

AD-764 275

A MACHINE-INDEPENDENT ALGOL PROCEDURE
FOR ACCURATE FLOATING-POINT SUMMATION

Michael A. Malcolm

Stanford University

Prepared for:

Office of Naval Research
National Science Foundation

June 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

AD 764275

A MACHINE-INDEPENDENT ALGOL PROCEDURE
FOR ACCURATE FLOATING-POINT SUMMATION

by

Michael A. Malcolm

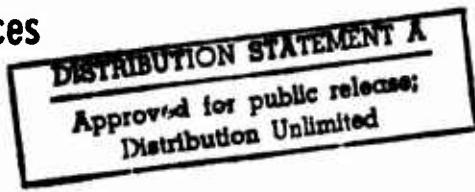
STAN-CS-73-374
June 1973

AUG 18 1973

C

Reproduced by
NATIONAL TECHNICAL
INFORMATION SERVICE
U S Department of Commerce
Springfield VA 22151

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY



A MACHINE-INDEPENDENT ALCOL PROCEDURE
FOR ACCURATE FLOATING-POINT SUMMATION

Michael A. Malcolm

June 1973

This work was supported by the Office of Naval Research, Contract N00014-67-A-0112-0029, and NSF Contract GJ29988X.

```
procedure sum (x, n, m, result, fail);  
value n, m; integer n, m; real result;
```

```
array x; label fail;
```

begin comment This Algol 60 procedure is an implementation of the floating-point summation technique described in Malcolm (1971). This implementation is machine-independent in the sense that it will work on any computer having a floating-point number system F characterized as follows: Each number $x \in F$ has a radix- β t -digit fraction where $t \geq 1$. The radix β can be any positive integer greater than 1. The exponent e is assumed to lie in the range

$$b \leq e \leq B ,$$

where $b \leq 0$ and $B > t$. Each nonzero $x \in F$ has the representation

$$x = \pm .d_1 d_2 \dots d_t \cdot \beta^e ,$$

where d_1, \dots, d_t are integers satisfying

$$0 \leq d_i \leq \beta-1 , \quad (i=1, \dots, t) .$$

The number 0 is contained in F , but no assumption is made about its representation. All floating-point operations (e.g., addition and multiplication) are assumed to result in either 0 or a normalized floating-point number contained in F . The machine may do either proper rounding or chopping (truncation). (Note that this definition of F excludes machines using extra-length accumulators for intermediate arithmetic. However, this algorithm is seldom needed on such machines.)

The parameters β and t of F are automatically computed at execution time by a technique described in Malcolm (1972). Since the range of the floating-point exponent cannot be determined automatically,

the input parameter m is used for allocating the set of accumulators used by the algorithm.

Provided no overflow or underflow occurs, and none of the $x[i]$ are larger than 10^m , or smaller than 10^{-m} , in magnitude, and $n \leq \beta^{l+1}/16$, where $l = \lfloor t/2 \rfloor$, then

$$\text{result} \approx \sum_{i=1}^n x[i]$$

is returned with nearly full-precision accuracy. The bound on the relative error is given by Theorem 2 in Malcolm (1971) as

$$[(t+1)/\lfloor \log_{\beta} 16 \rfloor] \beta^{1-t}.$$

If any of the $x[i]$ are larger than 10^m or smaller than 10^{-m} , then the error exit fail is taken. ;

```
Boolean rnd; integer beta, t, t2, nu, L, U;
procedure ENVRON (beta, t, rnd);
Boolean rnd; integer beta, t;
begin comment This procedure is an Algol 60 translation of the (first)
Fortran subroutine ENVRON given in Malcolm (1972). ;
```

```
real a, b, e;

for e := 2, 2×e while (a+1)-a=1 do a := e;
for e := 2, 2×e while a+b=a do b := e;
beta := (a+b)-a; rnd := a+(beta-1) > a; t := 0;
for a := 1, beta×a while (a+1)-a=1 do t := t+1
```

end ENVRON;

```
ENVRON (beta, t, rnd); t2 := t÷2; nu := ln(16)/ln(beta);
U := entier (m×ln(10)/(ln(beta)×nu)) + 1;
L := entier((-m×ln(10)/ln(beta) - t2)/nu);
```

comment In the notation of Malcolm (1971), $l = t2$ is the padding that each of the numbers added to the accumulators will have. Each of the $x[i]$ will be split into two halves (i.e. $q=2$) having the last $t2$ digits equal zero. The variable nu above is used for v defined in Equation (2) of Malcolm (1971). The value for nu computed above is rather arbitrary and was chosen to make nu sufficiently smaller than $t2$. The variables U and L are the upper and lower bounds on the indices of the accumulators which are declared in the following block. They are chosen to allow the $x[i]$ to range from 10^{-m} to 10^m in magnitude. In slightly different notation, they are

$$U = \lceil m / (\nu \log_{10} \beta) \rceil ,$$

$$L = \lfloor (-m / \log_{10} \beta - \lfloor t/2 \rfloor) / \nu \rfloor ;$$

```

begin array accumulators[L:U]; integer ex;
real xL, xH;

integer procedure e(x);
value x; real x;
begin comment This procedure computes the exponent e of the
floating-point number x . ;
real y, q; integer ex;
x := abs(x); ex := 0; for y := 1,q
while x>y do begin ex := ex+1; q := betaxy; end;
for y := q, y/beta while x<y do ex := ex-1;
e := ex
end e;

```

```

comment initialize the array of accumulators;

for i:=L step 1 until U do accumulators[i] := 0;

comment accumulate the nonzero x[i]s;

for i:=1 step 1 until n do if x[i]≠0 then

begin ex := e(x[i]);

if entier(ex/nu)>U  $\vee$  ex-t2<L $\times$ nu then go to fail;

comment Now the x[i] is split into a high- and low-order
part, xH and xL. The method used here is to add the proper
power of  $\beta$  to x[i] to force it to preshift t2 digits
to the right and then either truncate or round the last t2
significant digits. Then the same power of  $\beta$  is subtracted
to cause a post normalization which brings in t2 trailing
zero digits. The resulting high-order part of x[i] is then
subtracted from x[i] to produce the low-order part such
that the sum of the high- and low- order parts is exactly
equal to x[i]. This method of splitting a floating-point
number into two halves is similar to that given by Dekker
(1971). ;

xH := betat(ex-1+t2); xH := (xH+x[i]) - xH;

xL := x[i] - xH;

comment xH and xL can now be added to the appropriate
accumulators. ;

accumulators[entier(ex/nu)] := xH;

accumulators[entier((ex-t2)/nu)] := xL

end; comment Now sum the accumulators in decreasing order. ;

result := 0;

for i:=U step -1 until L do

```

result := result + accumulators[i]

end

end sum

References

1. Dekker, T.J. (1971), "A Floating-Point Technique for Extending the Available Precision," *Numer. Math.* 18, 224-242.
2. Malcolm, Michael A. (1971), "On accurate floating-point summation," *Comm. ACM*, Vol. 14, No. 11, November, 731-736.
3. Malcolm, Michael A. (1972), "Algorithms to reveal properties of floating-point arithmetic," *Comm. ACM*, Vol. 15, No. 11, November, 949-951.