphs. In subsequent steps the vertex-graphs
are expanded to the final structures by a series Of constructive

graph labellings (Tavle 1Y),

i8
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Table IV. The Six Groph Labelling Steps Performed by the Labelling
Algorithm

Labeliing Step Function

1 Label Edges of Vertex-Grophs with
Special Secondary Nodes

2 Label Edges of Resulting Craphs with
Ncn=-Loop Secondary Nodes

3 Label Loops of Resulting Graphs with
Loop Secondary Nodes

4 label Nodes of Cyclic Skeletons with Free
Valences

S Label Nodes of Ciliated Skeletons with Atom Names

6 Label Free Valences of Superatoms with

Radicals (see Appendix D)

- o G - o - " S R P N S S oD e

Labeliing Edges of Yertex-Graphs wuith Sgecial Secondary Nodes.
VAP A N\ WA~ W AT e e, ~——
Special seconaary nodes are those that will have ioops attached. The

soecification of the possible attachments of the nodes to the graph
ia a "labelling" procedure. This is the first of six such graph
lavelling steps performed by the program. (Table I¥). All of these
labeliing steps invoive the same conmbinatorial problem, that of
associating a set of n labeis, not necessarily distinct, with a set

of opjects Wwith arbitrary symmetrg'a . The game labelling aigorithm
is utilized for each of the six labeiiing steps. A description of the
under lying mathematics and proof of cospieteness and irredundancy

appears separately t .

18



Some aspects of the first labelling step indicate how equivalent labellings (which

would eventually yield duplicate structures) may be avoided prospectively,
by recognition of the symmetry properties of the graph; in the first labelling,
the vertex-graph. These symmetry properties are expressed in terms of the
permutation group (see Appendix A and refs. 13 and 14) on the edges of the
vertex~graph. This permutation group, which defines the equivalence of the
edges, may be specified in the CATALOG or, altematively, calculated as
needed by o separate part of the structure generator. As subsequent steps are
executed, a new permutation group (e.g., on the nodes for labelling step four,
Table 1V) is derived as necessary 1 . Thus, only labellings which

result in unique expansions of the structure are permitted. The reader
examining Fig. 2 may note that for this simple example the symmetries of the
vertex-graphs and subsequent skeletons can be discerned easily by eye. For
example, all edges of the tetravalent dihedron are equivalent, as are all the
edges of the regular trivalent graphs 2A and also 4BB. The $3BCE graph
(Table 11, Fig. 2) has four equivalent edges and one other edge, ond so forth.
in the general case, however, the symmetries of the vertex-graphs and

subsequent expansions thereof are not always obvious.

With the group on the edges specified, the labelling of the vertex-
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graphs with special secondary nodes is carried vut. The results of
this procedure for partitions containing loops are indicated in

Figure 2.

Mﬁg with Non-Loop Secondary Nodes. The graphs which resulted from

the previous lobeliing are now labelled with the partitions of non-loop

secondary nodes (see Partitioning of Non=Loop Secondary Nodes Among

Edges, Appendix C). Each of the five partitions for the tetravalent dihedron

in Fig. 2 results in o single labelling, os all four

edges of the graph are equivalent. When edges are distinguishable there may

be several ways to label a groph with a single partition. There are, for

example, for the $38CB graph, two ways to label with the portition 3,0,0,0,0,
four ways with the partition 2,1,0,0,0 and three ways with the partition 1,1,1,0,0

(Fig. 2).

Labelling with Loop Secondary Nodes. There remain unassigned to the graphs
at this point only secondary nodes which were assigned to loops. These

nodes are first partitioned among the loops. (see Partitioning of Loop
Secondary Nodes Among Loops, Appendix C). For example,

following the path from the degree list (4,0,2) through labelling

with non=loop secondary nodes (Fig. 2), there aore two ways of

labelling the two equivalent loops with four secondary nodes. There

is one way to label the two loops of the adjacent graph with three
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secondary nodes and one uay of labelling the tuo loops of sach of the
tuo remaining graphs in this eection of Figure 2 with two secondary

nodas. in this exanple (C U ) the loops in every case are equivalent
63

or thare is only ona loop to be labelled, In the general case loops
may not be equivalent, resulting in 3 greater numsber of ways to labe!

loops with a given partition of secondary nodes.

w: Skeletons. The previous f(abeiling steps specified the number

of secondary nodes on each edge of and loop attached to the vertex-
¢raphs, All atoms in the original superatompot are thus accounted
for. A representation of the resuit is the cyclic skeleton, where
nodes and their connections to ons another are specifisd. (These

skeletons begin to resemble conventiona! chemical structures.]

Lavelling uith 5'31 Yalences. The nodes in a cyclic skeleton are
then labelled uwith free valences, yielding ciliated skeletons. This
labelling is trivial in the example, as all atoms are of the sane
valence (four) (Figure 2). Free valence labelling is performed uith
knouledge .of hou many atoms of each vaience were present in the
original superatompot, but independent of the identities of the
atoms. The combinatorial cospiexity of this labelling problem follows
from the possible occurence of atoms with differing volences. In the

general case there may be several ways to perform this labelling on o
22



single cyclic skeleton, whersas in the C U exampie thare is only one
3

Way.

