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FOLDS, A DFX:LARATIVE FORMAL LANGUAGE DEFINITION SYSTEM 

by Isu Fang 

Ab~tract 

This thesis aescribes FOLDS, a declarative rormal 1&1guage defini~ion 

system. The system implements and extends Knuth 1 s method. for the 

specification of the semantics of context-free languages. The system 

provides ~ language (SPINDLE) and data structures to define the syntax 

and semantics .:;!' a langua,se. It also J..ncluc.es a machine (MUTILATE) tl-w.t 

from the definition compiler programs of the defined language. Both the 

consistency and the correctness of the defintion can be checked in this 

way. The lanr,u~~e imposes very few restrictions on definitions While 

preserving the ueclarative nature of Knuth's method; i.e , the ccmpilat ion 

process is transparent. in the definition. In .1.ddition, tte system 

provides a means for t;emantically resolving syntactic ambiguities. FOLDS 

is int~nded primarily for the language designer, giving him the 

O]:purtunity of realizing his definition with 'l'ery little concern dbout 

implementation detaLLs. A defi"'ition of !JIMULA (q in SPINDLE and n ~:r'u 

of SIMULA 67 pr0gran.s, as compHed by the 1efi nit ion, are includPd t0 

illu~tra~e th~ capabilities of the system. 

This research was supported in part by the Faculiade de Economia e 
/.dNinistraca da Univer~idade de Gao Paulo, Agen•:; for International 
Development - StatP Department and FUndacao -te .htpe.ro a Pesquisa do 
Estado de 3ao Paulo; by IBM Corporation; and by XProx Corpcration. 
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I~TRODUCTION 

This thesis describes FOLDS, a declarative formal language 

cetinition system. The system implements and extends Knuth's method 

[Kn 68al for the specification of the semantics of context-free 

languages: given the syntax of a language, attributes are associated 

with each nonterminal and the "meaning" at a string of the language 

is given by the values of the attributes associated with the 

nonterminals in the parse tree; the serant1cs establish, for each 

syntactic production, ;he relationships that must exist between the 

attributes of the nonterminals involved in the production. The 

system also incorporates Wilner's extensions (Wi 711 to Knuth's 

method. 

The system provides a language <SPINDLE) and data structures to 

define the syntax and semantics of a language. It also includes a 

machine <MUTILATE) which compiles programs of the defined language 

using the definition. Both the consi~tency and the correctness of the 

definition can be checked in this way. 

The language 1~poses very few restriction~ on def~nitions while 

preserving the declarative nature of Knuth's method; i.e., the 

compilation process is transparent in the definition. In addition the 

system provides a means for semantically resolving syntactic 

ambiguities. The syntax is specifled by means ~f productions and the 

semantics by means of an ~LGOL-11ke language which serves both to 

relate the attributes of nonter~tnals as functions of other 

attributes and to describe the functions. 

1 



The data structure scheme is tier1ved from the "obj~cts~ of the 

Vienna Definition Lan~uage [~e 72] which allows great flexlblllty in 

the choice of data structures for the attributes. 

gives 

little 

The system is intended primarily for the language designer. It 

him the opportunity of realizing his definition with very 

concern about implementation. With the use of MUTILATE, 

programs in the defined language can be compiled directly from the 

def1ni t1on. 

A large subset of SIMULA 67 has been defined in SPINDLE, both 

as a test for the system and as a demonstration of its capabilities; 

a series of SIMULA 67 programs have be~n compiled f1om this 

definition, the largest one being approximately 70 lines long and 

generating a parse tree With approximately 2000 nodes. 

This thesis has been organized so t~t the reader can minimize 

the amount of reading necessary to achieve a certain depth of 

~nderstanding about the srstem; each chapter may contain backward 

references but contains no forward references. The appendices are an 

integral part of the thesis and are used to illustrate the text. 

Chapter 1 gives a general description of the system: it 

contains a review of formal language definition methods, with 

emphasis on those directly relevant to t~is work and an overview of 

FOLDS. Some simple examples 111 ustrate the material covered. This 

chapter should be enough for those who only want to understand the 

main features and principles involved in the system. 

Chapter 2 presents a description of SPINuLE, the FOLDS 

language. It describes the syntax and semantics of SPINDLE and gives 

numerous exawples to illustrat~ its different features. A complete 

SPINDLE definition of a simple language is presented in Appendix 1. 

2 



This chapter should be read by those desiring a deeper understan~tng 

of the capabilitie~ of the system and also by those who want to 

program in SPI\DLE. 

Chapter 3 describes the FOLDS machine, ~UTI LATE. It 1 s 

essen•.L:.lly a terse description of the rel~vant aspects of the 

mach1ne implementation. Appendices 2 and 3 illustrate the 

descriptions given in the text of the chapter. The chapter should be 

read only by those ~ho want to know how some particular SPINDLE 

features are 1mplemented and by those who want to iaplement a similar 

system. 

Chapter 4 is a definition of a subset of SIMULA 67; it is an 

implementation of ~llner's definition of SIMULA 67 [Wi 71]. It 

illustrates both the capabilities of FOLDS and a series of SPINDLE 

programming techniques. Appendix 4 contains a set of SIMULA 67 

programs and the target code g'.!nerated for them by MUTILATE from thE. 

definition. This chapter is intendtd both as a demonstration to the 

nonbeliever of the caplbillties of the system an{ to illustrate a 

series of programming techniques which may be useful for the 

definition of other languages. Chapter 4 presupposes an understanding 

of Chupter 2 but no understanding of Chapter 3. 

3 



CHAPTER 1 

REVIEW AND OVERVIEW 

This chapter contains a review of foraal language definition 

methods, w1 th emphasis on those directly r.elevant to this work and an 

overview of the FOrmal Language Definition Syste• <FOLDS). Some 

simple ex~mples will illustrate the use of the aater1a1 covered. 

1. 1 FO&~AL LASGUAGE DEFINITION METHODS 

A language definition is composed of two hierarchically related 

sets of specifications c~ll~d the syntax ~nd seaantics of the 

language. The syntactic component oetermlnes the set of strings that 

bel~ng to the language while the seaantlc component attaches 

"meaning" to a string of the language. In particular tt.e syntax or a 

programming language describes the set of valid programs and the 

semantics supplies the meaning of these val1d proarams. Much 

attention has been given to the problem of defining the syntax. As a 

result, it is well understood and has several established solutions 

<sec for example Hopcroft & Ullman(HU 69]). 

Two approa~hes heve been used for seaantie speeification: 

interpreter-oriented and compiler-oriented. The 1nterpreter-or1ePted 

approoch defines a ~artial function which .. ps a statement and a 
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state vector onto a new state vector. The coapller-oriented approach, 

on the other hand, defines a partial function which ups a statement 

1n the language onto a statement 1n ~nother language, assumed 

understood. 

The interpreter-oriented scheme is described by Wegner(We 721 

with a detailed presentation of the Vien~a Definition Language (VDL), 

currentlY the most sophisticated such method. Examples of the 

compiler-oriented approach appear in Irons[Ir 63], Brooker 6 

Morr 1 s [BM 62), Wirth 6 Weber [W 66), Feldun [Fe 66] and 

Knuth [Kn 68a). 

1.2 IRONS' METHOD 

Irons [lr 63] defines the semantics of a context-free language 

by associating ~ single attribute with each non-terminal, namely its 

translation, and associating a semantic rule with each syntactic 

production. The semantic rule expresses.the value of the attribute 

of the left hand s1de nonterm1nal (LHN) of the associated syntactic 

production as a function of the values of the attributes of the right 

hand side non terminals {RHNs>. In terms of the parse tree, a node's 

attribute value is determined by applyt'ng its associated seuntic 

rule to the attribute values of its directly descendant nodes. The 

meaning of a stringS 1s"the attribute value attached to the root 

node of its parse tree PT<S>. The value of an attribute is 

"synthesized" from values of attributes lower 1n the tree. A number 

of compiler-compilers were based on this idea, notably McClure's 

[MCl 65). 
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1. 3 K~UTH'S METHOD 

Knuth (Kn 68a] extends Irons' ideas by lntroduclng two new 

concepts: 

(1) Multiple attributes associated with each nonterminal. 

(2) Synthesized and inherited attributes. 

Now the ~eanir.g of a string S is the set of values of the 

attributes of the root node of PTCS). The meaning of a phrase of S 1s 

the set of values of the attributes of the node from which it is 

derived. Synthesized attributes pass from a no'e to its ancestors 

While inherited attributes go from a node to its descendants. There 

are now two sets of semantic rules as~ociated with each syntactic 

production. The first set establi~hes the valuts of all synthesized 

attributes of the LH~ or the production as functions of the 

attributes of the RH~s together with the other attributes of the LHN. 

The second set establishes the values of all the inherited attributes 

of the RH~s of the production as a function of the attributes of the 

LH~ and the other attributes of the RHNs. Each attribute attached to 

a node in the parse tree is associated with a semantic rule that 

establishes the attribute's value as a function ot the attribute 

values of the surrounding nodes (ancestor, direct descendants and 

siblings). 

The concept of multiple attributes greatly expands the meaning 

that can be associated with a phrase (or strina>· Not only the 

translation but any other property of a phrase (e.g. length. position 

on the string, etc.) can be ex~ressed by associating attributes with 

the nonterminal that generates it. 
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Synthesized attribute~ are essentially like Irons' attributes. 

As for inherited attributes, Knuth shows that they are not essential 

since they can always be replaced by an equivalent set of synthesized 

attributes. But they greatly enh&nce comprehension by allowing a 

more natur~l representation, since the interplay between inherited 

and synthesized attributes is the way 2ne generally thinks about sue~ 

processes. Expressing language features such ~s labelled statements 

and block strutture using purely synthesized attributes is 

complicated. Inherited attributes enable one to describe such 

features much more easily. In ALGOL 60, for example, the nesting 

depth of a block and the information about the variables which are 

global to it would be inherited attributes while the target code 

generated for the ~lack would be a synthesized attribute. Loosely, 

inherited attributes represent that portion of the meaning imparted 

by the surroundinh context of a ptrase. Synthesized attributes 

correspond to the portion derived from the phrase itself. 

Knuth introduces another concept, that of global attributes, 

which are attributes of the start symbol that are accessible from any 

productiJn. A global attr1bute is equivalent to (can always be 

replaced by) a pair of attributes defined on all nonterm1nals, one 

synthesized and the other inherited. T~e synthesized attribute 

collects information necessary to form the value that is then 

propagated through the tree by the inherited attribute. This concept 

though not increasing the power of the method, does make the 

definitions written in it more concise. 

One of the most important characteristics of this method is its 

declarative natur~. The parsing method 1s trans~arent to a language 

definition. There is no expliclt statement in a uefinition about the 
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order in which values are assigned to attributes. The semantic rules 

merely state how the values of the attributes of neighbouring nodes 

relate to each other. This contrasts with, for eumple, Wirth & 

Weber's definition of EULER which is essentially an algorithmic 

description. 

The locality of definitions is a very important aspect of this 

method. The semantics of a syntactic production refer only to the 

values of the attributes of nontermiuals involved in the production. 

The interdependencies between the various parts of the language are 

expressed only in terms of the att~ibute values passed between them. 

Besides making for more understandable and concise definitions it 

facilitates the addition and removal of features froa the language. 

As a simple example of this method we will aefine the binary 

notation for integers <8N!). The meaning of a string of o•s and 1's 

!s i~s value expressed as a decimal integer. In other words we are 

defining the translation of binary inteaers to 

equivalents. 

their decimal 

The grammar 1n figure 1. 1 expresses the syntax o! BNI. This 

g~ammar Associates a parse. tree P'dS) with any string S of BNI. Tile 

parse tr~e PT0101), for the string 1101, is shown in figure 1. 2. 

way of understanding bindry notation by associating 

v~1ues that are powers uf 2 with each of the o•s and 1's. The value 

~f the string is then the sum of the values associated with the l's 

1n the string. Formally: 
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Figure 1. 2 

Parse tree for the strina 1101 
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For N•b b •••. b , 
lc: k-1 0 

k 
Value(N) .. Cl •2 

k 

0 
+ • • • • + IJ •2 • 

0 

where o = 1f (b : "1") then l else o. 
j j 

In other words, the value associated with each bit in the 

string depends on the its location in the string. The integer 

attributes VAI.UE and SCALE associated with the nonterminal 8 

represent respectively the value and position of a bit. Thes~ same 

attributes are associated with the nontermlnal L: in this case VALUE 

stands for the sum of the values of the bits in the list of bits 

derived from L; SCALE for the position of the rightmost bit i.n the 

list. VALUE 1 s also associated with N. Finally the boolean attribute 

NEGATIVE is associated with S, serving to convey information about 

the sign of the integer. VALUE and NEGATIVE are synthesized 

attributes, Pnd SCALE is inherited. 

With the attributes defined, semantic rules are then ass~c1&ted 

with the grammar, to express the relations between the attributes of 

the nonterminals of each production. This completes the ~efinition. 

The rules in figure 1. 3 give such a definition for BNI. 

The semantic rules assume that a series of prl•1t1ve notions 

(such as Integers, Booleans and the operations +, -, •, TRUE, FALSE 

and IF-THE~-ELSE) and their composition rules are well understood. In 

other words we are using a language which is supposedly understood to 

express the semantics. 

The definition in fig~re 1.3 associates with any string S of 

BNI a decorated parse tree DPT<S> whose nodes have attributes with 

values assigned to them. The value of the attribute VAL::i:: of the he6d 
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TPIIINALS: 0 I • -

Ani IlliTES: 

NAME TYPE liND 

VALUE INTEGER SYNTHESIZED 
SCALE I NTECEI INHEIIHD 
NiCATIVI &OOLEAN SYNTHESIZED 

NONTERM I NALS: 

NAME AtTIIIUlE! 

N VALUE 
L VALUE, SCALI 

• VALUE, SCALE 
s NECATIVE 

STAIT _SYMIOL: N 

PIODUCTJONS: 

IIIJioiiU SYNTAX SI:MANTICS . 

(1) I ••• 0 Vo\WEII) :. 0 

SCALI< I> 
(l) I II • I VALUI!I) I • l 

(3) L :: • I VALUE ILl : • VALU£tl)l 
SCALE!IJ : • SCALUI.) 

<•> LII•LI Vo\LUE<Ll : • VALUE<L•l • YALU[(JI); 
S'=ALE (Lo) : • SCALE<Ll • 11 
Sl"ALECB> I• SCALE (L) 

(5) N II• S L SCALE(Ll : • O; 
YALUE(N) : • IF NIGATI YI<S) 

THEN -Yo\LUI (L) 
ILSI Yo\LUICLl 

(6) 5 ; : •• 'IECATJYE(S) :. PALS I 

(7) 5 II • - NIGATJYUSl : • TIUI 

I (I) ( S II• • NIGATI VI(S) : • PALSI 

COIICINTS- IT<NTl staa.Ss tor atHibute AT ol ftHtar•l .. l NT. An 

asterisk alter e nont•rolnal Identifies vhlcb occurrence of 

t .. nonter•lnal In t~e SJitactlc production 11 .. ant. Pro• 

left to rlaht, no ••terlsk corretpoD«s to the first 

occurrence, one for t~ second, tvo lor tbe tblrd end 10 

Oft, 

Figure 1. 3 

Definition of BNI 
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node is the meaning of the strina. An exa•ple of a decorated tree, 

DPT(llOl), appears in figure 1.4. 

N CVALU&•Ill 
I \ 

I \ 
I \ 

I \ 
I \ 

5 <NEGATIVE•FALSE> L (VALUhU) 
I I \CSCALI•Ol 

I \ 
I \ 

I \ 
L (VALUI•l2l I C~ALUE•I) 

I \ CSU.LI•U I CSCALI•O) 
I \ 

I \ 1 
I \ 
L CVALUE•lll I CVALUI•Dl 

I '<SCALI•ll I CSCALI•Il 
I \ 

I \ D 
I \ 
L CYALU£•11 I CYALUE•4l 
I (SCAU•3) I CSCALI•2l 
I 
I 
I CVALUE•Il 
I CSCAI.E•ll 

I.' 

1 . 

Figure 1.4 

Decorated parse tree for the strina 1011 

The semantic rules do not define an alaorith• to calculate the 

values of the attribute but they imply one: tbe attribute for the 

left hand side of any semantic rule can always be defined once the 

values that are necessary on the right hand side are all deter•ined. 

lt should be noted that a string S ,ay be syntactically correct 

but still have no meaning associated with it, i.e. PT(S) aay exist 

but not DP'f (S). For instance ln fiaure 1. 3 1f the expo~.ent1at1on 

function is stated to be defined only for values of the exponent that 

are less than 3 no meaning can be assoei&ted w:th strinas of length 

greater than 3. A string S with which the definition can associate a 

PT tS) but not a OPT (S) iS called ulformed; 1f a DPT <S> can be 

associated It is called well-formed. It is the concept of well-foraed 
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strinas that allows the method to be applied to lanauaaes that are 

not context-free. 

1.4 A SIMULA 67 DEFINITION 

Usina and extending Knuth's methods, Wilner [Wi 71] defines 

SIMULA 67. He demonstrates the method's applicability to large and 

complex lanauaaes by obtaining a compact and reasonably readable 

def1n1t1on. It is only reasonably readable bec.ause the same thin& 

happens with the SIMULA report, a reflection of the complexity of the 

languaae. 

The principal extensions introduced by Wilner are called 

"reduction techniques". They reduce the number of seuntic rules that 

have to be exrl!citly stated to define the lanauage. The elimination 

of identity rules is the most important of the reduction techniques. 

A majority of the semant'c rules are identity rules of the for11 

aCNT >•a<NT ) 1 where a is an attribute of both nonter11inals and NT 
1 2 1 

and NT belon& to different side~ of the associated syntactic 
2 

production. Wilner po:tulates, in an informal way, that these rules 

do not have to be explicitly stated; they are called implicit 

semantic rul~s. The fact that a is an attribute of both NT and NT , 
1 2 

with no explicit seunuc rule assigning a value to a (NT ) , implies 
1 

the existence of rule a<NT) • aCNT ). Rules of this type do not 
1 2 
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really contribute to the understanding of the se•antics of a 

production; liHle is lo~t by not explicitly stating them, and a 

great conciseness of definition is gained. Wilner reports a 58' 

reducti~~ in the number of rules for SJMULA 67 usina this technique. 

Applying it, for in:>tance, to the defin1 tion in · fiaure 1. 3 would 

leave production (3) with no explicit semantics and would eliminate 

the r~le SCALEtb)=SCALE(L).from production (4). 

It is interesting to observe that Wil~er uses inherited and 

synthesized attributes but no global attributes. He argues 

~ffect1vely that they detract from the localit~ of the method and 

contribute very little to its conciseness, since the reduction 

techniqllt>S eliminate expllcl t rules for propaaaUng the 1nher1 ted 

component of the globai attributes. Also the foraat1on rules for 

global attributes can be very complicated, and they are easier to 

understand when stated step by step as synthesized attributes. 

Some interesting insights into Knuth's aethod can be obtained 

from Wilner's SIMULA d~f1n1t1on: 

- Established programming language concepts suet as ~Y;11bol 

tables for block structured languages can be implemented 

in a very natural way; i.e., the attributes that embody 

these concepts and their functions rerlect very c(osaly 

the way one thinks about them. 

- Language features which are difficult to express 

concisely in this method, aakina necessary the use of a 

wealth of attributes and functions for their definition 

(e.g., the VIRTUAL feature of SIMULA>, are usually also 

diffi~ .. ~ t to understand and impleaent. 

- Extensions to the language are facilitated by the 
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method's characteristic of locality of definition and the 

fact that attributes provide well defined interfaces 

between parts of the lanauaae (e.g. Wilner added the FOR 

construct to the SIMULA definition as an appendix). 

The definition of SIMULA demonstrated the power of the 

technique but also showed that without a foraal basis for the 

description of the semantics {i.e. a proaraaaina lanauaae> and the 

means to automatically chock definitions it could not be considered a 

practical tool. The lack of a proaramalng lanauaae to express data 

structures and a precise and systeaatic description of functions on 

those structures led to soae aabiguous and/or incorrect definitions. 

(Wilner uses any convenient data structure and aany of his fu~ctions 

are described ln natural lana'J&&e.) Also, "hand checking" the 

definition proved to be an extreaely painful task, due to its size 

and complexity. A proaraaaina language def1n1 tlon is an exact 

description of many interrelated concepta, and soae mechanical 

checking procedure is almost aandatory because buaans are notoriously 

bad at verifying such meticulous details. 

1. 5 FOLDS 

The development of FOLDS makes Knuth's •ethod a practical tool 

for language definition. It is a first step towards the development 

of compilers directly fro• a declarative formal definition. FOLDS 

provides a language <SPINDLE•> and data structures to define the 

* Se~4ntic Preparatory INput Description Language <says D. Knuth) 
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syntax and semantlCS of a language. It also provides a machine 

(MUTILATE•> that generates trees from this definition and fills out 

the associated attributes for strings of the defined language. Both 

the consistency and correctness of the definition can be cheek~d in 
this way. 

SPINDLE, the FOLDS language, impo~es very few restrictions on 

definitions while preserving the advantages of Knuth's methods and 

Wilner's extensions. Both the parsing and tne decoration of parse 

trees are completely transparent in the definition, thus preserving 

the declarative nature of the method. 

In addition the srstem provides a means for semantically 

resolv1ng syntactic amb1gu1t1es. It also perfor•s syntactic cheeks on 

the definition and provides run-time error detection for easier 

diagnosis of definition errors. 

Global attributes, as proposed by Knuth, are not provided: as 

noted before, Wilner does not use them because his extensions provide 

a viable alternative. However, the real reason for avoiding global 

attributes is that very few attributes are global to the whole tree 

in block structured languages. 7o be useful, the concept should be 

extended to resemble the global variables of ALGOL 60. An extended 

global would be an attribute of any nontermlnal, not just the start 

symbol. It would be defined over any subtree derived from the 

nonter~1nal except for those subtrees where it is redefined. The 

inclusion of such an extended global attribute was considered, but 

the idea was rejected. Although more powerful than si•ple alobals, 

extended globals retain some of the disadvantages which are pointed 

out by Wilner; furthermore the gain in conciseness could not by 

itself justify the significant cost of including the feature. 

* Machine Underlying The Interpretive Lanauaae To be Bxecuted <~ays 
D. Knuth) 
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Figure 1. 5 

FOLDS 

FOLDS is intended primarily for the language designer. It 

gives hi~ the opportunity of realizing his definitions with very 

little concern about isplementation. (While a coapiler for the 

language 1s generated there need be no preocupation with efficient 

compilation at definition time.) It also gives hia the opportunity to 

judge the complexity and "cost" of proposed language features. 

The main benefit of the system is that the definition of a 

language can be stated in a well defined fora. As such it can serve 

as a standard for the language and be understood by the users. 

Although not all SIMULA users will be able to understand its FOLDS 
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definition , those users who are capable of writina compilers will 

certainly be able to do so. For ~hem it provides a precise standard 

against which other definitions Csuch as a compller for the language) 

can be evaluated. Most o~ a~\, a sytem such as FOLDS imposes a 

discipline on the language designer that has been mostly absent 1n 

the past, making for so mant unbappy language implementers. 

Figure 1. 5 presents a schematic view of FOLDS. The SPINDLE 

compiler accepts a description of a language L and compiles this 

description into a program in the order code of MUTILATE. This 

program ru~ning on MUTILATE will generate a decorated parse tree for 

any well-formed string of L. The following sections present brief 

descriptions of the components of the system. 

l. 5. l SPINDLE - THE FOLDS LA~GUAGE 

The language is designed to give considerable flexibility to 

the user. It relies on a data structure representa~ion which is 

derived from the objects proposed in (LLS 68], with 1ata-types 

associated with thelfl. In sucll an environment, composing data-types is 

very simple, thus facilitating the use of complex data structures. 

Syntax rules are given as productions with few imposed 

limitations. Right and left recursion, empty strinas and syntactic 

ambiguity are all allowed. 

The syntax presupposes the existence of a lexical analyzer to 

handle reserved words, terminal syabol s, ALGOL-like identifiers, 

integers, and string constants. This analyzer is a restriction on the 
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generality of FOLDS, but 1t 1s just1f1ea by the efficiency it brings 

to the system. It could of course be made more general, as in the AED 

system [Jo 68], with its ~arameters being part of the definition. 

With each syntactic production is associated a nuaber of 

semantic rules that manipulate the attributes of the nonterminals 

involved in the production. Besides the inherited and synthesized 

attributes, a new kind of attribute, called l2£!l attribute, is used. 

This attribute, whose function is to hold intermediate values, 1s an 

attribute of the head node of the corresponding production (the node 

of the tree associated to the LHN). It is only accessible froa the 

semantic rules o~ the production. Local attributes appear both in 

Knuth and Wil1er's work, but are used informally as an abbreviation. 

Implicit semantic rules <see 1. 4) do not have to be stated, 

being automatically generated by the system. 

The language has an ALGOL flavor and incorporates features such 

as conditional statements and expressions, while statements, so_to 

statements, ~ssignment statements, compound statements and recursive 

p:-ocedures. 

One of the most original features of FOLDS appears in its 

contro: structure embodied in the concept of a parallel stateme~t. A 

SPINDLE statement (SST) is either sequential CST) or parallel, which 

is a sequence of SPI~DLE stateme:-.ts enclosed in $/ and /$, 1. e. 

i/ SST ; SST ; ... ; SST . SST ; SST • 0 SST /$, n ::1!1. I ' .... 
1 2 i- 1 1 1+1 n 

SST is executed after SST if SST is sequential, ln 
1 1-1 1-1 

parallel otherwise. For exampl~, if we ha.ve a sequence of statements 

$1 ST ; $/ ST ; ST /$ ; ST /1 ; ST 
1 3 4 2 5 
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it will s"ort by executing ST and ST , coaplete the exec~tion of 
1 s 

ST , start ST and go on immediately to exec~te ST , The exec~tion of 

1 3 2 

ST <and tben ST ) goes on 1n parallel with the execution of ST ; ST 

3 4 2 s 

is executed in parallel with all the others. 

It should be noted that this is an unusual control str~cture 

and notation for parallelism. Usually stateaents are grouped to 

indicate that each of them is to be executed in parallel wlth arl the 

others in the group; here they are grouped to indicate that they 

constitute an independent sequence that is to be executed in parallel 

with all the other statements in the program. 

A 2!~ is a dynamic instance of a parallel statement. Once 

activated a process ~xecutes until it terminates or until it tries to 

access an undefined value. In the latter case the process is 

interrupted and passivated; it will be reactivated 1f and when the 

value is defined. ~ll active processes run concurrently. 

\oiith each syntactic production is associated a::;set.~of :~rallel 

statements that embody the explicit semantic rules 4t.HI·s · an~plicit 

parallel statement to handle implicit rules (if any exist), 

At run-time each node of the parse tree ~ossesses a set of 

processe~ corresponding to the parallel statements of the production 

represented by the node. These procefe~ are all act1 vated 

simultaneously, po~slbly generating other processes. The computation 

ends when there are no more active processes in the system. 

It should be noted that as a consequence of this structure 

circular1tles 1~ the definition will cause the passivation of 

processes, that will never be reactivated since the undefined values 

causir.g the passiBt!or. devt ·:ct on each other. 
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Another ori&inal feature of the lan&ua&e is the ability to 

resolve syntactic ambiauities by semantically "disaabiguat1r.g" them. 

Given an ambiguous node of the tree, the proper parsing 1s selected 

by stating, in the semantic rules, the conditions which identify a 

particular parsing as the correct one (&n4 all others as incorrect). 

This means that all possible ambiguities have to be treated by the 

language designer. The situation is not· ideal since &JDb1guity 1S 

unaecidable for context-free languages. On the other hand, while it 

is expensive, the ambiguities c~n be detected in practical languages. 

If one 1s present but not detected any tree which contains it will 

h~ve passivated processes that wil! never terminate, pointing out the 

existence of the ambiguity. Furthermore it is not a bad idea for a 

language designer to be forcibly aware just how ambiguous the 

language being defined is and what the semantic implications of these 

ambiguities are. ~hile it is widely realized that ALGOL 60 is 

syntactically ambiguous, the extent of .his ambiguity is very often 

underestimated. 

When the parsing tree is ambiguous the control structure 

operates in a slightly different fashion. A process trying 

a value to a synthesized attribute of in ambiguous node (& 

to assign 

node with 

more than on~ parse subtree) is passivate~. If an ambiguous subtree 

is found to be the correct one its root node 1 s tlaggecl. If 1 t iS 

found to be incorrect it is purged; all its nodes, attribute.s and 

processes are discarded. ~hen an ambiguous node ~s found to have £E! 

and only one correct subtree the node is disambiguated: no more 

processes are interrupted when trying to assign to its synthesized 

attributes and the ones passivated for this reason are react1vat~d. 

Thi~ control structure helps prevent the information originating from 
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an incorrect par~ing from poisoning the rest of the parse tree, while 
attri~utes can still be synthesized and inherited in the subtrees of 
an ambiguous node. This is t:.=- reason why a s:.~btree, found 
incorrect, can be di~carded without regard to the rest of the tree. 

It should be noted that some recent general purpose languages, 
s~ch as ~E~ SAIL [Fe 72], QA4 [Di 72] and PLANNER [He 71], 

incorporate control structures which are somewhat similar to the ones 
found in SP I :JDLE. 

A ccmputation is well-formed if it ends with no passivated 
processes. Not1ce that a well-formed computntion implies that all 

" 
ambigu1~res have been resolved since ~n unresolved ambiguitY would 
result in pa~sivated processes. A detinltion i! well-f?rmed if no 
string w~ll cause a computation to enter sn infinite loop. Given a 
string s, a well-formed definition will ~enerate a well-formed 
computation if S is a ~ell-formed strinp of the defined lang~age; 
otherwise it will generate a malformed computation. Notice that the 
definition may incorporate error recovery provisions. In this case L 

string cunta4ning errors would be a well formed string of the 
language whose meaning would be a set of messages indicating the 
errors found. 

It is SPI~DLE's unusual control structure that allows it to 
preserve the declarative nature of Knu~h's method. Semanti~ rules 
ctate only ho~ attributes should relate to one another without 
mention1ng 1n what order values are assigned to them. They state the 
conditions for choosing the proper parsing without specifying the 
mechanism for doing it. However, SPINDLE cannot be expectfd to 
pro~ide as primitives all the necessary functions. Auxiliary 
functions can be defined using the imperative elements of the 
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TEitMIIJUS ARE • -

RESERVED WORDS ARE O, I 

ATTRIBUTES ARE 
VALUE • INTEGER 
SCHE • I NTEGlR 
COUNTER • I~TfGER 
PRODUCT • I NTEG~R 
NEGATIVE • BOOLEAN 

NONTERM INA!~ ARE 
N • 5 (VA•••:• 
L • 5 ~·;t\LUE , :;SCALE) 
8 • ~ !VHUEl, i ~~~ALEl 
S • S(NECATIH) 

f'JMMENT N 5TAiia~ FOR N\JIBER, L FOR Ll ST OP I ITS, 'I FOR liT AND 
S FOR SIGN; 

START SYMBOL N 

Sfl 8 ::. 0 
S/ VI UE<Bl :• 0 IS 

SP2 8 :: • I 
Sf COUNTER : • SCALE 18!; PRODUCT : • l; 

~~ILE COU~TER > 0 ~ 
IEGIN 

PRODUCT '• 2• PRODUCT; COUNTER : • COUHT[I -1 
EN,J; 
VALUE<BJ :• PRODUCT IS 

SPJ L ': • B 
COK-4ENT NO EXPLICIT 111LES; 

IP4 '· :: • L 8 
Sf VALUF(LJ : • ~.UUE(L•J • IALUE!Bl IS 
S/ SCALE<L•l :• SCALE<.> • I IS 
COMoiENT SCALE<Bl : • SCALE ILl IS IMPLICIT. 

NOTICE THAT ALL 1 ASSIGNMENTS ARE EXECUTED 1N PAIALL&L; 

IPS N :: • S L 
S/ SCALE<LJ : • 0 IS 
S/ VALUE<NJ : • IF NEGATIVE IS) THEn ·VALUE ILl ELSE VALUI(Lll 

WRITE ("l'nUE IS". VALUE(SJ) /I 
r~EHT NOTICE THAT IN THE SECOND PARALLEL STA1EMINT THI 

ASSIG~~ENT VALUEINJ : • ••• AND THE VIITI All IX&CUTIO 
SEQUENTIALLY; 

SP6S::•• 
Sl NECA'!IYE(SJ : • F.USE /S 

SP7 S :: • -
S/ NECATIVE(Si : • TlUE IS 

$PI S :: • 
S/ NEGATIVE($) :• FALSE /S 

::1gure 1.6 

Definition of BNI in SPINDLE 
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language with local attributes performinl the role of tne variables 

of conventional languages. 

A simple example of the language appears ln figure 1.6. It is 

the definition in figure l.l restated in SPINDLE. ·The defined 

language uses the characters I and 0 (separated by blanks) instead of 

1 and 0 due to the limitations of the lexical analyser. Notice that 

exponentiation is defined by means of a user defined function using 

the local attributes COUNTER and PRODUCT. To illustrate the control 

structure of SPI~DLE, an example based on the definition in 

figure 1.6 is presented at the end of l.S.l. 

1. s. 2 THE SPINDLE COMPILER 

The co~piler ta~es the definition of a lanauage as in~ut ar.d 

produces a series of tables plus "object code" for the semantic rules 

&nd procedures in the order code of MUTILATE. The compiler checks the 

syntax, fills in implicit r~les and checks for missing and illegal 

rules. Checks are also made to guarantee that synthesized and 

inherited attributes are used in the proper way and that the semantic 

rules of a productic~ refer only to attributes defined for the 

nonterminals involved in that production. 
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1.5. 3 MUTILATE- THE FOLDS MACHI~E 

When loaded with the code and tables generated by the compiler 

the machine reads strings ot the defined language and generates the 

corresponding decorated parse trees (provided that the definition and 

strings are well-formed). It has three major parts: 

- A lexical analyzer that recognizes integers, string 

constants (del1mi ted by double quotes>, punctuation 

:narks, reserved words {of the defined language> and 

ALGOL-like identifiers. It skips over coEments <which 

begin with the w~rd CC~~ENT and end with a semicolon) and 

over any identifier following the reserved word END. 

- A parser which interacts with the lexical analyser to 

build a PTCS> from an input string S. In case of 

ambiguity the collection of all possible PT(S)s is 

compactly specified. 

-An interpreter which decorates PT<S> to produce DPT(S). 

If there is more than one PT<S) the interpreter will 

select the correct one using the semantic rules. 

The parser is based on one presented by Fisher (Fi 701, which 

was i i:self based on Earley's [Ea 68) scheme. : ~ has been expanded to 

handle strings containing empty substrings, provided that tn~re is 

only a finite number of empty substritgs. 

This parsing scheme was chosen because it will handle any 

context-free language, with the exception noted above. Besides, 1 t is 

efficient in the sense that, given a string of length n. in the worst 

J 
case it will parse in time proportional to n <ambiguous grammars), 
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2 
proportional to n for unamoiguous grammars and proportional to n for 

certain classes inLluding LR<k>. 

It should be no,ed that th~ coustant of proportionality for 

this schtme is quite high and that other p1rsers can be more 

efficient. However, since their increased perflrmance is obtained br 
restricting 

unsuitable 

the class 

fc:.r FOLDS; 

of gra~mars that 

they go against 

t~!Y can accept they are 

~he basic philosophy of 

independence oi definition and parsing scheme. Also, features such as 

syntactic ambiguity, left and right recursion, empty strings, etc., 

while ~ot essential are conveniences whlch should be available to the 

user. 

The interpreter mantains a multiple stack environment, ~ne 

stack per process. The parallel control is implemented in a pseudo­

parallel fashion with exactly one active process (callP.d th~ current 

process) being executed at any tim~. A list called PROCESS 

(implemented as a stack) contains pointers to all other active 

processes. Each undefined attribute Cone to whom no assignment has 

been made) h~s an associated list (implemented as a stack and called 

its inte1·rupt stack), which contains pointers to those processes 

which have been passivated as a result of trying to access it. This 

list is transferred to PROCESS if and when the attribute is assigned 

a value. The current process may stop either because it terminated or 

was passivated. In the latter case, a pointer to it is placed in the 

interrupt stack of the attribute that caused the deactivation. The 

process pointed to by the top element of PROCESS is made curr~nt and 

the top element removed from PROCESS •. When PROCESS is emrty <no 

active processes in the system) a function DEVELOP is called and 

returns a node of the tree. All processes associated with this node 
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are then placed in PROCESS. The process pointed to by the top element 

is then aade current and the eleaent popped from PROCESS. On the 

first call DEVELOP returns the root node and in each successive call 

a different node, the order being a depth first traversal of the tree 

from left to right. When all nodes of the tree have been returned a 

call to DEVELOP stops the machine. 

This mechanism and the control structure of SPINDLE can be 

illustrated by examining how the machine would handle the String 

- I 0, given the definition in figure 1.6. The description that 

follows, while actually describing the mechanism, gives only the 

essential details and ignores allocation strategies. 

Fig1Jre 1. 7 indicates the state of the machine before the 

interpreter starts runr.ina and after the parsing of the string is 

completed. The tree is shown with all its attributes undefined and 

interrupt stacks empty. Also shown are the status of PROCESS (empty), 

and of LARD (LAst Returned by Develop>, undefined. 

In figure 1.8 each of the processes to be executed is 

identified, with X standing for process j of node X • 
ij i 

The first action performed is a call to DEVELOP. A pointer to 

N is returned, then N and N are placed in PROCESS. N is thell 
1 11 12 12 

removed from PROCESS and executed. SCALE<L > is assiined the value 
1 

zero, its interrupt stack (empty) is placed in PROCESS (wh.~h 

remains unchanged) and N is terminated. Next, N is taken from 
12 11 

PROCESS and executed. It is passivated while trying to access 

NEGATIVECS ), which is undefined; so it is placed in the NEGATIVE(S ) 
1 1 
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Figure 1. 7 

\ 
I~ (VALUE•U, STACK• ()) 
I !SCALI•U, 51 ACK • ()) 
I 

0 

In 1 t1 al state of the machine 

interrupt stack. PROCESS is emptv so DEVELOP 1s called, S 1s 
1 

returned, and S is placed in PROCESS, taken out, and executed. 
11 

NEGATIVE<S > is assi~ned the value TRUE, its stack <containing N ) 
1 11 

is pla...:ed in PROCESS (whldt was empty) and S is terminatec:. N is 
11 11 

taken out of PROCESS, executed, again passivated (thi5 time trying to 

access VALUE (L )) and placed in VALUE:L ) 's stack:. Since PROCESS 1s 
1 1 

empty, DEVELOP is called and L I L and L · are placed in PROCESS. 
1:i. 12 13 

Figure 1.9shows the state of the machine at this point. L and L 
13 12 

are then executed and terminated. L is executed, passivated (trying 
11 
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PIOCISS DESCIIPTION 

N YALUICN ) I• IF IIEGATIVECS I THIN -VALUI(L ) 
11 1 a a 

ILSE YALUI(L J; IlliTE ("YALUI 15", VALUE(N ; ; 
I I 

N SCALi(L l : • 0 
12 I 

S NEGATIVICS ) : • TIUI 
' II l 

L YALUECL l :• VALUE(L l • VALUICI) 
II 1 l l 

L SCALECL ) : • SCALEC~ l •1 
12 l 1 

L SCALE <a ) 1 o SCALE(L I 
1] l 1 

L VALUECL ) : • VALUE (8 I 
21 l 1 

L StALl (I ) : • SCALE CL I 
ll l 2 

I COUNTEI : • SCALE CB I; PIODUI.I : • I; 
II 1 

IIIII Ll! COU~TEl ' 0 DO 
lEG iN 

FltODUCT : • 2• PIODUCT; COUNTER : • COUNTEI ·1 
lkD; 
VALUE Ill ) : • PRODUCT 

1 

I YALUECII:•O 
zt l 

Figure 1.8 

Processej to be exec~ted 

to access VALUE<L )) and placed in the interrupt stack. Next DEVELOP 
2 

is called, L is returned 
2 

and the execution of L 
22 

{terminated) and 

L (passivated) talces place. B is then returned and 
1 

B executed. 
11 21 

During the execution, COUNTER assumes the values 1 and 0 and PRODUCT 

the values 1 ~nd 2. The execution terminates after VALUE(B ) is 
1 

assianed the value l. The state of the machine at this point is shown 
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State 2 of the macbine 
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in figure 1. 10. L is reactivated and terminated. L is 
11 21 

reactivated and passivated again, trying to access VALUE(B ). DE~ELOP 
2 

is called, B is returned and B , L and L are executed and 
2 21 21 11 

terminated. Finally ~ 1s executed, VALUECN ) is assigned, and this 
11 1 

is followed by the printing of the message "VALUE IS - 2" and the 

process is terminated. DEVELOP is called and the machine halts. 

Since no passivated processes remain the computation is well-formed. 

Figure 1. 11 shows the decorated parse tree. 

I 
Sl 
I 
I 

PROCE~S • 0 
LARD • 82 

Nl IVALUE•·l) 
I \ 

' I ' \ 
\ 

\ 
!NEGATI VE•TRUEJ Ll !VALUE•2l 

I \ (SCALE•Ol 
I \ 

I \ 
I \ 

I \ 
I \ 

L~ (VALUE•~) 

I tSCALE•Il 
! 
I 
I 
II IVALUE•2l 
I (SCALE•ll 
I (COUNTER•Ol 

IPIOOUCl•ll 

Figure 1. 11 

12 (VALUE•Ol 
I tSCALI•Ol 
I 

0 

Decorated parse tree for -IO 

It is very important to notice that the order in which active 

processes are executed is entirely arbitrary. ALy order can be chosen 

(e. g. L , 5 , B , L , B , L , l , N , N ) and the same basic 
11 11 21 21 11 13 12 12 11 
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mechanism will work successfully. The DEVELOP procedure is usea only 
to keep the stacks from being larae initially since most definitions 
have a left to right bias. 

All that was said above is still true for ambiguous pars1ngs; 
however, for 1mplementat1cn reasons, the order 1n which DEVELOP 
returns the nodes of the tree is not ex~ctly the same. (For more 
details about the implementation of DEVELOP, see Chapter 3.) 
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CHAPTER 2 

SPINDLE 

This chapter presents a description of SPINDLE, the FOLDS 

language. It describes the syntu and semantics of SPINDLE and gives 

numerous examples to illustrate 1t5 different features. It also shows 

how definitions are wr1 tten in SPINDLE, using TURINGOL [Kn 68al in 

Appendix 1 as an example. The syntax 1s deseri~ed using standard BNF 

with £ standing for the empty string. 

SPINDLE is a metalanguage used to define languages according to 

Knuth's method of semantic definition. A SPINDLE program 1s a 

definition of a language accordina to Knuth's method; 1t defines the 

valid strings of the language and the meanings associated w1th them. 

A program when run, will recognize the well-foraed strings of the 

defined language and associate meaning with them. 

As explained in Chapter 1, the definition associates with each 

well-formed string 5 of the language a decorated parse tree DPT(S). 

The meaning of the string is embodied in the attributes of DPT(S)'s 

root node. The definition consists of a grammar plus a set of 

semantic rules. rhe grammar associates with a string S of the 

language a nonempty set of PT(S)s. The set is represented as a single 

tree with ambiguous nodes, i.e. nodes from which more than one 

subtree is derived. The semantic rules choose one of the PT<S>s and 

decorate it if S is semantically correct. In other words a string S 

can be syntactically correct ant\ not be semut1cally correct; 1f 
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this is the case S is not a well-formed strina of the defin~d 

lanauage. This means that the method can define more than context­

!ree languages. As shown by Floyd [Fl 62], ALGOL-60 1s not a context­

free language and neither is SIMULA, which is defined in Chapter 4. 

The definition associates with each nonterminal a set of 

inherited and synthesized attributes. A node, wnich is a dynamic 

instance of a nonterminal, will then be decorated by the attribute$ 

associated with the nonterminal. 

With each production of the syntax is associated & set of 

semantic rules that operate on the attributes of the nonterminals 

involved in the production. These rules serve !our distinct purposes: 

Cll To establish the relationship t:~t must exist between 

all the inherited and synth~s1zed attributes of the 

nonterminals involved 1n the associated production. 

(2) To establish the condit1rns for the string to be 

semantically correct. 

(3) To choose the right PT(S) among the set generated by 

the grammar. 

(4) To output the values of the attributes. 

The first purpose 1s accomplished by def1n1na attributes as 

functions of other attributes: the second and third by defining 

predicates on the attributes; the fourth by the use of the WRITE 

statement. These functions and predicates are described usina 

SPINDLE's expressions and statements, and local attributes to hold 

temporary values. 

The scope of a local attrib~te consists of the semantic rules 
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associated with a production. Dynamically a local attribute is an 

attribute of the ~ode associated with the LHN of the production. It 

can be manipulated only by the semantic rules associated with the 

node. A local attribute is attached to a node by being referenced in 

a semantic rule associated with the node. For example in figure 1.6 

the attributes COU~TER and PRODUCT are associated with the 

nonterminal B of production P2 but not with the nonterm1~~1 B of 

production Pl. This can be verified by looking at the attri~utes that 

decorate nodes Bl and ~2 in figure 1. 10. 

The scope of the inherited and synthesized attributes 

associated ~lth a node consists of the semantic rules associated with 

the node plus the semantic rules assoc1at~d with the ancestor node. 

The node's se~antic rules assign values to its synthesized attributes 

while the ancestor's rules assign values to the node'~ inherited 

attributes. 

The inherited, synthesized and local attributes asscciated with 

a node are said to belong to the node. 

Comments are allowed anywhere in a SPINDLE program. They begin 

with the reserved word co~~E~T and end with a semicolon. After the 

reserved word E~D a comment may appear without the word C0~1ENT but 

may not include reserved ~ords END, DO, or ELSE or the sequence of 

special characters /$. 
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2. l VALUES AND CONSTANTS 

The followina are the primitive values of SPINDLE: 

INTEGERS 

STRINGS- a string of ch~t&cters, enclosed in double quotes. 

IDF.NliFIERS- a string ~f letters and digits where the first 

character is & letter (the ALGOL identifier). 

S-IDENTIFIERS- the same as IDENTIFIER but with a different 

internal representation. 

BOOLEANS- TRUE or FALSE. 

POINTERS- which are references to attributes. 

COMPOSITE ATTRIB~TE VALUES- which are sets of attributes and are 

described in section 2. 3. 

TITLE- the union of STRIKGS, IDENTIFIERS and S-IDENTIFIERS. 

Certain of these values can be expressed by constants. The 

value of a constant is determined by its denotation. The syntax for 

constant is: 

<CONSTANT> ::• <INTEGER> I <TITLE CONSTANT> I <BOOLEAN> I 
<POINTER CONSTANT> I <COMPOSITE ATTRIBUTE CONSTANT> 

<INTEGER> :: • <DIGIT> <INTEGER> <DIGIT> 

<DIGIT> :: • 0 I 1 I 2 ••• , I 8 I 9 

<STRING>:: •" < ••• sequence of characters where a double qu,~e is 
denoted by a p,air of double quotes ••• > " 

<IDENTIFIER CONSTANT> :: • I <IDENTIFIER> 

<IDENTIFIER> ::• <LETTER> I <IDE~TIFIEi> <LETTER> I 
<IDENTIFIER> <DIGIT> 

36 



< t. ETTER> : : • A I B C I • • • 1 X 1 Y I Z 

<S-I&ENTIFIER> ::• & <IDESTIFIER> 

<TITLE CONSTANT> ::" <!l-I DE~TIFIER> I <STRING> 
<lDESTlFlER CONSTANT> 

<BOOLEAN> ::=TRUE I FALSE 

<POINTER CO~STA~T> :: ~ ~IL 

<COMPOSITE ATTRIBUTE CO~STANT> ::• NULL 

~ULL denotes an empty composite attribute value. NIL denotes a 

reference to a composite attribute whose value is NULL, whose 

selector is undefined and is called the ~ attribute. 

2.2 SY~TAX DEFISITIO~ 

The syntax of the defined language 1s specified by defining the 

term1.nals, the ,lonterminals, tt\e start syobol and the set of 

syntactic productions. 

2. 2.. 1 TERMINALS 

The syntax pressuposes a lexical analyzer that recognises the 

following types of terminals: special characters, reserved words, 

ALGOL-11.ke identifiers, integers and strings of characters delimited 

by double quotes; blanks are used as delimiters. Tb~ lexical analyzer 
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will skip over strings beginning with the word COMMENT and ending 

with a semicolon. It will ignore an identifier which follows the 

reserved word END. The t;ord COMMENT may not be used either as a 

reserved word or as an identifier. In the defined language 

identifiers cannot have the same spelling as reserved words. 

The following syntax is used to declare special characters and 

reserved words: 

<SPECIAL CHARACTER DECLARATIOK> ::• « I TERMINA~S ARE 
<SPECIAL CHARACTER LIST> 

<SPECIAL CHARACTER LIST> ::• <SPECIAL CHARACTER> I 
<SPECIAL CHARACTER> <SPECIAL CHARACTER LIST> 

<SPECIAL CHARACTER> ::• < ••• any special character with the 
excepti.:ln of double quote"' •.. > 

<RESERVED WORD DECLARATION> ::•' I RESERVED WORDS ARE 
<RESERVED WORD LIST> 

<RESERVED WORD LJ ST> :: • <RESERVED \vORD> 
<RESERVED WORD> , <RESERVED WORD LIST> 

<RESERVED WOaD> ::• <IDENTIFIER> 

Termin~ls, other then special characters and reserved words, 

are handled by a SPINDLE entity called a structured terminal CS­

terminal), An S-terminal is a terminal with an associated attribute; 

this attribute decorates all terminal nodes that are instances ~f the 

S-terminal. Identifiers, .ntegers and strings are recogni~ed by 

different S-terminals. The syntax for declaring S-terminals is: 

<S-TERMINALS> :: • <IDENTIFIER DECLARATION> I <INTE,;ER DECLARATION> I 
<STRING DECLARATION' 

<IDE~TIFIER DECLARATION> ::• ( I IDENTIFIERS ARE <N~~E A~D ATTRIBUTE> 

<INTEGER DECLARATION> ::• ( I INTEGERS ARE <NAME AND ATTRIBUTE> 

<STRING DECLARATION> ::• ( I STRINGS ARE <N~~E AND ATTRIBUTE> 
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<NAME AND ATTRIBUTE> ::• <S·TERMINAL IDENTifiER> WITH ATTRIBUTe 
<ATTRIBUTE IDENTIFIER> 

<5-TER~INAL IDENTIFIER> ::• <IDENTIFIER> 

<ATTRIBUTE IDENTIFIER> ::• <IDENTIFIER> 

An exaaple of an S-tera1nal declaration is: 

IDENTIFIERS ARE SIGMA WITH ATT~IBUTE SP 
INTEGERS ARE NU WITH ATTRIBUTE VALUE 
STRINGS ARE LAMBDA WITH ATTRIBUTE STRINGK 

In this case an identifier, in tho input string, corresponds, 
in the parse tree, to a node labelled S!GMA, decorated by the 
attribute SP whose value, in this case, is :he spellin& of the 
identifier (represented as an S-ident1fier value>; e'l inteaer 
corresponds to a ned~ NU, decorated by the attribute VALUE whose 
value, in this case, is the value denoted by the integer; a string 
corresponds to a node LAMBDA with attribute STRINGK with the strina 
as 1 ts value. 

