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(edges) ot a graph, in such a ~ that knowing the symmet17 
group ot the graph, equivalent label .. sismaents are avoided 
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the vertex-sraphs needed by the generator. A progrUl has been 
written to generate all sraphs with t trivalent and q qua4rl­
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I. INTRODUCTION 

The CYCLIC STRUCTURE ~E'EaATOB fo~as tae heart of a large fi~i:J G: 

pro~ra.s that constitute an apFli~dtion of artitic!al iDtelli~eQc£ 

to probleas of cheaical structure infer9Dce (1). The 

early deyelo?~nt of the prograas utilized a syste.atic y~neratur of 

all acyclic [topoloqically tree-like] cReaical isoaera consist~~t 

with a specified cb~.ical co.position [2 and 3]. The 

ranq~ of interestinq ch~.ical proble.s that could bo solv~d w~r~ 

liaited by the ~cyclic character of the structure gener~tor. 3£c~ntly 

• qonerator for the co.plete space of all Cfclic and acyclic .olEcules 

1 
article cencerns itself with the basis set of vertex yrapbs\ 

that the cyclic struct1re qenerator draws upon. It vill t~ tElpful 

hoveyer to preface this vork with a brief description of ti.e 

cyclic stractare qenerator. 

Tbe proble. posed to tbe cyclic structure generator can bE described 

in n~n-cheaical teras as follows: Given a sequeDCQ of nUlcers 

(A1,A2,A3 ••• ) alqorithaically construct a represeDta~ive set of the 

distinct isoaorphi •• classes of cORnected, loop-free graphs haying 

l1 vertices of valence Cor degree) 1, A~ vertices of yalcnce 2 and 

so on. 1 .achine i.ple.e~tation of a reasonably efficient 4l~otit":' 

bas heen presented preyiously [4]. The algoritha bas been 

shown to generate a ~o.plet. set of graphs with Anticipatory avoidanc~ 

of r-.dundancios, thereby obyiatiDg iao.orphi.8 checking. 

(1) See section C for definiticn. 



!. RACKGHOUMO 01 THE CYCLIC S~'UCTUa! GENE.ATOa 

Onp. vay of conceptualizing a generator is bJ descriting it an a 

tran.for.atioD or •• apping. T, frc. & ~aaia .et, 8, to tb~ 9~nerat.d 

set, G. 

T 
B •••••• =) G 

Oftp.n the trAnsfor •• tion ia .any-to-one fro. B to G, giving ri~e to 

rep~.ted generation of .e.eral elelcnts in G. Co~&equently, cne 

faces tho possible Froble. of ra.oying redundancies fro. th~ goner.ted 

aet. So •• ti.ea, not ev~rr ele •• nt in 8 leads to a valid elc.£nt 

in G. ID that case one is faced with an iDco.ple':e generation of G 

and/or the task of prnc~asing or detecting unfruitfu: alements in ~. 

Often a acbel. of generation •• ps each elc.ent of B into a sub~et at 

G. l desirable characteristic tben ia that each sucb aubset te 

disjoint fro. every other. 

The cyclic generator is a co.posita of transfor •• tiona (illustratEd in 

'igure 1). 

Vertex Graphs 

~L Loop Lab.lle. 

Looped Graphs 

~L 81 •• 1 •• t Labello. 

Loop~d-ei.alent Graphs 

~L 're.'al •• ee Labell.: 

Ciliated Graphs 

~ TG Tree Generator 

CO.Plete~aPb. 



Tb-- tr4nsfor.~tions hegin with a class of v~rtex graphs 

which are loop-fre~ and 2-edge-connccto4. (e.g •• ri9~ro ta) 

Step 1. Lo(!) L&bell_e_t_. ______ -.) 

This is a one-to-aaLY traostoraatioD (possibly degenerate) desi1~tid 

in scch a VeiY that each vertex graph will yie14 & dis joii,t subset 

ot looped graphs. 

Step 2. BiTalent Labeller 

fiI •• ~ ... ,. 

This one-to-aany transforaation inserts vertices OD edges cf loofed 

~raphs in such a vay that each looped 9ra~h results in a disjci~t 

subset of looped-biv~leDt grapbE. 

