
PB-218 875

FOLDS, A DECLARATIVE FORMAL LANGUAGE

DEFIN!TION SYSTEM

I~u Fang

Stanford University

Prepared for:

Agency for International Development

December 1972

DISTRIBUTED BY:

PB 218 875

FOLDS, A DECLARATIVE FORMAL LANGUAGE DEFINITION SYSTEM

BY

ISU FANG

STAN-CS-72-329

DECEMBER 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UN IVERS lTV

FOLDS, A DFX:LARATIVE FORMAL LANGUAGE DEFINITION SYSTEM

by Isu Fang

Ab~tract

This thesis aescribes FOLDS, a declarative rormal 1&1guage defini~ion

system. The system implements and extends Knuth 1 s method. for the

specification of the semantics of context-free languages. The system

provides ~ language (SPINDLE) and data structures to define the syntax

and semantics .:;!' a langua,se. It also J..ncluc.es a machine (MUTILATE) tl-w.t

from the definition compiler programs of the defined language. Both the

consistency and the correctness of the defintion can be checked in this

way. The lanr,u~~e imposes very few restrictions on definitions While

preserving the ueclarative nature of Knuth's method; i.e , the ccmpilat ion

process is transparent. in the definition. In .1.ddition, tte system

provides a means for t;emantically resolving syntactic ambiguities. FOLDS

is int~nded primarily for the language designer, giving him the

O]:purtunity of realizing his definition with 'l'ery little concern dbout

implementation detaLLs. A defi"'ition of !JIMULA (q in SPINDLE and n ~:r'u

of SIMULA 67 pr0gran.s, as compHed by the 1efi nit ion, are includPd t0

illu~tra~e th~ capabilities of the system.

This research was supported in part by the Faculiade de Economia e
/.dNinistraca da Univer~idade de Gao Paulo, Agen•:; for International
Development - StatP Department and FUndacao -te .htpe.ro a Pesquisa do
Estado de 3ao Paulo; by IBM Corporation; and by XProx Corpcration.

1

aiBLIOGilAPMIC DATA ,1. Rrpon No ,~ S. RedpieDt'a Acec .. ion No.
Sit liT 0TA:i-C:J· 7 ~-3::.'l -

14• ., aile and S llbc ille 5- ltep<>n D•tc

DecemiJer 197<:
Folds, A Derlara.tive to:nnal Lanr:uaw: De:·i~litlon :Jystern ••

7. A .. hor(s) I. Perf-inll Orll•Di,..tion Rcpc.
Isu Fang No. :JT&~-cs- 72-329

9. Perfurmin11 Or11anu:auon N •nJ Addrt·s• 1D. Projcct/T .. I</11'ork Unit No.
Stanford TJni•rersity
Computer :Jcie:tce Department 11. CoDUact /Grant No.
Stanford, Cal.L'ornia q.l· YJ)

12. Sponsoron11 Gr•anizaaion Name and Addu·sa 13. Ty~ o! Report II Period
F acul ct CJ.ci e ue F·:onomia e AlL'TiinL:traca de UniverriJade de ~Jao pg ~lo;onrrd
At:ency f'or International D~velopment-State DPpartment and }'und ~cao technical

de Amparo a Pesquisa do Est ado de ~ao Paulo (Bra;cil) 1 ..

15. Suppl .. mrntary No<cs

16. Absttacrs

Til is thesis descri'Jes FOLDS, s declarativ•= furmaJ. langu,~. definition system.
The system implen:ent.s a.nd extends Krmtl:' s method . ur th specification of U.e
semantics of cor.text-t'ree languages. 'l'he system provides a language (SPINDLE)
a.'ld data structures to define the 3ynt,ax and semc.nt.ics of a langLlage. It also
i'lcludes a machin·.c (MUTILATE) that f'rurn the ciefirition compiles programs of the
defined lang.; age. Both the consistency and the correc tnes;; of the definition can
be checked in thin ws:y. 'i'he language imposen very f'C"",_ .. ~"'estrictions on definition
while preserving the dPclarative nat·.1re of Knuth's 1nethod; i.e., the compilation
prot.:ess is tra11sparent ::.n the dcfini ticon. In addition, the system provides a
means for scmant,ically resolving sy~1tactic ambiguities. FOLDS is intended
primarily for the language designer, giving him the opportunity of realizin,?;
his definition wi t.h very li ttl~ co'lcern about implementation details. A
definition of SIMULA 6'1 in SPINDLE ~-d a set of SIMULA 67 programs, as eomp.~led

11. ICry l'crda alld Docunwnt Analysi•. 17e. Descriptors by the dcfin2.tion, are included to illustrat\~ the
cap11.bili ties or the system.

1~ ldrntifirrs!Opcn-Ended Trrms

17c. COSATI f-ield/Group ' L .l
11. Availability Statement 19. Srcwity Clau (Thi• 21. No. of Pa, .. s

Rc';"n:;'), • rrn:-or .. ?Q?.
[:ZV· ~ecumy Cia .. (Tllia zz. Prtcr

Pa1~"'r' '""''"''""
"OitM NTI.II 110.701

[~~uLl like to ex;ress my deepr~t gratitude to my thesis advi~or,

Prot'e::sor [lonal<t r:. r:Uuth, for !'ll;'t_;e~ling tr.e topi(: of t.hls the!liS ana

pru·v"idin,· f"IUidance aT!Li em:ouragemer.t dnrine its preparation. I alco

wi::.;h to thanr·. Vr. Jar.c',; G. 1-!itche.!.l and Professnr Jerome A. Feldma:J fo1·

llwir <:L-nstructive criticisn:, th•:!ir aclvice and help in the prepa.ratio!l

l)f this manuscr ~pt.

[also ·,fish to thank. h:1chard Site!", my fellow student, i'or many

~;t imulati nr: and helpful di~;cussions and Richard E. Sweet without whose

··:•.perllse and ,>·od wi U thir thesis would never be printed.

1 ·.:clcc. •.. .: : ~ • .;.., u_p}lurtU'Llty to thank a number of persons who through

their rupport r\C:.d.e thi:: thesis possible: Professor Flavia F. Manzoli,

Profocssor t·'li~:ueJ ColuasS\.lvrto, Professor Affonso C. Pastore, Professor

~y1 vio Bor.->:er Rei s, Vicente Paolillo and Arthur E. Angel.

'I'his worlr. was r'.lpported by the Faculdade de Economia e A.:lministracao

ria Un i ve:::-;.;id<l.de <ie :.::tv Paulo, At:ency ror International Developnent - StaLe

ll"p~rtmt•n• :mel J.'undn.c:ao de Ar.rpuro a Pesquisa rio Estado d~ Sao Paulu.

r~omputer limP. 'was p..rtially :provided by the Advanced Research Project:;

A~~enc.\ o1' the C!ffir.:e of the Se<'retary of Defense (SO-H>:) and Ibl-1,

f:orporation. Preparation and :publication of this paper was partlally

suppo!'ted by IBM Corporation and by the Xerox Corporation.

I d~di~ate this work to my wife Sa~a whose love, patience,

:.:ncot·.rae:ement and d.e•li~a.tion ~lade it all possible.

ii

TABLE OF CONTENTS

CHAPTER SECTION PAGE

1:\TRODUCTION 1

1 REV I E\o.' A~D OVERVIEW 4

1. 1 FORMAL LANGUAGE DEFINITION METHODS 4

1. 2 IRONS I METHOD 5

1.3 K}o;UTH'S METHOD 6

1.4 A SIMULA 67 DEFINITION 13

1.5 FOLDS 15

1. 5. 1 SPI:\DLE - THE FOLDS LANGUAGE 18

1. s. 2 THE SPIXDl.E COMPILER 24

1. 5. 3 !.1UT I LATE - THE FOLDS MACH I Nl! 25

2 SPI:\DLE 33

2. 1 VALUES A:\D CONSTANTS 36

2. 2 SYNTAX DEFINITION 37

2. 2. 1 TERMI~ALS 37

2. 2. 2 NONTE~~l~ALS AND START SYMBOL 40

2. 2. 3 SYNTACTIC PRODUCTIONS 41

.2. 3 ATTRIBUTES 42

2. 3. 1 ATTRIBUTE DECLARATION 46

2. 4 EXPRESSIOXS so
2. 4. 1 SIMPLE EXPRESSIONS 50

2.4.1.1 FU:<:CTIO:\ CALLS 52

2. 4. 1. 2 ATTRIBUTE DESIGNATION 53

2. 4. l. 3 BLOCK EXPRESSIO~S 55

.2. 4. 2 !:\TEGER EXPRESSIONS 55

.2. 4. 3 BOOLEA~ EXPRESSIONS 57

iii

~- 4. 3. 1 RELATIOXS 58

2. 4. 4 CO~~!TIO~AL }XPRESSIO~S 59

2. 5 STATE.\IEHS 60

2. 5. 1 UXCO~DITIO:\.l.L STATEMENTS 62

2. s. 1. 1 ASSJGSMEST STATE.~IENTS 63

2. 5. 1. 1. 1 OTHER RHS 68

2. 5. 1. 1. 2 MULTIPLE ASSIG~~~IENTS 71

2. 5. 2 CO~DIT!O~A~ STATE.~ENTS 73

2. 5. 3 I>HILE STATE:.IEXTS 73

2. 6 OTHER EXPRESSIO~S H

2. 6. 1 ASSIG~MEXT EXPRESSION 74

2. 6. 2 PUT!~ EXPRESSIOSS 75

2. 6. 3 FI~D EXPRESSION 77

2. 7 STAXDARD FUXCTIONS 78

2. 7. 1 PREDICATES 79

2. 7. 2 LIST FU:\CTIO:-JS 80

2. 7. '3 MISCELLAXEOUS FUNCTIO~S 85

2. 8 USER DEFI~EO FUSCTIO~S AND PROCEDURES 86

2. 9 OTHER STATE~IEXTS 88

2. 9. 1 \\RITE STATE~IENT 89

2.9.1.1 FOR.\IATED OUTPUT 90

2. 9. 2 ERROR STATE'.IENT 93

2. 9. 3 DISA~lBIGUATIO~ STATEMENT 95

2. 10 SE~I..l.:\TIC RULES 97

2. 11 1\RITING A!':D RUNNING A SPINDLE PROGRAM 99

2. 12 THE DEFIXITJON OF TURINGOL 100

3 MUTJ LATE 104

3. 1 LEXICAL ANALYZER A~u PARSER lOS

3. 2 INTERPRETER 107

3. 3

3. 3. 1

3. 3. 1. 1

3.3.1.2.

3. 3. 1. 3

3. 3. 1. 4

3. 3. 1. 5

3. 3. l. 6

3. 3. 2

3. 3. 2. 1

3. 3. 2. 2

3. 3. 2. 3

3. 3. 2. 4

3. 3. 2. 5

3. 3. 2. 6

3. 3. 3

3. 3. 3. 1

3. 3. 3. 2

3.3. 3. 3

3. 3. 4

3. 3. 4. 1

3. 3. 4. 2

3. 3. 4. 3

3. 3. 4. 4

3. 3. 4. 5

3. 3. 4. 6

3. 3. 4. 7

3. :s. 5

3. 3. s. 1

THE I NSTR.UCTJON SET OP MUTILATE

CONSTRUCT MANIPULATION INSTRUCTIONS

PLA i GET

Pi..A~

GETN

FI~D

FMT

REP

L~ST MAN!PULATJO~ INSTRUCTIONS

CAR

CDR

CO:'\S

LIST

APExo·

RVRS

STACK MAXIPU~ATJ.ON INSTRUCTIONS

PCIP

DBL

FLIP

CONTROL INSTRUCTIONS

JID1P

JUM?F 6 ~·IMPT

PAR i PARN

CALL

RET

HLT

ERROR

VALUE MANIPULATION ISSTRUCTJONS

ASS

v

113

115

115

117

117

118

l.18

119

119

120

120

121

122

122

123

123

123

124

124

125

125

125

126

126

127

128

128

129

129

3. 3. s. 2 TRANS 130

3. 3. s. 3 VALC 130

3. 3. s. 4 ASSI 131

3. 3. 5. 5 VAL 131

3. 3. 5. 6 STO 132

3. 3. s. 7 LOAD 133

3. 3. 5. 8 .u 133

3. 3. s. 9 LOG 134

3.3.5.10 TEST 134

3. 3. s. 11 co~:P 135

3.3.5.12 ~A.\lE 135

3. 3. s. 13 GEX 136

3.3.5.14 COPY 136

3. 3. 6 OUTPUT I~STRUCTIO~S 137

3. 3. 6. 1 OUT ~ OUTF 137

3. 3. 6. 2 OUTC t:i8

3. 3. 7 THE DISAMBIGUATION INSTRUCTION - DAMa 139

3. 3. 8 I~DEX OF OPCODES 141

4 A DEFIXITIO~ OF SIMULA 14\

4. l. DEFINITION 145

4. 2 A~ALYSIS OF THE DEFI~ITION 4!11

4. :. 1 AMBIGUITIES 212

4. 2. 2 QUALT8 213

... 2. 3 VIRTUALS 213

4. 2. 4 CLASS CO~CATENATION 214

4. 2. 5 FU~r:TIO~ 1:-.IVDELTA 214

4. 2. 6 CODe 215

4. 2. 7 ARRAY DECLARATIOXS 215

4. 2. 8 LABELLED BLOCKS 216

vi

4. 2. 9 PROCEDURE AND CLASS MEADINGS 216

4. 2. 10 PROCEDURE DECLARATIONS 217

4. 2. 11 STl 217

4. 2. 12 OTHER MODlFICATIONS 218

5 CONC 1.US ION 219

BIBLIOGRAPHY 228

APPENDIX 1 231

APPENDIX 2 237

APPENDIX 3 239

APPB~DIX 4 248

vii

FIGURE

1. 1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1. 9

1. 10

1. 11

2. 1

2. 2

2. 3

2. 4

2. 5

2. c..

2. 7

2. 8

2. 9

2. 10

2. 11

2. 12

2. 13

2. 14

LIST OF ILLUSTRATIONS

TITLE

Grammar for B~I

Parse tree for the string 1101

Definition of B~I

Decorated parse tree for the ~tr1na 1011

FOLDS

Definition of 8~1 in SPINDLE

Initial state of the machine

Processes to be executed

State 1 of the machine

State 2 of the ~achine

Decorated parse tree for -10

Exampl~s of elementary attributes

Examples of composite attributes

Tree representation of attributes

Attribute Geclaratio~s

The attribute MATRIX

The attribute E(PROCDECL)

Declaration of attributes

Effect of executing assianment stateaeLts

Attributes after the assignments

Effect of the copy operator

Effect ?f CAR, CDR and CONS

Examples of the use of LIST functions

Effect C'f APE:\ll

Effect of RVRS

viii

PAGE

9

9

11

12

17

23

28

29

30

30

31

43

44

45

47

48

49

66

67

68

70

81

83

84

84

2. 15

2. 16

2. 17

E~aaple of blocK expression

Examples of output statemen:s

Def1n1t1on using the error ~t&tjment

ix

86

91

94

I~TRODUCTION

This thesis describes FOLDS, a declarative formal language

cetinition system. The system implements and extends Knuth's method

[Kn 68al for the specification of the semantics of context-free

languages: given the syntax of a language, attributes are associated

with each nonterminal and the "meaning" at a string of the language

is given by the values of the attributes associated with the

nonterminals in the parse tree; the serant1cs establish, for each

syntactic production, ;he relationships that must exist between the

attributes of the nonterminals involved in the production. The

system also incorporates Wilner's extensions (Wi 711 to Knuth's

method.

The system provides a language <SPINDLE) and data structures to

define the syntax and semantics of a language. It also includes a

machine <MUTILATE) which compiles programs of the defined language

using the definition. Both the consi~tency and the correctness of the

definition can be checked in this way.

The language 1~poses very few restriction~ on def~nitions while

preserving the declarative nature of Knuth's method; i.e., the

compilation process is transparent in the definition. In addition the

system provides a means for semantically resolving syntactic

ambiguities. The syntax is specifled by means ~f productions and the

semantics by means of an ~LGOL-11ke language which serves both to

relate the attributes of nonter~tnals as functions of other

attributes and to describe the functions.

1

The data structure scheme is tier1ved from the "obj~cts~ of the

Vienna Definition Lan~uage [~e 72] which allows great flexlblllty in

the choice of data structures for the attributes.

gives

little

The system is intended primarily for the language designer. It

him the opportunity of realizing his definition with very

concern about implementation. With the use of MUTILATE,

programs in the defined language can be compiled directly from the

def1ni t1on.

A large subset of SIMULA 67 has been defined in SPINDLE, both

as a test for the system and as a demonstration of its capabilities;

a series of SIMULA 67 programs have be~n compiled f1om this

definition, the largest one being approximately 70 lines long and

generating a parse tree With approximately 2000 nodes.

This thesis has been organized so t~t the reader can minimize

the amount of reading necessary to achieve a certain depth of

~nderstanding about the srstem; each chapter may contain backward

references but contains no forward references. The appendices are an

integral part of the thesis and are used to illustrate the text.

Chapter 1 gives a general description of the system: it

contains a review of formal language definition methods, with

emphasis on those directly relevant to t~is work and an overview of

FOLDS. Some simple examples 111 ustrate the material covered. This

chapter should be enough for those who only want to understand the

main features and principles involved in the system.

Chapter 2 presents a description of SPINuLE, the FOLDS

language. It describes the syntax and semantics of SPINDLE and gives

numerous exawples to illustrat~ its different features. A complete

SPINDLE definition of a simple language is presented in Appendix 1.

2

This chapter should be read by those desiring a deeper understan~tng

of the capabilitie~ of the system and also by those who want to

program in SPI\DLE.

Chapter 3 describes the FOLDS machine, ~UTI LATE. It 1 s

essen•.L:.lly a terse description of the rel~vant aspects of the

mach1ne implementation. Appendices 2 and 3 illustrate the

descriptions given in the text of the chapter. The chapter should be

read only by those ~ho want to know how some particular SPINDLE

features are 1mplemented and by those who want to iaplement a similar

system.

Chapter 4 is a definition of a subset of SIMULA 67; it is an

implementation of ~llner's definition of SIMULA 67 [Wi 71]. It

illustrates both the capabilities of FOLDS and a series of SPINDLE

programming techniques. Appendix 4 contains a set of SIMULA 67

programs and the target code g'.!nerated for them by MUTILATE from thE.

definition. This chapter is intendtd both as a demonstration to the

nonbeliever of the caplbillties of the system an{ to illustrate a

series of programming techniques which may be useful for the

definition of other languages. Chapter 4 presupposes an understanding

of Chupter 2 but no understanding of Chapter 3.

3

CHAPTER 1

REVIEW AND OVERVIEW

This chapter contains a review of foraal language definition

methods, w1 th emphasis on those directly r.elevant to this work and an

overview of the FOrmal Language Definition Syste• <FOLDS). Some

simple ex~mples will illustrate the use of the aater1a1 covered.

1. 1 FO&~AL LASGUAGE DEFINITION METHODS

A language definition is composed of two hierarchically related

sets of specifications c~ll~d the syntax ~nd seaantics of the

language. The syntactic component oetermlnes the set of strings that

bel~ng to the language while the seaantlc component attaches

"meaning" to a string of the language. In particular tt.e syntax or a

programming language describes the set of valid programs and the

semantics supplies the meaning of these val1d proarams. Much

attention has been given to the problem of defining the syntax. As a

result, it is well understood and has several established solutions

<sec for example Hopcroft & Ullman(HU 69]).

Two approa~hes heve been used for seaantie speeification:

interpreter-oriented and compiler-oriented. The 1nterpreter-or1ePted

approoch defines a ~artial function which .. ps a statement and a

4

state vector onto a new state vector. The coapller-oriented approach,

on the other hand, defines a partial function which ups a statement

1n the language onto a statement 1n ~nother language, assumed

understood.

The interpreter-oriented scheme is described by Wegner(We 721

with a detailed presentation of the Vien~a Definition Language (VDL),

currentlY the most sophisticated such method. Examples of the

compiler-oriented approach appear in Irons[Ir 63], Brooker 6

Morr 1 s [BM 62), Wirth 6 Weber [W 66), Feldun [Fe 66] and

Knuth [Kn 68a).

1.2 IRONS' METHOD

Irons [lr 63] defines the semantics of a context-free language

by associating ~ single attribute with each non-terminal, namely its

translation, and associating a semantic rule with each syntactic

production. The semantic rule expresses.the value of the attribute

of the left hand s1de nonterm1nal (LHN) of the associated syntactic

production as a function of the values of the attributes of the right

hand side non terminals {RHNs>. In terms of the parse tree, a node's

attribute value is determined by applyt'ng its associated seuntic

rule to the attribute values of its directly descendant nodes. The

meaning of a stringS 1s"the attribute value attached to the root

node of its parse tree PT<S>. The value of an attribute is

"synthesized" from values of attributes lower 1n the tree. A number

of compiler-compilers were based on this idea, notably McClure's

[MCl 65).

5

1. 3 K~UTH'S METHOD

Knuth (Kn 68a] extends Irons' ideas by lntroduclng two new

concepts:

(1) Multiple attributes associated with each nonterminal.

(2) Synthesized and inherited attributes.

Now the ~eanir.g of a string S is the set of values of the

attributes of the root node of PTCS). The meaning of a phrase of S 1s

the set of values of the attributes of the node from which it is

derived. Synthesized attributes pass from a no'e to its ancestors

While inherited attributes go from a node to its descendants. There

are now two sets of semantic rules as~ociated with each syntactic

production. The first set establi~hes the valuts of all synthesized

attributes of the LH~ or the production as functions of the

attributes of the RH~s together with the other attributes of the LHN.

The second set establishes the values of all the inherited attributes

of the RH~s of the production as a function of the attributes of the

LH~ and the other attributes of the RHNs. Each attribute attached to

a node in the parse tree is associated with a semantic rule that

establishes the attribute's value as a function ot the attribute

values of the surrounding nodes (ancestor, direct descendants and

siblings).

The concept of multiple attributes greatly expands the meaning

that can be associated with a phrase (or strina>· Not only the

translation but any other property of a phrase (e.g. length. position

on the string, etc.) can be ex~ressed by associating attributes with

the nonterminal that generates it.

6

Synthesized attribute~ are essentially like Irons' attributes.

As for inherited attributes, Knuth shows that they are not essential

since they can always be replaced by an equivalent set of synthesized

attributes. But they greatly enh&nce comprehension by allowing a

more natur~l representation, since the interplay between inherited

and synthesized attributes is the way 2ne generally thinks about sue~

processes. Expressing language features such ~s labelled statements

and block strutture using purely synthesized attributes is

complicated. Inherited attributes enable one to describe such

features much more easily. In ALGOL 60, for example, the nesting

depth of a block and the information about the variables which are

global to it would be inherited attributes while the target code

generated for the ~lack would be a synthesized attribute. Loosely,

inherited attributes represent that portion of the meaning imparted

by the surroundinh context of a ptrase. Synthesized attributes

correspond to the portion derived from the phrase itself.

Knuth introduces another concept, that of global attributes,

which are attributes of the start symbol that are accessible from any

productiJn. A global attr1bute is equivalent to (can always be

replaced by) a pair of attributes defined on all nonterm1nals, one

synthesized and the other inherited. T~e synthesized attribute

collects information necessary to form the value that is then

propagated through the tree by the inherited attribute. This concept

though not increasing the power of the method, does make the

definitions written in it more concise.

One of the most important characteristics of this method is its

declarative natur~. The parsing method 1s trans~arent to a language

definition. There is no expliclt statement in a uefinition about the

7

order in which values are assigned to attributes. The semantic rules

merely state how the values of the attributes of neighbouring nodes

relate to each other. This contrasts with, for eumple, Wirth &

Weber's definition of EULER which is essentially an algorithmic

description.

The locality of definitions is a very important aspect of this

method. The semantics of a syntactic production refer only to the

values of the attributes of nontermiuals involved in the production.

The interdependencies between the various parts of the language are

expressed only in terms of the att~ibute values passed between them.

Besides making for more understandable and concise definitions it

facilitates the addition and removal of features froa the language.

As a simple example of this method we will aefine the binary

notation for integers <8N!). The meaning of a string of o•s and 1's

!s i~s value expressed as a decimal integer. In other words we are

defining the translation of binary inteaers to

equivalents.

their decimal

The grammar 1n figure 1. 1 expresses the syntax o! BNI. This

g~ammar Associates a parse. tree P'dS) with any string S of BNI. Tile

parse tr~e PT0101), for the string 1101, is shown in figure 1. 2.

way of understanding bindry notation by associating

v~1ues that are powers uf 2 with each of the o•s and 1's. The value

~f the string is then the sum of the values associated with the l's

1n the string. Formally:

8

IIOIITI»>!IIAL$ N, &.. I, 5

TUIIINAi.S D l

PIODUCTIONS Ill I II• 0

Ul In. 1

(3) L :: • I

(4) L II• L I

(5) N II• S L

(6) 5 II • •

(7) 5 t:. -

(I) 5 II o I

STidtT SYMIIOL N

OOMMINTS- The nonter•lnals N, L, 8 and S stan4 respectively for nu.ber, list

of bUs, blto and sian. The •P-1 • staads lor tho ,.,,, strllll

aM vlll tie used thro••allaut tile report vltb tllh M&lllaa.

Figure 1. 1

Grammar for BNJ

N
I \

I \
I \

S L
I I \

L

I
I

I \
I \

I \
I \

L I
I \ I

' \ • I

I \
L I
I I
I
I • I

Figure 1. 2

Parse tree for the strina 1101

9

For N•b b •••. b ,
lc: k-1 0

k
Value(N) .. Cl •2

k

0
+ • • • • + IJ •2 •

0

where o = 1f (b : "1") then l else o.
j j

In other words, the value associated with each bit in the

string depends on the its location in the string. The integer

attributes VAI.UE and SCALE associated with the nonterminal 8

represent respectively the value and position of a bit. Thes~ same

attributes are associated with the nontermlnal L: in this case VALUE

stands for the sum of the values of the bits in the list of bits

derived from L; SCALE for the position of the rightmost bit i.n the

list. VALUE 1 s also associated with N. Finally the boolean attribute

NEGATIVE is associated with S, serving to convey information about

the sign of the integer. VALUE and NEGATIVE are synthesized

attributes, Pnd SCALE is inherited.

With the attributes defined, semantic rules are then ass~c1&ted

with the grammar, to express the relations between the attributes of

the nonterminals of each production. This completes the ~efinition.

The rules in figure 1. 3 give such a definition for BNI.

The semantic rules assume that a series of prl•1t1ve notions

(such as Integers, Booleans and the operations +, -, •, TRUE, FALSE

and IF-THE~-ELSE) and their composition rules are well understood. In

other words we are using a language which is supposedly understood to

express the semantics.

The definition in fig~re 1.3 associates with any string S of

BNI a decorated parse tree DPT<S> whose nodes have attributes with

values assigned to them. The value of the attribute VAL::i:: of the he6d

10

TPIIINALS: 0 I • -

Ani IlliTES:

NAME TYPE liND

VALUE INTEGER SYNTHESIZED
SCALE I NTECEI INHEIIHD
NiCATIVI &OOLEAN SYNTHESIZED

NONTERM I NALS:

NAME AtTIIIUlE!

N VALUE
L VALUE, SCALI

• VALUE, SCALE
s NECATIVE

STAIT _SYMIOL: N

PIODUCTJONS:

IIIJioiiU SYNTAX SI:MANTICS .

(1) I ••• 0 Vo\WEII) :. 0

SCALI< I>
(l) I II • I VALUI!I) I • l

(3) L :: • I VALUE ILl : • VALU£tl)l
SCALE!IJ : • SCALUI.)

<•> LII•LI Vo\LUE<Ll : • VALUE<L•l • YALU[(JI);
S'=ALE (Lo) : • SCALE<Ll • 11
Sl"ALECB> I• SCALE (L)

(5) N II• S L SCALE(Ll : • O;
YALUE(N) : • IF NIGATI YI<S)

THEN -Yo\LUI (L)
ILSI Yo\LUICLl

(6) 5 ; : •• 'IECATJYE(S) :. PALS I

(7) 5 II • - NIGATJYUSl : • TIUI

I (I) (S II• • NIGATI VI(S) : • PALSI

COIICINTS- IT<NTl staa.Ss tor atHibute AT ol ftHtar•l .. l NT. An

asterisk alter e nont•rolnal Identifies vhlcb occurrence of

t .. nonter•lnal In t~e SJitactlc production 11 .. ant. Pro•

left to rlaht, no ••terlsk corretpoD«s to the first

occurrence, one for t~ second, tvo lor tbe tblrd end 10

Oft,

Figure 1. 3

Definition of BNI

11

node is the meaning of the strina. An exa•ple of a decorated tree,

DPT(llOl), appears in figure 1.4.

N CVALU&•Ill
I \

I \
I \

I \
I \

5 <NEGATIVE•FALSE> L (VALUhU)
I I \CSCALI•Ol

I \
I \

I \
L (VALUI•l2l I C~ALUE•I)

I \ CSU.LI•U I CSCALI•O)
I \

I \ 1
I \
L CVALUE•lll I CVALUI•Dl

I '<SCALI•ll I CSCALI•Il
I \

I \ D
I \
L CYALU£•11 I CYALUE•4l
I (SCAU•3) I CSCALI•2l
I
I
I CVALUE•Il
I CSCAI.E•ll

I.'

1 .

Figure 1.4

Decorated parse tree for the strina 1011

The semantic rules do not define an alaorith• to calculate the

values of the attribute but they imply one: tbe attribute for the

left hand side of any semantic rule can always be defined once the

values that are necessary on the right hand side are all deter•ined.

lt should be noted that a string S ,ay be syntactically correct

but still have no meaning associated with it, i.e. PT(S) aay exist

but not DP'f (S). For instance ln fiaure 1. 3 1f the expo~.ent1at1on

function is stated to be defined only for values of the exponent that

are less than 3 no meaning can be assoei&ted w:th strinas of length

greater than 3. A string S with which the definition can associate a

PT tS) but not a OPT (S) iS called ulformed; 1f a DPT <S> can be

associated It is called well-formed. It is the concept of well-foraed

12

strinas that allows the method to be applied to lanauaaes that are

not context-free.

1.4 A SIMULA 67 DEFINITION

Usina and extending Knuth's methods, Wilner [Wi 71] defines

SIMULA 67. He demonstrates the method's applicability to large and

complex lanauaaes by obtaining a compact and reasonably readable

def1n1t1on. It is only reasonably readable bec.ause the same thin&

happens with the SIMULA report, a reflection of the complexity of the

languaae.

The principal extensions introduced by Wilner are called

"reduction techniques". They reduce the number of seuntic rules that

have to be exrl!citly stated to define the lanauage. The elimination

of identity rules is the most important of the reduction techniques.

A majority of the semant'c rules are identity rules of the for11

aCNT >•a<NT) 1 where a is an attribute of both nonter11inals and NT
1 2 1

and NT belon& to different side~ of the associated syntactic
2

production. Wilner po:tulates, in an informal way, that these rules

do not have to be explicitly stated; they are called implicit

semantic rul~s. The fact that a is an attribute of both NT and NT ,
1 2

with no explicit seunuc rule assigning a value to a (NT) , implies
1

the existence of rule a<NT) • aCNT). Rules of this type do not
1 2

13

really contribute to the understanding of the se•antics of a

production; liHle is lo~t by not explicitly stating them, and a

great conciseness of definition is gained. Wilner reports a 58'

reducti~~ in the number of rules for SJMULA 67 usina this technique.

Applying it, for in:>tance, to the defin1 tion in · fiaure 1. 3 would

leave production (3) with no explicit semantics and would eliminate

the r~le SCALEtb)=SCALE(L).from production (4).

It is interesting to observe that Wil~er uses inherited and

synthesized attributes but no global attributes. He argues

~ffect1vely that they detract from the localit~ of the method and

contribute very little to its conciseness, since the reduction

techniqllt>S eliminate expllcl t rules for propaaaUng the 1nher1 ted

component of the globai attributes. Also the foraat1on rules for

global attributes can be very complicated, and they are easier to

understand when stated step by step as synthesized attributes.

Some interesting insights into Knuth's aethod can be obtained

from Wilner's SIMULA d~f1n1t1on:

- Established programming language concepts suet as ~Y;11bol

tables for block structured languages can be implemented

in a very natural way; i.e., the attributes that embody

these concepts and their functions rerlect very c(osaly

the way one thinks about them.

- Language features which are difficult to express

concisely in this method, aakina necessary the use of a

wealth of attributes and functions for their definition

(e.g., the VIRTUAL feature of SIMULA>, are usually also

diffi~ .. ~ t to understand and impleaent.

- Extensions to the language are facilitated by the

14

method's characteristic of locality of definition and the

fact that attributes provide well defined interfaces

between parts of the lanauaae (e.g. Wilner added the FOR

construct to the SIMULA definition as an appendix).

The definition of SIMULA demonstrated the power of the

technique but also showed that without a foraal basis for the

description of the semantics {i.e. a proaraaaina lanauaae> and the

means to automatically chock definitions it could not be considered a

practical tool. The lack of a proaramalng lanauaae to express data

structures and a precise and systeaatic description of functions on

those structures led to soae aabiguous and/or incorrect definitions.

(Wilner uses any convenient data structure and aany of his fu~ctions

are described ln natural lana'J&&e.) Also, "hand checking" the

definition proved to be an extreaely painful task, due to its size

and complexity. A proaraaaina language def1n1 tlon is an exact

description of many interrelated concepta, and soae mechanical

checking procedure is almost aandatory because buaans are notoriously

bad at verifying such meticulous details.

1. 5 FOLDS

The development of FOLDS makes Knuth's •ethod a practical tool

for language definition. It is a first step towards the development

of compilers directly fro• a declarative formal definition. FOLDS

provides a language <SPINDLE•> and data structures to define the

* Se~4ntic Preparatory INput Description Language <says D. Knuth)

15

.,

syntax and semantlCS of a language. It also provides a machine

(MUTILATE•> that generates trees from this definition and fills out

the associated attributes for strings of the defined language. Both

the consistency and correctness of the definition can be cheek~d in
this way.

SPINDLE, the FOLDS language, impo~es very few restrictions on

definitions while preserving the advantages of Knuth's methods and

Wilner's extensions. Both the parsing and tne decoration of parse

trees are completely transparent in the definition, thus preserving

the declarative nature of the method.

In addition the srstem provides a means for semantically

resolv1ng syntactic amb1gu1t1es. It also perfor•s syntactic cheeks on

the definition and provides run-time error detection for easier

diagnosis of definition errors.

Global attributes, as proposed by Knuth, are not provided: as

noted before, Wilner does not use them because his extensions provide

a viable alternative. However, the real reason for avoiding global

attributes is that very few attributes are global to the whole tree

in block structured languages. 7o be useful, the concept should be

extended to resemble the global variables of ALGOL 60. An extended

global would be an attribute of any nontermlnal, not just the start

symbol. It would be defined over any subtree derived from the

nonter~1nal except for those subtrees where it is redefined. The

inclusion of such an extended global attribute was considered, but

the idea was rejected. Although more powerful than si•ple alobals,

extended globals retain some of the disadvantages which are pointed

out by Wilner; furthermore the gain in conciseness could not by

itself justify the significant cost of including the feature.

* Machine Underlying The Interpretive Lanauaae To be Bxecuted <~ays
D. Knuth)

16

,---- '
I L DEFINID IN SPINDLE I
\ I

I
I

' ___ I ___ _

I I
I SPINDLE ODMPILEI I 1------1

I
I

' ,---~---,
I DISCIIPTION OF L IN I
I MUTILATI OIDEI toDii I
\ I

I
I

' ~--~·-·--1 ---1
I I I I
I I N I
I LA I T I

----- I IN P I I I
I \ I lA' A I I I I

I STIINGS OF L 1-·->··1 I L • ·> I ··> P 1••·>·•1 MIANING OP L \ _____ ../ ICYI 5 I I I \
:n:::~: , ___ _
I I I I I I
I I I I I l __ l __ l ___ l

I I
I MUTILATI I
I I

Figure 1. 5

FOLDS

FOLDS is intended primarily for the language designer. It

gives hi~ the opportunity of realizing his definitions with very

little concern about isplementation. (While a coapiler for the

language 1s generated there need be no preocupation with efficient

compilation at definition time.) It also gives hia the opportunity to

judge the complexity and "cost" of proposed language features.

The main benefit of the system is that the definition of a

language can be stated in a well defined fora. As such it can serve

as a standard for the language and be understood by the users.

Although not all SIMULA users will be able to understand its FOLDS

17

definition , those users who are capable of writina compilers will

certainly be able to do so. For ~hem it provides a precise standard

against which other definitions Csuch as a compller for the language)

can be evaluated. Most o~ a~\, a sytem such as FOLDS imposes a

discipline on the language designer that has been mostly absent 1n

the past, making for so mant unbappy language implementers.

Figure 1. 5 presents a schematic view of FOLDS. The SPINDLE

compiler accepts a description of a language L and compiles this

description into a program in the order code of MUTILATE. This

program ru~ning on MUTILATE will generate a decorated parse tree for

any well-formed string of L. The following sections present brief

descriptions of the components of the system.

l. 5. l SPINDLE - THE FOLDS LA~GUAGE

The language is designed to give considerable flexibility to

the user. It relies on a data structure representa~ion which is

derived from the objects proposed in (LLS 68], with 1ata-types

associated with thelfl. In sucll an environment, composing data-types is

very simple, thus facilitating the use of complex data structures.

Syntax rules are given as productions with few imposed

limitations. Right and left recursion, empty strinas and syntactic

ambiguity are all allowed.

The syntax presupposes the existence of a lexical analyzer to

handle reserved words, terminal syabol s, ALGOL-like identifiers,

integers, and string constants. This analyzer is a restriction on the

18

generality of FOLDS, but 1t 1s just1f1ea by the efficiency it brings

to the system. It could of course be made more general, as in the AED

system [Jo 68], with its ~arameters being part of the definition.

With each syntactic production is associated a nuaber of

semantic rules that manipulate the attributes of the nonterminals

involved in the production. Besides the inherited and synthesized

attributes, a new kind of attribute, called l2£!l attribute, is used.

This attribute, whose function is to hold intermediate values, 1s an

attribute of the head node of the corresponding production (the node

of the tree associated to the LHN). It is only accessible froa the

semantic rules o~ the production. Local attributes appear both in

Knuth and Wil1er's work, but are used informally as an abbreviation.

Implicit semantic rules <see 1. 4) do not have to be stated,

being automatically generated by the system.

The language has an ALGOL flavor and incorporates features such

as conditional statements and expressions, while statements, so_to

statements, ~ssignment statements, compound statements and recursive

p:-ocedures.

One of the most original features of FOLDS appears in its

contro: structure embodied in the concept of a parallel stateme~t. A

SPINDLE statement (SST) is either sequential CST) or parallel, which

is a sequence of SPI~DLE stateme:-.ts enclosed in $/ and /$, 1. e.

i/ SST ; SST ; ... ; SST . SST ; SST • 0 SST /$, n ::1!1. I '
1 2 i- 1 1 1+1 n

SST is executed after SST if SST is sequential, ln
1 1-1 1-1

parallel otherwise. For exampl~, if we ha.ve a sequence of statements

$1 ST ; $/ ST ; ST /$; ST /1 ; ST
1 3 4 2 5

19

it will s"ort by executing ST and ST , coaplete the exec~tion of
1 s

ST , start ST and go on immediately to exec~te ST , The exec~tion of

1 3 2

ST <and tben ST) goes on 1n parallel with the execution of ST ; ST

3 4 2 s

is executed in parallel with all the others.

It should be noted that this is an unusual control str~cture

and notation for parallelism. Usually stateaents are grouped to

indicate that each of them is to be executed in parallel wlth arl the

others in the group; here they are grouped to indicate that they

constitute an independent sequence that is to be executed in parallel

with all the other statements in the program.

A 2!~ is a dynamic instance of a parallel statement. Once

activated a process ~xecutes until it terminates or until it tries to

access an undefined value. In the latter case the process is

interrupted and passivated; it will be reactivated 1f and when the

value is defined. ~ll active processes run concurrently.

\oiith each syntactic production is associated a::;set.~of :~rallel

statements that embody the explicit semantic rules 4t.HI·s · an~plicit

parallel statement to handle implicit rules (if any exist),

At run-time each node of the parse tree ~ossesses a set of

processe~ corresponding to the parallel statements of the production

represented by the node. These procefe~ are all act1 vated

simultaneously, po~slbly generating other processes. The computation

ends when there are no more active processes in the system.

It should be noted that as a consequence of this structure

circular1tles 1~ the definition will cause the passivation of

processes, that will never be reactivated since the undefined values

causir.g the passiBt!or. devt ·:ct on each other.

20

Another ori&inal feature of the lan&ua&e is the ability to

resolve syntactic ambiauities by semantically "disaabiguat1r.g" them.

Given an ambiguous node of the tree, the proper parsing 1s selected

by stating, in the semantic rules, the conditions which identify a

particular parsing as the correct one (&n4 all others as incorrect).

This means that all possible ambiguities have to be treated by the

language designer. The situation is not· ideal since &JDb1guity 1S

unaecidable for context-free languages. On the other hand, while it

is expensive, the ambiguities c~n be detected in practical languages.

If one 1s present but not detected any tree which contains it will

h~ve passivated processes that wil! never terminate, pointing out the

existence of the ambiguity. Furthermore it is not a bad idea for a

language designer to be forcibly aware just how ambiguous the

language being defined is and what the semantic implications of these

ambiguities are. ~hile it is widely realized that ALGOL 60 is

syntactically ambiguous, the extent of .his ambiguity is very often

underestimated.