Lavelling With Mvge yggz; The nodes of a ciliated skeleton are

then labelled with atom names to yisld the ring-superatoa(s). Again
this labelling is trivial in the exampie, as onl{) one type of atom is
present (carbon), yielding in sach case only a single superatom (Fig.
2). Ilf there is more than one type of atom with the same vaience
{e.g., silicon and carbon), the labelling probiem is more corplex.
Each node of appropriate valence may be l3belled with either type of
atom. Duplicate structures are avoided by calculations involving the

group pertaining to the set of nodas of equal valence.

liART C. Aczclic Generator.
The superatom partition expanded in the examgle had no atoms assigned to

acyclic chains (remaining pot). The set of ring-superatoms on completion of
Part B, above, thus yields the set of 36 structures on placement of o
hydrogen atom on each free valence (Fig. 2). If the superatom partition
(partitions 2-11, Table.l) contained more than one superatompot or

any atoms in the remaining pot, the acyclic generator must be used to
connect the segments of the structure in all ways. This procedure is

described in detail in Appendix D.
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OISCUSSION
WA

Completion of [ tHg The example (Fig. 2} has considered only

expansion of a single superatom partition. It might be instructive
for the reader to attempt to generate aill, or at least the remaininy,

structures for CH . The number of solutions is presentsd in 3
68

subsaquent section. |f the algoriths as outlined in Figure 2 is
followed, it is suggested that the initial superatom partitions in
Table Il be examined carsfully. Thess partitions yield some
indication of the types of structures which will result from each

partition. For example, partition &, CU ina single superatompot,
33

plus three carbons in the remaining pot, should yisld all structures
containing a three-membersd ring possessing two double bonds o~ 3
triple bond. As there are only two free vaisnces, the remaining
atoms can be in a single chain (ps a propy! or _i_og_-propg! radical) or

as a3 methy! and an ethy! group, but not as three nethyl groups.

Cosgleteneu and [rredundancy. Although a sathamatical proof of the

completeness and irredundancy of the method "i.t.ls .y there is no
guarantee tnat the implementation of the algorithm in a coaputer
program maintains these desired characteristics. Confidence in the
conpieteness and irredundancy of a program of thie complexity can be

engendered in the following Ways:
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1) Verification of the program's performance by another, completely
independent approach. An independent method has been developed which
enumerates, but does not comnstruct, all isomers of compositions containing
C,H,N, and 018b . It is interesting that the program for simple counting
of the solutions is significantly slower than construction of all of the
solutions, despite some effort to improve the efficiency of the former
program. Thus, due to limitations of computer time, we have been limited

to compositions containing only 5 or fewer non-hydrogen atoms. For these

cases, however, the numbers of isomers obtained by both programs agree.

: 9d
Balaban has presented lists of isomers of ChHh’ CSHG' CSHB end ChHhO .
These lists were derived from his tables9d of graphs of degrees 2-lI and
orders (numbers of nodes) 1-5. Although we agree with his lists of
hydrocarbon isomers, the list of isomers of ChHhO is incomplete., The

structure generator provides 62 structures (as opposed to 59). The three

missing structures are: !j} @ @
Q (o)
o4

These structures should have been produced following Balaban's method” .
The fact that they were not points out the difficulties inherent in any

procedure for isomer generation in which manuel steps are involved (see below).

2) Testing by manual generation of structures., Several chemists, all
without knowledge of the algorithm described above, have been given several
test cases, including C6U3’ from which structures were generated by hand.
Familiarity with chemistry is no guarantee of success, as evidenced by the
performance of three chemists for the superficially simple case of

CGU3 (c6H8, Table V).
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Table V. Performance of Thrae* Chemists in Monual Generation
of Isomers of C 6H8 (C6U3). There ore 159 isomers.

Number Generated Type of Error
Chemist 1 161 4 duplicates; 4 omissions
2 with 7 carbon atoms.
Chemist 2 168 16 duplicates; 7 omissions
Chemist 3 160 2 duplicates; 1 omission

* One PhD and two graduate students.

This example indicates that for more than very trivial cases,
it is extremely difficult to avoid duplicates {trieyclics, for
exomple, are difficult to visualize when testing for duplicates) and
omissions. Omissions appear to result from both carelessness and
neglect of ring systems that are implausible or unfamiliar. The
program seems better at testing the chemist than vice versa. In
every instance of manual structure generation, no one has been able
to construct a legal structure that the program failed to construct.
No one has been able to detect an instance of duplication by the
program. This performance builds some confidence, but manual
verification of more complicated cases is extremely tedious and
difficult. Isomers for many empirical formulae have been generated,
and some results are tabulated in Table VI. The choice of examples
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has been motivated by a desire to test all parts of the program where

errors may exist while keeping the number of isomers small enough to

allow verification. In this manner all obvious sources of emror have been checked,
for example, construction of loops on loops, multiple types of atoms of the same
valence (e.g., Cl, Br, 1) and examples containing atoms of several

different valences including penta- and hexavalent atoms.

3) Varying the order of generation. The structure of the
program permits additional tests by doing eome oOperations in 3
different order, For example, one variation gliowed is to ieave
hycrogens associated with the atoms in each partition rather than to
strip them away initially and place them on the rem3ining free
valences in the last step. Each such test has resulted in the same

set of isomers.