N~tA. The first tvo steps a~y be perfor.ed repeatedly, addiDg leops 
on loops subject ~o certain constraints. 

Step 1. The freeTalence labeller designates unique ways ot select.ng 

points of attacAaent on the loo~e4-biyalent graphs. TbesE ~oints of 

attachaent vill bo used to interconnect these ciliated graphs in 

tre~ structures. 

PigUle 2c 



Ster _. Th~ tree q~ner.tor produce. ~ree-like connectod strijC~'J'E$ 

in the troe as 4egenerate ciliated graphs. 

~tl~o". ... 
Fi~ut~ 24 

The tree generato~ is a .any-to-aany transfor.ation, VQe~e again th£ 

sub.ets of co.plete qraFhs produced are eutually disjoiLt. 

Co.pl~teness 'Irr.dundancy. In order to de.onstrate tbe cClrleteDEsS 

aD~ irredun44Dcy of the generated set for anJ ach •• e of geoEratieD, one 

needs to sbow ~hat 

., If the basis set is coeplete and irredundant, then the 

transforaation vill yield tbe co.plete, irred~DdaDt generated •• t. 

b, The basis set is co_plete aDd irreduDdant. 

'r.q~eDtly, the proof of (b), bowe.er trivial, ia oDlJ given 

iapllcitly. In such casea, the basis aet is a set vbose 

characteristics regarding (b) are vell knovn, e.g_, the set of 

posit.iYe n~tura1 nuebers P(') up to I. 

It has been shown (4] that (a, i. true for all tha distinct 

steps in the cyclic structure qenerator. Coftsequently, if th~ S(t (f 

yert •• graphs qtYen to the cyclic structure generator is coaFlete 

and irredundant then the algoritba vill generate a coapletQ irr.duDd~nt 

list. of iso.crs. In otber Mords, the cyclic structure genetator i. 

only .s c~aplete •• tbft set of .ertoa-gr.aphs proYi4e4. 

It in hop,~t that this brief explCinllt.ioll has ~er.ed to pltlcC tl;l' •. lir. 

problo. ad,irossecl in this paper 1n the proper perspttctiy". 



c. YERTEX-GnAPU GENER11ION 

The Y~rtex-~r~phs serwe dB the ba.i~ se-. for tbe genorQ~ion ct chr.ric~l 

9raphs. The cyclic structure generator builds UrOD each ~r~ph 10 tt~ 

basis set by 

I) a~ding vertEx self loops where appropriat~ 

b) ins~rtin9 additional vertices of valenc~ 2 

C) constructing l-con~ected structures. as appropriate. by eab,ddi&~ 

the 2-connected qtaph8 il Icoted trees. 

This seryes to define clearly the requireaents on tbe ~.sis set. Every 

vertex-graph sbould 

.) have wert ices of valeDce J er higber 

b) be 2-connftcted 

C) baye no s~lf-loop •• 

"ulti-qrapbs are iaplled. 

Interest in organic cheaiatry helps to confine attentioD to gra?hs 

with a •• xi.u. Yertex valence of ••• 

• Carbon the lost abu~dant ato. in ~rqanic solecules bas ~ vale~c~ ij. 

The cyclic structure 99nerator can e.bed eto.s of any vdlence in 
tre~s. That coyers all ca.es of interest in ItO •• of valence high~r 
than four. Ring atc •• of yalence higher than four are rare. 

w~ shall r@pres~nt graphs with t w.rtic.s of yalence 3 lod ~ 'erticES 

of walence Q as G(t,1). 

All qraphs G(t,O) are listed bI L.d.rberg [5]. for yalues 

of t • 2.~ •••• up to 18. (It is easJ to see that t bas ~o te even, 

sinc@ the sus of vertex yaleDce. ~a. to be even). His liti~in~s iDclu~e 

polY90na1 (po$~essin9 8 •• 1lton circ~it) &s vell a. nOD-polyqonal 

qraphs. Ind are coaplete. He 41so presents a notatiOnal systEa th4t 

vill acco •• odate alJ polyhedron tbat ha. a aa.iltoD circuit, 4& well 

as unions of such polyhedra. 