When the parsing tree is ambiguous the control structure

operates in a slightly different fashion. A process trying

a value to a synthesized attribute of in ambiguous node (&

to assign

node with

more than on~ parse subtree) is passivate~. If an ambiguous subtree

is found to be the correct one its root node 1 s tlaggecl. If 1 t iS

found to be incorrect it is purged; all its nodes, attribute.s and

processes are discarded. ~hen an ambiguous node ~s found to have £E!

and only one correct subtree the node is disambiguated: no more

processes are interrupted when trying to assign to its synthesized

attributes and the ones passivated for this reason are react1vat~d.

Thi~ control structure helps prevent the information originating from

21

an incorrect par~ing from poisoning the rest of the parse tree, while
attri~utes can still be synthesized and inherited in the subtrees of
an ambiguous node. This is t:.=- reason why a s:.~btree, found
incorrect, can be di~carded without regard to the rest of the tree.

It should be noted that some recent general purpose languages,
s~ch as ~E~ SAIL [Fe 72], QA4 [Di 72] and PLANNER [He 71],

incorporate control structures which are somewhat similar to the ones
found in SP I :JDLE.

A ccmputation is well-formed if it ends with no passivated
processes. Not1ce that a well-formed computntion implies that all

"
ambigu1~res have been resolved since ~n unresolved ambiguitY would
result in pa~sivated processes. A detinltion i! well-f?rmed if no
string w~ll cause a computation to enter sn infinite loop. Given a
string s, a well-formed definition will ~enerate a well-formed
computation if S is a ~ell-formed strinp of the defined lang~age;
otherwise it will generate a malformed computation. Notice that the
definition may incorporate error recovery provisions. In this case L

string cunta4ning errors would be a well formed string of the
language whose meaning would be a set of messages indicating the
errors found.

It is SPI~DLE's unusual control structure that allows it to
preserve the declarative nature of Knu~h's method. Semanti~ rules
ctate only ho~ attributes should relate to one another without
mention1ng 1n what order values are assigned to them. They state the
conditions for choosing the proper parsing without specifying the
mechanism for doing it. However, SPINDLE cannot be expectfd to
pro~ide as primitives all the necessary functions. Auxiliary
functions can be defined using the imperative elements of the

22

TEitMIIJUS ARE • -

RESERVED WORDS ARE O, I

ATTRIBUTES ARE
VALUE • INTEGER
SCHE • I NTEGlR
COUNTER • I~TfGER
PRODUCT • I NTEG~R
NEGATIVE • BOOLEAN

NONTERM INA!~ ARE
N • 5 (VA•••:•
L • 5 ~·;t\LUE , :;SCALE)
8 • ~ !VHUEl, i ~~~ALEl
S • S(NECATIH)

f'JMMENT N 5TAiia~ FOR N\JIBER, L FOR Ll ST OP I ITS, 'I FOR liT AND
S FOR SIGN;

START SYMBOL N

Sfl 8 ::. 0
S/ VI UE<Bl :• 0 IS

SP2 8 :: • I
Sf COUNTER : • SCALE 18!; PRODUCT : • l;

~~ILE COU~TER > 0 ~
IEGIN

PRODUCT '• 2• PRODUCT; COUNTER : • COUHT[I -1
EN,J;
VALUE<BJ :• PRODUCT IS

SPJ L ': • B
COK-4ENT NO EXPLICIT 111LES;

IP4 '· :: • L 8
Sf VALUF(LJ : • ~.UUE(L•J • IALUE!Bl IS
S/ SCALE<L•l :• SCALE<.> • I IS
COMoiENT SCALE<Bl : • SCALE ILl IS IMPLICIT.

NOTICE THAT ALL 1 ASSIGNMENTS ARE EXECUTED 1N PAIALL&L;

IPS N :: • S L
S/ SCALE<LJ : • 0 IS
S/ VALUE<NJ : • IF NEGATIVE IS) THEn ·VALUE ILl ELSE VALUI(Lll

WRITE ("l'nUE IS". VALUE(SJ) /I
r~EHT NOTICE THAT IN THE SECOND PARALLEL STA1EMINT THI

ASSIG~~ENT VALUEINJ : • ••• AND THE VIITI All IX&CUTIO
SEQUENTIALLY;

SP6S::••
Sl NECA'!IYE(SJ : • F.USE /S

SP7 S :: • -
S/ NECATIVE(Si : • TlUE IS

$PI S :: •
S/ NEGATIVE($) :• FALSE /S

::1gure 1.6

Definition of BNI in SPINDLE

23

language with local attributes performinl the role of tne variables

of conventional languages.

A simple example of the language appears ln figure 1.6. It is

the definition in figure l.l restated in SPINDLE. ·The defined

language uses the characters I and 0 (separated by blanks) instead of

1 and 0 due to the limitations of the lexical analyser. Notice that

exponentiation is defined by means of a user defined function using

the local attributes COUNTER and PRODUCT. To illustrate the control

structure of SPI~DLE, an example based on the definition in

figure 1.6 is presented at the end of l.S.l.

1. s. 2 THE SPINDLE COMPILER

The co~piler ta~es the definition of a lanauage as in~ut ar.d

produces a series of tables plus "object code" for the semantic rules

&nd procedures in the order code of MUTILATE. The compiler checks the

syntax, fills in implicit r~les and checks for missing and illegal

rules. Checks are also made to guarantee that synthesized and

inherited attributes are used in the proper way and that the semantic

rules of a productic~ refer only to attributes defined for the

nonterminals involved in that production.

24

1.5. 3 MUTILATE- THE FOLDS MACHI~E

When loaded with the code and tables generated by the compiler

the machine reads strings ot the defined language and generates the

corresponding decorated parse trees (provided that the definition and

strings are well-formed). It has three major parts:

- A lexical analyzer that recognizes integers, string

constants (del1mi ted by double quotes>, punctuation

:narks, reserved words {of the defined language> and

ALGOL-like identifiers. It skips over coEments <which

begin with the w~rd CC~~ENT and end with a semicolon) and

over any identifier following the reserved word END.

- A parser which interacts with the lexical analyser to

build a PTCS> from an input string S. In case of

ambiguity the collection of all possible PT(S)s is

compactly specified.

-An interpreter which decorates PT<S> to produce DPT(S).

If there is more than one PT<S) the interpreter will

select the correct one using the semantic rules.

The parser is based on one presented by Fisher (Fi 701, which

was i i:self based on Earley's [Ea 68) scheme. : ~ has been expanded to

handle strings containing empty substrings, provided that tn~re is

only a finite number of empty substritgs.

This parsing scheme was chosen because it will handle any

context-free language, with the exception noted above. Besides, 1 t is

efficient in the sense that, given a string of length n. in the worst

J
case it will parse in time proportional to n <ambiguous grammars),

25

2
proportional to n for unamoiguous grammars and proportional to n for

certain classes inLluding LR<k>.

It should be no,ed that th~ coustant of proportionality for

this schtme is quite high and that other p1rsers can be more

efficient. However, since their increased perflrmance is obtained br
restricting

unsuitable

the class

fc:.r FOLDS;

of gra~mars that

they go against

t~!Y can accept they are

~he basic philosophy of

independence oi definition and parsing scheme. Also, features such as

syntactic ambiguity, left and right recursion, empty strings, etc.,

while ~ot essential are conveniences whlch should be available to the

user.

The interpreter mantains a multiple stack environment, ~ne

stack per process. The parallel control is implemented in a pseudo­

parallel fashion with exactly one active process (callP.d th~ current

process) being executed at any tim~. A list called PROCESS

(implemented as a stack) contains pointers to all other active

processes. Each undefined attribute Cone to whom no assignment has

been made) h~s an associated list (implemented as a stack and called

its inte1·rupt stack), which contains pointers to those processes

which have been passivated as a result of trying to access it. This

list is transferred to PROCESS if and when the attribute is assigned

a value. The current process may stop either because it terminated or

was passivated. In the latter case, a pointer to it is placed in the

interrupt stack of the attribute that caused the deactivation. The

process pointed to by the top element of PROCESS is made curr~nt and

the top element removed from PROCESS •. When PROCESS is emrty <no

active processes in the system) a function DEVELOP is called and

returns a node of the tree. All processes associated with this node

26

are then placed in PROCESS. The process pointed to by the top element

is then aade current and the eleaent popped from PROCESS. On the

first call DEVELOP returns the root node and in each successive call

a different node, the order being a depth first traversal of the tree

from left to right. When all nodes of the tree have been returned a

call to DEVELOP stops the machine.

This mechanism and the control structure of SPINDLE can be

illustrated by examining how the machine would handle the String

- I 0, given the definition in figure 1.6. The description that

follows, while actually describing the mechanism, gives only the

essential details and ignores allocation strategies.

Fig1Jre 1. 7 indicates the state of the machine before the

interpreter starts runr.ina and after the parsing of the string is

completed. The tree is shown with all its attributes undefined and

interrupt stacks empty. Also shown are the status of PROCESS (empty),

and of LARD (LAst Returned by Develop>, undefined.

In figure 1.8 each of the processes to be executed is

identified, with X standing for process j of node X •
ij i

The first action performed is a call to DEVELOP. A pointer to

N is returned, then N and N are placed in PROCESS. N is thell
1 11 12 12

removed from PROCESS and executed. SCALE<L > is assiined the value
1

zero, its interrupt stack (empty) is placed in PROCESS (wh.~h

remains unchanged) and N is terminated. Next, N is taken from
12 11

PROCESS and executed. It is passivated while trying to access

NEGATIVECS), which is undefined; so it is placed in the NEGATIVE(S)
1 1

27

Nl (VALUE•U, STACK• ())
I \

I \
I \

I \
I I \
I \

51 (NIGAT I VE•U, Ll (YALUE•U, STACI• ())
I STACK• 0 l I \ (SCALI•U, STACK• 0)
I I \

PIOC&SS • 0
LAID • U

I
I

I
I

\
\

1.2 !YALUE•U, ~TACK• ())
1 !SCALI•U, STACK• ())
I
I
I
ll (VAL UE•U, STACK• ())
I (SCALE•Ii, STACh 0)

\

I (COUNTEl•U, STACK• 0)
(PIODUCT•U, STACl• <i)

Figure 1. 7

\
I~ (VALUE•U, STACK• ())
I !SCALI•U, 51 ACK • ())
I

0

In 1 t1 al state of the machine

interrupt stack. PROCESS is emptv so DEVELOP 1s called, S 1s
1

returned, and S is placed in PROCESS, taken out, and executed.
11

NEGATIVE<S > is assi~ned the value TRUE, its stack <containing N)
1 11

is pla...:ed in PROCESS (whldt was empty) and S is terminatec:. N is
11 11

taken out of PROCESS, executed, again passivated (thi5 time trying to

access VALUE (L)) and placed in VALUE:L) 's stack:. Since PROCESS 1s
1 1

empty, DEVELOP is called and L I L and L · are placed in PROCESS.
1:i. 12 13

Figure 1.9shows the state of the machine at this point. L and L
13 12

are then executed and terminated. L is executed, passivated (trying
11

28

PIOCISS DESCIIPTION

N YALUICN) I• IF IIEGATIVECS I THIN -VALUI(L)
11 1 a a

ILSE YALUI(L J; IlliTE ("YALUI 15", VALUE(N ; ;
I I

N SCALi(L l : • 0
12 I

S NEGATIVICS) : • TIUI
' II l

L YALUECL l :• VALUE(L l • VALUICI)
II 1 l l

L SCALECL) : • SCALEC~ l •1
12 l 1

L SCALE <a) 1 o SCALE(L I
1] l 1

L VALUECL) : • VALUE (8 I
21 l 1

L StALl (I) : • SCALE CL I
ll l 2

I COUNTEI : • SCALE CB I; PIODUI.I : • I;
II 1

IIIII Ll! COU~TEl ' 0 DO
lEG iN

FltODUCT : • 2• PIODUCT; COUNTER : • COUNTEI ·1
lkD;
VALUE Ill) : • PRODUCT

1

I YALUECII:•O
zt l

Figure 1.8

Processej to be exec~ted

to access VALUE<L)) and placed in the interrupt stack. Next DEVELOP
2

is called, L is returned
2

and the execution of L
22

{terminated) and

L (passivated) talces place. B is then returned and
1

B executed.
11 21

During the execution, COUNTER assumes the values 1 and 0 and PRODUCT

the values 1 ~nd 2. The execution terminates after VALUE(B) is
1

assianed the value l. The state of the machine at this point is shown

29

I

~I (VALUEoU, STACK• ()I
I \

I \
\

\
\

51 !NlGATIVE•TRUEl
I

\
Ll

I \
I

!VALUE•U, STACh (Nil>)
!StAU•Ol

I \
I \

I \
I \

I
l2 !VALUE•U, STACl• 01
I ISCALEoU, STAClo 0 l
I
I
I
II
I
I

(VALUE •U, STAC~ • 0 l
!SCALE-U, STI :l• 0)
!COUNTER•U,' TAU• 0)
(PlODUCT•U,. TACX• ())

\
I~ (VALUB•U,STACK•(l)
I (SCI.LioU, STACh 0 l
I

0

PROCESS • !Lil, 1.12, Ltt)
LARD • Ll

Figure 1. 9

State 1 of the macb1ne

Nl !VALUE•U, STACh (l l
I \

I \
I \.

I \
I \

I \
Sl (N&CATIVE•TlUU Ll (VALUE•U,STACK•OIII))
I I \ !SCALE•Ol
I I \

I \
I \

I \
I \

Ll !VALUE•U, STA~K· !LIJ)) U (VALUE•U, STACK• ())
I !SCALE•Il ' !SCALE•O)
I
I
I
II
I
I

!VALUE•2l
!SCALE• I)
!COUNTER• D)
!PRODUCT•2l

0

noc"ss • <L2U
LARD • Ill

Fiaure 1. 10

State 2 of the macbine

30

in figure 1. 10. L is reactivated and terminated. L is
11 21

reactivated and passivated again, trying to access VALUE(B). DE~ELOP
2

is called, B is returned and B , L and L are executed and
2 21 21 11

terminated. Finally ~ 1s executed, VALUECN) is assigned, and this
11 1

is followed by the printing of the message "VALUE IS - 2" and the

process is terminated. DEVELOP is called and the machine halts.

Since no passivated processes remain the computation is well-formed.

Figure 1. 11 shows the decorated parse tree.

I
Sl
I
I

PROCE~S • 0
LARD • 82

Nl IVALUE•·l)
I \

' I ' \
\

\
!NEGATI VE•TRUEJ Ll !VALUE•2l

I \ (SCALE•Ol
I \

I \
I \

I \
I \

L~ (VALUE•~)

I tSCALE•Il
!
I
I
II IVALUE•2l
I (SCALE•ll
I (COUNTER•Ol

IPIOOUCl•ll

Figure 1. 11

12 (VALUE•Ol
I tSCALI•Ol
I

0

Decorated parse tree for -IO

It is very important to notice that the order in which active

processes are executed is entirely arbitrary. ALy order can be chosen

(e. g. L , 5 , B , L , B , L , l , N , N) and the same basic
11 11 21 21 11 13 12 12 11

31

. I

mechanism will work successfully. The DEVELOP procedure is usea only
to keep the stacks from being larae initially since most definitions
have a left to right bias.

All that was said above is still true for ambiguous pars1ngs;
however, for 1mplementat1cn reasons, the order 1n which DEVELOP
returns the nodes of the tree is not ex~ctly the same. (For more
details about the implementation of DEVELOP, see Chapter 3.)

32

CHAPTER 2

SPINDLE

This chapter presents a description of SPINDLE, the FOLDS

language. It describes the syntu and semantics of SPINDLE and gives

numerous examples to illustrate 1t5 different features. It also shows

how definitions are wr1 tten in SPINDLE, using TURINGOL [Kn 68al in

Appendix 1 as an example. The syntax 1s deseri~ed using standard BNF

with £ standing for the empty string.

SPINDLE is a metalanguage used to define languages according to

Knuth's method of semantic definition. A SPINDLE program 1s a

definition of a language accordina to Knuth's method; 1t defines the

valid strings of the language and the meanings associated w1th them.

A program when run, will recognize the well-foraed strings of the

defined language and associate meaning with them.

As explained in Chapter 1, the definition associates with each

well-formed string 5 of the language a decorated parse tree DPT(S).

The meaning of the string is embodied in the attributes of DPT(S)'s

root node. The definition consists of a grammar plus a set of

semantic rules. rhe grammar associates with a string S of the

language a nonempty set of PT(S)s. The set is represented as a single

tree with ambiguous nodes, i.e. nodes from which more than one

subtree is derived. The semantic rules choose one of the PT<S>s and

decorate it if S is semantically correct. In other words a string S

can be syntactically correct ant\ not be semut1cally correct; 1f

33

this is the case S is not a well-formed strina of the defin~d

lanauage. This means that the method can define more than context­

!ree languages. As shown by Floyd [Fl 62], ALGOL-60 1s not a context­

free language and neither is SIMULA, which is defined in Chapter 4.

The definition associates with each nonterminal a set of

inherited and synthesized attributes. A node, wnich is a dynamic

instance of a nonterminal, will then be decorated by the attribute$

associated with the nonterminal.

With each production of the syntax is associated & set of

semantic rules that operate on the attributes of the nonterminals

involved in the production. These rules serve !our distinct purposes:

Cll To establish the relationship t:~t must exist between

all the inherited and synth~s1zed attributes of the

nonterminals involved 1n the associated production.

(2) To establish the condit1rns for the string to be

semantically correct.

(3) To choose the right PT(S) among the set generated by

the grammar.

(4) To output the values of the attributes.

The first purpose 1s accomplished by def1n1na attributes as

functions of other attributes: the second and third by defining

predicates on the attributes; the fourth by the use of the WRITE

statement. These functions and predicates are described usina

SPINDLE's expressions and statements, and local attributes to hold

temporary values.

The scope of a local attrib~te consists of the semantic rules

34

associated with a production. Dynamically a local attribute is an

attribute of the ~ode associated with the LHN of the production. It

can be manipulated only by the semantic rules associated with the

node. A local attribute is attached to a node by being referenced in

a semantic rule associated with the node. For example in figure 1.6

the attributes COU~TER and PRODUCT are associated with the

nonterminal B of production P2 but not with the nonterm1~~1 B of

production Pl. This can be verified by looking at the attri~utes that

decorate nodes Bl and ~2 in figure 1. 10.

The scope of the inherited and synthesized attributes

associated ~lth a node consists of the semantic rules associated with

the node plus the semantic rules assoc1at~d with the ancestor node.

The node's se~antic rules assign values to its synthesized attributes

while the ancestor's rules assign values to the node'~ inherited

attributes.

The inherited, synthesized and local attributes asscciated with

a node are said to belong to the node.

Comments are allowed anywhere in a SPINDLE program. They begin

with the reserved word co~~E~T and end with a semicolon. After the

reserved word E~D a comment may appear without the word C0~1ENT but

may not include reserved ~ords END, DO, or ELSE or the sequence of

special characters /$.

35

2. l VALUES AND CONSTANTS

The followina are the primitive values of SPINDLE:

INTEGERS

STRINGS- a string of ch~t&cters, enclosed in double quotes.

IDF.NliFIERS- a string ~f letters and digits where the first

character is & letter (the ALGOL identifier).

S-IDENTIFIERS- the same as IDENTIFIER but with a different

internal representation.

BOOLEANS- TRUE or FALSE.

POINTERS- which are references to attributes.

COMPOSITE ATTRIB~TE VALUES- which are sets of attributes and are

described in section 2. 3.

TITLE- the union of STRIKGS, IDENTIFIERS and S-IDENTIFIERS.

Certain of these values can be expressed by constants. The

value of a constant is determined by its denotation. The syntax for

constant is:

<CONSTANT> ::• <INTEGER> I <TITLE CONSTANT> I <BOOLEAN> I
<POINTER CONSTANT> I <COMPOSITE ATTRIBUTE CONSTANT>

<INTEGER> :: • <DIGIT> <INTEGER> <DIGIT>

<DIGIT> :: • 0 I 1 I 2 ••• , I 8 I 9

<STRING>:: •" < ••• sequence of characters where a double qu,~e is
denoted by a p,air of double quotes ••• > "

<IDENTIFIER CONSTANT> :: • I <IDENTIFIER>

<IDENTIFIER> ::• <LETTER> I <IDE~TIFIEi> <LETTER> I
<IDENTIFIER> <DIGIT>

36

< t. ETTER> : : • A I B C I • • • 1 X 1 Y I Z

<S-I&ENTIFIER> ::• & <IDESTIFIER>

<TITLE CONSTANT> ::" <!l-I DE~TIFIER> I <STRING>
<lDESTlFlER CONSTANT>

<BOOLEAN> ::=TRUE I FALSE

<POINTER CO~STA~T> :: ~ ~IL

<COMPOSITE ATTRIBUTE CO~STANT> ::• NULL

~ULL denotes an empty composite attribute value. NIL denotes a

reference to a composite attribute whose value is NULL, whose

selector is undefined and is called the ~ attribute.

2.2 SY~TAX DEFISITIO~

The syntax of the defined language 1s specified by defining the

term1.nals, the ,lonterminals, tt\e start syobol and the set of

syntactic productions.

2. 2.. 1 TERMINALS

The syntax pressuposes a lexical analyzer that recognises the

following types of terminals: special characters, reserved words,

ALGOL-11.ke identifiers, integers and strings of characters delimited

by double quotes; blanks are used as delimiters. Tb~ lexical analyzer

37

will skip over strings beginning with the word COMMENT and ending

with a semicolon. It will ignore an identifier which follows the

reserved word END. The t;ord COMMENT may not be used either as a

reserved word or as an identifier. In the defined language

identifiers cannot have the same spelling as reserved words.

The following syntax is used to declare special characters and

reserved words:

<SPECIAL CHARACTER DECLARATIOK> ::• « I TERMINA~S ARE
<SPECIAL CHARACTER LIST>

<SPECIAL CHARACTER LIST> ::• <SPECIAL CHARACTER> I
<SPECIAL CHARACTER> <SPECIAL CHARACTER LIST>

<SPECIAL CHARACTER> ::• < ••• any special character with the
excepti.:ln of double quote"' •.. >

<RESERVED WORD DECLARATION> ::•' I RESERVED WORDS ARE
<RESERVED WORD LIST>

<RESERVED WORD LJ ST> :: • <RESERVED \vORD>
<RESERVED WORD> , <RESERVED WORD LIST>

<RESERVED WOaD> ::• <IDENTIFIER>

Termin~ls, other then special characters and reserved words,

are handled by a SPINDLE entity called a structured terminal CS­

terminal), An S-terminal is a terminal with an associated attribute;

this attribute decorates all terminal nodes that are instances ~f the

S-terminal. Identifiers, .ntegers and strings are recogni~ed by

different S-terminals. The syntax for declaring S-terminals is:

<S-TERMINALS> :: • <IDENTIFIER DECLARATION> I <INTE,;ER DECLARATION> I
<STRING DECLARATION'

<IDE~TIFIER DECLARATION> ::• (I IDENTIFIERS ARE <N~~E A~D ATTRIBUTE>

<INTEGER DECLARATION> ::• (I INTEGERS ARE <NAME AND ATTRIBUTE>

<STRING DECLARATION> ::• (I STRINGS ARE <N~~E AND ATTRIBUTE>

38

<NAME AND ATTRIBUTE> ::• <S·TERMINAL IDENTifiER> WITH ATTRIBUTe
<ATTRIBUTE IDENTIFIER>

<5-TER~INAL IDENTIFIER> ::• <IDENTIFIER>

<ATTRIBUTE IDENTIFIER> ::• <IDENTIFIER>

An exaaple of an S-tera1nal declaration is:

IDENTIFIERS ARE SIGMA WITH ATT~IBUTE SP
INTEGERS ARE NU WITH ATTRIBUTE VALUE
STRINGS ARE LAMBDA WITH ATTRIBUTE STRINGK

In this case an identifier, in tho input string, corresponds,
in the parse tree, to a node labelled S!GMA, decorated by the
attribute SP whose value, in this case, is :he spellin& of the
identifier (represented as an S-ident1fier value>; e'l inteaer
corresponds to a ned~ NU, decorated by the attribute VALUE whose
value, in this case, is the value denoted by the integer; a string
corresponds to a node LAMBDA with attribute STRINGK with the strina
as 1 ts value.

Attribute identifiers associated with s-ter•inals are
implicitly declared to be of kind synthesized. Attribute iden~ifiers
must be of type T!TLE for ident1£1ers and str1nas1. and INTEGER for
integers. Section 2.3 shows how to declare the attribute identifiers
which will be associated with nonterminals and how to associate types
with them.

39

2.2.2 NONTERMINALS AND START SYMBOL

The declaration of a nonterm1nal serv~s three purposes: to

identify the nonterminal; to associate ~ith it a set of inherited and

a set of synthe%1sed attribute identifiers; to associate a kind with

the attribute identifier (inherited or synthesitedl. The syntax for

nonterminal declaration is:

<NO~TERMINAL DESCRIPTION> ::• NONTERMINALS ARE
<NONTERMINAL DECLARATION LIST>

<NONTE&~INAL DECLARATION LIST> ::• <NONTERMINAL DECLARATION>!
<NONTE&~INAL DECLARATION> <NONTfRMINAL DECLARATION LIST>

<NONTE~INAL DECLARATION> ::• <NONTERMINAL IDFNTIFIER> ..
<ASSOCIATED ATTRIBUTES>

<NONTERMINAL IDENTIFIER> ::• <IDENTIFIER>

<ASSOCIATED ATTRIBUTES> :: • <S-LIST> , <I-LIST> <S-LIST>
<I-LIS!> , <S-LIST> <I-LIST>

<S-LIST>

<I-LIST>
·=:

S (<ATTRIBUTE LIST>)

<ATTRIBUTE LIST>)

<ATTRIBUTE LIST> ::• <ATTRIBUTE IDENTiFIER>
<ATTRr8UTE IDENTIFIER> • <ATTRIBUTE LIST>

An attribute identifier is declared to be of kind 1nherite~ or

synthesized by appearing in an attribute list headed by an I or an S

respectively.

The syntax for declaring the start symbol is:

<START SYMBOL DECLARATION> ::• START SYMBOL
<NONTERMINAL IDENTIFIER>

40

2.2.3 SYNTACTIC PRODUCTIO~S

The syntax for syntax is:

<SYNTACTIC PRODUCTION> ::• <~ONTERMINAL IDENTIFIER> ::•
<RIGHT HAND SIDE>

<RIGHT HAND SIDE> ::a« I <RHS LIST>

<RHS LIST> ::• <RHS EL&~ENT> I <RHS ELEMENT; <RHS LIST>

<RHS ELEMENT> ::• <SPECIAL CHARACTER> I <RESERVED WORD> I
<5-TE~~INAL IDENTIFIER> I <NONTBRMINAL IDENTIFIER>

All special characters and identifiers appearing in a syntactic

production must have been declared as such. A restriction of SPINDLE

is that a right hand side of the form BS/0/SB, where B is a possibly

empty sequence of RHS elements, is not allowed.

syntactic production is

PROCHEAD::• IDTYPE PROCEDURE SI~~A

where given the following declarations

RESERVED WORDS ARE PROCEDURE
IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP
NO~TERMI~ALS ARE
PROCHEAD • ~(E)
IDTYPE • SCGENUS)

An example of a

the production states that the str1na parsed troa PROCHEAD is the

concatenation of the string carsed from IDTYPE, followed by the

reserved word PROCEDURE, and an identifier.

41

2.3 ATTRIBUTES

The attribute is the basic concept of SPINDLE's data structure.

It is patterned after the VDL (\We 72] "object:" and Fisher's rFs 701

"construct".

An attr1bute has a selector and a value. An attribute can th-.n

be characterized by a pair <S:V> where S is the selector and V the

value. The selector names the attribute and can be either a title or

an integer. If the selector is an identifier it must have- been

declared as an attribute identifier. For example in figure l. 11 the

attributes of node Ll are <VALUE:2> and <SCALE:O>. Up to this point

all attributes presented belonged to a node. But an attribute may

beloni to another attribute called its ,tnc,estor; 1. e an attribute may

have other attributes as its value. An attribute that pelongs to a

node is called a node attribute; if it belongs to another attribute

it is called a component attrib~te or component for short.

Attribu1:es may be composite or elemt:ntary. Composite attributes

are those wh()se values are sets of attributes. El emen'l:ary attributes

are those whose values are not attributes. An attribute has a ~ype

associated wi~h it that defines its range of values. Elementary

attributes can be of type INTEGER, BOOLEAN, TITLE and POINTER. In

fi6ure 2. 1 are some examples of elementary attributes. •

Composite attrit-utes have sets of attributes as values. Each

attribute in the set is a component that belongs to the ancestor

attribute. An attribute S with components

<S :V >, N~O is reptesented by:
N N

42

<S : V >,
1 1

<S : V >,
2 2

... '

ATTRI BUT£

cSCALE: 2>

c"POLJTirJAN":F4LSE>

••X: ll4VID>

c 5: "SOLOMON">

c P: ISCALE>

COMoiENTS

type tnte&er; sole< tor ··• an tdentt'ller.

trpe bool~ar: selector II a strlna.

type title; sele<tor II an S-ldentlfler: 1alue

h &I ldentlfler.

trpe title; selector ll lnteaer; .,.l11e 11 •

1trtna.

t·:pe roln .r; "l.elector U an tnteaer; value ll

1 raference to the attrlbute vW.se 111ector ll

tfte tdentlfler StALL

Figure 2.1

Examples of e'~mentary attributes

<~:i<S :V >i
1 1

~s :V >; ••• <S :V >)>
2 2 N N

Composite attributes can be either of type LIST or type
~O~STRUCT. The value cf a construct attribute is a set of attributes
with a different selector for each component. In a construct,
components are referred to by their selectors. The value of a list
attribute is an vrdered sequence of attributes where the components
nave undefined selectJrs. In a list, components are referred to by
their position in the sequence. List attributes behave exactly like
their LISP [MCa 65] counterparts and are manipulated by a similar set
of functions <CAR, CDR, r.o~s, etc.). When describing the value of a
list, the components have for a selector the ordinal (parenthesized)
that represent thP.ir position in ~he list. For example a list L with
~ components is described by

(' {<(l);V >i <(2):V >;
1 2

. < (N): V >) >
N

An ~attribute is a composite attribute whose value is the

empty set; 1 t 1 s represented by <C: 0 >, where C 1s any selector. An

undefin~d attribute is an attribute whose value is undefined; it is

represented here by <A:u> where A is any selector.

As an example of a cocposite attribute we may identify a /360

ASSEMBLER RX instruction with the construct INSTRUCTION with

components OPCODE (title), Rl (integer) and OPERAND (construct).

OPERAND has components 02 (title),X2 (integer) and 82 (integer).

Figure 2.2a represents the instruction "A 1, LOC (2,,14) "·

• Figure 2. 2b shows ~he same instruction, but now associated with a

list (LINSTRUCTION) instead of a construct.

cJNSTRUCTI\lll: (<OPCODE:A>; <RI: I>; <OPE~~NDS:

(<02: LOC>; cX2: ~>: cl2: 14>) >) >

Cal

<LINSTRUCTJON: (<0):~>; <(2l: I>; <Cll: (<li~:tOC>; <X2:2>: <12: lh)>)>

Cbl

Figure 2. 2

Examples of composite attributes

Attributes can be conveniently rep&esented as binary trees, the

nodes representing the attributes and the edges their composition.

Figure 2.3 shows the attributes defined in figures 2.1 and 2.2 1n

binary tree representation. An attribute is represented by a

rectangle containing its value and labeled by its selector. A

vertical edge connects a nonempty attribute to one of its components,

called FIRST. Other components of the same attribute appear to the

right of FIRST, connected by horizontal edges; the riahtmost one in

44

---- SCU!
I I
I l I l ______ l

---------- s 1 I
I "SOLO*>N" I
1--------1

- INSTRUCTION
1--'

I
I

-- "POLITICIAN"
I I
I fAUi I l __ l

---' I I
I tsCALI I l ___ l

__ ,x
I I
I DA'OD I
1--1

I -- Ill -- OPCODI _I_ OPERANDS I I I I
l_l-------------1 I 1------------1 A I

I l __ l 1--1
I

I X2 __ D2 , -- 12
I I I I I I
I 2 1·-····-···-·1 LOC 1------·-····1 U I
1------1 l __ l l __ l

_ LINSTRUCTION
1--1

I
I

I
I I I I
I A 1-----1 I 1----·1-1
1--1 1---1 I

I
-·1- X2 -- D2 --- U

I I I I I I
I 2 1--···1 LOC 1··-·-1 14 I
1--1 1--• 1--1

Figure 2.3

Tree representation of attributes

the sequence is calle~ LAST. If the composite attribute is a list

the order of the components from left to right reflects.their

position in the list; if it is a construct the order is immaterial.

Node attributes are referred to by their selectors. If the

attribute is inherited or synthesized the nontermlnal identifier

labeling the node, parenthesized, follows the selector. For instance,

INSTRUCTIO~ refers to a local attribute with selector INSTRUCTION

while SCALE refers to an attribute with selector SCALE that

belongs to the node B. The components of a composite attribute are

45

referenced through their ancestors. If the ancestor is a construct a

component is referenced by prefixing its selector with a reference

to the ancestor, followed by a"·". For instance, A.C. D refers to

the component n of the component c of the attribute A which belonas

to tre node B. In figure 2.2a INSTRUCTICN.OPERANDS. X2 is a reference

to the attribute <X2: 2>. If the ancestor is a llst, a component is

referenced by applying a composition of CAR's and CDR's to a

reference to the ancestl)r &.ttr1bute. In

CAR<LINSTRUCTlON) refers to the attribute

CAR(CDR(C0R(LI~STRUCTION))).X2 refers to <~2:2>.

2. 3. 1 ATTRIBUTE DEC~ARATION

figure

< (1): A>

2. 2b,

and

Every attribute identifier has a type. The type of an attribute

whose selector is an attribute identifier ~s the attribute ,
iden~ifier's type. An attribute identifier whose type is a construct

may have an undertype. The type of a component whose selector is not
an attribute identifier 1s its ancestor's undertype. A construct with

no Jndertype may only have components whose selectors are attribute
identifiers.

Attribute identifiers• declarations associate a

undertype with them. Their syntax is:

<ATTRIBU7E DESCRIPTIO~> ::• ATTFIBUTES ARE

type and

<ATTRIBUTE DECLARATION LIST>

<ATTRIBUTE DECLARATION LIST> ::• <ATTRIBUTE DECLARATION> I
<ATTRIBUTE DECLARATION>

<ATTRIBUTE DECLARATION LIST>

46

<ATTRIBUTE DECLARATION> ::• <ATTRIBUTE IDENTIFIER> • <ATTRIBUTE TYPE>
<ATTRIBUTE IDENTIFIER> ::• <IDENTIFIER>

<ATTRIBUTE TYPE> ::2 <TYPE> I CONSTRUCT, <UNDERTYPE>
<UNDERTYPE> :: • <TYPE>

<TYPE> ::• INTEGER I BOOLEAN I TITLE I POINTER I LIST I CONSTRUCT I <ATTRIBUTE IDF.~TIFIER>

When <TYPE> is an attribute identifier the type <and undertype)
rcf~rre~ to is the type <and undertype> of the attribute identifier.

ATTAJIUTIS All

ENV • CONSTRUCT, CONSliUCT

E • INV

JCJND • TJrLE

TYPE • TITLE

CALL • TITJ.E

NFOIMALS • INTEGER

CODE • POl NTEI

PARAMETER • LIST

lULl • LIST

INSTIUCTJON • CON~TiutT

MATIII• CONSTRUCT, I

I • CONSTRUCT, C

C •'CONSTRUCT, INTEGEI

P • POINTER

Ftaure 2.4

Attribute declarations

Figure 2.4 exemplifies attribute declarations. Flaures 2.5 and
2.6 show examples of attributes built according to the declarations
ln figure 2.4. The local attribute MATRIX ln FIGURE 2.5 shows how a
3-dimensional matrix can be represented as a construct and shows how
components like P can be mixed with components whose tvpe is the

47

__ MATIIX
l __ l

I
I
I

I 1 - 3 ~----~'
1-1-···-···1-1············1 .'ATIIX. '.2 I

I I I 1
I I
I _I_ 2 _I
: 1,1--------1,1

I I I
·II 1_1_2 ._l_l -2

I I I I I
I I I I I 3 1·····1 7 I
: , ___ , '--1 ~--1

I
I J - 2

1-1··------l __ ,
I I

' ' _,_, _,_, 2
I I I t ~--,
I S I I 4 1·-·-1 Z 1 , ___ , '--1 l __ l

Fiaure 2. 5

The attrib~te MATRI~

undertype of MATRIX. The attribute E<PROCDECL) in fiaure 2.6 eould

for example represent the symbol table built from parsin& from the

node PROCDECL the ALGOL procedure

REAL PROCEDURE MUM (X,Y); VALUE X, Y;
INTEGER X; REAL Y;

BEGIN
REAL Z;
Z: = XuY; X: aV+Y;
MUM:• Z+X

E~D;

It is a consequence of this scheme for associatina type with

attributes that node attributes must have attribute identifiers as

sel~ctors; otherwise no type could be associated with them. For

instance, in fiaure 2. 1 only SCALE and P can be node attributes.

As seen in 2.2. 2, the synthesi~ed and inherited node attributes

are def!ned by means of the nonterm1nal declarations. Attribute

48

-- I <PROCDlCI.)
1._1

I
I

-1-
l_l

I
I --- N~LS ----- liND

.1. I -· PAlAMITUS I I
1.-1··1-1············1 2 1····-·-···1 "PIOCIDUll• 1---cl:o

I I 1 ___ ; I

I I
I 1
I I
1 I

--- nn -----.-- CODI
I I I I

I I •:1:>···--1 "lEAL" 1·····-·1 llULICPROCDECL I
I I 1---1 I I
I I
I -1-
1 I I I I
I I U 1-·-·1 \t I
11--1 I __ ,
I
I

.1. U - U -IX
l_l------1-1-···-·1-1

I I I
I I I
I I --'-- liND TYPI
I I I 1 1 I
I I I "SIMPLE" t---------1 "III!IG£11• I

: ~ I .I '----1

1 I
I --'- liND --- TYPI
I I I I I
I I "5111fLI" 1-------··1 "IUL• I
I I I l ___ l

I
I

-•-- liND --- TYPI
I I I I
I "SIMPLE" 1·-·····-·1 "lEAL• I
1--' , ___ I

f1aure 2.6

The &ttrlbute ECPROCOECL)

identifiers :hat do not appear in these declarations are by default

of kind loc:a.l.

2.~ EXPRESSJO~S

SPINDLE expre&s1ons are the means for referencing attributes

and manipulating their values. When evaluated. expressions return a

value. The evaluation of an expression may involve ~he evaluation of

other expressions or the execution of statements. The execution of an

expression that involves an ac:c:ess to L~ undefined value will

passivate the process to which the expression be!~nas; the process is

reactivated if and when the value is defined. Their syntax is:

<EXPRESSION> ::• <SIMPLE EXPRESSION> I <INTEGER EXPRESSION> I
<BOOLEAN EXPRESSION> I <CONDITIONAL EXPRESSION>

2. 4. 1 SIMPLE EXPRESSIONS

The syntax fer simple expression ls:

<SIMPLE EXPRESSION> :: • <CONSTA~T> I (<EXPRESSION>) I
[<EXPRESSION> l I <FUNCTION CALL> I
<ATTRIBUTE DESIGNATION> I <BLOCK EXPRESSION>

so

The evaluation of a constant returns the value denoted by the

constant.

Parentheses enclosina an eApression serve only to indicate

precedence for the application of operators. The value of the

parenthesized expression is the value of the express•on itself.

The value resulting from the application of the bracket

operator to an expression depends on the expression's value : if the

expression's value is a reference to an elementary attribute, the

value returned ls the value of the referenc~d attribute; otherwise

the value returned is the value of the expression (see 2.5. 1.1 for

further explanations>. The execution of a bracketing operation will

cause a passivation if the value of ths operand expression is a

reference to an undefined attritute.

For example, if E is an expression whose value is a reference

to the attribute <SCALE:2>, the value of [El is 2 and the value of

[[Ell is also 2. If the value of Eisa reference to the attribute P

in figure 2.5 the value of both [El and [[E!l is a reference to

MATRIX. 1.2, because this is not a reference to an elementary

attribute. If the value of E is NULL the value of [EJ is NULL and it

it is NIL the value is NIL.

51

2. 4. 1. 1 FUNCTION CALLS

A function call is composed of a function identifier and its

arguments. The arguments are evaluated in sequence, froa left to

right; the function is then applied to the ar&uments and returns a

value. Functions can be system defined or user defined. System

defined functions are called standard functions and are described ~n

detail in section 2. 7 • The syntax for function call is:

<FUNCTION CALL> :: • <STANDARD FUNCTION CALL> I <USER FUNCTION CALL>

<USER FUNCTIO~ CA~L> ::• <FUNCTION IDENTIFrER>
<J.CTUA!. PARAMETER PART>

<FUNCTIO~ IDENTIFIER> ::• <IDENTIFIER>

<ACTUAL PARAMETER PART> ::• £ I (<ACTUAL PARAMETER LIST>

<ACTUAL PARAMETER LIST> ::• <ACTUAL PARAMETER> I
<ACTUAL PAR~~ETER LIST> , <ACTUAL PARAMETER>

<ACTUAL PARAMETER> ::• <EXPRESSION>

Section 2.8 describes the evaluation of function calls and the

declaration and execution of user declared functions.

CARCLINSTRUCTION) is an example of a function call. It applies the

standard function CAR to the local attribute LINSTRUCTION.