4) Using Polya enuneration6 at the various labelling steps
of tha procedure to verify the correctness of sudb-parts of the
program. Using various combinatorial formulae, one can insure that
the results of at least parts of the program are consistant with
inuzpendent calculations. This approach uas used extensively in the

development of the labelling algoritha,
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In summary, the verification procedures utilized have all indicated
absence of errors in the computer implementation of the algoritha.
Also, there is no clear reason why generation of larger sets of
isomers should not aleo procesd correctly. The ¢inal wverdict
however, must await development of new mdthematical toole for

verification by enumsration (see above) or an alternative algoritha.
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Table VI. The Number of Isomers for Several Empirical Formulae

Empirical
Formula

CH
66

CH
68

CH
618

CH
6 .2
CH
6 14

CHO
b 6

Ch N
318 2

CHP
491

Example

Compound
benzene
1,3-cyclohexadiene
cyciohexene
cgcfohaxane
hexane
phenol
cyclohexanone
2-hexanone
pyrazole
2=-pyrazoline
tetrahydropyrazole

propylerediamine

(pentavalent P}

Number of [esomers

217

189

77

25

2237

747

211

165

136

62

14

flanual iy Verified?

yes

yes

yes

yos

yes

no

yes

no

yes

. e - e S P A e O e -
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Constrgints. The structure generator is designed to produce a list of all
possible graph isomers (Appendix B). This list contains many structures whose
existence seems unlikely based on present chemical knowledge. In addition,
the progrom may be called on to generate possible structures for an unknown
in the presence of a body of data on the unknown which specify vorious
features, e.g., functional groups) of the molecule. In such instances
mechanisms are required for constraining the generator to produce only
structures conforming to specified rules. The implementation of the

acyclic generator possessed such a mechanism in the form of GOODLIST
(desired features) and BADLIST (unwanted features)s which could be

utilized during the course of structure generation.

The complete structure generator is less tractable. As in prospective
avoidance of duplicate structures, it is important that unwonted structures, or
portions thereof, be filtered out as early in the generation process as

pessible. [t is relatively easy to speciry certain general types of constraints

in chemical terms, for example, the number of each of various types of rings
or ring systems in the final structure, ring fusions, functional groups, sub-
structures and so forth. It is not always so easy to devise on efficient scheme
for utilizing o constraint in the algorithm, however. As seen in the

obove example (Fig. 2) the expanded superatom partition results in what would

be viewed by the chemist as several very different ring systems.



The design of the program faocilitates some types of constraints. For

exomple, the program may be entered at the level of combining superatoms to
generate structures from a set of known sub-structures. |f additional

atoms are present in an unknown configuration, they can be treated as a
separate generation problem, the results of which are finally combined in all
ways with the known superatoms. This approach will not form additional two-
connected structures, however. Constraints which disallow an entire
partition may be easily included. For example, it is possible to generate
only pure ring isomers by "tuming off" the appropriate initial superatom

partitions.

Much add:tional work remains, however, before a reasonably complete set of
constraints can be included. The implementation of each type of constraint
must be examined and tested in detail to ensure that the generator remains

thorough and irredundant.

CONCLUSIONS
The algorithm summarized in this poper permits the substantial realization of
the graphical structures that constitute the domain of organic chemistry. The
version of the algorithm presented here ignores the tetrahedral symmetry
of the valences of the carbon atom. However, the topological framework
readily admits of systematic tests for asymmetric centers which can then be
assigned to the dichotomous categories of the altemating group A . This
31



framework also provides a simple, systematic weighting of radicals for
assignment of precedence that proves 16 be, if anything, even more
straightforward, comprehensive and free from ambiguity than the Cahn-
Ingold-Prelog conventionslg.

The mathetmatical framework of our analysis is a mapping of chem-
ical bonds onto the edges of topological graphs. This simplification
can lead to disparities, for example in the description of coordination
complexes, the bonds of which are non-equivalent. The symmetries of
such complexes are similar to those of certain superatoms, Suggesting an
obvious and easy way to extend the system. Likewise, the system does
not now accommodate isomerism based on steric hindrance, or the associa-
tion of molecules by secondary forces, or by non-covalent constrants.
For example, from 2 topological standpoint, threaded molecules, or
catenanes, are disjoint graphs. Nor do we attempt to display the geo-
metric conformations of molecules: indeed, some topologically plausibie
structures may be chemically unrealizable.

Conversely, implausible constructs, such as carbon atoms possessing
“inverted" tetrahedral geometry20 may become reality by empirical dis-
covery. The constraints on chemically plausible structures depend on

(19) R. S. Cahn, C. K. Ingold, and V. Prelog, Angew. Chem. Internat. Ed.,
5, 385 (1966).

(20) (a) K. B. Wiberg and G. J. Burgmaier, J. Amer. Chem. Soc., 34,
7386 (1972);
(b) K. B. Wiberg, G. J. Burgmaier, K. Shen, S. J. LaPlaca, W. C.
Hamilton, and M. D. Newton, J. Amer. Chem. Soc., 4, 7402 (1972).

structure elucidation25 (based on the structure generator described in
this work) of molecules in frozen hydrogen matrices would have differ-

ent constrants from a version useful to biochemists.
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Chemists hitherto have been able to explore the de fac'o boundaries of their
domain without explicit maps. The exhaustive and efficient study of all
nosible structures can now be facilitated with the assiztance of computer
programs that can help assure that no possible construction has been
overlooked o .
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Arpendix A._ Equivalence Classes and Finite Pernutation Groups.

o mebers of @ set of possible isomers may be defined to be
cGuivalent ¢ 3 specified transformation of one member Causes it to
te supar wiadtrie upon another memper of the set. For example, there
ore tifteen possible ways of attaching tuo chiorine and four hydrogen

atoms to a benzene ring (Chart 11]).