6 



D. GF.NERA~IO. or GRAPHS WITH OUlDIVAL!NT Vld?lCES. 

Th~ .)thod nf vertex pair ptoaotion is ?resented hero as a bcct~t[~~ 

procftduro to qeDerat,e G (t,q) graphs using Ledlltrberg'. list.in'.) of 

G (t, n, graphs. 

D1. "ethad of Yertex Pair Preaetion. 

Lederher,) (-; 1 toa. proposed that a .. -valent Yertcn (I) can ce 

tre"tll4 S"itclblf as the collapse of ~ pair of connected l-valent 

,ertlc~s (b). 

> .. _-< ... : 
(a, (b) 

Thus tbe scheaq inYol,es identifying pairs of )-,alent verticES th4t 

are coanectad, and pro.oting thea to '-yalent 'ertices by a FIoces~ c! 

collapsing the edges. It is clear tbat in one organization all 

graphs G(t,q) can be constructed in a sequence of q steps startiDg 

with 9raph~ G(t+2q,O) and successively deriving G(t+29-2,1). 

G (U 21)- 4.2) G(t,q). The g edges that are collapsed in any 

G(t+2q,O) graph should be vertez-disjoint. ,Hence a .et oi q ~dges e~n 

.bA collap~eu in ql sequences in the aboye aethod, fielding ~ laxicijm 

redunlt"ncf of ql in the list of generated graphs. tbe following 

,ariation atteapts to .,oid this redundaDcf. and deriYes bEnefit ftcm 

knowing tba syaaetry group of the G(t+2q,O) grapbs. 

In this .~t~od. q edges are .elected in unique way a froa a G(t.2q,U) 

Yert-.x qrap~, T, by • procesa of Edge-labelling. (Por a discu~sicD o~ 

Bdqe-la~linq ... lppen4ix 1). Tbe edge labolling a.aures us t~at the 

edqGs selected are unique with due conaideratioD to the ayaa.try ot 

the grAph T. 

Bx.-pl. 

To generate: GI2,') 

1 



.,,, c:onsltlrr the two graph. G ,4,0) 

o 
Gra.,h 4D8 has thf! full sy •• etric grolJP on ita 84ge.. Th"!i, acr.or~in~ 

to ed9~-1.belling there ia only ODe p08$ible choice at one Cd~p. in qub. 

Upon yertex pair pro.otion this rQsult. in ~'(2,,) 

!4qe laballing on III yle14s tvo choice. of a single edge •• rked I 

and y. Upon pro.oting the yertex pair. one gets tbe gra. h 91(~,') 

aga1n. T~e yerte. pair y howe,er 9ilo. the followicg graph. 

~ !'(2,,\ 
~a~lOoP. Self-loops are forbidder. Th~ resulting grapb haa 

on ,erte. graph. becaus. the cyclic structure generator synthEsize& 

looped qrapbs fro. the Yertex grapbs. 

The foll~vin9 tvo yaliditJ cbecks are .a4e on eacb 8dg.list Frod~c.d 

by edg8 labelling 

a) tbe edgos .uat be Yertex d1sjoint 

b) n~ Yerte. pair chosen can baye .ult!ple 4dges conneclinry it. 

AS vaa shovn aboYe, the resultiDg list of G(t,q) grapbs CdD baye 

lso.crph redundancies that D.e4 to be eli.inated. So.e tecbniques 

are reyieved in Section I. 



!b. flowchart for t~is 14thod ot ?enoration is qi,en b.lo~. 

-----) 
I 
I 
I 
I 
I 
Inane 

GTQ <-- NIL 
GT2Q <-- G(t • 2q,0) 

~ 
solect next T G(t+2q,0) -----> stop 

! o .. tput erg , 
+ 

Ed~e Label T with q latela 
LL <-- list of lab .. lliogs 

• Select ne~t labelling L tL <------------------
I .., 

Tva tests for wali4ity In.a11d 
of rd9811.t ql.eo in L -----------------------) 

I 
I •• 114 
~ 

Prolote all q .erte. pairs 
I 

+ Add r .... lting graph to list GTg 



( ", (b) (e) 

The ahove c~r.fi9ur.tions exhaust the possibilities for a 4-valEr.t 

y~rtex, whore ~he tlebs represent connected parts of the grarh. 