52

2. 4. 1. 2 ATTRIBUTE DESIGNATION

The value of an attribute designation i& a reference to an

attribute. Its syntax is:

<ATTRIBUTE DESIG~ATION>: :s <XODE ATTRIBUTE DE~IGNATION> I
<COMPONENT DESIGNATION>

<NODE ATTRIBUTE DESIGNATION>:: a <ATTRIBUTE IDENTIFIER> I
<ATTRIBUTE IDENTIFIER>

(<NONTERMINAL DESIGNATION>)

<NONTERMINAL DESIGI\ATION> :: • <:\ONTER.'vliNAL IDENTIFIER> I
<NONTERMINAL DESIGNATION> *

<CO~PONE~T DESIGNATION> ::• <ATTRIBUTE DESIGNATION>. <COMPONENT>

<COMPONE~T> :: • <ATTRIBUTE IDENTIFIER> I (TITLE CONSTANT> I
<INTEGER> I [<EXPRESSION> 1 i <FUNCTION CALL>

The value of a node attribute designation is a reference to the

node attribute whose selector is the attribute identifier. If the

attribute identifier is followed by a parenthesi~ed nonterminal

designation, the attribute belongs to the designated node otherwise

it is a local attribute. The asterisks following the nonterminal

serve to distinguish between occurrences of the same nonterminal in a

production. From left to right, no asterisk corresponds to the first

occurrence, one for the second, two for the third and so on. If A is

an attribute and NT a nonterminal, A(NT) implies that A has been

declared an inherited or synthesi~ed attribute of NT. If this is not

true an error occurs. An error will also occur if NT designates a

node that is not in the associated syntactic production. The

attribute designation A implies that A 1s a local attribute, 1. e, it

has not been declared as either inherited or syntheal~ed for the LHN.

53

The definition in t1gure 1.6 has examples of all the varieties

of node attribute designation. The evaluation of a node attribute

designation will never cause a passivation since all the attributes

belonging to a node are attached to it b~fore the processes are

started. Initially all node attributes are undefined.

The value of a component designation is a reference to a

component attribute whose selector is the value of <COMPONENT> and

whose ancestor is the attribute referenced by the value of

<ATTRIBUTE DESIGNATIO~>. The value of <ATTRIBUTE DESIGNATION> should

be a reference to a construct (but not NIL>; furthermore if the value

of <COMPONENT> is not an attribute identifier the referenced

construct should have an undertype. Also the value Of <COMPONENT>

should be either a title or an inteaer value. If the above conditions

do not hold, an error occurs. If <COMPONENT> is an ~ttribute

identifier its value is the identifier denoted by the attribute

identifier. A component designation will passivate the process

associated with its execution if the ancestor does not have an

attribute whose selector is the value of <COMPONENT> except when on

the left hand side of an assignement (see section 2.5. 1. 1). The

process is reactivated once the component is placed in the ancestor.

The following examples, are attribute designations in the

context of the attributes represented in figures 2.5 and 2.6:

ATTRiBUTE DESl~~ATIO~

E(PRODECL).&MUM. NFORMALS

E <PRODECL). &MUM. E.
[CAR(CDR(E(PROCDECL).

&MUM. PARAMETERS))). TYPE

MATRIX. 1. 2. 1

[MATRIX.P).l

54

REFERENCED ATTRIBUTE

(!\FORMALS:2>

<TVPE: "REAL">

<1: 4>

<1: 4>

2.4.1.3 BLOCK EXPRESSIO~S

Block expressions are patterned aft&r the ALGOL W [51 711 block

expressions. Their syntax is:

<BL~CK EXPRESSION> ::• BEGIN <COMPOUND STATEMENT>; <EXPRESSION> END

The value of a block expression is the value of its component

expression. A block expression is executed by executing first its

compound statement and then evaluating its expression.

As an example of the use of block expression, in figure 1.6,

the semantic rule of production P2 can be rewritten as

$/VALUE(B) :• BEGI~

2. 4. 2

COU\TER: =SCALE (B); PRODUCT :• 1;
WHILE COUNTER > 0 DO
BEG I !I!

PRODUCT :• 2* PRODUCT;
COU~TER : • COUNTER -1

E~D;
PRODUCT

END/$

INTEGER EXPRESSIONS

Integer expressions are functions from integer values to an

integer value. Their syntax is:

<INTEGER EXPRESSION>:: • <SIMPLE INTEGER EXPRESSION>
<INTEGER OPERATOR> <SIMPLE EXPRESSION>
- <SIMPLE EXPRESSION>

<SIMPLE INTEGER EXPRESSION> ::• <INTEGER EXPRESSION>

55

<SIMPLE EXPRESSION>

<INTEGER OPERATOR> ::• + I -I *I I I REM

Integer expressions are evaluated from left to right; operators

have no precedence over other operators, precedence is indicated by

the use of parentheses. The operands of an integer operator <and of

the unary-> are implicity bracketed, i.e., operands whose values are

references to attributes are coerced to return the value of the

attribute. Integer expressions operate on integer values if the

coercion of an operand does not result in an integer value, an error

occurs. The evaluation of an integer expression will cause a

passivation if the value of an operand is £ reference to an undefined

attribute.

Integer operators have their usual meanings with "I" standing

for integer diV! sion and REM for remainder of the integer diviSion of

the left operand by the right operand.
·~ . '

Examples of integer expressions can be found in fiaure 1. 6, in

productions P2 and P4. Notice that in P4, due to the implicit

bracketing, the evaluation of SCALE<L> in ~he expression SCALE(L) +1

returns 110t a reference to the attribute but its value.

56

2. 4. 3 BOOLEAN EXPRESSIO~S

Boolean expressions are the counterparts of 1nteaer expressions

for boolean values. Their syntax is:

<BOOLEAN EXPRESSIO~> :: • <SIMPLE BOOLEAN EXPRESSiON>
<BOOLEAN OPERATOR) <SIMPLE EXPRESSION>
~ <SIMPLE EXPRESSION> I <~ELATION>

<SIMPLE BOOLEA~ EXPRESSION> ::• <BOOLEAN EXPRESSION>
<SIMPLE EXPRESSION>

cBOOLEAN OPERATOR):: • AND I OR

Boolean expressions are evaluated fro~ left to right with no

precede~ce for operators. Operands are implicitly bracketed and

should have boolean values, otherwise an error occurs. If tne

operator 1s A~D and the value of the left operator is FALSE the right

operand is not evaluated; similarly if the operator is OR and the

left operand is TRUE. A passivation occurs ~hen the value of an

operand (before the implicit brackets are appl1edl 1~ a reference to

an undefined boolean attribute. The opJrator "~" is the negation

operator.

57

2. 4. 3. 1 RELATIONS

Relations are predicates that take two arau•ents and return a

boolean value. Their syntax is:

<REl.ATJO~> ::"' <SIMPLE EXPRESSIO~> <RELATIOtl OPERATOR>
~SIMPLE EXPRESSION>

<RELATIO~ OPERATOR>:: • <REFERENCE RELATION OPERATOR>
<SIMPLE RELATION OPERATOR>

<REFERE~CE RELATIO~ OPERATOR>:: • •• I •I•

<SIMPLE RELATION OPERATOR> :: • • I ..,. I > I ;t I < I ~

Relation~ are evaluated by evaluating first the left operand,

then tM right operand and then applying the operator. J·f the

operator is a ~imple relational operator the operands are implicitly

bracketed. Reference relation operators are used primarily to test

if two references refer to the same object (••) or not (•/•). However

it should noted that they can be applied to any other values since

the only difference between them and relation operators is that their

operators are not implicitly bracketed. Relation operators compare

the values of the operands; the values should be of the same type

otherwise an error ocurrs. While not an error, it is meaningless to

apply the operators ~. s, >, c to operands that are not integer

values; the value returned, while always the same, is implementation

dependent.

For the attributes represented in figures 2.5 and 2.6 we could

have:

RELATION VALUE

58

<E<PROCDECL}, &MUM.HORMALS + 1) > 2

ECPROCDECLl.&MUM.KISO ~·~PROCEDURE"

MATRIX. P •• MATRIX. 1.2

[MATRIX. Pl •• MATRIX. 1. 2

MATRIX. P • MATRIX. 1.2

2.4. 4 CONDITIONAL EXPRESSIONS

Their syntax is:

TRUE

FALSE

FALSE

TRUE

TRUE

<CONDITIONAL EXPRESSION> :i• <IF-CLAUSE> <EXPRESSION>
ELSE <EXPRESSION>

<IF-CLAUSE>:: • IF <EXPRESSION> THEN

The value of an if-clause is the bracketed value of its

rxpression. This value should be boolean, otherwise an error occurs.

If the expression's value is a reference to an undefined attribute

the associated process is passivated. Production PS in figure 1.6

contains an example of a conditional expression.

59

2. 5 STATEMENTS

A statement 1s a unit of action. The execution of a statement

is the performance of a unit of action. The execution of a statement

may involve smaller units of action such as the evaluation of an

expression or the execution of ot~er statements. The syntax for

statement is:

<PARALLEL STATEMENT> ::• $/<SEQUENCE OF STATEMENTS> /S

<SEQUESCE OF STATEMENTS> ::• <STATEMENT> I
<SEQUeNCE OF STATEMENTS>

<STAT~~E~T> :: • <PARALLEL STATE~E~T> I
<LABEL> : <PARALLEL STATEMENT> I

<STATEMENT>

<UKCONDITIONAL STATEMENT> I <CONDITIONAL STATEMENT>
<WHILE STATEMENT>

<LABEL> ::• <IDENTIFIER>

As explained in chapter 1, SPINDLE has parallel statements,

besid•:s the vs~al control structures of ALGOL-like languages. All

SPI~DLE statements that are not parallel statements are enclosed in a

parallel statement. The execution of a parallel process lnvolveG two

steps: first a process associated with it is created and activated;

second the created process 1s ~xecuted. An active process Will run

until it is terminated or passivated. A process is passivated while

trying to evaluate an expression involving undefined values; or ~hile

executing a function call or a procedure statement (see section 2.8);

or while trying to assign a value to a synthesized attribute of an

arnbiguo'.:<; node (see section 2. 9. 3). A process is reactivated 1f and

when Le value is defined; or tbe execution of the function or

procedure is terminated; or the node is disambiguated, respectively.

60

If a parallel state~ent PS! contains a parallel statement PST
1 2

a process associated with PST will be created during the execution
2

of a process associated with PST • In the context of PST 's process
1 1

the execution of PST is finl~~ed once the process associated with

2

PST is created and activated. Tne execution of PST can go on

2
2

without regard to the execution of PST 's pocess. If PST is part of
1 2

a loop in PST , a new process is created and activated every time

1

PST is executed. The execution of a sequence J~ statements is then

2

s1milar to the execution of a sequence of statements in ALGOL. The

execution of a paralle! statement 1n the sequence 1s finished once

the associated process has been created and activated; the next

statement in the sequence can then be executed. For example, given

the sequence

ST ; $/ST ; ST /$; ST
1 2 3 4

where ST and ST are not go-to statements, its execution will begin

1 4

,.itt. ST 's execution ~ollowed by the creation~. act1vat1on of the

l

process associated with $/ST; ST /Sand followed by ST 's execution.
2 3 4

The execution of the sequence will end once ~T 's execution is
4

finished; the execution of the process assoctated with the parallel

statement may or may not have terminated. For 1n~tance the process

could have been pass1vated while executina ST and this would hav~ no
2

61

bearina in the execution of ST • If ST were a parallel state•ent the
4 4

sequence would be terminated once the process associated with ST had
4

been created.

Label identifiers are declared by appearin& as a label of a

statement. The scope o! label is the smaliest parallel state•ent,

bl~ck expression, or procedure declaration that contains it.

2. s. 1 UNCONDITIONAL STATEMENTS

Their syntax is:

<U~CONDITIONAL STATEMENT> ::• <LABEL>: <UNCONDIT:ONAL STATEMENT> I
GO TO <LABEL> I <COMPOUND STATEMENT> I
' <EXPRESSION> I <PROCEDURE CALL> I
c I <ASSIGNMENT STATEMENT>

<LABEL> :: • <I DE~TI Fl ER>

<COMPOUND STATEMENT> ::• BEGI~ <SEQUENCE OF STATEMENTS> END

<PROCEDURE CALL> ::• <PROCEDURE IDENTIFIER> <ACTUAL PARAMETER PART>

Go-to statements chanae the flow of control; the statement

labeled by its label 1s the next to be e~ecuted. The ao-to statement

must be in the scope of the declaration of lts label or an error

occurs.

The compound statement is sim1lar to its ALGOL counterpart. Its

purpos~ is to parenthesiz·e a sequence of statements.

The operator "*" allows the use of an expression as a

62

statement. The expression is evaluated for possible side effects and

its value discarded.

A procedure call is similar to a user function call with the

difference that it does not return a value. Procedures are all user

defined; no system defined procedures exist. Section 2.8 describes

the declaration and execution of procedures and the execution of

procedure calls.

2. 5. 1. 1 ASSIG~ME~T STATEMENTS

An assignment operator is applied to two operands; the L­

oper and <for left hand side) and the R-operand (for right hand side).

The L-upe~and ~ust always be a reference to an attribute, called the

L-attr1bute; this attribute may not be the null attribute. The R­

operand is either a reference to an· attribute, called the R­

attribute, or some other value. the assignment can take three forms

depending on the type and values of the operands:

- If the R-operand is NIL or a non pointer value, it is

copied into the value field of the L-attribute.

- If the R-operand is a pointer value and the L-attribute 1s

a pointer, the R-operand is copied into the vaiue field of

the L-attribute.

- If the value of th R-operand is a non NIL pointer and the

L-attribute is not a pointer, the value of the L-attribute

is indirectly the value of the R-attribute which means that

63

the L-attribute's value is not a copy of the R-attribute's

value bl.it exactly the same value. There is no implicit

copying; if des1red, copyina is handled explicitly (see

section 2.5.1.1.1).

' An attr1bute whose value is indirect ~s called an indirect

attr1bute; otherwise it is called a direct attribute. An indirect

attribute may be indirect to another indirect attr~bute and form a

chain of indlrects; at the end of an indirect chain is always a

dire~t attribute called the final attribute. If the R-attr1bute is

indire~t the L-attribute is assigned indirtctly the value of the

final attrib~te of the R-attrib~te. In all cases, if the L-attribute

was undefined before the statement's execution, once the assignment

is complete, all processes that were passivated trying to access its

value are reactivated. If the value was defined, the previous value

is erased.

If the R-operand is not a pointer value, its type should be the

same as the type of the L-attribute; 1f the L-attribute is a. pointer

the R-operand shoulj be a pointer value; otherwise the type and

undertype of the L-attr1bute and tte R-attribute should be the same.

If the above conditions are violated an error occurs.

The main reason for choosing this form of assignment operator

is to avoid copying. Since many of the attributes used in the

def1n1t1o1 of languages are large and complex composite attributes

(e. g. symbol tables> that are passed from node to nooe, it would not

be feasible to copy the entire value of these attributes each time an

assignment is made.

As a consequence of thls scheme, 1f the value of an attribute

64

changes, all indirect attributes to whose indirect chains the

attribute belongs, will also change. This is in a way a weakness of

the SPINDLE language. Ideally the value of other inherited and

synthesized attributes once assigned, should never change. This can

only be accomplished by the extensive use of copying.

An indirect value is represented here by "1A0" where AD is a

reference to the final attribute. For example, if the L-attribute is

cA:u> and the R-attribute <B:u> the assignment will change the L­

attribute to <A:iB>.

NOTE- Section 2.4.1. states that if an express~on's value references

a composite attribute the bracketing of the exp~ession retur~s the

satne value. This is not true if the COEij)Osite attribute 'is an

indirect attribute; in this case the bracketing returns as a value a

reference to the final attribute of the composite attribute.

NOTE- An attribute designation which is part of a component

designation <see section 2. 4. 1. 2) is implicitly bracketed: 1f the

value of the ancestor attribute is indirect the component referred to

is the component of its final attribute.

The syntax for assignment statements is

<ASSJGN:'>1ENT STATE.\1E:\T> :: • <LHS> : • <RHS>

<LHS> ::• <ATTRIBUTE DESIG~ATION)

<RHS> :: • <ASSIGNMEH STATE:··IE\T>
<MULTIPLE ASSIG:\~1E~T>

65

<EXPRESSION> I <OTHER RHS> I

An assignment statement is executed by first evaluat!na <LHS>

and the~ <RHS>. The value of an assignment statement is the value of

its <LHS>. If <RHS> is an assignment statement or an expression, the

assignment operator is applied to the value of <LHS> (L-operand) and

to the valut of <RHS> CR-operand).

ATTRUUTES luiE

A • INTEGER

Al • A

T • TITLE

Tl • T

C • CONSTRUCT, D

cl". ·c
C1 • Cl

D • CONSTRIICT, INTEGER

Dl • D

P • POINTER

PI • P

II • 800LEAN

R • CONSTRUCT, S

S • CONSTRUCT, R

Figure 2. 7

Declaration of attributes

The only difference between the evaluation of an attribute

designation which is a <LHS> and one which is an expression is that

the former will create components where the iatter would cause a

passivation. The difference occurs in a component designation where

the ancestor either has an undefined value or has no component whose

selector is the value of <COMPO~ENT>; if the attribute designation is

an e~pression a passivation occurs; if it is a cLHS> a component is

created whose selector is the value of <COMPO!-iENT> and whose value is

undefined. After the assignment, all processes passivated trying to

66

(&) (b)

Sl A: • 2; <A: 2>

T : • Tl : • "BRUNO"; cT: IT!'· <TI: •&RUNO">

C. Tl : • T; <C: (<TI: IT!>)>

C. Tl : • "808"; cC: (<TI: "1011">)>

Cl : • C; <CI: IC•

D. IC. Til : • A ol; cD: 1<"808": 3>1>

C : • NULL; •• cC: () >

CI."FRI£NDS" :• D; <C: (<"FRIENDS": ID>I>

CI."FRIE~DS"."PAT" :• 7; dl: (<"8011":3>; <"PAT":7>)>

CZ : • t::; cC2: IC>

Cl : • NUL~; <CI: 0 >

P I• o. ·~os•, cP: to. "1'0!"•

II:. (PJ •• C2."FRI£NDS"."SOS"; <B:TRUE>

IPJ : • ~; cO: (<"BOll": h; <"PAT": 7>)>

A I• AI <AllAI:, <AI'U>

Figure 2. 8

Effect of ~xecuting assignment statements

access this component are reactivated; if the ancestor was undefined

it is now ciefined. !Jue to the implicit bracketing of the attribute

designation-part of a component designation, 1f an ancestor 1 s an

indirect attr:bute the new component is added to its final attribute.

The ex·~cut1on of the parallel statement in Figure 2.8a

exernpl if i es :he rules stated above. Figure 2. 7 contains the

declaration of all the attribute identifiers used in this and

subsequent examples in section 2.5.1.1. Figure 2. Sb shows how

attributes are affected by t:te execution of each statement of

figure 2.8a and figure 2.9 show5 the status of all attributes at the

end of the execl.ti.on. ;>.;otice that 1f the last statement of

f!gure 2.8a were A: • (All the process would be passivated and that

instead of cA: iAl> ~e would have cA:2>.

67

2. s. 1. 1. 1

<A:IAI>

<Al:u>

<TilTh

<Tl:"IRUNO">

cl: TIUE>

<C: (<"FRIENOS":ID>h

<Ctl () >

iCl: tC>
•
<D: (<"1101": 4>; c•ut•: h)>

<PI ID. "BOI">

Fiaure 2. 9

Attributes after the ass1anments

OTHER RHS

The syntax for assignment statem~nts continues as follows:

<OTHER RHS> ::• I <EXPRESSION> I • <EXPRESSION> I
<CO};O!TIO~AL ASSIGNMENT>

<CONDITIONAL ASSIG~~ENT> ::• <IF CLAUSE> <RHS> ELSE <RHS>

The "'" is the copy operator. The expression is implicitly

bracketed and the value of the bracketed expression is the R-operand.

If the L-attr1bute is not a composite attribute or the value of the

R-operand is NULL the normal SPINDLE assignment takes place.

Otherwise the following takes place: the value NULL is assigned to

the L-attrlbute; then for each component of the R-attribute a

68

component of the same type and u~dertype and with th~ same selector

and in the same order is attached to tl'.e. L-attribt.te; then each

component of the R-attribute is assigned (~ithout copying) to the

corresponding component of the L-attribute.

Notice that the expression may retu:~ a reference to the L­

attribute as its value; if the L-attr1bute is indirect (due to the

implicit bracketing of the expression) the indirectness is eliminated

and the value of the final attribute copied; if the attribute is not

indirect the operation has no effect on the attributes. It !lhould

also be noted that for composite attributes, while the components of

the attribute are copied, if the compouen:s are themsel~es tOLposite

attributes, their values are not copie.:i. It should finally be noted

t~at for elementary attribute~ the bracketing of the right hand side

expression has the same effect as the application of the 1 operator.

As an examplP. of the copy operator the parallel statement in

figure 2. lOa when executed starting with the attribute in figure 2.9

will cause the changes shown in figure 2. 10~

The "*" operator creates a component of the L-attribute that is

a copy of the R-attr1bute (same type, undertype and selector) and

assigns the R-attribute to this component. For exampl~ the execution

of the statement C."FRIENDS" :•• 8 would affect the attributes in

figure 2.9 in the following way:

<C: {<"FRIE!IIDS": iD>} >
<D: (<"BOB": 4>; <"PAT": 7>; <8: a>}>

For an assignment involving a * operator the L-attrlbute should

be a construct; the R-operand should be a reference to an attribute

whose selector is defined; if the selector 1s not an attribu~e

69

Sl Dl : • ID; D. "ANDY" : • 9; Dl. "HEATHER" : • I; D. "1101" : • 3;

C2 I • IC; C. • fRIENDS" : • IC. • FRIENDS";

C."FIIENDS"."ANDY" :• 10 /S

(a)

<C: (<"FIIINDS": (<"1108": lD. "1101">; <"ANDY":lO>; <"PAT"tlD. •PAT">) >) >

cC2: (<"FIIENDS": tD>I >

<D: (c•toa•: 3>; <"ANDY": h; <"PAT•: 7>)>

<DU (<"101•: h; <"PAT": 7>; <"HEATHEI"Il>} >

(b)

Figure 2. 10

Effect of the copy operator

identifier, the type of the R-attribute must be the same as the

undertype of the L-attrlbute. If the above conditions are not

satisfied an error occurs.

The conditional assignment chooses one of its <RHS> to be the

cRHS> of the assignment statement. If the value of the if-clause is

TRUE the leftmost <RHS> is used, otherwise the rightmost one is used.

70

2. S. 1. 1. 2 MULTIPLE ASSIGXME~TS

The multiple assignment operator "S" is SPINDLE's count~rpart

of VOl.' s
-operator. It allows a single statement to assign val~es to

different components of an at!ribute. Its syntax is:

<MULTIPLE ASSIGI\ME~T> ::• S (<COMPONENT ASSIGNMENT SEQUENCE>)

<COMPONENT AS~IGNMENT SEQUE~CE> :: • <COMPONENT ASSIG~~ENT> :
<COMPONE~T ASSIG~~E~T SEQUENCE> ; <COMPONENT ASSIGNMENT>

<CO:'<lPONE~T ASSIGNME~T> :; a <COMPOU~D COMPON:~NT:>: • <RHS> I
<PAR.ULEL COMPONeNT ASSIGNMENT> I
<CO~DI!IO~AL COMPONSNT ASSIGNMENT>

<COMPOU~D COMPONE~T> :: • <COMPO~E~T> I
<COMPOU~D COMPONENT> • <COMPONENT>

.:PARALLEL COMPO:>;E~T ASSIG:-1~1ENTl :: • $1 <COMPONENT ASSIGNMENT> /$

<CONI:i fiONAL CmtPONE~T ASSIG:-.":-:F.NT> :: • <IF C:..AUSE>
<COMPONENT ASSIGNMENT)

ELSE <COMPONENT ASSIGNMENT>

The effect of executing a component assignment

<CmtPONENT PART> :"' <RH;).

which is part of~ multiple assign~ent

<LHS> : • $(...)

1s the same as the effect of executing the assignment statement

<LHS>. <C0~1PO:-<EH PART> : • <RHS>.

For example, the multi~le assignment statement

R. "KELSO~·· : = $("RUTH". A : = 23;
"DORIS" : • $(A : • 20; T : • "JOE"))

and the sequence of statements

71

R. "Hl.SON". "RUTH". A : • 23; R. "KELSON". "DORIS". A: •20;

,L 'X2LSON. "DORIS". T: • "JOE"

wh-:.1 executed have exactly. tile same effect upon the environment. The

parallel component assignment allows the execution of the component

assignment as a separate process , 1. e. in parallel with the rest of

the multiple assignment. It is equivalent to the ass·:lciated

ass1inment statement being a parallel statement. The mul tlple

assignment is execut~d from left to ri&ht in exactly the same order

that the associated compound statement wo~ld be executed. Por

example, given the attribute <R:u>, the execution of the statement

S/R. "KELSON" : • S ("RUTH". A : • R. "KELSON". "DORIS". A + J;
"DORIS". A: •20)/$

would cause the associa:ed process to passlvate trying to eviluate

R. "KE.L.SON"."DORIS".A and result i:'l the attribute

<R: {<"KELSON": {<"RUTH": {<A: U>) >) >) >.

If no other parallel statement assigns a value to

R. "KELSOX". "DORIS". A the process will never be react1 vated. On the

other hand, under the same circumstances, the execution of

$/R. "KELSON" : • S ($/"RUTH". A : • R. "KELSO~". "DORIS". A +3/Si
"DORIS". A : • 20)/$

w3uld generate two proces~ that when terminated would result in the

attribute

72

<R: {<KELSO:\: {<RUTH: {<A: 23>}; <DORIS: ~<A: 20>} >} >} >

2. s. 2 COXDIT!O~AL STATE~E~TS

<CO:\DITIO~Al. STATEMEt.;t'> ::,. <LABEL> : <CONDITIONA!. STATEMENT>

<IF STATE.\1ENT> I
<IF STATEME~T> ELSE <~TATEMENT>

<IF STATE~1E~T> :: • <IF CLAUSE> <U~CONDITIONAL STATEMENT>

The conditional statement has exactly the same control

structure as its ALGOL counterpart. As in the ALGOL condlti~nal

statement, it B possible to execute the unconditional statement

without evaluating the 1f-clause by using the GO TO statement.

2.5.3 WHILE STATEME~TS

<WHILE STATEMENT> ::., <LABEL:. : <WHIJ.E STATEMENT> I
WHILE <EXPRESSIO~> DO <STATEMENT>

The control structure of the WHILE statement is similar to 1ts

ALGOL W counterpart. The expression is implicitly bracketed and

returns a boolean value. Unlike ALGOL W, 1 t) s pos~ible not to

evalua~:e the expression the first time around by transfering directly

73

to the statement by ~cans of a GO TO statement.

semantic rule of production P2 contains an

statement.

2.6 OTHER EXPRESSIO~S

In figure 1. 6, the

example of a wh~le

Section 2.4 presents an incomplete syntax

expressions. The following are the missing forms:

for SPINDLE

<EXPRESSIO~> :: • <ASSIG~~~E~T EXPRESSIO~>

<SIMPLE EXPRESSIO~~ :: • <PUTI~ EXPRESSION> I <FIND EXPRESSION>

2. 6. 1 ASSIG~ME~T EXPRESSIO~

The assignmer.t expression is a fcrm of <EXPRESSION> not

mentioned in section 2. 4. Its syntax is:

<ASSIGNMENT EXPRESSIOX> :: = <ATTRIBUTE I~E:-JTIF1ER> *- <RHS>

The only difference between the execution of an assignment

stateuent and the evaluation of an assignment expression is in the

evaluation of the left hand ::.!rte. In the assignment expression, the

74

L-attrlbute ~s a new attribute, called an isolated attribute, that

does not belong to a node or an attribute; the attribute identifier

establishes the type and selector of the isolated attribute. The

expression's val~e is a reference to the isolated attribute. Notice

that since the isolated attribute is not a node attribute or a

component, the only ~ay to refer to it is by means of the reference

returned by the evaluation of the expression.

execution of the parallel statement

$/ A : " 2; P 1 : ,. A • • 3;
Al : = A *"' A + (Pll +4; A : • Al ·· (Pl~ ,'~

For example, the

results in the local attributes <A: 12>, <Al: 1A > and <Pl: @a > and in
2 l

the isolated attributes <A : 3> and <A : 9>.
1 2

Assignment expressions are extr~mely useful inside iterAtive

statements where for each iteration a new attribute has to be

created. An e;,cample of this use is shown in section 2. 7. 2.

2. (), 2 PUTIN EXPRESSIONS

The purpose of the PUTI~ expression is to insert new components

into a construct. Its syntax is:

<PUTIN EXPRESSIO~> :: = PUTIN (<ATTRIBUTE DESIGNATION>:
<COMPONE~T ASSIGNMENT SEQUENCE>

75

The execution of & PUTIN expression is equivalent to the

execution of the assignment statement

<ATTRIBUTE DESIGNATION> : • $(<COMPONE~T ASSIGNMENT SEQUENCE>)

with the following differences:

- The attribute destanation is evaluated as an expression,

not as & LHS.

- The value of a PUTIN expression 11 a reference to the

attribute referred to by the simple attribute designation

part of the attribute designation.

For exampl~, given the attribute

<R: (<"KELSON": (<''RUTH":(<A:23>)>)>}>

the execution of

PUTIN <R. "KELSON", "DORIS".A :• 20; "BRUNO". A :• 17)

would return as a val~e a reference to the attribute

<R: {<"KELSON": {<"RUTH": {<A: 23>) >; <"BRUNO": {<A: 17>} >i
<"DORIS": (<A: 20>) >) >})

It should be noted that the equivalent assignment statement

R. "KEi.SO~" : • $ ("BRU~O". A: •17 "DORIS". A: • 20)

76

would return as a value a reference to the attribute "KELSO~" (if it

were the RHS of another assignment). Also notice in the above

example that if R were undefined, the PUT IN expression would

passivate while the equivalent assignment statement would not. In

other words PUT!~ only adds to attributes already defined. Finally

it should be note~ that if the ~omponent assignment sequence has

parallel parts they go on asynchronously; i.e., PUTIN may be done

before they are f1n~she1. The attritute designation part of the

P~Tl~ expression should return a reference to a construct (but not a

NIL value) or an error occurs.

2. 6. 3 FI~D EXPRESSION

A fir.d express1on is used to check the presence of a certain

component in a construct. Its syntax is:

<FI!\0 EXPRESSIJN> :: • FIND C <EXPRESS!O:-i> , <COMPONENT>)

The value of <EXPRESSION> should be a reference to a construct

or NIL (which is a reference to a construct with value NULL),

otherwise an error occurs. If a construct has a component whose

selector is t~~ value of <COMPONF\T> the expressio~'s value is a

reference to the comp~nent; oth~rwis~ the value is N[L. As a

consequence, if the expressi~n·s va~ue is NIL the value of FIND is

NIL. The ei·aluation of the FlND expression will cause a passivation

1f the construct is undefined. For example, given <R: u>, the

execution of the paralle: statement

77

$/ R."KELSO:\" :• SC"RUTH".A := 23; "DORIS".A :• 20);
P : • Fl~:l(R. "KELSO:\", "DORIS");
Pl : • Fn;o (R. "KELSO~", "BRU:\0") IS

results in

<R: (<"KELSON": {<"RUTH": {<A: 23>) >; <"DORIS": (<A: 20>} >} >} >
<P: @R. "KELSO:\". "DORIS">
<Pl:NIL>

However, it should be noted that given the parallel statements

$1 R."KELSO~" :• SC"RUTH".A := 23; "DOR1S".A :• 20) 1$
S/ P : • FIND<R. "KELSO~". "DORIS") /$

after both are executed and terminated the value of the attribute P

is either U. "KELSON". "OOidS" or NIL. This can be avoided by

replacing the first parallel statement by

$/ R : = Rl. "KELSO!\" :"' 1 · .••) /S

In th~s case R i~ undefined until the complete construct 1s

assigned and P will always be assign~d the value @R. "KELSON". "DORIS".

2. 7 STANDARD FU~CTIO~S

Standard functinns ~re system defined function~ that complement

the o~~rntors furnished by the language. A standard function is

evaluated by first evaluating its arguments from left to right and

78

then applying the function to the values. returned by the arguments.

The value returned by a standard function varies from function to

funct1on. Their syntax is:

<STANDAAD FU~CTION> ::• <PREDICATES> I <LIST FUNCTIONS>
<MISCELANEOUS FUNCTIONS>

2. 7. 1 P~EDICATES

A predicate's value is always boolean. Their syntax is:

<PREDICATES> ::• NULLR
NULLa

<EXPRESSION>
<EXPRESSION>

The value of ~ULLR is TRUE if the value returned by the

expression is either FALSE, 0, NULL, or NIL; otherwise 1t is fALSE.

The va:ue of NULLS is TRUE if the expression·s val~e is either FALSE,

0, ~ULL, ~IL or if it is a reference to an &ttribute whose value is

either FALSE, 0, ~IL, or "!U'!.L; otherwise 1t is FALSE. NULLB will

cause a passivation if tne value of the expr~ss1on 1s a reference to

an undefined attribute. For example, given the attribute <C: 0 > the

value of NuLLR(C) is FALSE while the value of NULLB(C) 1s TRUE.

79

2. 7. 2 LIST FUNCTIONS

List functions are used to manipulate lists. The value of a

lis~ function is either a reference to & list component or a special

kind of list called a value-list. A value-list is a list whose

selector is undefined and that does not belong either to a node or to

another attribut~. When a value list is the R-operand of an

assignment, the value assigned to the L-attribute (which must be a

list) is directly the value of the value-list. If the R-operand were

a reference to a list and if the ~-attribute were &lso a list the L-

attribute's value would indirectly be the value of the R-attribute.

Notice that if the L-attribute is a pointer ar.d the R-operand a value

list, an error occu~s. The value list is~ list ana not a reference

to a list. The syntax for list function is:

<LIST FU!'-JCT!ON> :: • CAR < <EXPRESSION>) I
CDR (<EXPRESSIO~> > I
CO~S (<EXPRESSION> , <EXPRESSION>) I
LIST (<EXPRESSIO~>) I
APE!\D (<EXPRESSION> I <EXPRESSION>) I
RVRS (<EXPRE~SION>)

The functions CAR, CDR, co~s. and LIST correspond exactly to

their LISP counterparts and work essentially in the same way. As in

LISP, the list components are not copied and the application of these

functions to a list does not change its value.

CAR takes a value-list or a reference to a list as an argument

and returns a reference to its first component. An error occurs if

the expression's value is not a a value-list or a reference to a list

or if the list or the value list 1s empty. For example, given the

list <L;{d1):3>;d2):4>)>, CAR(L) r~turns a reference tn <(1):3>.

80

COR takes a value-list or a reference to a list as an argument

and returns a value-list whose components are all the components of

tt.~ argument list but the first. [f the value of the argument list is

NULL an error occurs. For example, figure 2.11 shows the list L and

Ll before and after the execution of t~e statement Ll : = COR(L).

Notice that the value of Ll is direct and that no copy was performed.

_L
l_l

I

1-'--1 ~--1
I l 1--------1 4 I l ___ l l __ l

(a)

_ L _ Ll
l_l l_l

I I
I _I_

I i I I
I 3 1--------1 C I l __ l l __ l

(b)

--- Ll _ L - Ll
1_1 l_l l_l

I I I
-'- -'- _I_

I I I I I I
I 5 1--------1 l 1--------1 4 I l __ l l __ l I l ___ l

I
-- L2 I
!_I I

I I __ I_ I
I I I
I 2 1-·-· , ___ I

(c)

Figure 2. 11

Effect of CAR, CDR and CONS

The application of the CO~S function creates a new attribute

wr~se type and value are determined by the value of the first

argument : if the argument has a nonreference value or ts not NULL or

~IL the new attribute has the appropiate type to receive the value;

81

if it is a reference to an attribute, the new attribute has the same

type and undertype as this attribute; if it i~ Nil or NULL it is a

pointer with value NIL. In all cases the new attribute has an

undefined selector. After the creation of the new attribute an

assignment is performed witt the new attribute as the L-attribute and

the first argument as the R-operand. The second argument is a value

list or a reference to a list. The value of CONS is a value-list

whose first component is the new attribute and whose other components

are those of the ~econd argument's list. For example the execution

of the stquence of statements

L2 : • CONS (2, Ll) Ll : • CONS (CAR (Ll) + CAR (L2) 1 L)

transforms the attributes in figure 2. llb into the attribute~ Jn

figure 2. llc.

The execution of the function LIST(ARG> is a!~ays equ!velent to

the execution of CO~S(ARG,L••XULL).

Figu(e 2. 12 is an example of the use of the list functions.

The execution of the compound statement (a) transforms the attributes

(b) into the attr1b~tes (c). Observe that 1n line 5 of the compound

statement, the attribute designation COUNTER is bracketed; if not,

the value of ADDRESS would be 1COUNTER 1n both INSTRUCTION and

INSTRUCTION •
2

1

The functions APE~D and RVRS differ from the other list

functions in that they change the value of the list upon which they

are applied. They correspond to the LISP functions APPEND and REVERSE

with the difference that the LISP functions do not chanae the values

82

aE.GI~

L.~ : • NULL; COUNTflt : • 1; Ll : •Li

Will LE -.IIUI.I.8(1.1) DO

lEG IN

IND

END

L2 1 • CONS 0 NSTRUCTION •• $<ADDRESS : • CAl (Lil I .
OP l : • ICOUNT91), L2l;

Ll 1 • CDR<LU; COUNTER : • COUNTER •I

(a)

cL: {c(l):lh; <(2):42>)>

(b)

eLl: () >

<La{< (1): 31>; <(2): 42>))

ciNSTIUCTION: (cOP I: ICAI(I.) •: <ADDRESS: l>l>
l

cJNSTRUCTION : (cOFl: ICAJ(CDP (LI) >i <ADDlliSS: 2>1 >
2

cL.2: (c(l)IIINSTRPCTION >i <(2l:liNSTRUCTION >)>
l 2

(C)

Figure 2. 12

Examples of the use of LIST functions

of their ariument lists. The reason for usina APEND and RVRS is their

greater efficlency,both tlmewise <no sequence of CARs and CDRs as io

APPEND> and spacewise (no new attributes are created). The ugumenu

of both APEND and RVRS should be either value-lists or ref-.:ences to

lists (but not NIL) or an error occurs.

The value of APEND is a value-list whose components art the

components of the first argument followed by the components (I the

second argument. The components of the second argument also follow

83

th~ components of all lists whose last component was the last

c~mponent nf the first argument. For example, figure 2. 13 shows the

res~' of executing the statement LS :• CONSC7,APEND(L,L4)) given the

attnbu:es in figure 2.l~.c and <L4: {<(1):6>}>, APEND should be used

witn extreme care s1nce it can form circular lists which can then

cause a process to enter an inf~nite loop.

-- LJ -- L _ Ll _ L4
l ___ l l __ l l_l '--'

I I I I
I I I I

___ I___ _I___ _I__ -'--
1 I I I I I I t
I 5 1··--·---·1 l 1········1 4 1--------1 6 • l _____ l I l ____ l I l ___ l I __ ,

1

- l.'i l __ l
I
t •

--'---
I 7
, __ ----- 1

I I
I I

_ L2 I
l_l I

I I
I I

-'-- I
I I I
I 2 1----
t _____ l

Figure 2. l::i

Effect of APE:-\0

The va!Je of RVRS ls a value-list wh~se components are in the

reverse or~er in which they were in the argument; the reversal

affects all lists to which this components belong. Figure 2.14 shows

the result of o:ecutirq~ Ll:" RVRS(L) given the

figure 2. llc.

-- L2 -- LJ _ L1 _ L
, __ I t_l l_l l_l

I l _____ l I
I I I

I _I_ _I_
I ; I t I t
I 2 1··-·-·-·1 4 1--------t 3 I , ___ , I __ , , __ I

Figure 2. 14

Effect of RVRS

84

attribute in

A list function will cause a passivation if any of its

arguments is & reference to an unaefined list.

2. 7. 3 MISCELLANEOUS FUNCTIONS

<MISCELLA~EOUS FUNCTIJSS> :: • ~EWISTEGER I
SELECTOR (<EXPRESSION>)
FIRST < <EXPRESSlO~h) I
:-iEXT (<EXPRESSION> :

The function :-:E~I~TEGER returns a different integer value for
each call on the function.

The argument of SELECTOR snould be a reference to an attribute
whose selector is defined, otherwise an error occurs. The value of
the function is an integer if the s~lector is an integer, otherwise

it is a title value. For example, given the attributes <A:S> and
<P:@A> the value of SELECTOR(P) is P and of SELECTOR(tPl) is A.

The argume~t of the fuuction FIRST should b~ & reference to a
construct, otherwise an errQr occurs. If the construct is undefined a
passivation occurs. The value of the function is a reference to the
compnn.ent FIRST <see section 2.3). If the construct is empty the
value of the functior. is ~IL.

The argument of the function NEXT should be a reference to an
attribute, otherwise an error occurs. If the referenced attribute ts
a component the value of ~EXT is a reference to the component that
follows the one referer.ced by the argu•ent; if the referenced

85

component 1s LAST then the value of NEXT 11 NIL. lf the referenced

attribute is a node attribute, the value of NEXT depends on the

implementation. <On MUTILATE, NEXT will return a reference to an.lther

attribute of the same node <or NIL)).

The block expression in fiaure 2.15 illustrates the use of

these functions. Given C, a const!uct, and P, a polnter, the block

expression returns the same value as PINDCC,,X).