—emcccscasses - -

Chan L

o 1 EquwalenceClass
. ~y | . | Cl
. N ~° [ 1 [,/ | N~ |
| O ‘ I 1
) NN .\/ L o ~N S C N

> . .
A R T
Cl
. ]

Lo b
Sli<gael o

If rotations by multiples of 60 degrees are specified os allowed
transformations, the fifteen structures fall logically into three
classes, termed "equivalence classes” (Chart 1il). Within each
equivalence class structures may be made superimpasable by the
rotational transformation. |f one element (in this case a moleculor
structure) is chosen from each equivalence class, the complete set of
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possivie structures is determined, without duplication. It i

) " ’ d . s the
task of the labelling aigorithm to produce one and only one graph
lavelling corresponding to one member of each squivalence class.

The set of transformations which define an equivalence class is termed a
“finite permutation group.® This permutation group may be calculated based
on the symmetry properties of a graph (or chemical structure in the exomple
of Chart H1). This calculation provides the mechanism for prospective
avoidance of duplica;&on. These procedures ore described more fully in the

accomponying poper .



Appendix B. Isomerism and Symmetry.

Appendix A introduced the concept of equivalence classes and finite permutation
groups. The selection of transformation (Appendix A) directs the calculation of
the permutation group and thus defines the equivalence classes. Different types

of transformation may be allowed depending on the symmetry properties of the class
of isomers considered. This Appendix discusses several of the possible types of
isomerism, most of which are familiar to chemists. The reoder seeking o more
thorough discussion of some types of isomerism discussed below is referred te an
exposition of molecular symmetry in the context of chemistry and mathematics.

Isomers are most often defined as chemical structures possessing the same
empirical formula. Different concepts of symmetry give rise to different
classes of isomers, some of which are described below.

Permutational Isomers. Permutational isomers are isomers which have in
common the same skeleton and set of |igond32 They differ in rbg distribution of
ligands about the skeleton. Gillespie et al.“~ and Klemperer” have used the
concept of permutational isomers to probe into ummolocular rearrangement or
isomerization reactions.

Sterecisomers. Ugi et c:l.22 have defined the "chemical constitution” of an

atom to be its bonds and bonded neighbors. Those permutational isomers which
differ only by permutations of ligands at constitutionally equivalent positions form
the class of stereoisomers.

Isomers Under Rigid Moleculor Symmetry. If one perceives
molecular structures as having rigid skeleions, the physical
rotational (three dimensional) symmetries and tronsformations may be
readily defined. Each transformation causes each atom (and bond) to

(22) 1. Ugi, O. Marquarding, H. Kiusacek, G. Gokel, and P. Gillespie,
4dngeu. Lhem. intecnat. £dit.. 9, 783 (1970).

(23) P. Giliespie, P. Hoffman, H. Kiusacek, 0. Marquarding, S.
Pfoh'. F. Raﬂif‘ez. Eo Ac t.o‘i’. W ll wi. A_nm. m.
internat. £dit., %g. 687 (1971).

(24) (2) W. G. Klemperer, /. Aner. Chen. Soc., Sﬁ. 6940 (1972);

(®) W. G. Klemperer, ibid, p. 8368;
(c) W. G. Klemperer, ibid, 95, 380(1973),

(d) W. G. Klemperer, T‘I p- 2]05.
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occupy the position of another or sase atom (and bond) so that the
rotated structure can physically occupy its former position and at
the same time be indistinguishable from it in any way. This is the
most familiar form of symmetry. Under this typs of sysmetry
conformers are distinguishable and belong in distinct equivalence
ciasses. Every transformation is orthogonal and preserves bond
angles and bond lengths as well as maintaining true chiraliity.

l1f one ailous other orthogonal transformations that alter chiral
properties of structures, equivalence classes result that treat both
the left-handed and right-handed forms of chiral molecules to be the
“same". Thus a “mirror image* transformation wuhen suitably defined
permits the left-handed form to exactiy superimpose the right-handed
form and vice versa.

Isomers Under Total folecular Symmatry. [f in addition to the above
mentioned rigid molecular transformations one recognizes the
flexional movements of a nonrigid skeleton, 3 dynamic syametry group
mz2y be defined. Under this definition, different conformers now are
grouped together. Thus the “chair” and “boat" conformations of
cyclohexane Dbelong t> the same eguivalence class under dynamic
synmetry. The permutation group of skeletal flexibility is
computable separately and independently of rigid moleculsr symmetry.
One can then view total molescular symsmetry as the product f thes tuwo
finite permutation groups.

I gomecs ugggr' Connectivity Symmetry. The concept of connectivity

symmetry was introduced previousiy (METHOD eection). Every
permutation of atoms and bonds onto themssives is 2 symmetry
transformation for connectivity symmetry if,

a) each atom is mapped into another of like species, &.g9., N to
N, C toC, O to 0, and

p) for every pair of atoms, the connectivity (none, single,
double , triple, ...} is preserved in the mapping, i.e. the the
connectivity of the two atoms is identical to the connectivity
of the atoms they are mapped into.

