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procedure sum (x, n, m, result, fail);

v_a;}g n, m; integer n, m; real result;

array X; M fail;

begin com:ent” —'.Phiﬁ/ Algol 60 procedure i; an implementation of the
floating-point summation technique described in Malcolm (1971). This
implementation is machine-independent in the sense that it will work on
any computer having a floating-point number system F characterized as
follows: Each num”l‘)'é; X€EF has a radix-f t-digit fraction where /t 2 1.,
The radix B can be any positive integer greater than 1 . The exponent

e 1s assumed to lie in the range

b<e<B,

where b <O end B>t . Each nonzero x€F has the representation
X =4 .ddy ... 48,

where dl, 00T E dt are integers satisfying

O S di _<_ a-l s (i=l, ] ’t) .

The number O is contained in F , but no assumption is made about its
representation, All floating-point operations (e.g., addition and multi-
plication) are assumed to result in either O or a normalized floating-
point number contained in F ., The machine may do either proper rounding
or chopping (truncation). (Note that this definition of F excludes
machines using extra-length accumulators for intermediate arithmetic.
However, this algorithm is seldom needed on such machines.)

The paraemeters g and t of F are automatically computed at
execution time by a technique described in Malcolm (1972). Since the

range of the floating-point exponent cannot be determined automatically,
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the input parareter m 1is used for allocating the set of accumulators
used by the algorithm.

Provided no overflow or underflow occurs, and none of the x[i]
are larger than 10™ y Or smaller than 10°® » in magnitude, and

n< 3“'1/16 , where £ = |t/2] , then

n
result ~ ¢ x[i])
i=1

is returned with nearly full-precision accuracy. The bound on the

relative error is given by Theorem 2 in Malcolm (1971) as
[(t+1)/L4og 1611 57" .

If any of the x[i] are larger than 10" or smaller than 10™™ s then
the error exit fail is taken. ;

Boolean rnd; integer beta, t, t2, mu, L, U;

procedure ENVRON (beta, t, rnd);

Boolean rnd; integer beta, t;

begin comment This procedure is an Algol 60 translation of the (first)
Fortran subroutine ENVRON given in Malcolm (1972).

real a, b, e;

for e :=2,2xe while (a+l)-a=l do a :=e;

for e :=2,2xe while atb=a do b :=e;

beta := (a+b)-a; rnd := a+(beta-1) > a; t := 0;

for a := 1, betaxa while (a+l)-a=l do t := t+l
end ENVRON;

ENVRON (beta, t, rnd); t2 := t+2; mu := 4n(16)/4n(beta);
U := entier (mx¢n(10)/(4n(beta)xmu)) + 1;
L := entier((-mxfn(10)/fn(beta) - t2}/nu);
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comment In the notation of Malcolm (1971), £ = t2 dis the padding that

each of the numbers added to the accumulatorse will have, Each of the x[i]
will be split into two helves (l1.e. q=2) having the last t2 digits equal
zero, The variable nu ebove is used for v defined in Equation (2) of
Melcolm (1971). The value for nu computed above is rather arbitrary

and was chosen to make nu sufficiently smaller than t2 ., The variables
U and L eare the upper and lower bounds on the indices of the accumulators
which are declared in the following block. They are chosen to allow the
x[1] to range from 10" to 10" in magnitude. In slightly different
notation, they are

L

L(-m/tog, B ~ 1t/2])/v] ;

begin array accumlators[L:U]; integer ex;

real xL, xH;

integer procedure e(x);

value x; real Xx;

begin comment This procedure computes the exponent e of the

floeting-point number x .

real y, q; integer ex;

x := abs(x); ex :=0; for y := 1,q

vhile x>y do begin ex := ex+l; q := betaxy; end;
for y := q, y/be;ta while x<y do ex := ex-1;

e = ex

end e;
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comment initialize the array of accumulators;

for i:=L step 1 until U do accumlators[i] := O; '

comment accumulate the nonzero x[i]s;

for i:=1 step 1 until n do if x[1]/0 then

begin ex := e(x[1]);
if entier(ex/mu)>U v ex-t2<Ismu then go to failj
comment, Now the x[i] is split into a high- and low-order
purt, xH and xL, The method used here is *o add the proper |
power of B to x[i] to force it to preshift t2 digits |
to the right and then either truncate or rbund the last t2
significant digits, Then the same power of $ is subtracted
to cause & post normalization which brings in t2 trailing
zero digits. The resulting high-order part of x[i] is then
subtracted from x[i] to produce the low-order part such
that the sum of the high- and low- order parts is exactly

equal to x[i]. This method of splitting a floating-point

number into two halves is similar to that given by Dekker

(1971). ;
XH := betat(ex-1+t2); xH := (xH+x[1i]) - xH;

xL := x[i] - xH;
comment xH and xI can now be added to the appropriate

accumulators, H

accumulators[entier(ex/nu)] := xH;
accumulators[entier((ex-t2)/nu)] := xL

end; comment Now sum the accumulators in decreasing order., ;

e

result := 0;

for i:=U steg =1 until [ g_g



. result := result + accumulators{i] ;
end |
end sum '
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