Attribute identifiers associated with s-ter•inals are 
implicitly declared to be of kind synthesized. Attribute iden~ifiers 
must be of type T!TLE for ident1£1ers and str1nas1. and INTEGER for 
integers. Section 2.3 shows how to declare the attribute identifiers 
which will be associated with nonterminals and how to associate types 
with them. 
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2.2.2 NONTERMINALS AND START SYMBOL 

The declaration of a nonterm1nal serv~s three purposes: to 

identify the nonterminal; to associate ~ith it a set of inherited and 

a set of synthe%1sed attribute identifiers; to associate a kind with 

the attribute identifier (inherited or synthesitedl. The syntax for 

nonterminal declaration is: 

<NO~TERMINAL DESCRIPTION> ::• NONTERMINALS ARE 
<NONTERMINAL DECLARATION LIST> 

<NONTE&~INAL DECLARATION LIST> ::• <NONTERMINAL DECLARATION>! 
<NONTE&~INAL DECLARATION> <NONTfRMINAL DECLARATION LIST> 

<NONTE~INAL DECLARATION> ::• <NONTERMINAL IDFNTIFIER> .. 
<ASSOCIATED ATTRIBUTES> 

<NONTERMINAL IDENTIFIER> ::• <IDENTIFIER> 

<ASSOCIATED ATTRIBUTES> :: • <S-LIST> , <I-LIST> <S-LIST> 
<I-LIS!> , <S-LIST> <I-LIST> 

<S-LIST> 

<I-LIST> 
·=: ... . . 

S ( <ATTRIBUTE LIST> ) 

<ATTRIBUTE LIST> ) 

<ATTRIBUTE LIST> ::• <ATTRIBUTE IDENTiFIER> 
<ATTRr8UTE IDENTIFIER> • <ATTRIBUTE LIST> 

An attribute identifier is declared to be of kind 1nherite~ or 

synthesized by appearing in an attribute list headed by an I or an S 

respectively. 

The syntax for declaring the start symbol is: 

<START SYMBOL DECLARATION> ::• START SYMBOL 
<NONTERMINAL IDENTIFIER> 
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2.2.3 SYNTACTIC PRODUCTIO~S 

The syntax for syntax is: 

<SYNTACTIC PRODUCTION> ::• <~ONTERMINAL IDENTIFIER> ::• 
<RIGHT HAND SIDE> 

<RIGHT HAND SIDE> ::a« I <RHS LIST> 

<RHS LIST> ::• <RHS EL&~ENT> I <RHS ELEMENT; <RHS LIST> 

<RHS ELEMENT> ::• <SPECIAL CHARACTER> I <RESERVED WORD> I 
<5-TE~~INAL IDENTIFIER> I <NONTBRMINAL IDENTIFIER> 

All special characters and identifiers appearing in a syntactic 

production must have been declared as such. A restriction of SPINDLE 

is that a right hand side of the form BS/0/SB, where B is a possibly 

empty sequence of RHS elements, is not allowed. 

syntactic production is 

PROCHEAD::• IDTYPE PROCEDURE SI~~A 

where given the following declarations 

RESERVED WORDS ARE PROCEDURE 
IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP 
NO~TERMI~ALS ARE 
PROCHEAD • ~(E) 
IDTYPE • SCGENUS) 

An example of a 

the production states that the str1na parsed troa PROCHEAD is the 

concatenation of the string carsed from IDTYPE, followed by the 

reserved word PROCEDURE, and an identifier. 
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2.3 ATTRIBUTES 

The attribute is the basic concept of SPINDLE's data structure. 

It is patterned after the VDL (\We 72] "object:" and Fisher's rFs 701 

"construct". 

An attr1bute has a selector and a value. An attribute can th-.n 

be characterized by a pair <S:V> where S is the selector and V the 

value. The selector names the attribute and can be either a title or 

an integer. If the selector is an identifier it must have- been 

declared as an attribute identifier. For example in figure l. 11 the 

attributes of node Ll are <VALUE:2> and <SCALE:O>. Up to this point 

all attributes presented belonged to a node. But an attribute may 

beloni to another attribute called its ,tnc,estor; 1. e an attribute may 

have other attributes as its value. An attribute that pelongs to a 

node is called a node attribute; if it belongs to another attribute 

it is called a component attrib~te or component for short. 

Attribu1:es may be composite or elemt:ntary. Composite attributes 

are those wh()se values are sets of attributes. El emen'l:ary attributes 

are those whose values are not attributes. An attribute has a ~ype 

associated wi~h it that defines its range of values. Elementary 

attributes can be of type INTEGER, BOOLEAN, TITLE and POINTER. In 

fi6ure 2. 1 are some examples of elementary attributes. • 

Composite attrit-utes have sets of attributes as values. Each 

attribute in the set is a component that belongs to the ancestor 

attribute. An attribute S with components 

<S :V >, N~O is reptesented by: 
N N 

42 

<S : V >, 
1 1 

<S : V >, 
2 2 

... ' 



ATTRI BUT£ 

cSCALE: 2> 

c"POLJTirJAN":F4LSE> 

••X: ll4VID> 

c 5: "SOLOMON"> 

c P: ISCALE> 

COMoiENTS 

type tnte&er; sole< tor ··• an tdentt'ller. 

trpe bool~ar: selector II a strlna. 

type title; sele<tor II an S-ldentlfler: 1alue 

h &I ldentlfler. 

trpe title; selector ll lnteaer; .,.l11e 11 • 

1trtna. 

t·:pe roln .r; "l.elector U an tnteaer; value ll 

1 raference to the attrlbute vW.se 111ector ll 

tfte tdentlfler StALL 

Figure 2.1 

Examples of e'~mentary attributes 

<~:i<S :V >i 
1 1 

~s :V >; ••• <S :V >)> 
2 2 N N 

Composite attributes can be either of type LIST or type 
~O~STRUCT. The value cf a construct attribute is a set of attributes 
with a different selector for each component. In a construct, 
components are referred to by their selectors. The value of a list 
attribute is an vrdered sequence of attributes where the components 
nave undefined selectJrs. In a list, components are referred to by 
their position in the sequence. List attributes behave exactly like 
their LISP [MCa 65] counterparts and are manipulated by a similar set 
of functions <CAR, CDR, r.o~s, etc.). When describing the value of a 
list, the components have for a selector the ordinal (parenthesized) 
that represent thP.ir position in ~he list. For example a list L with 
~ components is described by 

( ' . .... {<(l);V >i <(2):V >; 
1 2 

. . ... < (N): V >) > 
N 



An ~attribute is a composite attribute whose value is the 

empty set; 1 t 1 s represented by <C: 0 >, where C 1s any selector. An 

undefin~d attribute is an attribute whose value is undefined; it is 

represented here by <A:u> where A is any selector. 

As an example of a cocposite attribute we may identify a /360 

ASSEMBLER RX instruction with the construct INSTRUCTION with 

components OPCODE (title), Rl (integer) and OPERAND (construct). 

OPERAND has components 02 (title),X2 (integer) and 82 (integer). 

Figure 2.2a represents the instruction "A 1, LOC (2,,14) "· 

• Figure 2. 2b shows ~he same instruction, but now associated with a 

list (LINSTRUCTION) instead of a construct. 

cJNSTRUCTI\lll: (<OPCODE:A>; <RI: I>; <OPE~~NDS: 

(<02: LOC>; cX2: ~>: cl2: 14>) >) > 

Cal 

<LINSTRUCTJON: (<0):~>; <(2l: I>; <Cll: (<li~:tOC>; <X2:2>: <12: lh)>)> 

Cbl 

Figure 2. 2 

Examples of composite attributes 

Attributes can be conveniently rep&esented as binary trees, the 

nodes representing the attributes and the edges their composition. 

Figure 2.3 shows the attributes defined in figures 2.1 and 2.2 1n 

binary tree representation. An attribute is represented by a 

rectangle containing its value and labeled by its selector. A 

vertical edge connects a nonempty attribute to one of its components, 

called FIRST. Other components of the same attribute appear to the 

right of FIRST, connected by horizontal edges; the riahtmost one in 
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Figure 2.3 

Tree representation of attributes 

the sequence is calle~ LAST. If the composite attribute is a list 

the order of the components from left to right reflects.their 

position in the list; if it is a construct the order is immaterial. 

Node attributes are referred to by their selectors. If the 

attribute is inherited or synthesized the nontermlnal identifier 

labeling the node, parenthesized, follows the selector. For instance, 

INSTRUCTIO~ refers to a local attribute with selector INSTRUCTION 

while SCALE<B> refers to an attribute with selector SCALE that 

belongs to the node B. The components of a composite attribute are 
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referenced through their ancestors. If the ancestor is a construct a 

component is referenced by prefixing its selector with a reference 

to the ancestor, followed by a"·". For instance, A<B>.C. D refers to 

the component n of the component c of the attribute A which belonas 

to tre node B. In figure 2.2a INSTRUCTICN.OPERANDS. X2 is a reference 

to the attribute <X2: 2>. If the ancestor is a llst, a component is 

referenced by applying a composition of CAR's and CDR's to a 

reference to the ancestl)r &.ttr1bute. In 

CAR<LINSTRUCTlON) refers to the attribute 

CAR(CDR(C0R(LI~STRUCTION))).X2 refers to <~2:2>. 

2. 3. 1 ATTRIBUTE DEC~ARATION 

figure 

< (1): A> 

2. 2b, 

and 

Every attribute identifier has a type. The type of an attribute 

whose selector is an attribute identifier ~s the attribute , 
iden~ifier's type. An attribute identifier whose type is a construct 

may have an undertype. The type of a component whose selector is not 
an attribute identifier 1s its ancestor's undertype. A construct with 

no Jndertype may only have components whose selectors are attribute 
identifiers. 

Attribute identifiers• declarations associate a 

undertype with them. Their syntax is: 

<ATTRIBU7E DESCRIPTIO~> ::• ATTFIBUTES ARE 

type and 

<ATTRIBUTE DECLARATION LIST> 

<ATTRIBUTE DECLARATION LIST> ::• <ATTRIBUTE DECLARATION> I 
<ATTRIBUTE DECLARATION> 

<ATTRIBUTE DECLARATION LIST> 
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<ATTRIBUTE DECLARATION> ::• <ATTRIBUTE IDENTIFIER> • <ATTRIBUTE TYPE> 
<ATTRIBUTE IDENTIFIER> ::• <IDENTIFIER> 

<ATTRIBUTE TYPE> ::2 <TYPE> I CONSTRUCT, <UNDERTYPE> 
<UNDERTYPE> :: • <TYPE> 

<TYPE> ::• INTEGER I BOOLEAN I TITLE I POINTER I LIST I CONSTRUCT I <ATTRIBUTE IDF.~TIFIER> 

When <TYPE> is an attribute identifier the type <and undertype) 
rcf~rre~ to is the type <and undertype> of the attribute identifier. 

ATTAJIUTIS All 

ENV • CONSTRUCT, CONSliUCT 

E • INV 

JCJND • TJrLE 

TYPE • TITLE 

CALL • TITJ.E 

NFOIMALS • INTEGER 

CODE • POl NTEI 

PARAMETER • LIST 

lULl • LIST 

INSTIUCTJON • CON~TiutT 

MATIII• CONSTRUCT, I 

I • CONSTRUCT, C 

C •'CONSTRUCT, INTEGEI 

P • POINTER 

Ftaure 2.4 

Attribute declarations 

Figure 2.4 exemplifies attribute declarations. Flaures 2.5 and 
2.6 show examples of attributes built according to the declarations 
ln figure 2.4. The local attribute MATRIX ln FIGURE 2.5 shows how a 
3-dimensional matrix can be represented as a construct and shows how 
components like P can be mixed with components whose tvpe is the 
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__ MATIIX 
l __ l 

I 
I 
I 

_I_ 1 - 3 ~----~' 
1-1-···-···1-1············1 .'ATIIX. '.2 I 

I I I 1 
I I 
I _I_ 2 _I 
: 1,1--------1,1 

I I I 
·II 1_1_2 ._l_l -2 

I I I I I 
I I I I I 3 1·····1 7 I 
: , ___ , '--1 ~--1 

I 
_I_ J - 2 

1-1··------l __ , 
I I 

' ' _,_, _,_, 2 
I I I t ~--, 
I S I I 4 1·-·-1 Z 1 , ___ , '--1 l __ l 

Fiaure 2. 5 

The attrib~te MATRI~ 

undertype of MATRIX. The attribute E<PROCDECL) in fiaure 2.6 eould 

for example represent the symbol table built from parsin& from the 

node PROCDECL the ALGOL procedure 

REAL PROCEDURE MUM (X,Y); VALUE X, Y; 
INTEGER X; REAL Y; 

BEGIN 
REAL Z; 
Z: = XuY; X: aV+Y; 
MUM:• Z+X 

E~D; 

It is a consequence of this scheme for associatina type with 

attributes that node attributes must have attribute identifiers as 

sel~ctors; otherwise no type could be associated with them. For 

instance, in fiaure 2. 1 only SCALE and P can be node attributes. 

As seen in 2.2. 2, the synthesi~ed and inherited node attributes 

are def!ned by means of the nonterm1nal declarations. Attribute 
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-- I <PROCDlCI.) 
1._1 

I 
I 

-1- ...... 
l_l 

I 
I --- N~LS ----- liND 

.1. I -· PAlAMITUS I I 
1.-1··1-1············1 2 1····-·-···1 "PIOCIDUll• 1---cl:o 

I I 1 ___ ; I 

I I 
I 1 
I I 
1 I 

--- nn -----.-- CODI 
I I I I 

I I •:1:>···--1 "lEAL" 1·····-·1 llULICPROCDECL I 
I I 1---1 I I 
I I 
I -1-
1 I I I I 
I I U 1-·-·1 \t I 
11--1 I __ , 
I 
I 

.1. U - U -IX 
l_l------1-1-···-·1-1 

I I I 
I I I 
I I --'-- liND TYPI 
I I I 1 1 I 
I I I "SIMPLE" t---------1 "III!IG£11• I 

: ~ I .I '----1 

1 I 
I --'- liND --- TYPI 
I I I I I 
I I "5111fLI" 1-------··1 "IUL• I 
I I I l ___ l 

I 
I 

-•-- liND --- TYPI 
I I I I 
I "SIMPLE" 1·-·····-·1 "lEAL• I 
1--' , ___ I 

f1aure 2.6 

The &ttrlbute ECPROCOECL) 



identifiers :hat do not appear in these declarations are by default 

of kind loc:a.l. 

2.~ EXPRESSJO~S 

SPINDLE expre&s1ons are the means for referencing attributes 

and manipulating their values. When evaluated. expressions return a 

value. The evaluation of an expression may involve ~he evaluation of 

other expressions or the execution of statements. The execution of an 

expression that involves an ac:c:ess to L~ undefined value will 

passivate the process to which the expression be!~nas; the process is 

reactivated if and when the value is defined. Their syntax is: 

<EXPRESSION> ::• <SIMPLE EXPRESSION> I <INTEGER EXPRESSION> I 
<BOOLEAN EXPRESSION> I <CONDITIONAL EXPRESSION> 

2. 4. 1 SIMPLE EXPRESSIONS 

The syntax fer simple expression ls: 

<SIMPLE EXPRESSION> :: • <CONSTA~T> I ( <EXPRESSION> ) I 
[ <EXPRESSION> l I <FUNCTION CALL> I 
<ATTRIBUTE DESIGNATION> I <BLOCK EXPRESSION> 

so 



The evaluation of a constant returns the value denoted by the 

constant. 

Parentheses enclosina an eApression serve only to indicate 

precedence for the application of operators. The value of the 

parenthesized expression is the value of the express•on itself. 

The value resulting from the application of the bracket 

operator to an expression depends on the expression's value : if the 

expression's value is a reference to an elementary attribute, the 

value returned ls the value of the referenc~d attribute; otherwise 

the value returned is the value of the expression (see 2.5. 1.1 for 

further explanations>. The execution of a bracketing operation will 

cause a passivation if the value of ths operand expression is a 

reference to an undefined attritute. 

For example, if E is an expression whose value is a reference 

to the attribute <SCALE:2>, the value of [El is 2 and the value of 

[[Ell is also 2. If the value of Eisa reference to the attribute P 

in figure 2.5 the value of both [El and [[E!l is a reference to 

MATRIX. 1.2, because this is not a reference to an elementary 

attribute. If the value of E is NULL the value of [EJ is NULL and it 

it is NIL the value is NIL. 
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2. 4. 1. 1 FUNCTION CALLS 

A function call is composed of a function identifier and its 

arguments. The arguments are evaluated in sequence, froa left to 

right; the function is then applied to the ar&uments and returns a 

value. Functions can be system defined or user defined. System 

defined functions are called standard functions and are described ~n 

detail in section 2. 7 • The syntax for function call is: 

<FUNCTION CALL> :: • <STANDARD FUNCTION CALL> I <USER FUNCTION CALL> 

<USER FUNCTIO~ CA~L> ::• <FUNCTION IDENTIFrER> 
<J.CTUA!. PARAMETER PART> 

<FUNCTIO~ IDENTIFIER> ::• <IDENTIFIER> 

<ACTUAL PARAMETER PART> ::• £ I (<ACTUAL PARAMETER LIST> 

<ACTUAL PARAMETER LIST> ::• <ACTUAL PARAMETER> I 
<ACTUAL PAR~~ETER LIST> , <ACTUAL PARAMETER> 

<ACTUAL PARAMETER> ::• <EXPRESSION> 

Section 2.8 describes the evaluation of function calls and the 

declaration and execution of user declared functions. 

CARCLINSTRUCTION) is an example of a function call. It applies the 

standard function CAR to the local attribute LINSTRUCTION. 
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2. 4. 1. 2 ATTRIBUTE DESIGNATION 

The value of an attribute designation i& a reference to an 

attribute. Its syntax is: 

<ATTRIBUTE DESIG~ATION>: :s <XODE ATTRIBUTE DE~IGNATION> I 
<COMPONENT DESIGNATION> 

<NODE ATTRIBUTE DESIGNATION>:: a <ATTRIBUTE IDENTIFIER> I 
<ATTRIBUTE IDENTIFIER> 

( <NONTERMINAL DESIGNATION> ) 

<NONTERMINAL DESIGI\ATION> :: • <:\ONTER.'vliNAL IDENTIFIER> I 
<NONTERMINAL DESIGNATION> * 

<CO~PONE~T DESIGNATION> ::• <ATTRIBUTE DESIGNATION>. <COMPONENT> 

<COMPONE~T> :: • <ATTRIBUTE IDENTIFIER> I (TITLE CONSTANT> I 
<INTEGER> I [ <EXPRESSION> 1 i <FUNCTION CALL> 

The value of a node attribute designation is a reference to the 

node attribute whose selector is the attribute identifier. If the 

attribute identifier is followed by a parenthesi~ed nonterminal 

designation, the attribute belongs to the designated node otherwise 

it is a local attribute. The asterisks following the nonterminal 

serve to distinguish between occurrences of the same nonterminal in a 

production. From left to right, no asterisk corresponds to the first 

occurrence, one for the second, two for the third and so on. If A is 

an attribute and NT a nonterminal, A(NT) implies that A has been 

declared an inherited or synthesi~ed attribute of NT. If this is not 

true an error occurs. An error will also occur if NT designates a 

node that is not in the associated syntactic production. The 

attribute designation A implies that A 1s a local attribute, 1. e, it 

has not been declared as either inherited or syntheal~ed for the LHN. 
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The definition in t1gure 1.6 has examples of all the varieties 

of node attribute designation. The evaluation of a node attribute 

designation will never cause a passivation since all the attributes 

belonging to a node are attached to it b~fore the processes are 

started. Initially all node attributes are undefined. 

The value of a component designation is a reference to a 

component attribute whose selector is the value of <COMPONENT> and 

whose ancestor is the attribute referenced by the value of 

<ATTRIBUTE DESIGNATIO~>. The value of <ATTRIBUTE DESIGNATION> should 

be a reference to a construct (but not NIL>; furthermore if the value 

of <COMPONENT> is not an attribute identifier the referenced 

construct should have an undertype. Also the value Of <COMPONENT> 

should be either a title or an inteaer value. If the above conditions 

do not hold, an error occurs. If <COMPONENT> is an ~ttribute 

identifier its value is the identifier denoted by the attribute 

identifier. A component designation will passivate the process 

associated with its execution if the ancestor does not have an 

attribute whose selector is the value of <COMPONENT> except when on 

the left hand side of an assignement (see section 2.5. 1. 1). The 

process is reactivated once the component is placed in the ancestor. 

The following examples, are attribute designations in the 

context of the attributes represented in figures 2.5 and 2.6: 

ATTRiBUTE DESl~~ATIO~ 

E(PRODECL).&MUM. NFORMALS 

E <PRODECL). &MUM. E. 
[CAR(CDR(E(PROCDECL). 

&MUM. PARAMETERS))). TYPE 

MATRIX. 1. 2. 1 

[MATRIX.P).l 
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2.4.1.3 BLOCK EXPRESSIO~S 

Block expressions are patterned aft&r the ALGOL W [51 711 block 

expressions. Their syntax is: 

<BL~CK EXPRESSION> ::• BEGIN <COMPOUND STATEMENT>; <EXPRESSION> END 

The value of a block expression is the value of its component 

expression. A block expression is executed by executing first its 

compound statement and then evaluating its expression. 

As an example of the use of block expression, in figure 1.6, 

the semantic rule of production P2 can be rewritten as 

$/VALUE(B) :• BEGI~ 

2. 4. 2 

COU\TER: =SCALE (B); PRODUCT :• 1; 
WHILE COUNTER > 0 DO 
BEG I !I! 

PRODUCT :• 2* PRODUCT; 
COU~TER : • COUNTER -1 

E~D; 
PRODUCT 

END/$ 

INTEGER EXPRESSIONS 

Integer expressions are functions from integer values to an 

integer value. Their syntax is: 

<INTEGER EXPRESSION>:: • <SIMPLE INTEGER EXPRESSION> 
<INTEGER OPERATOR> <SIMPLE EXPRESSION> 
- <SIMPLE EXPRESSION> 

<SIMPLE INTEGER EXPRESSION> ::• <INTEGER EXPRESSION> 
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<SIMPLE EXPRESSION> 

<INTEGER OPERATOR> ::• + I -I *I I I REM 

Integer expressions are evaluated from left to right; operators 

have no precedence over other operators, precedence is indicated by 

the use of parentheses. The operands of an integer operator <and of 

the unary-> are implicity bracketed, i.e., operands whose values are 

references to attributes are coerced to return the value of the 

attribute. Integer expressions operate on integer values if the 

coercion of an operand does not result in an integer value, an error 

occurs. The evaluation of an integer expression will cause a 

passivation if the value of an operand is £ reference to an undefined 

attribute. 

Integer operators have their usual meanings with "I" standing 

for integer diV! sion and REM for remainder of the integer diviSion of 

the left operand by the right operand. 
·~ . ' 

Examples of integer expressions can be found in fiaure 1. 6, in 

productions P2 and P4. Notice that in P4, due to the implicit 

bracketing, the evaluation of SCALE<L> in ~he expression SCALE(L) +1 

returns 110t a reference to the attribute but its value. 
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2. 4. 3 BOOLEAN EXPRESSIO~S 

Boolean expressions are the counterparts of 1nteaer expressions 

for boolean values. Their syntax is: 

<BOOLEAN EXPRESSIO~> :: • <SIMPLE BOOLEAN EXPRESSiON> 
<BOOLEAN OPERATOR) <SIMPLE EXPRESSION> 
~ <SIMPLE EXPRESSION> I <~ELATION> 

<SIMPLE BOOLEA~ EXPRESSION> ::• <BOOLEAN EXPRESSION> 
<SIMPLE EXPRESSION> 

cBOOLEAN OPERATOR):: • AND I OR 

Boolean expressions are evaluated fro~ left to right with no 

precede~ce for operators. Operands are implicitly bracketed and 

should have boolean values, otherwise an error occurs. If tne 

operator 1s A~D and the value of the left operator is FALSE the right 

operand is not evaluated; similarly if the operator is OR and the 

left operand is TRUE. A passivation occurs ~hen the value of an 

operand (before the implicit brackets are appl1edl 1~ a reference to 

an undefined boolean attribute. The opJrator "~" is the negation 

operator. 
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2. 4. 3. 1 RELATIONS 

Relations are predicates that take two arau•ents and return a 

boolean value. Their syntax is: 

<REl.ATJO~> ::"' <SIMPLE EXPRESSIO~> <RELATIOtl OPERATOR> 
~SIMPLE EXPRESSION> 

<RELATIO~ OPERATOR>:: • <REFERENCE RELATION OPERATOR> 
<SIMPLE RELATION OPERATOR> 

<REFERE~CE RELATIO~ OPERATOR>:: • •• I •I• 

<SIMPLE RELATION OPERATOR> :: • • I ..,. I > I ;t I < I ~ 

Relation~ are evaluated by evaluating first the left operand, 

then tM right operand and then applying the operator. J·f the 

operator is a ~imple relational operator the operands are implicitly 

bracketed. Reference relation operators are used primarily to test 

if two references refer to the same object (••) or not (•/•). However 

it should noted that they can be applied to any other values since 

the only difference between them and relation operators is that their 

operators are not implicitly bracketed. Relation operators compare 

the values of the operands; the values should be of the same type 

otherwise an error ocurrs. While not an error, it is meaningless to 

apply the operators ~. s, >, c to operands that are not integer 

values; the value returned, while always the same, is implementation 

dependent. 

For the attributes represented in figures 2.5 and 2.6 we could 

have: 

RELATION VALUE 
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<E<PROCDECL}, &MUM.HORMALS + 1) > 2 

ECPROCDECLl.&MUM.KISO ~·~PROCEDURE" 

MATRIX. P •• MATRIX. 1.2 

[MATRIX. Pl •• MATRIX. 1. 2 

MATRIX. P • MATRIX. 1.2 

2.4. 4 CONDITIONAL EXPRESSIONS 

Their syntax is: 

TRUE 

FALSE 

FALSE 

TRUE 

TRUE 

<CONDITIONAL EXPRESSION> :i• <IF-CLAUSE> <EXPRESSION> 
ELSE <EXPRESSION> 

<IF-CLAUSE>:: • IF <EXPRESSION> THEN 

The value of an if-clause is the bracketed value of its 

rxpression. This value should be boolean, otherwise an error occurs. 

If the expression's value is a reference to an undefined attribute 

the associated process is passivated. Production PS in figure 1.6 

contains an example of a conditional expression. 
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2. 5 STATEMENTS 

A statement 1s a unit of action. The execution of a statement 

is the performance of a unit of action. The execution of a statement 

may involve smaller units of action such as the evaluation of an 

expression or the execution of ot~er statements. The syntax for 

statement is: 

<PARALLEL STATEMENT> ::• $/<SEQUENCE OF STATEMENTS> /S 

<SEQUESCE OF STATEMENTS> ::• <STATEMENT> I 
<SEQUeNCE OF STATEMENTS> 

<STAT~~E~T> :: • <PARALLEL STATE~E~T> I 
<LABEL> : <PARALLEL STATEMENT> I 

<STATEMENT> 

<UKCONDITIONAL STATEMENT> I <CONDITIONAL STATEMENT> 
<WHILE STATEMENT> 

<LABEL> ::• <IDENTIFIER> 

As explained in chapter 1, SPINDLE has parallel statements, 

besid•:s the vs~al control structures of ALGOL-like languages. All 

SPI~DLE statements that are not parallel statements are enclosed in a 

parallel statement. The execution of a parallel process lnvolveG two 

steps: first a process associated with it is created and activated; 

second the created process 1s ~xecuted. An active process Will run 

until it is terminated or passivated. A process is passivated while 

trying to evaluate an expression involving undefined values; or ~hile 

executing a function call or a procedure statement (see section 2.8); 

or while trying to assign a value to a synthesized attribute of an 

arnbiguo'.:<; node (see section 2. 9. 3). A process is reactivated 1f and 

when Le value is defined; or tbe execution of the function or 

procedure is terminated; or the node is disambiguated, respectively. 
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If a parallel state~ent PS! contains a parallel statement PST 
1 2 

a process associated with PST will be created during the execution 
2 

of a process associated with PST • In the context of PST 's process 
1 1 

the execution of PST is finl~~ed once the process associated with 

2 

PST is created and activated. Tne execution of PST can go on 

2 
2 

without regard to the execution of PST 's pocess. If PST is part of 
1 2 

a loop in PST , a new process is created and activated every time 

1 

PST is executed. The execution of a sequence J~ statements is then 

2 

s1milar to the execution of a sequence of statements in ALGOL. The 

execution of a paralle! statement 1n the sequence 1s finished once 

the associated process has been created and activated; the next 

statement in the sequence can then be executed. For example, given 

the sequence 

ST ; $/ST ; ST /$; ST 
1 2 3 4 

where ST and ST are not go-to statements, its execution will begin 

1 4 

,.itt. ST 's execution ~ollowed by the creation ... .~. act1vat1on of the 

l 

process associated with $/ST; ST /Sand followed by ST 's execution. 
2 3 4 

The execution of the sequence will end once ~T 's execution is 
4 

finished; the execution of the process assoctated with the parallel 

statement may or may not have terminated. For 1n~tance the process 

could have been pass1vated while executina ST and this would hav~ no 
2 
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bearina in the execution of ST • If ST were a parallel state•ent the 
4 4 

sequence would be terminated once the process associated with ST had 
4 

been created. 

Label identifiers are declared by appearin& as a label of a 

statement. The scope o! label is the smaliest parallel state•ent, 

bl~ck expression, or procedure declaration that contains it. 

2. s. 1 UNCONDITIONAL STATEMENTS 

Their syntax is: 

<U~CONDITIONAL STATEMENT> ::• <LABEL>: <UNCONDIT:ONAL STATEMENT> I 
GO TO <LABEL> I <COMPOUND STATEMENT> I 
' <EXPRESSION> I <PROCEDURE CALL> I 
c I <ASSIGNMENT STATEMENT> 

<LABEL> :: • <I DE~TI Fl ER> 

<COMPOUND STATEMENT> ::• BEGI~ <SEQUENCE OF STATEMENTS> END 

<PROCEDURE CALL> ::• <PROCEDURE IDENTIFIER> <ACTUAL PARAMETER PART> 

Go-to statements chanae the flow of control; the statement 

labeled by its label 1s the next to be e~ecuted. The ao-to statement 

must be in the scope of the declaration of lts label or an error 

occurs. 

The compound statement is sim1lar to its ALGOL counterpart. Its 

purpos~ is to parenthesiz·e a sequence of statements. 

The operator "*" allows the use of an expression as a 
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statement. The expression is evaluated for possible side effects and 

its value discarded. 

A procedure call is similar to a user function call with the 

difference that it does not return a value. Procedures are all user 

defined; no system defined procedures exist. Section 2.8 describes 

the declaration and execution of procedures and the execution of 

procedure calls. 

2. 5. 1. 1 ASSIG~ME~T STATEMENTS 

An assignment operator is applied to two operands; the L­

oper and <for left hand side) and the R-operand (for right hand side). 

The L-upe~and ~ust always be a reference to an attribute, called the 

L-attr1bute; this attribute may not be the null attribute. The R­

operand is either a reference to an· attribute, called the R­

attribute, or some other value. the assignment can take three forms 

depending on the type and values of the operands: 

- If the R-operand is NIL or a non pointer value, it is 

copied into the value field of the L-attribute. 

- If the R-operand is a pointer value and the L-attribute 1s 

a pointer, the R-operand is copied into the vaiue field of 

the L-attribute. 

- If the value of th R-operand is a non NIL pointer and the 

L-attribute is not a pointer, the value of the L-attribute 

is indirectly the value of the R-attribute which means that 
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the L-attribute's value is not a copy of the R-attribute's 

value bl.it exactly the same value. There is no implicit 

copying; if des1red, copyina is handled explicitly (see 

section 2.5.1.1.1). 

' An attr1bute whose value is indirect ~s called an indirect 

attr1bute; otherwise it is called a direct attribute. An indirect 

attribute may be indirect to another indirect attr~bute and form a 

chain of indlrects; at the end of an indirect chain is always a 

dire~t attribute called the final attribute. If the R-attr1bute is 

indire~t the L-attribute is assigned indirtctly the value of the 

final attrib~te of the R-attrib~te. In all cases, if the L-attribute 

was undefined before the statement's execution, once the assignment 

is complete, all processes that were passivated trying to access its 

value are reactivated. If the value was defined, the previous value 

is erased. 

If the R-operand is not a pointer value, its type should be the 

same as the type of the L-attribute; 1f the L-attribute is a. pointer 

the R-operand shoulj be a pointer value; otherwise the type and 

undertype of the L-attr1bute and tte R-attribute should be the same. 

If the above conditions are violated an error occurs. 

The main reason for choosing this form of assignment operator 

is to avoid copying. Since many of the attributes used in the 

def1n1t1o1 of languages are large and complex composite attributes 

(e. g. symbol tables> that are passed from node to nooe, it would not 

be feasible to copy the entire value of these attributes each time an 

assignment is made. 

As a consequence of thls scheme, 1f the value of an attribute 
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changes, all indirect attributes to whose indirect chains the 

attribute belongs, will also change. This is in a way a weakness of 

the SPINDLE language. Ideally the value of other inherited and 

synthesized attributes once assigned, should never change. This can 

only be accomplished by the extensive use of copying. 

An indirect value is represented here by "1A0" where AD is a 

reference to the final attribute. For example, if the L-attribute is 

cA:u> and the R-attribute <B:u> the assignment will change the L­

attribute to <A:iB>. 

NOTE- Section 2.4.1. states that if an express~on's value references 

a composite attribute the bracketing of the exp~ession retur~s the 

satne value. This is not true if the COEij)Osite attribute 'is an 

indirect attribute; in this case the bracketing returns as a value a 

reference to the final attribute of the composite attribute. 

NOTE- An attribute designation which is part of a component 

designation <see section 2. 4. 1. 2) is implicitly bracketed: 1f the 

value of the ancestor attribute is indirect the component referred to 

is the component of its final attribute. 

The syntax for assignment statements is 

<ASSJGN:'>1ENT STATE.\1E:\T> :: • <LHS> : • <RHS> 

<LHS> ::• <ATTRIBUTE DESIG~ATION) 

<RHS> :: • <ASSIGNMEH STATE:··IE\T> 
<MULTIPLE ASSIG:\~1E~T> 
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An assignment statement is executed by first evaluat!na <LHS> 

and the~ <RHS>. The value of an assignment statement is the value of 

its <LHS>. If <RHS> is an assignment statement or an expression, the 

assignment operator is applied to the value of <LHS> (L-operand) and 

to the valut of <RHS> CR-operand). 

ATTRUUTES luiE 

A • INTEGER 

Al • A 

T • TITLE 

Tl • T 

C • CONSTRUCT, D 

cl". ·c 
C1 • Cl 

D • CONSTRIICT, INTEGER 

Dl • D 

P • POINTER 

PI • P 

II • 800LEAN 

R • CONSTRUCT, S 

S • CONSTRUCT, R 

Figure 2. 7 

Declaration of attributes 

The only difference between the evaluation of an attribute 

designation which is a <LHS> and one which is an expression is that 

the former will create components where the iatter would cause a 

passivation. The difference occurs in a component designation where 

the ancestor either has an undefined value or has no component whose 

selector is the value of <COMPO~ENT>; if the attribute designation is 

an e~pression a passivation occurs; if it is a cLHS> a component is 

created whose selector is the value of <COMPO!-iENT> and whose value is 

undefined. After the assignment, all processes passivated trying to 
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(&) (b) 

Sl A: • 2; <A: 2> 

T : • Tl : • "BRUNO"; cT: IT!'· <TI: •&RUNO"> 

C. Tl : • T; <C: (<TI: IT!>)> 

C. Tl : • "808"; cC: (<TI: "1011">)> 

Cl : • C; <CI: IC• 

D. IC. Til : • A ol; cD: 1<"808": 3>1> 

C : • NULL; •• cC: () > 

CI."FRI£NDS" :• D; <C: (<"FRIENDS": ID>I> 

CI."FRIE~DS"."PAT" :• 7; dl: (<"8011":3>; <"PAT":7>)> 

CZ : • t::; cC2: IC> 

Cl : • NUL~; <CI: 0 > 

P I• o. ·~os•, cP: to. "1'0!"• 

II:. (PJ •• C2."FRI£NDS"."SOS"; <B:TRUE> 

IPJ : • ~; cO: (<"BOll": h; <"PAT": 7>)> 

A I• AI <AllAI:, <AI'U> 

Figure 2. 8 

Effect of ~xecuting assignment statements 

access this component are reactivated; if the ancestor was undefined 

it is now ciefined. !Jue to the implicit bracketing of the attribute 

designation-part of a component designation, 1f an ancestor 1 s an 

indirect attr:bute the new component is added to its final attribute. 

The ex·~cut1on of the parallel statement in Figure 2.8a 

exernpl if i es :he rules stated above. Figure 2. 7 contains the 

declaration of all the attribute identifiers used in this and 

subsequent examples in section 2.5.1.1. Figure 2. Sb shows how 

attributes are affected by t:te execution of each statement of 

figure 2.8a and figure 2.9 show5 the status of all attributes at the 

end of the execl.ti.on. ;>.;otice that 1f the last statement of 

f!gure 2.8a were A: • (All the process would be passivated and that 

instead of cA: iAl> ~e would have cA:2>. 
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2. s. 1. 1. 1 

<A:IAI> 

<Al:u> 

<TilTh 

<Tl:"IRUNO"> 

cl: TIUE> 

<C: (<"FRIENOS":ID>h 

<Ctl () > 

iCl: tC> 
• 
<D: (<"1101": 4>; c•ut•: h)> 

<PI ID. "BOI"> 

Fiaure 2. 9 

Attributes after the ass1anments 

OTHER RHS 

The syntax for assignment statem~nts continues as follows: 

<OTHER RHS> ::• I <EXPRESSION> I • <EXPRESSION> I 
<CO};O!TIO~AL ASSIGNMENT> 

<CONDITIONAL ASSIG~~ENT> ::• <IF CLAUSE> <RHS> ELSE <RHS> 

The "'" is the copy operator. The expression is implicitly 

bracketed and the value of the bracketed expression is the R-operand. 

If the L-attr1bute is not a composite attribute or the value of the 

R-operand is NULL the normal SPINDLE assignment takes place. 

Otherwise the following takes place: the value NULL is assigned to 

the L-attrlbute; then for each component of the R-attribute a 
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component of the same type and u~dertype and with th~ same selector 

and in the same order is attached to tl'.e. L-attribt.te; then each 

component of the R-attribute is assigned (~ithout copying) to the 

corresponding component of the L-attribute. 

Notice that the expression may retu:~ a reference to the L­

attribute as its value; if the L-attr1bute is indirect (due to the 

implicit bracketing of the expression) the indirectness is eliminated 

and the value of the final attribute copied; if the attribute is not 

indirect the operation has no effect on the attributes. It !lhould 

also be noted that for composite attributes, while the components of 

the attribute are copied, if the compouen:s are themsel~es tOLposite 

attributes, their values are not copie.:i. It should finally be noted 

t~at for elementary attribute~ the bracketing of the right hand side 

expression has the same effect as the application of the 1 operator. 

As an examplP. of the copy operator the parallel statement in 

figure 2. lOa when executed starting with the attribute in figure 2.9 

will cause the changes shown in figure 2. 10~ 

The "*" operator creates a component of the L-attribute that is 

a copy of the R-attr1bute (same type, undertype and selector) and 

assigns the R-attribute to this component. For exampl~ the execution 

of the statement C."FRIENDS" :•• 8 would affect the attributes in 

figure 2.9 in the following way: 

<C: {<"FRIE!IIDS": iD>} > 
<D: (<"BOB": 4>; <"PAT": 7>; <8: a>}> 

For an assignment involving a * operator the L-attrlbute should 

be a construct; the R-operand should be a reference to an attribute 

whose selector is defined; if the selector 1s not an attribu~e 
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Sl Dl : • ID; D. "ANDY" : • 9; Dl. "HEATHER" : • I; D. "1101" : • 3; 

C2 I • IC; C. • fRIENDS" : • IC. • FRIENDS"; 

C."FIIENDS"."ANDY" :• 10 /S 

(a) 

<C: ( <"FIIINDS": ( <"1108": lD. "1101">; <"ANDY":lO>; <"PAT"tlD. •PAT">) >) > 

cC2: (<"FIIENDS": tD>I > 

<D: (c•toa•: 3>; <"ANDY": h; <"PAT•: 7>)> 

<DU (<"101•: h; <"PAT": 7>; <"HEATHEI"Il>} > 

(b) 

Figure 2. 10 

Effect of the copy operator 

identifier, the type of the R-attribute must be the same as the 

undertype of the L-attrlbute. If the above conditions are not 

satisfied an error occurs. 

The conditional assignment chooses one of its <RHS> to be the 

cRHS> of the assignment statement. If the value of the if-clause is 

TRUE the leftmost <RHS> is used, otherwise the rightmost one is used. 
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2. S. 1. 1. 2 MULTIPLE ASSIGXME~TS 

The multiple assignment operator "S" is SPINDLE's count~rpart 

of VOl.' s 
-operator. It allows a single statement to assign val~es to 

different components of an at!ribute. Its syntax is: 

<MULTIPLE ASSIGI\ME~T> ::• S (<COMPONENT ASSIGNMENT SEQUENCE>) 

<COMPONENT AS~IGNMENT SEQUE~CE> :: • <COMPONENT ASSIG~~ENT> : 
<COMPONE~T ASSIG~~E~T SEQUENCE> ; <COMPONENT ASSIGNMENT> 

<CO:'<lPONE~T ASSIGNME~T> :; a <COMPOU~D COMPON:~NT:>: • <RHS> I 
<PAR.ULEL COMPONeNT ASSIGNMENT> I 
<CO~DI!IO~AL COMPONSNT ASSIGNMENT> 

<COMPOU~D COMPONE~T> :: • <COMPO~E~T> I 
<COMPOU~D COMPONENT> • <COMPONENT> 

.:PARALLEL COMPO:>;E~T ASSIG:-1~1ENTl :: • $1 <COMPONENT ASSIGNMENT> /$ 

<CONI:i fiONAL CmtPONE~T ASSIG:-.":-:F.NT> :: • <IF C:..AUSE> 
<COMPONENT ASSIGNMENT) 

ELSE <COMPONENT ASSIGNMENT> 

The effect of executing a component assignment 

<CmtPONENT PART> :"' <RH;). 

which is part of~ multiple assign~ent 

<LHS> : • $( ... ) 

1s the same as the effect of executing the assignment statement 

<LHS>. <C0~1PO:-<EH PART> : • <RHS>. 

For example, the multi~le assignment statement 

R. "KELSO~·· : = $("RUTH". A : = 23; 
"DORIS" : • $(A : • 20; T : • "JOE")) 

and the sequence of statements 
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R. "Hl.SON". "RUTH". A : • 23; R. "KELSON". "DORIS". A: •20; 

,L 'X2LSON. "DORIS". T: • "JOE" 

wh-:.1 executed have exactly. tile same effect upon the environment. The 

parallel component assignment allows the execution of the component 

assignment as a separate process , 1. e. in parallel with the rest of 

the multiple assignment. It is equivalent to the ass·:lciated 

ass1inment statement being a parallel statement. The mul tlple 

assignment is execut~d from left to ri&ht in exactly the same order 

that the associated compound statement wo~ld be executed. Por 

example, given the attribute <R:u>, the execution of the statement 

S/R. "KELSON" : • S ("RUTH". A : • R. "KELSON". "DORIS". A + J; 
"DORIS". A: •20)/$ 

would cause the associa:ed process to passlvate trying to eviluate 

R. "KE.L.SON"."DORIS".A and result i:'l the attribute 

<R: {<"KELSON": {<"RUTH": {<A: U>) >) >) >. 

If no other parallel statement assigns a value to 

R. "KELSOX". "DORIS". A the process will never be react1 vated. On the 

other hand, under the same circumstances, the execution of 

$/R. "KELSON" : • S ($/"RUTH". A : • R. "KELSO~". "DORIS". A +3/Si 
"DORIS". A : • 20)/$ 

w3uld generate two proces~ that when terminated would result in the 

attribute 
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<R: {<KELSO:\: {<RUTH: {<A: 23>}; <DORIS: ~<A: 20>} >} >} > 

2. s. 2 COXDIT!O~AL STATE~E~TS 

<CO:\DITIO~Al. STATEMEt.;t'> ::,. <LABEL> : <CONDITIONA!. STATEMENT> 

<IF STATE.\1ENT> I 
<IF STATEME~T> ELSE <~TATEMENT> 

<IF STATE~1E~T> :: • <IF CLAUSE> <U~CONDITIONAL STATEMENT> 

The conditional statement has exactly the same control 

structure as its ALGOL counterpart. As in the ALGOL condlti~nal 

statement, it B possible to execute the unconditional statement 

without evaluating the 1f-clause by using the GO TO statement. 

2.5.3 WHILE STATEME~TS 

<WHILE STATEMENT> ::., <LABEL:. : <WHIJ.E STATEMENT> I 
WHILE <EXPRESSIO~> DO <STATEMENT> 

The control structure of the WHILE statement is similar to 1ts 

ALGOL W counterpart. The expression is implicitly bracketed and 

returns a boolean value. Unlike ALGOL W, 1 t ) s pos~ible not to 

evalua~:e the expression the first time around by transfering directly 
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to the statement by ~cans of a GO TO statement. 

semantic rule of production P2 contains an 

statement. 

2.6 OTHER EXPRESSIO~S 

In figure 1. 6, the 

example of a wh~le 

Section 2.4 presents an incomplete syntax 

expressions. The following are the missing forms: 

for SPINDLE 

<EXPRESSIO~> :: • <ASSIG~~~E~T EXPRESSIO~> 

<SIMPLE EXPRESSIO~~ :: • <PUTI~ EXPRESSION> I <FIND EXPRESSION> 

2. 6. 1 ASSIG~ME~T EXPRESSIO~ 

The assignmer.t expression is a fcrm of <EXPRESSION> not 

mentioned in section 2. 4. Its syntax is: 

<ASSIGNMENT EXPRESSIOX> :: = <ATTRIBUTE I~E:-JTIF1ER> *- <RHS> 

The only difference between the execution of an assignment 

stateuent and the evaluation of an assignment expression is in the 

evaluation of the left hand ::.!rte. In the assignment expression, the 
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L-attrlbute ~s a new attribute, called an isolated attribute, that 

does not belong to a node or an attribute; the attribute identifier 

establishes the type and selector of the isolated attribute. The 

expression's val~e is a reference to the isolated attribute. Notice 

that since the isolated attribute is not a node attribute or a 

component, the only ~ay to refer to it is by means of the reference 

returned by the evaluation of the expression. 

execution of the parallel statement 

$/ A : " 2; P 1 : ,. A • • 3; 
Al : = A *"' A + (Pll +4; A : • Al ·· (Pl~ ,'~ 

For example, the 

results in the local attributes <A: 12>, <Al: 1A > and <Pl: @a > and in 
2 l 

the isolated attributes <A : 3> and <A : 9>. 
1 2 

Assignment expressions are extr~mely useful inside iterAtive 

statements where for each iteration a new attribute has to be 

created. An e;,cample of this use is shown in section 2. 7. 2. 

2. (), 2 PUTIN EXPRESSIONS 

The purpose of the PUTI~ expression is to insert new components 

into a construct. Its syntax is: 

<PUTIN EXPRESSIO~> :: = PUTIN (<ATTRIBUTE DESIGNATION>: 
<COMPONE~T ASSIGNMENT SEQUENCE> 
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The execution of & PUTIN expression is equivalent to the 

execution of the assignment statement 

<ATTRIBUTE DESIGNATION> : • $(<COMPONE~T ASSIGNMENT SEQUENCE>) 

with the following differences: 

- The attribute destanation is evaluated as an expression, 

not as & LHS. 

- The value of a PUTIN expression 11 a reference to the 

attribute referred to by the simple attribute designation 

part of the attribute designation. 

For exampl~, given the attribute 

<R: (<"KELSON": (<''RUTH":(<A:23>)>)>}> 

the execution of 

PUTIN <R. "KELSON", "DORIS".A :• 20; "BRUNO". A :• 17) 

would return as a val~e a reference to the attribute 

<R: {<"KELSON": {<"RUTH": {<A: 23>) >; <"BRUNO": {<A: 17>} >i 
<"DORIS": (<A: 20>) >) >}) 

It should be noted that the equivalent assignment statement 

R. "KEi.SO~" : • $ ("BRU~O". A: •17 "DORIS". A: • 20) 
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would return as a value a reference to the attribute "KELSO~" (if it 

were the RHS of another assignment). Also notice in the above 

example that if R were undefined, the PUT IN expression would 

passivate while the equivalent assignment statement would not. In 

other words PUT!~ only adds to attributes already defined. Finally 

it should be note~ that if the ~omponent assignment sequence has 

parallel parts they go on asynchronously; i.e., PUTIN may be done 

before they are f1n~she1. The attritute designation part of the 

P~Tl~ expression should return a reference to a construct (but not a 

NIL value) or an error occurs. 

2. 6. 3 FI~D EXPRESSION 

A fir.d express1on is used to check the presence of a certain 

component in a construct. Its syntax is: 

<FI!\0 EXPRESSIJN> :: • FIND C <EXPRESS!O:-i> , <COMPONENT> ) 

The value of <EXPRESSION> should be a reference to a construct 

or NIL (which is a reference to a construct with value NULL), 

otherwise an error occurs. If a construct has a component whose 

selector is t~~ value of <COMPONF\T> the expressio~'s value is a 

reference to the comp~nent; oth~rwis~ the value is N[L. As a 

consequence, if the expressi~n·s va~ue is NIL the value of FIND is 

NIL. The ei·aluation of the FlND expression will cause a passivation 

1f the construct is undefined. For example, given <R: u>, the 

execution of the paralle: statement 
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$/ R."KELSO:\" :• SC"RUTH".A := 23; "DORIS".A :• 20); 
P : • Fl~:l(R. "KELSO:\", "DORIS"); 
Pl : • Fn;o (R. "KELSO~", "BRU:\0") IS 

results in 

<R: (<"KELSON": {<"RUTH": {<A: 23>) >; <"DORIS": (<A: 20>} >} >} > 
<P: @R. "KELSO:\". "DORIS"> 
<Pl:NIL> 

However, it should be noted that given the parallel statements 

$1 R."KELSO~" :• SC"RUTH".A := 23; "DOR1S".A :• 20) 1$ 
S/ P : • FIND<R. "KELSO~". "DORIS") /$ 

after both are executed and terminated the value of the attribute P 

is either U. "KELSON". "OOidS" or NIL. This can be avoided by 

replacing the first parallel statement by 

$/ R : = Rl. "KELSO!\" :"' 1 · .•• ) /S 

In th~s case R i~ undefined until the complete construct 1s 

assigned and P will always be assign~d the value @R. "KELSON". "DORIS". 

2. 7 STANDARD FU~CTIO~S 

Standard functinns ~re system defined function~ that complement 

the o~~rntors furnished by the language. A standard function is 

evaluated by first evaluating its arguments from left to right and 
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then applying the function to the values. returned by the arguments. 

The value returned by a standard function varies from function to 

funct1on. Their syntax is: 

<STANDAAD FU~CTION> ::• <PREDICATES> I <LIST FUNCTIONS> 
<MISCELANEOUS FUNCTIONS> 

2. 7. 1 P~EDICATES 

A predicate's value is always boolean. Their syntax is: 

<PREDICATES> ::• NULLR 
NULLa 

<EXPRESSION> 
<EXPRESSION> 

The value of ~ULLR is TRUE if the value returned by the 

expression is either FALSE, 0, NULL, or NIL; otherwise 1t is fALSE. 

The va:ue of NULLS is TRUE if the expression·s val~e is either FALSE, 

0, ~ULL, ~IL or if it is a reference to an &ttribute whose value is 

either FALSE, 0, ~IL, or "!U'!.L; otherwise 1t is FALSE. NULLB will 

cause a passivation if tne value of the expr~ss1on 1s a reference to 

an undefined attribute. For example, given the attribute <C: 0 > the 

value of NuLLR(C) is FALSE while the value of NULLB(C) 1s TRUE. 
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2. 7. 2 LIST FUNCTIONS 

List functions are used to manipulate lists. The value of a 

lis~ function is either a reference to & list component or a special 

kind of list called a value-list. A value-list is a list whose 

selector is undefined and that does not belong either to a node or to 

another attribut~. When a value list is the R-operand of an 

assignment, the value assigned to the L-attribute (which must be a 

list) is directly the value of the value-list. If the R-operand were 

a reference to a list and if the ~-attribute were &lso a list the L-

attribute's value would indirectly be the value of the R-attribute. 