Case (b) falls outside the reala of required generatioD, being 

one-connect~d. 

C~se Ca, is coapletely coyered by our generation procedure of vertex 

pair proaotion. 

CaSE (C) represents a vertex which is also a cutuode aDd talls vithi~ 

the scope of required generation. 

Ca) (f) 

Both (e) and (f) can lead to case (c). Our aethod will genErata 

casp. (e) fro. 2-eonneeted grapbs, like (fl. Thus it will not b~ 

Deeess4ry to consider aay l-eonaected grapa for the basis SEt. In 

this &laner, the scheae generates the co.plete raDg~ of r~qui~ed 

graphs. 

,0 



!1. Oriqin of the BeJundancy. 

In the vertex pair pto.otion aethod of generatioa of YQrtex ~~a~ns, 

a ,-yalent vertex ca, could bave been generated froa any on~ ot toree 

possible div1s10ns of ita incident ~dqo8 (b,c,d). 

Ca> (b) (c) 

Thus there is a aaxiau. of 3q-fold redundancr possible for any ace 

Get,g) graph. Hovever, in practice the redundancy factor is lucb 

•• aller owing to the sya.etry ot tbe G(t.2q,O, graphs. 

£2. Graph Isoaorph Checking. 

~here are several excellent algorith •• that are designed for testing 

i~~aorpbisa of a pair of graphs (16]. ie bave adopted a 

(d) 

slightly .odif1ed versioD af an algorith. designed bJ Bmcbanan 

[unpublished]. There is no pr01eD a.sertion about the efficiEDCY ot 

tbis algoritb. but it has beuristic aerit. The algoritb. is orieptcd 

toward detacting non-isoaorpbisl quickly. 

1 ~enoral coaaent on .etbod. of isoaotphi •• checking is in crdet. 

"ost aethods, to our knowledg~, .ake no utilization of the syr.otry 

of the graphR under co.parison. Consider, for exaapl., t.estin9 a 

pair of 9raphs, A 4gainst 8 •. Let 8 baye a high order of sys~~t:y. 

The algorltba repeatedl, 8.Y initiate. aatcb for .ertex a of 1 witb 

.ertex b of B. When furtber ezcursiofts into aatchio9 reveal that a 

cannot be aatcbed with b, the algorith. aay try another vert~x of S, 

say b1 which can b~ 1n tbe orbit of aJa.etry of vertex b. We kncw 

froa the autoaorphisas of graph 8 that if b is in.alid as aatch f~~ 

a, theft so is any other yertex in the orbit of b. tbua the sya2QtIY 

group caD b~ eaployed fruitfully during i~o.orph checklDg. It is 

worthwhile to co.pare soa. charactor1stica of tbe groups of tbo twc ., 



Th~rQ aro no labels 4ssociated with the vertic~s. Hance. th~ 1CdtUtc~ 

(i) through (ivj ar~ ineffective fcr 9rOQ~in9. Tho tollowiD9 teatut~£ 

are qs~d: 

a) a sequenco representing tbe mu.ber of Dultiple edges 

b) the DU8ber of l-cycles; qeoeralizable to a list of up to ~-c1clEs 

C) the eigenvalues C.) of the adjacency aatrix of the 9ta~~, 

if (a) and (b) leave large s@ts of graphs unresolved. 

c.) Rep. Appendix B. 

)1 



qr.ljlh::; U~fOl'I' I"lIIb;}rld.n'J 011 the s~'lrch for thO:! i::lOIllOrphi!iQ .~l'Fill·.i. 

E I. (;rnupinfl ttlp lL.t ct :]raphs. 