IIGIN

P I• FllSTIC);

WMILI ~ULLI(Pl DO

IP SILICTOICIPJ) • U TIIEN GO TO EXIT ILSl P I• IIUT<lrJ)J

EXIT: I

lfl

END

Flaure 2. 15

Example of block expression

2.8 USER DEFINED FUNCTIONS AND PROCEDURES

The declaration of user defined functions and procedures

follows the syntax:

<PROCEDURE DESCRIPTIO~> ::• t I <PROCEDURE DECLARATION> I
<PROCEDURE DECLARATION> ; <PROCEDURE DESCRIPTION»

<PROCEDURE DECLARATION> ::• FU~CTION <FUNCTION IDENTIFIER>
<FOR~AL PARAMETER PART> ; <EXPRESSION>

PROCEDURE <PROCEDURE IOENTIFIER>
<FORMAL PARAMETER PART> ; <STATEMENT>

<FUNCTIO~ IDE~TIFIER> :: • <IDE~TIFIER>

<PROCEDURE IDENTIFIER>:: • <IDENtiFIER>

86

<FOR~1AL PARA~lETER PART> :: • E I (<FORMAL PARAMETERS>)

<FORMAL PARAMETERS> :: • <ATTRIBUTE IDE~TIFIER> I
<FOR~AL PARAMETERS> • <ATTRIBUTE IDENTIFIER>

A function or ~rocedure call is executed as follows:

(1) The actual parameters are evaluated from left to right.

(2) A node i~ created and attributes whc!e selectors are

the forQal parameters are attached tc ~t.

(3) Each acrual parameter CR-operar.d) is assigned to the

attribute whose selector is the :o~~espondlng formal

parameter CL-attribute). If tha number of formal and

actual parameters is not the same, an error occurs.

(4) The pr~~ess from wlch the call was made is passivated

and a process, corresponding to the body of the

function or procedure, is created and activated.

(5) Once the process is terminated the calling process ls

reactivated and if call was a function call the value

of the expression is returned.

All the node attributes used ln the procedure or function body

belong to the node associated with the procedure or function, thus

they must all be local. The procedure body is 1mpllc1tly parallel so

that the scope ~fall the labels declared in it is the body itself.

For example in fiaure 1. 6 the exponentiation could have been

declared as:

87

FUNCTION EXP <COUNTER>;
BEGI:-J

PRODUCT : • 1;
WHILE COUNTER > 0 DO
BEGIN

PRODUCT :• 2 *PRODUCT;
COUNTER : • COUNTER - J.

END;
PRODUCT

END;

The semantic rule cf production P2 would then be

S/ VALUECB) :• EXPCSCALE<B)) /$

2.9 OTHER STAT~tENTS

Besides the statements shown in 2.5, SPINDLE hal threft other

types of statements:

<STATEMENT> ::• <WRITE STAT~~E~7> I <ERROR STATEMENT> I
<DIS~~BIGUATION STATEMENT>

88

2. 9. 1 WRITE STATEME~T

The write stdtement is the means for Jutputina values 1n
SPINDLE. Its syntax is:

<WRITE STATE~1E:-1T> :: = <LABEL> : <WRITE STATEMENT> I
h'RI'!'E (<OUTPUT LIST>)

<OUTPUT Ll ST> :: • <OUTPUT ELE.\iE~T> I <OUTPUT LlST>

~oUTPUT ELE:'-1ENT> :: • <EXPRESSIO~> I I

<OUTPUT ELEMENT>

The statement is executed by evaluat1na, in sequence, from left
to right, each output element. ~he implementation of the system
guarantees that values that follow ~ne another in the output list
will follow one another in the prifited output, unless the eval~ation
of an output element causes a passivation. No passivation occurs if
the output element is an expression that references an undefined
attribute. The implementation also guarantees that an att~1bute
containing an undefined value is printed either when the value is
defined or when the computation terminates <no more active
processes>. The imple;nentation also guarantees that if the execution
of a write statement follows the execution of another write statement
(with other types of statements possibly beina executed 1n between),
the printed output of the former immediately follows the printed
output of the latter. ~o sec;ue11cing is possible amona the output
lists generated ~Y different pro~e~~es. In chapter 3 it can be seen
how this was implemented in MUTILATE.

Values are printed followina one another in the same output
line until the line is full. Once full, a line 1s ~r1nted and a new

89

on~ •s started. The control character "/" force5 the prlnt1na of the

line currentlY beina filled and starts a new one.

If the output eluent is an expreaalon, lt is iaplicitly

bracketed and the value returned deteraines what !s to be printed: if

the va.l~c is a ncn pointer value or NIL the value is printed;

otherwise the selector (if defined) and value of the reference~

attribute are printed.

Inte&ers are printed in left justified fora. Strinas are

printed without the surroundina double quotes. If the value of a

pointer attribute is not ~IL the selector of the referenced attribute

preceded by the character "'" is printed; otherwise NIL is printed.

Composite attributes are printed by printina each of its coaponents;

the components are separated by commas and the whole llst is enclosed

in parenthesis. Figure 2.16 shows a series of exaaples of write

statements and the resultina output. Notice that the coaponents of a

construct are printed in the same order .they are internally stored

<which depends on the imp1ementatlon).

2. 9. 1. 1 FORMATED OUTPUT

Constructs can be printed in a "nicer" way than described

above, if they have a foraat attribute as a coaponent. Foraat

attributes are title attributes whose selector is FORMAT and whose

••al ue is a format identifier. 'l"he construet to wbieh the format

attribute belonas is printed accordina to tbe foraat associated with

t~e foraat identifier. Poraats are associated with foraat lden~1f1ers

90

STATE14EHT:

IlliTE I "VALliE IS .•, ~:5(6, CONS!•, CONSU, I.IST(0)))))

OUTPUT:

VALUE IS •(6, •, l, C))

STATQIENT:

I/ I I • 3; I I • ITITI.£1

C : • S !A : • J; 11 I• I;

waiTE II, c, ll II

OUTPUT:

I• TITU C• lll• TITLE, Cl• (TYPI• lhTIGEI, liND• WAY>, A• :n

I• 3

Figure 2. 16

Examples of output statements

by means of declarations. Format attributes are attached to

constructs by m~ans of fotmat assignments. A foraat &ssianment is a

form of co111ponent assignment. Its syntax 1s:

<C0~1PONE:\T ASSIGt\~ENT> :: • <FOR~1AT ASSIGNMENT>

<.FORMAT ASS I ;.il\!-oli~T > : : • FOR~AT : • c FORMAT 1 DENT I PIER>

Formats can also be attachea as any other component. For

example, the three following statements have exactly the same effect:

C: • $ CFOR!>1AT : • F3)
C: • S CFOR~1AT : .. I fl)
C. FORMAT: .. I Fl

The syntax for format declaration is:

91

<FORMAT DESCRIPTION> ::•' I FORMATS ARE <FORMAT DESCRIPTION LIST>
<FORMAT DESCRIPTION LIST> ::• <FORMAT DECLARATION> I

<FO~~T DECLARATION>
<FORMAT DESCRIPTION LIST>

<FORMAT DECLARATION> ::• <FORMAT IDENTIFIER> •
(<FORMAT ELEMENT LIST>)

<FOa~AT IDENTIFIER> ::• <IDENTIFIER>

<FORMAT ELE~E~T LIST> ::• <FO&~AT ELEMENT>
' <FO~~AT EL~~ENT> <FORMAT ELEMENT LIST>

<FO~~AT ELE~ENT> :; • I I <ATTRIBUTE IDENTIFIER> ! <STRING>

An example of a format declaration is:

F4a <OPER, "<':. OPl, "t ". OP2, ")"tIt "GO-TO(" I LABEL,")")

The format controls the printina by executing in succession,
from left to riaht, each of the fermat eleaents; if the for .. t

el-ement is a strina the string is printed. If it is a "1", the 11ne
' being filled is printed; if lt is an attrib•tte identifier, the value

of the component whose selector is the identifier is printed; if no

such compon~nt exists nothina is printed. The selector of the

composite attribute to which the format attribute belonas is not

printed. As an example, with F4 declared as above, tht parallel

statement

Sl C: • S (OPER: • "ADD"; OPl :• 1; OP2 :• S;
TYPE: • "RR"; FO&~T :• F4; LABBL :• "BXIT");

~RITE (C) /$

will print

ADDC1,5)
GO-TO(EXJT)

92

/
I

The same statement ~ithout the foraat ass1gnaent would print

C• <OPER • ADD, OP2 • S, OPl • 1, LABEL • EXIT, TYPE • Ri)

2. 9. 2 ER.RO.R STATE.\1E!\'T

The error statement is one of the means by which malforme~

strings are detected in SPINDLL Its syntax 1s:

<ERROR STAT~~ENT> ::• ERROR (<OUTPUT LIST>) I
<LABEL> : <ERROR STATEMENT>

The error statemP.nt prints the output list and then passivates

all active processes, endi~g the computation.
I

The defini t1on in figure 2. 17 shows an example of the use of

the error statement. Given a base, a sian and an integer number in

this base <represented by a string of inteaers), the definition will

out~ut the decimal valu~ of the number. Notice that if the base is

greater than 9 or if the number contains an 1mp1oper d1&1t the strina

1 s mal formed.

TUM I NALS AlE • -

AnliBUTES AlE
VALUE o INTfGEl
SCALE o INT£GEI
IAU • INTEGER
COUNTER • INTEGEJ
PIODUCT • INTEr.ER
NEGATIVE • toOLEAN

ltn'IGDS AlE NU WITH ATTIIIUTii VALUE

NDNTEUiiNALS ARE
N o S <VAL'IEl
L • S (VALUE I, I I SCALE>
S • S<NEGATIVE)

STAIT SYMBOL N

FUNCTION EXPCIASE, COUNTEl,VALUEl
IECIN

IF VALUE ;a BASE THEN
EIROR (VALUE, " IS NOT VALID FUl ~EIS IASE"0 1ASill
PIODUCT : • 1;
WILE COUNTEI > 0 DO
IECIN

PRODUCT 1 • PRODUCT • USE;
COUNTEI 1 • COUNTEI -I

1110;
PIOOUCT • VALUE

END

IPl L II • NV
$/VALUE ILl 1 • IXPCIASE ILl, SCALI ILl, VALUE 0111) l IS

IP2 L ::• L NU
., V.LUE(L) IO VALUE<L•> •

EliPCIASE ILl, SCALEIL), YALUIOOI)) II
II SCALICL•l 1 • SCAUCL) • I II

IP, N 1:• NV S L
I/ SCALE<Ll :• 0 /S
I/ IASIILl I• VALUECNUl /I
I/ IF VALUICNU) > 9 THEN

EllOR IYALUECNUl, "IS NOr A PIDPII IASI")I
VALUIOO : • If NEGATIVE IS) TKEN ~VALUICL) WI V.U.UIU.)I
IlliTE ("VALUE I s•, VALUE (N)) /S '

IP4 S II• o ,
I/ NEGATJVI(Sl I• fALSI /1

IPSSII•-:
I/ NECATIVICSl I• TIUI II

Pigure 2. 17

Definition ~&ing the error atateaent

94

2. 9. 3 DISA~IBIGUATIOX STA'!"E.\1E~T

The disa~biguation statement

ambiauities in SPI~DLE. :ts syntax is:

is the means for handling

<DIS~~BJGUATION STATE.\1E~T> ::• <LABEL>: <DIS~\1BIGUATION STATE.~ENT>
DA~IB (<EXPRESSION> ~ <NODE> >

<NODE>:: • <INTEGER> I <NO~TE&\1I~AL IDENTIFIER>

Every process is associated with a non:erminal node of the

parsing tree called the process's node. For function and procedure

bodies this node is the node associated wlth the calling process. An

ambiguous node sprouts more than one parsing subtree. An ambiguous

node is disambiguated if one and only one of its subtrees is correct.

The function of tbe disambiguation statement, as the name

implies, is to checl for correct par sings. The expression in the

first operand is implicitly bracketed and ret~~ns a boolean value <or

an error occurs). If the value is TRl!~ the subtree to which the

current node belongs and whose root is the n~de designated by the

second operand is the correct parsing; if it is FALSE, it is an

incorrect one. If the second operand is an integer the designated

th
node is the 1 ambiguous node in the ancestor line of the process's

node, starting with the process's node itself. For example, if the

process's node is ambiguous, a "1" for the second operand re!ers to

the process's node and a "2" to its first ambiguous ancestor. If the

integer in the second operand designates a nonexistent ambiguous node

an error occurs. If the second operand is a nonterminal identifier,

tbe designated node is the first ambiguous node in the ancestor line,

95

startina with the process's node, that is labelled by the identifier;
if no such node exists an error occurs.

The synthesized attributes of an aabiauous node can only be
assianed values after the node is disambiauated; processes tryin& to
assian values to the node before disaabiauation are passivated. If a
subtree is found incorrect it is discarded toaether with all its
attributes and processes. If a subtree is found correct; it is kept.
After all parsinas of a node have been checked, if aore than OaAe
correct parsing is found an error occurs; if only one is correct, the
node is disambi&uated and all passivated processes tryina to asslan
to its synthesized attributes are reactivated. If no parsina ls
correct then:

(1) if the amb1auous n~de has no aabiauous ancestor an

error occurs:

(2) if it has aabiauous ancestors the subtree attached to

the nearest ancestor that contains this node is .. rked

incorrect.

Notice that if an awbiauou$ node is not detected or if one of
the possible subtrees of an ambiguous node is not recoantzed as such,
the processes trying to assian to the synthesized attributes of the
node will be passivated and will never tera1n&te.

The use of the disambiguation stateaent is illustrated in
section 2. 12 wben the definition of TURINGOL is discussed.

96

2. 10 S E~lAXT I C RULES

As explained in Chapter 1, a set of semanti~ rules is

associated with each syntactic production. The ~e .. ntic rules

operate on the attributes of the nodes involved in the production.

Certain semantic rules are implied, 1.~ they do not have to be

explicitly stated, being automatically aener~te~ by the system. It is

a characteristic of this method of semantic definition that the

semantic rules of a production can only assian to the synthesized

attributes of the LH~. the inherited attributes of the RHNs and to

local attributes. It is an error to assian to an inherited attribute

of the Ltt~ or a synthesized attribute of a RHN. SPINDLE introduces

the restriction that no inherited or synthesized attribute of a node

can appear in the left hand side of an assignment statement more than

once in the semantic rules associated with a production; if this

happens, an error oc~urs. For example, in prc~uction PS of fiaure

1. 6, 1 t would be an error to write

IF NEGATIVE<S> THE~ VALUE CX) :• -VALUE (L)
ELSE VALUE (N) : • VALUE (L);

and 1t would also be wrona to ~rite

Sl !F ~EGATJVE<S> THE~ VALUE <~> :• VA~UE (L) IS
$1 lF ~NEGATJVECS) THE~ VALUE (X) :• VALUE (L) IS

Implicit semantic rules are always of the form A<NT > • ACNT >
1 2

where A is an attri"'•·te and ~T and NT nontenainals on opposite
1 2

sides of a production. Given the production

97

L::•RR ••• R .•• R
1 2 i n

if an inherited attribute I, belonging to R , does not appear as a
i

left hand side of any assignment in the associate~ semantic rules,

and if I also belongs to L, the rule ICR) :• I<L> is automatically
i

generated; if I is not an attribute of L an error occurs. If a

synthesized attribute S of L does not appear as a left hand si~e of

any assignment in any of the associated semantic rules, and if S is

an attribute of R the semantic rule S (L) : • S <R) is generated; if S
1 i

is an attribute of more than one RH~ or of none of them, an error

occurs.

Semantic rules are oraan1~ed into parallel statements. semantic

rules whose values depend on one another, have to be either in

different parallel statements ?r, in a sequence of statements, the

dependent one has to come after the one it depends on. For instance,

the semantic rules of production P4 in figure 1.6 coul~ have been

written as

$1 SCALE (L•> :• SCALE <L> + 1;
VALUE (L) : • VALUE (L•} + VALUE (8) /$

However, if the order of the statements in this parallel

statement were reversed, the process would never terminate. Therefore

separate parallel statements should ordinarily be used for each

attribute.

Productions and their associated semantic rules are described

by the following syntax:

98

<PRODUCTION DESCRIPTION> :: • <PRODUCTION> I
<PRODUCTION> <PRODUCTION DESCRIPTION>

<PRODUCTION> ::a$ <LABEL> <SY~TACTIC PRODUCTION> <SEMANTIC RULES>

<SE~1ANTIC RULES> :: • t I <PARALLEL STATEMENT LIST>

<PARALLEL STAT~~EXT LIST> ::• <PARALLEL STATa1ENT> I
<PARALLEL STAT&~ENT> <PARALLEL STATEMENT LIST>

2.11 WRITI~G AND RU~~~~G A SPINDLE PROGRAM

The prevloub s~ctions described the components of a SPINDLE

program. This section shows how a program 1s put together and how it

runs as a whole. The syntax of a SPI~DLE program is:

<SPINDLE PROGI\A~l> :: • <SPECIAL CHARACTER DECLARATION>
<RESERVED KORD DECLARATION>
<ATTRIBUTE DESCRIPTION>
< S-TER~1I XALS >
< l\O:\TER~1 I :\AL DESCRIPTION>
<START SnlBOL DECLARATION>
<PROCEDURE DESCRIPTIO~>
<PRODUCTION DESCRIPTION>

Given a string of the language, a parse tree is built from the

syntactic part of the definition. In the tree, aabiauous nodes have

more than one subtree sprouting from them; S-terminal nodes have the

r.orresponding attribute with the proper value filled in; nonterminal

nodes have undefined attributes that correspond to the attribute

identifiers associated with the nonterminal. Each nonterm1nal node is

associated with a set of parallel statements. For each parallel

fitateaent a process is created and activated. The execution ot a

process may create and activate other processes. A process aay be

passivated by the existen~e of a certain condition (e.a ar. undefined

value>; it is reactivated if and when the condition disappears. A

process runs until it either passivates or terainates. The

computation ends when there are no more active processes in the

system. A c~mputation that ends with no passive processes is said to

be well-formed. If a computation is well-foraed the followina are all

true:

- all ambiguities have been resolved and each node sprouts at

most one subtree;

- all inherited and synthesized attributPs ar~ defined.

If a computation is malformed 4 list of passive processes is printed,

showing the cause and location of the passivation. Notice that

errors, unresolved ambi&uitles and circularities will all result in

passivated processes.

2.12 THE DEFINITION OF TURI~GOL

TURINGO~ ls a simple lanauaae that describes Turin& machine

programs. It was introduced, 1n a sli&htly different version, in

Knuth fKn 68al. The following example aives the flavor of the

language: 1t is a pro,ram desianed to add unity to the binary inteaer

that ·~pears just left of the initially scanned square:

100

TAPE ALPHABET IS BLA~K; ONE; ZERO; POINTi
PRI~T 'POI~T'i
GO TO CARRY;
TES'r: IF THE TAPE SYMBOL IS 'C~E' THES

(I'RI~T 'ZERO';
CARRY: MOVE LEFT ONE SQUARF.; GO TO TEST);

PRINT '01\E';
REALlGN: MOVE RIGHT O~E SQUARE;
IF THE TAPE SYMBOL IS 'ZERO' THE~ GO TO REALIGN.

The sp;·~oLE pro~ra111 1n APrEXDIX : defines tne lanauaae. G1.-en a

well-formed :;tr1ni of tURl~GCl., it will print its translation in

TL/L TL/1 \~&s introduced in Knuth (Kn 71], and 1s a machine-like

language consisting essentially ot sequential instructions whose

operation codes are PRIXT, MOVE, IF, JUMP and STOP. For example, for

the TURI~GOL program shown above, the SPINDLE program would print:

1: PRINT, 4)
2: JUMP, 5)

' 3: 1F,2,7) \

(4: PRl:\T, 3)
(S: !-lOVE, LEFT)
(6: JU~tP, 3)
(7: PRINT, 2)
(8: MOVE, RIGHT)
(9: 1 F, 3, 11>
(10: JUMP, 8)
(11: STOP)

The difference between th~s version ot TURlNCOL and Knuth's

original prcpo~~l is that, due to the introduction of empty

declarations ana the existence of e~pty statements. this version is

ambiguous. ror instance there are two possible parsinas for the

prograa:

TAPE ALPHABET IS A;; PRINT 'A',

101

The modification was introduced to show how the disaabi&uation

statement works. Notice that all pars1nas alve the same meanina;
however, since only one can be the correct one the definition states

that: if the last declaration 1s empty the parsina is ambiauous and
incorrect; if the first statement 1s empty but the last declaration

is not the parsina is ambiguous and correct; otherwise the parsing is

not ambiguous. This is an arbitrary choice Imposed by SPINDLE's

restriction that only one of the subtrees of an ambiauous node can be

correct. The attribute EMPTY reatsters the existence of an empty last
declaration or first statement. The disambiauation decision is made
in the production for P because of the way the attributes were chosen

and not because P is the possibly ambiauous node. By us1na an
inherited attribute the information about the declaration being empty

could be passed down the tree and then the d1samb1&uation decision
could be taken at some other node.

The binding of labels to addresses deserves a closer
examination since essentially the same technique is used in the

definition of SIMULA in Chapter 4. The present scheme is different

from the one used by Knuth. The object proaramm 08JPROG is a list of

instructions and pseudo-instructions. A label aenerates a pseudo­

instruction that is placed in front of the labelled instruction. The
pseudo-instruction has a component TAG to which is assianed a unique

integer, the label-value. This label-value stands tor the label;

references to the labelled lnstructio~ are handled by assigning the
label-value to a LABEL component. After CBJPROG <P> is defined the

procedure OUTPUT builds a table th4t assoc1ates each label with an
address and substitutes in the component LABEL of an instruction the

label-value by the corresponding address. It should be noted that the

102

building of the table MAP and the assignaent of addresses tc t.he~

LABEL components could not be done in one pass without the use of the

procedure PLACE with a parallel statement for procedure body.

A fact that should be noted is that the definition states that

TURI~GOL programs containing undeclared identifiers are malformed,

since a process trying to access the ide.ntlfier in ENV will never

terminate; however no explicit error messaae is printed. This way of

indicating malformed programs while not wrong is not good programming

practice: selll&ntic errors should be exp11c1tly stated. In the

TURINGOL definition this could be accomplished by adding to the

productions P21, P22, P23, P24 and P31 the parallel state~ent

i/ IF NULLR <Fi~D <FIND (E~VlSJ, ISPlSlGMAJ)), SYMBOL)) THEN
ERROR (SP (SIGMA), "HAS ~OT BEEN DECLARED") /S

and to P32 the sam~ statement but with LABEL in place of SYMBOL.

It should be also noted that the printed output is an aspect of

the meaning, not the whole meaning of the program si~ce only part of

OBJPR~G is printed. However, since it can be presumed that the output

reflects the essential as~ects of the meaning, it is convenient to

define the meaning associated by a SPINDLE rlef1n1t1on with a string,

as the printed output resulting from inputting the string.

Finally, it should be noted that since the application of the

functions APESD and JOINE change the values of attributes lower in

the tree, the final decorated tree ~oes not correspond to the

definition; the values of the attributes are not as st~ted ln the

definition. This can be avoided by usina the 1 operator to copy at

every st~ge. However, since one is only interested in the attributes

of P, there is no harm in alterin& the ~alues of the attributes of

the other nodes of the parse tree.

103

CHAPTER 3

MUTILATE

This chapter describes the

essentially a terse description of

FOLDS

the

~~&chine MUTILATE. It is

relevant

machine implementation; the general conce~ts involved

in the preceding chapters.

asi)et t s of the

were explained

MUTILATE is compos~d of two independent parts:

comprises the parser and lexical analyz~r; the

interpreter. The first part reads in a string S and, if S

the first

second the

belongs to

the defined language, outputs a set {PT(S)). The second part reads in

(PT(S)} and, if s is well-formed and the definition is well-formed,

selects a PT<S> from tl1e set and produces DPT<S>. The main reason for

this two level ~esi~n is the particular nature of Earley's parsing

algorithm [Ea 681. which is used 1n the parser for the reasons

explained in Chapter 1. In Earley's scheme, the parsing of a string

s is paced by the elements E of th~ string; i.e, the parsing develops

by scanning th~ string from left to right and for each E building all

possible partial parsing trees up to E. The treet are bwilt in an

extremely compact fashion with no duplication of nodes; 1. e., a

subtree representing the parsing of a substring co•mon to two or more

parslngs is shared by the trees represeuina the pars1n&S. Whil.e the

parsing usually proceeds in 4 top down fashion, the parsing of left

recursions is bottom up. It is difficult to recognize, at midparsin&,

subtrees that belong to the final parsing tree. While the parsing

104

usually proceeds from top to bottom, the subtrees are built on the

way up. The combination of these ~~araeteristics aakes the fillina in

oi the semantics, while the parslna is aoina on, quite complicated.

Thus it was decided that the advantaaes aained by developing the

syntax and semantics at the same time would be offset by the

complexity of the mechanisms necessary to carry out the task; it was

considered more profitable, in a first staae, to develop the ~~o

tasks separately. This facilitated the development of the aechan1sms

for decorat1na the parse tree which was the aain job at hand. Perhaps

now that the semantic mechanisms are well understood, a one level

process could be developed; but the complications are much more

substantial then one would auess at first.

3. 1 LEXICAL ANALYZER AND PARSER

The parser in MUTILATE is a straightforward implementation of

Fisher's [Fi 701 version of Earley's alaoritha, aodified to accept

empty substrings; the modification is a simple extension of the

original al2orithm. A table is used to speed up the parsina: it

relates to each nonterminal the set of all the terminals that can be

"seen" from the nonterminal. A terminal is seen from a nonterainal if

either the terminal can be the first one in a strina derived froa the

nonterm1nal or if there 1s a str1na of the lanauaae in which an empty

substrina that is followed by the terminal is derived from the

non terminal.

lOS

For each element of tne string scanned, the parser cal~s the

lexical analyzer. As described in Chapter 1 the analyzer recognizes

special characters, reserved words, ALGOL-like identifiers, integers,

and strings enclosed in double quotes, using blanks as separato~s. lt

also skips comments <beiin~ing with the reserved word COMMENT and

finishing with a semicolon> and an identifier following the reserved

word END. When called, the lexical analyzer returns a token that

identifies the recognized element; if the element is an 5-terminal,

it also returns the value to be assigned to the attribute associated

with the node in the tree.

The parse tree is constituted of nonterminal and S-terminal

nodes, organized as a left linked binary tree CKn 68b]. Terminal

nodes are ignored because they have no semantic consequence. A

nonterminal node is divided into the fields SON, BROTHER, AMBIGUOUS,

PRODUCTION and SELECTOR. so~: contains a pointer to its rightmost son

(that is not a terminal). BROTHER contains a pointer to its left

brother. If the node is ambiguous, AMBIGUOUS points to another

version of the same node (with a different subtree sprouting from

it). PRODUCTIO~ contains the label of the production associated

with the node. SELECTOR contains the nonterminal identifier that

labels the node. An S-terminal node 1~ divided into the fields

BROTHER, VALUE and SELECTOR. BROTHER is the s&~e as for nonterminal,

VALUE contains the value t0 be assigned to the attribute associated

w1th the S-terminal and SELECTOR contBins the S-terminal identifier

that labels the node.

As an example, appen~ix 2 shows a TURINGOL program (the one

presented in 2. 12, with an empty declaration inserted) and the

parsina tree aenerated from it.

106

Notice that comaon subtrees belonging to alternative ~•biauous

parsings are represented by a unique subtreej i.e, in an a•blauous

subtree a node II&Y belong to more than one' parslna •.

3. 2 I t\TERPRETER

The interpreter is a multiple stack machine with four types of

storage: byte artdressed, linked, table and string. The byte addressed

memory contains the instructions, the format descriptors and the

nonterm1nal descriptors (a list of the symbol table entries for the

attributes associated with a nonterm1nal). The linked storage

contains nodes, attributes, stacks, etc., and is managed by an

underlying garbage collection mechanism. The table storage contains a

symbol table; there is one entry for each identifier (nonterminal, S­

terminal, attribute or format), S-1dent1fier and string in the

definition of the language. f11e table also contains the S-identiflers

and strings recognized by tae parser. Each entry consists of a

pointer to the spelling of the title in string storaae, plus

information about the "kind" of the entry (either attribute,

nonterminal, s-terminal, format, S-ldentlfier or string), If the

entry corresponds to a nonterminal or a lonat, it contains the

address of the respective description 1n byte addressed storaaei if

it corresponds to an S-terminal, it contains tbe symbol table address
f

of the attribute associated with iti lf it c~rresponds to an

attribute, it contains the type and undertype of the attribute. In

MUTILATE, a title value is represented by the address of its symbol

table entry.

107

A MUTILATE segment is a sequence of MUTILATE instru~tlons

occupyins contiguou! positions in byte addressed storage; the address

of a segment is tne address of its first instruction. Each segment

in storage corresponds to a parallel statement, procedure or function

in the SPI~DLE definition. A process is a dynamic instance of a

segment and it is associated with a stack and a node. To execute a

process is to interpret the instructions of its segment, starting

with the first one: the instructions operate on the associated stack

and the attributes of the associated node and its direct descendants.

A process is represented by an element of lihked storage called a

Process Stat~s Word CPSW) divided into the fields HEAD, STACK,

VERSION, I D, LOC, and LI:-JK. HEAD and STACK contain pointers to the

associated no1e and stack respectively. VERSION and ID are used for

disambiguation purposes; VERSION contains an integer and ID a

pointer. LOC contains the address of an instruction: either the

address of the segment or the address of an instruction that caused

the passivation of the process. LINK contain a a pointer and 1 s used

to link PSW's toaether in various lists as described below.

The interpreter operates in a pseudo parallel fashion with

exactly one of the active processes (called the current process)

being executed at any time; the register CURRENT points to its PSW.

The PSWs of the rema1nin; active processes are organized as a stack,

called the PROCESS stack; the register PROCESS points to the top

el~ment of the stack. When the current process terminates its PSW is

discarded; when it passlvates, its PSW is transferred somewhere else.

When a process is first activated, a PSW is created with its

segment's address in the LOC field. When a proces~ is reactivated it&

PSW is transferred to the PROCESS stack; the PSW's LOC field contains

the address of the instruction that caused the passivation.

108

When the current process terminates or passivates, the one

whose PSW is at the top of the stack is made current; CURRENT points

to the PSW, which is removed from PROCESS. The MUTILATE registers

LOC, HEAD and A are loaded with the contents of LOCCCURRENT),

HEAD (CURRENT) , and STACK (CURUNT) respec t1 ve 1)'. The MUTILATE

register is t!1en loaded with a pointer to the second element f)f the

stack Cif &ny). The process is then executed usina the stack

referenced bt A and the node <and its direct descendants) referenced

by HEAD. When a process passlvates, the interpreter immediately

stores the contents of LOC and A in LOC(CURRENT) and STACKCCURRENT)

respectively and remcves its PSW from CURRENT. In MANAGEMENT mode,

the interpreter will make another process carrent. While a process

is being eYecuted the interpreter is in EXECUTE mode. When a process

lS ~erminated, the PSW pointed to by CURRENT is discarded and the

interpreter switches to MANAGEMENT mode.

An attribute is represented as an element of linked storage

divided into the fields TYPE, UNDERTHE, SELECTOR, UND, JND, \'ALUE

and LINK. TYPE and U~DERTYPE contain respectively the type and

under type &ssociated with the attribute. SELECTOR contains the

selector: if 1~ is an inteaer, its neaatlve value is stored; if it is

a title, the address of its symbol table entry is stored. UND is a

bit; if its value is 1, the attribute is undefined. Associated with

every undefined attribute is a linked list formed by the PSWs of the

processes passivated trying to access its value. The list is

organized as a stack <using the LINK fields of the PSWs) and is

~alled the interrupt stack. In an undefined attribute, VALUE contains

a pointer to the associated interrupt stack. If the value of the bit

field IND is 1, the attribute is indirect and VALUE contains a

109

pointer to another attribute. An attribute cannot be both undefined
and indirect, thus Ul\'D and I~D cannot both be 1. rf UNO and IND are
both 0, VALUE contains the value of the attribute. If the attribute
is elementary the field contains a value Df the proper type. If the
attribute is composite, its components form a linear list (using the
LINK field) and VALUE contains a pointer to the first element of the
linear list. If the attribute is of type LIST the components are
ordered according to their position in the list; i.e, given a list
attribute A, the first element in the linear list formed bY the
components is CAR <A>, the second CAR (COR (A)) and sc on. If the
attribute is of type CO~STRUCT the linear list is ordered in
ascending order of the values of the SELECTOR field of the
components. As a consequence a component whose se~ector is an
integer always precedes a component whose selector is a title; a
component whose selector is N Ca positive inteaer> always follows a
component whose selector is K+k <where k is a positive integer),
because -Nand -CN+k) are actually stored.

The processes' stacks are formed by attributes and PSWs linked
through the PSWs' Lil\'K fields. The attributes in the stack are always
defined, direct and have an undefined SELECTOR field. The presence
of a PSW in the stack indicates, as will be seen in section 3. 3, tl.at
the stack is associated with a process which is a dynamic instance of
a procedure or a function.

Nodes are represented as an element of linked storage divided
into the fields SON, LEFTS, VALUE, SELECTOR, S-TERM, SEMANTICS, AMB,
AMBIGUOUS, O~CE, CORRECT and DISAMB. SON contains a pointer to the
rightmost direct descendant of the node. LEFTB contains a pointer to
the sibling to the left of the node in the tree. The attributes

110

belonging to the node are oraani:ed as the coaponents of a construct,

and VALUE points to the first attribute in the linear list. SELECTOR

contains the symbol table address of the entry that corresponds to

the n~nterminal or S-terminal identifier that labels the node.

SE~ANTICS is the address of the segment associated with the node.

Only one segment is associated with a node; if the SPINDLE definition

specifies more than one parallel statement for a node, the compiler

encloses them in a parallel statement which is then the one

associated with the node. For example, if the seaantic rules of a

production are embodied in the exrticit parallel statements PST and
1

PST and the implicit parallel statement PST, the compiler will
2 3

associate with the production the segment generated for the parall~l

statement S/ PST ; PST ; PST /$, AMB is a bit and if its value is 1
1 2 3

the node is ambiguous. In this case the field AMBIG~~us containf a

pointer to another version of the ambiguous node; otherwise AMBIGUOUS

points to the node's nearest ambiguous ancestor. If the value of the

bit feld ONCE is 1 the node is ambiguous, and the subtree sprouting

from it has been tested. If the value of the bit field CORRECT is 1,

the nod(is ambiguous and the subtree has been tested and found

correct. If the value of the bit field DISAMB is 1 the node is

ambiguous but has been found to have only one correct subtree which

is the one sprouting from the noae.

Notice that an ambiguous node is represented by a set of ~odes,

chained through the A~BIGUOUS field. The node at the head of the

chain is called the (main) ambiguous node; the others are called

versions of the node. In particular, the 'econd node in the chain is

called the auxiliary node of the main one. Only the aain ambiguous

111

node belongs to the tree in the sense that ancestors and siblings
point to it and not to its versions.

The interpreter initiates a run by loading the definition
generated by the compiler into the various storages ar.d building the
tree produced by the parser in the linked storage. At the sawe time,
A.\16TABLE is built in the table storage; it associates an integer
value (initially zero) with each main ambtguous node. AMBTABLE is

used to purge from PROCESS those PSWs created while testing a subtree
of an ambi~uous node, once the testing is complete. contrary to what
was stated in Chapter 1, initially the nonterminal tree nodes have no
attributes attached to them; attributes are created "on demtnd", ty
the execution of instructions. The tree is traversed depth-first,
left to right, using a function and stack cs.lled DEVELOP. The stack
contains pointers to the nodes of the tree; initially the stack
contains a pointer to the root node. ~hen uEVELOP 1s called it
returns as a value, the pointer at the top of the stack; it also
removes the top elemnt of the stack ar.d inserts pointers to the
descendants of the node referenced by the re~oved pointer. A call to
DEVELOP when the stack is empty end~ the run. When the node
referenced by the value returned by DEVELOP, called the developing
node, is ambiguous, a regist<er AAM~ is set to point to the node;
otherwise AAMB is not touch~d. Then, each of the direct descendents D
of the developing node is examined: if UNDCD> ., 0, set
AMBJGUOUS<D> ~ A~~B; otherwise set VALUE<AMBIGUOUS(D)) ~ AAMB. This
establishes the ancestor line of ambiguous nodes; each node points to
1 ts nearest ambiguous ancestor. It the node is not 1 tself ambiguous
the linking is done through the ~IBIGUOUS !ield; otherwise through
the value field of its auxiliary node. Initially the value of AAMB is

NIL.

112

DEVE!.OP is called whenever the PROCESS stack is eapty; it

returns a pointer to the developing node. A PS~ is then created,

(which is a dynamic instance of the segaent asr~~l&ted with the

node>, inserted 1n PROCESS and the run goes on. I~1 the PSW, HEAD

points to the node, STACK ls ~IL, and LOC cont4!~s the address of the

associated segment obtained from the S~~ANTICS field of the node. If

the node is ambiguous ID is set to point to it, otherwise it is set

to the same value •s the field ~~BIGUOUS of the node. VERSION is set

to the same valut as the entry in ~~STABLE corresponding to the

po!nter in 10.

W~en a PS~ gets to the top of PROCESS, its VERSION and ID field

are examined. If the value in VERSION is less than the value in

~1BTABLE corresponding to the value in IO, the PSW is r~moved from

the stack and discarded.

In additlon to the tables mentioned above, the interpreter

maintains a table, INTABL~ whose entries point to undefined nodes

and main ambigu.,iJ<; nodes for which DISAMB•O. At the en<1 of a run, if

JNTABLE is

purposes.

n
~ ..
"'- empty, its contents are printed for diagnostic

3. 3 THE JNSTRUCTIO~ SET OF MUTILATE

This section describes the instruction set of MUTILATE,

basically a "Polish postfix" code analogous to Burroughs computers.

The instructions are grouped according to their functions and a brief

description of each one is presented. The description of their

113

execution by the interpreter follows the lines ~sed by Knuth (Kn 68al

to describe algorithms. The definiti~n of TURtNGOL in MUTILATE

assembly language, sho,~n in appendix 3, illustrates the use of the

ins truct1ons.

In addition to the registers ment1on.ed in the previous sections

(A, B, LOG, HEAD, and STACK), MUTILATE possesses resisters X, Y, Z,

OPCODE, OPl, and OP2. Here X, Y and Z are general purpose registers,

OPCODE contains the de~ig~ation of the instruction beina. executed and

OPl and OP2 its operands (if any>.

The description of the executions utilizes an auxiliary

procedure and an auxiliary function. The procedure, called PASSIVATE,

takes one argument, a pointer to an undefined attribute U; when

executed the procedure passivates the current processs, inserts its

PSW into the interrupt stack of U and switches the interpreter to

MA~AGEME~T mode. The function, called FINAL, takes one argument, a

pointer P to an attribute I; its execution can be described by the

algorithm:

1. If J~D(P) .. Q return P.

2. Set P +- LJ ~K <P> and go to 1.

The function returns the final attribute of 1.

For instructions that do not belona to the "control" group (see

section 3.3. 4), when the execution 1s completed the instruction's

length is added to the reaister LOG; notice t1at an instruction that

causes a passivation does not complete 1 ts execution. For all

instructions, when the machine is in EXECUTE mode, the next

instruction to be executed is the one whose address is in LOC.

Section 3. 3.8 contains an index with the opcodes of MUTILATE

crossreferenced to the section number thst explain them.

114

:s. 3. 1 CONSTRUCT ~~A~IPUl.ATJO~ ISSTRUCTIONS

3.3.1.1 PLA & GET (Place and Get)

OPERANDS- OPl is either an attribute identifier or empty;

either a node des1gnation or empty. If OP1 1:; empty so

OP2 is

1s OP2

but the reverse .ay not be true.

STACK- If OP2 is not empty the stack does not matter. If OP1 is not

empty but 0~~ is, ~ is a pointer to a construct. If both OP1

and OP2 are empty A is either a title or an integer an~ B is a

pointer to a construct.

DESCRIPTION- The instructions look for attributes 1n either a node or

a construct, creat~ them it they are not present and leave a

pointer in the stack to the looked for &ttribute. A PLA

instruction looking for a component in an undefined attribute

will create a new attribute; under the same circunstances a

GET instruction would cause a passivation. A PLA instruction

looking for an attribute in an ambiguous node causes a

passivation while a GET does not. Under all other

circunstances, the two instructions behave in exactly the sam

way.

EXECUTION-

1. If OP2 1 s empty go to s. Set X ~ "pointer to the node

designated by OP2". If AMB·l and DIS~B·O and OPCODE•PLA,

passivate the current process and discard its PSW.

115

2. Insert an attribute in the stack. Set TYPE<A> ~ POINTER.

3. Look for the attribute whose selector is OP1, amana the

attributes of the node X; 1f the attribute is there, set

VALUE(A) to point to it and END.

4. Create an attribute with the type and undertype associated

with OPl and set Y to point to it; set UND<Y> ~ 1,

VALUE<A> ~ Y; make the attribute Y part of the linked list

formed by the other attributes of the node X; END.

S. If OPl is empt~ set X ~ FINAL(VALUE(B)); otherwise set

X p FINAL<VALUE(A}), If UXD(X)•l and OPCODE•PLA transfer

the interrupt stack of X to PROCESS.

6. If OPl is empty, set Z ~ VALUECA> and remove A from the

stack; otherwise set Z ~ OPl.

7. Look for the attribute whose selector is Z, among the

components of X: if the attribute is there, set VALUECA> to

point to 1 t and E~D.

8. Create an attribute. If Z is an attribute identifier the

attribute has the type and undertype associated with Z;

otherwise the undertype of X determines the type and

undertype. Set Y to point to the attribute, UNDCY> ~ 1,

VALUE(A) ~ Y; make the attribute Y part of the linked list

formed by the other components o~ :he attribute X.

9. END.

116

3. 3. 1. 2. PLAN <Place New>

OPERANDS- OPt, an attribute identtfier.

DESCRIPTION- This instruction creates a new attribute and leaves a

pointer to it at the top of the stack. It is use~ to i•pleaent

SPINDLE's assia~aent expression,

EXECUTION-

I. Insert a new eleaent in the stack; set TYPECA) ~ POINTER.

2. Create an attribute whose type and undertyp~ are the ones

associated with OP1 and set Y to point to the attribute.