Notice that if the L-attribute is a pointer ar.d the R-operand a value 

list, an error occu~s. The value list is~ list ana not a reference 

to a list. The syntax for list function is: 

<LIST FU!'-JCT!ON> :: • CAR < <EXPRESSION> ) I 
CDR ( <EXPRESSIO~> > I 
CO~S ( <EXPRESSION> , <EXPRESSION> ) I 
LIST ( <EXPRESSIO~> ) I 
APE!\D ( <EXPRESSION> I <EXPRESSION> ) I 
RVRS ( <EXPRE~SION> ) 

The functions CAR, CDR, co~s. and LIST correspond exactly to 

their LISP counterparts and work essentially in the same way. As in 

LISP, the list components are not copied and the application of these 

functions to a list does not change its value. 

CAR takes a value-list or a reference to a list as an argument 

and returns a reference to its first component. An error occurs if 

the expression's value is not a a value-list or a reference to a list 

or if the list or the value list 1s empty. For example, given the 

list <L;{d1):3>;d2):4>)>, CAR(L) r~turns a reference tn <(1):3>. 
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COR takes a value-list or a reference to a list as an argument 

and returns a value-list whose components are all the components of 

tt.~ argument list but the first. [f the value of the argument list is 

NULL an error occurs. For example, figure 2.11 shows the list L and 

Ll before and after the execution of t~e statement Ll : = COR(L). 

Notice that the value of Ll is direct and that no copy was performed. 

_L 
l_l 

I 

1-'--1 ~--1 
I l 1--------1 4 I l ___ l l __ l 

(a) 

_ L _ Ll 
l_l l_l 

I I 
_I_ _I_ 

I i I I 
I 3 1--------1 C I l __ l l __ l 

(b) 

--- Ll _ L - Ll 
1_1 l_l l_l 

I I I 
-'- -'- _I_ 

I I I I I I 
I 5 1--------1 l 1--------1 4 I l __ l l __ l I l ___ l 

I 
-- L2 I 
!_I I 

I I __ I_ I 
I I I 
I 2 1-·-· , ___ I 

(c) 

Figure 2. 11 

Effect of CAR, CDR and CONS 

The application of the CO~S function creates a new attribute 

wr~se type and value are determined by the value of the first 

argument : if the argument has a nonreference value or ts not NULL or 

~IL the new attribute has the appropiate type to receive the value; 
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if it is a reference to an attribute, the new attribute has the same 

type and undertype as this attribute; if it i~ Nil or NULL it is a 

pointer with value NIL. In all cases the new attribute has an 

undefined selector. After the creation of the new attribute an 

assignment is performed witt the new attribute as the L-attribute and 

the first argument as the R-operand. The second argument is a value 

list or a reference to a list. The value of CONS is a value-list 

whose first component is the new attribute and whose other components 

are those of the ~econd argument's list. For example the execution 

of the stquence of statements 

L2 : • CONS (2, Ll) Ll : • CONS ( CAR (Ll) + CAR (L2) 1 L) 

transforms the attributes in figure 2. llb into the attribute~ Jn 

figure 2. llc. 

The execution of the function LIST(ARG> is a!~ays equ!velent to 

the execution of CO~S(ARG,L••XULL). 

Figu(e 2. 12 is an example of the use of the list functions. 

The execution of the compound statement (a) transforms the attributes 

(b) into the attr1b~tes (c). Observe that 1n line 5 of the compound 

statement, the attribute designation COUNTER is bracketed; if not, 

the value of ADDRESS would be 1COUNTER 1n both INSTRUCTION and 

INSTRUCTION • 
2 

1 

The functions APE~D and RVRS differ from the other list 

functions in that they change the value of the list upon which they 

are applied. They correspond to the LISP functions APPEND and REVERSE 

with the difference that the LISP functions do not chanae the values 
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aE.GI~ 

L.~ : • NULL; COUNTflt : • 1; Ll : •Li 

Will LE -.IIUI.I.8(1.1) DO 

lEG IN 

IND 

END 

L2 1 • CONS 0 NSTRUCTION •• $<ADDRESS : • CAl (Lil I . 
OP l : • ICOUNT91), L2l; 

Ll 1 • CDR<LU; COUNTER : • COUNTER •I 

(a) 

cL: {c(l):lh; <(2):42>)> 

(b) 

eLl: () > 

<La{< (1): 31>; <(2): 42>)) 

ciNSTIUCTION: (cOP I: ICAI(I.) •: <ADDRESS: l>l> 
l 

cJNSTRUCTION : (cOFl: ICAJ(CDP (LI) >i <ADDlliSS: 2>1 > 
2 

cL.2: (c(l)IIINSTRPCTION >i <(2l:liNSTRUCTION >)> 
l 2 

(C) 

Figure 2. 12 

Examples of the use of LIST functions 

of their ariument lists. The reason for usina APEND and RVRS is their 

greater efficlency,both tlmewise <no sequence of CARs and CDRs as io 

APPEND> and spacewise (no new attributes are created). The ugumenu 

of both APEND and RVRS should be either value-lists or ref-.:ences to 

lists (but not NIL) or an error occurs. 

The value of APEND is a value-list whose components art the 

components of the first argument followed by the components (I the 

second argument. The components of the second argument also follow 
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th~ components of all lists whose last component was the last 

c~mponent nf the first argument. For example, figure 2. 13 shows the 

res~' of executing the statement LS :• CONSC7,APEND(L,L4)) given the 

attnbu:es in figure 2.l~.c and <L4: {<(1):6>}>, APEND should be used 

witn extreme care s1nce it can form circular lists which can then 

cause a process to enter an inf~nite loop. 

-- LJ -- L _ Ll _ L4 
l ___ l l __ l l_l '--' 

I I I I 
I I I I 

___ I___ _I___ _I__ -'--
1 I I I I I I t 
I 5 1··--·---·1 l 1········1 4 1--------1 6 • l _____ l I l ____ l I l ___ l I __ , 

1 

- l.'i l __ l 
I 
t • 

--'---
I 7 
, __ ----- 1 

I I 
I I 

_ L2 I 
l_l I 

I I 
I I 

-'-- I 
I I I 
I 2 1----
t _____ l 

Figure 2. l::i 

Effect of APE:-\0 

The va!Je of RVRS ls a value-list wh~se components are in the 

reverse or~er in which they were in the argument; the reversal 

affects all lists to which this components belong. Figure 2.14 shows 

the result of o:ecutirq~ Ll:" RVRS(L) given the 

figure 2. llc. 

-- L2 -- LJ _ L1 _ L 
, __ I t_l l_l l_l 

I l _____ l I 
I I I 

_I_ _I_ _I_ 
I ; I t I t 
I 2 1··-·-·-·1 4 1--------t 3 I , ___ , I __ , , __ I 

Figure 2. 14 

Effect of RVRS 

84 

attribute in 



A list function will cause a passivation if any of its 

arguments is & reference to an unaefined list. 

2. 7. 3 MISCELLANEOUS FUNCTIONS 

<MISCELLA~EOUS FUNCTIJSS> :: • ~EWISTEGER I 
SELECTOR ( <EXPRESSION> ) 
FIRST < <EXPRESSlO~h ) I 
:-iEXT ( <EXPRESSION> : 

The function :-:E~I~TEGER returns a different integer value for 
each call on the function. 

The argument of SELECTOR snould be a reference to an attribute 
whose selector is defined, otherwise an error occurs. The value of 
the function is an integer if the s~lector is an integer, otherwise 

it is a title value. For example, given the attributes <A:S> and 
<P:@A> the value of SELECTOR(P) is P and of SELECTOR(tPl) is A. 

The argume~t of the fuuction FIRST should b~ & reference to a 
construct, otherwise an errQr occurs. If the construct is undefined a 
passivation occurs. The value of the function is a reference to the 
compnn.ent FIRST <see section 2.3). If the construct is empty the 
value of the functior. is ~IL. 

The argument of the function NEXT should be a reference to an 
attribute, otherwise an error occurs. If the referenced attribute ts 
a component the value of ~EXT is a reference to the component that 
follows the one referer.ced by the argu•ent; if the referenced 
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component 1s LAST then the value of NEXT 11 NIL. lf the referenced 

attribute is a node attribute, the value of NEXT depends on the 

implementation. <On MUTILATE, NEXT will return a reference to an.lther 

attribute of the same node <or NIL)). 

The block expression in fiaure 2.15 illustrates the use of 

these functions. Given C, a const!uct, and P, a polnter, the block 

expression returns the same value as PINDCC,,X). 

IIGIN 

P I• FllSTIC); 

WMILI ~ULLI(Pl DO 

IP SILICTOICIPJ) • U TIIEN GO TO EXIT ILSl P I• IIUT<lrJ)J 

EXIT: I 

lfl 

END 

Flaure 2. 15 

Example of block expression 

2.8 USER DEFINED FUNCTIONS AND PROCEDURES 

The declaration of user defined functions and procedures 

follows the syntax: 

<PROCEDURE DESCRIPTIO~> ::• t I <PROCEDURE DECLARATION> I 
<PROCEDURE DECLARATION> ; <PROCEDURE DESCRIPTION» 

<PROCEDURE DECLARATION> ::• FU~CTION <FUNCTION IDENTIFIER> 
<FOR~AL PARAMETER PART> ; <EXPRESSION> 

PROCEDURE <PROCEDURE IOENTIFIER> 
<FORMAL PARAMETER PART> ; <STATEMENT> 

<FUNCTIO~ IDE~TIFIER> :: • <IDE~TIFIER> 

<PROCEDURE IDENTIFIER>:: • <IDENtiFIER> 
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<FOR~1AL PARA~lETER PART> :: • E I ( <FORMAL PARAMETERS> ) 

<FORMAL PARAMETERS> :: • <ATTRIBUTE IDE~TIFIER> I 
<FOR~AL PARAMETERS> • <ATTRIBUTE IDENTIFIER> 

A function or ~rocedure call is executed as follows: 

(1) The actual parameters are evaluated from left to right. 

(2) A node i~ created and attributes whc!e selectors are 

the forQal parameters are attached tc ~t. 

(3) Each acrual parameter CR-operar.d) is assigned to the 

attribute whose selector is the :o~~espondlng formal 

parameter CL-attribute). If tha number of formal and 

actual parameters is not the same, an error occurs. 

(4) The pr~~ess from wlch the call was made is passivated 

and a process, corresponding to the body of the 

function or procedure, is created and activated. 

(5) Once the process is terminated the calling process ls 

reactivated and if call was a function call the value 

of the expression is returned. 

All the node attributes used ln the procedure or function body 

belong to the node associated with the procedure or function, thus 

they must all be local. The procedure body is 1mpllc1tly parallel so 

that the scope ~fall the labels declared in it is the body itself. 

For example in fiaure 1. 6 the exponentiation could have been 

declared as: 
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FUNCTION EXP <COUNTER>; 
BEGI:-J 

PRODUCT : • 1; 
WHILE COUNTER > 0 DO 
BEGIN 

PRODUCT :• 2 *PRODUCT; 
COUNTER : • COUNTER - J. 

END; 
PRODUCT 

END; 

The semantic rule cf production P2 would then be 

S/ VALUECB) :• EXPCSCALE<B)) /$ 

2.9 OTHER STAT~tENTS 

Besides the statements shown in 2.5, SPINDLE hal threft other 

types of statements: 

<STATEMENT> ::• <WRITE STAT~~E~7> I <ERROR STATEMENT> I 
<DIS~~BIGUATION STATEMENT> 

88 



2. 9. 1 WRITE STATEME~T 

The write stdtement is the means for Jutputina values 1n 
SPINDLE. Its syntax is: 

<WRITE STATE~1E:-1T> :: = <LABEL> : <WRITE STATEMENT> I 
h'RI'!'E ( <OUTPUT LIST> ) 

<OUTPUT Ll ST> :: • <OUTPUT ELE.\iE~T> I <OUTPUT LlST> 

~oUTPUT ELE:'-1ENT> :: • <EXPRESSIO~> I I 

<OUTPUT ELEMENT> 

The statement is executed by evaluat1na, in sequence, from left 
to right, each output element. ~he implementation of the system 
guarantees that values that follow ~ne another in the output list 
will follow one another in the prifited output, unless the eval~ation 
of an output element causes a passivation. No passivation occurs if 
the output element is an expression that references an undefined 
attribute. The implementation also guarantees that an att~1bute 
containing an undefined value is printed either when the value is 
defined or when the computation terminates <no more active 
processes>. The imple;nentation also guarantees that if the execution 
of a write statement follows the execution of another write statement 
(with other types of statements possibly beina executed 1n between), 
the printed output of the former immediately follows the printed 
output of the latter. ~o sec;ue11cing is possible amona the output 
lists generated ~Y different pro~e~~es. In chapter 3 it can be seen 
how this was implemented in MUTILATE. 

Values are printed followina one another in the same output 
line until the line is full. Once full, a line 1s ~r1nted and a new 
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on~ •s started. The control character "/" force5 the prlnt1na of the 

line currentlY beina filled and starts a new one. 

If the output eluent is an expreaalon, lt is iaplicitly 

bracketed and the value returned deteraines what !s to be printed: if 

the va.l~c is a ncn pointer value or NIL the value is printed; 

otherwise the selector (if defined) and value of the reference~ 

attribute are printed. 

Inte&ers are printed in left justified fora. Strinas are 

printed without the surroundina double quotes. If the value of a 

pointer attribute is not ~IL the selector of the referenced attribute 

preceded by the character "'" is printed; otherwise NIL is printed. 

Composite attributes are printed by printina each of its coaponents; 

the components are separated by commas and the whole llst is enclosed 

in parenthesis. Figure 2.16 shows a series of exaaples of write 

statements and the resultina output. Notice that the coaponents of a 

construct are printed in the same order .they are internally stored 

<which depends on the imp1ementatlon). 

2. 9. 1. 1 FORMATED OUTPUT 

Constructs can be printed in a "nicer" way than described 

above, if they have a foraat attribute as a coaponent. Foraat 

attributes are title attributes whose selector is FORMAT and whose 

••al ue is a format identifier. 'l"he construet to wbieh the format 

attribute belonas is printed accordina to tbe foraat associated with 

t~e foraat identifier. Poraats are associated with foraat lden~1f1ers 
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STATE14EHT: 

IlliTE I "VALliE IS .•, ~:5(6, CONS!•, CONSU, I.IST(0))))) 

OUTPUT: 

VALUE IS •(6, •, l, C)) 

STATQIENT: 

I/ I I • 3; I I • ITITI.£1 

C : • S !A : • J; 11 I• I; 

waiTE II, c, ll II 

OUTPUT: 

I• TITU C• lll• TITLE, Cl• (TYPI• lhTIGEI, liND• WAY>, A• :n 

I• 3 

Figure 2. 16 

Examples of output statements 

by means of declarations. Format attributes are attached to 

constructs by m~ans of fotmat assignments. A foraat &ssianment is a 

form of co111ponent assignment. Its syntax 1s: 

<C0~1PONE:\T ASSIGt\~ENT> :: • <FOR~1AT ASSIGNMENT> 

<.FORMAT ASS I ;.il\!-oli~T > : : • FOR~AT : • c FORMAT 1 DENT I PIER> 

Formats can also be attachea as any other component. For 

example, the three following statements have exactly the same effect: 

C: • $ CFOR!>1AT : • F3) 
C: • S CFOR~1AT : .. I fl) 
C. FORMAT: .. I Fl 

The syntax for format declaration is: 
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<FORMAT DESCRIPTION> ::•' I FORMATS ARE <FORMAT DESCRIPTION LIST> 
<FORMAT DESCRIPTION LIST> ::• <FORMAT DECLARATION> I 

<FO~~T DECLARATION> 
<FORMAT DESCRIPTION LIST> 

<FORMAT DECLARATION> ::• <FORMAT IDENTIFIER> • 
( <FORMAT ELEMENT LIST> ) 

<FOa~AT IDENTIFIER> ::• <IDENTIFIER> 

<FORMAT ELE~E~T LIST> ::• <FO&~AT ELEMENT> 
' <FO~~AT EL~~ENT> <FORMAT ELEMENT LIST> 

<FO~~AT ELE~ENT> :; • I I <ATTRIBUTE IDENTIFIER> ! <STRING> 

An example of a format declaration is: 

F4a <OPER, "<':. OPl, "t ". OP2, ")"tIt "GO-TO(" I LABEL,")") 

The format controls the printina by executing in succession, 
from left to riaht, each of the fermat eleaents; if the for .. t 

el-ement is a strina the string is printed. If it is a "1", the 11ne 
' being filled is printed; if lt is an attrib•tte identifier, the value 

of the component whose selector is the identifier is printed; if no 

such compon~nt exists nothina is printed. The selector of the 

composite attribute to which the format attribute belonas is not 

printed. As an example, with F4 declared as above, tht parallel 

statement 

Sl C: • S ( OPER: • "ADD"; OPl :• 1; OP2 :• S; 
TYPE: • "RR"; FO&~T :• F4; LABBL :• "BXIT"); 

~RITE (C) /$ 

will print 

ADDC1,5) 
GO-TO(EXJT) 
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The same statement ~ithout the foraat ass1gnaent would print 

C• <OPER • ADD, OP2 • S, OPl • 1, LABEL • EXIT, TYPE • Ri) 

2. 9. 2 ER.RO.R STATE.\1E!\'T 

The error statement is one of the means by which malforme~ 

strings are detected in SPINDLL Its syntax 1s: 

<ERROR STAT~~ENT> ::• ERROR (<OUTPUT LIST>) I 
<LABEL> : <ERROR STATEMENT> 

The error statemP.nt prints the output list and then passivates 

all active processes, endi~g the computation. 
I 

The defini t1on in figure 2. 17 shows an example of the use of 

the error statement. Given a base, a sian and an integer number in 

this base <represented by a string of inteaers), the definition will 

out~ut the decimal valu~ of the number. Notice that if the base is 

greater than 9 or if the number contains an 1mp1oper d1&1t the strina 

1 s mal formed. 



TUM I NALS AlE • -

AnliBUTES AlE 
VALUE o INTfGEl 
SCALE o INT£GEI 
IAU • INTEGER 
COUNTER • INTEGEJ 
PIODUCT • INTEr.ER 
NEGATIVE • toOLEAN 

ltn'IGDS AlE NU WITH ATTIIIUTii VALUE 

NDNTEUiiNALS ARE 
N o S <VAL'IEl 
L • S (VALUE I, I I SCALE> 
S • S<NEGATIVE) 

STAIT SYMBOL N 

FUNCTION EXPCIASE, COUNTEl,VALUEl 
IECIN 

IF VALUE ;a BASE THEN 
EIROR (VALUE, " IS NOT VALID FUl ~EIS IASE"0 1ASill 
PIODUCT : • 1; 
WILE COUNTEI > 0 DO 
IECIN 

PRODUCT 1 • PRODUCT • USE; 
COUNTEI 1 • COUNTEI -I 

1110; 
PIOOUCT • VALUE 

END 

IPl L II • NV 
$/VALUE ILl 1 • IXPCIASE ILl, SCALI ILl, VALUE 0111) l IS 

IP2 L ::• L NU 
., V.LUE(L) IO VALUE<L•> • 

EliPCIASE ILl, SCALEIL), YALUIOOI)) II 
II SCALICL•l 1 • SCAUCL) • I II 

IP, N 1:• NV S L 
I/ SCALE<Ll :• 0 /S 
I/ IASIILl I• VALUECNUl /I 
I/ IF VALUICNU) > 9 THEN 

EllOR IYALUECNUl, "IS NOr A PIDPII IASI")I 
VALUIOO : • If NEGATIVE IS) TKEN ~VALUICL) WI V.U.UIU.)I 
IlliTE ("VALUE I s•, VALUE (N)) /S ' 

IP4 S II• o , 
I/ NEGATJVI(Sl I• fALSI /1 

IPSSII•-: 
I/ NECATIVICSl I• TIUI II 

Pigure 2. 17 

Definition ~&ing the error atateaent 
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2. 9. 3 DISA~IBIGUATIOX STA'!"E.\1E~T 

The disa~biguation statement 

ambiauities in SPI~DLE. :ts syntax is: 

is the means for handling 

<DIS~~BJGUATION STATE.\1E~T> ::• <LABEL>: <DIS~\1BIGUATION STATE.~ENT> 
DA~IB ( <EXPRESSION> ~ <NODE> > 

<NODE>:: • <INTEGER> I <NO~TE&\1I~AL IDENTIFIER> 

Every process is associated with a non:erminal node of the 

parsing tree called the process's node. For function and procedure 

bodies this node is the node associated wlth the calling process. An 

ambiguous node sprouts more than one parsing subtree. An ambiguous 

node is disambiguated if one and only one of its subtrees is correct. 

The function of tbe disambiguation statement, as the name 

implies, is to checl for correct par sings. The expression in the 

first operand is implicitly bracketed and ret~~ns a boolean value <or 

an error occurs). If the value is TRl!~ the subtree to which the 

current node belongs and whose root is the n~de designated by the 

second operand is the correct parsing; if it is FALSE, it is an 

incorrect one. If the second operand is an integer the designated 

th 
node is the 1 ambiguous node in the ancestor line of the process's 

node, starting with the process's node itself. For example, if the 

process's node is ambiguous, a "1" for the second operand re!ers to 

the process's node and a "2" to its first ambiguous ancestor. If the 

integer in the second operand designates a nonexistent ambiguous node 

an error occurs. If the second operand is a nonterminal identifier, 

tbe designated node is the first ambiguous node in the ancestor line, 
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startina with the process's node, that is labelled by the identifier; 
if no such node exists an error occurs. 

The synthesized attributes of an aabiauous node can only be 
assianed values after the node is disambiauated; processes tryin& to 
assian values to the node before disaabiauation are passivated. If a 
subtree is found incorrect it is discarded toaether with all its 
attributes and processes. If a subtree is found correct; it is kept. 
After all parsinas of a node have been checked, if aore than OaAe 
correct parsing is found an error occurs; if only one is correct, the 
node is disambi&uated and all passivated processes tryina to asslan 
to its synthesized attributes are reactivated. If no parsina ls 
correct then: 

(1) if the amb1auous n~de has no aabiauous ancestor an 

error occurs: 

(2) if it has aabiauous ancestors the subtree attached to 

the nearest ancestor that contains this node is .. rked 

incorrect. 

Notice that if an awbiauou$ node is not detected or if one of 
the possible subtrees of an ambiguous node is not recoantzed as such, 
the processes trying to assian to the synthesized attributes of the 
node will be passivated and will never tera1n&te. 

The use of the disambiguation stateaent is illustrated in 
section 2. 12 wben the definition of TURINGOL is discussed. 
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2. 10 S E~lAXT I C RULES 

As explained in Chapter 1, a set of semanti~ rules is 

associated with each syntactic production. The ~e .. ntic rules 

operate on the attributes of the nodes involved in the production. 

Certain semantic rules are implied, 1.~ they do not have to be 

explicitly stated, being automatically aener~te~ by the system. It is 

a characteristic of this method of semantic definition that the 

semantic rules of a production can only assian to the synthesized 

attributes of the LH~. the inherited attributes of the RHNs and to 

local attributes. It is an error to assian to an inherited attribute 

of the Ltt~ or a synthesized attribute of a RHN. SPINDLE introduces 

the restriction that no inherited or synthesized attribute of a node 

can appear in the left hand side of an assignment statement more than 

once in the semantic rules associated with a production; if this 

happens, an error oc~urs. For example, in prc~uction PS of fiaure 

1. 6, 1 t would be an error to write 

IF NEGATIVE<S> THE~ VALUE CX) :• -VALUE (L) 
ELSE VALUE (N) : • VALUE (L); 

and 1t would also be wrona to ~rite 

Sl !F ~EGATJVE<S> THE~ VALUE <~> :• VA~UE (L) IS 
$1 lF ~NEGATJVECS) THE~ VALUE (X) :• VALUE (L) IS 

Implicit semantic rules are always of the form A<NT > • ACNT > 
1 2 

where A is an attri"'•·te and ~T and NT nontenainals on opposite 
1 2 

sides of a production. Given the production 
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L::•RR ••• R .•• R 
1 2 i n 

if an inherited attribute I, belonging to R , does not appear as a 
i 

left hand side of any assignment in the associate~ semantic rules, 

and if I also belongs to L, the rule ICR) :• I<L> is automatically 
i 

generated; if I is not an attribute of L an error occurs. If a 

synthesized attribute S of L does not appear as a left hand si~e of 

any assignment in any of the associated semantic rules, and if S is 

an attribute of R the semantic rule S (L) : • S <R ) is generated; if S 
1 i 

is an attribute of more than one RH~ or of none of them, an error 

occurs. 

Semantic rules are oraan1~ed into parallel statements. semantic 

rules whose values depend on one another, have to be either in 

different parallel statements ?r, in a sequence of statements, the 

dependent one has to come after the one it depends on. For instance, 

the semantic rules of production P4 in figure 1.6 coul~ have been 

written as 

$1 SCALE (L•> :• SCALE <L> + 1; 
VALUE (L) : • VALUE (L•} + VALUE (8) /$ 

However, if the order of the statements in this parallel 

statement were reversed, the process would never terminate. Therefore 

separate parallel statements should ordinarily be used for each 

attribute. 

Productions and their associated semantic rules are described 

by the following syntax: 
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<PRODUCTION DESCRIPTION> :: • <PRODUCTION> I 
<PRODUCTION> <PRODUCTION DESCRIPTION> 

<PRODUCTION> ::a$ <LABEL> <SY~TACTIC PRODUCTION> <SEMANTIC RULES> 

<SE~1ANTIC RULES> :: • t I <PARALLEL STATEMENT LIST> 

<PARALLEL STAT~~EXT LIST> ::• <PARALLEL STATa1ENT> I 
<PARALLEL STAT&~ENT> <PARALLEL STATEMENT LIST> 

2.11 WRITI~G AND RU~~~~G A SPINDLE PROGRAM 

The prevloub s~ctions described the components of a SPINDLE 

program. This section shows how a program 1s put together and how it 

runs as a whole. The syntax of a SPI~DLE program is: 

<SPINDLE PROGI\A~l> :: • <SPECIAL CHARACTER DECLARATION> 
<RESERVED KORD DECLARATION> 
<ATTRIBUTE DESCRIPTION> 
< S-TER~1I XALS > 
< l\O:\TER~1 I :\AL DESCRIPTION> 
<START SnlBOL DECLARATION> 
<PROCEDURE DESCRIPTIO~> 
<PRODUCTION DESCRIPTION> 

Given a string of the language, a parse tree is built from the 

syntactic part of the definition. In the tree, aabiauous nodes have 

more than one subtree sprouting from them; S-terminal nodes have the 

r.orresponding attribute with the proper value filled in; nonterminal 

nodes have undefined attributes that correspond to the attribute 

identifiers associated with the nonterminal. Each nonterm1nal node is 

associated with a set of parallel statements. For each parallel 



fitateaent a process is created and activated. The execution ot a 

process may create and activate other processes. A process aay be 

passivated by the existen~e of a certain condition (e.a ar. undefined 

value>; it is reactivated if and when the condition disappears. A 

process runs until it either passivates or terainates. The 

computation ends when there are no more active processes in the 

system. A c~mputation that ends with no passive processes is said to 

be well-formed. If a computation is well-foraed the followina are all 

true: 

- all ambiguities have been resolved and each node sprouts at 

most one subtree; 

- all inherited and synthesized attributPs ar~ defined. 

If a computation is malformed 4 list of passive processes is printed, 

showing the cause and location of the passivation. Notice that 

errors, unresolved ambi&uitles and circularities will all result in 

passivated processes. 

2.12 THE DEFINITION OF TURI~GOL 

TURINGO~ ls a simple lanauaae that describes Turin& machine 

programs. It was introduced, 1n a sli&htly different version, in 

Knuth fKn 68al. The following example aives the flavor of the 

language: 1t is a pro,ram desianed to add unity to the binary inteaer 

that ·~pears just left of the initially scanned square: 
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TAPE ALPHABET IS BLA~K; ONE; ZERO; POINTi 
PRI~T 'POI~T'i 
GO TO CARRY; 
TES'r: IF THE TAPE SYMBOL IS 'C~E' THES 

(I'RI~T 'ZERO'; 
CARRY: MOVE LEFT ONE SQUARF.; GO TO TEST); 

PRINT '01\E'; 
REALlGN: MOVE RIGHT O~E SQUARE; 
IF THE TAPE SYMBOL IS 'ZERO' THE~ GO TO REALIGN. 

The sp;·~oLE pro~ra111 1n APrEXDIX : defines tne lanauaae. G1.-en a 

well-formed :;tr1ni of tURl~GCl., it will print its translation in 

TL/L TL/1 \~&s introduced in Knuth (Kn 71], and 1s a machine-like 

language consisting essentially ot sequential instructions whose 

operation codes are PRIXT, MOVE, IF, JUMP and STOP. For example, for 

the TURI~GOL program shown above, the SPINDLE program would print: 

1: PRINT, 4) 
2: JUMP, 5) 

' 3: 1F,2,7) \ 

( 4: PRl:\T, 3) 
( S: !-lOVE, LEFT) 
( 6: JU~tP, 3) 
( 7: PRINT, 2) 
( 8: MOVE, RIGHT) 
( 9: 1 F, 3, 11> 
(10: JUMP, 8) 
(11: STOP) 

The difference between th~s version ot TURlNCOL and Knuth's 

original prcpo~~l is that, due to the introduction of empty 

declarations ana the existence of e~pty statements. this version is 

ambiguous. ror instance there are two possible parsinas for the 

prograa: 

TAPE ALPHABET IS A;; PRINT 'A', 
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The modification was introduced to show how the disaabi&uation 

statement works. Notice that all pars1nas alve the same meanina; 
however, since only one can be the correct one the definition states 

that: if the last declaration 1s empty the parsina is ambiauous and 
incorrect; if the first statement 1s empty but the last declaration 

is not the parsina is ambiguous and correct; otherwise the parsing is 

not ambiguous. This is an arbitrary choice Imposed by SPINDLE's 

restriction that only one of the subtrees of an ambiauous node can be 

correct. The attribute EMPTY reatsters the existence of an empty last 
declaration or first statement. The disambiauation decision is made 
in the production for P because of the way the attributes were chosen 

and not because P is the possibly ambiauous node. By us1na an 
inherited attribute the information about the declaration being empty 

could be passed down the tree and then the d1samb1&uation decision 
could be taken at some other node. 

The binding of labels to addresses deserves a closer 
examination since essentially the same technique is used in the 

definition of SIMULA in Chapter 4. The present scheme is different 

from the one used by Knuth. The object proaramm 08JPROG is a list of 

instructions and pseudo-instructions. A label aenerates a pseudo­

instruction that is placed in front of the labelled instruction. The 
pseudo-instruction has a component TAG to which is assianed a unique 

integer, the label-value. This label-value stands tor the label; 

references to the labelled lnstructio~ are handled by assigning the 
label-value to a LABEL component. After CBJPROG <P> is defined the 

procedure OUTPUT builds a table th4t assoc1ates each label with an 
address and substitutes in the component LABEL of an instruction the 

label-value by the corresponding address. It should be noted that the 
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building of the table MAP and the assignaent of addresses tc t.he~ 

LABEL components could not be done in one pass without the use of the 

procedure PLACE with a parallel statement for procedure body. 

A fact that should be noted is that the definition states that 

TURI~GOL programs containing undeclared identifiers are malformed, 

since a process trying to access the ide.ntlfier in ENV will never 

terminate; however no explicit error messaae is printed. This way of 

indicating malformed programs while not wrong is not good programming 

practice: selll&ntic errors should be exp11c1tly stated. In the 

TURINGOL definition this could be accomplished by adding to the 

productions P21, P22, P23, P24 and P31 the parallel state~ent 

i/ IF NULLR <Fi~D <FIND (E~VlSJ, ISPlSlGMAJ)), SYMBOL)) THEN 
ERROR (SP (SIGMA), "HAS ~OT BEEN DECLARED") /S 

and to P32 the sam~ statement but with LABEL in place of SYMBOL. 

It should be also noted that the printed output is an aspect of 

the meaning, not the whole meaning of the program si~ce only part of 

OBJPR~G is printed. However, since it can be presumed that the output 

reflects the essential as~ects of the meaning, it is convenient to 

define the meaning associated by a SPINDLE rlef1n1t1on with a string, 

as the printed output resulting from inputting the string. 

Finally, it should be noted that since the application of the 

functions APESD and JOINE change the values of attributes lower in 

the tree, the final decorated tree ~oes not correspond to the 

definition; the values of the attributes are not as st~ted ln the 

definition. This can be avoided by usina the 1 operator to copy at 

every st~ge. However, since one is only interested in the attributes 

of P, there is no harm in alterin& the ~alues of the attributes of 

the other nodes of the parse tree. 
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CHAPTER 3 

MUTILATE 

This chapter describes the 

essentially a terse description of 

FOLDS 

the 

~~&chine MUTILATE. It is 

relevant 

machine implementation; the general conce~ts involved 

in the preceding chapters. 

asi)et t s of the 

were explained 

MUTILATE is compos~d of two independent parts: 

comprises the parser and lexical analyz~r; the 

interpreter. The first part reads in a string S and, if S 

the first 

second the 

belongs to 

the defined language, outputs a set {PT(S)). The second part reads in 

(PT(S)} and, if s is well-formed and the definition is well-formed, 

selects a PT<S> from tl1e set and produces DPT<S>. The main reason for 

this two level ~esi~n is the particular nature of Earley's parsing 

algorithm [Ea 681. which is used 1n the parser for the reasons 

explained in Chapter 1. In Earley's scheme, the parsing of a string 

s is paced by the elements E of th~ string; i.e, the parsing develops 

by scanning th~ string from left to right and for each E building all 

possible partial parsing trees up to E. The treet are bwilt in an 

extremely compact fashion with no duplication of nodes; 1. e., a 

subtree representing the parsing of a substring co•mon to two or more 

parslngs is shared by the trees represeuina the pars1n&S. Whil.e the 

parsing usually proceeds in 4 top down fashion, the parsing of left 

recursions is bottom up. It is difficult to recognize, at midparsin&, 

subtrees that belong to the final parsing tree. While the parsing 
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usually proceeds from top to bottom, the subtrees are built on the 

way up. The combination of these ~~araeteristics aakes the fillina in 

oi the semantics, while the parslna is aoina on, quite complicated. 

Thus it was decided that the advantaaes aained by developing the 

syntax and semantics at the same time would be offset by the 

complexity of the mechanisms necessary to carry out the task; it was 

considered more profitable, in a first staae, to develop the ~~o 

tasks separately. This facilitated the development of the aechan1sms 

for decorat1na the parse tree which was the aain job at hand. Perhaps 

now that the semantic mechanisms are well understood, a one level 

process could be developed; but the complications are much more 

substantial then one would auess at first. 

3. 1 LEXICAL ANALYZER AND PARSER 

The parser in MUTILATE is a straightforward implementation of 

Fisher's [Fi 701 version of Earley's alaoritha, aodified to accept 

empty substrings; the modification is a simple extension of the 

original al2orithm. A table is used to speed up the parsina: it 

relates to each nonterminal the set of all the terminals that can be 

"seen" from the nonterminal. A terminal is seen from a nonterainal if 

either the terminal can be the first one in a strina derived froa the 

nonterm1nal or if there 1s a str1na of the lanauaae in which an empty 

substrina that is followed by the terminal is derived from the 

non terminal. 
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For each element of tne string scanned, the parser cal~s the 

lexical analyzer. As described in Chapter 1 the analyzer recognizes 

special characters, reserved words, ALGOL-like identifiers, integers, 

and strings enclosed in double quotes, using blanks as separato~s. lt 

also skips comments <beiin~ing with the reserved word COMMENT and 

finishing with a semicolon> and an identifier following the reserved 

word END. When called, the lexical analyzer returns a token that 

identifies the recognized element; if the element is an 5-terminal, 

it also returns the value to be assigned to the attribute associated 

with the node in the tree. 

The parse tree is constituted of nonterminal and S-terminal 

nodes, organized as a left linked binary tree CKn 68b]. Terminal 

nodes are ignored because they have no semantic consequence. A 

nonterminal node is divided into the fields SON, BROTHER, AMBIGUOUS, 

PRODUCTION and SELECTOR. so~: contains a pointer to its rightmost son 

(that is not a terminal). BROTHER contains a pointer to its left 

brother. If the node is ambiguous, AMBIGUOUS points to another 

version of the same node (with a different subtree sprouting from 

it). PRODUCTIO~ contains the label of the production associated 

with the node. SELECTOR contains the nonterminal identifier that 

labels the node. An S-terminal node 1~ divided into the fields 

BROTHER, VALUE and SELECTOR. BROTHER is the s&~e as for nonterminal, 

VALUE contains the value t0 be assigned to the attribute associated 

w1th the S-terminal and SELECTOR contBins the S-terminal identifier 

that labels the node. 

As an example, appen~ix 2 shows a TURINGOL program (the one 

presented in 2. 12, with an empty declaration inserted) and the 

parsina tree aenerated from it. 
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Notice that comaon subtrees belonging to alternative ~•biauous 

parsings are represented by a unique subtreej i.e, in an a•blauous 

subtree a node II&Y belong to more than one' parslna •. 

3. 2 I t\TERPRETER 

The interpreter is a multiple stack machine with four types of 

storage: byte artdressed, linked, table and string. The byte addressed 

memory contains the instructions, the format descriptors and the 

nonterm1nal descriptors (a list of the symbol table entries for the 

attributes associated with a nonterm1nal). The linked storage 

contains nodes, attributes, stacks, etc., and is managed by an 

underlying garbage collection mechanism. The table storage contains a 

symbol table; there is one entry for each identifier (nonterminal, S­

terminal, attribute or format), S-1dent1fier and string in the 

definition of the language. f11e table also contains the S-identiflers 

and strings recognized by tae parser. Each entry consists of a 

pointer to the spelling of the title in string storaae, plus 

information about the "kind" of the entry (either attribute, 

nonterminal, s-terminal, format, S-ldentlfier or string), If the 

entry corresponds to a nonterminal or a lonat, it contains the 

address of the respective description 1n byte addressed storaaei if 

it corresponds to an S-terminal, it contains tbe symbol table address 
f 

of the attribute associated with iti lf it c~rresponds to an 

attribute, it contains the type and undertype of the attribute. In 

MUTILATE, a title value is represented by the address of its symbol 

table entry. 
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A MUTILATE segment is a sequence of MUTILATE instru~tlons 

occupyins contiguou! positions in byte addressed storage; the address 

of a segment is tne address of its first instruction. Each segment 

in storage corresponds to a parallel statement, procedure or function 

in the SPI~DLE definition. A process is a dynamic instance of a 

segment and it is associated with a stack and a node. To execute a 

process is to interpret the instructions of its segment, starting 

with the first one: the instructions operate on the associated stack 

and the attributes of the associated node and its direct descendants. 

A process is represented by an element of lihked storage called a 

Process Stat~s Word CPSW) divided into the fields HEAD, STACK, 

VERSION, I D, LOC, and LI:-JK. HEAD and STACK contain pointers to the 

associated no1e and stack respectively. VERSION and ID are used for 

disambiguation purposes; VERSION contains an integer and ID a 

pointer. LOC contains the address of an instruction: either the 

address of the segment or the address of an instruction that caused 

the passivation of the process. LINK contain a a pointer and 1 s used 

to link PSW's toaether in various lists as described below. 

The interpreter operates in a pseudo parallel fashion with 

exactly one of the active processes (called the current process) 

being executed at any time; the register CURRENT points to its PSW. 

The PSWs of the rema1nin; active processes are organized as a stack, 

called the PROCESS stack; the register PROCESS points to the top 

el~ment of the stack. When the current process terminates its PSW is 

discarded; when it passlvates, its PSW is transferred somewhere else. 

When a process is first activated, a PSW is created with its 

segment's address in the LOC field. When a proces~ is reactivated it& 

PSW is transferred to the PROCESS stack; the PSW's LOC field contains 

the address of the instruction that caused the passivation. 
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When the current process terminates or passivates, the one 

whose PSW is at the top of the stack is made current; CURRENT points 

to the PSW, which is removed from PROCESS. The MUTILATE registers 

LOC, HEAD and A are loaded with the contents of LOCCCURRENT), 

HEAD (CURRENT) , and STACK (CURUNT) respec t1 ve 1 )'. The MUTILATE 

register is t!1en loaded with a pointer to the second element f)f the 

stack Cif &ny). The process is then executed usina the stack 

referenced bt A and the node <and its direct descendants) referenced 

by HEAD. When a process passlvates, the interpreter immediately 

stores the contents of LOC and A in LOC(CURRENT) and STACKCCURRENT) 

respectively and remcves its PSW from CURRENT. In MANAGEMENT mode, 

the interpreter will make another process carrent. While a process 

is being eYecuted the interpreter is in EXECUTE mode. When a process 

lS ~erminated, the PSW pointed to by CURRENT is discarded and the 

interpreter switches to MANAGEMENT mode. 

An attribute is represented as an element of linked storage 

divided into the fields TYPE, UNDERTHE, SELECTOR, UND, JND, \'ALUE 

and LINK. TYPE and U~DERTYPE contain respectively the type and 

under type &ssociated with the attribute. SELECTOR contains the 

selector: if 1~ is an inteaer, its neaatlve value is stored; if it is 

a title, the address of its symbol table entry is stored. UND is a 

bit; if its value is 1, the attribute is undefined. Associated with 

every undefined attribute is a linked list formed by the PSWs of the 

processes passivated trying to access its value. The list is 

organized as a stack <using the LINK fields of the PSWs) and is 

~alled the interrupt stack. In an undefined attribute, VALUE contains 

a pointer to the associated interrupt stack. If the value of the bit 

field IND is 1, the attribute is indirect and VALUE contains a 
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pointer to another attribute. An attribute cannot be both undefined 
and indirect, thus Ul\'D and I~D cannot both be 1. rf UNO and IND are 
both 0, VALUE contains the value of the attribute. If the attribute 
is elementary the field contains a value Df the proper type. If the 
attribute is composite, its components form a linear list (using the 
LINK field) and VALUE contains a pointer to the first element of the 
linear list. If the attribute is of type LIST the components are 
ordered according to their position in the list; i.e, given a list 
attribute A, the first element in the linear list formed bY the 
components is CAR <A>, the second CAR (COR (A)) and sc on. If the 
attribute is of type CO~STRUCT the linear list is ordered in 
ascending order of the values of the SELECTOR field of the 
components. As a consequence a component whose se~ector is an 
integer always precedes a component whose selector is a title; a 
component whose selector is N Ca positive inteaer> always follows a 
component whose selector is K+k <where k is a positive integer), 
because -Nand -CN+k) are actually stored. 

The processes' stacks are formed by attributes and PSWs linked 
through the PSWs' Lil\'K fields. The attributes in the stack are always 
defined, direct and have an undefined SELECTOR field. The presence 
of a PSW in the stack indicates, as will be seen in section 3. 3, tl.at 
the stack is associated with a process which is a dynamic instance of 
a procedure or a function. 

Nodes are represented as an element of linked storage divided 
into the fields SON, LEFTS, VALUE, SELECTOR, S-TERM, SEMANTICS, AMB, 
AMBIGUOUS, O~CE, CORRECT and DISAMB. SON contains a pointer to the 
rightmost direct descendant of the node. LEFTB contains a pointer to 
the sibling to the left of the node in the tree. The attributes 
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belonging to the node are oraani:ed as the coaponents of a construct, 

and VALUE points to the first attribute in the linear list. SELECTOR 

contains the symbol table address of the entry that corresponds to 

the n~nterminal or S-terminal identifier that labels the node. 

SE~ANTICS is the address of the segment associated with the node. 

Only one segment is associated with a node; if the SPINDLE definition 

specifies more than one parallel statement for a node, the compiler 

encloses them in a parallel statement which is then the one 

associated with the node. For example, if the seaantic rules of a 

production are embodied in the exrticit parallel statements PST and 
1 

PST and the implicit parallel statement PST, the compiler will 
2 3 

associate with the production the segment generated for the parall~l 

statement S/ PST ; PST ; PST /$, AMB is a bit and if its value is 1 
1 2 3 

the node is ambiguous. In this case the field AMBIG~~us containf a 

pointer to another version of the ambiguous node; otherwise AMBIGUOUS 

points to the node's nearest ambiguous ancestor. If the value of the 

bit feld ONCE is 1 the node is ambiguous, and the subtree sprouting 

from it has been tested. If the value of the bit field CORRECT is 1, 

the nod( is ambiguous and the subtree has been tested and found 

correct. If the value of the bit field DISAMB is 1 the node is 

ambiguous but has been found to have only one correct subtree which 

is the one sprouting from the noae. 

Notice that an ambiguous node is represented by a set of ~odes, 

chained through the A~BIGUOUS field. The node at the head of the 

chain is called the (main) ambiguous node; the others are called 

versions of the node. In particular, the 'econd node in the chain is 

called the auxiliary node of the main one. Only the aain ambiguous 
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node belongs to the tree in the sense that ancestors and siblings 
point to it and not to its versions. 

The interpreter initiates a run by loading the definition 
generated by the compiler into the various storages ar.d building the 
tree produced by the parser in the linked storage. At the sawe time, 
A.\16TABLE is built in the table storage; it associates an integer 
value (initially zero) with each main ambtguous node. AMBTABLE is 

used to purge from PROCESS those PSWs created while testing a subtree 
of an ambi~uous node, once the testing is complete. contrary to what 
was stated in Chapter 1, initially the nonterminal tree nodes have no 
attributes attached to them; attributes are created "on demtnd", ty 
the execution of instructions. The tree is traversed depth-first, 
left to right, using a function and stack cs.lled DEVELOP. The stack 
contains pointers to the nodes of the tree; initially the stack 
contains a pointer to the root node. ~hen uEVELOP 1s called it 
returns as a value, the pointer at the top of the stack; it also 
removes the top elemnt of the stack ar.d inserts pointers to the 
descendants of the node referenced by the re~oved pointer. A call to 
DEVELOP when the stack is empty end~ the run. When the node 
referenced by the value returned by DEVELOP, called the developing 
node, is ambiguous, a regist<er AAM~ is set to point to the node; 
otherwise AAMB is not touch~d. Then, each of the direct descendents D 
of the developing node is examined: if UNDCD> ., 0, set 
AMBJGUOUS<D> ~ A~~B; otherwise set VALUE<AMBIGUOUS(D)) ~ AAMB. This 
establishes the ancestor line of ambiguous nodes; each node points to 
1 ts nearest ambiguous ancestor. It the node is not 1 tself ambiguous 
the linking is done through the ~IBIGUOUS !ield; otherwise through 
the value field of its auxiliary node. Initially the value of AAMB is 

NIL. 
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DEVE!.OP is called whenever the PROCESS stack is eapty; it 

returns a pointer to the developing node. A PS~ is then created, 

(which is a dynamic instance of the segaent asr~~l&ted with the 

node>, inserted 1n PROCESS and the run goes on. I~1 the PSW, HEAD 

points to the node, STACK ls ~IL, and LOC cont4!~s the address of the 

associated segment obtained from the S~~ANTICS field of the node. If 

the node is ambiguous ID is set to point to it, otherwise it is set 

to the same value •s the field ~~BIGUOUS of the node. VERSION is set 

to the same valut as the entry in ~~STABLE corresponding to the 

po!nter in 10. 

W~en a PS~ gets to the top of PROCESS, its VERSION and ID field 

are examined. If the value in VERSION is less than the value in 

~1BTABLE corresponding to the value in IO, the PSW is r~moved from 

the stack and discarded. 

In additlon to the tables mentioned above, the interpreter 

maintains a table, INTABL~ whose entries point to undefined nodes 

and main ambigu.,iJ<; nodes for which DISAMB•O. At the en<1 of a run, if 

JNTABLE is 

purposes. 

n
~ .. 
"'- empty, its contents are printed for diagnostic 

3. 3 THE JNSTRUCTIO~ SET OF MUTILATE 

This section describes the instruction set of MUTILATE, 

basically a "Polish postfix" code analogous to Burroughs computers. 

The instructions are grouped according to their functions and a brief 

description of each one is presented. The description of their 
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execution by the interpreter follows the lines ~sed by Knuth (Kn 68al 

to describe algorithms. The definiti~n of TURtNGOL in MUTILATE 

assembly language, sho,~n in appendix 3, illustrates the use of the 

ins truct1ons. 

In addition to the registers ment1on.ed in the previous sections 

(A, B, LOG, HEAD, and STACK), MUTILATE possesses resisters X, Y, Z, 

OPCODE, OPl, and OP2. Here X, Y and Z are general purpose registers, 

OPCODE contains the de~ig~ation of the instruction beina. executed and 

OPl and OP2 its operands (if any>. 

The description of the executions utilizes an auxiliary 

procedure and an auxiliary function. The procedure, called PASSIVATE, 

takes one argument, a pointer to an undefined attribute U; when 

executed the procedure passivates the current processs, inserts its 

PSW into the interrupt stack of U and switches the interpreter to 

MA~AGEME~T mode. The function, called FINAL, takes one argument, a 

pointer P to an attribute I; its execution can be described by the 

algorithm: 

1. If J~D(P) .. Q return P. 

2. Set P +- LJ ~K <P> and go to 1. 

The function returns the final attribute of 1. 

For instructions that do not belona to the "control" group (see 

section 3.3. 4), when the execution 1s completed the instruction's 

length is added to the reaister LOG; notice t1at an instruction that 

causes a passivation does not complete 1 ts execution. For all 

instructions, when the machine is in EXECUTE mode, the next 

instruction to be executed is the one whose address is in LOC. 

Section 3. 3.8 contains an index with the opcodes of MUTILATE 

crossreferenced to the section number thst explain them. 
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:s. 3. 1 CONSTRUCT ~~A~IPUl.ATJO~ ISSTRUCTIONS 

3.3.1.1 PLA & GET (Place and Get) 

OPERANDS- OPl is either an attribute identifier or empty; 

either a node des1gnation or empty. If OP1 1:; empty so 

OP2 is 

1s OP2 

but the reverse .ay not be true. 

STACK- If OP2 is not empty the stack does not matter. If OP1 is not 

empty but 0~~ is, ~ is a pointer to a construct. If both OP1 

and OP2 are empty A is either a title or an integer an~ B is a 

pointer to a construct. 

DESCRIPTION- The instructions look for attributes 1n either a node or 

a construct, creat~ them it they are not present and leave a 

pointer in the stack to the looked for &ttribute. A PLA 

instruction looking for a component in an undefined attribute 

will create a new attribute; under the same circunstances a 

GET instruction would cause a passivation. A PLA instruction 

looking for an attribute in an ambiguous node causes a 

passivation while a GET does not. Under all other 

circunstances, the two instructions behave in exactly the sam 

way. 

EXECUTION-

1. If OP2 1 s empty go to s. Set X ~ "pointer to the node 

designated by OP2". If AMB·l and DIS~B·O and OPCODE•PLA, 

passivate the current process and discard its PSW. 
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2. Insert an attribute in the stack. Set TYPE<A> ~ POINTER. 

3. Look for the attribute whose selector is OP1, amana the 

attributes of the node X; 1f the attribute is there, set 

VALUE(A) to point to it and END. 

4. Create an attribute with the type and undertype associated 

with OPl and set Y to point to it; set UND<Y> ~ 1, 

VALUE<A> ~ Y; make the attribute Y part of the linked list 

formed by the other attributes of the node X; END. 

S. If OPl is empt~ set X ~ FINAL(VALUE(B)); otherwise set 

X p FINAL<VALUE(A}), If UXD(X)•l and OPCODE•PLA transfer 

the interrupt stack of X to PROCESS. 

6. If OPl is empty, set Z ~ VALUECA> and remove A from the 

stack; otherwise set Z ~ OPl. 

7. Look for the attribute whose selector is Z, among the 

components of X: if the attribute is there, set VALUECA> to 

point to 1 t and E~D. 