Une can readily recognize that transformations as defined
automatically preserve the valence and bond distribution of every

7



atom. It is very probable that readers accustomed to three
dimensioral rotational and reflectional symmetries will tend to
equate them with the symmetries of connectivity. It ie emphasized
again trat connectivity symmetry does not consider bond lengths or
bond angles, and it includes certain transformations that are
conceivaole but have no physical interpretation save that of
permuting the atoms and bonds.



Appendix C

Superafom Partitions. The first step is to replace the hydrogen count with the
degree of unsaturation. The number of unsaturations (rings plus double bonds) is
determined from the empirical formula in the normal way, as given in equation 1.

n

U =1/2 2+ (i-2)a,) (1)
i=1

U = unsaturation

i =valence

n =maximum valence in composition

a, = number of atoms with valence i

If the unsaturation count is zero, the formula is passed immediately to the
ocyclic generator. Specifying the unsaturations as U's, the exomple C 6H8
becomes C 6U3 (hydrogen atoms are omitted by convention).

There are several rules which are used during the partitioning scheme, as
follows:

l. The resulting formula is stripped of other univalent atoms (e.g.,
chlorine) as such atoms cannot be part of two-connected ring-
superatoms. These univalent atoms are relegated to the pot of
remaining atoms.

. The remaining pot in a given partition (those atoms not allocated to
superatompots) can contain no unsaturations. Thus all rings ond/or
multiple bonds will be generated from the superatompots.

n. It follows that every superatompot in the partition must
contain at least two atoms of valence two or higher plus at least
one unsaturation. If there are no unsaturations then no rings could
be built. In addition, an unsaturation cannot be placed on o
single atom. This rule defines the minimum number of atoms and
unsaturations in o superatompot.



The maximum number of unsaturations in a superatompot is given by
Equation 2. Superatoms must possess at least one free valence % s
that superatompots with no free valences, e.g., 02U] or C_U,, are not
allowed, unless the superatompot contains all atoms in the eMpirical
formula (since no univalents, and thus no hydrogens, are allowed in a
superctompot, this is indeed a rare occurance.)

n
U = V2 (F_(-2)0) @
Umax = maximum unsaturation of o superatompot

n = maximum valence in composition
i = valence
a, = number of atoms with valence i

The maximum number of superatompots for a given formula is defined by
equation 3.

n
Smx =1/2¢ a.

i=2 3
n = moximum valence in composition
Smux = maximum number of superatompots in a superatom partition
o = number of atoms with valence i

note: the summation is over all atoms of valence ) 2; univalents are
not considered.

Rules -V define the allowed partitions of a group of atoms into superatompots.
These rules do not, however, prevent generation of equivalent partitions, which
would eventually result in duplicate structures. By defining o canonical
ordering scheme to govern partitioning, we prevent equivalent partitions. One
such canonical ordering is as follows: '

Canonical Ordering for Partitioning.

a. Partition in order of increasing number of superatompots.



b. For aach entry in each part of (a), partition in order of
decreasing size of superatompat by allocation of atoms one st a
time to the remaining pot.

c. Each individual partition containing tuwo or more
superatompots must be in order of equal or decreasing size of
the superatompot. In other words, the number of atoms and
unsaturations in superatompot n+] must be equa! to or less than
the number in superatompart p. The program notes the equdiity
of superatompots in a partition to avoid repstition.

The application of rules |-V is best illustrated through reference to

the example of C U . The maximum number of superatompots for this
63

example is three (Equation 3). There is one way to partition C U

into one superatompot with no remaining pot, partition l, Table lI.

Subsequent assignment of carbon atoms one at a time to the remaining

pot resuits in partitions 2-4, Table ll. The next partition

following the sequence 1-4 wouldbe C U uwith C assigned to the
23 4

remaining pot. This partition is forbidden as C U has no free

valences. The three ways to partition CBU3 into two superatompots
are indicated alonp with the corresponding partitions following
assignment of atoms to the remaining pot, as partitions 5-18, Tavle
I1. There is only one unique way of partitioning CGU into three

) 3
superatompots, partition 11, Table II.

Calculation of Free Valence. The expression for the free vaience of
a superatompot is given by equation 4.

n
FV o (2 43 (i-2)a - %)
=3 i

uncaturation of superatoapot
valence

maximum valence in composition
number of atoms umith valence i

o3 ~-C
[ O

i
FV « free valence
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Partitioning of Free Valence. Because ring-superatoms are twuo-
connected structures two valences of each atom of 3 superatompot nrust
pe used to connect the atom to the ring-superatom. Thus no free
valences can be assigned to bivalent nodes in the valence list, a
maxitum of one to each trivalent, a wmaximum of ¢two to each
tetravalent, and so forth. The exampla (Fig. 2) is further
simplified in that there are only tetravalent nodes in the valence
list, Inclusion of trivalent nodes (e.g., nitrogen atoms) merely
extends the number of possible partitions. The free valences are
partitioned among tha tetravalent nodes in ali ways, as illustrated
in Figure 2. It is important to note that removal of atom names
makes all n-valent {ne2 or 3 or ...} nodes in ths valence list
equivalent at this stage. Thus the partitions (of eight free
valences among six tetravalent nodes) 222200, 222020, 2220(R. seeves,
002222 are ail equivalent. Only one of thess partitions is
considered to avoid eventual duplication of structures.