Set UNDCY) ~ 1, VALUE(A) ~ Y.

3. END.

3. 3. 1. 3 GETN (Get Next)

OHRANDS - None.

STACK- A pointer to an attribute.

DESCRIPTION- The instruction returns a pointer to the attribute

that follows the one 1n1tlally pointed at.

EXECUTION-

1. Set VALUE<A> ~ LINKCVALUE(A)),

2. END.

117

3. J. 1. 4 FIND (find>

OPERANDS- OPt is either empty or is an attribute identifier.
STACK- If OP1 is empty A contains either a title or an inteaer and B

is a pointer: otherwise A is a pointer.

DESCRIPTION- The instruction looks in a linked list for an attribute
whose selector is given and leaves at the top of stack a
pointer to 1 t; if the linked list is eapty or the attribute is
not there, a ~ULL pointer is left at the top of the stack.
This instruction is used to 1mp1ement SPINDLE's function FIND.

EXECUTION-

1. If OPl is empty, set Z .. VALu.E CA)

stack; otherwise set Z .. OP1.

2. If VALUE (A) ::'\IL, ESO.

3. Set X .. VALUE(A).

4. If SELECTOR(X)•Z, set VALUE(A) .. X
s. lf SELECTOR (X) >Z, set X .. LINK (X)

set VALUE (A) .. NIL.

6. E~D.

3. 3. 1. S FMT (Format)

OPERANDS- OPt, a format identifier.

~TACK- A is a pointer to a construct.

118

and rea~ove A fro• the

and END.

and ao to 4: otherwise

DESCRIPTION AND EXECUTION- Tbe instruction places a component PORMAT

1n a construct And ass1ans OPt to 1t. The instruction is used

to i~pleaent SPINDLE's ~oraat a&sianaent. Ita execution is

equivalent to the execution of the sequence of MUTILATE

instructions (PLACFORMAT), ASSI (IOPl)),

3.~.!.6 REP <Reproduce>

OPERANDS- None.

STA~K- A is any attribute and B is a· construct.

DESCRI?TION A~D EXECUTION- The instruction implements the "•"

operat·.>r of SPINDLE. The execution is equivalent to the

execution of the sequen~e of MUTILATE instructions (NAME,

PLA).

:! .• 3. 2 LIST MANIPULATION INSTRUCTIONS

The auxiliary pro:edure FIXLIST is used to describe the

execution of list aanipulation instructions. Its specification ls:

AiGUMENTS- R, a re&~ster, el~her the A or'B reaister.

DESCRIPTION- T~~ ~rocedure checks the attribute to which the rea1ster

points. If it is a list l".ttribute notbin& happens. If it is a

pointer to a list attribute then the pointer is substituted by

a list with the saae eoaponents as the list attribute

referenced by R.

EXECUTION-

1. If TYPECRl • LIST, END.

2. Set X .. VALUECR). If U~D(X)•l, PASSlVATE(X).

3. Set TYPE(R) ~ LIST, VALUE(R) .. VALUE(X).

4. RETUR~.

3. 3. 2. 1 CAR <Car>

OPERANDS- ~one.

STACK- A is either a list attribute or a pointer to one.

DESCRIPTIO~- A pointer to the first component of the list is left in

the stack.

EXECUTION-

1. Ex~cute FIXLIST(.\), If VALUE(A) •NIL this 1s an error.

2. Set TYPECA) .. POI~~ER.

3. END.

'3. 3. 2. 2 CDR (Cdr)

OPERANDS- ~one.

STACK- A is either a list attribute or a pointer to one.

120

DESCRIPTION- A new list is left in the stack, composed of all

elements of the inittal list but the fir~t.

EX.CUTION-

1. Execute F!XLIST(A). If VALUE(A)•NIL this 1s an er:-or.

2. Set VALUE (A) .. LINK (VALUE (A)).

3. END.

3. 3. 2. 3 CONS <Cons)

OPERANDS- None.

STACK- A is ar.y attribute; B is either a list attribute or a pointer

to one.

DESrRJPTION- The instruction inserts a new element at the front of

the li s t 1 n B.

EXECUTION-

1. Execute FJXLIST. Set X .. A. Remove A from the stack.

2. If TYPE(X)•POINTER or VALUE<X>•NJL, set LJNK(X) ~ VALUE(A),

VALUE (A) .. X and END.

3. Set X .. FI~ALCVALUECX)). M&k'- & copy of the attribute

referenced by X and pla~~ a rointer to the copy in Y. Set

IND(Y) .. l,VALUE(Y) .. X, liNKCY) .. VALUE(A), VALUE(A) ~ Y.

4. END.

121

3.3.2.4 LIST (List)

OPERANDS- ~one.

DESCRIPTIO~- A null list is inserted in the stack.

EXECUTION-

1. Insert & new attribute in the stack.

2. Set TYPE<A> ... LIST, VALUECA) .. NIL.

3. END.

3.3.2. 5 APEND <Append)

OPERANDS- ?\one.

STACK- A is either a list attribute or a pointer to onei and so is B.

DESCRIPTION- The components of the list in A are appended to the list

attribute in B by changing the link of the last component of

8.

EXECUTION-

1. Ex~cute FIXLIST(A), FIXLI5T(8).

2. If VALUE(A)•l\IL, go to S.. If VALUE(B)•NlL, set

VALUE ... \'ALUE(A), go to S. Set X .. VALUE(8).

l. If LI~ICCX)•~IL, set LINKCX) .. VALUE(A), ao to 5.

4. Set X ... LI~K (X), go to 3.

S. Re~ove A from stack.

6. END.

122

3. 3. 2. 6 RVRS (Reverse>

OPERA NOS- None.

STACK- A is a list attribute or a pointer to one.

DESCRIPTION- The instruction reverses the order of the co•ponents of

the list.

EXECUTION-

1. Execute FIXLIST(A). If VALUE(A)•NIL or LINK(VAl.UE(A))aNIL,

E~D; otherwise set X ~ VALUE(A), Z ~NIL.

2. Set Y ~ LINX(X), LINX(X) ~ Z, Z ~X, X ~ Y.

3. It X11NIL go to 2. Set VALUE(A) ~ Z.

4. END.

J.3.J STACK MANIPULATION INSTRUCTIONS

3. 3. 3. 1 POP <Pop)

OPERANDS- None.

STACK- A is any attribute.

DESCRIPTION AND EXECUTION- Remove the top eleaent froa the stack.

123

3. 3. 3. 2 081. <Double>

OPERANDS- ~one.

STACK- A is any attribute.

DESCRIPTION AND EXECUTIOM- A copy of the top eleaent of the stack is

inserted in the stack.

3. 3. 3. 3 FLIP <Flip)

OPERA~ OS- None.

STACK- A and B are any attributes.

DESCRIPTIO~- The two top elements of the stack are interchanged.

EXECUTION-

1. Set X .. l.INIUB), !.INK ~ A, LINXCA) c- X, A~ 8,

B .. LINK(A).

2. END.

3. 3.4 CONTROL INSTRUCTIONS

124

). 3. 4. 1 JU~IP (J UJ:.lj))

OPERA~DS- OPl, the addres~ of an instruction.

DESCRIPTION- Transfers control !o the instruction whose address 1s

OPl.

EXECUTI0~-

1. Set LOC ... OPl.

2. E~D.

3. 3. 4. 2 JUMPF 6 JU~1PT <Jump False and Jump True)

OPERANDS- OPl, the address of an instruction.

STACK- A is any attrlbut~.

nESCRIPTION- Transfers control to the instruction whose address is

OPl if A contains the proper value. (TRUE if JU'I'1PT or FALSE if

JUMP F).

EXECUTION-

1. If VALUE(A)•FALSE or VALUE(A)•O or VAl.UE(A)•NIL, set

X ... FALSE; otherwise set X ... TRUE.

2. If XaTRUE and OPCODE=JU~IPi, set LOC ... OPl and END.

3. If X•FALSE and OPCODE•JUMPF. set LOC ... OP1 and END.

4. Set LOC ... LOC + L <where L ls the lenath of the

instruction).

5, END.

125

3.3.4.3 PAR & PAR~ <Parallel and Parallel New>

OPERAt~D- OPl is the address of an instruction.

STAC~- If OPCODE•PAR, A is any attribute . .
DESCRIPTIO~- These instructions 'reate a new PSW and insert it in

PROCESS. PAR~ associates an empty stack with the new process;

PAR associates a stack containing a copy of the top element of

the current stack.

EXECUTION

1. Create a new PS~ with a pointer to it in X.

2. Set LOC (X) o- OP 1, HEAD(X) o- HEAD{CURRENT),

ID(X) ~ IDCCURRE~T), VERSIO~(X) ~ ViRSION(CURRENT>.

3. If OPCODE•PAR~, set STACI(X) o- NIL; otherwise create a copy

of the attribute in A and associate this one element stack

with the new PSW.

4. Insert the new PSW in PROCESS.

5. END.

COM~ENTS- PA~ 1s used to implement parallel compound assignments.

OPl is the address of a S~iment.

J. 3. 4. 4 CALL (Call)

OPERANDS- OPl, an instruction address.

126

DESCRIPTION- This inst:uct1on etfec~s a procedure call. It pasalvates

the current process and creates and activates a new one

associated with the procedure.

cXECUTJON-

1. Set LOC ~ LOC • L <where L is the lenath of the

instruction).

2. Create a new PSW, with a pointer to 1t placed ln X. Set

ID(X) ~ ID(CURRENT), VERSION(X) ~ VElSION(CURRENT),

LOC<X) ~ OPl. Create a new node and place a pointer to it

in HEAD(X). Associate the current Jtack with the new PSW.

3. PasJivate the current process and insert its PSW in the

stack of the new process.

4. Make the new process current.

S. END.

3.3.4.5 RET <R~turn)

OPERANDS- None.

STACK- A or 8 is a PSW.

DESCRIPTION- This instruction returns control to the process that

invoked the procedure.

EXECUTlON-

1. It A is not a PSW, execute the MUTILATE instruction FLIP.

2. Remove the top element of A (a PSW>, and leave a pointer to

1 t in X. Set STACK (X) ~ A.

127

3. Ter•1n&te the current process and .. ke the X PSW current.
4. END.

3. 3. 4. 6 HLT <Halt)

OPERA~DS- None.

DESCRIPTION AND EXECUTION- The current process terminates, its PSW is

removed from :uRRE~T and discarded. If the ~rror condition is
set the run terminates, otherwise the interpreter enters

MA:\AGE.\1ENT llOde.

3. 3. 4. 7 ERROR (Error)

OPERNADS- None.

DESCRIPTIOX AND EXECUTIO~- The error condition is set. As a

consequer1ce the first execution of a HLT instruction will

terminate the run. Also any output instruction executed after

this one, will never cause a passivation.

128

3.3.5 VALUE MANIPULATIO~ INSTRUCTIONS

3. 3. S. 1 ASS <Assian>

OPERANDS- None.

STACK- A is any attribute: 8 is a pointer.

DESCRIPTION- This is the assjanment 1nstruct1on with the form B :• A.
EXECUTION

1. Set X .. VALUE (8). If UND <X> •1, save the interrupt stack of
X. Set U:<;O (X) .. O, I NO (X) +- 0.

2. If TYPE (A) .ePOI~TER, set VALUE (X) +- VALUE (A)

<TYPE<X>•TYPECA) must be true) and ao to 6.

3. If VALUE(A)•NIL, set VALUECX) .. NIL (TYPE<X> must ~e either

CO~STRUCT, LIST or POINTER) and so to 6.

4. It TYPE (X) •POI ;.;TER, set VALUE (X) +- VALUE (A) and to to 6.

5. Set Y .. FINAL<VALUECA)), IND(X) • 1, VALUECX> • VALUE(Y),

If UNOlY>•l, insert the interrupt stack saved in step 1 (if

any> into the interrupt stack of Y and ao to 7.

6. Insert the interrupt stack saved 1n step 1 (1f any) into
the PROCESS stack.

7. Remove A and B.

8. E~D.

129

3.3.5.2 TRANS (Transfer>

OPERANDS- OPl OP2 OP~. N~2. OPl contains the total number of

operands, N, of the instruction; each of the folLowing

operands 1s a triple of the form CAT, ~7 , NT), where AT is
1 2

an attribute ioentifier an~ the NTs node designations.

DESCRIPTIO~ A~D EXECUTIO~- Triples are executed in succession from

left to riaht; the execution of each triple corresponds to the

execution of the sequence of MUTILATE instructions

{PLACAT,NT), GET(AT,XT), ASS}. The execution of a triple
1 2

where NT is an ambiguous node with DISAMB•O, passivates the
1

current process and its PSW is discarde4.

C0~1ENTS- TRANS is used to implement the generation of implied

3. 3. s. l

s~m~ntic rules. For ambiguous nodes, those triples which refer

to inherited attributes should precede those that refer to

synthesized attributes to guarantee that the inherited ones

get assigned.

VALC (Value of a Constant)

OPERANDS- OPl, a constant.

DESCRIPTION- An attribute with value OPl is inserted at the top of

the stack.

130

EXECUTIO~

1. Insert an attribute in the stack whose type is tht same as

the type of OP 1.

2. Set VALUE<A> ~ OPl.

3. END.

3. 3. S. 4 ASSI (Assign Immediate)

OPERA~D- OPl, a constant.

STACK- A points to an attribute.

DESCRIPTION- 0~1 is assigned to the attribute referenced by VALUE(A).

EXECUTIO~

1. Execute the sequence of MUTILATE instructions { VALCCOPl),

ASS).

2. E:\0,

3. 3. 5. 5 VAL <Value)

OPERANDS- OPl is either empty or [.

STACK- A 1s any attribute.

DESCRI PTJO:.J- This instruction with operand "[" implements the

urackcting operator of SPI~DLE; with no operands it is used to

implemer:t the SPINDLE function FIRST, in conjuction w1n TEST

131

to implement the function NULLB. and in conjuction with COMP

to implement the relation operator. Notice that unless A

points to a composite attribute the operand is irrelevant.

EXECUTION-

1. If TYPE<A> -Pon~TE.R or VALUE(A.)•NIL, END.

2. Set X~ FI~AL(V~LUE(A.)). If UND(X)•l, PASSIVATE(X).

3. If TYPE<X>•CONST.RUCT or TYPE(X)•LlST, 1t OPl"(, set

TYPECA) ~ POI~TE.R, go to 4; other~ise END.

4. Set VALUE(A) ~ VALUE(X).

S. END.

3. 3, S, 6 STO <Store>

OPERANDS- OPl, an &ttribute identifier.

STACK- A is any attribute.

DESCRIPTION- The instruction assi&ns tha value in A to the local

attribute whose selector is OPl. It the attribute is not

found, one 1s created.

EXECUTION-

1. Execute the sequence of MUTILATE instructions

{PLA COP1, LOCAL), FLIP, ASS).

2. END.

132

3. 3.5. 7 LOAD (Load)

OPERANDS- OPl, an attribute identif!er.

DESCRIPTION AND EXECUTION· The instruction "loads" the local
attribute OPl into the stack. If necessary an attribute is
created.

EXECUTION-

1. Execute the seq~ence of MUTILATE instructions
{GET (')p 1, LOCAL), VAL),

2. END.

3. 3. S. 8 AR (Ari thmeti;)

OPERANDS- OPl, eith~r ABS, 1\EG, ONEP (1. e. 1+), ONEM (1, e. ·1+), +1

-, •, I, RE~I.

STACK- A is an inte&er; 8, if OP1 is a binary operator, is an
integer.

DESCRIPTION- This is the arithmetic instruction. It perfor•s the
operation specified by OPl.

EXECUTION-

1. I: OPl is either ABS, NEG, ONEP or ONE:-1, set
VALUECA> ~ OP1 VALUE{A) and END.

2. Set VALUE ~ VALUECB) OPl VALUE(A)i reaove A.

3. END.

133

3. 3. S. 9 LOG CLOiiCa~)

OPERANDS- OPl is either NEG, A~D or OR.

STACK- A is a boolean: B, if OPl is either AND or OR, is a boolean.

DESCRIPTION- This instruction perforas the logical operation

specified by OPl.

EXECUTION-

1. If OPl•NEG, set VALUE(A) ~ NEG VALUE(A) and END.

2. Set VALUECB) ~ VALUECB) OPl VALUE(A); re•ove A.

3. END.

3. J. S. 10 TEST (Test)

OPERANDS- None.

STACK- A is any attribute.

DESCRIPTION- This instruction implements the SPINDLE functions NULLR

and NULLB.

EXECUTION-

1. Set TYPE<A> ~ BOOLEA~. If VALUE<A>•O or VALUr~A)•FALSE or

VALUE (A) •N I L, set VALUE (A) ~ TRUE; otherwise set

VALUE (A) ~ FALSE.

2. END.

134

3. 3. 5. 11 CO:OIP <Compare>

OPERA~DS- OPl, el ther •, -, >, ~. $ 1 <.

STACK- A and B are any attributes.

DESCRIPTIO~- This instruction implements SPINDLE's relations.

EXECUTI0:\-

1. If the relation VALUE(B) OPl VALUE<A> 1s TRUE, set

VALUE ~ TRUEi otherwise set VALUE (8) .. FALSE. Set

TYPE ~ BOOLEAN. Remove A.

2. END.

CO~~IE~TS- TYPE(A) must be the same as TYPE.

3. 3. 5. 12 :\AME G-4ame)

OPERANDS- None.

STACK- A is a non-~IL pointer to an attribute whose selector ls

defined.

DESCRIPTIO~- This instruction implements the SPINDLE function

SELECTOR.

EXECUTION-

1. S~t X .. SELECTOR(VALUE(A)).

2. If X<O, set VALUE (A) .. -X, TYPE (A) .. INTEGER; otherwise set

VALUE(A) ~X, TYPE(A) .. TITLE.

135

J. END.

3. l. s. 13 GEN (Generate Numeric)

OPERANDS- ~one.

DESCRIPTIO~- Each time a GEN instruction is executed a unique inteaer

is generated and placed in the stack.

EXECUTION-

1. Insert an attribute ln the stack. Set TYPE (A) .. INTEGER,

VALUE<A> ~ new aenerated value.

2. E~O.

3. 3. S. 14 COPY <Copy)

OPERANDS- None.

STACK- A and 8 point to attributes wit~ the same type and undertype.

DESCRIPTION- This instruction implements SPINDLE's copy operator.

EXECUTION-

1. Set Y .. fi!\AL(VALUECA)). If UNDCY)•l, PASSIVATE(¥).

2. Set X .. VALUEC8). If U~DCX)•l, set UND(X) .. 0 and transfer

the interrupt stack of X to PROCESS. Set IND(X) .. 0. Remove

A and B.

3. If TYPE(X)~CO~STRUCT and TYPJ!CX> ~LIST, set

VALUE(X) .. VALUECY) and END.

136

4. Set VALUECX) ~ ~IL. For e&ch component of Y an 1dent1c&l
component ls created, placed 1n X and the co•ponent of Y ls
indirectly assigned to the coaponent of X.

S. EXD.

3.3.6 OUTPUT lNSTRUCTIO~S

MUTILATE maintains an output queue (OUTPUT) which ls printed
only when the run ends; this guarantees that for well-formed input
strings, no undefined attributes are printed. The queue is composed
of attributes plac~d in the queue by the output instructions. Each
element o! the queue corresponds to an output element of SPINDLE. The
printing of each type of value and attribute was described in section
2. 9. 1. If UND•l for an attribute of the printing queue, the current
line is printed and a new one started; such an attribute corresponds
to the output element "/". If IND•l for an attribute of the printing
queue, the output for this element is unformatted; i.e, the FORMAT
component is considered as just another component. This is used for
tracing purposes.

3. 3. 6. 1 OUT & OUTF (Output and Output with Foraat)

OPERANDS- None.

137

STACK- A is any attribute.

DESCRIPTIO~- A is removeci from the stac:k.an4 place4 1n the printing

queue.

EXECUTIOS

1. If OPCODE~our and the error condition is not set and there

is an aabiguous node in the ancestor line of the current

process node for which DlSAMS•O, passivate the current

process, di sea rei. 1 ts PS_. and enter MANAGEMENT .mode.

2. It OPCODE•OUT and if TYPECA>•POINTER. or TYPE.(A)•LIST, set

J~D<A> .. 1.

3. Remove A and place it tn the printina queue.

4. E~D.

3. l. 6. 2 OUTC (Output Control)

OPERANDS- None.

DESCRIPTION- The instruction puts a "/" operator in the printing

queue.

EXECUTION-

1. If the error concu t1on 1S not set and there 1s an ambi'guous

node in the ancestor line of the current process node for

which DISAMB•O, passivate the current process, cUsc:ard its

PSW and enter MANAGE.\IENT 111oc1e.

2. Insert an attribute 1n the stack, set TYPE .. POINTER and

UND(A) .. 1.

138

3. Remove A and pl~ce it in the printlna queue.

4. ESD.

3.3. 7 THE DISAMBIGUATION INSTRUCTION- DAMB

OPERANDS- OP1 is either a nonterminal identifier or an inteaer.

STACK- A is·a boolean attribute.

DESCRIPTION- This instr~ction implements the instruction DAMB of

SPINDLE.

EXECUTJON-

1. Set X ~ I D <CURRENT>. <I D points to the nearen .!!ftbiauous

node in the ancestor line of the pro~ess' node.) If OPl is

an integer, set 2 ~ 1 and go to 4.

2. If SELECTOR(X)•OP1 &o to 6.

3. Set X ~ VALUE <AMBIGUOUS (X))

ancestor of the node which

auxiliary node>; ao to 2.

4. If OP1•Z, go to 6.

<aet the nearest aab1auous

is in the value field of its

S. Set Z ~ Z •1, X ~ VALUE(~~BIGUOUS(X)) and ·ao to 4.

6. Set Z ~ VALUE<A>: remove A from the stack; if DISAMB<X>•l,

END. <If the node is already c11saab1auated the instruction

has no effect.)

7. Increase by 1 the value correspondina to X in AMBTABLE.

Eliminate the LOCAL attributes of X.

8. Go through the subtree oriainatina from X and for all

developed nodes that are not S-terainals set the VALUE

119

field to ~I~. For those nodes th&t are not aabiauo~s set

A.\18IGUOUS to ~IL. For an &abiauous node increase the

corresponding entry in AMBTABtE by 1; set the bits ONCE and

CORRECT in all the versions of the node to 0; set VALUE of

its auxiliary node to NIL. (The tree 11ust be cleared

because one node may belona to more than one amb1auous

subtree.) Eliminate from the DEVELOP stack any element that

points to one of the nodes of the subtree.

9. If Z• FAl.:i E, set CORRECT (X) ~ 0; otherwise set

CORRE.CT<X> - 1. Clf Z•TRUE and one of the versions of X

has CORRECT•l, an error oc:urs.>

10. Go through all the versions of X and look for one whose

bit O~CE has value 0. If none is found go to 12; otherwise

set Y to point to the one found.

11. <Another parsing 1.' tested.) Set CORRECT(¥) ~ CORRECT(X),

O~CE(Y) ~ 1, Z ~ SON(X), SON(X) ~ SON(Y), SON(Y) ~ Z, and

go to 14.

12. (All parsings have been tried.) It CORRECT(X)•O and for

all versions V of X, CORRECT <V> •01 set

X ~ VALUE CA~IBIGUOUS (X)) and ao to 7. (All pars1ngs are

incorrect so try the nearest aabiauous node in the ancestor

line.)

13. <There is one correct pan1na.) Set DISAMB<X> •1. If

CORRECT(X)-1, set Y to point to the version for which

CORRECT is 11 Z ~ SO~CX>, SON(X) ~ SON(Y) 1 SON(Y) ~ z.
14. Insert a pointer to X in DEVELOP. Passivate the current

process and discard its PSW. Enter MANAGEMENT mode.

15. E!'iD.

140

COMMENT- Tbe exlstlna 1apleaentat1on of MUTILATE hal a different D~B

than the one described bere. As 1apleaented . now, once a

correct parsina is found, the other pars1nas are· not tested;

the PSWs correspondina to the processes interrupted try1na to

"PLA" the synthesized attributes of tbe node (tbat are saved

instead of beina discarded) are inserted in PROCSSS, DISAMB is

set to 1 and the current process continues.

3. 3.8 INDEX OF OPCODES

OPCODE SECTION

A PEND 3. 3. 2. 5
AR 3. ~. ~- 8
ASS 3. 3. s. 1
ASSl 3. 3. 5. 4
CALL 3. 3. 4. 4
CAR 3. 3. 2. 1
C:DR 3. 3. 2. 2
COMP 3. 3. 5. 11
CONS 3. 3. 2. 3
COPY 3. 3. s. 14
DAM8 3. 3. 7
DBL 3. 3. 3. 2
ERROR 3. 3. 4. 7
FIND 3. 3. 1. 4
FLIP 3. 3. 3. 3
F~IT 3. 3. 1. 5
GEN 3. 3. 5. 13
GET 3. 3. 1. 1
GETN 3. 3. 1. 3
HLT 3. 3. 4. 6
JUMP 3. 3. 4. 1
JlTh1PF ' 3. 3. 4. 2
JUMPT 3. 3. 4. 2
LIST 3. 3. 2. 4
LOAD 3. 3. s. 7
LOG 3. 3. s. 9
NAME 3.3.5.12
OUT 3. 3. 6. 1
OUTC 3. 3. 6. 2
OUTF 3. 3. 6. 1
PAR 3. 3. 4. 3

141

PAR~
PLA
PLAS
ror
REP
RET
R\'RS
STO
TEST
TRANS
VAL
VALC

3. 3 3
3. 3. 1. 1
3. 3. 1. 2
3. 3. 3. 1
3. 3. 1. 6
3. 3. ~. 5
3. 3. 2. 6
3.], s. 6
3.3.5.10
3. 3. s. 2
3. 3. s. s
3. 3. 5. 3

142

CHAPTER 4

A JEFI~ITION OF SI~ULA

This chapter contains the SPINDLE aefintion of a subset of the

SIMULA 67 Common Base Language [OMS 701 . The definition is closely

patterned after Wilner's definition of SIMULA (Wl 711; it is

intended to show t' t viability of FOLDS for the definition of large

programming langua~es. The definition also serves as an example of a

variety of SPI~DLE features and programming techniques.

The definition is essentially an implementation of Wilner's

definitions. Modifications were introduced mainly where errors were

found and where they simplified the definition without changing its

character. Whenever possible, the attributes• names and structures

were processed as in ~ilner's specification. However, the present

definition does differ from Wilner's in three important aspects.

First, the present definition takes into account the existence of

SPI~DLE's lexical analyzer. Second, labels are handled here as ir.

TURJ~GOL, contrary to the technique used by Wilner which resembles

Knuth's technique in TURI~GOL; the implementation of Wilner's scheme

in SPI~DLE would be very costly in terms of the number of semantic

rules necessary to process the two attributes he called a and z. The

third difference is in the way the target language program is

handled. In this definition, a program is a set of pairs, each

consisting of a segment and its designation; each segment stands for

a sequence of instructions. ~ilner uses an attribute R which

143

collects such pairs throughout the tree and carries the• to the root

node. In the present defini t1on instead of collectina the seaaents,

they are printed by the functio" OUTPUT at each node where they

occur. This simplifies the definition· by doina away with the

attribute R which would otherwise occur throuaho1•t the tree. The

code generated from the present definition runs in the machine

defined by Wilner [Wi 711 modified as follows:

- The instruction CHE has an additional field CLASS,

containing a boolean value.

- The instruction MAK has an additional field COPUS,

containing an integer value.

- The instruction GEN, after creating the new object and

transferring the actual •s to its stack, creates a new stack
w

level by placing a ret and a mark in the stack.
w w

- The instruction CHE in a first step, if the CLASS field is

TRUE, copies to the top of the stack the actual which is in
w

the next lower level in the stack and whose stack

displacement is given by the field D of the instruction.

- Step 3 in the execution of both VAL and ADDR is modified so

that the address left in the stack is not a pointer to the

lowest mark in the stack of the remote object but to the
w

one above the lowest.

- The last step in the execution of MAK 1s modified so that

before "fin", a number of array s (equal to the value in the
w

14~

COP!ES field), are placed in the stack. For each n~w array
w

a copy of the structure pointed to by the array at the top
w

of the stac~ is created wtth the new array pointing to the
w

new structure.

These modifications are necessitated due to cha1:6es made in Wilner's

definition to correct tte mechanism for concatenatini class segments

and to correct the mechanism for creating arrays declared in the same

array segment.

This chapter has two sections: the first contains the definiton

of SIMULA in SPI~DLE, the second a comparison of the definition with

Wilner's definition. Appendix 4 ~ontains a set of SJMULA programs and

the target language generated from them by the definition running in

MUTILATE.

4. 1 DEFI:\ITIO~

TERMINALS ARE + - * I () [l • , ~ < • > :

RESERVED \~ORDS ARE A~D. ARRAY, 13EGIN, BOOLEAN, CLASS, DETACH, Dl V,
DO, ELSE, EKD, EQUI V, FALSE, GO, IF, lMPLI ES, IN,
1!\:-iER, I~SPECT, I:\TEGER, IS, LABEL, NAME, NE\~,
XO~E, OR, OTHERWISE, PROCEDURE, QUA, REAL, REF,
RESU~1E, SII'ITCH, THE~. THIS, TO, TRUE, VALUE,

ATTRIBUTES ARE

ADDR • CO~STRUCT
AEMDEC • BOOi..EA:-.:

VIRTUAL, II"HE:\, \I'HILE .

145

ALSO • BOOLEAN
APA • INTEGER
ARULE • RULE
ATTR • INTEGER
BEGUN • BOOLEAN
CDECL • LIST
CL • INTEGER
CLASSN • POINTER
CODE • RULE
COND • BOOLEAN
DO • INTEGER
D • DO
DAR • BOOLEAN
DI SP • INTEGER
D~ • INTEGER
E • CONSTRUCT, PL
El • E
E.\1DEC • BOOLEAN
E~V • E
EXVl • ENV
E~VA • ENV
FIRSTST • BOOLEAN
FJtr..IP • LABELl
FOR.\1ALE • E
GENUS • CO~STRUCT
GE~USl • GENUS
GE~US2 • GENUS
I~STR ··CONSTRUCT
ITEM • LIST
JLABEL • INTEGER
KIND • TITLE
L • INTEGER
LABELl • I~TEGER
LEGIT • INTEGER
LEVEL • INTEGER
LL • INTEGER
LN • INTEGER
LOCALE • E
MAP • CONSTRUCT, INTEGER
MARK • TITLE
MARKl • TITLE
MAT • CONSTRUCT, MATVEC
MATRIX • MAT
MATVEC • CO~STRUCT
MOAMB • BOOLEAN
MODE • TITLE
!~ • INTEGER
Nl • N
N2 • N
NAMETB • NT B
t\EXTl • POINTER
NEXT2 • NEXTl
NEXT3 • NEXTl
NFOR.\1ALS • INTEGER
NLOCALS • INTEGER
NOLABEL • BOOLEA~
NTB • CONSTRUCT, INTEGER
NUMDEC • INTEGER

146

0 = OPE~
OBJECT a I~TEGE~
OPE:\ = TITLE
OPER • TITLE
ORJG = 1'\TEGER
OUTER\10ST = BOOLEA~
PL • CO:\STRUCT
PLl = P!.
PLACE = TITLE
PPL = PL
PREF = l:\TEGER
PREFIX , POI:\TER
QTBVEC = CO~STRUCT
QUAL ,. 1:\TEGER
QUAl.l = QUAL
QU..\12 = QUAL
QuAl.TB a CO:\STRUCT, QTBVEC
RULE = LIST
RULEl = RULE
RULE2 '" RULE
S EG~lE~T ,. I :\TEGER
SID " BOOLEA:\
SL a S~

s~1 = s~
S:\ • I :-:TEGER
SP = TITLE
SPEC • GE:\US
START = BOOLEA~
T = TITLE
TYPO .. GE:\US
TYPOS : TYPO
TYPE = TITLE
TYPEl • TYPE
TYPE2 = TYPE
TJmlF • LABELl
U:\DECL = RULE
USE ,. TITLE
V = I ~TEGER
VALE:\CE • I:\TEGER
\'!RDECL • CO:\STRUCT, 1:\STR
VIROECLl • VIROECL
VIRTUALE ,. E
XX • COXSTRUCT

COM.\lENT

THE ATTRIBUTES E ASD ESV REPRESE:\T THE SYMBOL TABLE: E COLLECTS

THE DECLARATI0:\5 T~AT ARE SPREAD THROUGH THE TREE BY ENV. EACH ENTf.Y

147

OP THE SYMBOL TABLE IS A CONSTRUCT OF TYPE PL (FOR PROPBRTY LIST)

WITH fHE SELECTOR CO~TAINING THE SPELLING, AND WITH THE COMPONENTS OF

THE ENTRY REPRESENTING THE PROPERTIES OF THE IDENTIFIER. PL MAY HAVE

COMPONENTS GENUS, ADDR, ATTR, N, NFO~~LS, NLOCALS, LOCALE, FORMALE,

VIRTUALE, SEG~E~T, PREF, OBJECT AND CODE. GENUS CONTAINS THE TYPE AND

KINO OF AN IDENTIFIER: WHEN THE TYPE IS "REF" IT ALSO CONTAINS A

COMPO:~ENT QUAL, WHOSE VALUE IS THE SEGMENT DESIGNATION OF THE CLASS

THAT QUALIFIES THE REFERENCE. ADOR IS THE STACK ADDRESS OP THE

INSTRUCTION CORRESPO~DING TO THE DECLARATION OF THE IDENTIFlER: IT

HAS COMPONENTS LN, THE STACK LEVEL, AND DN, THE STACK DEPTH. FOR

IDENTIFIERS THAT ARE CLASS ATTRIBUTES (ATTRIBUTES HERE IN THE SIMULA

SENSE> ATTR CO~TAINS THE SEGMENT DESIGNATIO~ OF THE CLASS, OTHERWISE

IT CONTAINS A 0. N GIVES THE NUMBER OF ::liMENSIONS ASSOCIATED WITH

ARRAY IDENTIFIERS A~D THE LENGTH OP THE SWITCH LIST ASSOCIATED WITH A

SWITCH IDENTIFIER. NFO~~ALS GIVES THE NUMBER OP FORMAL PARAMETERS

FOR CLASSES AND PROCEDURE IDENTIFIERS. THE REMAINING COMPONENTS OF PL

ARE ASSOCIATED ONLY WITH CLASS IDENTIFIERS. NLOCALS CONTAINS THE

NUMBER OF ATTRIBUTES (IN THE SIMULA SENSE) OF A CLASS. LOCALE IS A

SYMBOL TABLE WHOSE E~TRIES. ARE THE ATTRIBUTES OF THE CLASS. FORMALE

IS THE SYMBOL TABLE FOR THE FOR~AL PARAMETERS. VIRTUALE IS THE SYMBOL

TABLE FOR THE VIRTUAL ATTRIBUTES OF THE CLASS IDENTIFIER. SEGMENT

CO~TAINS THE SEGME:\T DESIGNATION OF THE CLASS WHICH IS THE

DESIGNATION NUMBER OF THE SEGMENT ASSOCIATED WITH THE CLASS. PREF

CONTAINS THE SEGMENT DESIG~ATION OF THE PREFIX CLASS. OBJECT CONTAINS

THE SEGMENT DESIGNATIO~ OF THE PROTOTYPE ASSOCIATED WITH THE CLASS

IDENTIFIER. CODE CONTAINS THE RULE THAT STANDS FOR THE SEGMENT

ASSOCIATED WITH THE CLASS.

PL IS ALSO USED TO CONVEY THE PROPERTY LI~T OF EXPRESSIONS AND

148

THEIR Cm1PO:-JE~TS. PPL IS USED TO PASS TO THE MAIN PART OF A CLASS
DECLARATION THE PROPERTY LIST ASSOCIATED WITH THE PREFIX.

RULE STA~DS FOR A SEQUE~CE OP I!'ISTRUCTIONS IN THE T~RGET
LANGUAGE: IT IS OF TYPE LIST WITH COMPONE~TS OF TYPE INSTR. RULE
CO~TAINS BOTH TARGET LANGUAGE INSTRUCTIONS AND PSEUDO-INSTRUCTIONS:
TARGET LA~GUAGE l~STRUCTIO~S HAVE A COMPONENT FORMAT, PSEUDO­
INSTRUCTIO~S DO ~OT. A PSEUDO-I~STRUCTION WITH COMPONENT LABELl
STANDS FOR A LABEL \~ITH LABELl CONTAINING THE UNIQUE INTEGER
ASSOCIATED ~ITH THE LABEL. A COMPONENT MARK IDENTIFIES THE PSEUDO­
INSTRUCTIOl'\S THAT MARK THE POSITIONS OF "ISIT" AND "INNER" IN THE
SEG~E~T ASSOCIATED \viTH A CLASS. A COMPONENT MARKl IDENTIFIES THE
PSEUDO-I~STRUCTIO~S THAT E~CLOSE THE SEQUENCE OF INSTRUCTIONS
CORRESPO:\DING TO THE CALCULATIO:\ OF ARRAY BOUNDS. (SEE THE FUNCTION
VIR~lERGE FOR AN EXPLA:\ATION OP THE USE OF THOSE MARKERS).
INSTRUCTIO~S THAT REFER TO LPBELS CONTAIN A COMPONENT JLABEL WHOSE
VALUE IS THE UNIQUE INTEGER ASSOCIATED WITH THE ~ABEL. THE PROCEDURE
OUTPUT BINDS LABELS TO ADDRESSES AND ASSOCIATES THE ADDRESS
ASSOCIATED \viTH THE LABEL IN JLABEL \o/ITH THE COMPONENT DISP OF THESE
I NSTRUCTIO:\S. THE C0~1PONEH OPER IS USED IN VARIOUS INSTRUCTIONS TO
HOLD A~ OPERAXD FOR THE J~STRUCTIONS.

UNDECL IS A LIST OF THE SAME NATURE AS RULE AND IS USED TO
COLLECT THE INSTRUCTIO~S RESULTIXG FROM THE DECLARATION OF LABELS.

VI RDECL IS A COXSTRUCT \vHOSE COMPONENTS ARE INSTRUCTIONS
RESULTING FRO~ THE "REDECLARATIO:\" OF VIRTUAL CLASS ATTRIBUTES. THESE
INSTRUCTIO~S REPLACE THE I~STRUCTIONS ASSOCIATED WITH THE PREVIOUS
DECLARATIO~S OF THE CLASS ATTRIBUTES: THE FUNCTION VI~~ERGE REPLACES
THE INSTRUCTI0:\5 ASSOCIATED WITH THE PREVIOUS DECLARATION BY THE
INSTRUCTIO:\S IN VIRDECL.

149

ENV1 IS USED TO PROPAGATE THE VIRTUALE OF A CLASS SO ThAT THE

REDEFINITION OF VIRTUAL IDENTIFIERS CAN BE PERFORMED.

ENVA IS USED TO CARRY THE OUTER ENVIRONMENT OF A PROCEDURE OR A

CLASS (PLUS THE FO~~AL PARA~ETERS> TO THE EXPRESSION THAT CALCULATES

THE BOUNDS OF AN ARRAY WHICH HAS BhEN DECLARED EITHER IN A PROCEDURE

OR A CLASS BODY.

CL IS USED TO CONVEY THE SEGMENT DESIGNATION OF A CLASS TO THE

DECLARATION OF ITS ATTRIBUTES.

DO AND D ARE USED TO CALCULATE THE STACK DISPLACEMENT

CORRESPONDING TO AN IDENTIFIER DECLARATION. D CAN ALSO BE VIEWED AS

THE NUMBER OF IDENTIFIERS DECLARED PRIOR TO THE IDENTIFIER

DECLARATION.

LL INDI:.ATES THE LEXICOGRAPHICAL LEVEL OF AN IDENTIFIER AND

ALSO THE STACK LEVEL ASSOCIATED WITH IT.

L I~DICATES THE LENGTH OF A LIST SUCH AS A FORMAL PARAMETER

LIST.

OUTER~ST IS USED TO DISTINGUISH A STATEMENT WHICH IS A CLASS'

OUTER BLOCK.

TYPD AND TYPOS ARE USED TO CONVEY GENUS IN A DECLARATION. TYPOS

GETS THE GENUS FROM THE SPECIFIER AND TYPO TAKES IT TO THE VARIABLES
• IN THE DECLARATION.

USE CONVEYS THE USE OF AN EXPRESSION: FOR ITS VALUE, FOR ITS

ADDRESS, OR FOR LATER EXECUTION CAS A PARAMETER CALLED BY NAME).

VALENCE CLASSIFIES "+" OR "-" AS EITHER UNARY OR BINARY.

NOLABEL IS USED TO AVOID RECOGNIZING A LABELLED BLOCK MORE THA~

ONCE.

BEGUN IS USED TO I DENT I Pi BLOCKS THAT ARE EITHER A CLASS OR

PROCEDURE BODY.

150

FJU~lP A~D TJU~l? ARE USED TO PASS THE LABEL OF AN INSTRUCTION IN

A CONOITJO~AL OR CO:>.XECTIO~ STATE~1EXT.

V A~D SP ARE ATTRIBUTES ASSOCIATED WITH STRUCTURED TERMINALS: V

CO!\TAINS THE VALUE OF A:\ I:~TEGEP. AND SP THE SPELLING Of AN

I DE:-lTI F I ER.

ORIG CO~TAI~S THE SEG~:E:\T DESIGNATION OF THE SEGMENT WHICH

CO~TAINS THE FIRST I~STRUCTIOX OF A SIMULA PROGRAM.

ALSO IS USED TO RECOGXIZE A~ ASSIG~MENT STATEMENT WHICH IS

ITSELF A RIGHT HA~D SIDE OF A~ ASSIG~~E~T STATEMENT.