8. Create an attribute. If Z is an attribute identifier the 

attribute has the type and undertype associated with Z; 

otherwise the undertype of X determines the type and 

undertype. Set Y to point to the attribute, UNDCY> ~ 1, 

VALUE(A) ~ Y; make the attribute Y part of the linked list 

formed by the other components o~ :he attribute X. 

9. END. 
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3. 3. 1. 2. PLAN <Place New> 

OPERANDS- OPt, an attribute identtfier. 

DESCRIPTION- This instruction creates a new attribute and leaves a 

pointer to it at the top of the stack. It is use~ to i•pleaent 

SPINDLE's assia~aent expression, 

EXECUTION-

I. Insert a new eleaent in the stack; set TYPECA) ~ POINTER. 

2. Create an attribute whose type and undertyp~ are the ones 

associated with OP1 and set Y to point to the attribute. 

Set UNDCY) ~ 1, VALUE(A) ~ Y. 

3. END. 

3. 3. 1. 3 GETN (Get Next) 

OHRANDS - None. 

STACK- A pointer to an attribute. 

DESCRIPTION- The instruction returns a pointer to the attribute 

that follows the one 1n1tlally pointed at. 

EXECUTION-

1. Set VALUE<A> ~ LINKCVALUE(A)), 

2. END. 
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3. J. 1. 4 FIND (find> 

OPERANDS- OPt is either empty or is an attribute identifier. 
STACK- If OP1 is empty A contains either a title or an inteaer and B 

is a pointer: otherwise A is a pointer. 

DESCRIPTION- The instruction looks in a linked list for an attribute 
whose selector is given and leaves at the top of stack a 
pointer to 1 t; if the linked list is eapty or the attribute is 
not there, a ~ULL pointer is left at the top of the stack. 
This instruction is used to 1mp1ement SPINDLE's function FIND. 

EXECUTION-

1. If OPl is empty, set Z .. VALu.E CA) 

stack; otherwise set Z .. OP1. 

2. If VALUE (A) ::'\IL, ESO. 

3. Set X .. VALUE(A). 

4. If SELECTOR(X)•Z, set VALUE(A) .. X 
s. lf SELECTOR (X) >Z, set X .. LINK (X) 

set VALUE (A) .. NIL. 

6. E~D. 

3. 3. 1. S FMT (Format) 

OPERANDS- OPt, a format identifier. 

~TACK- A is a pointer to a construct. 
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DESCRIPTION AND EXECUTION- Tbe instruction places a component PORMAT 

1n a construct And ass1ans OPt to 1t. The instruction is used 

to i~pleaent SPINDLE's ~oraat a&sianaent. Ita execution is 

equivalent to the execution of the sequence of MUTILATE 

instructions ( PLACFORMAT), ASSI (IOPl) ), 

3.~.!.6 REP <Reproduce> 

OPERANDS- None. 

STA~K- A is any attribute and B is a· construct. 

DESCRI?TION A~D EXECUTION- The instruction implements the "•" 

operat·.>r of SPINDLE. The execution is equivalent to the 

execution of the sequen~e of MUTILATE instructions (NAME, 

PLA). 

:! .• 3. 2 LIST MANIPULATION INSTRUCTIONS 

The auxiliary pro:edure FIXLIST is used to describe the 

execution of list aanipulation instructions. Its specification ls: 

AiGUMENTS- R, a re&~ster, el~her the A or'B reaister. 

DESCRIPTION- T~~ ~rocedure checks the attribute to which the rea1ster 

points. If it is a list l".ttribute notbin& happens. If it is a 

pointer to a list attribute then the pointer is substituted by 



a list with the saae eoaponents as the list attribute 

referenced by R. 

EXECUTION-

1. If TYPECRl • LIST, END. 

2. Set X .. VALUECR). If U~D(X)•l, PASSlVATE(X). 

3. Set TYPE(R) ~ LIST, VALUE(R) .. VALUE(X). 

4. RETUR~. 

3. 3. 2. 1 CAR <Car> 

OPERANDS- ~one. 

STACK- A is either a list attribute or a pointer to one. 

DESCRIPTIO~- A pointer to the first component of the list is left in 

the stack. 

EXECUTION-

1. Ex~cute FIXLIST(.\), If VALUE(A) •NIL this 1s an error. 

2. Set TYPECA) .. POI~~ER. 

3. END. 

'3. 3. 2. 2 CDR (Cdr) 

OPERANDS- ~one. 

STACK- A is either a list attribute or a pointer to one. 
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DESCRIPTION- A new list is left in the stack, composed of all 

elements of the inittal list but the fir~t. 

EX.CUTION-

1. Execute F!XLIST(A). If VALUE(A)•NIL this 1s an er:-or. 

2. Set VALUE (A) .. LINK (VALUE (A)). 

3. END. 

3. 3. 2. 3 CONS <Cons) 

OPERANDS- None. 

STACK- A is ar.y attribute; B is either a list attribute or a pointer 

to one. 

DESrRJPTION- The instruction inserts a new element at the front of 

the li s t 1 n B. 

EXECUTION-

1. Execute FJXLIST<B>. Set X .. A. Remove A from the stack. 

2. If TYPE(X)•POINTER or VALUE<X>•NJL, set LJNK(X) ~ VALUE(A), 

VALUE (A) .. X and END. 

3. Set X .. FI~ALCVALUECX)). M&k'- & copy of the attribute 

referenced by X and pla~~ a rointer to the copy in Y. Set 

IND(Y) .. l,VALUE(Y) .. X, liNKCY) .. VALUE(A), VALUE(A) ~ Y. 

4. END. 
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3.3.2.4 LIST (List) 

OPERANDS- ~one. 

DESCRIPTIO~- A null list is inserted in the stack. 

EXECUTION-

1. Insert & new attribute in the stack. 

2. Set TYPE<A> ... LIST, VALUECA) .. NIL. 

3. END. 

3.3.2. 5 APEND <Append) 

OPERANDS- ?\one. 

STACK- A is either a list attribute or a pointer to onei and so is B. 

DESCRIPTION- The components of the list in A are appended to the list 

attribute in B by changing the link of the last component of 

8. 

EXECUTION-

1. Ex~cute FIXLIST(A), FIXLI5T(8). 

2. If VALUE(A)•l\IL, go to S.. If VALUE(B)•NlL, set 

VALUE<B> ... \'ALUE(A), go to S. Set X .. VALUE(8). 

l. If LI~ICCX)•~IL, set LINKCX) .. VALUE(A), ao to 5. 

4. Set X ... LI~K (X), go to 3. 

S. Re~ove A from stack. 

6. END. 
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3. 3. 2. 6 RVRS (Reverse> 

OPERA NOS- None. 

STACK- A is a list attribute or a pointer to one. 

DESCRIPTION- The instruction reverses the order of the co•ponents of 

the list. 

EXECUTION-

1. Execute FIXLIST(A). If VALUE(A)•NIL or LINK(VAl.UE(A))aNIL, 

E~D; otherwise set X ~ VALUE(A), Z ~NIL. 

2. Set Y ~ LINX(X), LINX(X) ~ Z, Z ~X, X ~ Y. 

3. It X11NIL go to 2. Set VALUE(A) ~ Z. 

4. END. 

J.3.J STACK MANIPULATION INSTRUCTIONS 

3. 3. 3. 1 POP <Pop) 

OPERANDS- None. 

STACK- A is any attribute. 

DESCRIPTION AND EXECUTION- Remove the top eleaent froa the stack. 
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3. 3. 3. 2 081. <Double> 

OPERANDS- ~one. 

STACK- A is any attribute. 

DESCRIPTION AND EXECUTIOM- A copy of the top eleaent of the stack is 

inserted in the stack. 

3. 3. 3. 3 FLIP <Flip) 

OPERA~ OS- None. 

STACK- A and B are any attributes. 

DESCRIPTIO~- The two top elements of the stack are interchanged. 

EXECUTION-

1. Set X .. l.INIUB), !.INK <B> ~ A, LINXCA) c- X, A~ 8, 

B .. LINK(A). 

2. END. 

3. 3.4 CONTROL INSTRUCTIONS 
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). 3. 4. 1 JU~IP (J UJ:.lj)) 

OPERA~DS- OPl, the addres~ of an instruction. 

DESCRIPTION- Transfers control !o the instruction whose address 1s 

OPl. 

EXECUTI0~-

1. Set LOC ... OPl. 

2. E~D. 

3. 3. 4. 2 JUMPF 6 JU~1PT <Jump False and Jump True) 

OPERANDS- OPl, the address of an instruction. 

STACK- A is any attrlbut~. 

nESCRIPTION- Transfers control to the instruction whose address is 

OPl if A contains the proper value. (TRUE if JU'I'1PT or FALSE if 

JUMP F). 

EXECUTION-

1. If VALUE(A)•FALSE or VALUE(A)•O or VAl.UE(A)•NIL, set 

X ... FALSE; otherwise set X ... TRUE. 

2. If XaTRUE and OPCODE=JU~IPi, set LOC ... OPl and END. 

3. If X•FALSE and OPCODE•JUMPF. set LOC ... OP1 and END. 

4. Set LOC ... LOC + L <where L ls the lenath of the 

instruction). 

5, END. 
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3.3.4.3 PAR & PAR~ <Parallel and Parallel New> 

OPERAt~D- OPl is the address of an instruction. 

STAC~- If OPCODE•PAR, A is any attribute . . 
DESCRIPTIO~- These instructions 'reate a new PSW and insert it in 

PROCESS. PAR~ associates an empty stack with the new process; 

PAR associates a stack containing a copy of the top element of 

the current stack. 

EXECUTION 

1. Create a new PS~ with a pointer to it in X. 

2. Set LOC (X) o- OP 1, HEAD(X) o- HEAD{CURRENT), 

ID(X) ~ IDCCURRE~T), VERSIO~(X) ~ ViRSION(CURRENT>. 

3. If OPCODE•PAR~, set STACI(X) o- NIL; otherwise create a copy 

of the attribute in A and associate this one element stack 

with the new PSW. 

4. Insert the new PSW in PROCESS. 

5. END. 

COM~ENTS- PA~ 1s used to implement parallel compound assignments. 

OPl is the address of a S~iment. 

J. 3. 4. 4 CALL (Call) 

OPERANDS- OPl, an instruction address. 
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DESCRIPTION- This inst:uct1on etfec~s a procedure call. It pasalvates 

the current process and creates and activates a new one 

associated with the procedure. 

cXECUTJON-

1. Set LOC ~ LOC • L <where L is the lenath of the 

instruction). 

2. Create a new PSW, with a pointer to 1t placed ln X. Set 

ID(X) ~ ID(CURRENT), VERSION(X) ~ VElSION(CURRENT), 

LOC<X) ~ OPl. Create a new node and place a pointer to it 

in HEAD(X). Associate the current Jtack with the new PSW. 

3. PasJivate the current process and insert its PSW in the 

stack of the new process. 

4. Make the new process current. 

S. END. 

3.3.4.5 RET <R~turn) 

OPERANDS- None. 

STACK- A or 8 is a PSW. 

DESCRIPTION- This instruction returns control to the process that 

invoked the procedure. 

EXECUTlON-

1. It A is not a PSW, execute the MUTILATE instruction FLIP. 

2. Remove the top element of A (a PSW>, and leave a pointer to 

1 t in X. Set STACK (X) ~ A. 
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3. Ter•1n&te the current process and .. ke the X PSW current. 
4. END. 

3. 3. 4. 6 HLT <Halt) 

OPERA~DS- None. 

DESCRIPTION AND EXECUTION- The current process terminates, its PSW is 

removed from :uRRE~T and discarded. If the ~rror condition is 
set the run terminates, otherwise the interpreter enters 

MA:\AGE.\1ENT llOde. 

3. 3. 4. 7 ERROR (Error) 

OPERNADS- None. 

DESCRIPTIOX AND EXECUTIO~- The error condition is set. As a 

consequer1ce the first execution of a HLT instruction will 

terminate the run. Also any output instruction executed after 

this one, will never cause a passivation. 
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3.3.5 VALUE MANIPULATIO~ INSTRUCTIONS 

3. 3. S. 1 ASS <Assian> 

OPERANDS- None. 

STACK- A is any attribute: 8 is a pointer. 

DESCRIPTION- This is the assjanment 1nstruct1on with the form B :• A. 
EXECUTION 

1. Set X .. VALUE (8). If UND <X> •1, save the interrupt stack of 
X. Set U:<;O (X) .. O, I NO (X) +- 0. 

2. If TYPE (A) .ePOI~TER, set VALUE (X) +- VALUE (A) 

<TYPE<X>•TYPECA) must be true) and ao to 6. 

3. If VALUE(A)•NIL, set VALUECX) .. NIL (TYPE<X> must ~e either 

CO~STRUCT, LIST or POINTER) and so to 6. 

4. It TYPE (X) •POI ;.;TER, set VALUE (X) +- VALUE (A) and to to 6. 

5. Set Y .. FINAL<VALUECA)), IND(X) • 1, VALUECX> • VALUE(Y), 

If UNOlY>•l, insert the interrupt stack saved in step 1 (if 

any> into the interrupt stack of Y and ao to 7. 

6. Insert the interrupt stack saved 1n step 1 (1f any) into 
the PROCESS stack. 

7. Remove A and B. 

8. E~D. 
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3.3.5.2 TRANS (Transfer> 

OPERANDS- OPl OP2 OP~. N~2. OPl contains the total number of 

operands, N, of the instruction; each of the folLowing 

operands 1s a triple of the form CAT, ~7 , NT ), where AT is 
1 2 

an attribute ioentifier an~ the NTs node designations. 

DESCRIPTIO~ A~D EXECUTIO~- Triples are executed in succession from 

left to riaht; the execution of each triple corresponds to the 

execution of the sequence of MUTILATE instructions 

{PLACAT,NT ), GET(AT,XT ), ASS}. The execution of a triple 
1 2 

where NT is an ambiguous node with DISAMB•O, passivates the 
1 

current process and its PSW is discarde4. 

C0~1ENTS- TRANS is used to implement the generation of implied 

3. 3. s. l 

s~m~ntic rules. For ambiguous nodes, those triples which refer 

to inherited attributes should precede those that refer to 

synthesized attributes to guarantee that the inherited ones 

get assigned. 

VALC (Value of a Constant) 

OPERANDS- OPl, a constant. 

DESCRIPTION- An attribute with value OPl is inserted at the top of 

the stack. 
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EXECUTIO~ 

1. Insert an attribute in the stack whose type is tht same as 

the type of OP 1. 

2. Set VALUE<A> ~ OPl. 

3. END. 

3. 3. S. 4 ASSI (Assign Immediate) 

OPERA~D- OPl, a constant. 

STACK- A points to an attribute. 

DESCRIPTION- 0~1 is assigned to the attribute referenced by VALUE(A). 

EXECUTIO~ 

1. Execute the sequence of MUTILATE instructions { VALCCOPl), 

ASS ). 

2. E:\0, 

3. 3. 5. 5 VAL <Value) 

OPERANDS- OPl is either empty or [. 

STACK- A 1s any attribute. 

DESCRI PTJO:.J- This instruction with operand "[" implements the 

urackcting operator of SPI~DLE; with no operands it is used to 

implemer:t the SPINDLE function FIRST, in conjuction w1n TEST 
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to implement the function NULLB. and in conjuction with COMP 

to implement the relation operator. Notice that unless A 

points to a composite attribute the operand is irrelevant. 

EXECUTION-

1. If TYPE<A> -Pon~TE.R or VALUE(A.)•NIL, END. 

2. Set X~ FI~AL(V~LUE(A.)). If UND(X)•l, PASSIVATE(X). 

3. If TYPE<X>•CONST.RUCT or TYPE(X)•LlST, 1t OPl"(, set 

TYPECA) ~ POI~TE.R, go to 4; other~ise END. 

4. Set VALUE(A) ~ VALUE(X). 

S. END. 

3. 3, S, 6 STO <Store> 

OPERANDS- OPl, an &ttribute identifier. 

STACK- A is any attribute. 

DESCRIPTION- The instruction assi&ns tha value in A to the local 

attribute whose selector is OPl. It the attribute is not 

found, one 1s created. 

EXECUTION-

1. Execute the sequence of MUTILATE instructions 

{PLA COP1, LOCAL), FLIP, ASS). 

2. END. 
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3. 3.5. 7 LOAD (Load) 

OPERANDS- OPl, an attribute identif!er. 

DESCRIPTION AND EXECUTION· The instruction "loads" the local 
attribute OPl into the stack. If necessary an attribute is 
created. 

EXECUTION-

1. Execute the seq~ence of MUTILATE instructions 
{GET (')p 1, LOCAL), VAL), 

2. END. 

3. 3. S. 8 AR (Ari thmeti;) 

OPERANDS- OPl, eith~r ABS, 1\EG, ONEP (1. e. 1+), ONEM (1, e. ·1+), +1 

-, •, I, RE~I. 

STACK- A is an inte&er; 8, if OP1 is a binary operator, is an 
integer. 

DESCRIPTION- This is the arithmetic instruction. It perfor•s the 
operation specified by OPl. 

EXECUTION-

1. I: OPl is either ABS, NEG, ONEP or ONE:-1, set 
VALUECA> ~ OP1 VALUE{A) and END. 

2. Set VALUE<B> ~ VALUECB) OPl VALUE(A)i reaove A. 

3. END. 
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3. 3. S. 9 LOG CLOiiCa~) 

OPERANDS- OPl is either NEG, A~D or OR. 

STACK- A is a boolean: B, if OPl is either AND or OR, is a boolean. 

DESCRIPTION- This instruction perforas the logical operation 

specified by OPl. 

EXECUTION-

1. If OPl•NEG, set VALUE(A) ~ NEG VALUE(A) and END. 

2. Set VALUECB) ~ VALUECB) OPl VALUE(A); re•ove A. 

3. END. 

3. J. S. 10 TEST (Test) 

OPERANDS- None. 

STACK- A is any attribute. 

DESCRIPTION- This instruction implements the SPINDLE functions NULLR 

and NULLB. 

EXECUTION-

1. Set TYPE<A> ~ BOOLEA~. If VALUE<A>•O or VALUr~A)•FALSE or 

VALUE (A) •N I L, set VALUE (A) ~ TRUE; otherwise set 

VALUE (A) ~ FALSE. 

2. END. 
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3. 3. 5. 11 CO:OIP <Compare> 

OPERA~DS- OPl, el ther •, -, >, ~. $ 1 <. 

STACK- A and B are any attributes. 

DESCRIPTIO~- This instruction implements SPINDLE's relations. 

EXECUTI0:\-

1. If the relation VALUE(B) OPl VALUE<A> 1s TRUE, set 

VALUE <B> ~ TRUEi otherwise set VALUE (8) .. FALSE. Set 

TYPE<B> ~ BOOLEAN. Remove A. 

2. END. 

CO~~IE~TS- TYPE(A) must be the same as TYPE<B>. 

3. 3. 5. 12 :\AME G-4ame) 

OPERANDS- None. 

STACK- A is a non-~IL pointer to an attribute whose selector ls 

defined. 

DESCRIPTIO~- This instruction implements the SPINDLE function 

SELECTOR. 

EXECUTION-

1. S~t X .. SELECTOR(VALUE(A)). 

2. If X<O, set VALUE (A) .. -X, TYPE (A) .. INTEGER; otherwise set 

VALUE(A) ~X, TYPE(A) .. TITLE. 
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J. END. 

3. l. s. 13 GEN (Generate Numeric) 

OPERANDS- ~one. 

DESCRIPTIO~- Each time a GEN instruction is executed a unique inteaer 

is generated and placed in the stack. 

EXECUTION-

1. Insert an attribute ln the stack. Set TYPE (A) .. INTEGER, 

VALUE<A> ~ new aenerated value. 

2. E~O. 

3. 3. S. 14 COPY <Copy) 

OPERANDS- None. 

STACK- A and 8 point to attributes wit~ the same type and undertype. 

DESCRIPTION- This instruction implements SPINDLE's copy operator. 

EXECUTION-

1. Set Y .. fi!\AL(VALUECA)). If UNDCY)•l, PASSIVATE(¥). 

2. Set X .. VALUEC8). If U~DCX)•l, set UND(X) .. 0 and transfer 

the interrupt stack of X to PROCESS. Set IND(X) .. 0. Remove 

A and B. 

3. If TYPE(X)~CO~STRUCT and TYPJ!CX> ~LIST, set 

VALUE(X) .. VALUECY) and END. 
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4. Set VALUECX) ~ ~IL. For e&ch component of Y an 1dent1c&l 
component ls created, placed 1n X and the co•ponent of Y ls 
indirectly assigned to the coaponent of X. 

S. EXD. 

3.3.6 OUTPUT lNSTRUCTIO~S 

MUTILATE maintains an output queue (OUTPUT) which ls printed 
only when the run ends; this guarantees that for well-formed input 
strings, no undefined attributes are printed. The queue is composed 
of attributes plac~d in the queue by the output instructions. Each 
element o! the queue corresponds to an output element of SPINDLE. The 
printing of each type of value and attribute was described in section 
2. 9. 1. If UND•l for an attribute of the printing queue, the current 
line is printed and a new one started; such an attribute corresponds 
to the output element "/". If IND•l for an attribute of the printing 
queue, the output for this element is unformatted; i.e, the FORMAT 
component is considered as just another component. This is used for 
tracing purposes. 

3. 3. 6. 1 OUT & OUTF (Output and Output with Foraat) 

OPERANDS- None. 
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STACK- A is any attribute. 

DESCRIPTIO~- A is removeci from the stac:k.an4 place4 1n the printing 

queue. 

EXECUTIOS 

1. If OPCODE~our and the error condition is not set and there 

is an aabiguous node in the ancestor line of the current 

process node for which DlSAMS•O, passivate the current 

process, di sea rei. 1 ts PS_. and enter MANAGEMENT .mode. 

2. It OPCODE•OUT and if TYPECA>•POINTER. or TYPE.(A)•LIST, set 

J~D<A> .. 1. 

3. Remove A and place it tn the printina queue. 

4. E~D. 

3. l. 6. 2 OUTC (Output Control) 

OPERANDS- None. 

DESCRIPTION- The instruction puts a "/" operator in the printing 

queue. 

EXECUTION-

1. If the error concu t1on 1S not set and there 1s an ambi'guous 

node in the ancestor line of the current process node for 

which DISAMB•O, passivate the current process, cUsc:ard its 

PSW and enter MANAGE.\IENT 111oc1e. 

2. Insert an attribute 1n the stack, set TYPE<B> .. POINTER and 

UND(A) .. 1. 
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3. Remove A and pl~ce it in the printlna queue. 

4. ESD. 

3.3. 7 THE DISAMBIGUATION INSTRUCTION- DAMB 

OPERANDS- OP1 is either a nonterminal identifier or an inteaer. 

STACK- A is·a boolean attribute. 

DESCRIPTION- This instr~ction implements the instruction DAMB of 

SPINDLE. 

EXECUTJON-

1. Set X ~ I D <CURRENT>. <I D points to the nearen .!!ftbiauous 

node in the ancestor line of the pro~ess' node.) If OPl is 

an integer, set 2 ~ 1 and go to 4. 

2. If SELECTOR(X)•OP1 &o to 6. 

3. Set X ~ VALUE <AMBIGUOUS (X)) 

ancestor of the node which 

auxiliary node>; ao to 2. 

4. If OP1•Z, go to 6. 

<aet the nearest aab1auous 

is in the value field of its 

S. Set Z ~ Z •1, X ~ VALUE(~~BIGUOUS(X)) and ·ao to 4. 

6. Set Z ~ VALUE<A>: remove A from the stack; if DISAMB<X>•l, 

END. <If the node is already c11saab1auated the instruction 

has no effect.) 

7. Increase by 1 the value correspondina to X in AMBTABLE. 

Eliminate the LOCAL attributes of X. 

8. Go through the subtree oriainatina from X and for all 

developed nodes that are not S-terainals set the VALUE 

119 



field to ~I~. For those nodes th&t are not aabiauo~s set 

A.\18IGUOUS to ~IL. For an &abiauous node increase the 

corresponding entry in AMBTABtE by 1; set the bits ONCE and 

CORRECT in all the versions of the node to 0; set VALUE of 

its auxiliary node to NIL. (The tree 11ust be cleared 

because one node may belona to more than one amb1auous 

subtree.) Eliminate from the DEVELOP stack any element that 

points to one of the nodes of the subtree. 

9. If Z• FAl.:i E, set CORRECT (X) ~ 0; otherwise set 

CORRE.CT<X> - 1. Clf Z•TRUE and one of the versions of X 

has CORRECT•l, an error oc:urs.> 

10. Go through all the versions of X and look for one whose 

bit O~CE has value 0. If none is found go to 12; otherwise 

set Y to point to the one found. 

11. <Another parsing 1.' tested.) Set CORRECT(¥) ~ CORRECT(X), 

O~CE(Y) ~ 1, Z ~ SON(X), SON(X) ~ SON(Y), SON(Y) ~ Z, and 

go to 14. 

12. (All parsings have been tried.) It CORRECT(X)•O and for 

all versions V of X, CORRECT <V> •01 set 

X ~ VALUE CA~IBIGUOUS (X)) and ao to 7. (All pars1ngs are 

incorrect so try the nearest aabiauous node in the ancestor 

line.) 

13. <There is one correct pan1na.) Set DISAMB<X> •1. If 

CORRECT(X)-1, set Y to point to the version for which 

CORRECT is 11 Z ~ SO~CX>, SON(X) ~ SON(Y) 1 SON(Y) ~ z. 
14. Insert a pointer to X in DEVELOP. Passivate the current 

process and discard its PSW. Enter MANAGEMENT mode. 

15. E!'iD. 
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COMMENT- Tbe exlstlna 1apleaentat1on of MUTILATE hal a different D~B 

than the one described bere. As 1apleaented . now, once a 

correct parsina is found, the other pars1nas are· not tested; 

the PSWs correspondina to the processes interrupted try1na to 

"PLA" the synthesized attributes of tbe node (tbat are saved 

instead of beina discarded) are inserted in PROCSSS, DISAMB is 

set to 1 and the current process continues. 

3. 3.8 INDEX OF OPCODES 

OPCODE SECTION 

A PEND 3. 3. 2. 5 
AR 3. ~. ~- 8 
ASS 3. 3. s. 1 
ASSl 3. 3. 5. 4 
CALL 3. 3. 4. 4 
CAR 3. 3. 2. 1 
C:DR 3. 3. 2. 2 
COMP 3. 3. 5. 11 
CONS 3. 3. 2. 3 
COPY 3. 3. s. 14 
DAM8 3. 3. 7 
DBL 3. 3. 3. 2 
ERROR 3. 3. 4. 7 
FIND 3. 3. 1. 4 
FLIP 3. 3. 3. 3 
F~IT 3. 3. 1. 5 
GEN 3. 3. 5. 13 
GET 3. 3. 1. 1 
GETN 3. 3. 1. 3 
HLT 3. 3. 4. 6 
JUMP 3. 3. 4. 1 
JlTh1PF ' 3. 3. 4. 2 
JUMPT 3. 3. 4. 2 
LIST 3. 3. 2. 4 
LOAD 3. 3. s. 7 
LOG 3. 3. s. 9 
NAME 3.3.5.12 
OUT 3. 3. 6. 1 
OUTC 3. 3. 6. 2 
OUTF 3. 3. 6. 1 
PAR 3. 3. 4. 3 
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PAR~ 
PLA 
PLAS 
ror 
REP 
RET 
R\'RS 
STO 
TEST 
TRANS 
VAL 
VALC 

3. 3 .... 3 
3. 3. 1. 1 
3. 3. 1. 2 
3. 3. 3. 1 
3. 3. 1. 6 
3. 3. ~. 5 
3. 3. 2. 6 
3. ], s. 6 
3.3.5.10 
3. 3. s. 2 
3. 3. s. s 
3. 3. 5. 3 

142 



CHAPTER 4 

A JEFI~ITION OF SI~ULA 

This chapter contains the SPINDLE aefintion of a subset of the 

SIMULA 67 Common Base Language [OMS 701 . The definition is closely 

patterned after Wilner's definition of SIMULA (Wl 711; it is 

intended to show t' t viability of FOLDS for the definition of large 

programming langua~es. The definition also serves as an example of a 

variety of SPI~DLE features and programming techniques. 

The definition is essentially an implementation of Wilner's 

definitions. Modifications were introduced mainly where errors were 

found and where they simplified the definition without changing its 

character. Whenever possible, the attributes• names and structures 

were processed as in ~ilner's specification. However, the present 

definition does differ from Wilner's in three important aspects. 

First, the present definition takes into account the existence of 

SPI~DLE's lexical analyzer. Second, labels are handled here as ir. 

TURJ~GOL, contrary to the technique used by Wilner which resembles 

Knuth's technique in TURI~GOL; the implementation of Wilner's scheme 

in SPI~DLE would be very costly in terms of the number of semantic 

rules necessary to process the two attributes he called a and z. The 

third difference is in the way the target language program is 

handled. In this definition, a program is a set of pairs, each 

consisting of a segment and its designation; each segment stands for 

a sequence of instructions. ~ilner uses an attribute R which 
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collects such pairs throughout the tree and carries the• to the root 

node. In the present defini t1on instead of collectina the seaaents, 

they are printed by the functio" OUTPUT at each node where they 

occur. This simplifies the definition· by doina away with the 

attribute R which would otherwise occur throuaho1•t the tree. The 

code generated from the present definition runs in the machine 

defined by Wilner [Wi 711 modified as follows: 

- The instruction CHE has an additional field CLASS, 

containing a boolean value. 

- The instruction MAK has an additional field COPUS, 

containing an integer value. 

- The instruction GEN, after creating the new object and 

transferring the actual •s to its stack, creates a new stack 
w 

level by placing a ret and a mark in the stack. 
w w 

- The instruction CHE in a first step, if the CLASS field is 

TRUE, copies to the top of the stack the actual which is in 
w 

the next lower level in the stack and whose stack 

displacement is given by the field D of the instruction. 

- Step 3 in the execution of both VAL and ADDR is modified so 

that the address left in the stack is not a pointer to the 

lowest mark in the stack of the remote object but to the 
w 

one above the lowest. 

- The last step in the execution of MAK 1s modified so that 

before "fin", a number of array s (equal to the value in the 
w 
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COP!ES field), are placed in the stack. For each n~w array 
w 

a copy of the structure pointed to by the array at the top 
w 

of the stac~ is created wtth the new array pointing to the 
w 

new structure. 

These modifications are necessitated due to cha1:6es made in Wilner's 

definition to correct tte mechanism for concatenatini class segments 

and to correct the mechanism for creating arrays declared in the same 

array segment. 

This chapter has two sections: the first contains the definiton 

of SIMULA in SPI~DLE, the second a comparison of the definition with 

Wilner's definition. Appendix 4 ~ontains a set of SJMULA programs and 

the target language generated from them by the definition running in 

MUTILATE. 

4. 1 DEFI:\ITIO~ 

TERMINALS ARE + - * I ( ) [ l • , ~ < • > : 

RESERVED \~ORDS ARE A~D. ARRAY, 13EGIN, BOOLEAN, CLASS, DETACH, Dl V, 
DO, ELSE, EKD, EQUI V, FALSE, GO, IF, lMPLI ES, IN, 
1!\:-iER, I~SPECT, I:\TEGER, IS, LABEL, NAME, NE\~, 
XO~E, OR, OTHERWISE, PROCEDURE, QUA, REAL, REF, 
RESU~1E, SII'ITCH, THE~. THIS, TO, TRUE, VALUE, 

ATTRIBUTES ARE 

ADDR • CO~STRUCT 
AEMDEC • BOOi..EA:-.: 

VIRTUAL, II"HE:\, \I'HILE . 
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ALSO • BOOLEAN 
APA • INTEGER 
ARULE • RULE 
ATTR • INTEGER 
BEGUN • BOOLEAN 
CDECL • LIST 
CL • INTEGER 
CLASSN • POINTER 
CODE • RULE 
COND • BOOLEAN 
DO • INTEGER 
D • DO 
DAR • BOOLEAN 
DI SP • INTEGER 
D~ • INTEGER 
E • CONSTRUCT, PL 
El • E 
E.\1DEC • BOOLEAN 
E~V • E 
EXVl • ENV 
E~VA • ENV 
FIRSTST • BOOLEAN 
FJtr..IP • LABELl 
FOR.\1ALE • E 
GENUS • CO~STRUCT 
GE~USl • GENUS 
GE~US2 • GENUS 
I~STR ··CONSTRUCT 
ITEM • LIST 
JLABEL • INTEGER 
KIND • TITLE 
L • INTEGER 
LABELl • I~TEGER 
LEGIT • INTEGER 
LEVEL • INTEGER 
LL • INTEGER 
LN • INTEGER 
LOCALE • E 
MAP • CONSTRUCT, INTEGER 
MARK • TITLE 
MARKl • TITLE 
MAT • CONSTRUCT, MATVEC 
MATRIX • MAT 
MATVEC • CO~STRUCT 
MOAMB • BOOLEAN 
MODE • TITLE 
!~ • INTEGER 
Nl • N 
N2 • N 
NAMETB • NT B 
t\EXTl • POINTER 
NEXT2 • NEXTl 
NEXT3 • NEXTl 
NFOR.\1ALS • INTEGER 
NLOCALS • INTEGER 
NOLABEL • BOOLEA~ 
NTB • CONSTRUCT, INTEGER 
NUMDEC • INTEGER 
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0 = OPE~ 
OBJECT a I~TEGE~ 
OPE:\ = TITLE 
OPER • TITLE 
ORJG = 1'\TEGER 
OUTER\10ST = BOOLEA~ 
PL • CO:\STRUCT 
PLl = P!. 
PLACE = TITLE 
PPL = PL 
PREF = l:\TEGER 
PREFIX , POI:\TER 
QTBVEC = CO~STRUCT 
QUAL ,. 1:\TEGER 
QUAl.l = QUAL 
QU..\12 = QUAL 
QuAl.TB a CO:\STRUCT, QTBVEC 
RULE = LIST 
RULEl = RULE 
RULE2 '" RULE 
S EG~lE~T ,. I :\TEGER 
SID " BOOLEA:\ 
SL a S~ 

s~1 = s~ 
S:\ • I :-:TEGER 
SP = TITLE 
SPEC • GE:\US 
START = BOOLEA~ 
T = TITLE 
TYPO .. GE:\US 
TYPOS : TYPO 
TYPE = TITLE 
TYPEl • TYPE 
TYPE2 = TYPE 
TJmlF • LABELl 
U:\DECL = RULE 
USE ,. TITLE 
V = I ~TEGER 
VALE:\CE • I:\TEGER 
\'!RDECL • CO:\STRUCT, 1:\STR 
VIROECLl • VIROECL 
VIRTUALE ,. E 
XX • COXSTRUCT 

COM.\lENT 

THE ATTRIBUTES E ASD ESV REPRESE:\T THE SYMBOL TABLE: E COLLECTS 

THE DECLARATI0:\5 T~AT ARE SPREAD THROUGH THE TREE BY ENV. EACH ENTf.Y 
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OP THE SYMBOL TABLE IS A CONSTRUCT OF TYPE PL (FOR PROPBRTY LIST) 

WITH fHE SELECTOR CO~TAINING THE SPELLING, AND WITH THE COMPONENTS OF 

THE ENTRY REPRESENTING THE PROPERTIES OF THE IDENTIFIER. PL MAY HAVE 

COMPONENTS GENUS, ADDR, ATTR, N, NFO~~LS, NLOCALS, LOCALE, FORMALE, 

VIRTUALE, SEG~E~T, PREF, OBJECT AND CODE. GENUS CONTAINS THE TYPE AND 

KINO OF AN IDENTIFIER: WHEN THE TYPE IS "REF" IT ALSO CONTAINS A 

COMPO:~ENT QUAL, WHOSE VALUE IS THE SEGMENT DESIGNATION OF THE CLASS 

THAT QUALIFIES THE REFERENCE. ADOR IS THE STACK ADDRESS OP THE 

INSTRUCTION CORRESPO~DING TO THE DECLARATION OF THE IDENTIFlER: IT 

HAS COMPONENTS LN, THE STACK LEVEL, AND DN, THE STACK DEPTH. FOR 

IDENTIFIERS THAT ARE CLASS ATTRIBUTES (ATTRIBUTES HERE IN THE SIMULA 

SENSE> ATTR CO~TAINS THE SEGMENT DESIGNATIO~ OF THE CLASS, OTHERWISE 

IT CONTAINS A 0. N GIVES THE NUMBER OF ::liMENSIONS ASSOCIATED WITH 

ARRAY IDENTIFIERS A~D THE LENGTH OP THE SWITCH LIST ASSOCIATED WITH A 

SWITCH IDENTIFIER. NFO~~ALS GIVES THE NUMBER OP FORMAL PARAMETERS 

FOR CLASSES AND PROCEDURE IDENTIFIERS. THE REMAINING COMPONENTS OF PL 

ARE ASSOCIATED ONLY WITH CLASS IDENTIFIERS. NLOCALS CONTAINS THE 

NUMBER OF ATTRIBUTES (IN THE SIMULA SENSE) OF A CLASS. LOCALE IS A 

SYMBOL TABLE WHOSE E~TRIES. ARE THE ATTRIBUTES OF THE CLASS. FORMALE 

IS THE SYMBOL TABLE FOR THE FOR~AL PARAMETERS. VIRTUALE IS THE SYMBOL 

TABLE FOR THE VIRTUAL ATTRIBUTES OF THE CLASS IDENTIFIER. SEGMENT 

CO~TAINS THE SEGME:\T DESIGNATION OF THE CLASS WHICH IS THE 

DESIGNATION NUMBER OF THE SEGMENT ASSOCIATED WITH THE CLASS. PREF 

CONTAINS THE SEGMENT DESIG~ATION OF THE PREFIX CLASS. OBJECT CONTAINS 

THE SEGMENT DESIGNATIO~ OF THE PROTOTYPE ASSOCIATED WITH THE CLASS 

IDENTIFIER. CODE CONTAINS THE RULE THAT STANDS FOR THE SEGMENT 

ASSOCIATED WITH THE CLASS. 

PL IS ALSO USED TO CONVEY THE PROPERTY LI~T OF EXPRESSIONS AND 
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THEIR Cm1PO:-JE~TS. PPL IS USED TO PASS TO THE MAIN PART OF A CLASS 
DECLARATION THE PROPERTY LIST ASSOCIATED WITH THE PREFIX. 

RULE STA~DS FOR A SEQUE~CE OP I!'ISTRUCTIONS IN THE T~RGET 
LANGUAGE: IT IS OF TYPE LIST WITH COMPONE~TS OF TYPE INSTR. RULE 
CO~TAINS BOTH TARGET LANGUAGE INSTRUCTIONS AND PSEUDO-INSTRUCTIONS: 
TARGET LA~GUAGE l~STRUCTIO~S HAVE A COMPONENT FORMAT, PSEUDO­
INSTRUCTIO~S DO ~OT. A PSEUDO-I~STRUCTION WITH COMPONENT LABELl 
STANDS FOR A LABEL \~ITH LABELl CONTAINING THE UNIQUE INTEGER 
ASSOCIATED ~ITH THE LABEL. A COMPONENT MARK IDENTIFIES THE PSEUDO­
INSTRUCTIOl'\S THAT MARK THE POSITIONS OF "ISIT" AND "INNER" IN THE 
SEG~E~T ASSOCIATED \viTH A CLASS. A COMPONENT MARKl IDENTIFIES THE 
PSEUDO-I~STRUCTIO~S THAT E~CLOSE THE SEQUENCE OF INSTRUCTIONS 
CORRESPO:\DING TO THE CALCULATIO:\ OF ARRAY BOUNDS. (SEE THE FUNCTION 
VIR~lERGE FOR AN EXPLA:\ATION OP THE USE OF THOSE MARKERS). 
INSTRUCTIO~S THAT REFER TO LPBELS CONTAIN A COMPONENT JLABEL WHOSE 
VALUE IS THE UNIQUE INTEGER ASSOCIATED WITH THE ~ABEL. THE PROCEDURE 
OUTPUT BINDS LABELS TO ADDRESSES AND ASSOCIATES THE ADDRESS 
ASSOCIATED \viTH THE LABEL IN JLABEL \o/ITH THE COMPONENT DISP OF THESE 
I NSTRUCTIO:\S. THE C0~1PONEH OPER IS USED IN VARIOUS INSTRUCTIONS TO 
HOLD A~ OPERAXD FOR THE J~STRUCTIONS. 

UNDECL IS A LIST OF THE SAME NATURE AS RULE AND IS USED TO 
COLLECT THE INSTRUCTIO~S RESULTIXG FROM THE DECLARATION OF LABELS. 

VI RDECL IS A COXSTRUCT \vHOSE COMPONENTS ARE INSTRUCTIONS 
RESULTING FRO~ THE "REDECLARATIO:\" OF VIRTUAL CLASS ATTRIBUTES. THESE 
INSTRUCTIO~S REPLACE THE I~STRUCTIONS ASSOCIATED WITH THE PREVIOUS 
DECLARATIO~S OF THE CLASS ATTRIBUTES: THE FUNCTION VI~~ERGE REPLACES 
THE INSTRUCTI0:\5 ASSOCIATED WITH THE PREVIOUS DECLARATION BY THE 
INSTRUCTIO:\S IN VIRDECL. 
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ENV1 IS USED TO PROPAGATE THE VIRTUALE OF A CLASS SO ThAT THE 

REDEFINITION OF VIRTUAL IDENTIFIERS CAN BE PERFORMED. 

ENVA IS USED TO CARRY THE OUTER ENVIRONMENT OF A PROCEDURE OR A 

CLASS (PLUS THE FO~~AL PARA~ETERS> TO THE EXPRESSION THAT CALCULATES 

THE BOUNDS OF AN ARRAY WHICH HAS BhEN DECLARED EITHER IN A PROCEDURE 

OR A CLASS BODY. 

CL IS USED TO CONVEY THE SEGMENT DESIGNATION OF A CLASS TO THE 

DECLARATION OF ITS ATTRIBUTES. 

DO AND D ARE USED TO CALCULATE THE STACK DISPLACEMENT 

CORRESPONDING TO AN IDENTIFIER DECLARATION. D CAN ALSO BE VIEWED AS 

THE NUMBER OF IDENTIFIERS DECLARED PRIOR TO THE IDENTIFIER 

DECLARATION. 

LL INDI:.ATES THE LEXICOGRAPHICAL LEVEL OF AN IDENTIFIER AND 

ALSO THE STACK LEVEL ASSOCIATED WITH IT. 

L I~DICATES THE LENGTH OF A LIST SUCH AS A FORMAL PARAMETER 

LIST. 

OUTER~ST IS USED TO DISTINGUISH A STATEMENT WHICH IS A CLASS' 

OUTER BLOCK. 

TYPD AND TYPOS ARE USED TO CONVEY GENUS IN A DECLARATION. TYPOS 

GETS THE GENUS FROM THE SPECIFIER AND TYPO TAKES IT TO THE VARIABLES 
• IN THE DECLARATION. 

USE CONVEYS THE USE OF AN EXPRESSION: FOR ITS VALUE, FOR ITS 

ADDRESS, OR FOR LATER EXECUTION CAS A PARAMETER CALLED BY NAME). 

VALENCE CLASSIFIES "+" OR "-" AS EITHER UNARY OR BINARY. 

NOLABEL IS USED TO AVOID RECOGNIZING A LABELLED BLOCK MORE THA~ 

ONCE. 

BEGUN IS USED TO I DENT I Pi BLOCKS THAT ARE EITHER A CLASS OR 

PROCEDURE BODY. 
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FJU~lP A~D TJU~l? ARE USED TO PASS THE LABEL OF AN INSTRUCTION IN 

A CONOITJO~AL OR CO:>.XECTIO~ STATE~1EXT. 

V A~D SP ARE ATTRIBUTES ASSOCIATED WITH STRUCTURED TERMINALS: V 

CO!\TAINS THE VALUE OF A:\ I:~TEGEP. AND SP THE SPELLING Of AN 

I DE:-lTI F I ER. 

ORIG CO~TAI~S THE SEG~:E:\T DESIGNATION OF THE SEGMENT WHICH 

CO~TAINS THE FIRST I~STRUCTIOX OF A SIMULA PROGRAM. 

ALSO IS USED TO RECOGXIZE A~ ASSIG~MENT STATEMENT WHICH IS 

ITSELF A RIGHT HA~D SIDE OF A~ ASSIG~~E~T STATEMENT. 

LEGIT SERVES TO I~OICATE \~HETHER A SPECIFICATION PART BELONGS 

TO A PROCEDURe OR A CLASS. 

PLACE IDE~TIFIES THE CONTEXT OF AN IDENTIFIER LIST: 

SPECIFICATION PART, XA!'>\E PART, VALUE PART OR VIRTUAL PART. 

QU~!..TB IS A TABLE, IN w'HICH EACH ENTRY CORRESPONDS TO A CLASS. 

EACH COMPO~E:\T Of QUALTB IS A CO~STRUCT WHOSE SELECTOR IS THE SEGMENT 

DESlG~ATIO~ OF THE CLASS AXD \-.'HOSE CO~IPONE:\TS ARE PREFIX, CLASSN AND 

LEVEL. PREFIX CO~TAI~S A POI~TER TO THE QUALTS ENTRY CORRESPONDING 

TO THE PREFIX CLASS. CLASS~ CO~TAI~S A POINTER TO THE SYMBOL TABLE 

ENTRY CORRESPO~Dl~G TO THE CLASS. LEVEL CONTAINS THE NUMBER OF 

CLASSES I~ THE PREFIX SEQUE:\CE OF THE CLASS. 

CDECL IS A LIST OF POI~TERS TO THE SYMBOL TABLE ENTRIES 

CORRESPO~Dl~G TO THE CLASSES DECLARED IN A BLOCK. IT IS USED BY THE 

FUNCTION UPDQUALTB TO CREATE ~EI\ E~TRIES IN QUALTB. 

~TB A:\0 :\A.\IETB ARE CO~~ ~RUCTS THAT ESTABLISH THE CORRESPO~DENCE 

BETHE;-; FORMAL PARA~lETERS AXD THEIR POSITION IN THE STACK: THEIR 

C0~1PO~E:\TS ARE I:\TEGERS \\HOSE SELECTORS ARE THE SPELLING OF THE 

FOR~1AL PARA\1ETERS AXD WHOS!: VALUES ARE THEIR STACK DISPLACEMENT. 

~1AT AND MATRIX ARE CO~STRUCTS USED TO ESTABLISH THE 
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CORRESPONDENCE BETWEEN FOR.\1AL PARAMETERS A:.JD THEIR PROPERTIES. EACH 

COMPONENT IS A CONSTRUCT WHOSE SELECTOR IS THE STACK DISPLACEMENT OF 

THE fORMAL PARAMETER AND WHOSE COMPONENTS ARE MODE AND SPEC. MODE 

CONTAINS THE MODE OF TRA~SMISSION OF THE PARAMETER AND SPEC ITS 

GENUS. 

ITEM IS A LIST OF CONSTRUCTS, EACH CORRESPONDING TO A CLASS 

ASSOCIATED WITH AN ENCLOSING CONNECTION BLOCK. THE COMPONENTS XX OF 

ITEM CO~TAIN COMPONENTS ADOR AND QUAL. QUAL CONTAINS THE SEGMENT 

DESIGNATION OF THE CLASS AND ADDR THE STACK DESIGNATION OF A 

REFERENCE TO THE CONNECTED OBJECT. 

MAP IS USED, AS IN TURINGOL, TO BIND LABELS AND ADDRESSES. 

SM, SN AND SL CONTAIN SEGMENT DESIGNATIONS OR THE UNIQUE 

INTEGERS THAT REPRESENT LASELS. 

APA, COND,DAR, AND SID ARE USED FOR DISAMBIGUATION PURPOSES. 

THEY SERVE TO DETECT AND RESOLVE ~~BIGUITIES ARISING FROM ACTUAL 

PARAMETERS AND LEFT HAND SIDE OF VALUE ASSIGNMENTS WHEN THEY PARSE TO 

A SINGLE ENTITY. A SINGLE ENTITY IS EITHER AN IDENTIFIER (POSSIBLY 

REMOTE), OR AN IDENTIFIER FOLLOWED BY AN EXPRESSION ENCLOSED IN 

SQUARE BRACKETS, OR A FUNCTION DESIGNATOR, OR A CONDITIONAL 

EXPRESSION WHOSE THEN AND ELSE PARTS ARE BOTH SINGLE ENTITIES, OR A 

SINGLE ENTITY ENCLOSED IN PARENTHESIS. THEY ALSO SERVE TO DETECT THB 

AMBIGUITY ARISING FROM A PRIMARY THAT PARSES TO AN IDENTIFIER. 

FIRSTST, EMDEC, AEMDEC, AND NUMDEC ARE USED TO RESOLVE THE 

AMBIGUITIES ARISING FROM COMPOUND STATEMENTS WHERE THE FIRST 

STATEMENT IS EMPTY AND FROM UNLABELLED BLOCKS wliERE THE FIRST 

STATEMENT OF THE COMPOUND TAIL IS EMPTY. FIRSTST AND EMDEC IN 

CONJUCTION WITH START ARE USED TO DISAMBIGUATE INITIAL OPERATIONS 

WHOSE FIRST STATEMENT IS ~~PTY. 
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OPES A~D 0 ARE USED TO RESOLVE THE AMBIGUITY ARISING FROM AN 

I~SPECT SHTEME:·:T \~ITH A ~1ATCHI:\G OTHERWISE CLAUSE WHICH IS INSIDE 

A~OTHER I~SPECT STATE~E~T ~ITHOUT A ~ATCHI~G OTHERWISE CLAUSE; 

FOLLO\v'Ii\G IS A GLOSSARY OF THE ATTRIBUTE lliEt\T!F!EP.S USED IN 

THIS DEFI~ITIO:\: 

ADDR - STACK ADDRESS. USUALY A COMPONENT A SYMBOL TABLE ENTRY. 

AE~1DEC -USED FOR DISAMBIC~UATIO:\. TRUE IF ALL THE DECLARATIONS IN A 

BLOCK ARE E~PTY. 

ALSO - DETECTS MULTIPLE LEFT-HA:\D SIDES IN AN ASSIGNMENT STATEMENT. 

APA - USED FOR DISA:.tBIGUATIO;.; PURPOSES 

ARULE - THE RULE GE;.;ERATED BY VE DECLARATION PART OF A SPLIT BODY. 

ATTR - FOR CLASS ATTRIBUTES, THE SEG~ENT DESIGNATION OF ThE CLASS. A 

COMPO:\E;.;T OF A sntBOL TABLE E;.;TRY. 

BEGU~ - DETECTS A BLOCK AS A CLASS bODY, PROCEDURE BLOCK OR 

CO:\:\ECT I m. BLOCK. 

CDECL - LIST OF POI~;'iERS TO THE SYMBOL TABLE ENTRIES CORRESPO~DlNG TO 

CLASS DECLARATIONS I~ A &LOCK. 

CL - CARRIES THE SEG~Il::~T DESIG~ATION OF A CLASS 70 THE CLASS 

ATTRIBUTE'S DECLARATIO:;, 

CLASSN - POI~TER TO A SYMBOL TABLE E~TRY FOR A CLASS. A COMPONENT OF 

A QUALTB E~TRY. 

CODE - THE RULE ASSOCIATED ~ITH A CLASS. A COMruNENT OF A SYMBOL 

TABLE E~TRY FOR A CLASS IDENTIFIER. 
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COND - A PAR~~ETER FOR THE PROCEDURES DISAMV AND DISAMF. 
D AND DO -USED TO CALCULATE THE STACK DISPLACEMNT ASSOCIATED WITH 

IDENTIFIERS. 

DAR - USED FOR DISAMBIGUATIO~ PURPOSES .. TRUE IF A VARIABLE IS AN 
ARRAY ELEMENT, FALSE OTHERWISE. 

DISP - DISPL.A.CE~IENT OF AN INSTRUCTION IN A SEGMENT. USUALLY A 
COMPONENT OF I~STR. 