W~pn 1 list of (jr4phfi, 1, is to hH P[occ~!OeJ for iliolllorph cli%i!Hticli, 

thp. vorst case (each graph is unique) vill engender (r..U-I,) /2 t ... ·~h 

cf iRO~Otphism. When isoaorphs are present in L, this uU~L~r ~~ 

reduced considera~ly vhen care is takp.n to tost each ne~ c~cdiJ1t~ 

with a list of ~ni~ue graphs alcne. 

1 technique used to expedite detection of non-iso.orphis~ of ~ p~ir 

of grapbs i~volves co.paring certain easily co_puted topolC9ic~11y 

invariant features of the graphs. If the ~~ir of graphs do ~ct 

corr~::lpond in all their features, non-isolDorphisll Cdn ba FrcI.cllnceu 

r~ddily. Extending this to the isomorph elimination from a list o! 

graphs, L, leads to the grouping technique. Grouping involv~s d 

pa~s through L and associating with each graph its computed 

features. This list L then can be organized into sublists sucb that 

e~ch pair of 9r~phs in ~ sublist has identical features. Thou~h a 

5i.ple technique, grouping leads to considerable reductio4 in tbe 

numher of isomorphis~ tests to be made. 

Choice of fp.atures to use in grouping: 

Usual features that are checked before isoeorph testing incl~de tt~ 

i) ~u.ber of vprtices, 

ii) nu.ber of ~dges, 

iii) t.he v9rtex-val€nce list, 

iv) a sequ~nce listing tbe labels associated with vertlces, It ~ny, a~~ 

V) a se~u~ncc listing the labels on edqes if 4ny. 

In our ~pplication it is guaranteed tbat all graphs in a list L 

to he proc~ssp.d for redundancy have 

a) the sa.p. nUlber of vertices 

b) the sam~ nuab9t of edges 

c) tho saae vertex-valence list. 



E,.. f'~~ of Cctnon ic.sl Porms to Avoid Graph "'a tCilin'J. 

ca~onically. Thes~ proced~res can lead to sizedble exp~~uiture ct 

cOllp1lt.ing effort, especially in the pr~sence of symmetry in the! 

graphs. L;1d~rber9 (.) al!lO has devised a car.onical 1I0t.dt~0r. t;~I:i .. l 

in d"n;;cribiny the graphs we generate. However, thcse IIctrloOs <irc 

not u~~d in tbe prespnt scheme. 

P. Conclusion 

P (N) Positive num~ers up to N 

.lJ,® 
Regular Triyal~nt Graphs G(t,O) 

Q.'dri/Triv~~t GraPhu~t.gl ~ & 

cO.flete list of graphs with 
s~~cified vertex valences 

The g~neration (b) of complete lists of cneaieal graphs cccPdtitlc 

with ~poeified ato~ic compositions ~alence lists) was hindct~d 

originally by the i~co~Fleteness of the available list of Qua~ri/t;lvalc=t 

'}r~phs. The regular trivalent grapt:.s G ct,O) to be inelud~d l.n tnoa 

tasis set for gen~ration (b) were generated theaselves in a~ ExhaCstiv~ 

way (~). The present paper has described an i.plementat~cn o! a 

SU'1IJAstion by Lederberg for bootstrapped generation (e) of ~uadr:,/· ... :iva~..:r.t 

graphs fros regular trivalent graphs. A separate report lists G(t,q> 

gril phs fo r acvpr.l1 V" lues of t <\nJ q. (7] 



The qrneral "labcllinq" problem has be~n given a group tbeCtHtic 

rlcfinit ion, analysis and soluticn by Brown, :1asinter and IIj<:l:rt!l,u.a ~'~]. 

In the pres~nt cont~xt of selecting uniqu~ sots of k ed~e~ trem ~ 

9t~ph G, d re~ucAd tor.~lation of the lah~lling problem ~ill ~"[tiCE. 