LEGIT SERVES TO I~OICATE \~HETHER A SPECIFICATION PART BELONGS

TO A PROCEDURe OR A CLASS.

PLACE IDE~TIFIES THE CONTEXT OF AN IDENTIFIER LIST:

SPECIFICATION PART, XA!'>\E PART, VALUE PART OR VIRTUAL PART.

QU~!..TB IS A TABLE, IN w'HICH EACH ENTRY CORRESPONDS TO A CLASS.

EACH COMPO~E:\T Of QUALTB IS A CO~STRUCT WHOSE SELECTOR IS THE SEGMENT

DESlG~ATIO~ OF THE CLASS AXD \-.'HOSE CO~IPONE:\TS ARE PREFIX, CLASSN AND

LEVEL. PREFIX CO~TAI~S A POI~TER TO THE QUALTS ENTRY CORRESPONDING

TO THE PREFIX CLASS. CLASS~ CO~TAI~S A POINTER TO THE SYMBOL TABLE

ENTRY CORRESPO~Dl~G TO THE CLASS. LEVEL CONTAINS THE NUMBER OF

CLASSES I~ THE PREFIX SEQUE:\CE OF THE CLASS.

CDECL IS A LIST OF POI~TERS TO THE SYMBOL TABLE ENTRIES

CORRESPO~Dl~G TO THE CLASSES DECLARED IN A BLOCK. IT IS USED BY THE

FUNCTION UPDQUALTB TO CREATE ~EI\ E~TRIES IN QUALTB.

~TB A:\0 :\A.\IETB ARE CO~~ ~RUCTS THAT ESTABLISH THE CORRESPO~DENCE

BETHE;-; FORMAL PARA~lETERS AXD THEIR POSITION IN THE STACK: THEIR

C0~1PO~E:\TS ARE I:\TEGERS \\HOSE SELECTORS ARE THE SPELLING OF THE

FOR~1AL PARA\1ETERS AXD WHOS!: VALUES ARE THEIR STACK DISPLACEMENT.

~1AT AND MATRIX ARE CO~STRUCTS USED TO ESTABLISH THE

151

CORRESPONDENCE BETWEEN FOR.\1AL PARAMETERS A:.JD THEIR PROPERTIES. EACH

COMPONENT IS A CONSTRUCT WHOSE SELECTOR IS THE STACK DISPLACEMENT OF

THE fORMAL PARAMETER AND WHOSE COMPONENTS ARE MODE AND SPEC. MODE

CONTAINS THE MODE OF TRA~SMISSION OF THE PARAMETER AND SPEC ITS

GENUS.

ITEM IS A LIST OF CONSTRUCTS, EACH CORRESPONDING TO A CLASS

ASSOCIATED WITH AN ENCLOSING CONNECTION BLOCK. THE COMPONENTS XX OF

ITEM CO~TAIN COMPONENTS ADOR AND QUAL. QUAL CONTAINS THE SEGMENT

DESIGNATION OF THE CLASS AND ADDR THE STACK DESIGNATION OF A

REFERENCE TO THE CONNECTED OBJECT.

MAP IS USED, AS IN TURINGOL, TO BIND LABELS AND ADDRESSES.

SM, SN AND SL CONTAIN SEGMENT DESIGNATIONS OR THE UNIQUE

INTEGERS THAT REPRESENT LASELS.

APA, COND,DAR, AND SID ARE USED FOR DISAMBIGUATION PURPOSES.

THEY SERVE TO DETECT AND RESOLVE ~~BIGUITIES ARISING FROM ACTUAL

PARAMETERS AND LEFT HAND SIDE OF VALUE ASSIGNMENTS WHEN THEY PARSE TO

A SINGLE ENTITY. A SINGLE ENTITY IS EITHER AN IDENTIFIER (POSSIBLY

REMOTE), OR AN IDENTIFIER FOLLOWED BY AN EXPRESSION ENCLOSED IN

SQUARE BRACKETS, OR A FUNCTION DESIGNATOR, OR A CONDITIONAL

EXPRESSION WHOSE THEN AND ELSE PARTS ARE BOTH SINGLE ENTITIES, OR A

SINGLE ENTITY ENCLOSED IN PARENTHESIS. THEY ALSO SERVE TO DETECT THB

AMBIGUITY ARISING FROM A PRIMARY THAT PARSES TO AN IDENTIFIER.

FIRSTST, EMDEC, AEMDEC, AND NUMDEC ARE USED TO RESOLVE THE

AMBIGUITIES ARISING FROM COMPOUND STATEMENTS WHERE THE FIRST

STATEMENT IS EMPTY AND FROM UNLABELLED BLOCKS wliERE THE FIRST

STATEMENT OF THE COMPOUND TAIL IS EMPTY. FIRSTST AND EMDEC IN

CONJUCTION WITH START ARE USED TO DISAMBIGUATE INITIAL OPERATIONS

WHOSE FIRST STATEMENT IS ~~PTY.

152

. .

OPES A~D 0 ARE USED TO RESOLVE THE AMBIGUITY ARISING FROM AN

I~SPECT SHTEME:·:T \~ITH A ~1ATCHI:\G OTHERWISE CLAUSE WHICH IS INSIDE

A~OTHER I~SPECT STATE~E~T ~ITHOUT A ~ATCHI~G OTHERWISE CLAUSE;

FOLLO\v'Ii\G IS A GLOSSARY OF THE ATTRIBUTE lliEt\T!F!EP.S USED IN

THIS DEFI~ITIO:\:

ADDR - STACK ADDRESS. USUALY A COMPONENT A SYMBOL TABLE ENTRY.

AE~1DEC -USED FOR DISAMBIC~UATIO:\. TRUE IF ALL THE DECLARATIONS IN A

BLOCK ARE E~PTY.

ALSO - DETECTS MULTIPLE LEFT-HA:\D SIDES IN AN ASSIGNMENT STATEMENT.

APA - USED FOR DISA:.tBIGUATIO;.; PURPOSES

ARULE - THE RULE GE;.;ERATED BY VE DECLARATION PART OF A SPLIT BODY.

ATTR - FOR CLASS ATTRIBUTES, THE SEG~ENT DESIGNATION OF ThE CLASS. A

COMPO:\E;.;T OF A sntBOL TABLE E;.;TRY.

BEGU~ - DETECTS A BLOCK AS A CLASS bODY, PROCEDURE BLOCK OR

CO:\:\ECT I m. BLOCK.

CDECL - LIST OF POI~;'iERS TO THE SYMBOL TABLE ENTRIES CORRESPO~DlNG TO

CLASS DECLARATIONS I~ A &LOCK.

CL - CARRIES THE SEG~Il::~T DESIG~ATION OF A CLASS 70 THE CLASS

ATTRIBUTE'S DECLARATIO:;,

CLASSN - POI~TER TO A SYMBOL TABLE E~TRY FOR A CLASS. A COMPONENT OF

A QUALTB E~TRY.

CODE - THE RULE ASSOCIATED ~ITH A CLASS. A COMruNENT OF A SYMBOL

TABLE E~TRY FOR A CLASS IDENTIFIER.

153

COND - A PAR~~ETER FOR THE PROCEDURES DISAMV AND DISAMF.
D AND DO -USED TO CALCULATE THE STACK DISPLACEMNT ASSOCIATED WITH

IDENTIFIERS.

DAR - USED FOR DISAMBIGUATIO~ PURPOSES .. TRUE IF A VARIABLE IS AN
ARRAY ELEMENT, FALSE OTHERWISE.

DISP - DISPL.A.CE~IENT OF AN INSTRUCTION IN A SEGMENT. USUALLY A
COMPONENT OF I~STR.

ON - ~TACK DISPLACEMENT OF A VAR!ABLE. USUALLY A COMPONENT OF
ADDR.

E - COLLECTS SYMBOL TABLE ENTRIES.

&~DEC - USED FOR DISAMBIGUATIO~ PURPOSES. IT IS TRuE IF THE LAST
DECLARATION I~ A BLOCK HEAD IS E~PTY.

ENV - THE SYMBOL TABLE: THE ENVIRONMENT.

ENVl - A SYMBOL TAB~E FOR VIRTUAL ATTRIBUTES.
ENVA - A SYMBOL TABLE FOR USE BY THE BOUNDS IN AN ARRAY DECLARATION.
FIRSTST - DETECTS At\ EMPTY FIRST STATEMENT.
FJUMP - UNIQUE INTEGER THAT LABELS THE INSTRUCTION FOLLOWING THE

INSTRUCTIONS TO BE SKIPPED IN A CONDITIONAL STATEMENT.
FORMALE - SYMBOL TASLE FOR.\IFD BY THE FORMAL PARAMETERS OF A CLASS. A

COMPONEXT OF A SYMBOL TABLE ENTRY.

GENUS - THE PROPERTIES OF AN IDE~•TIFIER: TYPE, KIND AND CLASS
QUALIFICATION.

INSTR - AN INSTRUCTIOX OF THE TARGET LANGUAGE. USUALLY A COMPONENT OF
RULE, UNOECL OR VIRDECL.

ITEM - LIST USED FOR REFERENCING OBJECTS ENC1.0SING A CONNECTION
BLOCK. COMPONENTS ARE CO~STRUCTS WITH COM;ONENTS QUAL AND
ADCR. ~UAL IS THE ~UALIFICA!ION OF THE OBJECT AND ADDR THE
STACK ADDRESS OF A POINTER TO THE OBJECT.

154

JLABEL - THE U~IQUE IXTEGER ASSOCIATED WITH THE LABEL OF AN
1!\STRUCTIO!\. USUALLY A COMPO~EH OF INSTR.

KIND - THE KI~D OF AN IOEXTIFIER <IN THE ALGOL SENSE).

L - LE:\GTH OF A LIST SUCH AS SUBSCRIPT LIST, PARAMETER LIST, AND
ETC ••

LABELl - Ui\IQUE IXTEGER ASSOCiATED \.;ITH A LABEL. A COMPONENT OF A
PSEUDO-I XSTRUCT 10:\ \.:HI CH CORRESPONDS TO A LABEL.

LEGIT - MARKS A SPEC I FICATIO:'i P .. ~RT AS BELnNGING TO A PROCEDURE, A
CLASS HEADI~G OR A VIRTUAL PART.

LEVEL - THE PREFIX LEVEL OF A CLASS. A CO>IPONENT OF A QUALTB EHRY.
LL - THE LEXICOGRAPHICAL LEVEL: THE STACK LEVEL.

Ll\ - THE STACK LEVEL OF A VARIABLE. USUALLY A COMPOt-;HT OF ADDR.
LOCALE - SY~1BOL TAELE FOR~EO BY THE ATTRIBUTES OF A CLASS. A

COMPONE~T OF A SYM20L TABLE EXTRY.

MhP - TABLE THAT RELATES THE U~IQUE !STEGERS REPRESENTING LABELS TO
THE ACTUAL ADDRESSES ASSOCIATED WITH THB LABELS.

MARK - Cm1PO:XEXT OF PSEUDO-I;..;STRUCTI0:-1 MARKING THE LOCATION OF
"l:X!T" OR "I~:-\ER" IN THE RULE CORRESPONDI~G TO A CLASS BODY.

MARKl - t:0\1PONE:\T OF A PSEUD0-1:\STRUCTION. MARKISG THE BOUNDARIES OF
THE BOUND SPECIFICATIO~S l:-1 AN ARRAY DECLARATION.

MAT - MATRIX OF FOR~1.U. PARA\lETERS (REPRESENTED BY T!iBIR STACK
DISPLACEME:\T) A~D THEIR PROPERTIES.

MATRIX - SA~ AS ~lAT.

MATVEC - A~: E:\TRY OF ~!AT OR ~ATRIX.

MOA.\1B - USED TO DETECT THE A:·1BlGU!TY ARISU\G FROM AN EMPTY MODE PART
A~D/OR A~ E~IPTY VALUE PART

MODE - THE ~lODE OF TRAXS~IISSIO~ CF A FORMAL PARA.\1ETER.

N - :\U~1BER OF DI~lE:\SIO:-.s OF A~ ARRAY, LE~GTH OF A SWITCH LIST. A
CmtPO:\E~T OF A SY~I30L TABLE E:\TRY.

155

N~~ETB - TABLE RELATING THE SPELLING OF FORMAL PARAMETERS TO THEIR

STACK DISPLAC~~E~T.

NFORMALS - NUMBER OF FORMAL PAII.A.\1ETERS. A COMPONENT OF A SYMBOL TABLE

E~TRY.

NLOCALS - NUMBER OF ATTRIBUTES OF A CLASS. A COMPONENT OF A SYMBOL

TABLE E~TRY.

NOLABEL - DETECTS A MULTILABELLED BLOCK.

NTB - COLLECTS THE E~TRIES FOR XTB.

NUMDt:C - USED FOR DISA.•IBIGU,),TION PURPOSES. COUNTS THE NUMBER OF EMPTY

DECLARATIONS I~ A BLOCK HEAD.

0 - USED FOR CISA.\1BIGUATIO~ PURPOSES. USED TO DETECT EMPTY

OTHERWISE CLAUSES

OBJECT - SEGME~T DESIG~ATION OF THE OBJECT WHICH IS THE CLASS'

PROTOTYPE. A COMPONENT OF A SYMBOL TABLE ENTRY.

OPEN - Si\J\:E AS 0

OPER - CONTAI~S OPERANDS. A COMPONE~·JT OF INSTR.

ORIG - SEGME!\T THAT CONTAINS THE FIRST INSTRUCTION OF A SIMULA

PROGRAM.

OUTERMOST - MARKS A STATEME~T AS THE BODY OF A CLASS.

PL - THE PROPERTY LIST ASSOCIATED WITH AN IDENTIFIER OR

EXPRESSiON. HAS THE SA.~E STRUCTURE AS A SYMBOL TABLE ENTRY.

PLACE - GIVES THE COXTEXT OF AN IDENTIFIER LIST.

PPL - PROPERTY LIST OF A PREFIX CLASS IN A CLASS DECLARATION.

PREF - SEG~.:E~T DESIGNATIO!\ OF THE PREFIX CLASS. A COMPONENT OF A

CLASS' SYMBOL TABLE E:-;"TRY.

PREFIX - A COMPONENT OF AN ENTRY OF QUALTB. POINTS TO THE QUALTB'S

E~TRY CORRESPO~DI~G TO THE CLASS' PREFIX.

QTBVEC - AN ENTRY OF QUAl.TB.

156

QUAL - THE SEG~E~T DESIG~ATIOS OF THE CLASS THAT QQUALIFIES A
REFERE~CE. USUALLY A CO~PO~E~T OF GENUS.

QUALTB - A TABL GIV!~G THE PREIX SEQUE~CE OF CLASSES, EACH ENTRY
CORRESPO~LI~G TO A CLASS A~D CHARACTERIZED BY THE SEGMENT
DcSIG~ATIO~ OF THE CLASS.

RULE - A LIST OF I~STRS. THE OBJECT CODE GENERATED FOR THE STRING
DERIVED FRm1 A ;\O~TER~ll ~AL.

SEG~IE:\T - THE SEG~IE:\7 DESlG:\AT!O:\ OF A CLASS. USUALLY A COMPONE:-JT OF
A Sn1BOL TABLE EXT.RY.

SID - USED TO DISA~lBIGUATE ACTUAL PARAMETERS, ETC •• IDENTIFIES AN
EXPRESSIO~ AS A SISGLE E~TITY.

SL, 5~1, S:\ - HOLD EITHER A SEG:.:o:T DESll,;l\~TIO~ OR THE UNTQUE INTEGER
ASSOCIATED ~ITH A LABEL.

SP - THE SPE!.LI~G OF A~ I DE:\71 FI ER.

SPEC - THE GE:\US ASSOCIATED ~ITH A~ IDE:\TJFIER IN AN IDENTIFIER
LIST.

START - USED TO DI SA~lBIGU.l.TE SPLIT BODIES WHOSE FIRST STATEMENT IS
E~IPTY.

T - THE TYPE OF THE PRODUCT I~ A ~1ULTI PLICATIO~.
TYPO - THE GE:\US OF A~ IDE:\TIFIER BEING DECLARED.
TYPOS - THE GE:\US OF A SPECIFIER.

TYPE - THE TYPE OF A:\ IDE:\TIFIER.

T Jm1P - S nu LAR TO FJU~lP.

UNDECL - SA~1E STRUCTURE AS RULE. COLLECTS THE INSTRUCTIONS GENERATED
BY THE DECLARATIO~ OF LABELS.

USE - USE OF AX EXPRESSIOX: FOR ITS VALUE, ITS LOCATION OR FOR
LATER EXECUTIO~.

V - THE VALUE OF A~ I~TEGER.

157

VALESCE - CLASSIFIES "•" OR "-" AS EITHER A UNARV OR BINARY OPERATOR.

VIRDECL - COLLECTS THE I~STRS THAT REPLACE THE VIRTUAL ATTRIBUTES

THAT HAVE BEEN REDECLARED.

VIRTUALE - SY:..1BOL TABLE FOR.\IED BY THE VIRTUAL ATTRIBUTES OF A CLASS.

A COMPO~E~T OF A SniBOL TABLE ENTRY.

XX - A COMPO~E~T OF ITE.\1.

IOENTIFIERS ARE SIGMA ~ITH ATTRIBUTESP

INTEGERS ARE NU WITH ATTRIBUTE V

COM.\IE~T THE i=OLL0\\1 XG IS A LIST OF THE A"BBREVIATIONS USED FOR THE
SOSTERm~AL IDE~TIFIERS AND THE PRODUCTION WHICK FIRST
H l'\DS THE~I 0:-.: THE LEFT HA:\0 SIDE:

ABBREVIATION

AP
APL!ST
APPART
AOP
ARITEXPR
ARDECL
ARID
AR!Dl
ARL'ST
ARScG
A~ SST
ATTRID
BASI CST
BLOrh
BLOCKHEAD
BLOCKPP.E
BEXPR
BFAC
B PR I~~
BSEC
BTER~l
BOU:\D
BOUSDP
BOUNDPLIST

~OXTER~II SAL

ACTUAL PARA.\lETER
ACTUAL PARA.~ETER LIST
ACTUAL PARA~1ETER PART
ADDI:\G OPERATOR
ARITH~IETIC EXPRESSION
ARRAY DECLARATION
ARRAY IDE:\TIFIER
ARRAY IOE~TIFIER'
ARRAY LIST
ARRAY S EG~·IE:\T
ASSIG~:~IE~T STATE~IE:\T

ATTRIBUTE IDE:\TIFIER
BASIC STATEME:\T
BLOCK
BLOCK HEAD
BL.OCK PREFIX
BOOLEAS EXPRESSION
BOOLEA:-> FACTOR
BOOLEA:'\ PRnlARY
BOOLEA~ SECO~DARY
BOOLEA~ TER.~
BOU:-\0
BOU:\0 PAIR
BOU:\0 PAIR LIST

158

PRODUCTION

P95
P93
P91
P12
P7
P206
P212
P85
P208
P210
P283
P84
P273
P174
P184
P181
P103
Plll
PllS
Plll
P109
P216
P21S
P213

Cl.BODY
CLDECL
CLID
CLI Dl
CLID2
cc:.tPST
cmtPT
CO\DST
CO\:-iB!.OCKl
CO\~Sl.OCK2
CJ:\\CL
CO\~PART
co~::-.:sT
DECL
DESIGEXPR
DU~NYST
EXPR
FAC
FIXOPS
FP
FPLIST
FPPART
FU~C
GOTOST
IDl
IDLIST
IFCL
IFST
n1PL
l~ITOPS
LABELO
LABELl
LOCOBJ
LOGVAL
MBLOCK
MPART
MOP ART
MOP
~A~IEPART
OBJEXPR
OBJGEN
OBJREF
OBJREFREL
OBJREL
OTCL
PRE
PRIM
PROCBODY
PRODEGL
PROCHEAD
PROCID
PROCIDl
PROCID2
PROCST
PROGRAM
QUAL IF
QUALOBJ
REL

CLASS BODY
CLASS DECLARATION
CLAS) IDE\TJFIER
CLA5S IDE\TJFIER'
CLASS IDE\TJF!ER''
CO~POU\D STATEMEXT
co~.:?ou~;o r A 1 L
CO\DITIO\AL STATE~E~T
CO~.\ECTIO\ BL'JCK'
CO\\ECTIO\ BLOCK''
CO\\ECTlO\ CLAUSE
CC\\ECTJO\ PART
CO\\ECTJO\ STATE.\1E~T
DECLARATIOS
DESlG\ATIO~AL EXPRESSION
ou:.;·w S T A TE~iE\T
EXPRESS !OS
FACTOR
FI~:.,u OPERATJO\S
FOR~AL PARA~ETER
FOR~AL PARA~E7ER LIST
FOR~·I.U PAR,l.~.\ETER PART
FU\CT I 0\ DES l G:~ATOR
GO TO S T A TE~iE\T
IDE\TIFIER'
IDE\TIFIER LIST
IF CLAUSE
IF STATE\IE\T
D1PLICATIOX
I~ITIAL OPERATIOXS
LABEL
LABEL'
LOCAL OBJECT
LOGICAL VALUE
~1AI\ BLOCK
MAl\ PART
~lODE PART
~1ULTI PLI CATIO!<~ OPERATOR
!I:A~lE PART
OBJECT EXPRESSION
OBJECT GE~ERATOR
OBJECT REFEREXCE
OBJECT REFERE\CE RELATION
OBJECT RELATI0:-1
DTHER~ISE CLAUSE
PREFIX
PRIMARY
PROCEDURE BODY
PROCEDURE DECLARATION
PROCEDURE HEADit\G
PROCEDURE IDE~TIFIER
PROCEDURE IDE~TIFIER'
PROCEDURE IDE~TIFIER''
PROCEDURE STATEMEXT
PROGRA~1
QUA:IFICATIO:\
QUALIFIED OBJECT
RELATION

159

P256
P250
P2SSA
Pl58
P157A
P17l
P264
P298
P313
P314
P312
P310
P307
Pl86
P161
P296
Pl
P19
P262
P229
P227
P225
P89
P29S
P52
P234
P304
P303
P107
P259
P172A
Pl66
P159
P120
P182
P253
P230
P16
P236
P148
P157
P200
P136
Pl33
P315
P251
P21
P247
P222
P223
P224
P90
P287A
P297
·P169
P2Dl
P160
P122

REI.OP
REFASS
REFCO:·I?
REfJ:>:PR
R:.:rLi. ·.:
REFRPAR:
RFI-REL
REFTYPE
RID
SARITEXPR
SBCOL
SDESIGEXPR
SOB..iEXPR
SPPART
SPECIFIER
SPLITBODY
ST
STl
SLISEXPR
Sli2.LI ST
S\,'DECL
Sli'DES IG
S\,'1 D
S\·.'1 Dl
Sh'L I ST
TER\1
TYPE:-i
TYPEP
TYPEDECL
TYPELIST
U~CO:\DST
U~LBASICST
W\LBLOCK
U~LCO:.IP
U~LPREBLOCK
VA LASS
VALEXPR
VALLPART
\'ALP ART
VALRPART
VAL TYPE
VAR
viRPART
\..HI LE5T

NONTER!·1l :\ALS ARE

RELATIOXAL OPERATOR
REFERENCE ASSI~GME~T
REFERE:\CE C0~1PARATOR
REFERE~GE EXPRESSION
REFEREXCE LEFT PART
REFERE~CE RIGHT PART
REFERE:\CE RELATIO~
REFERE~:E TYPE
RE~IOTE I DE:-;TI FI ER
SI~lPLE ARITIDIETIC EXPRESSION
S ntPLE BOOLEA:-1
Sl~·IPLE DESIGNATIONAL EXPRESSION
Sl~IPLE OBJECT EXPRESSION
SPECIFIGATIO~ PART
SPECIFIER
SPLIT BODY
STA TE~1E:\T
STA TE~IE!\T'
SUBSCRIPT EXPRESSION
SUBSCRIPT LI~T
S~ITCH DECLARATION
S~ITCH DESIG~ATOR
S~ITCH IDE:\TIFIER
51,· ITCH I DE:\Ti F I ER'
S1dTCH LIST
TER\1
TYPE
PROCEDURE TYPE
TYPE DECLARATION
TYPE LIST
U~CO~DITIO!\AL STATE~E~T
U~LABELLED BASIC STATE.\1ENT
U~LABELLED BLOCK
UXLABELLED COMPOUND
UXL.-\BELLED PREFIXED BLOCK
VALUE ASSIGX~IE:\T
VALUE EXPRESSION
VALUE LEFT PART
\'ALUE PART
VALUE RIGHT PART
VALUE TYPE
VARIABLE
VIRTUAL PART
wHILE STATE.\1E~T

AP " S <RULE), I (E~V, ITE~, QUAl.iB, LL)
APLIST • S(L, RULE), ICE~V, ITEM, QUALT~ LL)
APPART • S CL, RULE), I (ENV, ITE~, QUALTB, LL)

160

P126
P290
P137
P147
P291
P293
P13S
P199
P83
pg
PlOS
P163
PlSO
P238
P240
P2S8
P26SA.
P266
Pas
P86
P218
P167
P218A.
Pl68
P219
P14
P193
P221A.
P192
P202
P270
P27S
P179
P173
P180
P38S
P4
P286
P232
P288
P195
P48
P254
PJOS;

AOP = S <RULE), I (\',;LE\CE)
ARITEXPR = 5(PL, RULE, SifJJ, !(E:\V, QUALTB, ITE~I, LL, USE, APA)

ARDECL = S <D, E, RliLEl, I (£:\VJ,, QUALTB, CL, DO, ITEM, LL, ENV)

ARID= S<SPl
ARID l = S 1? l.., RULE, 5?1, I (E:\V, USE, I TE\1, LL, APA, QUALTB)

ARLI ST "' S <D, E, RULEl, I COO, E:;\'A, ITE~1 LL, TYPO, QUALTB, CL)

ARSEG • 5 <D, E, L, RULE),
I <CL, DO, EWA, ITE\1, LL, TYPO, QUALTB>

AS SST • S (RU!.El, I !E\\', lTE~l, LL, QUALTB)
ATTRI D = 5 CPL, SPl, l (£:\\')

BASICST = S<D, E, Rl!:..E, U:\DECL, \'IRDECL, FIRSTST),
1 CLL, DO, E:\\', IT:E.\;, E:\\'1, QUALT,B, CL)

BLOCK " S CD, E, RULE, ti~:DECL, \'I ?.DEC!., :\OLABEL),
I <CL, DO, E:\\', .c~;Vl, E~..:\'A, ITE~1, Ll, BEGUN, QUALTB)

BLOCI\HEAD " 5 (0, E, RULE, :\U:.:DEC, AE:•lDEC, EMDEC, VIRDECL, CDECL',

I <CL, DO, E~V, E:\\'1, E:\VA, ITE~~. LL, QUALTB)

BLOCKPRE = S CPL, RULE), I <EW, ITE~1, LL, QUALTB>

BEXPR = S(PL, RULE, S!Dl, l (£:\\', ITE~I, LL, QUALTB, USE, APA)

BFAC = S<PI.., RULE, SID!, I CE:\V, ITE~·I, I..L, QUALTB, USE, APA)

BOU:..:o = S <RULE>, I cE::v,;, I iT.\, QUALTB, LL)

BPR !~I = 5 CPL, RULE, S I 0), ICE:\\', ITE~l. LL, QUALTB, USE, APA)

BSEC = S<PL, RULE, SiD), ICE:\\', ITE~I, LL, QUALTB, USE, APA)

BTER:-.1 = S(PL, RULEl, ICE:\V, ITE~l, LL, QUALTB, USE, APA)

BOU\DP " S CRULEl, I <E:\VA, ITE:,:, LL, QliALTBJ

BOU\DPLI ST = S <L, RIJLEl, I (EWA, ITE~l. LL, QUALTB>

CLBODY " ::; <D, E, RULE, u;;::JECL, \'I RDECI..J,
I CCL, DO, E~V, E~\'1, E\VA, lTE~. LL, QUALTS)

CLDECL = 5 <D, E, RULE), I CCL, DO, E~V, ITEM, QUALTB, LL)

CLIO= SC5Pl
CLI Dl :: S rPL, SPJ, I <EWl
CLI 02 = S <PL, RULE, SPl, ICE\\', lTE~i. Q:JALTB, LL, USE)

co~tPST = s cE, RULE, u::DECL, \'I:\DECL, m,
I CDO, lTE~l, E:\\'l, E~V. LL, QUALTB, CL)

COMPT • S<E, RULE, U~DECL, VIRJECL, 0, FIRSTST),

I CQUALTB, E\\', E\\'1, DO, LL, I7E.\1, CL)

CO:-:DST = S CD, E, OPE:\, RUl.E, U>:DECL, VIRDECL),
I (LL, DO, E~:v, E:\\'1, ITE~I, QUALTB, CL)

CO~~BLOCKl • SCD, E, OPE:\, RULE, U~DECL),

I <DO, E:..:v, !TE~·l, LL, BEGV:-1, QUP.l.TB)

CO~\BLOCK2 • S<D, E, OPE~. RULE, U\DECLJ,
I <DO, E\V, I TE\1, LL, BEGU:\, QUALTB)

CO~:\CL = S <OPE\, RULE), I \E:\V, ITE~, LL, FJUMP, TJUMP, QUALTB)

CO~:\PART = SCOPE~, RULE), I CE~:r, ITE~I, LL, FJUMP, TJUMP, QUALTB)

CO;\:\ST = S CO, E, O?E\, RU:.E, U\DECL, V!RDECLJ,
I COO, E~V, EWl, :TE~I, LL, QUALTB, CL)

DECL = S (0, E, RULE, VIRD::CL, CDECL, E~lDEC),

I CCL, DO, E\V ITE:•l, LL, E:\Vl, QUALTB, E~VA)

DES I GEXPR = S <RJJLEJ, I CEW, ITE:.t, QUALTB, APA, LL)

DU:O.I.\IYST = S (RULE)
EXPR .. S CPl., RULE), l CEV, ITE:.\, LL, QUALTB, APA, USE)

FAC = SCPL, RULE, SiJl, I<EW, ITE:.:, LL, QUALTB. APA, USE)

FI~JPS = SCE, RUL~ ~\DECL, VIR~EC~ 0),
I CLL, DO, E\V, E\Vl, ITEM, QUALTB, CL)

FP = S (SP >
FPLIST = SCD, :\TB), I <DOl
FPPART = 5 (0, ~;TB), ! (DO)
FU:\C = S (l., PL, RU!.E, SP), ICE:\\', IH:.:, QUALTB, LL, APA)

GOTOST • S(RULEI, I <EW, ITE~!, QUAL7B, l.L)

161 Reproduced from
best 11·· ailable copy.

I D • S CSP)
I 01 = S CPL, RULE, SP>, I <E:>:V, ITEM, QUALTB, LL, USE>
IDLIST .. S<~1ATRIX, L, El,

I CCL, E:\Vl, :.tAT, :\AMETB, LL, DO, TYPD, PLACE)
IFCL • S<RULEl, 1 <E~V, ITE~I, QUALTB, LL, FJUMP)
IFST • S<D, ~ RULE, U~DEC~ VIROECLl,

I CEW, ITEM, QUALTB, l.L, DO, ENVl, FJUMP)
ntPL • S<PL, RULE, SID>, I<EXV, ITE~I, QUALTB, LL, USE, APA)
I~ITOPS • S(O, E, RULE, U~DECL, VIRDECL, START, ARULE, EMDEC),

I CCL, DO, E~V, E~Vl, E:\VA, ITEM, QUALTB, LL)
LABELO .. S (SP>
LABELl • S <SP, PL, RULE), I <ENV, APA)
LOCOBJ • S <PL, R'JLE), I <E~\')
LOG\'AL "' S <RULE>
MBLOGK • SCD, E, RULE, U~DECL, VIRDECL),

I CCL, E~V, E~VA, E~Vl, ITEM, QUALTB, LL, DO, BEGUN)
MPART • S(~ PL, RULE, VIRDECL, SP),

I CCL, EW, IH~I, QUALTB, PPL, LL)
MOPART • S (MATRIX), ! ·~IAT, :-;A.\IETB)
MOP = s <PL, RULE) I I ('r)
NAMEPART • S (~IATRI X, ~'JA~IB), I (~lo\T, ~A~IETB)
OBJEXPR e S <PL, RULE, SID), I (E:\V, ITE~I, QUALTB, LL, USE, APA)
OBJGE~ "' S <PL, RULE), I <E:\V, ITE~I, QUALTB, LL, USE>
OBJREF = S <TYPOS), I (E~V)
OBJREFREL • S (RULE), I (E~V, ITE~l, QUALTB, LL, USE)
OBJREL "' S <RU!.El, I <E~V, ITEM, QUALTB, LL, USE)
OTCL • S <OPE~, RULE, U~DECL, VIROECL, D, E),

I <LL, 00, E:\V, EWl, ITEM, QUALTB, CL, 0)
PRE=SCPL), ICE:\V, LL)
PRIM " S <PL, RULE, SID), I <E~V, ITBI, QUALTB, LL, USE, APA)
PROCBODY SCRULE, U~DECL, E),

I (00, E~\', E~VA, EWl, ITEM, LL, QUALTB)
PROCDECL = S<D, E, RULE, VIRDECL),

I CCL, DO, E~V, E~Vl, ITa!, QUALTB, LL)
PROCHEAD "' S CD, E, RULE, SP), I (TYPO, LL, ENV)
PROCI 0 • S (SP)
PROCI Dl • S <PL, SP, RULE>, I (ENV, ITEM, OUALTB, LL, USE, APA)
PROCI 02 = S (PL, SP), I CE~V)
PrtOCST .. s (RULE) I I <ENV, ITEM, QUALTB, LL)
PROGRAM • S COR I G)
QUALIF"' S<PL), ICE:-..'V)
QUALOBJ • S <PL, RULE>, I <EXV, QUALTB, ITEM, LL, USE>.
REL : S(RULE, I CE~V, ITE~, QUALTB, LL, USE)
RELOP = S <RULE)
REFASS • S <P L, RULE), I <ENV, I TE~, QUALTB, LL, ALSO)
REFCmiP = ~(RULE)
REFEXPR • S (PL, RULE), I CE:-;V, ITE~I, QUALTB, LL, USE, APA)
REFLPART a S<PL, RULE), I<E~V, ITEM, QUALTB, LL, USE)
REFRPART a S <PL, RULE>, I CE:\V, ITEM, QUALTB, LL, USE, ALSO)
REFREL • S (RULE I, I <ENV, ITEM, QUALTB, LL, USE)
REFTYPE = S (TYPOS), I <ENV)
RI 0 = S CPL, ~ULE, SP>, I <E~V, ITE:-1, QUALTB, LL, USE)
SARITEXPR • S<PL, RULE, SID>, I <E~V, ITEM, QUALT~ LL, USE, APA)
SBOOL = S CPL, RULE, S I 0), I CE:\V, ITE.\1, QUALTB, LL, USE, APA)
SOESIGEXPR • S<RULE>, ICEW, ITE~, QUALTB, LL, APA)
SOBJEXPR"' S(PL, RULE, SID), ICE:\V, ITE~, QUALTB, LL, APA, USE)
SPPART • SCE, L, RULE, ~lATRIX),

I (NAMETB, CL, DO, ENVl, LL, LEGIT, PLACE)

162

.I

SPECIFIER= S<7YPDS>, I(E~V>
SPLITBODY = S CO, E, RULE, U\DECL, VIRDECLl,

I<CL, DO, EW, E\\1, E:\\'~, ITE~l, QUALTB, LL>
ST = S CD, E, OPE·:, RULE, U\DECL, VIRUJ:CL, flR5TST),

I <DO, E~V I E:-\\'1, I TE~1. LL, QUALTB, CL)
STl = S (0, E, OPE:\, RULE, U:\DEC!., VIRDECL, FIR5TST),

I (CL, DO, E:\V, E~Vl, E:\\A, ITE~1, OUTER.\105T, QUALTB, LL, BEGUN)
SUBEXPR = 5 <RULE>, I <E~V, I TE~i, LL, QUALTB, USE)
SUBLIST = S(L, RULE), ICE\\', ITE~1, l.l., QU·\i.TB)
5\~'DECL = S <D, E, RULE, VIRDECL>,

I (CL, DO, EW, E:\Vl, ITE:.J, L!., QUALTB)
S\~DE5IG = 5CRULE), l(E:-;V, ITE~1, QUAL"'''B, LL, APA)
S\"1 D , S <SP>
S\vl Dl • S <Pl., RULE, SP), I (E:\V, APA)
S~LIST = S(l., RULE), ; <E~V, ITEM, L~ QUALTB)
TER~1 = S <PL, RULE, 51 D>, I <E:\V, ITE.\1, LL, QUALTB, USE, APA)
TYPE:\ " S <TYPOS>, I Cc\V)
TYPEP = S (TYPOS>, I tE\V>
TYPEDECL 5 CD, E, RULE>, I CCL, DO, E:\V, LL)
TYPELI 5T 5 (D, E>, I CCL, DO, TYPO, LL)
U:\CO\DST • S<D, E, RULE, U\DECL, VIRDECL, FIRSTST),

I CCL, DO, E\V, E:\Vl, EWA, ITEM, OUTERMOST, QUALTB, LL,
BEGUX)

UNLBA51CST " S<RULE, F!R5TST>, I <Er.:V, ITEM, LL, QUALTB, CL)
U:\LBLOCK = 5(0, ~ RULE, U:\DECL, VIRDECL),

I <CL, DO, E:\V, E\Vl, E!':VA, ITE.\1, QUALTB, LL, BEGUN)
U~LCm1P • 5(0, E, RULE, U~DECL, VIRDECL),

I <DO, EW, E:-JVl, ITE~!, QUALTB, LL, CL)
UNLPREBLOC~ • S(D, E, RULE, USDECL, VIRDECL),

I I (E:\V, ITE~1, LL, QUALTB)
VALASS = CPL, RULE), I <EN\', ITE~l, QUALTB, LL, ALSO)
VALEXPR = SCPL, RULE), ! (E~V, ITEM, QUALTB, L~ US~ APA)
VALLPARi = S CPL, RULE), I CEW, ITE.\1, QUALTB, LL, USE)
VALPART = s (~lATRIX, ~:OA~IS) I I <~1AT, :\A.\1ET8)
VALRPART .. S CPL, RULE>, I <EW, lTD!, QUALTB, LL, USE, ALSO)
VALTYPE = SCTYPDS)
VAR .. S (PL, RULE, S?, DAR>, I <EW, ITEM, QUALTB, LL, USE, APA)
VIRTPART = S <E, L, li.ULE), I (CL, DO, EXV!, LL)
WHILEST • S<D, E, OPE~, RULE, U~OEl.L, VIRDECL),

I CLL, DO, E:-JV, E~Vl, ~iE.\1, QUALTB, CL)

START SntBOL P.P.CuRA~1

FORMATS ARE

F 1 = ("GO (". D I s pI ") ..)
F2 • C"AR <", OPER, ") ")
F3 • l"CCI~TEGER<VALUE•", V, "))")
F4 = C"I~X(", USE,")")
~5 • C"VAL(ADDR•(", ADDR, "), REM>">
F6 ., ("ADR(AODR•(", ADDR, "), REM)")
F7 .. ("\'AL(ADDRs(", ADDR, "))")
F8 • C"ADRCADDR=(", ADDR, "))")
F9 • C"C C", OPER, "> ")

163

FlO • ("E~T">
Fll • ("MARK")
F12 • <"RET")
F13 • ("CCACTUAL(BODY•", S~, ", LEVEL•", LL, ",QUAL•", QUAL,

",UNDERTYPE•", TYPE, "))")
F14 • <"LOG(", OPER, ") ")
FlS • C"CCBOOLEANCVALUE•", OPER, "))")
F16 • ("COMP <", OPER, "> ">
F17 • ("IFJC", DISP, ">">
F18 • ("C CREFCQUAL•", QUAL,", VALUE•", OPER, 11)) ")

F19 • C"GE~C",~FOR~IALS,">">
F20 • C"C<LABELCSEG~IE~T·",SN,",DISP•",DISP,"))")
F21 • C"L~•", L:\, ", D~•", 0~)
F22 • ("EXT <LEVEL•", LL, ", BODY•", SN, ") ")
F23 • ("~1AKCGENUS•{",GEt\US,">,~•",L,"COPIES•",0,")")
F24 • C"CCSWITCHLIST•",SN,",LENGTH•",L,")")
F25 • <"DEL")
F26 • ("RES">
F27 • ("DET")
F28 • ("STO (",ALSO,")")
F29 "' ("GO")
FJC • ("C <RET)")
F31 • <"~Eh' OBJECT(BODY=", SN, "IS,.", SM, ", PREF!X•'', OBJECT,")")
F32 • ("CCCLASS(PROTOTYPE•".~~·.",LE'vEL•",LL,"))")
F33 • ("CCPROCED!IPE{~~·vt:l.•", LL", SEGME!I:T•", SN, "))")
F34 = ("C!IE i.U•", D, ", GE~US• (", GE~US, "), ~10DE•", MODE,", CLASS•", ALSO,")")
FJS • C"DETCTER)") .
F36,. ("KIND•",KIND,",TYPE•",TYPE,",QUAL•",QUAL)

PROCEDURE AUX <CLASS~, QUALTB>;
CO~~IE~T THIS PROCEDURE DOES THE WORK FOa UPDQUALTB BY ACTUALLY

I~SERTING THE NE~ ENTRIES;

S/ QUAL :• (CLASSN]. PREF;
UUTIN CQUALTB. ((CLASS:-J]. SEGME~TJ: CLASSN : • CLASSN;

PREFIX :• IF QUAL • 0 THEN NIL ELSE QUALTB. [QUALl;
LEVEL : • IF QUAL • 0 THEN 0 ELSE QUALTB. [QUAL]. LEVEL+l) /S;

FUNCTION BACTUAL (GE~US, LL, S~);
BEGIN COM~ENT THIS FUNCTIOX WILL BUILD AND RETURN A RULE WITH AN

INSTRUCTION CCACTUAL) WITH THE PROPER OPERANDS;

I~STR : • $ <FOR.\1AT : • Fl3; SN : • SN; LL : •LL + 1;
TYPE :• GENUS.TYPE>;

LIST(IF NULLR(FINDCGE~US, QUAL)) THE~ INSTR ELSE
PUTINCINSTR: QUAL :• GENUS.QUAL))

END;

164

FUXCTJO~ BUILDVC CKI~D, L1;
BEG!~ CO~l:·IE~T THIS PRODUCES A LIST OF L C-INSTRUCTIONS, ALL OF KIND

"KI~D", FOR P239;

RULE : ~ ~ULL;
1\Hl LE L>O DO
BEGJ~

RULE: • CO~S<I~STR *• $CFO~~AT: a F9; OPER :• KIND), RULE);
L:aL-1

E:\0;
RULE

END;

FU:-<CTJO:\ CHECKIDE~TJFIER <ITE~·l, QUALTB, ATTR>:
BEGIN CO~t\1E:\T ·.HIS CHECKS TO SEE IF A~Y CF THE COMPO:-:ENTS XX OF

ITE~I CO~TAI:\ A QUALIFICATIO:\ SUCH THAT XX.QUAL IN ATTR. IF
TRUE THE ADDR OF THE CORRESPONDI~G XX IS RETURNED OTHERWISE
~ULL IS RETUR~ED. THIS FUNCTION IS USED TO LOCATE VA~IABLES
THAT ARE I~ THE STACK OF M~CTHER OBJECT TO \\'HICH THE PRESENT
OBJECT IS CO:\~ECTED. THE Ll ST ITEM CONTAINS THE ADDR OF
I·.'ORDS I~ THE STACK THAT REFERENCES OBJECTS CONNECTED TO THIS
ONE;

IF ATTR • 0 OR :\ULL6(1T~~) THEN NULL ELSE
BEG!:\

~EXTl : • QUALTB. [ATTRl i LEVEL : • [NEXTll. LEVEL;
XX ; = CAR (1 TE~I);
WHILE -.NULLBCXX) DO
BEGI~

:\EXT2 : = QUAL To. [XX. QUAL); ~l : • [NEXT2l. LEVEL - LEVEL;
IF ~1 >• 0 THE~
BEG!:\

\\'HILE :\1 > 0 DO
BEGJ:-i

SEXT2 :• [[~EXT2).PREFIX]; N :• N-1
E~D;
IF NEXTl • NEXT2 THE~ GO TO FINISH

E:-JD;
ITE~I : • CDR CITEM); XX : ,. CAR {ITE~t>

END;
FI:-;ISH: XX.ADDR

E:\0
E:\D;

FUXCTIO~ CHECKKI~D (GE:\US);
BEG! X CQ~.1ENT THIS FU:\CTJO~ J S USED TO CHECK IF FORMAL PARAMETERS

HAVE THE PROPER ~lODE. THE RESULT IS A BOOLEAN;

KI~D : • GE~US KI~D;
KIND • "LA8EL" OR KI~D • "SI\ITCH" OR KI:-:D • "PROCEDURE"

END;

165

PROCEDURE CHECKSPEC \~ATRIX,D>;
BEGI~ CO~~~E~T THIS PROCEDURE ~ILL CHECK TO SEE IF ALL D FORMAL

PAR~\tETERS OF MATRIX HAVE BEE~ SPECIFIED;

~EXTl : = FIRST C.IATRIX);
\vHI LE -.NULLB (NEXTl) DO
BEGJ N NEXTl : • NEXT ([NEXTl]); D : • D - 1 END;
IF D >• 0 THEN
ERRORC"PROCEDURE OR CLASS HAS UNSPECIFIED FORMAL PARAMETERS")

END;

FUNCTION CHECKVIRT CFXVl, SP, OPERl;
BEGl N C0~1.\1ENT THIS CHECKS IF SP IS A~ ENTRY IN VIRTUALE: IF TRUE

IT RETUR~S ADDR. D~, IF ~OT ZERO;

NEXTl : • FI~DCE!\Vl, CSPJ);
IF NULLBCNEXTl) THE~ D~ :• 0 ELSE
IF [NEXTll.GE~US.KIXD = OPER THEN D~ := (NEXTl].ADDR.DN ELSE
ERROR<SP, ., HAS BEE!'l DECLARED T~ICE, ONCE AS A VIRTUAL">;
DX;

END;

FUXCTION CHERULES C.IATRIX, ALSO, D, DOl;
BEGI~ CO~~IE!\T THIS WILL BUILD THE SEQUE~CE OF CHE INSTRUCTIO~S

THAT HEAD THE RULE FOR A PROCEDURE OR A CLASS;

RULE :a NULL; NEXTl : • FIND(MATRlX, (0]);
\VHILE -.NULLB <NEXTl) 00
BEGIN

E~Di
RULE

END;

RULE: • CO~S<INSTR *• S<FO~~T :• Fl4; ALSO: • ALSO;
GENUS :• (NEXTl].SPEC :• $(FORMAT :• F36);
D: • D -DO; MODE :• [NEXT1l.MODE), RULE);

D : • D-1; NEXTl : • FIND <MATRIX, (0])

FUNCTION C0~1BTYPE (PL, PLl);
BEGJ~ C0~1\1E~T THIS 1\ILL EXA~1IXE THE TYPE OF BOTH PLtS AND IF BOTH

ARE NOT "IXTEGER" IT RETURNS "REAL" OTHERWISE THE VALUE OF
THE C0~1PONENT TYPE OF PLl IS RETURNED. THE VALUES ARE
EITHER "INTEGER" OR "REAL";

JF PL.GENUS.TYPE .,. "INTEGER" THEN "REAL" ELSE PLl.GENUS.TYPE

:END;

FUNCTION CONCATENATE (RULEl, RULE2);
BEGIN COM.\1ENT THIS WILL CONCATENATE TWO RULES, ONE REPRESENTING THE

PREFIX PART AND THE OTHER THE MAIN PART OF A CLASS BODY.