ON - ~TACK DISPLACEMENT OF A VAR!ABLE. USUALLY A COMPONENT OF 
ADDR. 

E - COLLECTS SYMBOL TABLE ENTRIES. 

&~DEC - USED FOR DISAMBIGUATIO~ PURPOSES. IT IS TRuE IF THE LAST 
DECLARATION I~ A BLOCK HEAD IS E~PTY. 

ENV - THE SYMBOL TABLE: THE ENVIRONMENT. 

ENVl - A SYMBOL TAB~E FOR VIRTUAL ATTRIBUTES. 
ENVA - A SYMBOL TABLE FOR USE BY THE BOUNDS IN AN ARRAY DECLARATION. 
FIRSTST - DETECTS At\ EMPTY FIRST STATEMENT. 
FJUMP - UNIQUE INTEGER THAT LABELS THE INSTRUCTION FOLLOWING THE 

INSTRUCTIONS TO BE SKIPPED IN A CONDITIONAL STATEMENT. 
FORMALE - SYMBOL TASLE FOR.\IFD BY THE FORMAL PARAMETERS OF A CLASS. A 

COMPONEXT OF A SYMBOL TABLE ENTRY. 

GENUS - THE PROPERTIES OF AN IDE~•TIFIER: TYPE, KIND AND CLASS 
QUALIFICATION. 

INSTR - AN INSTRUCTIOX OF THE TARGET LANGUAGE. USUALLY A COMPONENT OF 
RULE, UNOECL OR VIRDECL. 

ITEM - LIST USED FOR REFERENCING OBJECTS ENC1.0SING A CONNECTION 
BLOCK. COMPONENTS ARE CO~STRUCTS WITH COM;ONENTS QUAL AND 
ADCR. ~UAL IS THE ~UALIFICA!ION OF THE OBJECT AND ADDR THE 
STACK ADDRESS OF A POINTER TO THE OBJECT. 
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JLABEL - THE U~IQUE IXTEGER ASSOCIATED WITH THE LABEL OF AN 
1!\STRUCTIO!\. USUALLY A COMPO~EH OF INSTR. 

KIND - THE KI~D OF AN IOEXTIFIER <IN THE ALGOL SENSE). 

L - LE:\GTH OF A LIST SUCH AS SUBSCRIPT LIST, PARAMETER LIST, AND 
ETC •• 

LABELl - Ui\IQUE IXTEGER ASSOCiATED \.;ITH A LABEL. A COMPONENT OF A 
PSEUDO-I XSTRUCT 10:\ \.:HI CH CORRESPONDS TO A LABEL. 

LEGIT - MARKS A SPEC I FICATIO:'i P .. ~RT AS BELnNGING TO A PROCEDURE, A 
CLASS HEADI~G OR A VIRTUAL PART. 

LEVEL - THE PREFIX LEVEL OF A CLASS. A CO>IPONENT OF A QUALTB EHRY. 
LL - THE LEXICOGRAPHICAL LEVEL: THE STACK LEVEL. 

Ll\ - THE STACK LEVEL OF A VARIABLE. USUALLY A COMPOt-;HT OF ADDR. 
LOCALE - SY~1BOL TAELE FOR~EO BY THE ATTRIBUTES OF A CLASS. A 

COMPONE~T OF A SYM20L TABLE EXTRY. 

MhP - TABLE THAT RELATES THE U~IQUE !STEGERS REPRESENTING LABELS TO 
THE ACTUAL ADDRESSES ASSOCIATED WITH THB LABELS. 

MARK - Cm1PO:XEXT OF PSEUDO-I;..;STRUCTI0:-1 MARKING THE LOCATION OF 
"l:X!T" OR "I~:-\ER" IN THE RULE CORRESPONDI~G TO A CLASS BODY. 

MARKl - t:0\1PONE:\T OF A PSEUD0-1:\STRUCTION. MARKISG THE BOUNDARIES OF 
THE BOUND SPECIFICATIO~S l:-1 AN ARRAY DECLARATION. 

MAT - MATRIX OF FOR~1.U. PARA\lETERS (REPRESENTED BY T!iBIR STACK 
DISPLACEME:\T) A~D THEIR PROPERTIES. 

MATRIX - SA~ AS ~lAT. 

MATVEC - A~: E:\TRY OF ~!AT OR ~ATRIX. 

MOA.\1B - USED TO DETECT THE A:·1BlGU!TY ARISU\G FROM AN EMPTY MODE PART 
A~D/OR A~ E~IPTY VALUE PART 

MODE - THE ~lODE OF TRAXS~IISSIO~ CF A FORMAL PARA.\1ETER. 

N - :\U~1BER OF DI~lE:\SIO:-.s OF A~ ARRAY, LE~GTH OF A SWITCH LIST. A 
CmtPO:\E~T OF A SY~I30L TABLE E:\TRY. 
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N~~ETB - TABLE RELATING THE SPELLING OF FORMAL PARAMETERS TO THEIR 

STACK DISPLAC~~E~T. 

NFORMALS - NUMBER OF FORMAL PAII.A.\1ETERS. A COMPONENT OF A SYMBOL TABLE 

E~TRY. 

NLOCALS - NUMBER OF ATTRIBUTES OF A CLASS. A COMPONENT OF A SYMBOL 

TABLE E~TRY. 

NOLABEL - DETECTS A MULTILABELLED BLOCK. 

NTB - COLLECTS THE E~TRIES FOR XTB. 

NUMDt:C - USED FOR DISA.•IBIGU,),TION PURPOSES. COUNTS THE NUMBER OF EMPTY 

DECLARATIONS I~ A BLOCK HEAD. 

0 - USED FOR CISA.\1BIGUATIO~ PURPOSES. USED TO DETECT EMPTY 

OTHERWISE CLAUSES 

OBJECT - SEGME~T DESIG~ATION OF THE OBJECT WHICH IS THE CLASS' 

PROTOTYPE. A COMPONENT OF A SYMBOL TABLE ENTRY. 

OPEN - Si\J\:E AS 0 

OPER - CONTAI~S OPERANDS. A COMPONE~·JT OF INSTR. 

ORIG - SEGME!\T THAT CONTAINS THE FIRST INSTRUCTION OF A SIMULA 

PROGRAM. 

OUTERMOST - MARKS A STATEME~T AS THE BODY OF A CLASS. 

PL - THE PROPERTY LIST ASSOCIATED WITH AN IDENTIFIER OR 

EXPRESSiON. HAS THE SA.~E STRUCTURE AS A SYMBOL TABLE ENTRY. 

PLACE - GIVES THE COXTEXT OF AN IDENTIFIER LIST. 

PPL - PROPERTY LIST OF A PREFIX CLASS IN A CLASS DECLARATION. 

PREF - SEG~.:E~T DESIGNATIO!\ OF THE PREFIX CLASS. A COMPONENT OF A 

CLASS' SYMBOL TABLE E:-;"TRY. 

PREFIX - A COMPONENT OF AN ENTRY OF QUALTB. POINTS TO THE QUALTB'S 

E~TRY CORRESPO~DI~G TO THE CLASS' PREFIX. 

QTBVEC - AN ENTRY OF QUAl.TB. 
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QUAL - THE SEG~E~T DESIG~ATIOS OF THE CLASS THAT QQUALIFIES A 
REFERE~CE. USUALLY A CO~PO~E~T OF GENUS. 

QUALTB - A TABL GIV!~G THE PREIX SEQUE~CE OF CLASSES, EACH ENTRY 
CORRESPO~LI~G TO A CLASS A~D CHARACTERIZED BY THE SEGMENT 
DcSIG~ATIO~ OF THE CLASS. 

RULE - A LIST OF I~STRS. THE OBJECT CODE GENERATED FOR THE STRING 
DERIVED FRm1 A ;\O~TER~ll ~AL. 

SEG~IE:\T - THE SEG~IE:\7 DESlG:\AT!O:\ OF A CLASS. USUALLY A COMPONE:-JT OF 
A Sn1BOL TABLE EXT.RY. 

SID - USED TO DISA~lBIGUATE ACTUAL PARAMETERS, ETC •• IDENTIFIES AN 
EXPRESSIO~ AS A SISGLE E~TITY. 

SL, 5~1, S:\ - HOLD EITHER A SEG:.:o:T DESll,;l\~TIO~ OR THE UNTQUE INTEGER 
ASSOCIATED ~ITH A LABEL. 

SP - THE SPE!.LI~G OF A~ I DE:\71 FI ER. 

SPEC - THE GE:\US ASSOCIATED ~ITH A~ IDE:\TJFIER IN AN IDENTIFIER 
LIST. 

START - USED TO DI SA~lBIGU.l.TE SPLIT BODIES WHOSE FIRST STATEMENT IS 
E~IPTY. 

T - THE TYPE OF THE PRODUCT I~ A ~1ULTI PLICATIO~. 
TYPO - THE GE:\US OF A~ IDE:\TIFIER BEING DECLARED. 
TYPOS - THE GE:\US OF A SPECIFIER. 

TYPE - THE TYPE OF A:\ IDE:\TIFIER. 

T Jm1P - S nu LAR TO FJU~lP. 

UNDECL - SA~1E STRUCTURE AS RULE. COLLECTS THE INSTRUCTIONS GENERATED 
BY THE DECLARATIO~ OF LABELS. 

USE - USE OF AX EXPRESSIOX: FOR ITS VALUE, ITS LOCATION OR FOR 
LATER EXECUTIO~. 

V - THE VALUE OF A~ I~TEGER. 
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VALESCE - CLASSIFIES "•" OR "-" AS EITHER A UNARV OR BINARY OPERATOR. 

VIRDECL - COLLECTS THE I~STRS THAT REPLACE THE VIRTUAL ATTRIBUTES 

THAT HAVE BEEN REDECLARED. 

VIRTUALE - SY:..1BOL TABLE FOR.\IED BY THE VIRTUAL ATTRIBUTES OF A CLASS. 

A COMPO~E~T OF A SniBOL TABLE ENTRY. 

XX - A COMPO~E~T OF ITE.\1. 

IOENTIFIERS ARE SIGMA ~ITH ATTRIBUTESP 

INTEGERS ARE NU WITH ATTRIBUTE V 

COM.\IE~T THE i=OLL0\\1 XG IS A LIST OF THE A"BBREVIATIONS USED FOR THE 
SOSTERm~AL IDE~TIFIERS AND THE PRODUCTION WHICK FIRST 
H l'\DS THE~I 0:-.: THE LEFT HA:\0 SIDE: 

ABBREVIATION 

AP 
APL!ST 
APPART 
AOP 
ARITEXPR 
ARDECL 
ARID 
AR!Dl 
ARL'ST 
ARScG 
A~ SST 
ATTRID 
BASI CST 
BLOrh 
BLOCKHEAD 
BLOCKPP.E 
BEXPR 
BFAC 
B PR I~~ 
BSEC 
BTER~l 
BOU:\D 
BOUSDP 
BOUNDPLIST 

~OXTER~II SAL 

ACTUAL PARA.\lETER 
ACTUAL PARA.~ETER LIST 
ACTUAL PARA~1ETER PART 
ADDI:\G OPERATOR 
ARITH~IETIC EXPRESSION 
ARRAY DECLARATION 
ARRAY IDE:\TIFIER 
ARRAY IOE~TIFIER' 
ARRAY LIST 
ARRAY S EG~·IE:\T 
ASSIG~:~IE~T STATE~IE:\T 

ATTRIBUTE IDE:\TIFIER 
BASIC STATEME:\T 
BLOCK 
BLOCK HEAD 
BL.OCK PREFIX 
BOOLEAS EXPRESSION 
BOOLEA:-> FACTOR 
BOOLEA:'\ PRnlARY 
BOOLEA~ SECO~DARY 
BOOLEA~ TER.~ 
BOU:-\0 
BOU:\0 PAIR 
BOU:\0 PAIR LIST 
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P95 
P93 
P91 
P12 
P7 
P206 
P212 
P85 
P208 
P210 
P283 
P84 
P273 
P174 
P184 
P181 
P103 
Plll 
PllS 
Plll 
P109 
P216 
P21S 
P213 



Cl.BODY 
CLDECL 
CLID 
CLI Dl 
CLID2 
cc:.tPST 
cmtPT 
CO\DST 
CO\:-iB!.OCKl 
CO\~Sl.OCK2 
CJ:\\CL 
CO\~PART 
co~::-.:sT 
DECL 
DESIGEXPR 
DU~NYST 
EXPR 
FAC 
FIXOPS 
FP 
FPLIST 
FPPART 
FU~C 
GOTOST 
IDl 
IDLIST 
IFCL 
IFST 
n1PL 
l~ITOPS 
LABELO 
LABELl 
LOCOBJ 
LOGVAL 
MBLOCK 
MPART 
MOP ART 
MOP 
~A~IEPART 
OBJEXPR 
OBJGEN 
OBJREF 
OBJREFREL 
OBJREL 
OTCL 
PRE 
PRIM 
PROCBODY 
PRODEGL 
PROCHEAD 
PROCID 
PROCIDl 
PROCID2 
PROCST 
PROGRAM 
QUAL IF 
QUALOBJ 
REL 

CLASS BODY 
CLASS DECLARATION 
CLAS) IDE\TJFIER 
CLA5S IDE\TJFIER' 
CLASS IDE\TJF!ER'' 
CO~POU\D STATEMEXT 
co~.:?ou~;o r A 1 L 
CO\DITIO\AL STATE~E~T 
CO~.\ECTIO\ BL'JCK' 
CO\\ECTIO\ BLOCK'' 
CO\\ECTlO\ CLAUSE 
CC\\ECTJO\ PART 
CO\\ECTJO\ STATE.\1E~T 
DECLARATIOS 
DESlG\ATIO~AL EXPRESSION 
ou:.;·w S T A TE~iE\T 
EXPRESS !OS 
FACTOR 
FI~:.,u OPERATJO\S 
FOR~AL PARA~ETER 
FOR~AL PARA~E7ER LIST 
FOR~·I.U PAR,l.~.\ETER PART 
FU\CT I 0\ DES l G:~ATOR 
GO TO S T A TE~iE\T 
IDE\TIFIER' 
IDE\TIFIER LIST 
IF CLAUSE 
IF STATE\IE\T 
D1PLICATIOX 
I~ITIAL OPERATIOXS 
LABEL 
LABEL' 
LOCAL OBJECT 
LOGICAL VALUE 
~1AI\ BLOCK 
MAl\ PART 
~lODE PART 
~1ULTI PLI CATIO!<~ OPERATOR 
!I:A~lE PART 
OBJECT EXPRESSION 
OBJECT GE~ERATOR 
OBJECT REFEREXCE 
OBJECT REFERE\CE RELATION 
OBJECT RELATI0:-1 
DTHER~ISE CLAUSE 
PREFIX 
PRIMARY 
PROCEDURE BODY 
PROCEDURE DECLARATION 
PROCEDURE HEADit\G 
PROCEDURE IDE~TIFIER 
PROCEDURE IDE~TIFIER' 
PROCEDURE IDE~TIFIER'' 
PROCEDURE STATEMEXT 
PROGRA~1 
QUA:IFICATIO:\ 
QUALIFIED OBJECT 
RELATION 
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P157A 
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P314 
P312 
P310 
P307 
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P161 
P296 
Pl 
P19 
P262 
P229 
P227 
P225 
P89 
P29S 
P52 
P234 
P304 
P303 
P107 
P259 
P172A 
Pl66 
P159 
P120 
P182 
P253 
P230 
P16 
P236 
P148 
P157 
P200 
P136 
Pl33 
P315 
P251 
P21 
P247 
P222 
P223 
P224 
P90 
P287A 
P297 
·P169 
P2Dl 
P160 
P122 



REI.OP 
REFASS 
REFCO:·I? 
REfJ:>:PR 
R:.:rLi. ·.: 
REFRPAR: 
RFI-REL 
REFTYPE 
RID 
SARITEXPR 
SBCOL 
SDESIGEXPR 
SOB..iEXPR 
SPPART 
SPECIFIER 
SPLITBODY 
ST 
STl 
SLISEXPR 
Sli2.LI ST 
S\,'DECL 
Sli'DES IG 
S\,'1 D 
S\·.'1 Dl 
Sh'L I ST 
TER\1 
TYPE:-i 
TYPEP 
TYPEDECL 
TYPELIST 
U~CO:\DST 
U~LBASICST 
W\LBLOCK 
U~LCO:.IP 
U~LPREBLOCK 
VA LASS 
VALEXPR 
VALLPART 
\'ALP ART 
VALRPART 
VAL TYPE 
VAR 
viRPART 
\..HI LE5T 

NONTER!·1l :\ALS ARE 

RELATIOXAL OPERATOR 
REFERENCE ASSI~GME~T 
REFERE:\CE C0~1PARATOR 
REFERE~GE EXPRESSION 
REFEREXCE LEFT PART 
REFERE~CE RIGHT PART 
REFERE:\CE RELATIO~ 
REFERE~:E TYPE 
RE~IOTE I DE:-;TI FI ER 
SI~lPLE ARITIDIETIC EXPRESSION 
S ntPLE BOOLEA:-1 
Sl~·IPLE DESIGNATIONAL EXPRESSION 
Sl~IPLE OBJECT EXPRESSION 
SPECIFIGATIO~ PART 
SPECIFIER 
SPLIT BODY 
STA TE~1E:\T 
STA TE~IE!\T' 
SUBSCRIPT EXPRESSION 
SUBSCRIPT LI~T 
S~ITCH DECLARATION 
S~ITCH DESIG~ATOR 
S~ITCH IDE:\TIFIER 
51,· ITCH I DE:\Ti F I ER' 
S1dTCH LIST 
TER\1 
TYPE 
PROCEDURE TYPE 
TYPE DECLARATION 
TYPE LIST 
U~CO~DITIO!\AL STATE~E~T 
U~LABELLED BASIC STATE.\1ENT 
U~LABELLED BLOCK 
UXLABELLED COMPOUND 
UXL.-\BELLED PREFIXED BLOCK 
VALUE ASSIGX~IE:\T 
VALUE EXPRESSION 
VALUE LEFT PART 
\'ALUE PART 
VALUE RIGHT PART 
VALUE TYPE 
VARIABLE 
VIRTUAL PART 
wHILE STATE.\1E~T 

AP " S <RULE), I (E~V, ITE~, QUAl.iB, LL) 
APLIST • S(L, RULE), ICE~V, ITEM, QUALT~ LL) 
APPART • S CL, RULE), I (ENV, ITE~, QUALTB, LL) 
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AOP = S <RULE), I (\',;LE\CE) 
ARITEXPR = 5(PL, RULE, SifJJ, !(E:\V, QUALTB, ITE~I, LL, USE, APA) 

ARDECL = S <D, E, RliLEl, I (£:\VJ,, QUALTB, CL, DO, ITEM, LL, ENV) 

ARID= S<SPl 
ARID l = S 1? l.., RULE, 5?1, I ( E:\V, USE, I TE\1, LL, APA, QUALTB) 

ARLI ST "' S <D, E, RULEl, I COO, E:;\'A, ITE~1 LL, TYPO, QUALTB, CL) 

ARSEG • 5 <D, E, L, RULE), 
I <CL, DO, EWA, ITE\1, LL, TYPO, QUALTB> 

AS SST • S (RU!.El, I !E\\', lTE~l, LL, QUALTB) 
ATTRI D = 5 CPL, SPl, l (£:\\') 

BASICST = S<D, E, Rl!:..E, U:\DECL, \'IRDECL, FIRSTST), 
1 CLL, DO, E:\\', IT:E.\;, E:\\'1, QUALT,B, CL) 

BLOCK " S CD, E, RULE, ti~:DECL, \'I ?.DEC!., :\OLABEL), 
I <CL, DO, E:\\', .c~;Vl, E~..:\'A, ITE~1, Ll, BEGUN, QUALTB) 

BLOCI\HEAD " 5 (0, E, RULE, :\U:.:DEC, AE:•lDEC, EMDEC, VIRDECL, CDECL', 

I <CL, DO, E~V, E:\\'1, E:\VA, ITE~~. LL, QUALTB) 

BLOCKPRE = S CPL, RULE), I <EW, ITE~1, LL, QUALTB> 

BEXPR = S(PL, RULE, S!Dl, l (£:\\', ITE~I, LL, QUALTB, USE, APA) 

BFAC = S<PI.., RULE, SID!, I CE:\V, ITE~·I, I..L, QUALTB, USE, APA) 

BOU:..:o = S <RULE>, I cE::v,;, I iT.\, QUALTB, LL) 

BPR !~I = 5 CPL, RULE, S I 0), ICE:\\', ITE~l. LL, QUALTB, USE, APA) 

BSEC = S<PL, RULE, SiD), ICE:\\', ITE~I, LL, QUALTB, USE, APA) 

BTER:-.1 = S(PL, RULEl, ICE:\V, ITE~l, LL, QUALTB, USE, APA) 

BOU\DP " S CRULEl, I <E:\VA, ITE:,:, LL, QliALTBJ 

BOU\DPLI ST = S <L, RIJLEl, I ( EWA, ITE~l. LL, QUALTB> 

CLBODY " ::; <D, E, RULE, u;;::JECL, \'I RDECI..J, 
I CCL, DO, E~V, E~\'1, E\VA, lTE~. LL, QUALTS) 

CLDECL = 5 <D, E, RULE), I CCL, DO, E~V, ITEM, QUALTB, LL) 

CLIO= SC5Pl 
CLI Dl :: S rPL, SPJ, I <EWl 
CLI 02 = S <PL, RULE, SPl, ICE\\', lTE~i. Q:JALTB, LL, USE) 

co~tPST = s cE, RULE, u::DECL, \'I:\DECL, m, 
I CDO, lTE~l, E:\\'l, E~V. LL, QUALTB, CL) 

COMPT • S<E, RULE, U~DECL, VIRJECL, 0, FIRSTST), 

I CQUALTB, E\\', E\\'1, DO, LL, I7E.\1, CL) 

CO:-:DST = S CD, E, OPE:\, RUl.E, U>:DECL, VIRDECL), 
I (LL, DO, E~:v, E:\\'1, ITE~I, QUALTB, CL) 

CO~~BLOCKl • SCD, E, OPE:\, RULE, U~DECL), 

I <DO, E:..:v, !TE~·l, LL, BEGV:-1, QUP.l.TB) 

CO~\BLOCK2 • S<D, E, OPE~. RULE, U\DECLJ, 
I <DO, E\V, I TE\1, LL, BEGU:\, QUALTB) 

CO~:\CL = S <OPE\, RULE), I \E:\V, ITE~, LL, FJUMP, TJUMP, QUALTB) 

CO~:\PART = SCOPE~, RULE), I CE~:r, ITE~I, LL, FJUMP, TJUMP, QUALTB) 

CO;\:\ST = S CO, E, O?E\, RU:.E, U\DECL, V!RDECLJ, 
I COO, E~V, EWl, :TE~I, LL, QUALTB, CL) 

DECL = S (0, E, RULE, VIRD::CL, CDECL, E~lDEC), 

I CCL, DO, E\V ITE:•l, LL, E:\Vl, QUALTB, E~VA) 

DES I GEXPR = S <RJJLEJ, I CEW, ITE:.t, QUALTB, APA, LL) 

DU:O.I.\IYST = S (RULE) 
EXPR .. S CPl., RULE), l CEV, ITE:.\, LL, QUALTB, APA, USE) 

FAC = SCPL, RULE, SiJl, I<EW, ITE:.:, LL, QUALTB. APA, USE) 

FI~JPS = SCE, RUL~ ~\DECL, VIR~EC~ 0), 
I CLL, DO, E\V, E\Vl, ITEM, QUALTB, CL) 

FP = S (SP > 
FPLIST = SCD, :\TB), I <DOl 
FPPART = 5 (0, ~;TB), ! (DO) 
FU:\C = S (l., PL, RU!.E, SP), ICE:\\', IH:.:, QUALTB, LL, APA) 

GOTOST • S(RULEI, I <EW, ITE~!, QUAL7B, l.L) 
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I D • S CSP) 
I 01 = S CPL, RULE, SP>, I <E:>:V, ITEM, QUALTB, LL, USE> 
IDLIST .. S<~1ATRIX, L, El, 

I CCL, E:\Vl, :.tAT, :\AMETB, LL, DO, TYPD, PLACE) 
IFCL • S<RULEl, 1 <E~V, ITE~I, QUALTB, LL, FJUMP) 
IFST • S<D, ~ RULE, U~DEC~ VIROECLl, 

I CEW, ITEM, QUALTB, l.L, DO, ENVl, FJUMP) 
ntPL • S<PL, RULE, SID>, I<EXV, ITE~I, QUALTB, LL, USE, APA) 
I~ITOPS • S(O, E, RULE, U~DECL, VIRDECL, START, ARULE, EMDEC), 

I CCL, DO, E~V, E~Vl, E:\VA, ITEM, QUALTB, LL) 
LABELO .. S (SP> 
LABELl • S <SP, PL, RULE), I <ENV, APA) 
LOCOBJ • S <PL, R'JLE), I <E~\') 
LOG\'AL "' S <RULE> 
MBLOGK • SCD, E, RULE, U~DECL, VIRDECL), 

I CCL, E~V, E~VA, E~Vl, ITEM, QUALTB, LL, DO, BEGUN) 
MPART • S(~ PL, RULE, VIRDECL, SP), 

I CCL, EW, IH~I, QUALTB, PPL, LL) 
MOPART • S (MATRIX), ! ·~IAT, :-;A.\IETB) 
MOP = s <PL, RULE) I I ('r) 
NAMEPART • S (~IATRI X, ~'JA~IB), I (~lo\T, ~A~IETB) 
OBJEXPR e S <PL, RULE, SID), I (E:\V, ITE~I, QUALTB, LL, USE, APA) 
OBJGE~ "' S <PL, RULE), I <E:\V, ITE~I, QUALTB, LL, USE> 
OBJREF = S <TYPOS), I (E~V) 
OBJREFREL • S (RULE), I (E~V, ITE~l, QUALTB, LL, USE) 
OBJREL "' S <RU!.El, I <E~V, ITEM, QUALTB, LL, USE) 
OTCL • S <OPE~, RULE, U~DECL, VIROECL, D, E), 

I <LL, 00, E:\V, EWl, ITEM, QUALTB, CL, 0) 
PRE=SCPL), ICE:\V, LL) 
PRIM " S <PL, RULE, SID), I <E~V, ITBI, QUALTB, LL, USE, APA) 
PROCBODY SCRULE, U~DECL, E), 

I (00, E~\', E~VA, EWl, ITEM, LL, QUALTB) 
PROCDECL = S<D, E, RULE, VIRDECL), 

I CCL, DO, E~V, E~Vl, ITa!, QUALTB, LL) 
PROCHEAD "' S CD, E, RULE, SP), I (TYPO, LL, ENV) 
PROCI 0 • S (SP) 
PROCI Dl • S <PL, SP, RULE>, I (ENV, ITEM, OUALTB, LL, USE, APA) 
PROCI 02 = S (PL, SP), I CE~V) 
PrtOCST .. s (RULE) I I <ENV, ITEM, QUALTB, LL) 
PROGRAM • S COR I G) 
QUALIF"' S<PL), ICE:-..'V) 
QUALOBJ • S <PL, RULE>, I <EXV, QUALTB, ITEM, LL, USE>. 
REL : S(RULE, I CE~V, ITE~, QUALTB, LL, USE) 
RELOP = S <RULE) 
REFASS • S <P L, RULE), I <ENV, I TE~, QUALTB, LL, ALSO) 
REFCmiP = ~(RULE) 
REFEXPR • S (PL, RULE), I CE:-;V, ITE~I, QUALTB, LL, USE, APA) 
REFLPART a S<PL, RULE), I<E~V, ITEM, QUALTB, LL, USE) 
REFRPART a S <PL, RULE>, I CE:\V, ITEM, QUALTB, LL, USE, ALSO) 
REFREL • S (RULE I, I <ENV, ITEM, QUALTB, LL, USE) 
REFTYPE = S (TYPOS), I <ENV) 
RI 0 = S CPL, ~ULE, SP>, I <E~V, ITE:-1, QUALTB, LL, USE) 
SARITEXPR • S<PL, RULE, SID>, I <E~V, ITEM, QUALT~ LL, USE, APA) 
SBOOL = S CPL, RULE, S I 0), I CE:\V, ITE.\1, QUALTB, LL, USE, APA) 
SOESIGEXPR • S<RULE>, ICEW, ITE~, QUALTB, LL, APA) 
SOBJEXPR"' S(PL, RULE, SID), ICE:\V, ITE~, QUALTB, LL, APA, USE) 
SPPART • SCE, L, RULE, ~lATRIX), 

I (NAMETB, CL, DO, ENVl, LL, LEGIT, PLACE) 
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SPECIFIER= S<7YPDS>, I(E~V> 
SPLITBODY = S CO, E, RULE, U\DECL, VIRDECLl, 

I<CL, DO, EW, E\\1, E:\\'~, ITE~l, QUALTB, LL> 
ST = S CD, E, OPE·:, RULE, U\DECL, VIRUJ:CL, flR5TST), 

I <DO, E~V I E:-\\'1, I TE~1. LL, QUALTB, CL) 
STl = S (0, E, OPE:\, RULE, U:\DEC!., VIRDECL, FIR5TST), 

I (CL, DO, E:\V, E~Vl, E:\\A, ITE~1, OUTER.\105T, QUALTB, LL, BEGUN) 
SUBEXPR = 5 <RULE>, I <E~V, I TE~i, LL, QUALTB, USE) 
SUBLIST = S(L, RULE), ICE\\', ITE~1, l.l., QU·\i.TB) 
5\~'DECL = S <D, E, RULE, VIRDECL>, 

I (CL, DO, EW, E:\Vl, ITE:.J, L!., QUALTB) 
S\~DE5IG = 5CRULE), l(E:-;V, ITE~1, QUAL"'''B, LL, APA) 
S\"1 D , S <SP> 
S\vl Dl • S <Pl., RULE, SP), I (E:\V, APA) 
S~LIST = S(l., RULE), ; <E~V, ITEM, L~ QUALTB) 
TER~1 = S <PL, RULE, 51 D>, I <E:\V, ITE.\1, LL, QUALTB, USE, APA) 
TYPE:\ " S <TYPOS>, I Cc\V) 
TYPEP = S (TYPOS>, I tE\V> 
TYPEDECL 5 CD, E, RULE>, I CCL, DO, E:\V, LL) 
TYPELI 5T 5 (D, E>, I CCL, DO, TYPO, LL) 
U:\CO\DST • S<D, E, RULE, U\DECL, VIRDECL, FIRSTST), 

I CCL, DO, E\V, E:\Vl, EWA, ITEM, OUTERMOST, QUALTB, LL, 
BEGUX) 

UNLBA51CST " S<RULE, F!R5TST>, I <Er.:V, ITEM, LL, QUALTB, CL) 
U:\LBLOCK = 5(0, ~ RULE, U:\DECL, VIRDECL), 

I <CL, DO, E:\V, E\Vl, E!':VA, ITE.\1, QUALTB, LL, BEGUN) 
U~LCm1P • 5(0, E, RULE, U~DECL, VIRDECL), 

I <DO, EW, E:-JVl, ITE~!, QUALTB, LL, CL) 
UNLPREBLOC~ • S(D, E, RULE, USDECL, VIRDECL), 

I I (E:\V, ITE~1, LL, QUALTB) 
VALASS = CPL, RULE), I <EN\', ITE~l, QUALTB, LL, ALSO) 
VALEXPR = SCPL, RULE), ! (E~V, ITEM, QUALTB, L~ US~ APA) 
VALLPARi = S CPL, RULE), I CEW, ITE.\1, QUALTB, LL, USE) 
VALPART = s (~lATRIX, ~:OA~IS) I I <~1AT, :\A.\1ET8) 
VALRPART .. S CPL, RULE>, I <EW, lTD!, QUALTB, LL, USE, ALSO) 
VALTYPE = SCTYPDS) 
VAR .. S (PL, RULE, S?, DAR>, I <EW, ITEM, QUALTB, LL, USE, APA) 
VIRTPART = S <E, L, li.ULE), I (CL, DO, EXV!, LL) 
WHILEST • S<D, E, OPE~, RULE, U~OEl.L, VIRDECL), 

I CLL, DO, E:-JV, E~Vl, ~iE.\1, QUALTB, CL) 

START SntBOL P.P.CuRA~1 

FORMATS ARE 

F 1 = ("GO ( ". D I s pI ") .. ) 
F2 • C"AR <", OPER, ") ") 
F3 • l"CCI~TEGER<VALUE•", V, "))") 
F4 = C"I~X(", USE,")") 
~5 • C"VAL(ADDR•(", ADDR, "), REM>"> 
F6 ., ("ADR(AODR•(", ADDR, "), REM)") 
F7 .. ("\'AL(ADDRs(", ADDR, "))") 
F8 • C"ADRCADDR=(", ADDR, "))") 
F9 • C"C C", OPER, "> ") 
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FlO • ("E~T"> 
Fll • ("MARK") 
F12 • <"RET") 
F13 • ("CCACTUAL(BODY•", S~, ", LEVEL•", LL, ",QUAL•", QUAL, 

",UNDERTYPE•", TYPE, "))") 
F14 • <"LOG(", OPER, ") ") 
FlS • C"CCBOOLEANCVALUE•", OPER, "))") 
F16 • ("COMP <", OPER, "> "> 
F17 • ("IFJC", DISP, ">"> 
F18 • ("C CREFCQUAL•", QUAL,", VALUE•", OPER, 11 )) ") 

F19 • C"GE~C",~FOR~IALS,">"> 
F20 • C"C<LABELCSEG~IE~T·",SN,",DISP•",DISP,"))") 
F21 • C"L~•", L:\, ", D~•", 0~) 
F22 • ("EXT <LEVEL•", LL, ", BODY•", SN, ") ") 
F23 • ("~1AKCGENUS•{",GEt\US,">,~•",L,"COPIES•",0,")") 
F24 • C"CCSWITCHLIST•",SN,",LENGTH•",L,")") 
F25 • <"DEL") 
F26 • ("RES"> 
F27 • ("DET") 
F28 • ("STO (",ALSO,")") 
F29 "' ("GO") 
FJC • ("C <RET)") 
F31 • <"~Eh' OBJECT(BODY=", SN, "IS,.", SM, ", PREF!X•'', OBJECT,")") 
F32 • ("CCCLASS(PROTOTYPE•".~~·.",LE'vEL•",LL,"))") 
F33 • ("CCPROCED!IPE{~~·vt:l.•", LL", SEGME!I:T•", SN, "))") 
F34 = ("C!IE i.U•", D, ", GE~US• (", GE~US, "), ~10DE•", MODE,", CLASS•", ALSO,")") 
FJS • C"DETCTER)") . 
F36,. ("KIND•",KIND,",TYPE•",TYPE,",QUAL•",QUAL) 

PROCEDURE AUX <CLASS~, QUALTB>; 
CO~~IE~T THIS PROCEDURE DOES THE WORK FOa UPDQUALTB BY ACTUALLY 

I~SERTING THE NE~ ENTRIES; 

S/ QUAL :• (CLASSN]. PREF; 
UUTIN CQUALTB. ( (CLASS:-J]. SEGME~TJ: CLASSN : • CLASSN; 

PREFIX :• IF QUAL • 0 THEN NIL ELSE QUALTB. [QUALl; 
LEVEL : • IF QUAL • 0 THEN 0 ELSE QUALTB. [QUAL]. LEVEL+l) /S; 

FUNCTION BACTUAL (GE~US, LL, S~); 
BEGIN COM~ENT THIS FUNCTIOX WILL BUILD AND RETURN A RULE WITH AN 

INSTRUCTION CCACTUAL) WITH THE PROPER OPERANDS; 

I~STR : • $ <FOR.\1AT : • Fl3; SN : • SN; LL : •LL + 1; 
TYPE :• GENUS.TYPE>; 

LIST(IF NULLR(FINDCGE~US, QUAL)) THE~ INSTR ELSE 
PUTINCINSTR: QUAL :• GENUS.QUAL)) 

END; 
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FUXCTJO~ BUILDVC CKI~D, L1; 
BEG!~ CO~l:·IE~T THIS PRODUCES A LIST OF L C-INSTRUCTIONS, ALL OF KIND 

"KI~D", FOR P239; 

RULE : ~ ~ULL; 
1\Hl LE L>O DO 
BEGJ~ 

RULE: • CO~S<I~STR *• $CFO~~AT: a F9; OPER :• KIND), RULE); 
L:aL-1 

E:\0; 
RULE 

END; 

FU:-<CTJO:\ CHECKIDE~TJFIER <ITE~·l, QUALTB, ATTR>: 
BEGIN CO~t\1E:\T ·.HIS CHECKS TO SEE IF A~Y CF THE COMPO:-:ENTS XX OF 

ITE~I CO~TAI:\ A QUALIFICATIO:\ SUCH THAT XX.QUAL IN ATTR. IF 
TRUE THE ADDR OF THE CORRESPONDI~G XX IS RETURNED OTHERWISE 
~ULL IS RETUR~ED. THIS FUNCTION IS USED TO LOCATE VA~IABLES 
THAT ARE I~ THE STACK OF M~CTHER OBJECT TO \\'HICH THE PRESENT 
OBJECT IS CO:\~ECTED. THE Ll ST ITEM CONTAINS THE ADDR OF 
I·.'ORDS I~ THE STACK THAT REFERENCES OBJECTS CONNECTED TO THIS 
ONE; 

IF ATTR • 0 OR :\ULL6(1T~~) THEN NULL ELSE 
BEG!:\ 

~EXTl : • QUALTB. [ATTRl i LEVEL : • [NEXTll. LEVEL; 
XX ; = CAR (1 TE~I); 
WHILE -.NULLBCXX) DO 
BEGI~ 

:\EXT2 : = QUAL To. [XX. QUAL); ~l : • [NEXT2l. LEVEL - LEVEL; 
IF ~1 >• 0 THE~ 
BEG!:\ 

\\'HILE :\1 > 0 DO 
BEGJ:-i 

SEXT2 :• [[~EXT2).PREFIX]; N :• N-1 
E~D; 
IF NEXTl • NEXT2 THE~ GO TO FINISH 

E:-JD; 
ITE~I : • CDR CITEM); XX : ,. CAR {ITE~t> 

END; 
FI:-;ISH: XX.ADDR 

E:\0 
E:\D; 

FUXCTIO~ CHECKKI~D (GE:\US); 
BEG! X CQ~.1ENT THIS FU:\CTJO~ J S USED TO CHECK IF FORMAL PARAMETERS 

HAVE THE PROPER ~lODE. THE RESULT IS A BOOLEAN; 

KI~D : • GE~US KI~D; 
KIND • "LA8EL" OR KI~D • "SI\ITCH" OR KI:-:D • "PROCEDURE" 

END; 
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PROCEDURE CHECKSPEC \~ATRIX,D>; 
BEGI~ CO~~~E~T THIS PROCEDURE ~ILL CHECK TO SEE IF ALL D FORMAL 

PAR~\tETERS OF MATRIX HAVE BEE~ SPECIFIED; 

~EXTl : = FIRST C.IATRIX); 
\vHI LE -.NULLB (NEXTl) DO 
BEGJ N NEXTl : • NEXT ( [NEXTl]); D : • D - 1 END; 
IF D >• 0 THEN 
ERRORC"PROCEDURE OR CLASS HAS UNSPECIFIED FORMAL PARAMETERS") 

END; 

FUNCTION CHECKVIRT CFXVl, SP, OPERl; 
BEGl N C0~1.\1ENT THIS CHECKS IF SP IS A~ ENTRY IN VIRTUALE: IF TRUE 

IT RETUR~S ADDR. D~, IF ~OT ZERO; 

NEXTl : • FI~DCE!\Vl, CSPJ); 
IF NULLBCNEXTl) THE~ D~ :• 0 ELSE 
IF [NEXTll.GE~US.KIXD = OPER THEN D~ := (NEXTl].ADDR.DN ELSE 
ERROR<SP, ., HAS BEE!'l DECLARED T~ICE, ONCE AS A VIRTUAL">; 
DX; 

END; 

FUXCTION CHERULES C.IATRIX, ALSO, D, DOl; 
BEGI~ CO~~IE!\T THIS WILL BUILD THE SEQUE~CE OF CHE INSTRUCTIO~S 

THAT HEAD THE RULE FOR A PROCEDURE OR A CLASS; 

RULE :a NULL; NEXTl : • FIND(MATRlX, (0]); 
\VHILE -.NULLB <NEXTl) 00 
BEGIN 

E~Di 
RULE 

END; 

RULE: • CO~S<INSTR *• S<FO~~T :• Fl4; ALSO: • ALSO; 
GENUS :• (NEXTl].SPEC :• $(FORMAT :• F36); 
D: • D -DO; MODE :• [NEXT1l.MODE), RULE); 

D : • D-1; NEXTl : • FIND <MATRIX, (0]) 

FUNCTION C0~1BTYPE (PL, PLl); 
BEGJ~ C0~1\1E~T THIS 1\ILL EXA~1IXE THE TYPE OF BOTH PLtS AND IF BOTH 

ARE NOT "IXTEGER" IT RETURNS "REAL" OTHERWISE THE VALUE OF 
THE C0~1PONENT TYPE OF PLl IS RETURNED. THE VALUES ARE 
EITHER "INTEGER" OR "REAL"; 

JF PL.GENUS.TYPE .,. "INTEGER" THEN "REAL" ELSE PLl.GENUS.TYPE 

:END; 

FUNCTION CONCATENATE (RULEl, RULE2); 
BEGIN COM.\1ENT THIS WILL CONCATENATE TWO RULES, ONE REPRESENTING THE 

PREFIX PART AND THE OTHER THE MAIN PART OF A CLASS BODY. 
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THE CO:\CATE:\.l.T!O\ IS GO\E 1\ THE FOLLO\\ING FORM (USING 

1\!L'\ER'S >;OTATIO:\): CHE<P) C<P) CHE(~1) C(M) lN\T 1 <P> I (M) 

1~\Ei F<Ml F<Pl. ~HILE THE LIST RULE2 I~ USED DIRECTLY, 

RULEl 15 COPIED BY BUlLDl:\G THE :-\ECESSARY NE\~ LISTS; 

CO~t\IE:\T FIRST BUILD A. CO?Y OF CHE(P) AND C(P) PARTS OF RULE. 

THE FIRST PSEUDO-l~STRUCTIO~ MARK FOU~D lS THE INIT OF RULEl; 

RULE : = :.mLL; 
\·:HILE :\ULLR<Fl:\D(CAR<RUI.El), ~1ARK)) DO 

BEGI:\ 
RilLE : • CO:\S (CAR <RULE l), RULE); RULE : • CDR (RULE1) 

E\D; 
CO~t\t\lE~T ~:0\i I·:E COPY CHE <MJ A\D C (M); 

~HILE ~ULLRCFISD(CAR(RU~E2l, ~ARK)) DO 

BEG!:\ 
RULE:= CO~SCCAR(RULE2), RULE); RULE2: a CUR(RULE2) 

E:\D; 
CO~L\IEST 1:\SER:· 1:\!T !:\THE :\Eli RULE; 

RULE :" CO:'\S <CAR (\U:.Ell RULE); RULE1 :" CDR (RULEl); 

CO:·I~IE:~T COPY THE ! <Pl. THE E~D OF I (P) 1 S MARKED BY A MARK 

PSEU~0-1:\SThUCTJO~; 

\-,'HI I.E -.~Ul.LR CFI:\D <C,l.R <RUl.El), ~·lARK)) 00 

BEGJ:\ 
RULE : = CO~S CCAR <RIJLEU, RUI.El i RULU : • CDR <RULE1); 

E\D; 
CO~~\IE\T :\01,'1\E F.E\'ERSE RULE . .\\D APPF:-.D 101) l~NER F(~l) \\'HICH IS 

\0\·: COR <RULE2l n- E H.-WE TO EL!~.miATt: THE INI!l AND THE~ REVERSE 

IT. AGAI:: TAKE THE CDR ( TO El..I~1l\ATE THE DET l~STRUCTIOI\ AT THE 

E\D OF RULE2) A~:D THE~ COPY F CP). THE REASOS m: HAVE TO COPY F (P) 

A~D CA~~OT SI:.IPLY APPE>;D IT IS THAT THE JUMP l!':STRUCTIO~S 

<GO & IFJ> \:ILL H .. WE DIFFERE\T DISPLACE~\E~T VALUES DBPEZ\DING ON 

THE CODE SEG\lE:'\T; 

RU~E: = CDRCRVRSI~?ESD,RVRSCRULE), CDRCRULE2>>>>; 

f-UI.El : = COR(RU!.EU; 
~HILE -.\UI.LB(RULEll DO 
f.l=G ]': 

RULE:= CO\SCCARCRUl.Ell. RULE); RULEl :• CDRCRULEU 

E:\D; 
RVRS \RULEJ 

E:-.:0; 

FU~CTIO~ CO\~QUAL <QUALT3, QUALl, QUAL2); 

BEGI\ C0'.;\1:'\T TiiiS T.\KE5 THE QUALIFICATIO~S OF TI:O CLASSES 

.:1:\0 0\JTPUTS THE QU.l.LIFICATIO:; OF THE CLASS \\HICH IS 

THE LAST 1~ THE:R PREFIX SEQUENCE THAT IS COM:-.10N TO 

BOTH; 

CO~l:.!EH I P o::E OF THE-:·1 IS ".\0:\E" THE RESULT IS THE QUALlFICA";ION 

OF TnE OTHER; 

IF QUALl • 0 7HEX QUAL2 ELSE 
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IF QUAL2 < 0 THE~ QUALl ELSE 
BEGIN 

NEXTl : • QUALTS. [QUALll; NEXT2 : • QUALTB. [QUAL2); 
Nl : • [NEXTll. LEVEL; N2 : • (r\EXT2). LEVEL; 
COM~ENT NOW IF ~1 > N2 WE INVERT THE TWO AND ALSO NEXT; 

IF Nl > ~2 THEN 
BEGIN 

~ :• (~HI; Nl :• [N2); N2 :• (NJ; 
NEXT3 :• CNEXTlli NEXTl :• CNEXT2J; NEXT2 :• tNEXT3) 

END; 
CO~~ENT NOW IF Nl # N2 WE TAKE THE ANCESTOR OP NEXT2 UNTIL 

Nl • N2;. 

WHILE Nl ~• N2 DO 
BEGIN 

NEXT2 :• ([NEXT2J.PREFIXJ; N2 :•. N2 -1 
END; 
COM~ENT NOW WE LOOK FOR THE CO~~ON ANCESTOR 

WHILE NEXTl ~· NEXT2 00 
BEGIN 

NEXTl: • [[~EXTl). PREFIXJ; NEXT2 :• ((NEXT2l.PREFIXl; 
IF NULLBCNEXTl) THEN ERROR( "!110 COMMON ANCESTOR"> 

END; 
SELECTOR< I!IIEXTll) 

E~D 
E!I:D; 

PROCEDURE DI SA.\1V CSP, DAR, CO~O, PL, APA); 
BEGIN CO~IENT THIS CHECKS FOR A.\1BIGUITIES AND DISAMBIGUATES NODES. 