L~t G be a gcaph with an arbitrary definition of indexinq its 2UJ~S 

from 1 thro~qh I. Let L be the label set, with k labels of Ctc t~F~ 

and (m-k) of another tYFe. We shall denot~ the auto.or~his, ~ro~~ 

of G represented as p~r.utations on the indices of its ed~~s, by , • 

Thp. hbel set ad.its a group X. Since each label is indi~tin..,\Oist.atlE 

froll other labels ot tht1 Sd.e type,)e call to writtou CiS tr.~ dirEct 

I'IU. ~ (It) + S ,m-k). 'rb€ indexed labellings of the edC)es of G b1 L 

can ho identified vith S(~ the fnll perlutation 9rouP. Tvo 

labf'llings ~, 1tz. f S (II) are equivalent when lta,. "'! '":tot t for .lny 

,.~ and 1.~. Th~ equivalence class deter~incd b~ 

\ \ 1t t \" ~ , t. ~ ~ ~ ~ "~ 
is called a double coset • 

• analogous to \~1t \«. A\ t Jl.~ 
or "CI, \ •• .Al t 'itA 

~~in9 called single cosets. See [8]. 

Tl.e qroups' clnd ~ induce a partitioning ot $ (ID), by leans cf til£lI 

double cosets. 1 set of double coset representatives con~titutes a 

co~plote s~t of uniqu~ labellings of G with labels L. 

Brown, ~aGinter and Hjel.eland [9] have designed and i.pl~.ent~d t~c 

alqorithas tor qeneratir.~ double coset representatives tor th£ 

lAbAtlinq ~roblel. The algorith. usad in the present vork WclE aL 

implp..antation qiYen by L. ~asinter. 



Api'~n(\ix 3. f.iq~nval'las;ts Invariill:t PPdture 
(by Or. Pay~ond Carhart) 

A ~raph ctn he ropr~s~nt~d as adjaconcy ~~ttix A of ordur nxn, ~nct~ 

n is the n.llllb'!r of vertices in the ytdph. P.ac" Aij i:i ali i:lt(;fj'-~r 

r~orps(!ntin<J the numhpr of edIJes linlcirlg vertices i ilnd j. (.\ij i!: 

zero when v~rtices i and j are not connected by an edge). Fct ~L 

undirected <;raph th~ .atrix A is :iYlmAtric. When there dr(; fie 

self-loops on vertices the dia!)onal elements Aii are zero. 

Sinc~ si.ult~np.ous rov and colu.n parmQtdtions on 1 lp.ilve the 

topology of thp. graph unaffected, two qrapns (matric~s) A dc4 H d~e 

topoloqically equivalent if they are related by a perDut~tion 

.at.rix P such that 

T P 
1 • P BP or 1<-->B ----------(Cl) 

The eigenyalu~s of a sy.metric .atrix A can be defined as t~e 

diaqonal ele.ents of a diagonal .atrix A, such that 

A."~ A V······ . (Cot.) 
where V is any art hoqolHll aatrix. 

Sl.bstitutin9 (c1) into (c2) we find' 

= (PU) T B (PU) ------ (cl) 

Wlu'n U is ortho<}onal, (PH) is ol:thoC)onal as IIell. Thus the 

~iqcnyalu~ ~ets of the adjacency .atrices of topologicallJ Equivllent 

gr4phR are th~ sa.e. 
p 

A <---> it ==-> l\..(l) • A(e). 

In q(!tI~ral it is not true ~hat when the cigenvdlu,ts of tiiO a<i~.:-ccr.cl· 

aatrices arc the same, the two corr~sponding graphs are topclcqic.t~li 

9 /Jui valent. Por example, the ttoi.) graphs shown below are topolo-Jical:.~· 

d i f fflrftnt, but have thu same eigenvalue sets. 

o [j0 
Thp. ~igenvillue computation can be useJ a::; an invariant feotture o[ 

topologically equivalent graph. to aid in the grouping ~roces& 

IL 





Table I. SUMMARY OF RESULTS 

Vertex Granhs vith lumber of Graphs Genl!rated fro::: 
Trivalents Quacirivalents Generated Trivalent Regula~ Crar~2 -~ 

2 1 1 II vertices 

It 1 5 6 vertices 

6 1 21& 8 vertices 

0 2 1 .. vertices 

2 2 It 6 vertices 

It 2 31& 8 vertices 

0 3 1 6 veri.icl!s 

2 3 12 8 vertices 

0 It 3 8 vertices 

See Reterence [7] tor complete lists ot graphs. 
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