Calculation of Loops. There are several rules which must be
fol lcued in consideration of loop assignment to ring-superatoms. The
minimum (MINLOOPS) and maximum (MAXIOOPS) numbers of loops for a
given valence list are designated by equations 5 and 6.

n
MINLOOPS =max {0, a,+1/2@n=-2 ja.)}
2 =2 d

n
MAXLOOPS =min {a,, 1/2T {(j-2) a.}
2 j= i

MINLOOPS = minimym number of loops

MAXLOOPS = maximum number of loops )
a. = number of nodes with degreej

' = degree
f\ = highest degree in list (a_ #0)

The form of the equations results from the following considerations:

1)  Only secondary nodes may be assigned to loops. Nodes of

42
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higher degree uill aluays be in the non-loop portion of the
ring-superatos.

2) A loop, by definition, must be attached by two bonds to a
single node in the resulting ring-superatos. The loop cannot
be attached through the free valences. Thus tha degree list
must possess 2 sufficient nuaber of quaternary or higher degree
nodes to support the loop(s).

3] Each loop must have at ieast one secondary node, which is
the reason MAXLOOPS is restricted to be at most the number of
sscondary nodes in the degree |ist (Equation B).

4) “here must be available one unsaturation for each loop
(this is implicit in the calculation of MINLOOPS and MAXLOOPS)
as each loop effectively forms a neu ring.

Portitioning of Secondary Nodes between Loops and Non-Loops. For euch of
the possible numbers of loops (0, 1, ...) the secondary nodes are removed from
the degree list and partitioned among the loops, remembering that the loops are
at present indistinguishable and each loop must receive at least one secondary
node. In the example (Fig. 2), starting with the degree list (4, 0, 2), there are
three ways of partitioning the four secondary nodes among two loops and the
remaining non-loop portion. Removal of the four secondary nodes from the
degree list and assignment of two, three or four of them to two loops results in
the list specified in Figure 2 as the "reduced degree list". Specification of two
loops transforms the two quaternary nodes in the degree list into two secondary
nodes. This results from the fact that twa vaiences of o quatemory or higher
degree node must be used to support each loop. These are "special” secondary
(or higher, for atoms with valence ) 4) nodes, however, as these particular nodes
will have loops attached as the structure is built up. Thus, in the example,

any secondary nodes which are found in the reduced degree list will hove a loop
attached in o subsequent step. The degree list (4, 0, 2) thus becomes the
reduced degree list (2, 0, 0) in the partition specifying two loops (Fig. 2).
Similarly, the partition of one loop for the degree list (3, 2, 1) resvits in
reduced degree list of (1, 2, 0) with the three original secondary nodes
partitioned among loop and ron~loop portions (Figure 2).

If, ofter the first, second, ... nth loop partition, there remain one
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or more quaternary or higher degree nodes in the reduced degree |ist,
the list must be tested again for the possibility of sdditional
loops. Each loop partition will result in an additiona! set of
structures. The second pass will yield those structures possessing
loops on loops, and so forth., One such superatom which would be
generated in this manner from a compcsition of (at least) C U is 1s.

CaCaCeCaCaC
15
)

Lartitioning of Non-Loop_Secondary Nodes among Edges. The secondary nodes
which were not assigned to loops ("non-loop secondary nodes") are partitioned
among the edges of the graphs after labelling with special secondary nodes, or
loops. Loops are not counted as edges. There are, for example, five ways to

partition four non-loop secondary nodes among the edges of tha vertex-graph
possessing two quaternary nodes (Fig. 2).

LPartitioning of Loop Secondary Nodes among Loops. This partitioning step is
carried out assuming indistinguishability of the loops. Each loop must receive

at least one secondary node, which limits the number of possible partitions.
Results are presented in Figure 2.




Appendix D = Acyclic generator

A method of construction of structures similar to the method for acyclic

isomers is utilized to join multiple ring=superatoms and jni ajgms.

The DENDRAL algorithm for construction of acyclic iso;:? » 18,

relied on the existence of a unique central atom (or bond) to every molecule.
The present acyclic generator uses the same idea. The present algorithm, though
simpler in not having to treat interconnection of atoms or ring-superatoms through
multiple bonds, is more complex because of the necessity to deal with the
symmetries of the ring-superatoms. -

Di. Method for the case with even number of total atoms.

The superatom partition C U /C U /-/C (partition 7, Tavle Il and
22 21 2
Figure 2) uill be used here to illustrate this procedurs. The
superatompots C U2 and C U have exactiy one possible ring-superaton
2 21
tor each (see Table V1l).

Tabie VII.
Superatompot Superatoa
Cu -£=C-
22
Cu »C=C¢
21

Thus acyc!ic structures are to be built with -C=C- , >C=C< and tuo
C's.

There are an even number of atoms and ring-superatoms. The
structures to be generated fall into two catogggion (a) those with

bond cantroid; (b) those uith sn atom centroid.

- - - - - - - -

(251} 8. G. Buchanan, A. M. Duffield, and A. V. Robertson, in “Mass
spectrometry, Techniques and Applications,” G. H. A. NMilne, ed., John
Wiley and Sons, Inc., 1971, p. 12l.
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Category A. BOND CENTROID (see Fig. 3)

Step 1. Partition into Two Parts.