IT IS CALLED BY P22 AND Pl16. THE AMBIGUITIES RESULT FROM 
ACTUAL PARA.\1ETERS THAT PARSE TO A SINGLE ENTITY. AMBIGUITIES 
ALSO ARISE \~HEN THE RHS OF A VALUE ASSlGl\'MENT PARSES TO A 
A SINGLE ENTITY AND \\'KEN A PRIMARY PARSES TO AN IDENTIFIER; 

TYPE: • PL.GENUS.TYPE; KIND: • FL. GENUS. KIND; 
IF APA • 4 THEN DAMB(KIND ..,. "PROCEDURE", PRIM) ELSE 
I F ~ DAR THE~l 
BEGit\ cmt.t.ENT TKIS IS ~OT AN ARRAY; 

IF APA • 0 THE:\ 
BEGIN CO~l\1ENT THIS IS A.\18IGUOUS BECAUS~ EVERY PRIMARY CAN 8E A 

VARIABLE OR A FU~CTION DESIGNA70R WITH NO PARAMETERS; 

IF KIND • "SIMPLE" THE~ 
BEGIN 

IF ~ CO~D THE~ D~~BCTRUE, PRIM) ELSE 
ERRORCSP, " IS OF THE ~RO~G TYPE") 

E~D ELSE 
IF XIND • "PROCEDURE" THEN DAMB(FALSE, rRI\1) ELSE 
ERRORCSP, " IS OF THE WRO~G KIND") 

END ELSE 
IF APA • 1 THEN 
BEGIN CO~\ lENT THIS IS THE AMBIGUITY DUE TO TKE RIGHT HAND SIDE 

OF A VALUE ASSIG~ME~T; 
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iF ~1~0 a "Sl~?LE" THE~ 
!.>EGI~ 

IF CO\'[J THE:\ 
BEG I~: 

IF TYPE ..... "REF" THE!\ DA~·iB <FALSE, VAL~XPR) ELSE 
ERROR <SP," IS OF THE h'RO:\G TYPE") 

E\'D ELSE 
BEG!\ DA~.:B<TRUE, PRD1); DA~1BCTRUE, VALEXPR) END 

c\D ELSE 
IF K I :.:o "' "PROCEDURE" T!-lE~ DA~1B <FALSE, PRIM) ELSE 
ERRORCSP, "IS OF THE 1\i\O~G-KIND") 

E:\D ELSE 
IF APA .. 3 THE\ 
BEGI:-.1 ·Cml~lEH THlS IS A~ ACTUAL PARA~1ETER AMBIGUITY; 

IF KI~D .... "SI~P~E" THE\ 
BEGI:\ 

IF K i :\D " "LABEL" THE:\ :::JA~I!HFALSE, EXPR) 
ELSE DA~B(FALSE,AP) 

ED ELSE 
IF CO\D THE\ 
BEG!:\ 

IF TYPE ..,. •REF" THE\ DAMBCFALSE, VALEXPR) 
ELSE DA~lB <FALSE, EXPR) 

E:..:r.. ELSE 
BEGi:\ 

DA:.l!HTRUE, PRniJ; DA~lB (fRUE, VALEXPR); DAMB (TRUE, EXPR>; 
DA~lB (TRUE, AP) 

ED 
E\'D ELSE 
CO~l:.JE\'T THIS IS AJf ACTUAL PARA~1ETER \\'HIGH IS ENCLOSED IN 

PAR E\TH ES ES; 

IF K I \'D = "LABJL• fHEN DAMB (FALSE, EXPR) ELSE 
IF Kl\D = "SWl.,..OR KIND .. "ARRAY" THEN 
ERROR <SP, " IS OIJfiiE WIONG Kl:\0") ELSE 
IF C0\0 THEN 
BEG!\ 

lF TYPE • "REFft THEN DAM8(FALSE, EXPR) 
ELSE DAMBCFALSE, VALEXPR) 

E:~o ELSE 
IF t: 1 ~D = "fROCEDURE" THE:\ OA.\IBCFALSE, PRIM) ELSE 
BEG!:--; DA~!B(TRUE, PRim; DA~1BC7Ri.IE, VALEXPR)j DAMBCTRUE, EXPR) 
E~D 

E:\D ELSE 
CO~i~IE:\T IT IS A:-.; ARRAY; 

IF APA = 0 THE:-i 
BEG!~ C0~1\1E:\T NO A~IBIGUJTY HERE; 

IF CO\D OR KISD ~· "ARRAY THE~ 
ERRORCSP, '' HAS WRO:-iG TYPE OR KI~D") 

E:\D ELSE 
IF APA • 1 THE!\' 
BEG!~ CO~t\lE!\T THIS IS THE RIGHT HAXD SIDE AMBIGUITY; 

IF KI\0 • "ARRAY" THE~ DAMBhCOXO, VAl.EXPR) ELSE 
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ERRORCSP, " IS OF THE WRONG Kl~D") 
E~D ELSE 
CO~~ENT THIS IS THE ACTUAL PARAMETER AMBIGUITY; 

IF KIND ~· "ARRAY" THEN 
BEGIN 

IF KIND • "SWITCH" THEN D~~BCFALSE, EXPR) ELSE 
ERRORCSP, " IS OF THE WRONG KINO") 

E:\0 ELSE 
IF COND THEil< 
BEGIN 

IF TYPE ~· "REF" THEN D~\18(FALSE, VALEXPR) 
ELSE D~~B(FALSE, EXPR> 

EXD ELSE 
BEGIN D~~B(TRUE, VALEXPR>; D~~B<TRUE,EXPR) END 

END; 

PROCEDURE DI SAMF (SP, CO!>O, APA, L); 
BEGI:-1 COM.\IE;.,;T THIS IS SIMILAR TO DIS~\IV BUT HERE THE ARRAY PROBLEM 

DOES NOT ARISE; 

KI~D: ~PL. GENUS. KIND: TYPE :• PL. GENUS. TYPE; 
IF APA • 4 THEN D~\18 (KIND .... "SIMPLE", PRIM) 
IF L • 0 THE~ 
BEGIN CO~\IENT PROC':DURE WITH NO PAR~\1ETERS; 

IF APA • 0 THEN 
BEGIN CO!ot\1ENT THIS IS THE A~1BIGUITY CF THE PRIMARY; 

IF KIND .... "PROCEDURE" THEN 
BEGI:>; 

IF KIND • "SIMPLE" THEt\ DA~IB~FALSE, PRIM) ELSE 
ERRORCSP, " IS OF "-'ROI\G KIND") 

END ELSE 
IF -.COND THE~ D~~B(TRUE, PRIM) ELSE 
ERROR (SP, " IS OF WRO~G TYPE") 

E~D ELSE 
IF APA ,. 1 THEN 
BEGIN CO~r·IENT THIS IS ~VIBIGUITY FROM VALUE RIGHT HAND SIDE; 

IF KIND .,. "PROCEDURE" THEN 
BEGIN 

IF ):IND • "SIMPLE" THEN DAMBCFALSE, ?RIM) ELSE 
ERRORCSP, " IS OF THE WRO~G KIND") 

END EL:iE 
IF -.CCi~D THEN 
BEGIN 

DAMBCTRUE, PRIM); DAMB(TRUE, VALEXPR) 
END ELSE 
IF TYPE.,. "REF" THE~ DAMB(FALSE, VALEXPR) ELSE 
ERROR(SP, " IS OF THE WRO~G TYPE") 

E~D ELSE 
IF APA • 2 THEN 
BEGIN COMMENT THIS IS THE ACTUAL PARAMETER AMBIGUITY; 

IF KIND ~· "SIMPLE" THEN D~~B<FALSE, AP) ELSE 
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IF -.Cm!O THE!\ DA~\B (F.\l.SE, PR1~1) ELSE 
IF TYPE .... "REF" THEX DA~B<FALSE, VALEXPRl 

ELSE DA.\IB <FALSE, EXPR) 
E~D ELSE 
COM.\IE:\T THIS 1:; A~ ACTUAL PARA~IETER ·ENCLOSED lN PAR.ETHES I Si 

IF KISO a "LABEL" THE~ DAMB(fALSE, EXPR> ELSE 
IF KISD • "S~ITCH" OR Kl\0 = "ARRAY" THEN 
ERROR<SP, " IS OF THE ~aOXG KIXD") ELSE 
I F C0:-\0 THE:\ 
BEGI~ 

IF TYPE • "REF" THE~ DA~B<FALSE, EXPRl 
ELSE DA\18 (FALSE, VALEXPR) 

E~D ELSE 
IF KIND = "SIMPLE" THE~ DAMBCFALS~ PRIM> ELSE 
BEGI~ DA~IIHTRUE, PRDl); DA.\IB(TRUE, VALEXPR>; DAMBCTRUE, EXPR) 
END 

E~D ELSE 
CO~L\IE~T THIS IS A PROCEDURE \~"ITH PARAMETERS; 

IF Kl:-JD ... "PROCEDURE" THEX ERROR(SP, " IS OF THE WRONG KIND") 
ELSE 
IF APA • 0 THE~ 
BEGIN 

IF CO~D THEN EKROR(SP, " IS OF THE wRONG TYPE") 
E~D ELSE 
IF APA = 1 THE~: 
BEGI:\ 

IF -.CO~D THE:\ DA~.JB <TRUE, VALEXPR) ELSE 
IF TYPE ..,. REF THE~: DA:·IB (FALSE, VALEXPR> ELSE 
ERROR(SP, " IS OF THE ~RO~G TYPE") 

E~D ELSE 
COM.\IENT TH 1 S IS '!HE AP AMS I GU I TY; 

IF -.COND THE:\ BEGI t-4 DA~IB <TRUE, VALEXPR): DAMB (TRUE, EXPR) END ELSE 
IF TYPE ... "REF" THE~ OA.\IBCFALS.E, VALEXPR> ELSE DAMBCFALSE, EXPR) 

END; 

FUNCT I 0:\ F I XC0:\0 CRULE, S~·l, S~l; 
8EGIX CO~r.IE~T THIS I.-ILL HA~DLE THE ATTACID1E~T OF THE LABEL PSEUDO-

I ~STP.UCTJ O~S .-'.:\D THE GO I ~STRUCTI ON TO ":'HE RULE 
CORReSFO~OI~G TO THE ELSE P~RT OF A CO~DlT!O~AL EXPRESSION. 
SM ST,\~DS FOR THE L.l.eEI. OF THE INSTRUCTION FOLLOY.'I~G THE 
CO~DI!IO~ . .U ,;~o s:\ FOR THE LABEL OF THE RULE ~SSOCIATED 
WITH THE ELSE. THE AUG:OIE:\TEO RULE IS RETURNED; 

CONS 0 :\STR u S (FOR~·IAT : • Fl; JLABEL : • SM), 

END; 

CONSfi~STR •• S<LABELI :• 5~), 
APE~DCRULE, LIST(l~STR •• $(LABELl ;• SM))))) 

lt"'roclucecl from 
best available copy. 

FU~CTlO~ I~VDELT~ (E~V, E); 
BEGIN CO~~\IE:\T THIS PROCEDURE MERGES n.·o SYMBOL TABl-ES, ENV 
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REPRESENTIXG THE GLOBAL E~VIRO~~E~T AND E THE LOCAL ONE. 
THE ALGOL RE~~~ING RULES ARE FOLLOWED. THE RESULTING 
TABLE IS RETUR~EO. ~OTICE THAT E IS MODIFIED BUT NOT ENV; 

NEXTl :• FIRST(ENV>; 
WHILE ~~ULLB(NEXTl) DO 
BEGIN 

OPER : • SELECTOR ( [!'JEXTl)); 
IF NULLR <F I SO <E, [OPERl}) THE:-t E : • * [NEXTll; 
NEXTl : • NEXT ( [NEXTll) 

END; 
E 

END; 

PROCEDURE OUTPUT CSN, RULE); 
BEGIN CO~~ENT THIS PROCEDURE HANDLES THE OUTPUT OF THE LIST RULE. 

ADDITIO~ALLY IT BINDS LABELS AND ADDRESSES THROUGH A TABLE 
MAP Cl~tPLE.\IE!IiTED AS A CO:-\STRUCT). THE LABELLING AND 
81:-.:JI!\G MECHA~IS~I ARE THE S~\1E AS THE ONE USED FOR 
TURII\GOL. 1:-iSTRUCTJONS '{JTH A COMPONENT JLABEL ARE COPIED 
TO AVOID THE PROBLE.\1 THAT ARISES WHEN AN INSTRUCTION 
BELO:-lGING TO A CLASS SEGMEI\T IS ALSO PART OF THE CLASS 
SEG~E:-iT Of A CLASS HAVING THE FIRST ONF. AS A PREFIX; 

D : • 1; W'RITE(/, SN); 
WHILE ~NULLB<RULE)DO 
BEGIN 

NEXTl : • CAR<RULE>; 
IF ... ~ULLR <F 1 ND ( [NEXTll, FOR~1AT)) THE:-J 
BEGIN COM~E!\T THIS IS A~ INSTRUCT[ON SINCE ONLY INSTRUCTIONS 

HAVE A FOR~l.AT COMPO!\ENT. OTHERWISE IT IS A PSEUDO­
INSTRUCTIO~. THE I~STRUCTIO~ IS COPIED, THE LABEL IN 
JLABEL IS BOUND TO AN ADDRESS AND THE SEGMENT NUMBER 
IS I~CLUDED. THE LABEL IS BOU~D IN PARALLEL WITH THE 
PROCEDURE PLACE TO AVOID PASSIVATIONS DUE TO FORWARD 
JUMPS; 

D : • D • 1; IF -.NULLR (fIND ( [NEXTl), JLABEL)) THEN 
BEGiN 

[~EXTl) : • I [~EXTll; [NEXTll. S~ : • SN; 
PLACE ([NEXTl], MAP) 

E~D; 
"'RITE U, [NEXTll ) 

END ELSE 
£F ~NULLR<FINDC[NEXTll, LABELl)) THEN 
COMMENT THIS IS A LABEL PSEUDO-INSTRUCTION. UPDATE MAP; 

MAP. [[NEXTl].LABELl) :• [lJJ; 

E:\D 
END; 

RULE :• CDR(RULE) 

PROCEDURE PLACE (NEXTl, MAP>; 
COMMENT THIS PROCEDURE WILL BI~D ~ LABEL WITH AN ADDRESS IN 
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PARALLEL; 

$/ [:\EXTll. DISP : • ~lAP. [ [~EX11]. JLABELl /$; 

FU~CTIO:-; PUT! I <RULE, CO:\Dl; 
BEGI:-1 CO:\t.IE:\T THIS \,"JLI.. Pl.ACE ~lARKERS FOR !~IT AND INNER AT THE 

BEGIX\I~G A\D AT THE E:\0 OF A RULE, IF COND IS TRUE. THE 
~lARKERS ARE PSEU:l0-1:\STRUCHOSS \~ITH A COMPONENT MARK: IT 
IS USED TO PUT ~IARKERS I X THE RULE OF CLASS BODY WHEN IT IS 
~EITHER A SPLIT BODY OR A BLOCK; 

E:\D; 

IF CO~D THE\ CO:\S(l:\STR •= t<~ARK :• "!NIT"), 
APE\D(RULE, LlST(lNSTR •• $(MARK :• "INNER")))) 

ELSE RULE 

PROCEDURE SUBORDl:\~TE CQUALTB, GE\USl, GE~US2); 

BEG!~ CO~~IENT THIS PROCEDURE CHECKS TO SEE IF THE SIMULA 
SUBORDINATIO~ RULES ARE RESPECTED; 

TYPE : = GEXUSl. TYPE; 
IF TYPE ~· "U" THE~ 
BEG I:\ 

TYPEl : • GE~US2.TYPE; 
IF TYPEl ..,. TYPE2 THE\ ERROR("SUBORDit\ATION RULES VIOLATED") 
ELSE 
IF TYPE2 • "REF" THE~ 
BEl.il:\ 

END 
Et\D 

E~D; 

ATTR :• GE\USl.QUAL; 
XEXTl : • QUALTB. LATTR] i LEVEL : • [NEXTll. LEVEL; 
~EXT2 : " QUAI.TB. [GE\US2. QUAL]; 
LEVEL : = (~EXT2). LEVEL - LEVEL; 
IF LEVEL < 0 THE~ ERROR C"SUBORDI:\ATION RULES VIOLATED"> 
ELSE 
lHILE LEVEL > 0 DO 
BEGI~ 

~EXT2: = ll\~XT.U. PREFIXj; LEVEL: • LEVEL- 1 
E:\D; 
IF ~EXTl ~= :\EXT2 THE~ 
ERROR<"SUBORDI~ATIO~ RULES VIOLATED") 

FU~GTION U~!ONDOT <E, El>; 
BEGIN CO~l\ltXT THIS FUXCTIOt\ \\ILL JOIN T\-<0 SYMBOL TABLES AND IF 

THERE ARE co:.r.lO~ :\A~ES A:.10~G THE COMPONENTS AN ERROR : S 
~OTED. E CHA~GES BUT ~OT El; 

HXTl : • FIRST <E 1) ; 

~HILE -.NULLB<NEXTll DO 
BEGIN 

173 



OPER :• SELECTOR([~EXTl)); 
IF KULLR<FIND<E, [OPER))) THE~ E :• •!NEXTlJ ELSE 
ERROR(OPER, " HAS BEEN DECLARED TWICE"); 
NEXT1 : • NEXT ( [NEXTl]) 

E~D; 
E 

END; 

FUNCTION !J~IO:'\R (VIRDECL, VIRDECLl); 
BEGIN CO~t\iENT THIS FU~CTION WILL TAKE TI~O CONSTRUCTS AND MERGE THEM 

WITH THE FIRST ONE BEING RETURNED MODIFIED AND THE SECOND 
O~E RE.\1AINING m~CHA~GED; 

t-;EXTl : • FIRST(VIRDECLD; 
WHILE ~NULL<NEXTl) DO 
BEGI~ VIRDECL: • •!NEXTll; NEXTl :• NEXT((NEXTll) END; 
VJRDECL 

END; 

FUNCTION UPDQUALTB <QUALTB, CDECL); 
BEGJ~ COM.\IENT THIS PROCEDURE \~ILL :J?DATE QUALTB BY INTRODUCING· 

ENTRIES CORRESPO~DI~G TO ThE CLASSES REPRESENTED IN CDECL. 
EArH ENTRY IN QUALTB CORRESFOXDS TO A CLASS, AND IS A 
CONST.RUl.! L..; :.'HICH THE C0~1PO:\ENT PREFIX IS A POINTER TO THE 
QUAL TB CO~lPONENT CORRESPOt\0 I NG TO THE PREFIX CLASS, CLA SSN 
IS A POI~TER TO TiiE SY~1BOL TAB~E ENTRY FOR THE CLASS, AND 
LEVEL THE ~U~1BER OF CLASSES !:-1 THE PREFIX SEQUENCE OF THE 
CLASS. CDECL IS A LIST OF POI~TERS TO THE SYMBOL TABLE 
ENTRIES OF THE CLASSES DECLARED I~ A BLOCK. EACH INSERTION 
IN QUALTB, IS MADE I 1\ PARALLEL <USING THE PROCEDURE AUX) 
TO AVOID ORDERING CDECL. ~OTICE THAT THE INSERTIONS CANNOT 
BE MADE SEQUE~TIALLY "-'ITHOUT ORDERI~G CDECL SINCE IF A 
CLASS WERE DECLARED SEFORE ITS PREFIX, THE FUNCTION WCULD 
HA~G UP TRYI~G TO FIND THE PREFIX CLASS AND WOULD NEVER 
DEFINE THE PREFIX; 

WHILE ~~ULLB<CDECL) ~0 
BEGIN 

AUX([CAR<CDECL)], QUALTB>; CDECL :• CDRCCDECL) 
ENDi 
QUALTB 

END; 

FUNCTIO~ VIRMER~E (RULE, VIRDECL); 
BEGIN CO~·IENT THE I~ITIAL PART OF A RULE IS COMPOSED OF A SEQUENCE 

OF l~STRUCTIO~S CORRESPONDI~G TO THE DECLARATIONS: TO AN 
ARR y 1 0ECLARAIIC~ CORRESPONDS A SEQUENCE OF INSTRUCTIONS 
DEFINING THE R~AY'S BOUNDS FOLLOWED BY A MAK INSTRUCTION 
THAT BUILDS A SEGMENT ASSOCI~TED ~ITH THE ARRAY AND INSERTS 
A REFERENCE TO IT IN THE S'i'ACK; TO ANY OTHER DECLARATION 
CORRESPONDS ONE C-INSTRUCTJON. IF THE INSTRUCTIONS 
DEFINING THE BOUNDARIES ARE IGNORED, THE N(TH) INSTRUCTION 
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I~ THE J ~IT I AL SEQUE~CE, PLACES IN THE STACK A WORD WHOSE 
STACK DEPTH J S ~. VIR:•IERGE REPLACES IN RULE THOSE 
I~STRUCTIO~S THAT CORRESPO~D TO VIRTUAL DECLARATIONS AND 
THAT HAVE BEE~ REDEFI~ED. VIR~1ERGE IS A CONSTRUCT WHOSE 
CO~IPO~E~TS ARE THE };E\-.' INSTRUCTIONS; THE COMPONENTS' 
SELECTORS ARE INTEGERS A~D CORRESPOND TO THE SEQUE~CE 
~W~IBER <IG:\ORIKG THE BOUNDARY DEFINITION INSTRUCTIONS) OF 
THE J~STRUCTION TO BE REPLACED. BOUNDARY DEFINITION 
I :\STR:!CTIOXS ARE DELIMITED BY PSEUDO-INSTRUCTIONS WITH 
CO~PONENT ~IARKl; 

NEXTl := FIRST(VIRDECL>; D :• SEI.;·ECTOR([NEXT1]); 
WHILE ~NULLB<~EXTl) DO 
BEGIN 

RULEl : • RULE; 
\.JHILE D > 1 DO 
BEG I:\ 

IF ~SULLR<FI:\DCCARCRULEl), ~1ARK1)} DO 
BEGIN C0~1.\1E~T THIS IS THE BEGI~:-li:-.oG OF A SEQUENCE OF 

BOU~DARY DEFI:\ITIO~ IXSTRUCTJONS. SKIP OVER THE 
I~STRUCTIOXS U~7IL AXOTHER ONE WITH COMPONENT 
MARKl IS FOU!\D; 

RULEl : • CDR<RULEl>: 
\,·HILE ~ULl.R(FI~O(CAR<RULEl>, MARJCl)) DO 
RULEl :'" CDR (i\ULEl); 
RULEl : • CDR(C0R<RULE1)) 

E:\0 ELSE 
RULEl : • CDR<aULEl>; 
D:aD-1 

E!\D; I 
CARCRULEll :• [XEXTll; NEXTl :• NEXT([NEXTll) 

E:-;D; 
RULE 

END; 

IPl EXPR ;:• VALEXPR 

$P2 EXPR ::. REFEXPR 

SPl EXPR ::. DESIGEXPR 

S/PL(EXPR>.GE~US.TYPE :• "LABEL" /S 

$P4 VALEXPR ::• ARITEXPR 

$PS VALEXPR :: • BEXPR 

$P7 ARITEXrR :: = SARITEXPR 
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SPI ARITEXPR ::• IFCL SARITEXPR ELSE ARITEXPR 

S/ S~ : • NEW I STEGER; SM : • NE~'INTEGER; 
PJUMP(IFCL) : • SN; 
RULE<ARITEXPR) : • APENDCRULECIFCL), APEND(RULE(SARITEXPR), 

FIXCONDCRULE(ARITEXPR•>, SM, SN)))/$ S/ PL CARITEXPlO. GENUS. TYPE : • C0~1BTYPE (PL (SARITEXPR), 
PL<ARITEXPR•))/S S/ APA(SARITEXPR, :• IF APACARITEXPR>•O THEN 0 ELSE 4; 

APACARITEXPR•) :• IF ~siD<SARITEXPR) THEN 0 
ELSE APA(ARITEXPR); IF SID(SARITEXPR) AND APA(SARITEXPR)•4 THEN 

BEGIN 
TYPE: • PL(ARITEXPR).GE~US.TYPE; 
IF TYPE ~a "INTEGER" AND TYPE ~· "REAL" THEN 
ERROR<"CONDITIONAL ARITHMETIC EXPRESSION HAS OPERAND OF TYPE "• TYPE> 

END /S 
S/ SIDCARITEXPR> :• SIDCSARITEXPR) AND SID(ARITSXPR•> /$ 

SP9 SARITEXPR ::• TERM 

SP10 SARITEXPR ::• AOP TEa~ 

S/ VALE~CECAOP) :• 1; USECTEa~) : • "VALUE"; 
RULECSARITEXPR> : • APE~D(RULE(TERM), RULE(AOP)) /S 

S/ SIDCSARITEXPR) :• FALSE/$ 

SP11 SARITEXPR :: • SARITEXPR AOP TEa\! 

$/ VALENCE CAOP) : • 2; USE <SARIT.EXPb) : • USE <TERM) : • "VALUE"; APA(SARITEXPR•) : • APACTE~~) : • 0; 
RUL~<SARITEXPR) : • APENDCRULE(SARITEXPR•), 

APEXDCRULE(TERM), RULE(AOP))) /$ 
$/ PL<SARITEXPR).GENUS.TYPE :• COMBTYPECPL<SARITEXPR•>, 

PL (TERM)) /$ S/ SID(SARITEXPR) : • FALSE /S 

SP12 AOP ::• + 

S/RULE(AOP) : • IF VALENCE(AOP) • 1 THEN NULL ELSE 
LIST<INSTR *• S <FORMAT : • P2; OPEll : • "•")) /$ 

SP13 AOP ::•-

S/RULECAOP) :• LIST(INSTR *• $(FORMAT :• F2; 
OPER : • I P VALENCE (AOP) • ·2 THEN "-". ELSE "NEG")) /$ 

SP14 TERM ::• PAC 

SP15 TERM ::• TER~ MOP PAC 
I 
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$1 USE<TER~I•> :" USE(FAC) : • "VALUE"; SIOCTERM> : • FALSE; 
APACTERM•J : • APACFACl : • 0; 
RULE CTER~D :"' APE:\0 (RULE CTER:•I"'), 

APE~D<RULE<FAC), RULE(MOP))) /$ 
$/ PL (TERM) : • PL (MOP) i 

TCMOPl :• Cm1BTYPE<PL(TER.\1•), PL(FAC)) /S 

SPHi ~lOP ::"' • 

$1 RULE (~lOP) : = LIST CI ~STR *- S CFOR.\1AT : • F2; OPER : • "*")); 
PLC~OP>.GE~US.TYPE :• T(MOP) /$ 

$P17 r.IOP ::=I 

$/ RULE<~IOP> :" LIST(IKSTR •• $(FOR.\1AT: • F2; OPER: • "!")); 
PL(~IOPl. GE:\US. TYPE : • "REAL" /$ 

$P18 MOP ::• DIV 
$1 RULEC~IOP):= LIST<I:\STR *- $CFOR.\tAT :• F2; OPER :• "DIV")); 

PLOIOP>. GE:\U5. TYPE : • "IXTEGER"i 
IF T<~lOP) -,: "IXTEGER" THE~ 
ERROR<"MIXED TYPES I:\ ""DIV"" OPERATION") /$ 

SP19 FAC ::. PRIM 

SP20 FAC ::• FAC **PRIM 

$1 PL<FACJ.GE~US.TYPE :="REAL"; APACFAC•> : • APA(PRIM) : • 0; 
USE <FAC•> : = USE CPRI~n :"' "VALUE"; SI 0 (FA;:) : • FALSE; 
RULECFAC) := APE~D<RULE<FAC•>, APE~O(RULECPRIM), 

LIst <1:\STR *- S (FORMAT : • F2; OPER : • "u")))) IS 

SP21 PRIM:: • KU 

$1 PLCPRI~1>.GE~US.TYPE :• "I~TEGER"; SID<PRIM) :• FALSE; RULECPRHI) : • LIST<I:\STR *- $(FORMAT: • F3; V: • V<NU))) /S 

$P22 PRIM::= VAR 

S/ SID(PRIM> :"' TRUE /$ 
$1 TYPE: • PL<VAR>.GE:\US.TYPE; 

DISA~1VCSPCVARJ, DAR<VAR), TYPE..,. "INTEGER" AND 
TYPE ...,,. "REAL", PL (VAR) 1 APA (PRIM)) /$ 

SP2J PRIM::= FUNC 

$1 SIOCPRIM) : = TRUE /S 
S/ TYPE: • PLCFU~C>.GE~US.TYPE; 

DISA~F<SP(FUXC), TYPE..,. "IXTEGER" AND TYPE~· "RE~L, 
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PL<FUNC), APACPRIM), LCPUNC)) /S 

SP24 PRIM:: • ( ARI!EXPR) 

$/ USECARITEXPR) : • "VALUE"; 
APA(ARITEXPR) ; ~ IF APACPRIM>•2 THEN J ELSE APACPRIM) /S 

SP48 VAR :~· tDl 

S/ DAR(VAR) :• FALSE /S 

SP49 VAR ::• ARIDl { SUBLIST l 

S/ DARCVAR) :• TRUE; USE<ARIDl) :• "VALUE"; 
RULECVAR> :• APE~DCRULE<ARIDl), APESD(RULE(SUBLIST), 

LJST(INSTR•e $(FORMAT :• F4; USE :• USECVAR))))) /$ 

SPS2 IDl ::• SIGMA 

$/ NEXTl :• Flt\DCENV<IDD, [SP(SIGMA)]); 
IF ~NULLB<~EXTl) THEN PL(IDl) :• {NEXTl] ELSE 
ERROR <"U~DFFI:\ED I DENT I FI ER", SP (SIGMA)) /$ 

$/ ADDR :• CHECKIDENTIF:ER<ITEM<IDl), QUAl.TB(IDl), PL(I01)); 
RULE (101) :=IF ~UL~B <ADDR) THEN 

CONS 0:\STR •• S (FORMAT : • F7; ADDR : • ADOR), 
LISTCINSTR •• $(ADDR: • PL(IOl),ADOR; 

IF USE(I01) THEN FORMAT :• FS ELSE FORMAT :• F6))) 
ELSE 
LIST(INSTR •• $(ADDR: • PL(IDl).AODR; 

IF ~SE<IDl) THEN FO&~AT :• F7 ELSE FORMAT :• F8) /$ 

SP53 ID1 :: • RID 

$1 IF PLCRID).GENUS.KIND • "CLASS" THEN 
ERROR~SPCRID)," CLASS I DENT. USED IN RE.\10TB IDENTIFIER") /$ 

SP83 RID ::• SOBJEXPR. ATTRIO 

S/ USE (SOBJEXPR) : • "VALUE"; APA (SOBJEXPR) : • 0; 
RULE(RIO) : • APE~D<RULE(SOBJEXPR), LIST~INSTR •• $(IF 

USE <RI 0) • "VALUE" THEN FORMAT • FS ELSE FORMAT : • F6; 
ADDR: • PL<ATTRIO).ADDR))) /S 

S/ PLCRID) :• PL(ATTRID) /S 
S/ ENV (A TTR I D) : • {QUALTB <RIC). CPL (SOBJ EXPR>. GENUS. QUAL] • 

CLAS SNJ • LOCALi; 
COMMENT CHECK TO SEE if ENV CONTAINS CLASS DBCLARATIONS. 

IF YES, REMOTE ACCESS IS ILLEGAL; 
, 

NEXTl :• ~IRST(E~V(ATTRIO))j 
WHILE ~NULLB(NEXTl) DO 
BEGIN 

IF [NEXTll.GENUS.KIND = "CLASS" THEN 
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ERROR ("RE:·iOTE I D. ACCESSES CLASS WHICH HAS CLASSES AS ATT 
R I BUTES"); ~EXTl : = SEXT <l~EXTll) IS 

$P84 ATTRID :: • SIG~1A 

$1 t\EXTl : • Fl~D<ENV(ATTRID), [SP(SlGMA)]); 
IF ~~wLLBC~EXTl> THE~ PL(ATTRID) := [NEXTll ELSE 
ERROR("U:\DEFI:\ED ATTRIBUTE IDENTIFIER "• SP(SIGMA))/$ 

S P 8 5 AR I D 1 : : • I D 1 

$/ IF APACARlDl> • 0 THEN 
BEGI:\ 

IF PL\lD1J.GE~US.KIXO ~·"ARRAY" THEN 
ERROR("ARRAY IDEHIFIER EXPECTED A:\0 NOT FOUND ", 

SPCIDl>) 
E:-lD /S 

SP86 SUBLIST :: = SUSEXPR 

$/ L <SUBLI ST) : = 1; USE <SUSEXPR) : • "VALUE" /S 

SP87 SUBLIST ::• SUBLIST, SUBEXPR 

$/ USE<SUBEXPR) :="VALUE"; L(SUBLIST) :• L(SUBLIST•> • l /S 
$1 RULE(SIIBLIST) :• APE~D(RULE(SUBLIST•), CONS<INSTR •• 

$ <FOR.\1AT : • F4; USE : • "VALUE"), RULE (SUBEXPR)) /S 

SP88 SUBEXPR :: = ARITEXPR 

$/ APA(ARITEXPR) :• 0 I$ 

$P89 FU~C :: = PROCIDl APPART 

$/ USE <PROCI DD : = "VALUE"; 
RULE <FUNC> : .. CO:\S (I ~STR *- $ (FOR~IAT : a Fll>, 

CO~S<I~STR *• $(FOR~1AT : .. F9; OPER :• "RET"), 
CONS<I~STR .. S<FOR~I.ol.T :a F9; 

OPER: = PL<PROCIDl).GENUS.TYPE), 
APEND(RULEtAPPART), APE~D(RULE<PROCIDl), . 

LIST(l~;STR •• $(FORMAT :• FlO)))))))/$ 

$P90 PROCIDl ::• 101 

$/ IF APA • 0 THEX 
BEGIN IF PLCIOll.GE~US.KlSD ~· "PR~CEDURE" THEN 

ERRORC"PROCEDURE IDESTIFI~R HAS WRONG KIND "• SPOOl)) 
E~D /$ 

SP91 APPART ::• 
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S/ RULECAPPART> : • NULL; L(APPART> :• 0 /S 

SP92 APPART ::• < APLIST) 

SP93 APLIST ::• AP 

S/ L(APLIST> :• 1 /S 

SP94 APLIST ::• APLIST, AP 

$/ L<APLIST~ :• LCAPLIST•> + 1 /S 
$1 RULE(APLIST) :• APENDCRULE(APLIST•>, RULE(AP)) /$ 

SP9S AP ::• EXPR 

$1 SN : • NEWI ~7EGER; USE (EXPR> : • "NAME"; APA CEXPR) : • 2; 
OUTPUTCAPE~O(RULECEXPR>, 

LIST(l~STR •• S<FORMAT :• F12))), SN) /S 
$/ RULE CAP) : • BACTUAL CPL CEXPR). GENUS. LL CAP), SN> IS 
$1 LLCEXPR) :• LL<AP) + 1 /S 

SP96 AP ::• ARID1 

S/SN : • NEWINTEGER; USECARIDl) : • "NAM:"; APACARIDU : • 2; 
OUTPUT<APE~DCRULE(ARIDl), 

LISTCINSTR .. $(FORMAT: • P12))), SN) /$ 
S/ RULECAP) ::• BACTUAL(PL(ARIOl).GENUS,LL(AP),SN) /$ 
S/ D~~8(PLCARID1).GENUS.KIND • "ARRAY", AP) /$ 

SP97 AP ::• SWID1 

S/ SN : • NEWI NTEGER; APA (SI:I Dl)t : • 1; 
OUTPUT(APEND(RULE<SWIDl), 

LISTCINSTR •• $(FORMAT :• F12))), SN) /$ 
S/ RULE<AP) :• 8ACTUAL(PLCSWJD1).GENUS, LL(AP), SN) /S 

$P98 AP ::• PROCIOl 

$/ SN : • NEWJ~TEGER; !JSE<PROCIDl) : • "NAME"; APA(PROCIDl) : • 2; 
OUTPUT(APEND~RULECPROCIDl), 

l!STCINSTR •• $(FORMAT :• F12))), SN) /$ 
S/ RULE CAP) : • BACTUAL<PLCPROCJD1).GENUS, LL(AP>, SN) /$ 
S/ DAMB(PL(PROCID1).GENUS.KIND • "PROCEDURE", AP) /$ 

$P103 BEXPR ::• SBOOL 

SP104 BEXPR ::• IPCL SBOOL ELSE BEXPR 
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S/ S:\:: :\E\\1:\TEiiER; SM:,. ~Et-.'1:\TEGER; FJL~1P([FCL) : .. SN; 

PL<SEXPR> := APE~D<RULECIFCL), APE~D<RULE(SBOOL), 

Fl XCOND <RULE <BEXPR•), SM, SN))) I$ 

$1 SlDCBEXPin : = SlDCSBOOL> A:\0 SID<BEXPR) /$ 

S/ APACSBOOL> : = IF APA<BEXPR):Q THE~ 0 ELSE 4; 
APACBEXPR•> := IF ~SlD<SBOOLl THEX 0 ELSE APACBEXPR>; 
CO~t\lE:\T THE FOLLO\\I \G TEST IS PERFOR.\1ED WHES THE BEXPR IS 

PART OF AX A~BIGUITY SI~CE IN THIS CASE THE TYPE OF SBOOL 
HAS ~OT BEE~ TESTED. THE CLAUSE (SID<BEXPR•l OR 
~SIDCBEXPR)) IS I~ TO GUARA~TEE THAT THE TEST IS 
PERFOR~IED OXLY AFTER THE AMBIGUTI ES I~ BEXPR• HAVE BEEN 

ALL RESOLVED; 

IF SIOCSBOGL) ASO APA<S800L)•4 A:\0 <SIDCBEXPR•> OR 
~SIDtBEXPR•)) A~D PLCSBOOL).GE~US.TYPE ~·"BOOLEAN" THEN 

ERRORC"CO~DITIO~AL BOOLEA:\ EXP~ESSION HAS OPERAND WITH TYPE" 
, PL<SBOOL).GE~US.TYPE) /~ 

$Pl05 SBOOL ::" l~IP~ 

$Pl06 SBOOL ::= SBOOL EQUJV IMPL 

$1 PL(SBOOL) :s PL(SBOOL•)i APA(SBOOL•> :• APA(IMPL) : • 0; 
USE <SBOOL_,) • - USE <I 'iP L) : = "\' ALUE"; SID CSBOOL) : "' FALSE; 
RULE<SBOOL) :• APE~D<RULE(SBOOL•>, APE~OCRULE<IMPL), 

Ll ST (1 :\STR •• S <FORMAT : • Fl4; 
OPER :• "EQUIV")))) S/ 

SP107 IM?J. ::,. BTER~I 

$P108 IMPL ::• IMPL IMPLIES BTERM 

$1 PL(I~!Pl.l : = P!.Cl~lPL•>; USE<I:•!PL•) : ·: USECBTERM) : = "VALUE"; 

APA<I~\PL•> := APA(BTER:.l» :• 0; SIDOMPL) :• FALSE; 
RULECIMPLl : • APE~D<RULECI~PL•), APEND<RULE<BTERM), 

LlST(l:\STR *s <FOR~IAT :• F14; OPER :c "lMPLY")))l /$ 

$P109 BTERM ::= BFAC 

SP110 BTER:.\ ::"' BTER~l OR BFAC 

$1 PL (BTERM) : • PL <BT~R~:*>; APA CSTERl-1•} :" APA <BFACl :"' 0; 

USECBTER~l•) : • USE CBFACl : = "\'ALUE"; Sl D (BTER~ll : • FALSE; 
RULE <BTER:.I) : • .l.PE\0 (RULE <BTER~1•) I APE:-10 <RULE <BFAC). 

LIST<I~STR *• $(FORMAT :• F14; OPER :• "OR")))) /$ 

SPlll BFAC ::• BSEC 

SP112 BFAC ::• BFAC A~D BSEC 
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S/ PLCBFAC> :• PL<BFAC•>; USE<BFAC•) :• USE<BSEC) :• "VALUE"; APA (8FAC> : • APA CBSEC> : • 0; SID <BFAC) : • FALSE; RULE<BFAC) : • APEND<RULECBFAC•), APENDCRULE(BSEC), 
LIST(INSTR •• SCFOR~AT :• P14; OPER :• "AND"))))/$ 

SPlll BSEC ::• BPRJM 

SP114 BSEC ::• ~ BPR4M 

$1 USE CBPRIM> : • "VALUE"; APA CBPRIM> : • 0; SID CBSEC) : • FALSE; RULECBSEC) : • APENDCRULE(BPRJM), 
LIST(JNSTR :• $(FORMAT;. P14, OPER :• "~"))) /S 

SP11S BPRIM ::• LOGVAL 

$1 PLCBPRIMLGENUS :• $(KINO :• "SIMPLE"; TYPE :• "BOOLEAN">; SIDCBPRIM) :• FALSE li 

$P116 &PRIM ::• VAR 

$1 SIDCBPRIM) :• TRUE/$ 
$1 DISAMVCSP(VAR), DARCVAR), PLCVAR).GENUS.TYPE ~·BOOLEAN, 

PL<VAR>, APACBPRIM)) /S 

SP117 BPRIM ::• FUNC 

$1 SIOCBPRIM) : • TR~E /$ 
$/ DISAMFCSPCFUNC), PLCFUNC>.GENUS.TYPE ~·"BOOLEAN", PLCFUNC), 

APACBPRIM), LCFUNC)) /S 

SP118 BPRIM ::• REL 

$/ USECREL) :• "VALUE"; SIDCBPRIM> :• FALSE; PLCBPRIM).GENUS :• SCXIND: • "SIMPLE"; 
TYPE :• "BOOLEAN") /$ 

SP119 BPRIM :: • C BEXPR ) 

S/ USECBEXPR) :• "VALUE"; 
APACBEXPR) :• IF APACBPRIM)•2 THEN 3 ELSE APACBPRIM) /$ 

SP120 LOGVAL ::• TRUE 

$1 RULECLOGVAL) :• LIST(INSTR •• $(FORMAT :• FlS; 
OPER :• "TRUE">> /S 

SP121 LOGVAL ::• FALSE 

S/ RULECLOGVAL> :• LIST( I~STR •• $(FORMAT :• PlS; 
OPER :• "FALSE")) /$ 
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SP122 REL :: • SARITEXPR RELOP SARITEXPR 

$/ APA CSARITEXPR> : = APA CSARITEXPR-> : .. 0; 
RULECREL) : • APE~DCRULE<SARITEXPR), APEND<RULECSARITEXPR•>, 

RULE<RELOP>>> /$ 

SP124 REL :: = OSJREL 

SP125 REL :: • REFREL 

$Pl26 RELOP :: • < 

$/ RUL£(RELOP) : • LISTCI~STR •• SCFO~~AT : • Fl6; 
OPER : • "<")) /$ 

$Pl27 RELOP :: • <• 

$1 RULE<RELOP> : • LISTCI~S1R •• l(FORMAT: • F16; 
OPER: • "<•")) /$ 

$Pl2B RELOP :: • • 

$1 RULE<RELOP> : • LISTCI~STR •• $(FORMAT :• P16; 
OPER : • "•")) /$ 

SP129 RELOP ::= >• 

S/ RULECRELOP) : • LIST{l~STR •· SCFO~~T :• F16; 
OPER :• ">•"» 1$ 

SP130 RELOP ::a> 

$1 RULECRELOP) : ~ LIST(ISSTR •• S<FOa~AT :• F16; 
OPER : • ">")) /S 

SP131 RELOP :: • ~· 

$1 RULECRELOP> :• LIST<INSTR •• $(FORMAT :• F16; 

SP133 OBJREL :: • SOBJEXPR IS CLIDl 

$/ APA CSOBJEXPR> : • 0; 

OPER : • ''-.•")) /$ 

RULECOBJREL> :. APESDCRULECSOBJEXPR>, AP~ND<RULECCLIDl>, 
LISTCINSTR *- $(FORMAT: • F16; OPER: • "IS")))) /$ 
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SP134 OBJREL ::• SOBJEXPR IN CLID1 

S/ APA<SOBJEXPR> :• 0; 
RULE<OBJREL> : • APEND(RULE(SOBJEXPR), APEND<RULE<CLIDl}, 

LIST<INSTR •• $(FORMAT :• F16; OPER :• ~IN"}))) /$ 

SP13S REFREL ::• OBJREFREL 

SP136 OBJREFREL ::• SOBJEXPR REFCOMP SOBJEXPR 

$/ APA(SOBJEXPR) :• APA(SOBJEXPRt) : • 0; 
RULECOBJREFREL) : • APEND<RULE(SOBJ~XPP.J, 

APEND<RULE(SOBJEXPR•>, RULE<REFCOMP))) /S 

SP137 REFCOMP ::• •• 

S/ RULECREFCOMP) :• LISTONSTR ta $(FORMAT :• F16; 
OPER :• "••")) /$ 

SP138 REFCOMP :: • •I= 

$1 RULECREFCOMP> :• LIST(INSTR •• $(FORMAT :• P16; 
OPER :• "•/•")) /$ 

SP147 REFEXPR :: • OBJEXPR 

SP148 OBJEXPR ::• SOBJEXPR 

SP149 OBJEXPR ::• IF BEXPR THEN SOBJEXPR ELSE OBJEXPR 

Sl SM : • NEWI NHGER; S:i : " NEWHITEGER; USE CBEXPR) : • "VALUE"; 
APA (BEXPR> : • O; 
RULECOBJEXPR> :• APENDCRULE<BEXPR>, APENDC 

CONSCINSTR •• SCFORMAT :• F17; JLABEL: • SN), 
RULECSOBJEXPR>>, FIXCOND<RULE<OBJEXPR), SM, SN>>> /S 

S/ PL(OBJEXPR).GENUS :• S<TYPE :• "RiF"; QUAL :• 
CONDQUALCPLCSOBJEXPR>.GENUS.QUAL, 

PLCOBJEXPR•>.GENUS.QUAL)) /S 
S/ APA(SOBJEXPR> :• IF APACOBJEXPR>•O THEN 0 ELSE 4; 

APACOBJEXPR•> :• IF ~SIDCOBJEXPR> THEN 0 ELSE APACOBJEXPR); 
IF PLCSOBJEXPRl.GENUS.TYPE ~· PLCOBJEXPR•>.GBNUS.TYPE THEN 
ERRORC"CONDITIONAL OBJF.CT EXPRESSION HAS OPERAND OF TYPE "• 

PL(SOBJEXPR).GENUS.TYPE> 1• 
S/ SIDCOBJSXPR> ~ • SUHSOr/EXPR> AND St:";(OBJEXPR•> /S 

$P150 SOBJEXPR ::• NONE 

$1 PL (SOBJEXPR). GENUS : • $ <TYP B : • "R.SP"; QUAL : • -1); 
SlDCSOBJEXPR> : • FP.i.S.t; 
RULECSOBJEXPR) :• !..ISlONSTR .. $(FORMAT :• F18; 
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SP151 SOBJEXPR :: c VAR 

$1 SID(SOBJEXPR) :• TRUE/$ 
$1 NEXTl : • PLCVARl.GENUS; 

TYPE: .. (NEXTl).TYPE; K'Nn :•[NEXTl].KIND; 

QUAL : = -1)) IS 

IF APA(SOBJEXPR> • 4 THEN ~AMB'KIND ~· "PROCEDURE") ELSE 
IF ~DARCVAR)THEN 
BEGIN 

IF APACSOBJEXPR> • 3 THEN 
BEGIN 

IF KIND ~· "SIMPLE" THEN 
BEGIN 

IF KIND • "LABEL" THEN DAMB(FALSE, EXPR) ELSE 
!F KIND ~· "PROCEDURE" THEN 
ERROR(SP<VAR), " lS OF THE WRONG KIND") ELSe 
IF COND THEN DAMBCFALSE, EXPR> 

ELSE DAMBCFALSE, PRIM) 
END ELSE 
IF COND THEN DAMB!EXPR, FALSE> ELSE 
BEGIN DAMBCTRUE, PRIM>; DAMBCTRUE, EXPR> END 

END ELSE 
IF APA(SOBJEXPR> • 2 THEN 
BEGIN 

IF KIND ~· "SIMPLE" THEN 
BEGIN 

IF KIND ~· "LABEL" THEN DAMBCFALSE, AP) 
ELSE DAMB(FALSE, EXPR) 

END ELSE 
IF TYPE ~· "REF" THEN DAMBCFALSE, EXPR) ELSE 
BEGIN 

DAMBCT~UE, SOBJEXPR); DAMBCTRUE, EXPR); 
DAMB (TRUE, AP) 

END 
END iLSE 
IF KIND ~· "SIMPLE" THEN 
BEGI~ 

IF KIND = "PROCEDURE" THEN DAMBCFALSE, SOBJEXPR) ELSE 
ERRORCSP<VAR)," IS OF THE WRONG KIND") 

END ELSE 
IF TYPE • "REF" THE~ DAMBCTRUE, SOBJEXPR) ELSE 
ERRORCSP(VAR), " IS OF THE WRONG TYPE") 

END ELSE 
IF APACSOBJEXPR) • 2 OR APACSOBJEXPR> • J THEN 
BEGIN 

IF KIND ~z "ARRAY" THEN 
BEGIN 

IF KIND • "SWITCH" THEN DAMB(PALSE,EXPR) ELSE 
ERRORCSPCVAR), " IS OF THE WRONG KIND") 

END ELSE 
DAMBCTYPE • "REF", EXPR> 

END ELSE 
IF TYPE .... "REF" OR KIND ~· "ARRAY" TtiEN 
ERROR(SP(VAR), " HAS WRONG TYPE OR KIND) /S 
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SP152 SOBJEXPR :: • }'UNC 

S/ SIDCSOBJEXPR> :• TRUE /S 
S/ NEXTl ;. PL<FUNC).GENUS; 

TYPE: • lNEXTlJ. TYPe; KIND: • [NEXT1). KIND; 
IF APA(SOBJEXPRl • 4 THE~ DAMB<KIND ~· "SIMPLE") ELSE 
IF LCFUNC) • 0 THEN 
BEGIN 

IP APA(SOBJEXPR> • 3 THEN 
BEGIN 

IF KIND ~· "PROCEDURE" THEN 
BEGIN 

IF KIND •"LABEL" THEN DAM~(FALSE, BXPR) ELSE 
IF KIND ~· "SIMPLE" THEN 
ERRORCSP(SOBJEXPR>, " IS OF THE WRONG KIND") ELSB 
IF COND THEN DAMBCFALSE, EXPR) 

ELSE DAMB(FALSE, PRIM) 
END ELSE 
IF COND THEN DAMBCFALSE, EXPR> ELSE 
BEGIN DAMBCTP.UE, PRIM); DAMBCTRU&, EXPR) END 

END ELSE 
IF APACSOBJEXPR) • 2 THEN 
BEGIN 

IF KIND • "PROCEDURE" THEN DAMBCFALSE, AP) 

END ELSE 
ELSE DAMBCFALSE, SOBJEXPR) 

IF TYPE ~· "REP" THEN 
EiROR(SP<FUNC), " IS OF THE ~~ONG TYPB"> ELSE 
JF KIND • "PROCEDURE" THEN DAMB<TRUE, SOBJEXPR> ELSB 
IF KIND • "SIMPLE" THEN DAMB<FALSI, SOBJBXPR) &LSI 
ERROR<SP<FUNC), " IS OF THE WRONG KIND"> 

BNO ELSE 
IF APACSOBJEXPR) • 2 THEN 
BEGIN 

IF KIND • "PROCEDURE" THEN DAMBCTYPB • "kBP", BXPR) BLSB 
ERRORCSPCFUNC), " IS OF THE WRONG KIND") 

END ELSE 
IF KIND ~· "PROCEDURE" OR TYPE ~· "PEF• THEN 
ERRORCSPCFUNC), " IS OF THE WRONG KIND") /S 

SP153 SOBJEXPR ::• OBJGEN 
S/ SIDCSOBJBXPR> :• FALSE/$ 

SP154 SOBJEXPR ::• LOCOBJ 
$/ SIDCSOBJEXPR) :• FALSE/$ 

SP155 SOBJBXPR ::• QUALOBJ 
S/ SID<SOBJEXPR> :• FALSE IS 

SP156 SOBJEXPR ::• ( OBJEXPR) 

S/ USE<OBJEXPR) :• "VALUE"; 
APACOBJEXPR> :• IF APA(S08JEXPR)•2 TH&N 3 

BLSB APA<SOBJBXPR) /S 
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SP157 OBJGEN ::• NEW CLID2 APPART 

S/ RULE<OBJGEN) : • APENDCCONS<INSTR •• $(FORMAT :• Fll), 
RULE(APPART)), APENDlRULE(CLID2) 1 

CONSCINSTR •• $(FORMAT :• F19; 
NFOiMALS: • PL<CLID2). NFORMALS) 1 

LIST<INSTR •• $(FORMAT :• F12))))) /$ 
S/ PL(OBJGEN).GENUS: • $(TYPE :• "REF"; 

QUAL :a PL(CLID2). SEGMENT) /$ 
S/ IF PL (CL I 02). NFORMALS ~· L (APPART) THEN 

ERROR<"WRONG NUMBER OF PARAMETERS I~ CLASS "• SPCCLI02)) 1$ 

SP157A CLID2 ::= IDl 

$1 IF PL(I01).GENUS.KIND ~·"CLASS" THEN 
ERROR(SP(IDl), " NOT A CLASS IDENTIFIER") /$ 

SP158 CLIDl :: • SIGMA 

$/ NEXT1 :• FIND<ENV<CLIDl>, [SP(SIGMA)]); 
IF ~NULLB<NEXTl> TrlEN PLCCLIDl) :• [NEXTl] ELSE 
ERROR<SPCSIGMA>, " UNDECLARED CLASS IDENTIFIER") /$ 

S/ IF PL(CLIDl>.GENUS.KIND ~·"CLASS" THEN 
ERROR(SP(SIGMA>, " NOT A CLASS IDENTIFIER") /$ 

SP159 LOCOBJ ::• THIS CLIDl 

$1 RULE<LOCOBJ) : • LIST<INSTR •• $(FORMAT: • FIB; 
OPER :• "THIS"; QUAL :• PL(CLIDl).SEGMENT)) /S 

S/ PL <LOCOBJ>. GENUS : • <TYPE : • "REF"; K 1 NO : • "SIMPLE"; 
QUAl :• PL(CLlDl).SEGMENT) /$ 

SP160 QUALOBJ ::• SOBJEXPR QUA CLIDl 

$1 APA<SOBJEXPR> :• 0; 
PL<QUALOBJ). GENUS : • $(TYPE: • "REF"; KIND :"' "SIMPLE"; 

QUAL: • PL<CLIDl).SEGMENT) /S 

SP161 DESIGEXPR ::• SDESIGEXPR 

SF162 DESIGEXPR :: = IFCL SDESiuEXPR ELSE DESIGEXPR 

S/ SM: • NEWINTEGER; SN: • NEWINTEGER; FJUMP<IFCL) := SN 
RULE (DES I GEXPR) : • APEND <RULE (I FCl.), A PEND (RULE (SDES I GEXPR) 1 

FIXCOND<RULE<DESIGEXPb>, SM, SN))) /$ 
S/ APA(SDESIGEXPR> :• IF APA(SDESIGEXPR>•O THEN 0 ELSE 4; 

IF PL<SDESIGEXPR).GENUS.TYPE ~· PL<DESIGEXPRa).GENUS.TYPE 
THEN 
ERROR<"CONDJTIONAL DES£GNATIONAL EXPRESSION HAS OPERAND OF T 

YPB "• PL<SDESIGEXPR>.GENUS.TYPE> /$ 
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SP163 SDESIGEXPR ::• LABELl 

SP16C SDESIGEXPR ::• SWDESIG 

SP165 SDESIGEXPR ::• ( DISIGEXPR > 
S/ APACDESIGEXPR) :• IP APA<SDESIGEXPR>•2 THEN 3 

ELSE APA(SDESIGEXPR> /S 

$P166 LABELl ::• SIGMA 

S/ RULECLABELl} :• LISTCINSTR •• $(FORMAT: • F7; 
ADDR :• PL<LABBL1).ADDR>> /S 

S/ NEXTl :• FIND<ENV<LABEL1>, [SPCSIGMA>l>; 
IF ~NULL8(NEXT1> THEN PL<LABEL1> :• (N~XTll ELSE 
ERRORCSPCSIGMA), " UNDECLARED LABBL") /S 

S/ KIND: • PL<LABELl>.GENUS.KIND; 
IF APA(LABELl) • 3 THEN DAMBCKIND • "LABEL", EXPR> SLSE 
IF APA(LABELl) • 2 THEN 
BEGIN 

IF KIND ~· "LABEL" THEN 
BEGIN 

IF KIND~· "SIMPLE" THEN DAMBCFALSB,AP> 
ELSE DAMBCPALSB, EXPR) 