166

THE CO:\CATE:\.l.T!O\ IS GO\E 1\ THE FOLLO\\ING FORM (USING

1\!L'\ER'S >;OTATIO:\): CHE<P) C<P) CHE(~1) C(M) lN\T 1 <P> I (M)

1~\Ei F<Ml F<Pl. ~HILE THE LIST RULE2 I~ USED DIRECTLY,

RULEl 15 COPIED BY BUlLDl:\G THE :-\ECESSARY NE\~ LISTS;

CO~t\IE:\T FIRST BUILD A. CO?Y OF CHE(P) AND C(P) PARTS OF RULE.

THE FIRST PSEUDO-l~STRUCTIO~ MARK FOU~D lS THE INIT OF RULEl;

RULE : = :.mLL;
\·:HILE :\ULLR<Fl:\D(CAR<RUI.El), ~1ARK)) DO

BEGI:\
RilLE : • CO:\S (CAR <RULE l), RULE); RULE : • CDR (RULE1)

E\D;
CO~t\t\lE~T ~:0\i I·:E COPY CHE <MJ A\D C (M);

~HILE ~ULLRCFISD(CAR(RU~E2l, ~ARK)) DO

BEG!:\
RULE:= CO~SCCAR(RULE2), RULE); RULE2: a CUR(RULE2)

E:\D;
CO~L\IEST 1:\SER:· 1:\!T !:\THE :\Eli RULE;

RULE :" CO:'\S <CAR (\U:.Ell RULE); RULE1 :" CDR (RULEl);

CO:·I~IE:~T COPY THE ! <Pl. THE E~D OF I (P) 1 S MARKED BY A MARK

PSEU~0-1:\SThUCTJO~;

\-,'HI I.E -.~Ul.LR CFI:\D <C,l.R <RUl.El), ~·lARK)) 00

BEGJ:\
RULE : = CO~S CCAR <RIJLEU, RUI.El i RULU : • CDR <RULE1);

E\D;
CO~~\IE\T :\01,'1\E F.E\'ERSE RULE . .\\D APPF:-.D 101) l~NER F(~l) \\'HICH IS

\0\·: COR <RULE2l n- E H.-WE TO EL!~.miATt: THE INI!l AND THE~ REVERSE

IT. AGAI:: TAKE THE CDR (TO El..I~1l\ATE THE DET l~STRUCTIOI\ AT THE

E\D OF RULE2) A~:D THE~ COPY F CP). THE REASOS m: HAVE TO COPY F (P)

A~D CA~~OT SI:.IPLY APPE>;D IT IS THAT THE JUMP l!':STRUCTIO~S

<GO & IFJ> \:ILL H .. WE DIFFERE\T DISPLACE~\E~T VALUES DBPEZ\DING ON

THE CODE SEG\lE:'\T;

RU~E: = CDRCRVRSI~?ESD,RVRSCRULE), CDRCRULE2>>>>;

f-UI.El : = COR(RU!.EU;
~HILE -.\UI.LB(RULEll DO
f.l=G]':

RULE:= CO\SCCARCRUl.Ell. RULE); RULEl :• CDRCRULEU

E:\D;
RVRS \RULEJ

E:-.:0;

FU~CTIO~ CO\~QUAL <QUALT3, QUALl, QUAL2);

BEGI\ C0'.;\1:'\T TiiiS T.\KE5 THE QUALIFICATIO~S OF TI:O CLASSES

.:1:\0 0\JTPUTS THE QU.l.LIFICATIO:; OF THE CLASS \\HICH IS

THE LAST 1~ THE:R PREFIX SEQUENCE THAT IS COM:-.10N TO

BOTH;

CO~l:.!EH I P o::E OF THE-:·1 IS ".\0:\E" THE RESULT IS THE QUALlFICA";ION

OF TnE OTHER;

IF QUALl • 0 7HEX QUAL2 ELSE

167

IF QUAL2 < 0 THE~ QUALl ELSE
BEGIN

NEXTl : • QUALTS. [QUALll; NEXT2 : • QUALTB. [QUAL2);
Nl : • [NEXTll. LEVEL; N2 : • (r\EXT2). LEVEL;
COM~ENT NOW IF ~1 > N2 WE INVERT THE TWO AND ALSO NEXT;

IF Nl > ~2 THEN
BEGIN

~ :• (~HI; Nl :• [N2); N2 :• (NJ;
NEXT3 :• CNEXTlli NEXTl :• CNEXT2J; NEXT2 :• tNEXT3)

END;
CO~~ENT NOW IF Nl # N2 WE TAKE THE ANCESTOR OP NEXT2 UNTIL

Nl • N2;.

WHILE Nl ~• N2 DO
BEGIN

NEXT2 :• ([NEXT2J.PREFIXJ; N2 :•. N2 -1
END;
COM~ENT NOW WE LOOK FOR THE CO~~ON ANCESTOR

WHILE NEXTl ~· NEXT2 00
BEGIN

NEXTl: • [[~EXTl). PREFIXJ; NEXT2 :• ((NEXT2l.PREFIXl;
IF NULLBCNEXTl) THEN ERROR("!110 COMMON ANCESTOR">

END;
SELECTOR< I!IIEXTll)

E~D
E!I:D;

PROCEDURE DI SA.\1V CSP, DAR, CO~O, PL, APA);
BEGIN CO~IENT THIS CHECKS FOR A.\1BIGUITIES AND DISAMBIGUATES NODES.

IT IS CALLED BY P22 AND Pl16. THE AMBIGUITIES RESULT FROM
ACTUAL PARA.\1ETERS THAT PARSE TO A SINGLE ENTITY. AMBIGUITIES
ALSO ARISE \~HEN THE RHS OF A VALUE ASSlGl\'MENT PARSES TO A
A SINGLE ENTITY AND \\'KEN A PRIMARY PARSES TO AN IDENTIFIER;

TYPE: • PL.GENUS.TYPE; KIND: • FL. GENUS. KIND;
IF APA • 4 THEN DAMB(KIND ..,. "PROCEDURE", PRIM) ELSE
I F ~ DAR THE~l
BEGit\ cmt.t.ENT TKIS IS ~OT AN ARRAY;

IF APA • 0 THE:\
BEGIN CO~l\1ENT THIS IS A.\18IGUOUS BECAUS~ EVERY PRIMARY CAN 8E A

VARIABLE OR A FU~CTION DESIGNA70R WITH NO PARAMETERS;

IF KIND • "SIMPLE" THE~
BEGIN

IF ~ CO~D THE~ D~~BCTRUE, PRIM) ELSE
ERRORCSP, " IS OF THE ~RO~G TYPE")

E~D ELSE
IF XIND • "PROCEDURE" THEN DAMB(FALSE, rRI\1) ELSE
ERRORCSP, " IS OF THE WRO~G KIND")

END ELSE
IF APA • 1 THEN
BEGIN CO~\ lENT THIS IS THE AMBIGUITY DUE TO TKE RIGHT HAND SIDE

OF A VALUE ASSIG~ME~T;

168

iF ~1~0 a "Sl~?LE" THE~
!.>EGI~

IF CO\'[J THE:\
BEG I~:

IF TYPE "REF" THE!\ DA~·iB <FALSE, VAL~XPR) ELSE
ERROR <SP," IS OF THE h'RO:\G TYPE")

E\'D ELSE
BEG!\ DA~.:B<TRUE, PRD1); DA~1BCTRUE, VALEXPR) END

c\D ELSE
IF K I :.:o "' "PROCEDURE" T!-lE~ DA~1B <FALSE, PRIM) ELSE
ERRORCSP, "IS OF THE 1\i\O~G-KIND")

E:\D ELSE
IF APA .. 3 THE\
BEGI:-.1 ·Cml~lEH THlS IS A~ ACTUAL PARA~1ETER AMBIGUITY;

IF KI~D "SI~P~E" THE\
BEGI:\

IF K i :\D " "LABEL" THE:\ :::JA~I!HFALSE, EXPR)
ELSE DA~B(FALSE,AP)

ED ELSE
IF CO\D THE\
BEG!:\

IF TYPE ..,. •REF" THE\ DAMBCFALSE, VALEXPR)
ELSE DA~lB <FALSE, EXPR)

E:..:r.. ELSE
BEGi:\

DA:.l!HTRUE, PRniJ; DA~lB (fRUE, VALEXPR); DAMB (TRUE, EXPR>;
DA~lB (TRUE, AP)

ED
E\'D ELSE
CO~l:.JE\'T THIS IS AJf ACTUAL PARA~1ETER \\'HIGH IS ENCLOSED IN

PAR E\TH ES ES;

IF K I \'D = "LABJL• fHEN DAMB (FALSE, EXPR) ELSE
IF Kl\D = "SWl.,..OR KIND .. "ARRAY" THEN
ERROR <SP, " IS OIJfiiE WIONG Kl:\0") ELSE
IF C0\0 THEN
BEG!\

lF TYPE • "REFft THEN DAM8(FALSE, EXPR)
ELSE DAMBCFALSE, VALEXPR)

E:~o ELSE
IF t: 1 ~D = "fROCEDURE" THE:\ OA.\IBCFALSE, PRIM) ELSE
BEG!:--; DA~!B(TRUE, PRim; DA~1BC7Ri.IE, VALEXPR)j DAMBCTRUE, EXPR)
E~D

E:\D ELSE
CO~i~IE:\T IT IS A:-.; ARRAY;

IF APA = 0 THE:-i
BEG!~ C0~1\1E:\T NO A~IBIGUJTY HERE;

IF CO\D OR KISD ~· "ARRAY THE~
ERRORCSP, '' HAS WRO:-iG TYPE OR KI~D")

E:\D ELSE
IF APA • 1 THE!\'
BEG!~ CO~t\lE!\T THIS IS THE RIGHT HAXD SIDE AMBIGUITY;

IF KI\0 • "ARRAY" THE~ DAMBhCOXO, VAl.EXPR) ELSE

169

ERRORCSP, " IS OF THE WRONG Kl~D")
E~D ELSE
CO~~ENT THIS IS THE ACTUAL PARAMETER AMBIGUITY;

IF KIND ~· "ARRAY" THEN
BEGIN

IF KIND • "SWITCH" THEN D~~BCFALSE, EXPR) ELSE
ERRORCSP, " IS OF THE WRONG KINO")

E:\0 ELSE
IF COND THEil<
BEGIN

IF TYPE ~· "REF" THEN D~\18(FALSE, VALEXPR)
ELSE D~~B(FALSE, EXPR>

EXD ELSE
BEGIN D~~B(TRUE, VALEXPR>; D~~B<TRUE,EXPR) END

END;

PROCEDURE DI SAMF (SP, CO!>O, APA, L);
BEGI:-1 COM.\IE;.,;T THIS IS SIMILAR TO DIS~\IV BUT HERE THE ARRAY PROBLEM

DOES NOT ARISE;

KI~D: ~PL. GENUS. KIND: TYPE :• PL. GENUS. TYPE;
IF APA • 4 THEN D~\18 (KIND "SIMPLE", PRIM)
IF L • 0 THE~
BEGIN CO~\IENT PROC':DURE WITH NO PAR~\1ETERS;

IF APA • 0 THEN
BEGIN CO!ot\1ENT THIS IS THE A~1BIGUITY CF THE PRIMARY;

IF KIND "PROCEDURE" THEN
BEGI:>;

IF KIND • "SIMPLE" THEt\ DA~IB~FALSE, PRIM) ELSE
ERRORCSP, " IS OF "-'ROI\G KIND")

END ELSE
IF -.COND THE~ D~~B(TRUE, PRIM) ELSE
ERROR (SP, " IS OF WRO~G TYPE")

E~D ELSE
IF APA ,. 1 THEN
BEGIN CO~r·IENT THIS IS ~VIBIGUITY FROM VALUE RIGHT HAND SIDE;

IF KIND .,. "PROCEDURE" THEN
BEGIN

IF):IND • "SIMPLE" THEN DAMBCFALSE, ?RIM) ELSE
ERRORCSP, " IS OF THE WRO~G KIND")

END EL:iE
IF -.CCi~D THEN
BEGIN

DAMBCTRUE, PRIM); DAMB(TRUE, VALEXPR)
END ELSE
IF TYPE.,. "REF" THE~ DAMB(FALSE, VALEXPR) ELSE
ERROR(SP, " IS OF THE WRO~G TYPE")

E~D ELSE
IF APA • 2 THEN
BEGIN COMMENT THIS IS THE ACTUAL PARAMETER AMBIGUITY;

IF KIND ~· "SIMPLE" THEN D~~B<FALSE, AP) ELSE

170

IF -.Cm!O THE!\ DA~\B (F.\l.SE, PR1~1) ELSE
IF TYPE "REF" THEX DA~B<FALSE, VALEXPRl

ELSE DA.\IB <FALSE, EXPR)
E~D ELSE
COM.\IE:\T THIS 1:; A~ ACTUAL PARA~IETER ·ENCLOSED lN PAR.ETHES I Si

IF KISO a "LABEL" THE~ DAMB(fALSE, EXPR> ELSE
IF KISD • "S~ITCH" OR Kl\0 = "ARRAY" THEN
ERROR<SP, " IS OF THE ~aOXG KIXD") ELSE
I F C0:-\0 THE:\
BEGI~

IF TYPE • "REF" THE~ DA~B<FALSE, EXPRl
ELSE DA\18 (FALSE, VALEXPR)

E~D ELSE
IF KIND = "SIMPLE" THE~ DAMBCFALS~ PRIM> ELSE
BEGI~ DA~IIHTRUE, PRDl); DA.\IB(TRUE, VALEXPR>; DAMBCTRUE, EXPR)
END

E~D ELSE
CO~L\IE~T THIS IS A PROCEDURE \~"ITH PARAMETERS;

IF Kl:-JD ... "PROCEDURE" THEX ERROR(SP, " IS OF THE WRONG KIND")
ELSE
IF APA • 0 THE~
BEGIN

IF CO~D THEN EKROR(SP, " IS OF THE wRONG TYPE")
E~D ELSE
IF APA = 1 THE~:
BEGI:\

IF -.CO~D THE:\ DA~.JB <TRUE, VALEXPR) ELSE
IF TYPE ..,. REF THE~: DA:·IB (FALSE, VALEXPR> ELSE
ERROR(SP, " IS OF THE ~RO~G TYPE")

E~D ELSE
COM.\IENT TH 1 S IS '!HE AP AMS I GU I TY;

IF -.COND THE:\ BEGI t-4 DA~IB <TRUE, VALEXPR): DAMB (TRUE, EXPR) END ELSE
IF TYPE ... "REF" THE~ OA.\IBCFALS.E, VALEXPR> ELSE DAMBCFALSE, EXPR)

END;

FUNCT I 0:\ F I XC0:\0 CRULE, S~·l, S~l;
8EGIX CO~r.IE~T THIS I.-ILL HA~DLE THE ATTACID1E~T OF THE LABEL PSEUDO-

I ~STP.UCTJ O~S .-'.:\D THE GO I ~STRUCTI ON TO ":'HE RULE
CORReSFO~OI~G TO THE ELSE P~RT OF A CO~DlT!O~AL EXPRESSION.
SM ST,\~DS FOR THE L.l.eEI. OF THE INSTRUCTION FOLLOY.'I~G THE
CO~DI!IO~ . .U ,;~o s:\ FOR THE LABEL OF THE RULE ~SSOCIATED
WITH THE ELSE. THE AUG:OIE:\TEO RULE IS RETURNED;

CONS 0 :\STR u S (FOR~·IAT : • Fl; JLABEL : • SM),

END;

CONSfi~STR •• S<LABELI :• 5~),
APE~DCRULE, LIST(l~STR •• $(LABELl ;• SM)))))

lt"'roclucecl from
best available copy.

FU~CTlO~ I~VDELT~ (E~V, E);
BEGIN CO~~\IE:\T THIS PROCEDURE MERGES n.·o SYMBOL TABl-ES, ENV

171

REPRESENTIXG THE GLOBAL E~VIRO~~E~T AND E THE LOCAL ONE.
THE ALGOL RE~~~ING RULES ARE FOLLOWED. THE RESULTING
TABLE IS RETUR~EO. ~OTICE THAT E IS MODIFIED BUT NOT ENV;

NEXTl :• FIRST(ENV>;
WHILE ~~ULLB(NEXTl) DO
BEGIN

OPER : • SELECTOR ([!'JEXTl));
IF NULLR <F I SO <E, [OPERl}) THE:-t E : • * [NEXTll;
NEXTl : • NEXT ([NEXTll)

END;
E

END;

PROCEDURE OUTPUT CSN, RULE);
BEGIN CO~~ENT THIS PROCEDURE HANDLES THE OUTPUT OF THE LIST RULE.

ADDITIO~ALLY IT BINDS LABELS AND ADDRESSES THROUGH A TABLE
MAP Cl~tPLE.\IE!IiTED AS A CO:-\STRUCT). THE LABELLING AND
81:-.:JI!\G MECHA~IS~I ARE THE S~\1E AS THE ONE USED FOR
TURII\GOL. 1:-iSTRUCTJONS '{JTH A COMPONENT JLABEL ARE COPIED
TO AVOID THE PROBLE.\1 THAT ARISES WHEN AN INSTRUCTION
BELO:-lGING TO A CLASS SEGMEI\T IS ALSO PART OF THE CLASS
SEG~E:-iT Of A CLASS HAVING THE FIRST ONF. AS A PREFIX;

D : • 1; W'RITE(/, SN);
WHILE ~NULLB<RULE)DO
BEGIN

NEXTl : • CAR<RULE>;
IF ... ~ULLR <F 1 ND ([NEXTll, FOR~1AT)) THE:-J
BEGIN COM~E!\T THIS IS A~ INSTRUCT[ON SINCE ONLY INSTRUCTIONS

HAVE A FOR~l.AT COMPO!\ENT. OTHERWISE IT IS A PSEUDO­
INSTRUCTIO~. THE I~STRUCTIO~ IS COPIED, THE LABEL IN
JLABEL IS BOUND TO AN ADDRESS AND THE SEGMENT NUMBER
IS I~CLUDED. THE LABEL IS BOU~D IN PARALLEL WITH THE
PROCEDURE PLACE TO AVOID PASSIVATIONS DUE TO FORWARD
JUMPS;

D : • D • 1; IF -.NULLR (fIND ([NEXTl), JLABEL)) THEN
BEGiN

[~EXTl) : • I [~EXTll; [NEXTll. S~ : • SN;
PLACE ([NEXTl], MAP)

E~D;
"'RITE U, [NEXTll)

END ELSE
£F ~NULLR<FINDC[NEXTll, LABELl)) THEN
COMMENT THIS IS A LABEL PSEUDO-INSTRUCTION. UPDATE MAP;

MAP. [[NEXTl].LABELl) :• [lJJ;

E:\D
END;

RULE :• CDR(RULE)

PROCEDURE PLACE (NEXTl, MAP>;
COMMENT THIS PROCEDURE WILL BI~D ~ LABEL WITH AN ADDRESS IN

172

PARALLEL;

$/ [:\EXTll. DISP : • ~lAP. [[~EX11]. JLABELl /$;

FU~CTIO:-; PUT! I <RULE, CO:\Dl;
BEGI:-1 CO:\t.IE:\T THIS \,"JLI.. Pl.ACE ~lARKERS FOR !~IT AND INNER AT THE

BEGIX\I~G A\D AT THE E:\0 OF A RULE, IF COND IS TRUE. THE
~lARKERS ARE PSEU:l0-1:\STRUCHOSS \~ITH A COMPONENT MARK: IT
IS USED TO PUT ~IARKERS I X THE RULE OF CLASS BODY WHEN IT IS
~EITHER A SPLIT BODY OR A BLOCK;

E:\D;

IF CO~D THE\ CO:\S(l:\STR •= t<~ARK :• "!NIT"),
APE\D(RULE, LlST(lNSTR •• $(MARK :• "INNER"))))

ELSE RULE

PROCEDURE SUBORDl:\~TE CQUALTB, GE\USl, GE~US2);

BEG!~ CO~~IENT THIS PROCEDURE CHECKS TO SEE IF THE SIMULA
SUBORDINATIO~ RULES ARE RESPECTED;

TYPE : = GEXUSl. TYPE;
IF TYPE ~· "U" THE~
BEG I:\

TYPEl : • GE~US2.TYPE;
IF TYPEl ..,. TYPE2 THE\ ERROR("SUBORDit\ATION RULES VIOLATED")
ELSE
IF TYPE2 • "REF" THE~
BEl.il:\

END
Et\D

E~D;

ATTR :• GE\USl.QUAL;
XEXTl : • QUALTB. LATTR] i LEVEL : • [NEXTll. LEVEL;
~EXT2 : " QUAI.TB. [GE\US2. QUAL];
LEVEL : = (~EXT2). LEVEL - LEVEL;
IF LEVEL < 0 THE~ ERROR C"SUBORDI:\ATION RULES VIOLATED">
ELSE
lHILE LEVEL > 0 DO
BEGI~

~EXT2: = ll\~XT.U. PREFIXj; LEVEL: • LEVEL- 1
E:\D;
IF ~EXTl ~= :\EXT2 THE~
ERROR<"SUBORDI~ATIO~ RULES VIOLATED")

FU~GTION U~!ONDOT <E, El>;
BEGIN CO~l\ltXT THIS FUXCTIOt\ \\ILL JOIN T\-<0 SYMBOL TABLES AND IF

THERE ARE co:.r.lO~ :\A~ES A:.10~G THE COMPONENTS AN ERROR : S
~OTED. E CHA~GES BUT ~OT El;

HXTl : • FIRST <E 1) ;

~HILE -.NULLB<NEXTll DO
BEGIN

173

OPER :• SELECTOR([~EXTl));
IF KULLR<FIND<E, [OPER))) THE~ E :• •!NEXTlJ ELSE
ERROR(OPER, " HAS BEEN DECLARED TWICE");
NEXT1 : • NEXT ([NEXTl])

E~D;
E

END;

FUNCTION !J~IO:'\R (VIRDECL, VIRDECLl);
BEGIN CO~t\iENT THIS FU~CTION WILL TAKE TI~O CONSTRUCTS AND MERGE THEM

WITH THE FIRST ONE BEING RETURNED MODIFIED AND THE SECOND
O~E RE.\1AINING m~CHA~GED;

t-;EXTl : • FIRST(VIRDECLD;
WHILE ~NULL<NEXTl) DO
BEGI~ VIRDECL: • •!NEXTll; NEXTl :• NEXT((NEXTll) END;
VJRDECL

END;

FUNCTION UPDQUALTB <QUALTB, CDECL);
BEGJ~ COM.\IENT THIS PROCEDURE \~ILL :J?DATE QUALTB BY INTRODUCING·

ENTRIES CORRESPO~DI~G TO ThE CLASSES REPRESENTED IN CDECL.
EArH ENTRY IN QUALTB CORRESFOXDS TO A CLASS, AND IS A
CONST.RUl.! L..; :.'HICH THE C0~1PO:\ENT PREFIX IS A POINTER TO THE
QUAL TB CO~lPONENT CORRESPOt\0 I NG TO THE PREFIX CLASS, CLA SSN
IS A POI~TER TO TiiE SY~1BOL TAB~E ENTRY FOR THE CLASS, AND
LEVEL THE ~U~1BER OF CLASSES !:-1 THE PREFIX SEQUENCE OF THE
CLASS. CDECL IS A LIST OF POI~TERS TO THE SYMBOL TABLE
ENTRIES OF THE CLASSES DECLARED I~ A BLOCK. EACH INSERTION
IN QUALTB, IS MADE I 1\ PARALLEL <USING THE PROCEDURE AUX)
TO AVOID ORDERING CDECL. ~OTICE THAT THE INSERTIONS CANNOT
BE MADE SEQUE~TIALLY "-'ITHOUT ORDERI~G CDECL SINCE IF A
CLASS WERE DECLARED SEFORE ITS PREFIX, THE FUNCTION WCULD
HA~G UP TRYI~G TO FIND THE PREFIX CLASS AND WOULD NEVER
DEFINE THE PREFIX;

WHILE ~~ULLB<CDECL) ~0
BEGIN

AUX([CAR<CDECL)], QUALTB>; CDECL :• CDRCCDECL)
ENDi
QUALTB

END;

FUNCTIO~ VIRMER~E (RULE, VIRDECL);
BEGIN CO~·IENT THE I~ITIAL PART OF A RULE IS COMPOSED OF A SEQUENCE

OF l~STRUCTIO~S CORRESPONDI~G TO THE DECLARATIONS: TO AN
ARR y 1 0ECLARAIIC~ CORRESPONDS A SEQUENCE OF INSTRUCTIONS
DEFINING THE R~AY'S BOUNDS FOLLOWED BY A MAK INSTRUCTION
THAT BUILDS A SEGMENT ASSOCI~TED ~ITH THE ARRAY AND INSERTS
A REFERENCE TO IT IN THE S'i'ACK; TO ANY OTHER DECLARATION
CORRESPONDS ONE C-INSTRUCTJON. IF THE INSTRUCTIONS
DEFINING THE BOUNDARIES ARE IGNORED, THE N(TH) INSTRUCTION

174

I~ THE J ~IT I AL SEQUE~CE, PLACES IN THE STACK A WORD WHOSE
STACK DEPTH J S ~. VIR:•IERGE REPLACES IN RULE THOSE
I~STRUCTIO~S THAT CORRESPO~D TO VIRTUAL DECLARATIONS AND
THAT HAVE BEE~ REDEFI~ED. VIR~1ERGE IS A CONSTRUCT WHOSE
CO~IPO~E~TS ARE THE };E\-.' INSTRUCTIONS; THE COMPONENTS'
SELECTORS ARE INTEGERS A~D CORRESPOND TO THE SEQUE~CE
~W~IBER <IG:\ORIKG THE BOUNDARY DEFINITION INSTRUCTIONS) OF
THE J~STRUCTION TO BE REPLACED. BOUNDARY DEFINITION
I :\STR:!CTIOXS ARE DELIMITED BY PSEUDO-INSTRUCTIONS WITH
CO~PONENT ~IARKl;

NEXTl := FIRST(VIRDECL>; D :• SEI.;·ECTOR([NEXT1]);
WHILE ~NULLB<~EXTl) DO
BEGIN

RULEl : • RULE;
\.JHILE D > 1 DO
BEG I:\

IF ~SULLR<FI:\DCCARCRULEl), ~1ARK1)} DO
BEGIN C0~1.\1E~T THIS IS THE BEGI~:-li:-.oG OF A SEQUENCE OF

BOU~DARY DEFI:\ITIO~ IXSTRUCTJONS. SKIP OVER THE
I~STRUCTIOXS U~7IL AXOTHER ONE WITH COMPONENT
MARKl IS FOU!\D;

RULEl : • CDR<RULEl>:
\,·HILE ~ULl.R(FI~O(CAR<RULEl>, MARJCl)) DO
RULEl :'" CDR (i\ULEl);
RULEl : • CDR(C0R<RULE1))

E:\0 ELSE
RULEl : • CDR<aULEl>;
D:aD-1

E!\D; I
CARCRULEll :• [XEXTll; NEXTl :• NEXT([NEXTll)

E:-;D;
RULE

END;

IPl EXPR ;:• VALEXPR

$P2 EXPR ::. REFEXPR

SPl EXPR ::. DESIGEXPR

S/PL(EXPR>.GE~US.TYPE :• "LABEL" /S

$P4 VALEXPR ::• ARITEXPR

$PS VALEXPR :: • BEXPR

$P7 ARITEXrR :: = SARITEXPR

175

SPI ARITEXPR ::• IFCL SARITEXPR ELSE ARITEXPR

S/ S~ : • NEW I STEGER; SM : • NE~'INTEGER;
PJUMP(IFCL) : • SN;
RULE<ARITEXPR) : • APENDCRULECIFCL), APEND(RULE(SARITEXPR),

FIXCONDCRULE(ARITEXPR•>, SM, SN)))/$ S/ PL CARITEXPlO. GENUS. TYPE : • C0~1BTYPE (PL (SARITEXPR),
PL<ARITEXPR•))/S S/ APA(SARITEXPR, :• IF APACARITEXPR>•O THEN 0 ELSE 4;

APACARITEXPR•) :• IF ~siD<SARITEXPR) THEN 0
ELSE APA(ARITEXPR); IF SID(SARITEXPR) AND APA(SARITEXPR)•4 THEN

BEGIN
TYPE: • PL(ARITEXPR).GE~US.TYPE;
IF TYPE ~a "INTEGER" AND TYPE ~· "REAL" THEN
ERROR<"CONDITIONAL ARITHMETIC EXPRESSION HAS OPERAND OF TYPE "• TYPE>

END /S
S/ SIDCARITEXPR> :• SIDCSARITEXPR) AND SID(ARITSXPR•> /$

SP9 SARITEXPR ::• TERM

SP10 SARITEXPR ::• AOP TEa~

S/ VALE~CECAOP) :• 1; USECTEa~) : • "VALUE";
RULECSARITEXPR> : • APE~D(RULE(TERM), RULE(AOP)) /S

S/ SIDCSARITEXPR) :• FALSE/$

SP11 SARITEXPR :: • SARITEXPR AOP TEa\!

$/ VALENCE CAOP) : • 2; USE <SARIT.EXPb) : • USE <TERM) : • "VALUE"; APA(SARITEXPR•) : • APACTE~~) : • 0;
RUL~<SARITEXPR) : • APENDCRULE(SARITEXPR•),

APEXDCRULE(TERM), RULE(AOP))) /$
$/ PL<SARITEXPR).GENUS.TYPE :• COMBTYPECPL<SARITEXPR•>,

PL (TERM)) /$ S/ SID(SARITEXPR) : • FALSE /S

SP12 AOP ::• +

S/RULE(AOP) : • IF VALENCE(AOP) • 1 THEN NULL ELSE
LIST<INSTR *• S <FORMAT : • P2; OPEll : • "•")) /$

SP13 AOP ::•-

S/RULECAOP) :• LIST(INSTR *• $(FORMAT :• F2;
OPER : • I P VALENCE (AOP) • ·2 THEN "-". ELSE "NEG")) /$

SP14 TERM ::• PAC

SP15 TERM ::• TER~ MOP PAC
I

176

$1 USE<TER~I•> :" USE(FAC) : • "VALUE"; SIOCTERM> : • FALSE;
APACTERM•J : • APACFACl : • 0;
RULE CTER~D :"' APE:\0 (RULE CTER:•I"'),

APE~D<RULE<FAC), RULE(MOP))) /$
$/ PL (TERM) : • PL (MOP) i

TCMOPl :• Cm1BTYPE<PL(TER.\1•), PL(FAC)) /S

SPHi ~lOP ::"' •

$1 RULE (~lOP) : = LIST CI ~STR *- S CFOR.\1AT : • F2; OPER : • "*"));
PLC~OP>.GE~US.TYPE :• T(MOP) /$

$P17 r.IOP ::=I

$/ RULE<~IOP> :" LIST(IKSTR •• $(FOR.\1AT: • F2; OPER: • "!"));
PL(~IOPl. GE:\US. TYPE : • "REAL" /$

$P18 MOP ::• DIV
$1 RULEC~IOP):= LIST<I:\STR *- $CFOR.\tAT :• F2; OPER :• "DIV"));

PLOIOP>. GE:\U5. TYPE : • "IXTEGER"i
IF T<~lOP) -,: "IXTEGER" THE~
ERROR<"MIXED TYPES I:\ ""DIV"" OPERATION") /$

SP19 FAC ::. PRIM

SP20 FAC ::• FAC **PRIM

$1 PL<FACJ.GE~US.TYPE :="REAL"; APACFAC•> : • APA(PRIM) : • 0;
USE <FAC•> : = USE CPRI~n :"' "VALUE"; SI 0 (FA;:) : • FALSE;
RULECFAC) := APE~D<RULE<FAC•>, APE~O(RULECPRIM),

LIst <1:\STR *- S (FORMAT : • F2; OPER : • "u")))) IS

SP21 PRIM:: • KU

$1 PLCPRI~1>.GE~US.TYPE :• "I~TEGER"; SID<PRIM) :• FALSE; RULECPRHI) : • LIST<I:\STR *- $(FORMAT: • F3; V: • V<NU))) /S

$P22 PRIM::= VAR

S/ SID(PRIM> :"' TRUE /$
$1 TYPE: • PL<VAR>.GE:\US.TYPE;

DISA~1VCSPCVARJ, DAR<VAR), TYPE..,. "INTEGER" AND
TYPE ...,,. "REAL", PL (VAR) 1 APA (PRIM)) /$

SP2J PRIM::= FUNC

$1 SIOCPRIM) : = TRUE /S
S/ TYPE: • PLCFU~C>.GE~US.TYPE;

DISA~F<SP(FUXC), TYPE..,. "IXTEGER" AND TYPE~· "RE~L,

177

PL<FUNC), APACPRIM), LCPUNC)) /S

SP24 PRIM:: • (ARI!EXPR)

$/ USECARITEXPR) : • "VALUE";
APA(ARITEXPR) ; ~ IF APACPRIM>•2 THEN J ELSE APACPRIM) /S

SP48 VAR :~· tDl

S/ DAR(VAR) :• FALSE /S

SP49 VAR ::• ARIDl { SUBLIST l

S/ DARCVAR) :• TRUE; USE<ARIDl) :• "VALUE";
RULECVAR> :• APE~DCRULE<ARIDl), APESD(RULE(SUBLIST),

LJST(INSTR•e $(FORMAT :• F4; USE :• USECVAR))))) /$

SPS2 IDl ::• SIGMA

$/ NEXTl :• Flt\DCENV<IDD, [SP(SIGMA)]);
IF ~NULLB<~EXTl) THEN PL(IDl) :• {NEXTl] ELSE
ERROR <"U~DFFI:\ED I DENT I FI ER", SP (SIGMA)) /$

$/ ADDR :• CHECKIDENTIF:ER<ITEM<IDl), QUAl.TB(IDl), PL(I01));
RULE (101) :=IF ~UL~B <ADDR) THEN

CONS 0:\STR •• S (FORMAT : • F7; ADDR : • ADOR),
LISTCINSTR •• $(ADDR: • PL(IOl),ADOR;

IF USE(I01) THEN FORMAT :• FS ELSE FORMAT :• F6)))
ELSE
LIST(INSTR •• $(ADDR: • PL(IDl).AODR;

IF ~SE<IDl) THEN FO&~AT :• F7 ELSE FORMAT :• F8) /$

SP53 ID1 :: • RID

$1 IF PLCRID).GENUS.KIND • "CLASS" THEN
ERROR~SPCRID)," CLASS I DENT. USED IN RE.\10TB IDENTIFIER") /$

SP83 RID ::• SOBJEXPR. ATTRIO

S/ USE (SOBJEXPR) : • "VALUE"; APA (SOBJEXPR) : • 0;
RULE(RIO) : • APE~D<RULE(SOBJEXPR), LIST~INSTR •• $(IF

USE <RI 0) • "VALUE" THEN FORMAT • FS ELSE FORMAT : • F6;
ADDR: • PL<ATTRIO).ADDR))) /S

S/ PLCRID) :• PL(ATTRID) /S
S/ ENV (A TTR I D) : • {QUALTB <RIC). CPL (SOBJ EXPR>. GENUS. QUAL] •

CLAS SNJ • LOCALi;
COMMENT CHECK TO SEE if ENV CONTAINS CLASS DBCLARATIONS.