The atoms and ring-superatoms in the |ist of superatoms are
partitioned into two parts, with each part having exactiy halt the
total number of items. Each atom or ring-superatom is 8 single itea.
LE’a«:h lpart has to satisfy equation 7, called the Restriction on
nivalents.

Restriction on Univalents:

n
a9 (iz (i-2)ai] -1
i=2

i =valence.
o, = number of otoms or superatoms of valence i.
n = maximum valence in composition.

There are two ways of partitioning the four items into two ports (Fig. 3). The
restriction on univalents is satisfied in each case. The restriction will disaliow
certain partitions that have "too mony" 26 ynivalents other than hydrogens and
therefore is essential only in partitioning compositions that contain any number
of non=hydrogen univalents.

Step 2. Generate Radicals from Each Part.

Using o procedure described in Section D3, radicals are generated from each part
in each portition. The result of application of this procedure to the exomple is
shown in Table VIII.

(26)  The form of equation 7 results from the fact that the number of univalents (°i)

cannot exceed the number of free valences necessary to connect the
superatoms, leaving one valence free for the radical valence.
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Table Viil. Radicals Generated from Given Ports

Port | Radicals
(19 -C=C-, )C=C( - -czc-cnr-cn2
-CH=CH-C=CH
-cli-cscu
CH,
+
(\[ - ~CH,~CH,
(29 -C=C-, C + -C=C-CH,
~CH,~C=CH
+
@b Yc=c( , C -+ ~CH=CH-CH,
-C-CH
T
CH,
-CH2-CH=CH2

Step 3. Fors Molecules Fros Radicals.

The radicals are combined in unique pairs, uithin each initial
partition. Each pair gives rise to 3 unique aolecula, for each of
which the centroid is a bond. Thers are nine such molecules for the
example chosen (Fig. 3. :
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Category B. ATOM CENTROID (see Fig. 4).

tion of id.
One must consider every unique atom or ring-superatom that has a free
valence of three or higher as an atom centroid zs .« In the example,
of three candidates avoilable: -C=C-, ) C=C{ and C, the first is not
chosen for it has a free valence of only two.
Step 2, Partition the Rest of the Atoms.
The atom or ring-superatom chosen for the centroid is removed from the set
and the rest are partitioned into a number of parts less than or equal to the
valence of the central atom. Each port must have less than half the
total number of items being partitioned (ogain a ring-superatom is o
single item). Each port must satisfy the restriction on univalents (equation 7).

Thus, for the case where a corbon is the centroid, four portitions are
attempted. The condition that each part has less than or equal to one-half
the number of superatoms remaining after selection of the central ctom must
be satisfied, or at most one for this example. There is exactly one
partition for three parts, i.e., one in each. The partitions are shown in
Figure 4.

Step 3. Generate Radicals.
Once again, using the procedure described in Section D3, radicals are

constructed for each part in each portition. For example, the partition
-CamC- gives rise to exoctly one possible radical ~-CamCH (Fig. 4).

Step 4. Combine Radicals.

Although in the example shown every part generates only one radical, in the
general case there will be mony radicals for each part. If so, the radicals
must be combined to give all unique combinations of radicals within each part.



Step 5. Form Molecules from Central Atom and Radicals.

If the centroid is not a ring=-superatom but is a simple atom, then each
combination of radicals derived in Step 4 defines a single molecule that is
unique. Thus for example when C is chosen as the centroid, step 4 gives one
combination of radicals which determines a single molecule when connected
to the central C (see Figure 4).

If the centroid is a ring-superatom and the valences of the ring-superatom
are not identical then different ways of distributing the radicals around the
center may yield different molecules. Labelling of the free valences of the
central ring-superatom with rodicals treated as labels (supplemented with
adequate number of hydrogens to make up the total free valence of the ring-
superatom) generates a complete and irredundant list of molecules. Thus

) C=C{ is labelled with the label set:

one of -C22CH, two of -CH3, and one of =H.
There are two unique labellings as shown in Figure 4.

D2. Method for odd number of total atoms.

With an odd number of total atoms, no structures can be generated with a bond
centroid. Only atom centroids are possible 1025 | However, it is

possible for structures to be built with o bivalent atom at the centroid. Thus
the procedure outlined in Category B above is followed, in this case also
allowing a bivalent atom as the centroid.

D3. Generation of Radicals,

The goal of this procedure is to generate all radicals from a list of

atoms and ring=superatoms. A radical is defined to be an atom or

superatom with a single free valence. When a composition of atoms and
ring-superatoms is presented, from which radicals are to be constructed, two
special cases are recognized.

Speciol Case 1. Only One Atom in List of Atoms.

When only one atom which is not a ring=superatom is in the list, only one
radical is possible. For example, with one C, the radical ~CHj is the
only possibility.
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Special Case 2. Only One RifAg-superatom in List of Ring-superatoms.

In this case, depending upon the symmetry of the ring-superatom, several
radicals may be possible. This is determined by iabelling the free valences
of the ring-superatom with one label of a special type, a “radical-valence".

Example: A list of ring-superatoms consists of one ring-superatom, 1.

Tuo radicals result from labelling with one radical valencs.