END ELSE 
BEGIN DAMB<TRUE, EXPR>; DAMB(TRUB, AP) BND 

END ELSE 
IF APACLABELl)•O AND KIND ~· "LABEL" THEN 
ERROR(SP(SIGMA), " NOT A LABEL") /S 

SP167 SWDESIG ::• SWIDl [ SUBEXPR l 

S/ USE(SUBEXPR> :• "VALUE"; 
RULE(SWDESIG) :• APENDCRULE(SWID1), APEND(RULECSUBEXPR), 

LIST(INSTR •• $(FORMAT :• P•; USE :• VALUE)))) /$ 
$1 PLCSWOESIG) :• IF PL(SWIDl).GENUS.KIND • "SWITCH" THEN 

SCGENUS.KIND :• "LABEL"> ELSS PLCSWIDl) /$ 

SP168 SWIDl ::• SIGMA 

$/ RULE(SWIDl> :• LIST(INSTR •• S<FJRMAT :• P7; 
ADnR :• PLCSWIDl).ADDR)) /S 

S/ NEXTl :• FINDCENVCSWIDl), [SP<SIGMA>J>; 
IF ~NULLBCNEXTl) THEN PLCSWIDl) :• [NEXTlJ SLSE 
ERRORCSPCSIGMA), " UNDECLARED SWITCH IDENTIFIER"> /S 

S/ KIND: • PL<SWIDll.GENUS.KIND; . 
IF APACSWIDl) • 2 OR APACSWIOl) • 3 THEN 
BEGIN 

IF KIND • "SWITCH" THEN DAMBCTRUE, EXPR) ELSE 
IF KIND • "ARRAY" THEN DAMBCPALSE,EXPR) ELSE 
ERROR<SP<SIGMA), " IS OF THE WRJNG KIND") 

END ELSE 
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IF APA<SWI01l • 1 THEN DAMB<KIND = "SWITCH", AP) ELSE 
IF APA<SWI01) • 0 AND KlNU ~· "SWITCH" THEN 
ERRORCSPCSIGMA>, "NOT A SWITCH IDENTIFIER") /$ 

SP169 PROGR\M ::=BLOCK 

S/ SN : • NEWINTEGER; LL(BLOCK) : = 4; DO (BLOCK) : • 1 ; 
CL <BLOCK) : = 0; ITEM (BLOCK) : = NULL; ENVl (BLOCK) : = NULL; 
ENVA<BLOCK) : • NULL; QUALTBCBLOCK) :• NULL; 
BEGUN<BLOCK) :• TRUE; ENV(BLOGK) := ECBLOCK>; 
WRITE ("ORIGIN •", SN, I); 

OUTPUT(APEND(UNDECL(BLOCK\, APEND(RULE(BLOCK), 
LISTC:NSTR •• $(FORMAT; .. F12)))), SN) /S 

SP170 PROGKAM ::~ COMPST 

S/ SN : = NEWI NTEGER; LL CGOMPST) : • 4; DC (COMPST) : • 1; 
CLCCOMPST) :• 0; tTEM(COMPST) :• NULL; ENVl(COMPST) :"'NULL; 
ENV(COMPST) : = E(COMPST); Q~ALTB(COMPST) :• NULL; 
WRITE( "ORIGIN •".SN. /); 
OUTPUTCAPENDCUNDiCLCGOMPST).APEND<RULE(COMPST), 

LISTONSTR *- S<FORMAT :• F12)))}, SN) /$ 

SP171 COMPST ::= UNLCOMP 

SP172 COMPST :: • LABELO: COMPST 

$/ON: • CHECKVIRTCE~Vl(COMPST>. SP(LABELO>. "LABEL") /$ 
$/ SN : • NEW INTEGER; 

RULE(COMPST) :• CONS(INSTR •· $(LABELl :• SN), 
RULECCOMPST•>> /$ 

S/ INSTR: • S<FORMAT :• F20; JLABEL :• SN) /S 
$/ UNDECL(COMPST) :• IF ON~· 0 THEN UNDECL(COMPST•l ELSE 

CONS (I NSTR. UNDECL <COMPST•» /S 
S/ VIRDECLCCOMPST) : • IF ON • 0 THEN VIRDECLCCOMPST•)ELSE 

PUTIN(VIRDECL(COMPSTw) : [ON] : • INSTR) /S 
S/ DCCOMPST> :• IF ON • 0 TEl~ D(COMPST•> +1 ELSE D(COMPST•) /S 
S/ DO<COMPST•) :• IF ON • 0 THEN OO(COMPST) + 1 

ELSE DO(COMPST) 1$ 
S/ ECCOMPST) := IF DN ~· 0 THEN E(COMPST•) ELSE 

UNIONDOT(E(COMPST•), El •• $([S?CLABEL0)] : = 
S<GENUS :• $(KIND :• "LABEL"; TYPF. :• "LABEL"); 

ADDR :• $(FORMAT :• F21; LN :• LLCCOMPST); 
DN :• DOCCOMPST)))))) /$ 

SP172A LABELO ::• SIGMA 

SP173 U~lLCOMP :: • BEGIN COMPT 

S/ IF PIRSTST(COMPT) THEN DAMBCTRUE, 1) /S 

189 



SP174 BLOCK ::• UNLBLOCK 

Sl NOLA BEL <BLOCK) : • TRUI i F 

SP175 BLOCK::. LAIELO: BLOCK 

S/ SM :• NEWINTEGEI; SN :• NEWINTEGER; NOLAB&LCBLOCK> :• PALSB; 
INSTI :• SCFORMAT :• F20; JLABEL :• SM); 
COND :• BEGUNCBLOCJC) AND NOLABEL<BLOCK•> /$ 

S/ DN :• CHECJCVIITCENVUBLOCIO, SPCLABELrl), "LABEL")/$ 
S/ IULI(ILOCK) :• CONSCINSTR •· SCLABELI :• SM), 

IF ~COND THEN RULE<BLOCK•)ELSE 
CONSCINSTR •• $(FORMAT :• Fll), 
. LIST(INSTR .. $(FORMAT :• F22; 

SN : • SN; LEVEL : • LL (BLOCK) + 1))) /$ 
S/ IF COND THEN OUTPUT(APENDCRULE<BLOCK•>, 

LISTCINSTR :• SCPORMAT :• F12))), SN> /S 
S/ DOCBLOCJC•) : • IP COND THEN 1 ELSE IP DN • 0 THEN 

DO(BLOCIC) + 1 ELSE DOCBLOCK) /S 
$1 CL(BLOCK•> : • IP COND THEN 0 ELSE CLCBLOCK); 

ENVlCBLOCK•> :• IP COND THEN NULL ELSE ENVl(BLOCK); 
ENVACBLOCK•> :• IF COND THEN NULL ELSE ENVACBLOCK); 
ECBLOCK) :• IP COND THEN El ELSE UNIONDOT(E(BLOCK•>, El) /S 

S/ LLCBLOCJCe) : • IF COND THEN LL<BLOCK) + 1 ELSE LLCBLOCK> /S 
S/ DCBLOCK> :• IP DN • 0 THEN DCBLOCK•> + 1 ELSE DCBLOCK•> '' 
$1 UNDECLCBLOCK) :• IF DN • 0 THEN CONSCINSTR, UNDECLCBLOCK•> 

ELSE UNDECLCBLOCKe) /S 
S/ VIRDECLCBLOCK) :• IP DN • 0 THEN VIRDICL(BLOCK•> ELSE 

PUT IN CVIR.DECLCBLOCb) : [DNJ : • INSTR) /S 
S/ E1 :• IF DN ~· 0 tHIN NULL ELSE S<lSPCLABBLO>J :• 

SCGENUS :• $(KIND :• "LABEL"; TYPE :• "LABEL">; 
ADDR :• S<PORMAT :• P21; LN :• LLCBLOCJC); 

DN : • DO <BLOCK) ) )) ' 
S/ ENVCBLOCJCe) :• IF~· COND THEN ENVCBLOCK) ELSE 

INVDELTACENVCBLOCK>, BCBLOCKe)) /$ 

SP176 BLOCK ::• UNLPREBLOCK 

S/ NOL.-BELCBLOCJC) :• TRUE /S 

SP179 UNLBLCCK ::• BJ.OCICHE'D; COMPT 

S/ SN :• NEWINTEGER; 
IP ~BEGUNCUNLBLOCK~ THEN OUTPUTCAPENDCRULE1, 

LISTONSTR .. $(FORMAT : • F12))), SN) /S 
S/ RULE1 :• APENDCRULBCBLOCKHEAD>, APENDCUNDECL(COMPT), 

PUTIICRULE(COMPT), TRUE))) /S 
S/ IULE(UNLBLOCK) :• IP BEGUN(UNLBLOCK) THEN RULB1 ELSE 

CONS(INSTR •• S<FO~~T :• Fll), LIST(JNSTR •• 
$(FORMAT :• F22; LL :• LL(COMPT); SN :• SN))) IS 

S/ BCUNL8LOCK) :• IF ~BEGUN(UNLBLOCK) THSN NULL ELSE 
UNIONDOT (E (BLOCKHEAD), E •COMPT)) /S 

S/ DCUNLBLOCK) :• IP ~BEGUN<UNLBLOCK) THEN 0 SLSB 
DCBLOCKHEAD' + DCOOMPT) /S 

S/ DOCBLOCKHEAD) :• IF ~BEGUNCUNLBLOCK) THEN 1 
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ELSE DO<UNLBLOCK); 
DO<COMPT) :• DOCBLOCKHEAD> + DCBLOCKHEAD) /S 

S/ LL(BLOCKHEAD> :• LLCCOMPT) :• IP BEGUNCBLOCKHEAD> THEN 
LL(UNLBLOCK>ELSE LLCUNLBLOCK> +1 /S 

S/ UNDECL<UNLBLOCK) : • NULL; 
ENVA(BLOCKHEAD) :• IF BEGUNCUNLBLOCK> THEN ENVACUNLBLOCK) 

ELSE ENVCUNLBLOCK>; 
ENVl (BLOCKHEAD> : • ENV:: CCOMPT> : • IF -.BEGUN CUNLBLOCK) THEN 

NULL ELSE ENV1CUNLBLOCK); 
ENV CBLCCKHEAD> : • ENV CCOMPT> : • IF BEGUN CUNLBLOCIC) THEN 

ENVCUNLBLOCIC) ELSE INVDELTA(ENV(UNLBLOCK), 
UNIONDOTCE(BLOCKHEAD),ECCOMPT))) /S 

S/ VIRDECL(UNLBLOCK) : • IF -.BEGUNCUNLBLOCIC) THEN NULL ELSE 
UNIONR (VIRDECL (BLOCKHEAD), VIRDECL CCOMPT)) /S 

S/ CL(BLOCKHEAD) :• IF -.BEGUNCUNLBLOCK) THEN 0 ELSE 
CL CUNLBLOCIO I$ 

S/ QUALTB CBLOCKliEAD) : • QUALTB <COMPT> : • 
UPDQUALTB(QUALTBCUNLBLOCK), CDECL<BLOCKHEAD)) /S 

S/ IF AEMDEC(BLOCKHEAD) THEN 
BEGIN 

IF NUMDEC (BLOCKHEAD) • 1 THEN DAMB (FALSE, 1) ELSE 
DAMB <PALSE, 2) 

END ELSE 
IF EMDEC<BLOCKHEAD) THEN DAMBCFALSE, 1) ELSE 
IF FIRSTST(COMPT) THEN DAMBCTRUE, 1) /S 

SP180 UNLPREBLOCK ::• BLOCKPRE MBLOCK 

S/ UNDECL(UNPREBLOCK) :• NULL; VIRDECL(UNLPR~BLOCK) :• NULL; 
D(UNLPREBLOCK> :• 0; CL<MBLOCK) := SN; 
BEGUN <MBLOCK> : • TRUE; E CUNLPREBLOCK> : • NULL; 
SN : • NEWINTEGER; SM : = NEWINTEGER; 
OUTPUT(LISTCINSTR •• $(FORMAT :• FJl; SN :• SN; SM :• SM; 

OBJECT :• PL(BLOCKPRE).OBJECT), SM); 
OUTPUT<VIRMERGECCONCATENATECPL<BLOCICPRE).CODE, 

APEt><D CUNDECL <MBLOCK), RULE <MBLOCK))), 
VIRDECL <MBLOCK)), SN) /S 

S/ RULE (UNLPREBLOCIO : .. CONS (I NSTR •·• S (FORMAT : • F11), 
APEND<RULE<BLOCKPRE), CONS(INSTR •• $(FORMAT : • F32; 

SN :• SM; LL := LL<UNLPREBLOCK) + 1), CONS(INSTR •• 
$(FORMAT :a F19; NFORMALS :• PL(8LOCKPRE).NFORMALS), 
CONS(INSTR •• $(FORMAT !• F12) 1 . 

LIST<INSTR •= <FORMAT :• F27)))))) /S 
$1 ENVCMBLOCK) : • INVDELTA<ENV(UNLPREBLOCK), 

INVDELTA(PL(BLOCKPRE).LOCALE, 
I NVDELTA <ENVl <M&LOCK), E <MBLOCK)))) IS 

S/ ENVlCMBLOCK) : • •PL<BLOCKP~E).VIRTUALE /S 
$1 ENVA <MBLOCK) : • lNVDELTA <ENV <MBLOCt:), 

El •• PLC~LOCt:PRB).FORMALE) /S 
S/ DO<MBLOCK> :• PL(BLOCKPRE).NLOCALS + 1 /S 
$1 LLCMBLOCK) :• LL<UNLPREBLOCK) + 2 /S 

SP181 BLOCKPRE ::c CLIDl APPART 

S/ RULE<BLOCICPRE> :• RULECAPPART); 
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IF LL<BLOCKPRB> ~· PL(CLIDt>.ADDR.LN THIN 
ERROR<"BLOCK PREFIX IS NOT AT THI SAMI LIVIL AS ILOCK•)& 
IP L(APPART) ~· PL<CLIDI>.NPORMALS THIN 
ERROR<"DIFPERBNT NlMIBR OF FORMAL AND ACTUAL PAiAMITERS•) /S 

SP182 MBLOCK ::• UNLBLOCK 

SP183 MBLOCK ::• UNLCOMP 

S/ RUL&CMBLOCK) :• PUTTI(RULi(UNLCOMP), TRUE) /S 

SP184 BLOCKHEAD ::• BEGIN DECL 

S/ NUMDECCBLOCKHEAD) :• 1; AIMD&C(BLOCKHBAD) :• BMDBC(DICL) /S 

SP185 BLOCKHEAD ::• BLOCKHEAD; DECL 

S/ RULE<BLOCKHEAD> :• APIND<RULECBLOCKHIAD•>, RULE(DSCL>> /S 
S/ VIRDECL(BLOCKHEAD) :• UNIONRCVIRDECL(BLOCKHEAD•>, 

VIRDICLCDICLJ) /S 
S/ !(BLOCKHEAD) :• UNIONOOT(E(BLOCKHEAD•>, I(DECL)) /S 
S/ DCBI~CKHEAD> :• D<BLOCKh~.O•> + DCDECL) /S 
S/ NUMDECCBLOCKHEAD) :• NUMDEC(BLOCKHEAD) + 1 /S 
S/ AEMDECCBLOCKHEAU) :• AEMDECCBLOCKHEAD•> AND AEMDBCCDECL) /S 
S/ DO(DECL> :• DOCBLOCKHEAD) + D(BLO~KHIAD) /S 
S/ CD&CLCBLOCKHEAD) :• APENDCCDECL(BLOCKHBAD•>• CDICL(DBCL)) /S 

SP186 DECL ::• TYPEDECL 

S/ CDECLCDECL) :• NULL; VIRDBC~CD&CL) :• NUL~ 
EMDECCDECL) :• PALS& /S 

SP187 DBCL ::• ARDECL 

S/ CDECL~DECL) :• NULL; VIRDECL(DBCL) :• NULL; 
EMDECCDECL) :• FALSI /S 

SP188 DBCL ::• SWDECL 

S/ CDECLCDECL) :• NULL; ~DECCDECL) :• FALSE /S 

SP189 DBCL :: • PROCDECL 

S/ CDECLCDBCL) :• NUL~ EMDECCDECL> :• FALSI /S 

SP190 DBCL ::• CLDECL 

S/ EMDECCDECL) :• FALSE, VIRDECLCDECL) :• NULL; 
CDECLCDECL) :• LISTCPIRSTCBCCLDBCL))) /I 
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SP191 DECL ::• 

S/ RULE <DECL) : • NULL; E <DECL) : • NULL; VI RDECL <DECL> : • NULL; 
EMDEC<DECL> :• TRUE; CDECL<DECL> :• NULL; D<DECL) : • 0 /$ 

SP192 TYPEDECL :: • TYPEN TYPELIST 

S/ INSTR : = IF NULLR<FIND<TYPDS(TYPEN>,QUAL) 
THE~ $(FORMAT :• F9; OPER :• TYPDS<TYPEN>.TYPE> 
ELSE $(FORMAT: • F18; QUAL :• TYPDSCTYPEN>.TYPE) 

ON: • D<TYPELIST>; RULE1 :• NULL; 
WHILE DN > 0 DO 
BEGIN RULEl: • CONS(INSTR, RULEl); DN :• DN- 1 END/$ 

$1 TYPD<TYPELIST) : • TYPDS(TYPEN> /$ 

$P193 TYPEN ::• VALTYPE 

SP194 TYPEN ::~ REFTYPE 

SP195 VALTYPE :: • REAL 

$1 TY?DS: • $(KIND :• "SIMPLE"; TYPE :• "REAL") /S 

SP196 VALTYPE :: = INTEGER 

$1 TYPOS:= $(KIND:' "SIMPLE"; TYPE :• "INTEGER") /S 

SP197 VALTYPE ::• BOOLEAN 

S/ TYPOS :• S<KIND :• "SIMPLE"i TYPE :• "BOOLEAN") /S 

SP199 REFTYPE ::= OBJREF 

SP 200 OBJREF :: " J(Ef < QUAL IF > 

S/ TYPOS : • $(KIND: • "SIMPLE"; TYPE: • "REF"; 
QUAL :• PLCQUALIF>.SEGMENT) /S 

SP201 QUALIF :: • SIGMA 

S/ NEXTl : • FIND <ENV <QUAL IF>, [SP!SIGMA) l); 
IF ~NULtB<NEXTl) THEN PL(QUALIF) : • (NEXTl) ELSE 
ERROR<~P(~IGMA), " UNDECLA~~D CLASS IDENTIFIER">; 
IF PL(QUALlf).GENUS. KIND~· "CLASS" THEN 
ERROR(SP(SIGMA), " NOT A CLASS IDENTIFIER") /$ 

193 



SP202 TYPELIST ::• SIGMA 

Sl D CTYPELIST> : • 1; 
BCTYPELIST). [SPCSIGMA)J :• $(GENUS :• TYPDCTYPBLIST); 

ATTR : • CL CTYPELIST); ADDI a • S<POIMAT : • Pll; 
DN: • OOCTYPILIST>; LN l• LL<TYPILIST>>> /I 

SP20J TYPELIST ::• SIGMA, TYPELIST 

$1 ECTYPELIST> :• UNIONDOT(E(TYPELIST•>, 11 .. ([SPCSIGMA)J :• 
S<GENUS :• TYPDSCTYPELIST); ATTR :• CL(TYPBLJST); 

ADDR :• $(FORMAT :• P21; DN :• DO<TYPBLIST>; 
LN : • LL(TYPELIST)))) 1$ 

S/ D CTYPEL I ST) : • D <TYPELI ST•) + 1 /S 
S/ DO(TYPELIST•> :• DOCTYPELIST> + 1 /S 

IP206 ARDECL ::• ARRAY ARLIST 

S/ TYPD<ARLIST) :• S<KIND :• "ARRAY"; TYPB :• "RIAL") /I 

IP207 ARDECL ::• TYPEN ARRAY LIST 

$/ TYPD(ARLIST) :• PUTINCTYPDSCTYPEN> KIND :• "ARRAY") /S 

SP208 ARLIST ::. ARSEG 

$/ RULE(ARLlST> :• APENDCRULE(ARSEG>, LISTCINSTR •• 
${FORMAT :• F2J; GINUS :• TYIDCARSBG); 

D : • D (AJlSEG) -1; L : • L <AISBG)))) I I 

SP209 ARLIST ::• ARLIST, ARSEG 

S/ RULE(ARLIST) :• APEND<RULE(ARLIST•), APENDCRULBCARSBG>, 
LIST(INSTR •• $(FORMAT :• F23; L :• L<ARSIG); 

D :• D<ARSEGl-1; GENUS :• TYPD(ARLIST))))) /S 
1/ E<ARLIST) :• UNIONDOTCE<ARLIST•), BUlRSEG)) /S 
S/ DCARLIST> :• DCARLISTe) + D(~SEG) /S 
S/ DOCARSEG> :• DOCARLIST) + D(\RLISTe) /S 

SP210 ARSEG ::• ARID [ BOUNDPLIST l 

I/ RULE(ARSEG> :• CONSCINSTR •• S04ARK1 :• "IGNORE"), 
APEND<RULE<BOUNDPLIST), 

LIST(INSTR .. S04ARK1 : • "END IGNORB")))) /S 
I/ D CARSEG) : • 1; 

E CARSEG). [SP (ARID> J : • $(GENUS : • TYPO (ARSIG); 
ATTR :• CLCARSEG>; N:• L(80UNDPLIST); ADDR :• 

$(FORMAT :• F21; DN :• DO(ARSEG>; LN :• LL(ARSBG~)) /$ 

SP211 ARSEG :• ARID, 'ARSEG 
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$/ ECARSEG> :• UNIONDOT<ECARSEG•>, E1 •• S<lSPCARIDl : • 
$(GENUS :• TYPD<ARSEG>; N :• L<ARSEG•>; 

ATTR :• CL(ARSEG); ADDR :• SCPORMAT :• F21; 
ON :• DO<ARSEG); LN :• LLCARSEG))))) /S 

$/ DCARSEG> :• DCARSEG•> + 1 /$ 
$/ DO(ARSEG•) :• DO<ARSEG) • 1 /$ 

SP212 ARID:: • SIGMA 

SP213 BOUNDPLIST ::• BOUNDP 

$1 L<BOUNDPLIST> :• 1 /S 

SP214 BOUNDPLIST :: • BOUNDPLIST, BOUNDP 

$1 RULECBOUNDPLIST) :• APEND<RULECBOUNDPLIST•), RULE(BOUNDP))/$ 
S/ L(BOUNDPLIST) :• LCBOUNDPLIST•> + 1 /S 

SP21S BOUNDP ::• BOUND: BOUND 

S/ RULE<BOUNDP> : • APEND<RULECBOUND), RULE<BOUND•)) /$ 

SP216 BOUND ::• ARITEXPR 

S/ APA(ARITEXPR) :• 0; USE<ARITEXPR) :• "VALUE"; 
ENV(ARITEXPR> : • ENVA<BOUND) /$ 

SP218 SWDECL ::• SWITCH SWID :• SWLIST 

S/ SN : • NEWINTEGER; 
INSTR : • $(FORMAT: • F24; SN: • SN; L : • L<SWLIST)) IS 

S/ DN :• CHECKVIRT(ENVl(SWDECL), SPCSWID>, "SWITCH") /S 
S/ OUTPUTCRULECSWLIST), SN) /$ 
S/ RULECSWDECL) : • IF ON ~· 0 THEN NULL ELSE LISTCINSTR> /S 
$1 VIRDECLCSWDECL) :• IF DN • 0 THEN NULL ELSE 

$([DNJ : • INSTR> /S 
$/ DCSWDECL) :• IF DN • 0 THEN 1 ELSE 0 /$ 
$1 El. (SPCSWID)J :" $(GENUS: • $(KIND: • "SWITCH"; 

TYPE :• "SWITCH">; N :• L(SWLIST>; 
ATTR :~ CL(SWDECL>; ADDR :• $(FORMAT :• F21; 

LN :• LL(SWDECL); 
ON :• IF DN • 0 THEN DO(SWOECL) ELSE ON>>; 

E(SWDECL) :• IF ON • 0 THEN El ELSE 
BEGIN 

UUTIN<ENVCSWDECL): [SP<SWIO)) :• FIRST(El)); NULL 
END /$ 

SP218A SWID ::• SIGMA 

SP219 SWLIST ::• DESIGEXPR 
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S/ SN: • NEWINTEGER; L<SwLIST) :• 1; APA<DESIGEXPR) :• 0; 
OUTPUT<APEND<RULECDESI~EXPR>, 

LIST<INSTR •a $(FORMAT :• P12))), SN) IS 
S/ RULE(SWLIST) :• L!ST<INSTR *• $(FORMAT :• FlJ; SN: • SN; 

LL :• LL(SWLIST) + 1; TYPB :• "LABEL")) IS· 

SP220 SWLIST ::z SWLIST, DESIGEXPR 

$/ SN: • NEWINTEGER; APA<DESIGEXPR) :• 0; 
OUTPUTCAPENDCRULECDESIGEXPR), 

LISTONSTR •· $(FORMAT :• P12})), SN) IS 
$1 RULE(SWLIST) : • APENDCRULE(SWLIST•>, LIST(INSTR •• 

SCFORMAT :• Pll; LL :•LL(SWLIST) + 1; 
TYPE : • "LABEL"; SN : • SN))) /$ 

s.- L<SWLIST> : E L<SWLIST•> • 1 ;s 

SP221 PROCOECL :: • TYPEP PROCEDURE PROCHEAD PROCBODY 

$/ SN : • NEWINTEGER; 
INSTR :• $(FORMAT :• F33; SN :• SN; LL :• LLCPROCBODY)); 
DN : • CHECKVIRTCENV1CPROCDECL), SP(PROCHEAD), "PROCEDURE")/$ 

S/ OUTPUTCAPENDCRULE<PROCHEAD>, APEND(UNDECL(PROCBODY), 
LIST(JNSTR •• $(FORMAT : • F12))))), SN)) IS 

Sl ENVACPROCBODY> : • INVDELTACENVCPRODECL), E(PROCHEAD)) IS 
S/ ENV<PROCBODY : • iNVDELTA(ENVA(PROCBODY>, E<PROCBODY)) IS 
S/ ENV1CPROCBODY) :• NULL; · 

LL(PROCBODY> :• LLCPROCHEADl :• LL{PROCDECL) + 1 /S 
S/ RULECPROCDECL> :• IF ON~· 0 THEN NULL ELSE LIST(INSTR) 

VIRDECL(PRODECL) : • IF DN • 0 THEN NULL 
E~SE $([DNJ :• INSTR>; 

0 {PRODECL) : • IF ON • 0 THEN 1 ELSE (1; 

TYPDCPROCHEAD> :• PUTINCTYPDSCTYPEP) : 
KIND :• "PROCEDURE"> /S 

S/ El. i:SP (PP.OCHEAD)) :a $<GENUS : • TYPOS (TYPEP); 
ATTR: • CL(PROCDECL); NFORMALS :• D(PROCHBAD>; 

SEGMENT :• SN; ADDR :• S<PORMAT :• P21; 
LN :• LL{PRODECL); 
DN: a IF DN • 0 THEN DO<PRODECL) ELSE DN)}) /S 

$1 ECPRODECL) : • IF DN • 0 THEN E1 ELSE 
BEGIN 

'PUTIN(ENV1CPROCDECL) : 
[SP<PROCHBAD)l :• PIRST(B1)); 

NULL 
END; 

lF DN .... 0 THEN 
SU80RDINATE<QUALTB(PROCDECL), 

ENVl (PP.OCDECL), [SP (PROCH&AD) l, GI~US, 
TYPDHTYPEP>> /S 

S/ DO<PROCBODY) :• D(PROCHEAD) + 2 IS 

SP221A TYPEP ::• TYPEN 

SP22lil TYPEP::• 
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$1 TYPDS(TYPEP).TYPE :~ "U" /$ 

SP223 PROCHEAD :: • PROCID FPPART; MOPART S~PART 

S/ LEGIT(SPPART} :• 0; CL<SPPART) :• 0; DO<SPPAIT) :• 1; 
PLACE<SPPART) :• "SPECIFICATION"; DQCFPPART) :• 2~ 

NAMETB(MOPART) :• NAMETBCSPPART) :• NTB<FPPART); 
ENVl(SPPART) :a ENV(PROCHEAD}; 
CHECKSPEC~ATRIX<SPPART), D<FPPART>; 
MAT <MQPAR.T) : • MATRIX (SPPART) IS 

$1 RULE <PROCHEAI>) : • CHERULES (MATRIX <MOP ART), FALSB, 
D<FPPART>, 0) /S 

SP224 PROCID ::• SIGMA 

SP225 FPPART ::• 

S/ D<FPPART) :• 0; NTB<FPPART) :• NULL /S 

SP226 FPPAR! ::= ( FPLIST > 

SP227 FPLIST ::• fP 

S/ D (FPL 1ST) : " 1; NTB <FPLI ST). [SP (FP) l : • DO (FPL I ST) IS 

SP228 FPLIST ::• fPLIST, FP 

S/ D<FPLIST) :• D(FPLIST•> + 1 /$ 
S/ NTB<FPLIST) : • PUTINCNTB<FPLISTe): (SP<FP>J : • DD<FPLIST) + 

D<fPLIST•)) IS 

SP229 PP ::• SIGMA 

SP230 MOPART ::• VALPART NAMEPART 

$1 MAT(VALPART) :• MATRIX<NAMEPART); 
MATRIX<MOP\RT) :a MATRIX<VALPART> /S 

S/ IF MOAMSCNAMEPART) AND MOAMB(VALPART) THE~ 

DAMB<TRUE, MOPART) ELSE 
IF MOAMB<NAMEPART) THEN DAMB(TRUE, MOPAIT) !LSE 
IF MOAMB<VALPART) THEN DAMB<FALSE, MOPART)/ S 

$P231 MOPART ::• NAMEPART VALPART 

$1 MAT(VALPART) :• MATRJX(NAMEPART); 
MATRlX<MOPARTl :• MATlliX<VALPART) /S 

$1 IF MOAMB<NAMEPAR~) AND MOAMB(VALPART) THEN 
DAMBlFALSE, MOPART) ILSI 
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IF MOAMBCNAMEPART> THEN DAMB(PALSE, MOPART) BLSB 
IF MOAMBCVALPART> THEN DAMB<TRUE, MOPART) /$ 

SP 232 VALPART : : • VALliE I DLI ST ; 

S/ MOAMBCVALPART> :• fALSE; ENVl(IDLIST) :• NULL; 
LLCIDLIST) : • 0; PLACJI(IDLIST) : • "VALUB"; 
TYPDCIDLlST> :• NULL, DOCIDLIST) :• 0; CL<IDLIST) :• 0 /S 

SP233 VALPART ::• 

$/ MOAMB<VALPART> :• TRUE; MATRIX(VALPART) :• MATCVALPART) /S 

SP234 IDLIST ::• SIGMA 

S /LCIDLIST) : • 1; 
IP PLACECIDLIST) : • "VIRTUAL" THIIN SN :• 0 ELSB 
BEGIN 

NEXTl :• FIND<NAMETBODLIST), [SP<SIGMA>l>; 
IF ~NULLBCNEXTl) THEN SN :• [NEXT1) ELSE 
ERROR<SP<SIGMA>, " NOT A FORMAL PARAMETER") 

END /S 
$1 MATRIX(IOLIST) :• IF SN •0 THEN NULL ELSE 

SCSN • IP PLACECIDLIST) ~· "SPBCIFICATION" THiN 
$~DE :• PLACECIDLIST>> ELSB 

SCSPEC :• TYPD(IDLIST); MODE:• 
IF TYPD<IDLIST),KlND • "SIMPLE" AND 
NULLRCFINDCTYPDCIDLIST),QUAL)) THBN "VALUB" 

BLSII "REPBRBNCE")) /$ 
S/ IF PLACBCIDLIST) • "VALUE" THEN 

BEGIN 
SPEC : • MAT (I DL I ST). [SN]. SPEC; 
IF CHECKKIND(SPEC) OR SPEC.TYPE • "REF" THEN 
BRROR(SP(SIGMA), " HAf. IMPROPER MODE") 

END /S 
I/ ECIDLIST) : • IF PLACEODLIST> • '•VALUE" OR 

PLACECIDLIST) • "NAME" THEN NULL ELSE 
SC[SPCSIGMA)] :• S<GENUS :• TYPD(IDLIST); 

ATTR :• CLCIDLIST); 
ADDR :• SCFORMAT :• F21; LN :• LL(IDLIST); 

DN :• IF SN • 0 THEN DO(IDLIST) BLSB SN))) /$ 

.P235 IDLIST :• IDLIST 1 SIGMA 

S/ IF PLACE(IDLIST> • "VIRTUAL" THEN SN :• 0 ~LSI 
BEGIN 

NEXTl : • FINDCNAMETB<IDLIST), [SP(SIGMA))); 
IF ~NULLB<NEXTl) THEN SN :• [NEXTll ELSE 

ERRORCSPCSIGMA>, " NOT A FORMAL PARAMBTIR") 
END /$ 

S/ MATRIXCIDLIST> :• IF SN • 0 THE~ ~ULL &LSI 
PUT IN <MATRIX CIDLI ST•>: 

[SNl :• IF PLACECIDLIST) ~·"SPECIFICATION" THBN 
S <MODE : • PLAC:E (I DLI ST)) ELSE 
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S<SPEC : • TYPD<IDLIST); 
MODE: • IF TYPD<IDLIST).KIND • "SIMPLE" AND 

NULLRCFIND<TYPD(IDLIST>, QUAL)) THEN 
"VALUE" ELSE REPEIBNCE>> IS 

S/ IF PLACE<IDLIST) • "VALUE" THEN 
BEGIN 

SPEC : • MAT (I DL I ST). (SNJ. SPEC; 
IF CKECKKJND(SPEC> OR SPEC.TYPE • "REF" THEN 
ERROR(SP<SIGMA), " HAS IMPROPER MODE"> 

END /$ 
S/ E(IDLIST> :• IF PLAC~CIOLIST> • "VALUE" OR 

PLACECIDLIST) • "NAME" THEN NULL ELSE 
UNIONDOT(E([DLIST•), El *- $([SP<SIGMA)) :• 

$(GENUS :• TYP~CtnLIST); ATTR :• CL<IDLIST); 
AODR :• S<FOkMAT :• F21; LN :• LL(IDLIST); 

ON :• IF SN • 0 THEN DO(IOLIST) ELSB SN)))) /$ 

$/ L<JDLIS~) :• L(IDLIST•> + 1 /S 
S/ DOCIDLJ!i•) :• DO<IDLIST) + 1 i$ 

SP236 NAMEPART ::• NAME IOLIST; 

S/MOAMBCNAMEPART) :• FALSE; INVl(IDLIST) :• NULL; 
PLACE(lDLIST) :• "NAME"; TYPD<IDLIST) :• NULL; 
DOUDLIST) : • 0; Cl.ODLIST> : • 0; LL(IDLIST) : • 0 IS 

SP237 NAMEPART ::• 

$/ MATRIX(NAMEPART) :• MAT<NAMEPART); 
MOAMBCNAMEPART) :• TRUE /S 

SP238 SPPART .:• 

$/RULE(SPPART) :• NULL; L<SPPART) :• 0; E(SPPART> :• NULL; 
MATRJX(SPPART> :• NULL/$ 

SP239 SPPART ::• SPPART SPf~IFIER JDLIST; 

$1 ENV(SPECIFIER> :• ENVl(SPPART>; 
RULE<SPPART) :• IF PLACE(SPPART) ~·"VIRTUAL" THEN NULL ELSE 

APEND(RULE(SPPART•), 
BUILDVC(TYPDS(SPECJPIIR).XIND, L(IDLIST)) /S 

S/ IF PLACECSPPART) • "VIRTUAL" THEN 
BEGIN IF ~CHECKKIND<TYPDS(SPECIPI!R)) THBN 
ERROR<"INVALID SPECIFIER IN A VIRTUAL DICLAIATION") BND /S 

S/ If LEGIT(SPPART) • 1 THEN 
BEGIN 

IF CHECKXIND<TYPDS<SPECIFIER>> THEN 
ERROR("INVALID SPECIFIER FOR A CLASS PORMAL PARAMETER"> 

END /S 
$1 TYPOCIDLlSTl :• TYPDS(SPECIFlER>; 

MATRIX(SPPART> :• MAiRIX(IDLIST>; 
MATCIDLIST) :• MATRIX(SPPART•>; 
L(SPPART) :• L(SPPART•> + L(IDLIST) /$ 

$1 DO(IDLIST) :• L<SPPART•> + DO(SPPART) /$ 
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S/ i(SPPART) :• UNIONDOT(i(SPPART•), BCIDLIST)) /S 

SP240 SP&CIPIER :: • TYPEN 

SP24l SPECIPIER :: • ARRAY 

S/ TYPDS<SPBCifl&l) :• $(KIND :• "AIRAY"I TYPE I•. "REAL") IS 

SP242 SPECIPIER :: • TYPEN AllAY 

S/ TYPDS(SPECI'\:IER) :• PUTINCTYPDS<TYPIN): KIND :• "ARRAY") II 

SP243 SPECIFIER ::• LABEL 

S/ TYPDSCSPECIFIER).KIND :• "LABEL" IS 

SP244 SPECIFIER ::• SWITCH 

S/ TYPDSCSPECIFIER).KIND :• "SWITCH" /S 

SP245 SPECIFIER ::• PROCEDURE 

$1 TYPDSCSPECIFIER) :• SCKIND :• "PROCEDURE"; TYPE I• "~") I$ 

SP246 SPECIFIER ::• TYPEN PROCEDURE 

S/ TYPDS(SPECIFIER) :• PUTIN<TYPDS<TYPIN): 
KIND :• •PIOCIDUIB") IS 

SP247 PROCBODY ::• STl 

Sl BEGUN(STl) :• TRUE; OUTERMOST(ST1) :• PALSI; CL(ST1) I• 0 IS 

$P250 CLDECL ::• P~t MPART 

tl SN : • ~SWINTEGER; SM : • NEWINTEGER; D(CLDECL) : • 1; 
PPL <MPART) : • PL (PRE); 
IF Pl. <PRE). ADDR. LN ~· LL (CLDECL) THEN UROR 

("PiEPIX AND CLASS DECLARAATIONS AT DIPPIIBNT LIVILS") /S 
Sl LLf~PART> :• LL<CLDICL> + 2; 
Sl RULE<CLDECL) :• LIST<INSTR •• SCFORMAT :• P32; SN :• SM; 

LL :• LLCCLDSCL) + 1)) IS 
$1 RULE : • VIRMERGECIP PL<MPAilT). SEGMENT • 0 THIN RULB<MPAIT) 

ELSE CONCATENATE (PL (PRE). CO DB, RULI <MPAIT)), 
VIIDECL <MPAIT)) II 

S/ OUTPUTCLISTCINSTR •• SCFORMAT :• P31; 5N :• SN; SM :• ~ 

OUTPUT CIULE, SN) IS 
OBJECT : • PL (PIS) .,OIJICT)), 5M); 

S/ E(CLDECL).SP<MPART) I• PUTIN(PL<MPART> : ADDI I• 
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$P251 PRE :: • 

S <FORMAT : • F21; Ul : • I.L (CLOECL) i DN • DO (CLDECL)); 
ATTR :•CI.(CLDECL;; C9.DE :• RULE; SEGMENT: • SN; 

OBJECT :• SM) /S 

S/ Pl. <PRE) : • $ (ADOR. LN : • LL CPRE); LOCALE : = NULL; 
NFORMALS : " 0; FORMALE : • NULL; NLOCA!.S : • 0; 
VIRTUAL£ : = l.JULL; SEGMENT : • 0; OBJECT : • 0 /S 

SP2S3 MPART :: • CLASS CLIO FPPART; VALPART SPPART VIRTPART CLBODY 

S/ LEGIT(SPPART) : = 1; PLACE(SPPART) : • "SPECIFICATION"; 
ENVl(SPPART) :. ENVl(VlRTPART) :• ENV<MPART>; 
DO (SPPART) : = 0; 
RULE <MPART> : = APE NO (CHERULES <MATR l X <VAL PART), TRUE, 

DO(VIRTPART) -1, PPL<MPART).NLOCALS­
PPL<MPART).NFORMALS), 

APEND(UNDECL(CLBODY), APEND<RULE(CLBODY), 
LIST(INSTR •· $(FORMAT:= F35)))))) /$ 

$1 E<MPART) ::: U::IONDOTCE<CLBODY), E<SPPART)) IS 
$/ ENV (Ci..BODY> : • 1 NVDELTA <ENV (MPART), 

E *= I(PLCMPART).LOCALE) /$ 
Sl ENVl<CLBODY) :• PL<MPART).VIRTUALE /$ 
S/ NAMETABCSPPART) :• NAMETB(VALPART) : • NTB(FPPART); 

MAT(VALPART) : = MATRIX(SPPART>; 
CHECKSPEC<MATRIX(SPPARTl, D<FPPART)) /S 

S/ DO(FPPART) : s PPLCMPART).NLOCALS + 1; 
DO(V!RTPART> : = DO(FPPART> + DCFPPART>; 
DO<CLBODY> : • DO(VlRTPART) + L(VlRTPART) /S 

S/ PL<MPART) := S<GENUS.KlND := "CLA.SS"; 
$1 NFORMALS :• D(FPPART) + PPL<MPART).NFORMALS /$; 
S/ NLOCALS : • D<CLBODV) + L<VIRTPART) + O(FPPART) 

+ PrL<MPART).NLOCALS /S; 
$/LOCALE :• INVOELTA(PPL<MPART).LOCALE, INVDELTAC 

. PL<MPART). VIRTUALE, E<MPART))) /S; 
$/ FORMALE: • JNVDELTA(PPL<MPART>.FORMALE, 

E •= • E(SPPART)) /S; 
$1 VIRTUALE :• UNIONDOT(E(VIRTPART), 

PPL<MPART).VlRTUALE) /$) /$ 

SP254 VIRTPART :: • 

S/ RULE(VIRTPART) : • NULL; E(VIRTPART) :• NULL; 
L(VIRTPART) : = 0 /$ 

SP2SS VIRTPART ::.VIRTUAL: SPPART 

S/ PLACECSPPART) :• "VIRTUAL"; LEGIT(SPPART) :• 2; 
NAMETB(SPPART) : • NULL /S 

$P2SSA CLIO ::• SIGMA 
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SP256 CLBODY ::• ST1 

S/ BEGUN <ST1) :• TRUE; OUTERMOSTCSTI) :• TRUE /S 

SP257 CL&ODY ::• SPLITBODY 

SP258 SPLITBODY ::• INITOPS INNER: FINOPS 

S/ RULE<SPLITBODY) :• APEND(ARULE(INITOPS), 
APEND(UNDECLCINITOPS), APENDCUNDECL(PINOPS), 

CONS(INSTR •• S~K :• "INIT"); 
APEND(RULECINITOPS), CONS(INSTR •• 

S~K: • "INNER"), RULE(PINOPS)))))))/S 
S/ VIRDECL(SPLITBODY> :• UNJONR(VIRDECL(INITOPS), 

VIRDECL(PINOPS)) /S 
$/ E(SPLITBODY> :• UNIONI>OT<E<INITOPS), BCPINOPS)) /$ 
$/ D(SPLITBODY) :• D<INITOPS) + DCPINOPS) /$ 
$1 DOCFINOPS> :• DOCSPLITBODY) + DCINITOPS) /S 
$/ UNDECLCSPLITBODY> :• NULL/$ 

$P259 INITOPS ::.BEGIN 

$/STAITCINITOPS> :• TRUE; D(INJTOPS} :• 0; ICINITOPS) :• NULL; 
RULECINITOPS) : • NULLi ARULE<INITOPS) :• NULL; 
UNDECL(INITOPS) :• NULL; VIRDECL(INITOPS) :• NULL; 
EMDECCINITOPS) :• FALSE/$ 

$P260 INITOPS :• BLOCKHEAD; 

$1 STAIT(INJTOPS> :• TRUE; UNDECLCINITOPS> :• NULL; 
RULE(INITOPS) :• NULL; ARULECINITOPS> :• IULBCILOCKHBAD) IS 

S/ IF EMDECCBLOCKHEAD) THEN DAMBCFALSE, 1) IS 

SP26l INITOPS :: • INJTOPS ST i 

S/ RULECINITOPS> :• APEND<RULE<INITOPSt), RULB(ST)) /S 
S/ UNDECL<INITOPS> :• APENDCUNDECL<INITOPSt), RULB(ST)) /S 
S/ VIRDECL<INITOPS> :• UNIONRCVIRDECL(INITOPSt), VIRDBCLlST))/$ 
S/ BCINITOPS> :• UNIONDOTCE(INITOPSt), BCST)) /S 
S/ DCINITOPS) :• DCINITOPS•> + DCST) /$ 
$1 DO(ST) :• DOCINITOPS> + DCINITOPSt) /S 
S/ STARTCINITOPS> :• STAI!CINITOPSt) AND ~BMDIC(INITOPSt) AND 

PIRSTSTCST); 
If STARTCINITOPS) THEN DAMB(TRUB, 1) /$ 

SP262 FINOPS ::~ iND 

S/ RULE(fiNOPS> :• NULL; E(fiNOPS> :• NULL; D(PINOPS) :• 0; 
VJRDECL(FINOPS) :• NULL; UNDECL(FIN~PS) :• NULL /S 
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SP263 FINOPS ::•; COMPT 

SP264 COMPT :: • ST END 
$/ FIRSTSTCCOMPTl :a FALSE /S 

SP265 COMPT :: • ST; COMPT 

S/ FIRSTSTCCOMPT) :~ FIRSTST(ST); 
UNDECL(COMPT) : • APE~D(UNDECL(ST), UNDECL(COMPT•}) /$ 

S/ VIRDECL(COMPT) :a UNIONRCVIRDECL(ST), VIROFCL(COMPT•)) /S 
S/ RULE<COMFT> : = APENDCRULE(ST), RULE(COMPTe)) /S 
S/ E(COMPT) :• UNIONDOTCE(ST), E(COMPTe)) 
S/ 0(CQMPT) :• D(ST) + DCCOMPT•> /$ 
S/ DO(COMPT•) : • OO(COMPT) + O(ST) /S 

SP26SA ST ::~ STl 

SP266 

$P267 

SP268 

SP269 

S/ BEGIN (STl) : = FALSE; ENVA (5T1) : • ~ULL; 
OUTERMOST(5T1) :• FALSE/$ 

STl ::• UNCONDST 

$1 OPEN <STl) : • "NONE" 1$ 

ST1 :: • CONDST 

S/ FIRSTST (ST1) : • FALSE; 
RULE (STO :a PUTII CRULE(CONOST), OUTERMOST<STl)) 1: 

STl : : • CONNST 

S/ FIRSTST (STD : • FALSE; 
RULE(ST1) : • PUTII<RULECCONNST), OUTERMOST(STl) /S 

STl :: • WHILEST 

S/ FIRSTST(ST1) :s FALSE 
RULE(STl) :• PUTII(RULE<WHILEST).OUTERMOST(STl)) /S 

SP270 UNCONOST ::• BASICST 

S/ RULE(UNCONDST> := PUTII CRULE(BASICST), 
OUTERMOST(UNCONDST))/$ 

SP271 UNCONDST ::• COMPST 

$/ RULECUNCONDST) :a PUTII CRULE(COMPST), OUTERMOST(UNCONDST)}/$ 
S/ FIRSTSTCUNCONDST) : • FALSE /S 
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SP272 UNCONDST ::• BLOCK 

S/ FIRSTSTCUNOONDST) :• PALSE /S 

SP273 BASICST ::• UNLBASICST 

$/ VIRDECLCBASICST) :• NULL; UNDECL(BASICST); 
ECBASiCST> :• NULL; DCBASICST) :• 0 /S 

SP274 BASICST ::• LABELO: BASICST 

$1 FIRSTSTCBASICST> :• FALSE; SN :• NEWINTEGER; 
INSTR :• $(FORMAT :• F21; JLABEL :• SN>; 
DN :• CHECKVIRTCENV1CBASICST), SPCLABELO>, "LABeL"> /S 

$1 RULE<BASICST) :• CONSCINSTR •• SCLABELI :• SN), 
. RULECIASICST•>> /S 

$/ UNDECLCBASJCST) :• IF DN ~· 0 TH&N UNDECLCBASICST•) BLSE 
• CONSCINSTR, UNDECLCBASICST•>> /$ 

S/ VllDECL(BASICST) :• IF DN • 0 THEN VIRDBCL(BASICST•> BLSB 
. PUTIN(VJRDECL(BASICST•> : lDNJ :• INSTR)/S 

$/ E(8ASICST) :• IF DN ~·0 THEN E(BASICST•) ELSE . 
UNIONDOTCECBASICST•>, 81 •• ((SPCLABILO)J :• 

$\GENUS :• $(KIND :• "LABEL"; TYPB :•·"LABBL"); 
ADDR :• SCPORMAT :• P21; LN :• LLCBASICST); 

DN :• DOCBASICST))))) /S 
S/ D(BASICST) : • IP DN ~· 0 THEN D(8A51CST•) 

ELSE D(BASICST•> + 1 /S 
$1 DOCBASICST•> :• If DN ~· 0 THEN DO(BASICSTe) 

ELSE DO(BASICSTe) + 1 /S 
$/ PJRSTST(BASICST) :• fALSE IS 

$P275 UNLBASICST ::• ASSST 

$/ FJRSTST(U~LBASJCST) :• FALSE/$ 

$P276 UNLBASICST ::• GOTOST 

S/ FIRSTST(UNLBASICST) :• PALSE /$ 

SP277 UNLBASICST ::• DUMMYST 

S/ FIRSTSTCUNLBASICST) :• TRUI /S 

SP278 UNLBASICST ::• PROCST 

$1 FIRSTST(UNLBASICST) :• FALSI/$ 

SP280 UNLBASICST ::• OBJGEN 
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S/ USE<OBJGEN) : • "VALUE"; FIRSTST<UNLBASICST) :• FALSE; RULE<UNLBASICST) : • APENDCRULE(OBJGEN), 
LIST(INSTR •· $(FORMAT :• P25))) /S 

SP281 UNLBASICST ::• RESUME ( OBJEXPR) 

$1 USeCOBJEXPR> : • "ADDR"; APACOBJEXPR; : • 0; 
Fi~STST(UNLBASICT) :• FALSE; 
RULECUNLBASICST) : • APEND(RULECOBJEXPR), 

T.IST<JNSTR .. S<FORMAT:. P26))) /S 

SP282 UNLBASICST : ~ DETACH 

$1 RULECUNLBASICST) :• LI5TCINSTR •• SCFORMAT: • F27); FIRSTSTCUNLBASICST) :• FALSE; 
IF CL(UNLBASICST) = 0 THEN 
ERROR("OETACH STATEMENT IN ~NON OBJECT BLOCK") /S 

$P2SJ ASSST ::• VALASS 

S/ ALSO(VALASS) :• FALSE /S 

$P284 ASSST ::• REPASS 

$/ ALSO(REFASS) : • FALSE /S 

$P285 VALASS :: = VALLPAR1 :• VALRPART 

$/ USE (VALLPART> : • "ADDR"; USE (VALRPART) : • "VALUE"; ALSO (VALRPART) :• TRUE; PLCVALASS) :• PL(VALLPART>; RULECVALASS) : • APEND<RULE(VALLPART), APEND(RULE(VALRPART), 
Ll ST <I NSTR •• $(FORMAT : ,. F28; 

ALSO :• ALSO(VALASS))))) /S S/ TYPEl :• PL<VALLPART>.GENUS.TYPE; 
TYPE2 :• PL(VALRPART).GENUS.TYPE; 
IF ~<<CTYPEl • "!NTEGER" OR TYPE 1 • "REAL") AND 

<TYPE 2 • "INTEGERk OR TYPE2 • "REAL")) OR 
(TYPE 1 = "BOOLEAN" AND TYPi2 • "BOOLEAN")) THEN ERROR("TYPE INCOMPATIBILITY IN A VALUE ASSIGNMENT"> 1$ 

