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procedure   sum (x, n, m, result, fail); 

value   n, m;   Integer   n, m;   real   result; 

array   x;    label   fail; 

begin   comment     This Algol 6o procedure is an implementation of the 

floating-point summation technique described in Malcolm (1S71).    This 

implementation Is machine-independent in the sense that it will work on 

any computer having a floating-point number system   F   characterized as 

follows:    Each number   x€F  has a radix-ß t-digit fraction where   t > 1 , 

The radix   ß   can be any positive Integer greater than   1 .    The exponent 

e    is assumed to lie in the range 

b < e < B , 

where   b < 0   and   B > t .    Each nonzero   xgF   has the representation 

x = + .d,cL  ...  d. «ß    , 

where d,, ... , d.  are integers satisfying 

0 < di < ß-1 , (i=l, ... ,t) . 

The number 0 is contained in F , but no assumption is made about its 

representation. All floating-point operations (e.g., addition and multi- 

plication) are assumed to result in either 0 or a normalized floating- 

point number contained in F . The machine may do either proper rounding 

or chopping (truncation). (Note that this definition of F excludes 

machines using extra-length accumulators for intermediate arithmetic. 

However, this algorithm is seldom needed on such machines.) 

The parameters pj and t of F are automatically computed at 

execution time by a technique described in Malcolm (1972). Since the 

range of the floating-point exponent cannot be determined automatically, 
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the input parar.eter   m   is used for allocating the set of accumulators 

used by the algorithm. 

Provided no overflow or underflow occurs, and none of the    x[i] 

are larger than   10m , or smaller than   10'm , in magnitude, and 

n < ti+1/l6 , where   i = lt/2J   , then 

n 
result «2   x[i] 

i=l 

is returned with nearly full-precision accuracy. The bound on the 

relative error is given by Theorem 2 in Malcolm (1971) as 

r(t+l)/Uogßl6jl ß
1"* . 

If any of the x[i]    are larger than lo"1 or smaller than 10"m , then 

the error exit fail is taken.  ; 

Boolean rnd; integer beta, t, t2, nu, L, Uj 

procedure ENVEON (beta, t, rnd); 

Boolean rndj integer beta, t; 

begin comment This procedure is an Algol 60 translation of the (first) 

Fortran subroutine ENVRON given in Malcolm (1572). ; 

real a, b, e; 

for e := 2, 2xe  while (a+l)-a=l do a := e; 

for e := 2, 2xe  while a+b=a do b := e; 

beta := (a+b)-a; rnd := a+(beta-l) > a; t := 0; 

for a := 1, betaXa while (a+l)-a=l do t := t+1 

end ENVEON; 

ENVRON (beta, t, rnd);  t2 := t-r2 ; nu := jen(l6)/jen(beta); 

U := entier (niXen(lO)/(jen(beta)xnu)) + 1; 

L := entier((-mx&i(lO)/jen(beta) - t2)/nu); 
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comment In the notation of Malcolm (19^1), Ä = t2 la the padding that 

each of the numbers added to the accvunulatorß will have. Each of the x[i] 

will be split into two helves (i.e. q=2) having the last t2 digits equal 

zero. The variable nu above is used for v defined in Equation (2) of 

Malcolm (1971). The value for nu computed above is rather arbitrary 

and was chosen to make nu sufficiently smaller than t2 . The variables 

U and L are the upper and lower bounds on the indices of the accumulators 

which are declared in the following block. They are chosen to allow the 

x[i] to range from 10"  to 10  in magnitude. In slightly different 

notation, they are 

u = rv(wtog10ß)i , 

L = U~m/iog1Qt - lt/2J)/vJ    ; 

begin   array   accumulators[L:U];    integer   ex; 

real   xL, xH; 

integer   procedure    e(x); 

value   x;    real   x; 

begin   comment   This procedure computes the exponent    e   of the 

floating-point number   x .     ; 

real   y, q;    integer    ex; 

x := abs(x);    ex := 0;    for   y := l,q 

while x>y do begin ex := ex+1; q := betaxy; end; 

for y := q, y/beta while x<y do ex := ex-1; 

e := ex 

end e; 
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comment   initialize the array of accumulators; 

for   i:=L   step   1   until   U   do   accumulatorsfi]   •= 0; 

comment   accumulate the nonzero x[i]a} 

for    i:=l   step   1   until   n   do   if   x[l]^0   then 

begin     ex ;= e(x[i]); 

if   entier(ex/nu)>U V ex-t2<]jxmi   then   go to    fail; 

comment   Now the   x[i]    is split into a high- and low-order 

part, xH and xL.    The method used here is to add the proper 

power of   ß   to   x[i]    to force it to preshift   t2    digits 

to the right and then either truncate or round the last    t2 

significant digits.    Then the same power of    ß   is subtracted 

to cause a post normalization which brings in   t2    trailing 

zero digits.    The resulting high-order part of   x[i]    is then 

subtracted from   x[i]    to produce the low-order part such 

that the sum of the high- and low- order parts is exactly- 

equal to   x[i].    This method of splitting a floating-point 

number into two halves is similar to that given by Dekker 

(1971).    i 

xH := betat(ex-l+t2);    xH := (xH+x[i]) - xH; 

xL := x[i]  - xH; 

comment   xH   and   xL   can now be added to the appropriate 

accumulators.      ; 

accumulators[entier(ex/nu)]   := xH; 

accumulators[entier((ex-t2)/nu)]   := xL 

end;    comment   Now sum the accumulators in decreasing order.     ; 

result   := 0; 

for    i:=U    step   -1   until    L   do 



result := result + accvumil»tore[i] 

end 

end   sum 
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