<

\CH

q

17 18

General Case

Radicals have uniquely defined centroids as well 1025 | The centroid is
always an atom of valence two or higher. The steps for construction of
radicals are as follows.

Step 1. Selection of Atom Centroid.

Any bivalent or higher valent atom or ring-superatom is a valid condidate to
be the centroid of a radical. Thus, for example, for the composition
-CxC-, »C=C{ (see part 1a in Figure 3) both are valid centroids (Figure 5).



Step 2. Portition the Rest of the Atoms. .

The atom chosen for the centroid is removed from the list of superatoms. One
of the valences of the centroid is to remain free (the radical valence).
Therefore, the rest of the atoms in the list are partitioned into less then or
equal to (valence of centroid = 1) ports. Of course, each pert should

satisfy the restriction on univalents (equation 7) but for constructing

rodicals there is no restriction on the size of the parts.

icals from Each Port. .
The procedure to construct redicals is freshly invoked on each part thus
generating radicals. Each port in Figure 5 gives rise fo only one rodical, each
arising from specia! case 2.

Step 4. Combine Radicals in Each Part.

For the example in Figure 5, sach part yields only one radical. In a more
general situation, where the rest of the list of superatoms after selection of @
centroid is partitioned into several parts, and where each port yields

several radicals, the radicals are combined to determine all unique combinations
of radicals.

Step 5. Label Central Atom with Radicals.
If the center is an atom (not a ring=superatom) then each unique combination
defines a single unique molecule.

If the center is a ring-superatom, the radicals are determined by labelling the
center with o set of lobels which includes: i) the radicals; i) a leading
radicol-valence; iii) an adequate number of hydrogens to make up the
remaining free valences of the ring=supsratom. One selection of center gives
one radical and the other gives two more, to complete a list of three

radicals for the example chosen (Fig. 5).

Summory
For the example chosen fo illustrate the operation of the acyclic generatar,

twelve isomers are generated, nine shown in Figure 3 and three shown in
Figure 4.
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Outline of the strategy for structure generation.

Major steps in the generation of isomers as illustrated for
chB' This example outlines the method for one
superatom partition, that which allocates all atoms to

a single superatompot with no atoms in the remaining pot.

Operation of the acyclic generator for the case of a bond
as a centroid for the structures.

Operation of the acyclic generator for the case of an
atom or superatom as a centroid for the structures.

Outline of the method for generation of radicals which

are eventually c=mbined by the acyclic generator to yield
final structures.
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Empirical Formula

Part A: Form Superatom Partitions

/'/
Partition No. : 1< Ce - >
\\; \&\ 7
Consists of: Superatompot  Remaining Superatompot Remaining
Pot Pat
1 I 2
Part B: Construct Ring-superatoms
\
Ring-superatoms: ab.e,.... ikl ...
Part C: Construct Structures f/
Combine Ring-superatoms | | 11,... CLCH,CIII,...

with Remaining Pot
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Figure 3

Category A,

List of Superatoms

Partition into
2 parts
Part Number

Generate Radicals
for eoch port
[ seeTable vii ]

Combine Roadicaols

in pairs to form

Molecules

BOND CENTROID

[-cec-, )c=c{,

-czc-, Yc=c{/c.

lo Ib
3 radicols | radicol

(3xi=) 3 molecules

CH, - CH,- C2C-CH*CH,

CHg - CHp - CH=CH - CaCH

CH3 -CH2 —(;.: ~-CuCH
Hy

c.c ]

-cacC-,C /)c-c( .C

20 2b

2 radicals 3rodicals

\/

(2%3=) 6 molecules

CHy-CH = CH-CC-CH,
CHy- CH = CH- CHy-CaCH
CHy-C — CuC-CH,

CHg C - CH,-CuCH
&,

CHy® CH-CHzCr C = CHy
CHz CH-CH,-CH,-CaCH
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Figure 4

Cotegory B8 ATOM CENTROID

List of Superatoms [ -cmc—, >c=C<, c,c]

Select Atom Centroid >C -E</\ c

Partition Rest into wports=1,2 \
D

4 #parts=| 1.2 \ 3 4
upto (free valence) parts VO VOID VOID vOID
Part -CzC-/C/C X=C¢(/-CaC-/C
I L 2 3 | l 2 3
Generate Radicols from -C=CH/ ~CHy /- CH, — CH=CH,/-CaCH/CH;
each part |
Combine Radicals in only | way only | way
eoch part (-C2CH, -CHS.-CHS) (-CH=CH, ,-CsCH,-CHy)
Labei Atom Centroid CHEC—CH= C ~CH, CH,=CH-CH-CzCH
with  radicals <|5H3 Hy

CHEC-C = CH-CH,
1
CHy

57



Figure 5

GENERATION OF RADICALS
List of Superatoms [ -C=C-~- , >C=C <]
( from Port Number lg,
Figure 3)
Select Atom Centroid -Cs= C— > C=C<L
) 2,3 |
Partition Rest into #parts
=]
upto (volence -|) parts
only | partition only | partition
info | part into | part
Part >C=C<L -CwC-
Generote Radicals — CH = CH, —C =CH
Combine Radicols in only | onlyl
each part —-CH=CH, -C=CH
Label Atom Centroid ‘l'

with radicals + one
leading radical valence

+ hydrogens
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~C2C~-CH=CH,

—CH=CH-C = CH
—%— C=mCH
CH,