SP2~6 VALLPART ::• VAR 

S/ APACVAR) : • 0; KIND : • PL<VAR). GENUS. KIND; 
IF KIND -• "ARRAY" THEN DAMBCKIND • "SIMPLE", 1) /S 

SP287 VALLPART ::• PROGID2 

$1 DAMBCPLCPROCID2).GENUS.KIND • "PROCEDURE", 1); 
RULE(VALLPART) :• LIST<INSTR *"' SCFORMAT:• F8; 

ADDR : • S (FORMAT : • F21; DN : • 1; 
LN := PL(PROCID2).ADDR.LN + 1))) /S 
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IP287A PROCID2 ::• SIGMA 

I/ NEXT1 :• FIND<ENV<PROCID2), (SP(SIGMA)]); 
IF ~NULLB<NEXTl) THEN PLCPROCID2) :• [NIXT1J ILSI 
ERROR <SP<SIGMA), • UNDECLARED IDBNTIPIEI") /I 

IP288 VALRPART ::• VALEXPR 

$/ APA(VALEXPR) :• 1/S 

SP289 VALP.PART ::• VALASS 

SP290 REPASS ::• RBFLPART :• REFRPART 

$1 USE<REFLPART) :• "ADDR"i USE<REFRPART) : • "VALUE"; 
PL(REFASS) :• PL<REFLPART); ALSO(REFRPART) :• TRUE; 
RULE<REFASS) :• APEND(RULE(REFLPART), APEND<RULB(RBPRPART), 

LIST(INSTR •• $(FORMAT :• F28; 
ALSO :• ALSO(RBP~ .S))))) IS 

S/ GENUSl ~· PL<REFLPART).GENUS; GENUS2 :• PL(REFRPART). GENUS; 
IF ~CGENUSl.TYPE • "REF" AND GENUS 2.TYPE • "REF"> THIN 
ERRORC"TYPE INCOMPABILITY IN A REFERENCE ASSIGNMENT") BLSI 
IF GENUSl.QUAL • -1 THEN 
ERRORC"LHS OF A REFERENCE ASSIGNMENT IS NONE") ILSI 
IF GENUS2.QUAL ~· -1 THEN 
COMMENT IF THE TWO QUALS HAVE NO COMMON ANCESTOR THE 

FUNCTION CONDQUAL REGISTERS THE BRROR; 

'CONDQUAL(QUALTBCRBPASS), GENUS1.QUAL, GE~US2.QUAL) /I 

SP29l REFLPART ::• VAR 

S/ APA(VAR) :• 0; KI~D :• PL(VAR).GINUS.KIND; 
IF KIND ~· "ARRAY" THIN DAMB(KIND • "SIMPLI", 1) /S 

SP292 REPLPART ::• PROCID2 

S/ DAMBCPL<PROCID2>.GENUS.KIND • "PROCEDURE", 1>; 
RULI(REFLPART) :• ~IST<INSTR •• $(FORMAT :• F8; 

ADDR :• $(FORMAT :• P21; DN :• 1; 
LN :• PL<PROCID2).ADDR.LN + 1))) /S 

$P293 REPRPART ::• REPEXPR 

S/ APACREPEXPR> :• 0 /S 

SP294 R&PRPART ::• REPASS 
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SP295 GOTOST ::• GO TO DESIGEXPR 

$/APACDESIGEXPR) : = 0; 
RULECGOTOST> :• 4PEND<RULECDESIGEXPR>, 

LISTCINSTR :• S<FOkMAT :• F29))) /S 

SP296 DtlMMYST :: = 

S/ RULECDUMMYST) : • NULL /$ 

SP297 PROCST :: = PROC!Dl APPART 

S/ APA CPROCI 01) : = 0; USE CPROCI 01) : • "VALUE": 
TYPE : = PL CPROCI DlJ. GENUS. TYPE; 
IF TYPE•"U" THEN TYPE : = "INTEGER"; 
RULECPROCST) : = CONS(INSTR •= $(FORMAT:= Fll), 

SP298 CONDST :: = IFST 

CONS<INSTR *• $(FORMAT: z F30), 
CONS(INSTR •= $(FORMAT :z F9; OPER :• TYPE), 

APENO(RULE(APPART), APEND(RULECPROCIDl), 
CONS (I NSTR : = $(FORMAT : = Fl 0), 

LIST(IN5TR *"-$(FORMAT :• F25)))))))) /$ 

S/ SN :• NEWINTEGER; OPENCCONDST) : • "NONE"; 
FJUMP CIFST) : • SN; 
RULECCONDST) : = APEND(RULECIFST), 

LIST<INSTR *"' SCLABELI : • S~))) /S 

SP299 CONOST :: = IFST ELSE ST 

S/ SN := NEWINTEGER; SM: = NEWINTEGER; FJUMP(IFST) : • SN; 
OPENCCONDST) : = OPEN CST>; 
RULECCONDST) : • APEND<RULE(IFST), 

FIXCONDCRULE(ST), SM, SN)) /S 
S/ occorm::n := uClFST' + ocsn ;s 
$1 DO CST> : • D (I FST) + DO CCONDST) /S 
$1 UNDECL(CONDST) :• APEND<UNDECLCIFST), UNDECLCST)) /S 
S/ VIRDECLCCONDST) :• UNIONRCVIRDECL(IFST), VIRDECL(ST)) /S 
S/ E<CONDST) := UNIONDOTCECIFST), ECST)) /S 

$P300 CONDST :: = IFCL CONNST 

S/ SN :• NEWINTEGER; FJUMPCIFCL) :• SN; 
RULECCONDST) : = APENDCRULECIFCL), APEND .RULE(CONNST), 

LISTONSTR *"' $(LABELl : • SN)))) /S 

$P301 CONDST :: • IFCL WHILEST 

$1 SN: • NEWINTEGER; FJUMP(IFCL) : • SN: 
RULECCONOST) : • APEND(RULECIFCL), APEND(RULE(wHlLEST), 

LlST(INSTR •• $(LABELl :• SN))) /S 
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SP302 CONDST ::• LABELO: CONDST 

I/ SN :• NEWJNTEGER; INSTR :• $(FORMAT :• P20; JLAIIL I• SN); 
DN :• CHECKVIRT(ENVl(CONDST), SP<LABELO), "LABEL"> /I 

S/ RULE(CONDST> :• CONS(lNSTR •• $(LABELl :• SN>, 
IULECCONDSTe)) /S 

S/ D<CONDST) :• IF ON~· 0 THEN DCCONDSTt) 
ELSE DCCONDST•> + 1 /S 

S/ DOCCONDST•> :• IF DN ~· 0 THEN DOCCONDST) 
ELSE DOCCONDST) + 1 /S 

$1 UNDECLCCONDST) :• IF DN ~· 0 THEN UNDECLCCONDST•> ELSE 
CONS(INSTR, UNDECL(CONDSTe)) I I 

S/ VIRDECLCCONDST) :• IF DN • 0 THEN VIRDECL(CONDSTe) ELSE 
PUT IN CVIRDECL (CONDST•> : lDNl : • INSTR) IS 

S/ E(CONDST) :• IF DN ~· 0 THEN ECCONDST•> ELSE 
UNIONDOTCE(CONDSTe), E1 •• SClSPCLABELO)] :• 

$(GENUS :• S<KIND:• "LABEL"; TYPE: • "LABEL">; 
ADDR :• $(FORMAT :• F21; LN I• LL(CONDST)I 

ON :• DO\CONDST))))) /S 

IPJOJ IPST ::• IFCL UNCONDST 

S/ ENVACUNCONDST) :• NULL; BEGUN<UNCONDST) :• FALSI; 
CL(UNCONDST) :• 0; OUTERMOST(UNCONDST) :• FALSI; 
RULECIFST) :• APENDCIULECIFCL), RULICUNOONDST)) /I 

SP304 IPCL ::• IF BEXPR THEN 

I/ USECBEXPR) :• "VALUE"; APACBEXPR) :• 0; 
RULBCIFCL) :• APENDCRULECBEXPR), LISTCINSrR •• $(POIMAT :• 

Fl7; JLABEL :• FJUMP(IFCL)))) IS 

SPJOS WHILEST ::• WHILE BEXPR 1>0 ST 

$1 APACBEXPR): • 0; USECBEXPR> :• "VALUI"; 
SM :• NiWINTEGER; SN: • NEWINTEGER 
RULECWHILEST) • CONSCINSTR •• $(LABELl :• SN), 

APENDCRULECBEXPR), 
CONS<INSTR •• $(FORMAT :• P17; JLABIL :• SM), 
A PEND <RULE CST), . 

CONSCINSTR •• $(FORMAT :• Fl; JLABIL :• SN), 
LISTONSTR .. $<LABELl : • SM))))))) IS 

SP306 WHILEST ::• LABELO: WHILEST 

S/ SN :• NEWINTEGER; INSTR :• $(FORMAT :• P20; JLAIBL :• SN); 
DN :• CHECKVIRTCENV10iHILEST), SP(LABELO), "LABBL") /$ 

S/ RULECWHILEST) :• CONSCINSTR •• S<LABBLI :• SN), 
RULE (WHILBST•>) IS 

1/ DMIILEST) : • IF DN .... 0 THEN D<WHILESTe) 
ELSE DOOIILESTe) + 1 IS 

I/ DO CWHI LEST•> I P DN ~• 0 THEN DO 0011 LEST) 
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ELSE DO <'WHILEST) + 1 /$ 
$1 UNDECLC'WHILEST) :z IF D~ ~= 0 THEN UNOECl.(WHILEST•> ELSE 

CO~S(INSTR, UNOECLCWHILE~T*)) /S 
$1 VIRDECL(WHILEST> : = IF ON = 0 THEN VIRDECLCWHILEST•> ELSE 

PUTIN<VIROECL<WHJLEST•) : [ONJ : = IN')TR) /$ 
$1 E(WHlLESTJ : = IF ON -.= 0 THEN E('WHILESh) ELSE 

UNJONDOT<E(Io.'HILEST•>, El •= $([SPCLABELO)J := 
S (GE~US : = $ <KI~D: = "LABEL"; TYPE : • "LABEL"); 

ADDR: = SCFJRMAT ~ = F21; LN : = LL(WHILEST); 
DN :'" DO(WHILEST))))) /S 

SP307 CONNST :: = INSPECT OBJEX?R CONNPART f,!CL 

$/ SM :" !~Ell' I ~TEGER; SN : = NE\o't STEGER; 
D<CO:-;:->ST) := IJ(OTCLJ + 1/$ 

S/ UNDECLCCONl'<ST> : = l}J:-;S<IN5TR •= SCFOkMAT: • F9; 
OPER :="REF">, UNDECL( OTCL)) /S 

$/ O<OTCLJ : = OPESCCOS\PART>; OPE~ (CONNST) : = OPEN(OTCL) /S 
$/ USE COBJEXPR) : = "',ALUE"; FJUMP CCONNPART) : = SN; 

TJUMP CCONJ'<PART) : = .>M; APA COBJEXPR) : = 0; 
DO (OTCl.) : = DO CCONNST) + 1 /$ 

$1 RULECC011:~5Tl : = CO\S <I :-;sTR •= S <FORMAT :"' FS; 
ADDR : = $(FORMAT : = F21; LN: = LL(CONST); 

D:\ : = DO <COSNST>)), A PEND <RULE COBJEXPR), 
CONS <I:--<STR •= $<FORMAT : = F28; ALSO :., FALSE), 
APE~DCRIJLECCON!\PARTl, CONS(INSTR •= $(LABELl:= SN), 

APESD(RULE<OTCL), 
LIST (I NSTR *= S (LABEL I : = SM))) l))) IS 

SPJOS CONNST :: = I~SPECT OBJEXPR DO CONNBLOCK2 OTCL 

$1 SN : = NEWINTEGER; SM : ~ NEWINTEGER; SL : = INTEGER 
DCCONNST) : = Dco·rcL> + 1 /$ 

$1 UNDECL <CONNSTl : = CO~S (I NSTR •= S CFOR~AT : " F9; 
OPER: = "REF"), UNDECLCOTCL)) /$ 

$/ OUTPUT(APEND<UNDECLCCO~~BLOCK2), APENDCRULE(CONNBLOCK2), 
LIST<INSTR *"'$(FORMAT:= F12)))), SL) /$ 

$/ O<OTCL> : = OPEN(CONSBLOCK2); OPEN(CONNST) :• OPENCOTCL) /S 
$1 USE COBJEXPRl : = "VALUE"; APA (OBJEXPR) : = 0; 

BEGUN <CONNBLOCK2) : = TRUE; DO CCONNBLOCK2) : • 1; 
DO <OTCL) : = DO CCOt\NST) + 1 /$ 

$/ LL (CO~NBLOCK2) : = Ll. <CONNST J • 1 /$ 
$1 FCCONNST) :• E(OTCL) 1 $ 
S/ ENV(CONNBLOCK2) : D I~VDELTA(ENV(CON~ST), 

I NV DELTA ([QUALTS (COt'<NST). !PL <OBJEXPR). GENUS. QUAL]. 
CLASSN].LOCALE), E<CCNNBLOCK2))) /S 

$1 ADDR :"' S <FORMAT :" F21; LN : = LL (CONNST); 
ON:: DOCCONNST)) /S 

S/ ITEM <CO~NBLOCK2) : E CONS(XX .E $(QUAL:= 
PLCOBJEXPRI.GE~US.QUAW ADDR:: ADDR), ITEM((CONNST)) /S 

$/ RULE(CONNST) : = CONSCINSTR •• $(FORMAT:= F2; ADOR: E ADOR), 
APENDCRULE<OBJEXPR>, 
CO~S(I~STR •= $(FOR~AT: = F28; ALSO: E TRUE), 

CONSONSTR •= SCFOR~AT:" F16; CP!:!J. :" "=/="), 
CONS<INSTR •= SCFORMAT := F17; JlABEL: = SN), 

CONS<INSTR •· $(FORMAT: • Fll), 
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CONS(INSTR •• $(FORMAT :• F22; 
LN :• LL<CONNBLOCK2>; SN :• SL), 

CONS<INSTR •• $(FORMAT: • Pl; JLABBL':• SM), 
CONSCINSTR •• S<LABEL: • SN), APiND(RULI(OTCL), 

LIST<INSTR •• $(LABBLI :• SM))))))))))})) /$ 

SPJ09 CONNST :: • LABELO: CONNST 

S/ SN : • NEW INTEGER; I NSTR : • S <FORMAT : • F 20; JLABEL : • SN); 
RULE(CONNST) :• CONS<INSTR *• $(LABELl :• SN),. 

RULE(CONNST•)) /$ 
S/ DN :• CHECKVIRT<ENVJ(CONNST), S~(LABEL0) 1 "LABEL") /$ 
S/ UNDECL(CONNST> : • IF DN ~· 0 THEN UNDECL(CONNST•> ELSE 

CONS<INSTR, UNDECL(CONNST•>> /S 
S/ VIRDECLCCONNST> :• IF ON~· 0 THEN VIRDECL(CONNST•) ELSB 

PUT IN CVIROECL (CCN~'ST) : [DNJ : • IN:;TR) II· 
S/ D<CONNST) :• IF DN ~· 0 THEN D<CONNST•> 

ELSE D<CONNST•> + 1 /$ 
S/ DO(CONNST•/ : • IF ON ~· 0 THEN DO<CONNST) 

ELSE DO(CONNST) + 1 I$ 
S/ E(CONNST> : • IF ON ~· 0 THEN E<CONNST•> ELSE 

UNIONDOTCECCONNST•), El •• $([SP(LABELO)J :• . 
S<GENUS :• $(KIND :• "LABEL"; TYPB :• "LABEL">; 

ADDR :• $(FORMAT :• P21; LN :• LL(CONNST); 
DN :• DO(CONNST>>>> /S 

SPJ10 CONNPART :• CONNCL 

SP311 CONNPART ::• CONNPART CONNCL 

S/ SN :• NEWINTEGER; FJUMP(CONNPART•) :• SN; 
RULE CCONNPART> : • APEND (RULE (CONNPART•), ·CONS <INSTR •• 

$(LABELl :• SN), RULB<r~NNCL)) /S 
$1 OPEN(CONNPART) :• OPEN(CONNCL) /$ 

$P312 CONNCL ::• WHEN CLIDl DO CONNBLOCK1 

S/ SN :• NEWINTEGER; 8EGUN(CONNBLOCK1) :• TRUE; 
DO<CONNBLOCKl) :. 1; 
ADDR: • SCFORMAT :M P21; LN :• LL(CONNCL); 

DN: • DOCCONNCL)); 
ITEM<CONNBLOCKl) :• CONS(XX •• S<QUAL :• PL<CLlDl).SIGMBNT; 

ADDR :• ADDRl, ITBM(CONNCL)) /$ 
S/ RULE<CONNCL> : • CONS(INSTR •• $(FORMAT: • F8; ADDR :• ADDR), 

CONS<INSTR •· $(fORMAT:. F8; ADDR: • PL(CLIDl).ADDR), 
CONSCJNSTR •• $(FORMAT :• Fl6; OPER :• "IN-WHEN"), 

CONSCINSTR ••(FORMAT !• F17; JLABEL :• FJUMP(CONNCL)) 1 

CONS(INSTR •• $(FORMAT :• Pll); 
CONS<JNSTR •• S<FORMAT: • P22; Ll.: • LLCCONNBLOCKl); 

SN : • SN), 
LIST(INSiR •• $(FORMAT :• Fl; 

JLABEL :• TJUMPCCONNCL))))))))) /S 
$1 OUTPUTCAPEND(UNDECL(CONNBLOCK1) 1 APEND<RULE(CONNBLOCK1) 1 

LIST(INSTR •• $(FORMAT :• F12)))) 1 SN) /S 
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S/ LL(CONNBLOCKl) :• LL(CONNCL) + 1 /S 
S/ ENV<CONNBLOCKl) :. INVDELTA(ENV<CONNCL), 

INVDELTA(PLCCLI01).LOCALE, E<CONNBLOCKl))) /S 

SP313 CONNBLOCKl ~: • STl 

S/ ENVl (STl) : • NULL; ENVA (ST1) : • ENV (CONNBLOCKl); 
OUTERMOST(STl) :. FALSE; CL(STl) :• 0 /S 

$?314 CONNBLOCK2 :• STl 

S/ ENVl(STl) :• NULL; ENVA(STt> :• ENV(CONNBLOCK2); 
OUTERMOST(STl) :a FALSE; CL(STl) :• 0; /$ 

SP315 OTCL :: • 

S/ RULE(OTCL) : • NULL; UNDECL(OTCL) :• NULL; 
V IRDECL COTCL> : • NULL; D (OTCL) : • 0; E (OTCL) : • NULL; 
OPEN<OTCL) : • IF O(OTCL) • "CLOSED" OR 

O(OTCL} • "OPENDISAMB" THEN "OPENDISAMB" 
ELSE "OPEN"; 

IF OPEN(OTCL) • "OPENDISAMB" THEN DAMB(TRUE, 1) /$ 

SP316 OTCL :: • OTHERWISE 57 

S/ IF O(OTCL) • "OPEN" OR O(OTCL) • "OPENDISAMB" THEN 
DAMB (FALSE, 1> /S 

S/ OPEN<OTCL) :• IF OPEN(ST) • "OPENDISAMB" THEN "OPEN" ELSE 
IF OPEN(ST) • "NONE" THEN "CLOSED" 

ELSE OPEN(ST) /S 

4. 2 ANALYSIS OF THE DEFINITION 

This section analyses the differences between Wilner's and the 

present definition. Only major differences are analysed in detail; 

differences arising fro~ minor errors or o•isslons are noted but not 

co••ented. It should be noted that the r~=:~nt deflnltlon l•ple•ents 

only a subset of Wilner's definition. The productions for real 
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nu.bers, characters and siaulation were left out. The reason for this 

oalsston ls not any liaitation iaposed by FOLDS; tt siaply reflects 

an individual desire to restrict as auth as possible the aaount of 

work to be done. It also should be noted that the input-output rules 

are aissina; they were not included because they would involve the 

hand codina of a larae set of taraet lanauaae instructions which did 

not seea to be very relevant to tbe purposes of tbe present 

definition. 

4.Z.l AMBIGUITIES 

In Wilner's definition, aab1auities are haadled in essentially 

the saae fashion as errors. The definition bad thus to be chanaed to 

adapt it to SPINDLE's foraalisa for handlina aabtau1t1es; a nua~er 

of new attributes were introduced (APA, DAA, EMDEC, AEMDBC, NUMDBC, 

START, SID>, one was elia1nated <OUTER>, and another aodified 

(F I RSTST, froa 1nher l ted to synthesized). Purtheraore, soae 

aabiauities were detected that had not been noted by Wilner: one 

arlsina froa an eapty naae part and/or value part in a procedure 

headina; one arisina froa the first stateaent in the coapound tall of 

a block beina eapty; • ·~ one ari5lna fro• the flrst stateaent in 

INITIAL OPERATIONS beina eapty. 
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4.2.2 QUALTB 

The attribute QUALTB maps the sea•ent designation of a class 

into the sy•bol table entry for the class and into the class's prefix 

class. It is introduced to slmplfy the i•ple•entation of a series of 

functions specified by Wilner (e.g.CONDQUAL>. As a consequence of 

its introduction, Wilner's functions CPL and JDSP are not 1•pleaented 

since the values they would return can be directly obtained fro• 

QUALiB. 

4. 2. l VIRTUALS 

A numuer of •odifications were introduced due to errors fc~nd 

in Wilner's sche~e for handling virtual (SIMULA) attributes. The 

attribute ENVl was introduced to avoid the following circularity 

arising in Wilner's definition: when checking lf an identifier ls 

virtual ln ~n identifier declaration the attribute ENV 1s used to 

check lf the identifier is virtual; however, ENV depends on the 

attribute E whose value depends on the test on the attribute ENV. In 

the •odlf1ed sche•e the test is made upon ENVl which does not depend 

on ~. The function VIRMERGE had to be •odifled since the original 

ver~ion does not work when the attributes of a class include an 

array. The obJect code generat!d from procedure state•ents was also 

mod if 1 ed. In Wilner's deflnl tion, different rules are genera ted 1 f 

the procedure is a proper or a typed procedure; thus, a virtual 
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proper procedure which is redefined as a typed procedure, will cause 

execution errors for all procedure atate .. nts tbat call the procedure 

fro• tbe body of the prefix cL&as. As .edified, tbe procedure 

stat; .. nt always aenerates tbe sa.. object code. Tbe final 

.udification was the introduction of tbe function SUIOIDINATI, wblcb 

ch~cks the subordination rules for the redefinition of virtual 

procedures; it ti •isslna ia Wilner's definition. 

4.2.4 CLASS CONCATENATION 

The class concatenation .. chants• proposed by Wilner does not 

work when a class bas for .. l para .. ters and is prefixed. The 

iaple .. ntatlon of a valld •ecb&nls~ besides cbanalna the definition, 

required so .. of the ehanaes in Wilner's .. chine whleh were explained 

at the bealnnlna of this chapter. 

4.2.5 PUNCTION INVDELTA 

Th\s function is a aodlfled version of ~liner's ~ function. 

While not wrona, Wilner's function was WJre coaplicated tban 

necessary. JNVDILTA sl•ply laple .. nts the ALGOL rules for rena•tna 

alob&l variables Inside a block. 
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4. 2. 6 CODE 

As proposed by Wilner the CODE function does not work. Instead 

of lapleaent~ng a function, an attribute COOl! is included in the 

syabol table entry of a class: its value is the rule generated for 

the class. 

4.2. 7 ARRAY DECLARATIONS 

According to the SJMULA definition [DMN 701, the array bounds 

in an array declarat:on a&Y contain variables <or procedures> that 

are global to the block to which the array belongs, plus foraal 

paraaeters, if the array ls declared in a class or procedure body. 

T~;e attubute ENVA was introduced to iapleaent this feature, which 1s 

ignored by Wilner. 

As defined by Wilner, an array segaent having aore than one 

array identifier will not generate the proper code. The correction of 

this error necessitated the changes ln the aachine instruction MAK 

which were explained at the beginnina of the current chapter. 
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4.2.8 LABILLID BLOCKS 

Production P175 is sianlfieantly different froa the 

correspondtna production ln Wilner's deflnttton which bad a 

substantial nuaber of errors. The attribute NOLABIL, bad to be 

Introduced to detect the left•ost label when aore than one label 

appeared on a block. 

Production 177 aad 178 were dropped and 176 replaced by 

ILOCK ::• UNLABELLED PRIPIXED BLOCK 

a labelled prefixed block causes an aabiaulty and notbina is lost, 

seaanttcally, by eb&na1na tbe ara ... r. 

4. 2.t PROCIDURI AND CLASS HEADINGS 

The aeehanlsas proposed by Wilner for headtnas <uslna the 

•ttrlbutes MAT, MATRIX and VECT and the fuaction w>, while not wrona, 

would have been cu.bersoae to lapleaent in SPINDLE. A slallar but 

alapler aecb&nlsa ls lapleaeated uatna tbe attribute• MAT, MATRIX, 

NAMITB and NTB, and no special functions. 
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4.2. 10 PROCEDURE DECLARATIONS 

To siaplify the definition, productions 

221: PROCDECL ::• PROCEDURE PROCHEAD PROCBODY 

222: PROCDECL ::• TYPEN PROCEDURE PROCHEAD PROCBODY 

were replaced by productions 

P221: PROCDECL :: • TYPEP PROCEDURE PROCHEAD PROCBODY 

P221A: TYPEP ::• TYPEN 

P221~ TYPEP ::• 

This modification does not alter the content of the definition 

but ser·ves to point out how a proper choice of the araaaar can result 

in a more coapact SPINDLE defini Uon. 

4. 2. 11 STl 

Tne introduction of the nonter•lnal STl is &~other aodtftcatlon 

done for the purpose of having a more co•pact def1ntt1on. The use of 

both STl and ST decreases the nuaber of seaantlt rules necessary In 

the definition. Thus & number of attributes uf STl have values 

assigned to thea in P26SA; if only ST were used, those values would 

have to be assigned 1n every production in whlch ST were a RHN. 
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4.2.12 OTHIR MODIFICATIONS 

lesldes the productions noted above, tbe follovlna productions 

bad to be .adlfled due to errors or o•tsstons tn Wilner's deflnltton: 

P3, PU, Pal, P89, P90, PI 59, P160, pl6t, Pl70, P1791 P180, Pill, 

P183, P~IO, P2111 P2181 P2U, P221, P223, P23~, P234, P2351 P236, 

P239, ·~45, P2501 P2511 P253, P256, P2SI, P2St, P261, P262, P265, 

P267, P268, P269, P270, P271, P285, P2901 P2tt, P303, P307, P308, 

P312, P314, F315, P316. 
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CHAPTER 5 

CO~CLUSIO:-: 

The preceding chapters presented a description of FOLDS and of 
its applications. The current chapter reviews the system, describing 
its present implementation status and pointing out needed 
improvements; 1 t also indicates some areas for further research. 

The system implements and extends Knuth's method for the formal 
definition of semantics, incorporating \~ilner's extensions to the 
method. The declarative nature of the method is preserved by the use 
of a special control structure wich permits a nearly complete 
dissociation bett-:een language defir.ition and co111p1lat1on. A 
formalism for the semantic resolution of syntactic ambiguities is 
introduced together with appropriate control mechanisms to carry out 
the disambiguation processes The actual disambiguation mechanism is 
transparent in the definition as is the compilation carried out from 
it. The system provides a language, SPINDLE, for writing the 
definitions and a machine, MUTILATE, to compile strings of the 
language directly from t!le definition. The language incorporates a 
flexible data structure representation; a syntax specification 
mechanism imposing practically no rtstrictions on the user; a set of 
semantic primitives necessary for specifying the semantic rules 
associAted with each production. The language provides the necessary 
composition rules so that new semantic operators can be built from 
the primitives provided by the system. 
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As shown by the definition of SIMULA in Chapter 4, MUTILATE is 

capable of handlin& the definition of lara• lanauaaes and the 

coapilat1on of sizeable proaraas in the defined lanauaaes. Further 

on, a series of improvements are suaaested to increase the capacity 

of the systea. However, in its present staae, the size of the 

proaraas it is capable of coapilina is quite adequate for the priaary - -
purpose of the aachine, which is to check the correction of 

definitions. A series of debu&aina aids are incorporated in the 

aechanisa and have proved adequate in the debua&ina of the SIMULA 

definition: however this is a biased opinion since the debuaaing of 
•' the systea was carried out in parallel with the debuaaina of the 

~efinitlon and no other user besides the author has used the system. 

The system 1s currentlY implemented on an IBM 360/67 and 

occupies 280K bytes of steraae. It consists of the MUTILATE assembler 

and the MUTILATE machine, both written in PL/360 041 71]. The SPINDLE 

compiler has not tet been implemented; SPINDLE prograas are hand­

coaplled into MUTILATE asseabler code. The asseabler incorporates 

most of the important features of the compiler {e.a., the aeneration 

of implied semantic rules), so the hand coapilation is very 

straiahtfoward. The SIMULA definition coapiles into approximately 

8000 assembler instructions which take 0. 13 ainutes of CPU time to 

assemble. The machine is 1aplemented as two separate proarams: the 

first implements the parser and the lexical analyzer while the second 

implements the MUTILATE interpreter. The SIMULA definition occupies 

approximately 30K of byte addressed aeaory, out of a maxiaua of 64K 

which indicates that there are no practical lialtat1ons on the size 

of languaaes that can be defined and run 1n FOLDS. One real 

11a1tat1on is the s1:e of the proarams of the defined lauauaae that 
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can be co~Mpiled b)' ~:U71l.ATE; while compilation time does not seem to 

be a constraint 'see the timings that accompany the SIMULA programs 

in Appendix 4>, space definitely is; with the present storage (280K 

bytes), thE- largest Sl~lULA program that can be compiled is about 30:& 

larger than program X 1n Appendix 4. However, this size of progrAm is 

more t!1an adequate for tne pur;;oses of the system, which is to test 

the definition of languages; it is certainly not adequate for a 

production compiler. 

The experience with the system is somewhat limited since the 

only pracLlcal lan;;uage defined in it is SIMULA 67. Also the 

restrict1ons imposed upon the SIMULA definition (that it should 

follow the SlMULA 67 grammar and approximate Wilner's definition) 

makes it diffiv1lt to generalize from the present experiment. 

Inasmuch as SIMULA is representative of a large class of programming 

languages, the :.]";;tern seems perfectly adequate for their definition. 

Ho~ever rnuch more experience is needed before definitive conclusions 

can be drawn about the adequacy of the system for a broader class of 

languages. 

Despite the disclaimers, initial experience with the system has 

been very encouraging. The discipline involved in writing a 

d~finition formally has paid off ~andsornely in avoiding and detecting 

dozens of errors and inconsistencies in the previous definition of 

SI~ULA. There have been many advantages Jn having a working syystem 

since many of the errors in Wilner's definition could hardly have 

been noticed by hand since humans are not so demanding in precision. 

Although space is 1 imi ted, in fac the lim1 tat ion was not so severe as 

ex!Jected, since programs nearly a 100 lines long can be handled; this 

is almost ,;.r. order of magnitude better than was expected. The 
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runnin& speed is also quite satisfactory. FOLDS ba~ proved 1ts power 

and !lexibil1ty ~ 1th the definition of SI~1ULA. Finally, the 

!novations introduced in FOLDS, such as parallel state•ents and the 

disambiauation mechanisms, see•s to be workina rather well. 

Further research is needed to establish SPINDLE proara•aina 

techniques. The SIMULA definition has what seems to be very adequate 

techniques for the handlina of labels and syabol tables but the 

handling of ambiguities seems to be a bit cumbersome. A further study 

of the attributes used in the definition should also reveal areas for 

t~prove•ent such as a reduction 1n the number of attributes and a 

siaplifieatton of the user-defined functions by the utilization of 

more adequate attributes. An exaaple of this type of simplification 

is the ~ntroduction of QUALTB on Wilner's definition of SIMULA. 

Another area for research is the balance between syntax and 

seunt1cs. In the present definition the syntax was aostly fixed by 

the decision to stick to the official SIMULA aramaar. While it served 

to show the power of the method 1t coaplicated the definition and 

made it harder to understand. A joint design of the syntax and 

semantics would obviously yield simpler and aore readable 

definitions. As of now the SJMULA definition seeas to be somewhat 

hard to understand for someone not familiar with the SIMULA language; 

if indeed this is true, a better choice of syntax and better SPINDLE 

programming techniques should help. Also a more liberal use of 

comments would certainly improve the readability of the definition. 

It should be noted that in the SIMULA definition a s1gn1f1eant 

aaount amount of the code is dedicated to error and aabiauity 

handling. Since this por~1on of the code is a result of the desian of 

the syntax, it is easy to see how a better syntax desian ean decrease 

the complexity of definitions. 
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Another area for furt~er research is the choice of the target 

language. In tho:: SI~.:ULA Je!initlon, l:ilner chose as target language 

the order code of a machine similar to the one defined by Randell & 

Russell [RR 64] for ALGOL GO. In a sense this is unfortunate since 

the machine is com; . .! lea ted enough to mat.;e understanding it 

nontri·,ial, thus obscunng some aspects of the definition. Ho\\ever, 

as pointed out by Knuth [Kn 711, the target language should be of a 

high enough level so that the issueJ involved in the definition are 

not obscured by the level of detail made necessary by the low level 

0f the target language. There are tradeoffs in the choice of the 

target language and further researcn is ne~ded to establish criteria 

for a proper choice. One possible choice i.s to compile directly into 

some ;natl1ematical formalism; such as the one proposed by Scott 

[SS ill, ...,hlch then directly gives the meaning of the strings of the 

d~fined languace. An additional advantage of this choice is that 

proofs about the pro)Srams can then be worked out directly. The 

disadvantage of tilis clloice of target language is that it is not very 

relevant to the compiler writer, who should be one of the main :.~sers 

of a language definition. 

It shculd be noted that since the 

point of view of the language designer, 

target language, from the 

is essentially debugging 

lnforml'tion, it should be made as sy1abolic as pCIS$ible. For instance, 

in the definition of SIMULA, it ~ould h~ve been very helpfull to link 

the source statements to the target language they generate; while 

this involves changing the ctefinition, it involves only minor changes 

and should be possible to effect ~ith relative ease. 

As described in Chapter 1, the parsing and filling in of the 

semantics are perfor~ed in two sep~rate steps; this approach was 

22l 



chosen for its simplicity and because at the time the decision was 

reached the p~ocesses involved in the fillina of the seaantics were 

not completly understood. But a one step approach (parsina and 

filling in if semantics simulataneously), if successful, could both 

reduce the compilation time and increase the site of proarams that 

can be compiled by the system; the a~ount of backtracking and the 

numher of ambiauous subtrees aenerated could both be reduced. A new 

pars1na scheme will probably have to be chosen since Earley's, as 

analysed ~n Chapter 4, does not seem to adapt itself well to a one 

step scheme. 

Another aspect of tte system tha~ deserves further study is the 

DEVELOP function .,.l':!'=.h traverses the parse tree, return!ng a 

different node for each call. A garbage collection mechanis~ collects 

all those nodes for which all associated parallel processes have 

terminated and those attributes whose values are not relevant to any 

other attributes. Thus, the order in which the nodes are developed ·~ 

critical for efficient space management. As now implemented, DEVBLOP 

traverses the tree in a top-down, left to riaht order, which reflects 

the bias of most programming languages. But in SIMULA, for instance, 

a procedure body may use a .,,n-iable whose declaration comes to the 

right of the proceaure declaration; thls shows that the left to right 

bias 1s not all-pervasive. In terms of the definition 1n Chapter 4, 

the ENV attribute for the procedure body will be defined only aft•r 

all the declarations at the same level have been processed. In this 

case it would clearly be more efficient to postpone the development 

of the subtree corresponding to the procedure body until 

ENV<PROCDECL> had been defined. As can .be perceived, a "smarter" 

DEVELOP function can increase the size of programs . that can be 

compiled by the system. 
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Another necessary improvement to the system is the introduction 

of the data types REAL and STRI~G ar.d the necessary functions for 

their manipulation. l."hile not essential, these features should 

increase the flexibility of the system. The sy~tem was designed with 

these data types in mind and so their inclusion will result in 

additions to the system, but not manr ~hanges. 

In the present implementation all the output is performed at 

the end of a run; this guarantees that a~l attributes are defined 

before they are printed. This results in a great waste of space; a 

coutrol structure that ~ould output attributes as soon as they are 

defined, while preserving the output rules st~ted in 2.9. 1, could 

greatly improve the capacity of ~UTILAT~ 

The power of FOLDS could be great•Y increased by the use of a 

more powerful scheme for the descriptlun of the syntax. For example, 

either the scheme proposed by Galler & Perlis (GP 70] or the one used 

by Floyd to describe the syntax of ALGOL W (51 71) would be 

convenient. Such schemes, besides permitting a more compact 

description of the syntax of a language, generate shallo~·er parse 

tree5 for any give~ string of the language, and thereby minimize the 

numLer of attributes passed fro= node to node. The use of a simple 

production ·cheme for the grammar necessitates the u~e of 

intermediary tonterminals ~hich also increase the site of the tree. 

The use of a r.ore powerful syntax scheme should also reduce the 

number of attributes by decreasing the amount ot information to b~ 

circulated through the tree. However, the 'doption of these more 

powerful syntax schemes is not trivial since a set of semantic 

operators will have to be created for the manipulation of attributes. 

Research is needed to choose the ap~7op1ate syntax scheme and to 
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choose and develop the associated semant1c operators. The adopt~ n 
of a new syntax specification method implies a large overhaul of the 
present system which should, however, serve as the basis for the 
improved system. 

The checking of definitions is another area for further 
research. Given a language and its definition, how should a set of 
programs in the language be chosen to assure that the definition is 
well formed and that it actually reflects the language designer's 
concepts about the language? It must be possible,· given the 
definition of a particular language to devise a systematic approach, 
so that if not all, at least nearly all possible elementary 
constructs of the language can be checked out. The exp~r1ence 
acquired with SIMULA seems to indicate that FOLDS is capable of 
compiling programs long enough to test the definition and that the 
debugging aids in the sy~tem seem adequate enough for the task. But, 
although a large n~mber of tests have been performed the definition 
probably still contains some undetected errors. The experience also 
shows that the tests should be performed with the programs as small 
as possible; in a language as large as SIMULA, even small pr~grams 
generate large parse trees and a great number of attributes. It is 
thus very hard to keep track of all th1t is go1na on durin& a 
MUTILATE run. 

Another area for further research is in the development of 
production compilers directly fro~ a SPINDLE definition. While the 
stress in FOLDS is towards generality, definitions could be 
classified according to their semantic and syntactic characteristics, 
and efficient compilers could be generated for certain categories. 
Local code optimization can be easily achieved with the use of 
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appropriate attrlbutes, and a special category of rule~ could be 

introduced to help generate efficient compilers. Ideally, it should 

be possible to generate an efficient compi!er directlr from the 

definition, 1>1thout an}' further i:.formation; however, this does not 

seem realistic, at l~ast at the moment. It should be noted that a 

nondeterminisc ap~roach such as this is bound to be inherently less 

efficient than deterministic approaches. 
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APPE:\DIX l 

COM.\1E:\T THIS IS A DESCRIPTIO\ OF TURI:\GOL IN SPil\DLE. THE LIST 

~TTRIBUTE OBJPROG HOLDS A LIST OF CO~STRUCTS THAT ARE 

TRA~SFOR:•lEO I :\TO A TL/; PROGRA~I BY THE PROCEDURE OUTPUT. 

LABELS ARE HA~DLEO BY ~EA~S OF LABEL-VALUES. TO EACH LABEL 

IS ASSOCIATED A U~IQU~ I~TEGER, THE LABEL VALUE, AND A 

PSEUDO-iSSTRUCTIO~ C~ITH CO~PO~EST TAG) IS INSERTED IN FRONT 

OF A LABELED I~STRUCTJO\. THE VALUE OF TAG IS THE LABEL-

\'ALUE. THE OUTPUT PROCEDURE THE~ BINDS LABEL-VALUES AND 

A.DDRESSES BY ~.IEA:\S OF THE ~lAP ATTRIBUTE. PSEUDO INSTRUCTIONS 

ARE :\OT PRI\7ED. THE SY~BOL TABLE IS REPRESENTED BY THE 

CO:\STRUCTS E A\D E~V, E COLLECTI\G THE INFORMATION AND ENV 

SPREADI\G IT. EACH SV~BOL TABLE ENTRY HAS ONE COMPONENT, 

EITHER LABEL OR SY~EOL ~HICH DEFINES THE KIND OF THE 

I DENT! F I ER. THE ATTRIBLITE E~1PTY HANDLES THE SY!\TACTIC 

AMBIGUITY THAT ARISES hHES THE FIRST STATE~ENT IS EMPTY. THE 

PARSI~G I:\ 1\'HICH THE LAST DECLARATION IS NOT EMPTY IS THE 

RIGHT 0:\E; 

rE::. .• :x NALS ARE • : ; ( , ' 

RESERVED \\ORf.S ARE TAPe, A'-PHABET, IS, PRINT, MOVE, LEFT, RIGHT, Ot\E, 
SQUARE, IF, THE, SiMBOL, THEN, GO, TO 

ATTRIBUTES ARE 

DIRECTIO~ s TITLE 
I S'DEX = INTEGER 
E = CO~STRUCT, CO~STRUCT 
ESV • E 

2ll 



El • E 
E2 • E 
OBJPROG • L T S':' 
SP • TIT:.E 
MAP • C:O~STRUCT, 1!1/TEGER 
IXSTR • CONSTRUCT 
TAG • ISTEGER 
LOC • INTEGER 
SYMBOL • INTEGER 
MOVE • TlTLE 
LABEL • I~TEGER 
Pl .. POINTER 
P2 • Pl 
M • INTEGER 
EMPTY • BOOLEA~ 

IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP 

NONTERMINALS ARE 

P • S <OBJPROG) 
S • S <OBJPROG, E, E~4PTY), I (ENV) 
L • S <OBJ PROG, E, EMPTY>, I CENV) 
D • S<INDEX, E, ~~PTY) 
0 • S <DIRECTION) 

START SY~1BOL P 

FORMATS ARE 

Fl • (" <"' LOC, ": PRII\T, " SYMBOL, ") ") • F2 • (" ("' LOC, ... MOVE, " MOVE, "> ") • F3 • ('' ("' LOC, ": Jm1P, " LABEL,")") , 
F4 • <" (", LOC, ": I~. ", SYMBOL, " " LABEL, ") ") 

' ' FS • (" ("' LOC, ": STOP>") 

FUNCTION JOINE CEl, E2); 

BEGIN CO~V.E~T THIS PROCEDURE JOINS TWO SYMBQL TABLES AND CHBCKS FOR 

DUPLICATE ENTRIES; 

~1 : • ~IRST CE2); 
lF NULLBCEl) THEN E2 ELSE 
BEGIN 

'"HILE -.NULLBCPl> DO 
BEGIN 

IF ... ~uLLRCF!NDCEl,SELECTOR([Pl]))) THEN 
ERRORCSELECTOR([Pl]), " DECLARED TWICE"); 
El :• •[Pll; Pl :• ~EXT([Pl]) 

END; 
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El 
E~D 

E~D; 

PROCEDURE OUTPUT<OBJPROG); 

BEGI!\ COM:'-IE:-.iT THIS PROCEDURE TAKES THE OBJECT PROGRAM LIST AND PRINTS 

ITS INSTRUCTIO~S. I~ THE PROCESS !T PLACES THE ADDRESS OF 

THE I:-JSTRUCTIO~ I~ THE COMIIONENT LOC AND BINDS LABELS TO 

ADDRESSES. PSEUD0-1:\STRUCTIO~S <·INSTRUCTIQN WITH COMPONENT 

TAG> ARE ~OT PRI~TED A:\D ARE USED TO BUILD THE MAP TABLE 

THAT GIVES THE .CORRESPONOE:\CE BETWEEN VALUE-LABELS AND 

ADDRESS. THE BI!\DI~G IS OO~E BY SUBSTITUTING IN THE 

COMPONE~T "LABEL" THE LABEL-VALUE BY THE ADDRESS ASSOCIATED 

WITH IT IN MAP. THE BISDING IS DONE IN PARALLEL, USING THE 

PROCEDURE PLACE, SO THAT FORWARD REFERENCE~ CAN BE HANDLED 

WITHOUT \-.'ORRYI:\G ABOUT PASSIVATIO~S OCCURRING; 

M :"' 1; 
WHILE ~NULLBCOBJPROG) DO 
BEGIN 

El\D 
END; 

Pl :c CAR(OBJPROG); P2 :• FIND([Pl], TAG); 
IF NULLB(P2; THE~ 
BEGI~ CO~L\IEH THIS IS A:\ I:\STRUCTION. CHECK TO SEE IF THERE IS 

A LABEL C0~1PO~ENT: IF THERE IS, RETRIEVE IT F.a.OM 
MAP AND ASSIGt-: IT; 

[Pl]. LOC : • [~1]; P2 : = FIND( [Pll, LABEL); 
IF ~NULLB(P2) THE~ PLACE([P2l,MAP); 
\vRITE c [Pll, I>; M : .. ~~ +1; 

END ELSE 
COM.\1E:\T THIS IS A PSEUDO-INSTRUCTION. UPDATE MAP: 
MAP. [ [P2Jl : • [MJ; 
OBJPROG : • CDR (OBJPROG) 

PROCEDURE PLACE(P2, MAP>; 

CO~~ENT THIS PROCEDURE ~ILL ASSIG~, I~ PARALLEL, AN ADDRESS TO THE 
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COMPONENT LABEL. THIS WAY THE PROCEDURE OUTPUT IS 

REACTIVATED IMMEDIATE~Y. EVEN IP THIS IS A PORWAAD JUMP. THE 

REASON A PROCEDURE IS CALLED INSTEAD OF JUST PLACING THE 

PARALLEL STATEMENT IN THE BODY OF THii CALLING PROGRAM IS 

THAT THE VALUE OP P2 \o.'HEN THE CALL IS MADE HAS TO BE 

PRESERVED AND THE PROCEDURE PRODUCES A COPY OP IT. A 

PARALLEL PROCESS BY ITSELF DOES NOT PRODUCE NEW NODES AND AS 

1HE VALUE OF P2 IS CONTINUALLY CHANGING THERE IS NO 

ASSURANCE (SINCE THE PROCESSES RUN ASiNCHRONOUSLY> THAT IT 

WOULD HAVE THE PROPER VALUE EVERY TIME; 

S/ [P2l : • MAP. [ [P2l l /S 
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SPll 0 :: • TAPE ALPHABET IS SIG~A 
$1 I ~OEX <DJ : • 1; E~PTY (D) : ,. fALSE; 

ECD). [SP<SIG~IA)J :: 1 1i 

$ P 12 0 : : : D ; S I G~1A 
$/ E~IPTY (Dl : = FALSE; I~DcX (i)) : = l~DEX<O•) +l /$ 
$/ E<Dl : = JOJ:\ECE<D•l, 

E *= $<(SP<SIG~1A)].SYMBOL ; .. INOEX(O))) /$ 

$P 13 0 : : = D ; 
$1 E~1PTY ([J1 : = 7iWE /$ 

$P2l S :: = PRI\T ' SlG:.lA ' 
$1 E (SJ :" :\ULL; 

OBJPROGCS) : .. J..lST(l\STR *"' $(FOR~1AT :• Fl; 
SnlaOL : = ENV (5). (SP (51 GMA) ). SYMBOL)) I$ 

$/ E~IPTY (5) :" FALSE /$ 

$P22 S ::: ~lOVE 0 0\E SQUARE 
$/ E (Sl : = :\ULL; 

OBJPROG (5) :" LIST <I ~STa *- S <FOR.\1AT :,. F2; 
~10VE : • DIRECTION (0))) /$ 

$/ E~lPTY (S) : = F.USE /$ 

$P221 0 :: = LEFT 
$/ DIRECTI0:\(0) : = "LEFT" /$ 

$ P 2 2 2 0 : : = R I G:lT 
:L/ IJIRECTIO:\(OJ • -"RIGHT" 1$ 

$P23 S :: = •~0 TO SJG:.i; 
$/ E (S; : = \ULL; 

H24 

OBJPROG<Sl : = LISTCI~STR •• Z<FORMAT := F3; 

$1 E~IPTY (S) : • FALSE 1i 

~ .. -
~ .. -

LABEL : • E:\V ,S). lSP (SIGMA)]. LABEL)) IS 

$/ E (5) :" ~ULL; OBJ?ROG C3) : • :\ULL /$ 
$/ E~:PTY {5) : = TRlJE I$ 

$P23 S ::=IF iiiE TAPE SY:.i2.0L •s' SIG~IA' THE~ S 
$/ ~.: :" :\Eh'l :\TEGER; 

OBJPROG (5) : = CO:\S (J ~S7r! u ~ (FQR~IAT : • F4; LABEL : = M; 

i/ E~IPTY <S> : = FALSE /$ 

S Y~:BOL : = E:\V (5). [SP <S I G~1A) l • SYMBOL) , 
APE~D<05J?ROG(5•), 

L:ST(I:\STR *• $(TAG: • M)))) /$ 
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SP32 S :: • SJG~1A: S 
$/ M :• NEWINTEGER; 

HS> :• JOINECE<S•>, E •• $((SPCSJGMA)],LABEL :• M)) /$ 
S/ vBJPROG(S) :• CONSCINSTR •• iCTAG • M), OaJPROGCS•>> /S 
$/ E!.tPTY CS) : • FAlSE /S 

$P33 S :: • ( L ) 
$/ ~~PTY(S) :• FALSE/$ 

$P41 L : : • S 

SP42 L :: • L ; S 
$/ ECL) :• JOINECE(l.•),E(S)) /$ 
$/ OBJPROG(L) :• APE~D(OBJPROGCL•), OBJPROG(S)) /$ 
$/ EMPTY(L) :• ~PTYCL•> /S 

SPS P :: • D ; L 
S/ OBJPROG<P> :• APENDCOBJPROG<L>, 

LJST(INSTR *• $(FORMAT :• FS))); 
OUTPUTCOBJPROG<P>> /$ 

$/ ENV (L) : • JOI ~E<E CD>, E (l)) /S 
$1 IF E~tPTY(D) THEN DAMB (FALSE, 1) ELSE 

IF EMPTYCL> THEN DAMBCTRUE, 1) /$ 
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.\I: -:~::-:·. 

TAPt Al~HAdEJ IS 8LANK; ~hO; lE~O; POINT;; 

PRIM 'POINT'; 

o;u IU l.AII.R,; 

Jt:)l: IF lHf JAPE SYM&Ul I) •uroU 1 lHtN 

IPKINJ 1 lEfiC 1 ; 

CA~M~: MUwi LEfT C~~ ~wUAKE; ~u ~U TESJJ; 

Plll"'l 1 UNC 1 : 

~EALI~~: MUVt: MIGHT C~E S~UAkt; 

IF lhE JAPE ~YM8Cl IS 1 lt:kU 1 THEN ~ 10 REALIGN. 

-.: 

PAR Sl "'' T Rt:t 

LUCA Tll.o-. AM61GUUUS 8Rl.Tt1fli SON SUIAt.IIC.S S~LEC.T~AolP&~uUC.TICN OR VALUEI 

u .. ~ " 1 Ui.'t .,. •• 1'5 
1 0 )1 i. lU'td •LoiP'tZ 
l. 0 Cl J hb •SoiPH 
j 0 o; 4 b51o •\,iPZJ .. 0 u 0 'tlJc. •SiuMA,REALIGN 
5 0 i. \) !i't Jl ~~luMAolEfHJ 
b 0 0 1 lO'tli •L, •!)ft.l 
I 0 l • 6 rllli •s,,PJZ 
d 0 lG '1 51>4 • s of• I' il 
'1 0 0 0 oJ't •U,iPO:ll 

l\J I) c. 0 'tllu •SiuMA,IiEALliiN 
ll 0 .. IZ 1046 •L,iPitl 
ll 0 lit lJ 'o9Z •s,,Pl.l 
1J 0 0 u Cllll't •Sll.MAoUNO 
lit 0 (.j I !a lOitd •LoiP'ol 
~~ 0 Jl. 10 dlo •S,iPJ.l 
l.a. 0 JO 11 166 •S,ii'.H 
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