IF YES, REMOTE ACCESS IS ILLEGAL;
,

NEXTl :• ~IRST(E~V(ATTRIO))j
WHILE ~NULLB(NEXTl) DO
BEGIN

IF [NEXTll.GENUS.KIND = "CLASS" THEN

178

,,

ERROR ("RE:·iOTE I D. ACCESSES CLASS WHICH HAS CLASSES AS ATT
R I BUTES"); ~EXTl : = SEXT <l~EXTll) IS

$P84 ATTRID :: • SIG~1A

$1 t\EXTl : • Fl~D<ENV(ATTRID), [SP(SlGMA)]);
IF ~~wLLBC~EXTl> THE~ PL(ATTRID) := [NEXTll ELSE
ERROR("U:\DEFI:\ED ATTRIBUTE IDENTIFIER "• SP(SIGMA))/$

S P 8 5 AR I D 1 : : • I D 1

$/ IF APACARlDl> • 0 THEN
BEGI:\

IF PL\lD1J.GE~US.KIXO ~·"ARRAY" THEN
ERROR("ARRAY IDEHIFIER EXPECTED A:\0 NOT FOUND ",

SPCIDl>)
E:-lD /S

SP86 SUBLIST :: = SUSEXPR

$/ L <SUBLI ST) : = 1; USE <SUSEXPR) : • "VALUE" /S

SP87 SUBLIST ::• SUBLIST, SUBEXPR

$/ USE<SUBEXPR) :="VALUE"; L(SUBLIST) :• L(SUBLIST•> • l /S
$1 RULE(SIIBLIST) :• APE~D(RULE(SUBLIST•), CONS<INSTR ••

$ <FOR.\1AT : • F4; USE : • "VALUE"), RULE (SUBEXPR)) /S

SP88 SUBEXPR :: = ARITEXPR

$/ APA(ARITEXPR) :• 0 I$

$P89 FU~C :: = PROCIDl APPART

$/ USE <PROCI DD : = "VALUE";
RULE <FUNC> : .. CO:\S (I ~STR *- $ (FOR~IAT : a Fll>,

CO~S<I~STR *• $(FOR~1AT : .. F9; OPER :• "RET"),
CONS<I~STR .. S<FOR~I.ol.T :a F9;

OPER: = PL<PROCIDl).GENUS.TYPE),
APEND(RULEtAPPART), APE~D(RULE<PROCIDl), .

LIST(l~;STR •• $(FORMAT :• FlO)))))))/$

$P90 PROCIDl ::• 101

$/ IF APA • 0 THEX
BEGIN IF PLCIOll.GE~US.KlSD ~· "PR~CEDURE" THEN

ERRORC"PROCEDURE IDESTIFI~R HAS WRONG KIND "• SPOOl))
E~D /$

SP91 APPART ::•

179

S/ RULECAPPART> : • NULL; L(APPART> :• 0 /S

SP92 APPART ::• < APLIST)

SP93 APLIST ::• AP

S/ L(APLIST> :• 1 /S

SP94 APLIST ::• APLIST, AP

$/ L<APLIST~ :• LCAPLIST•> + 1 /S
$1 RULE(APLIST) :• APENDCRULE(APLIST•>, RULE(AP)) /$

SP9S AP ::• EXPR

$1 SN : • NEWI ~7EGER; USE (EXPR> : • "NAME"; APA CEXPR) : • 2;
OUTPUTCAPE~O(RULECEXPR>,

LIST(l~STR •• S<FORMAT :• F12))), SN) /S
$/ RULE CAP) : • BACTUAL CPL CEXPR). GENUS. LL CAP), SN> IS
$1 LLCEXPR) :• LL<AP) + 1 /S

SP96 AP ::• ARID1

S/SN : • NEWINTEGER; USECARIDl) : • "NAM:"; APACARIDU : • 2;
OUTPUT<APE~DCRULE(ARIDl),

LISTCINSTR .. $(FORMAT: • P12))), SN) /$
S/ RULECAP) ::• BACTUAL(PL(ARIOl).GENUS,LL(AP),SN) /$
S/ D~~8(PLCARID1).GENUS.KIND • "ARRAY", AP) /$

SP97 AP ::• SWID1

S/ SN : • NEWI NTEGER; APA (SI:I Dl)t : • 1;
OUTPUT(APEND(RULE<SWIDl),

LISTCINSTR •• $(FORMAT :• F12))), SN) /$
S/ RULE<AP) :• 8ACTUAL(PLCSWJD1).GENUS, LL(AP), SN) /S

$P98 AP ::• PROCIOl

$/ SN : • NEWJ~TEGER; !JSE<PROCIDl) : • "NAME"; APA(PROCIDl) : • 2;
OUTPUT(APEND~RULECPROCIDl),

l!STCINSTR •• $(FORMAT :• F12))), SN) /$
S/ RULE CAP) : • BACTUAL<PLCPROCJD1).GENUS, LL(AP>, SN) /$
S/ DAMB(PL(PROCID1).GENUS.KIND • "PROCEDURE", AP) /$

$P103 BEXPR ::• SBOOL

SP104 BEXPR ::• IPCL SBOOL ELSE BEXPR

180

S/ S:\:: :\E\\1:\TEiiER; SM:,. ~Et-.'1:\TEGER; FJL~1P([FCL) : .. SN;

PL<SEXPR> := APE~D<RULECIFCL), APE~D<RULE(SBOOL),

Fl XCOND <RULE <BEXPR•), SM, SN))) I$

$1 SlDCBEXPin : = SlDCSBOOL> A:\0 SID<BEXPR) /$

S/ APACSBOOL> : = IF APA<BEXPR):Q THE~ 0 ELSE 4;
APACBEXPR•> := IF ~SlD<SBOOLl THEX 0 ELSE APACBEXPR>;
CO~t\lE:\T THE FOLLO\\I \G TEST IS PERFOR.\1ED WHES THE BEXPR IS

PART OF AX A~BIGUITY SI~CE IN THIS CASE THE TYPE OF SBOOL
HAS ~OT BEE~ TESTED. THE CLAUSE (SID<BEXPR•l OR
~SIDCBEXPR)) IS I~ TO GUARA~TEE THAT THE TEST IS
PERFOR~IED OXLY AFTER THE AMBIGUTI ES I~ BEXPR• HAVE BEEN

ALL RESOLVED;

IF SIOCSBOGL) ASO APA<S800L)•4 A:\0 <SIDCBEXPR•> OR
~SIDtBEXPR•)) A~D PLCSBOOL).GE~US.TYPE ~·"BOOLEAN" THEN

ERRORC"CO~DITIO~AL BOOLEA:\ EXP~ESSION HAS OPERAND WITH TYPE"
, PL<SBOOL).GE~US.TYPE) /~

$Pl05 SBOOL ::" l~IP~

$Pl06 SBOOL ::= SBOOL EQUJV IMPL

$1 PL(SBOOL) :s PL(SBOOL•)i APA(SBOOL•> :• APA(IMPL) : • 0;
USE <SBOOL_,) • - USE <I 'iP L) : = "\' ALUE"; SID CSBOOL) : "' FALSE;
RULE<SBOOL) :• APE~D<RULE(SBOOL•>, APE~OCRULE<IMPL),

Ll ST (1 :\STR •• S <FORMAT : • Fl4;
OPER :• "EQUIV")))) S/

SP107 IM?J. ::,. BTER~I

$P108 IMPL ::• IMPL IMPLIES BTERM

$1 PL(I~!Pl.l : = P!.Cl~lPL•>; USE<I:•!PL•) : ·: USECBTERM) : = "VALUE";

APA<I~\PL•> := APA(BTER:.l» :• 0; SIDOMPL) :• FALSE;
RULECIMPLl : • APE~D<RULECI~PL•), APEND<RULE<BTERM),

LlST(l:\STR *s <FOR~IAT :• F14; OPER :c "lMPLY")))l /$

$P109 BTERM ::= BFAC

SP110 BTER:.\ ::"' BTER~l OR BFAC

$1 PL (BTERM) : • PL <BT~R~:*>; APA CSTERl-1•} :" APA <BFACl :"' 0;

USECBTER~l•) : • USE CBFACl : = "\'ALUE"; Sl D (BTER~ll : • FALSE;
RULE <BTER:.I) : • .l.PE\0 (RULE <BTER~1•) I APE:-10 <RULE <BFAC).

LIST<I~STR *• $(FORMAT :• F14; OPER :• "OR")))) /$

SPlll BFAC ::• BSEC

SP112 BFAC ::• BFAC A~D BSEC

181

S/ PLCBFAC> :• PL<BFAC•>; USE<BFAC•) :• USE<BSEC) :• "VALUE"; APA (8FAC> : • APA CBSEC> : • 0; SID <BFAC) : • FALSE; RULE<BFAC) : • APEND<RULECBFAC•), APENDCRULE(BSEC),
LIST(INSTR •• SCFOR~AT :• P14; OPER :• "AND"))))/$

SPlll BSEC ::• BPRJM

SP114 BSEC ::• ~ BPR4M

$1 USE CBPRIM> : • "VALUE"; APA CBPRIM> : • 0; SID CBSEC) : • FALSE; RULECBSEC) : • APENDCRULE(BPRJM),
LIST(JNSTR :• $(FORMAT;. P14, OPER :• "~"))) /S

SP11S BPRIM ::• LOGVAL

$1 PLCBPRIMLGENUS :• $(KINO :• "SIMPLE"; TYPE :• "BOOLEAN">; SIDCBPRIM) :• FALSE li

$P116 &PRIM ::• VAR

$1 SIDCBPRIM) :• TRUE/$
$1 DISAMVCSP(VAR), DARCVAR), PLCVAR).GENUS.TYPE ~·BOOLEAN,

PL<VAR>, APACBPRIM)) /S

SP117 BPRIM ::• FUNC

$1 SIOCBPRIM) : • TR~E /$
$/ DISAMFCSPCFUNC), PLCFUNC>.GENUS.TYPE ~·"BOOLEAN", PLCFUNC),

APACBPRIM), LCFUNC)) /S

SP118 BPRIM ::• REL

$/ USECREL) :• "VALUE"; SIDCBPRIM> :• FALSE; PLCBPRIM).GENUS :• SCXIND: • "SIMPLE";
TYPE :• "BOOLEAN") /$

SP119 BPRIM :: • C BEXPR)

S/ USECBEXPR) :• "VALUE";
APACBEXPR) :• IF APACBPRIM)•2 THEN 3 ELSE APACBPRIM) /$

SP120 LOGVAL ::• TRUE

$1 RULECLOGVAL) :• LIST(INSTR •• $(FORMAT :• FlS;
OPER :• "TRUE">> /S

SP121 LOGVAL ::• FALSE

S/ RULECLOGVAL> :• LIST(I~STR •• $(FORMAT :• PlS;
OPER :• "FALSE")) /$

182

SP122 REL :: • SARITEXPR RELOP SARITEXPR

$/ APA CSARITEXPR> : = APA CSARITEXPR-> : .. 0;
RULECREL) : • APE~DCRULE<SARITEXPR), APEND<RULECSARITEXPR•>,

RULE<RELOP>>> /$

SP124 REL :: = OSJREL

SP125 REL :: • REFREL

$Pl26 RELOP :: • <

$/ RUL£(RELOP) : • LISTCI~STR •• SCFO~~AT : • Fl6;
OPER : • "<")) /$

$Pl27 RELOP :: • <•

$1 RULE<RELOP> : • LISTCI~S1R •• l(FORMAT: • F16;
OPER: • "<•")) /$

$Pl2B RELOP :: • •

$1 RULE<RELOP> : • LISTCI~STR •• $(FORMAT :• P16;
OPER : • "•")) /$

SP129 RELOP ::= >•

S/ RULECRELOP) : • LIST{l~STR •· SCFO~~T :• F16;
OPER :• ">•"» 1$

SP130 RELOP ::a>

$1 RULECRELOP) : ~ LIST(ISSTR •• S<FOa~AT :• F16;
OPER : • ">")) /S

SP131 RELOP :: • ~·

$1 RULECRELOP> :• LIST<INSTR •• $(FORMAT :• F16;

SP133 OBJREL :: • SOBJEXPR IS CLIDl

$/ APA CSOBJEXPR> : • 0;

OPER : • ''-.•")) /$

RULECOBJREL> :. APESDCRULECSOBJEXPR>, AP~ND<RULECCLIDl>,
LISTCINSTR *- $(FORMAT: • F16; OPER: • "IS")))) /$

183

SP134 OBJREL ::• SOBJEXPR IN CLID1

S/ APA<SOBJEXPR> :• 0;
RULE<OBJREL> : • APEND(RULE(SOBJEXPR), APEND<RULE<CLIDl},

LIST<INSTR •• $(FORMAT :• F16; OPER :• ~IN"}))) /$

SP13S REFREL ::• OBJREFREL

SP136 OBJREFREL ::• SOBJEXPR REFCOMP SOBJEXPR

$/ APA(SOBJEXPR) :• APA(SOBJEXPRt) : • 0;
RULECOBJREFREL) : • APEND<RULE(SOBJ~XPP.J,

APEND<RULE(SOBJEXPR•>, RULE<REFCOMP))) /S

SP137 REFCOMP ::• ••

S/ RULECREFCOMP) :• LISTONSTR ta $(FORMAT :• F16;
OPER :• "••")) /$

SP138 REFCOMP :: • •I=

$1 RULECREFCOMP> :• LIST(INSTR •• $(FORMAT :• P16;
OPER :• "•/•")) /$

SP147 REFEXPR :: • OBJEXPR

SP148 OBJEXPR ::• SOBJEXPR

SP149 OBJEXPR ::• IF BEXPR THEN SOBJEXPR ELSE OBJEXPR

Sl SM : • NEWI NHGER; S:i : " NEWHITEGER; USE CBEXPR) : • "VALUE";
APA (BEXPR> : • O;
RULECOBJEXPR> :• APENDCRULE<BEXPR>, APENDC

CONSCINSTR •• SCFORMAT :• F17; JLABEL: • SN),
RULECSOBJEXPR>>, FIXCOND<RULE<OBJEXPR), SM, SN>>> /S

S/ PL(OBJEXPR).GENUS :• S<TYPE :• "RiF"; QUAL :•
CONDQUALCPLCSOBJEXPR>.GENUS.QUAL,

PLCOBJEXPR•>.GENUS.QUAL)) /S
S/ APA(SOBJEXPR> :• IF APACOBJEXPR>•O THEN 0 ELSE 4;

APACOBJEXPR•> :• IF ~SIDCOBJEXPR> THEN 0 ELSE APACOBJEXPR);
IF PLCSOBJEXPRl.GENUS.TYPE ~· PLCOBJEXPR•>.GBNUS.TYPE THEN
ERRORC"CONDITIONAL OBJF.CT EXPRESSION HAS OPERAND OF TYPE "•

PL(SOBJEXPR).GENUS.TYPE> 1•
S/ SIDCOBJSXPR> ~ • SUHSOr/EXPR> AND St:";(OBJEXPR•> /S

$P150 SOBJEXPR ::• NONE

$1 PL (SOBJEXPR). GENUS : • $ <TYP B : • "R.SP"; QUAL : • -1);
SlDCSOBJEXPR> : • FP.i.S.t;
RULECSOBJEXPR) :• !..ISlONSTR .. $(FORMAT :• F18;

184

SP151 SOBJEXPR :: c VAR

$1 SID(SOBJEXPR) :• TRUE/$
$1 NEXTl : • PLCVARl.GENUS;

TYPE: .. (NEXTl).TYPE; K'Nn :•[NEXTl].KIND;

QUAL : = -1)) IS

IF APA(SOBJEXPR> • 4 THEN ~AMB'KIND ~· "PROCEDURE") ELSE
IF ~DARCVAR)THEN
BEGIN

IF APACSOBJEXPR> • 3 THEN
BEGIN

IF KIND ~· "SIMPLE" THEN
BEGIN

IF KIND • "LABEL" THEN DAMB(FALSE, EXPR) ELSE
!F KIND ~· "PROCEDURE" THEN
ERROR(SP<VAR), " lS OF THE WRONG KIND") ELSe
IF COND THEN DAMBCFALSE, EXPR>

ELSE DAMBCFALSE, PRIM)
END ELSE
IF COND THEN DAMB!EXPR, FALSE> ELSE
BEGIN DAMBCTRUE, PRIM>; DAMBCTRUE, EXPR> END

END ELSE
IF APA(SOBJEXPR> • 2 THEN
BEGIN

IF KIND ~· "SIMPLE" THEN
BEGIN

IF KIND ~· "LABEL" THEN DAMBCFALSE, AP)
ELSE DAMB(FALSE, EXPR)

END ELSE
IF TYPE ~· "REF" THEN DAMBCFALSE, EXPR) ELSE
BEGIN

DAMBCT~UE, SOBJEXPR); DAMBCTRUE, EXPR);
DAMB (TRUE, AP)

END
END iLSE
IF KIND ~· "SIMPLE" THEN
BEGI~

IF KIND = "PROCEDURE" THEN DAMBCFALSE, SOBJEXPR) ELSE
ERRORCSP<VAR)," IS OF THE WRONG KIND")

END ELSE
IF TYPE • "REF" THE~ DAMBCTRUE, SOBJEXPR) ELSE
ERRORCSP(VAR), " IS OF THE WRONG TYPE")

END ELSE
IF APACSOBJEXPR) • 2 OR APACSOBJEXPR> • J THEN
BEGIN

IF KIND ~z "ARRAY" THEN
BEGIN

IF KIND • "SWITCH" THEN DAMB(PALSE,EXPR) ELSE
ERRORCSPCVAR), " IS OF THE WRONG KIND")

END ELSE
DAMBCTYPE • "REF", EXPR>

END ELSE
IF TYPE "REF" OR KIND ~· "ARRAY" TtiEN
ERROR(SP(VAR), " HAS WRONG TYPE OR KIND) /S

185

SP152 SOBJEXPR :: • }'UNC

S/ SIDCSOBJEXPR> :• TRUE /S
S/ NEXTl ;. PL<FUNC).GENUS;

TYPE: • lNEXTlJ. TYPe; KIND: • [NEXT1). KIND;
IF APA(SOBJEXPRl • 4 THE~ DAMB<KIND ~· "SIMPLE") ELSE
IF LCFUNC) • 0 THEN
BEGIN

IP APA(SOBJEXPR> • 3 THEN
BEGIN

IF KIND ~· "PROCEDURE" THEN
BEGIN

IF KIND •"LABEL" THEN DAM~(FALSE, BXPR) ELSE
IF KIND ~· "SIMPLE" THEN
ERRORCSP(SOBJEXPR>, " IS OF THE WRONG KIND") ELSB
IF COND THEN DAMBCFALSE, EXPR)

ELSE DAMB(FALSE, PRIM)
END ELSE
IF COND THEN DAMBCFALSE, EXPR> ELSE
BEGIN DAMBCTP.UE, PRIM); DAMBCTRU&, EXPR) END

END ELSE
IF APACSOBJEXPR) • 2 THEN
BEGIN

IF KIND • "PROCEDURE" THEN DAMBCFALSE, AP)

END ELSE
ELSE DAMBCFALSE, SOBJEXPR)

IF TYPE ~· "REP" THEN
EiROR(SP<FUNC), " IS OF THE ~~ONG TYPB"> ELSE
JF KIND • "PROCEDURE" THEN DAMB<TRUE, SOBJEXPR> ELSB
IF KIND • "SIMPLE" THEN DAMB<FALSI, SOBJBXPR) &LSI
ERROR<SP<FUNC), " IS OF THE WRONG KIND">

BNO ELSE
IF APACSOBJEXPR) • 2 THEN
BEGIN

IF KIND • "PROCEDURE" THEN DAMBCTYPB • "kBP", BXPR) BLSB
ERRORCSPCFUNC), " IS OF THE WRONG KIND")

END ELSE
IF KIND ~· "PROCEDURE" OR TYPE ~· "PEF• THEN
ERRORCSPCFUNC), " IS OF THE WRONG KIND") /S

SP153 SOBJEXPR ::• OBJGEN
S/ SIDCSOBJBXPR> :• FALSE/$

SP154 SOBJEXPR ::• LOCOBJ
$/ SIDCSOBJEXPR) :• FALSE/$

SP155 SOBJBXPR ::• QUALOBJ
S/ SID<SOBJEXPR> :• FALSE IS

SP156 SOBJEXPR ::• (OBJEXPR)

S/ USE<OBJEXPR) :• "VALUE";
APACOBJEXPR> :• IF APA(S08JEXPR)•2 TH&N 3

BLSB APA<SOBJBXPR) /S

186

SP157 OBJGEN ::• NEW CLID2 APPART

S/ RULE<OBJGEN) : • APENDCCONS<INSTR •• $(FORMAT :• Fll),
RULE(APPART)), APENDlRULE(CLID2) 1

CONSCINSTR •• $(FORMAT :• F19;
NFOiMALS: • PL<CLID2). NFORMALS) 1

LIST<INSTR •• $(FORMAT :• F12))))) /$
S/ PL(OBJGEN).GENUS: • $(TYPE :• "REF";

QUAL :a PL(CLID2). SEGMENT) /$
S/ IF PL (CL I 02). NFORMALS ~· L (APPART) THEN

ERROR<"WRONG NUMBER OF PARAMETERS I~ CLASS "• SPCCLI02)) 1$

SP157A CLID2 ::= IDl

$1 IF PL(I01).GENUS.KIND ~·"CLASS" THEN
ERROR(SP(IDl), " NOT A CLASS IDENTIFIER") /$

SP158 CLIDl :: • SIGMA

$/ NEXT1 :• FIND<ENV<CLIDl>, [SP(SIGMA)]);
IF ~NULLB<NEXTl> TrlEN PLCCLIDl) :• [NEXTl] ELSE
ERROR<SPCSIGMA>, " UNDECLARED CLASS IDENTIFIER") /$

S/ IF PL(CLIDl>.GENUS.KIND ~·"CLASS" THEN
ERROR(SP(SIGMA>, " NOT A CLASS IDENTIFIER") /$

SP159 LOCOBJ ::• THIS CLIDl

$1 RULE<LOCOBJ) : • LIST<INSTR •• $(FORMAT: • FIB;
OPER :• "THIS"; QUAL :• PL(CLIDl).SEGMENT)) /S

S/ PL <LOCOBJ>. GENUS : • <TYPE : • "REF"; K 1 NO : • "SIMPLE";
QUAl :• PL(CLlDl).SEGMENT) /$

SP160 QUALOBJ ::• SOBJEXPR QUA CLIDl

$1 APA<SOBJEXPR> :• 0;
PL<QUALOBJ). GENUS : • $(TYPE: • "REF"; KIND :"' "SIMPLE";

QUAL: • PL<CLIDl).SEGMENT) /S

SP161 DESIGEXPR ::• SDESIGEXPR

SF162 DESIGEXPR :: = IFCL SDESiuEXPR ELSE DESIGEXPR

S/ SM: • NEWINTEGER; SN: • NEWINTEGER; FJUMP<IFCL) := SN
RULE (DES I GEXPR) : • APEND <RULE (I FCl.), A PEND (RULE (SDES I GEXPR) 1

FIXCOND<RULE<DESIGEXPb>, SM, SN))) /$
S/ APA(SDESIGEXPR> :• IF APA(SDESIGEXPR>•O THEN 0 ELSE 4;

IF PL<SDESIGEXPR).GENUS.TYPE ~· PL<DESIGEXPRa).GENUS.TYPE
THEN
ERROR<"CONDJTIONAL DES£GNATIONAL EXPRESSION HAS OPERAND OF T

YPB "• PL<SDESIGEXPR>.GENUS.TYPE> /$

187

SP163 SDESIGEXPR ::• LABELl

SP16C SDESIGEXPR ::• SWDESIG

SP165 SDESIGEXPR ::• (DISIGEXPR >
S/ APACDESIGEXPR) :• IP APA<SDESIGEXPR>•2 THEN 3

ELSE APA(SDESIGEXPR> /S

$P166 LABELl ::• SIGMA

S/ RULECLABELl} :• LISTCINSTR •• $(FORMAT: • F7;
ADDR :• PL<LABBL1).ADDR>> /S

S/ NEXTl :• FIND<ENV<LABEL1>, [SPCSIGMA>l>;
IF ~NULL8(NEXT1> THEN PL<LABEL1> :• (N~XTll ELSE
ERRORCSPCSIGMA), " UNDECLARED LABBL") /S

S/ KIND: • PL<LABELl>.GENUS.KIND;
IF APA(LABELl) • 3 THEN DAMBCKIND • "LABEL", EXPR> SLSE
IF APA(LABELl) • 2 THEN
BEGIN

IF KIND ~· "LABEL" THEN
BEGIN

IF KIND~· "SIMPLE" THEN DAMBCFALSB,AP>
ELSE DAMBCPALSB, EXPR)

END ELSE
BEGIN DAMB<TRUE, EXPR>; DAMB(TRUB, AP) BND

END ELSE
IF APACLABELl)•O AND KIND ~· "LABEL" THEN
ERROR(SP(SIGMA), " NOT A LABEL") /S

SP167 SWDESIG ::• SWIDl [SUBEXPR l

S/ USE(SUBEXPR> :• "VALUE";
RULE(SWDESIG) :• APENDCRULE(SWID1), APEND(RULECSUBEXPR),

LIST(INSTR •• $(FORMAT :• P•; USE :• VALUE)))) /$
$1 PLCSWOESIG) :• IF PL(SWIDl).GENUS.KIND • "SWITCH" THEN

SCGENUS.KIND :• "LABEL"> ELSS PLCSWIDl) /$

SP168 SWIDl ::• SIGMA

$/ RULE(SWIDl> :• LIST(INSTR •• S<FJRMAT :• P7;
ADnR :• PLCSWIDl).ADDR)) /S

S/ NEXTl :• FINDCENVCSWIDl), [SP<SIGMA>J>;
IF ~NULLBCNEXTl) THEN PLCSWIDl) :• [NEXTlJ SLSE
ERRORCSPCSIGMA), " UNDECLARED SWITCH IDENTIFIER"> /S

S/ KIND: • PL<SWIDll.GENUS.KIND; .
IF APACSWIDl) • 2 OR APACSWIOl) • 3 THEN
BEGIN

IF KIND • "SWITCH" THEN DAMBCTRUE, EXPR) ELSE
IF KIND • "ARRAY" THEN DAMBCPALSE,EXPR) ELSE
ERROR<SP<SIGMA), " IS OF THE WRJNG KIND")

END ELSE

188

IF APA<SWI01l • 1 THEN DAMB<KIND = "SWITCH", AP) ELSE
IF APA<SWI01) • 0 AND KlNU ~· "SWITCH" THEN
ERRORCSPCSIGMA>, "NOT A SWITCH IDENTIFIER") /$

SP169 PROGR\M ::=BLOCK

S/ SN : • NEWINTEGER; LL(BLOCK) : = 4; DO (BLOCK) : • 1 ;
CL <BLOCK) : = 0; ITEM (BLOCK) : = NULL; ENVl (BLOCK) : = NULL;
ENVA<BLOCK) : • NULL; QUALTBCBLOCK) :• NULL;
BEGUN<BLOCK) :• TRUE; ENV(BLOGK) := ECBLOCK>;
WRITE ("ORIGIN •", SN, I);

OUTPUT(APEND(UNDECL(BLOCK\, APEND(RULE(BLOCK),
LISTC:NSTR •• $(FORMAT; .. F12)))), SN) /S

SP170 PROGKAM ::~ COMPST

S/ SN : = NEWI NTEGER; LL CGOMPST) : • 4; DC (COMPST) : • 1;
CLCCOMPST) :• 0; tTEM(COMPST) :• NULL; ENVl(COMPST) :"'NULL;
ENV(COMPST) : = E(COMPST); Q~ALTB(COMPST) :• NULL;
WRITE("ORIGIN •".SN. /);
OUTPUTCAPENDCUNDiCLCGOMPST).APEND<RULE(COMPST),

LISTONSTR *- S<FORMAT :• F12)))}, SN) /$

SP171 COMPST ::= UNLCOMP

SP172 COMPST :: • LABELO: COMPST

$/ON: • CHECKVIRTCE~Vl(COMPST>. SP(LABELO>. "LABEL") /$
$/ SN : • NEW INTEGER;

RULE(COMPST) :• CONS(INSTR •· $(LABELl :• SN),
RULECCOMPST•>> /$

S/ INSTR: • S<FORMAT :• F20; JLABEL :• SN) /S
$/ UNDECL(COMPST) :• IF ON~· 0 THEN UNDECL(COMPST•l ELSE

CONS (I NSTR. UNDECL <COMPST•» /S
S/ VIRDECLCCOMPST) : • IF ON • 0 THEN VIRDECLCCOMPST•)ELSE

PUTIN(VIRDECL(COMPSTw) : [ON] : • INSTR) /S
S/ DCCOMPST> :• IF ON • 0 TEl~ D(COMPST•> +1 ELSE D(COMPST•) /S
S/ DO<COMPST•) :• IF ON • 0 THEN OO(COMPST) + 1

ELSE DO(COMPST) 1$
S/ ECCOMPST) := IF DN ~· 0 THEN E(COMPST•) ELSE

UNIONDOT(E(COMPST•), El •• $([S?CLABEL0)] : =
S<GENUS :• $(KIND :• "LABEL"; TYPF. :• "LABEL");

ADDR :• $(FORMAT :• F21; LN :• LLCCOMPST);
DN :• DOCCOMPST)))))) /$

SP172A LABELO ::• SIGMA

SP173 U~lLCOMP :: • BEGIN COMPT

S/ IF PIRSTST(COMPT) THEN DAMBCTRUE, 1) /S

189

SP174 BLOCK ::• UNLBLOCK

Sl NOLA BEL <BLOCK) : • TRUI i F

SP175 BLOCK::. LAIELO: BLOCK

S/ SM :• NEWINTEGEI; SN :• NEWINTEGER; NOLAB&LCBLOCK> :• PALSB;
INSTI :• SCFORMAT :• F20; JLABEL :• SM);
COND :• BEGUNCBLOCJC) AND NOLABEL<BLOCK•> /$

S/ DN :• CHECJCVIITCENVUBLOCIO, SPCLABELrl), "LABEL")/$
S/ IULI(ILOCK) :• CONSCINSTR •· SCLABELI :• SM),

IF ~COND THEN RULE<BLOCK•)ELSE
CONSCINSTR •• $(FORMAT :• Fll),
. LIST(INSTR .. $(FORMAT :• F22;

SN : • SN; LEVEL : • LL (BLOCK) + 1))) /$
S/ IF COND THEN OUTPUT(APENDCRULE<BLOCK•>,

LISTCINSTR :• SCPORMAT :• F12))), SN> /S
S/ DOCBLOCJC•) : • IP COND THEN 1 ELSE IP DN • 0 THEN

DO(BLOCIC) + 1 ELSE DOCBLOCK) /S
$1 CL(BLOCK•> : • IP COND THEN 0 ELSE CLCBLOCK);

ENVlCBLOCK•> :• IP COND THEN NULL ELSE ENVl(BLOCK);
ENVACBLOCK•> :• IF COND THEN NULL ELSE ENVACBLOCK);
ECBLOCK) :• IP COND THEN El ELSE UNIONDOT(E(BLOCK•>, El) /S

S/ LLCBLOCJCe) : • IF COND THEN LL<BLOCK) + 1 ELSE LLCBLOCK> /S
S/ DCBLOCK> :• IP DN • 0 THEN DCBLOCK•> + 1 ELSE DCBLOCK•> ''
$1 UNDECLCBLOCK) :• IF DN • 0 THEN CONSCINSTR, UNDECLCBLOCK•>

ELSE UNDECLCBLOCKe) /S
S/ VIRDECLCBLOCK) :• IP DN • 0 THEN VIRDICL(BLOCK•> ELSE

PUT IN CVIR.DECLCBLOCb) : [DNJ : • INSTR) /S
S/ E1 :• IF DN ~· 0 tHIN NULL ELSE S<lSPCLABBLO>J :•

SCGENUS :• $(KIND :• "LABEL"; TYPE :• "LABEL">;
ADDR :• S<PORMAT :• P21; LN :• LLCBLOCJC);

DN : • DO <BLOCK)))) '
S/ ENVCBLOCJCe) :• IF~· COND THEN ENVCBLOCK) ELSE

INVDELTACENVCBLOCK>, BCBLOCKe)) /$

SP176 BLOCK ::• UNLPREBLOCK

S/ NOL.-BELCBLOCJC) :• TRUE /S

SP179 UNLBLCCK ::• BJ.OCICHE'D; COMPT

S/ SN :• NEWINTEGER;
IP ~BEGUNCUNLBLOCK~ THEN OUTPUTCAPENDCRULE1,

LISTONSTR .. $(FORMAT : • F12))), SN) /S
S/ RULE1 :• APENDCRULBCBLOCKHEAD>, APENDCUNDECL(COMPT),

PUTIICRULE(COMPT), TRUE))) /S
S/ IULE(UNLBLOCK) :• IP BEGUN(UNLBLOCK) THEN RULB1 ELSE

CONS(INSTR •• S<FO~~T :• Fll), LIST(JNSTR ••
$(FORMAT :• F22; LL :• LL(COMPT); SN :• SN))) IS

S/ BCUNL8LOCK) :• IF ~BEGUN(UNLBLOCK) THSN NULL ELSE
UNIONDOT (E (BLOCKHEAD), E •COMPT)) /S

S/ DCUNLBLOCK) :• IP ~BEGUN<UNLBLOCK) THEN 0 SLSB
DCBLOCKHEAD' + DCOOMPT) /S

S/ DOCBLOCKHEAD) :• IF ~BEGUNCUNLBLOCK) THEN 1

190

ELSE DO<UNLBLOCK);
DO<COMPT) :• DOCBLOCKHEAD> + DCBLOCKHEAD) /S

S/ LL(BLOCKHEAD> :• LLCCOMPT) :• IP BEGUNCBLOCKHEAD> THEN
LL(UNLBLOCK>ELSE LLCUNLBLOCK> +1 /S

S/ UNDECL<UNLBLOCK) : • NULL;
ENVA(BLOCKHEAD) :• IF BEGUNCUNLBLOCK> THEN ENVACUNLBLOCK)

ELSE ENVCUNLBLOCK>;
ENVl (BLOCKHEAD> : • ENV:: CCOMPT> : • IF -.BEGUN CUNLBLOCK) THEN

NULL ELSE ENV1CUNLBLOCK);
ENV CBLCCKHEAD> : • ENV CCOMPT> : • IF BEGUN CUNLBLOCIC) THEN

ENVCUNLBLOCIC) ELSE INVDELTA(ENV(UNLBLOCK),
UNIONDOTCE(BLOCKHEAD),ECCOMPT))) /S

S/ VIRDECL(UNLBLOCK) : • IF -.BEGUNCUNLBLOCIC) THEN NULL ELSE
UNIONR (VIRDECL (BLOCKHEAD), VIRDECL CCOMPT)) /S

S/ CL(BLOCKHEAD) :• IF -.BEGUNCUNLBLOCK) THEN 0 ELSE
CL CUNLBLOCIO I$

S/ QUALTB CBLOCKliEAD) : • QUALTB <COMPT> : •
UPDQUALTB(QUALTBCUNLBLOCK), CDECL<BLOCKHEAD)) /S

S/ IF AEMDEC(BLOCKHEAD) THEN
BEGIN

IF NUMDEC (BLOCKHEAD) • 1 THEN DAMB (FALSE, 1) ELSE
DAMB <PALSE, 2)

END ELSE
IF EMDEC<BLOCKHEAD) THEN DAMBCFALSE, 1) ELSE
IF FIRSTST(COMPT) THEN DAMBCTRUE, 1) /S

SP180 UNLPREBLOCK ::• BLOCKPRE MBLOCK

S/ UNDECL(UNPREBLOCK) :• NULL; VIRDECL(UNLPR~BLOCK) :• NULL;
D(UNLPREBLOCK> :• 0; CL<MBLOCK) := SN;
BEGUN <MBLOCK> : • TRUE; E CUNLPREBLOCK> : • NULL;
SN : • NEWINTEGER; SM : = NEWINTEGER;
OUTPUT(LISTCINSTR •• $(FORMAT :• FJl; SN :• SN; SM :• SM;

OBJECT :• PL(BLOCKPRE).OBJECT), SM);
OUTPUT<VIRMERGECCONCATENATECPL<BLOCICPRE).CODE,

APEt><D CUNDECL <MBLOCK), RULE <MBLOCK))),
VIRDECL <MBLOCK)), SN) /S

S/ RULE (UNLPREBLOCIO : .. CONS (I NSTR •·• S (FORMAT : • F11),
APEND<RULE<BLOCKPRE), CONS(INSTR •• $(FORMAT : • F32;

SN :• SM; LL := LL<UNLPREBLOCK) + 1), CONS(INSTR ••
$(FORMAT :a F19; NFORMALS :• PL(8LOCKPRE).NFORMALS),
CONS(INSTR •• $(FORMAT !• F12) 1 .

LIST<INSTR •= <FORMAT :• F27)))))) /S
$1 ENVCMBLOCK) : • INVDELTA<ENV(UNLPREBLOCK),

INVDELTA(PL(BLOCKPRE).LOCALE,
I NVDELTA <ENVl <M&LOCK), E <MBLOCK)))) IS

S/ ENVlCMBLOCK) : • •PL<BLOCKP~E).VIRTUALE /S
$1 ENVA <MBLOCK) : • lNVDELTA <ENV <MBLOCt:),

El •• PLC~LOCt:PRB).FORMALE) /S
S/ DO<MBLOCK> :• PL(BLOCKPRE).NLOCALS + 1 /S
$1 LLCMBLOCK) :• LL<UNLPREBLOCK) + 2 /S

SP181 BLOCKPRE ::c CLIDl APPART

S/ RULE<BLOCICPRE> :• RULECAPPART);

191

IF LL<BLOCKPRB> ~· PL(CLIDt>.ADDR.LN THIN
ERROR<"BLOCK PREFIX IS NOT AT THI SAMI LIVIL AS ILOCK•)&
IP L(APPART) ~· PL<CLIDI>.NPORMALS THIN
ERROR<"DIFPERBNT NlMIBR OF FORMAL AND ACTUAL PAiAMITERS•) /S

SP182 MBLOCK ::• UNLBLOCK

SP183 MBLOCK ::• UNLCOMP

S/ RUL&CMBLOCK) :• PUTTI(RULi(UNLCOMP), TRUE) /S

SP184 BLOCKHEAD ::• BEGIN DECL

S/ NUMDECCBLOCKHEAD) :• 1; AIMD&C(BLOCKHBAD) :• BMDBC(DICL) /S

SP185 BLOCKHEAD ::• BLOCKHEAD; DECL

S/ RULE<BLOCKHEAD> :• APIND<RULECBLOCKHIAD•>, RULE(DSCL>> /S
S/ VIRDECL(BLOCKHEAD) :• UNIONRCVIRDECL(BLOCKHEAD•>,

VIRDICLCDICLJ) /S
S/ !(BLOCKHEAD) :• UNIONOOT(E(BLOCKHEAD•>, I(DECL)) /S
S/ DCBI~CKHEAD> :• D<BLOCKh~.O•> + DCDECL) /S
S/ NUMDECCBLOCKHEAD) :• NUMDEC(BLOCKHEAD) + 1 /S
S/ AEMDECCBLOCKHEAU) :• AEMDECCBLOCKHEAD•> AND AEMDBCCDECL) /S
S/ DO(DECL> :• DOCBLOCKHEAD) + D(BLO~KHIAD) /S
S/ CD&CLCBLOCKHEAD) :• APENDCCDECL(BLOCKHBAD•>• CDICL(DBCL)) /S

SP186 DECL ::• TYPEDECL

S/ CDECLCDECL) :• NULL; VIRDBC~CD&CL) :• NUL~
EMDECCDECL) :• PALS& /S

SP187 DBCL ::• ARDECL

S/ CDECL~DECL) :• NULL; VIRDECL(DBCL) :• NULL;
EMDECCDECL) :• FALSI /S

SP188 DBCL ::• SWDECL

S/ CDECLCDECL) :• NULL; ~DECCDECL) :• FALSE /S

SP189 DBCL :: • PROCDECL

S/ CDECLCDBCL) :• NUL~ EMDECCDECL> :• FALSI /S

SP190 DBCL ::• CLDECL

S/ EMDECCDECL) :• FALSE, VIRDECLCDECL) :• NULL;
CDECLCDECL) :• LISTCPIRSTCBCCLDBCL))) /I

192

SP191 DECL ::•

S/ RULE <DECL) : • NULL; E <DECL) : • NULL; VI RDECL <DECL> : • NULL;
EMDEC<DECL> :• TRUE; CDECL<DECL> :• NULL; D<DECL) : • 0 /$

SP192 TYPEDECL :: • TYPEN TYPELIST

S/ INSTR : = IF NULLR<FIND<TYPDS(TYPEN>,QUAL)
THE~ $(FORMAT :• F9; OPER :• TYPDS<TYPEN>.TYPE>
ELSE $(FORMAT: • F18; QUAL :• TYPDSCTYPEN>.TYPE)

ON: • D<TYPELIST>; RULE1 :• NULL;
WHILE DN > 0 DO
BEGIN RULEl: • CONS(INSTR, RULEl); DN :• DN- 1 END/$

$1 TYPD<TYPELIST) : • TYPDS(TYPEN> /$

$P193 TYPEN ::• VALTYPE

SP194 TYPEN ::~ REFTYPE

SP195 VALTYPE :: • REAL

$1 TY?DS: • $(KIND :• "SIMPLE"; TYPE :• "REAL") /S

SP196 VALTYPE :: = INTEGER

$1 TYPOS:= $(KIND:' "SIMPLE"; TYPE :• "INTEGER") /S

SP197 VALTYPE ::• BOOLEAN

S/ TYPOS :• S<KIND :• "SIMPLE"i TYPE :• "BOOLEAN") /S

SP199 REFTYPE ::= OBJREF

SP 200 OBJREF :: " J(Ef < QUAL IF >

S/ TYPOS : • $(KIND: • "SIMPLE"; TYPE: • "REF";
QUAL :• PLCQUALIF>.SEGMENT) /S

SP201 QUALIF :: • SIGMA

S/ NEXTl : • FIND <ENV <QUAL IF>, [SP!SIGMA) l);
IF ~NULtB<NEXTl) THEN PL(QUALIF) : • (NEXTl) ELSE
ERROR<~P(~IGMA), " UNDECLA~~D CLASS IDENTIFIER">;
IF PL(QUALlf).GENUS. KIND~· "CLASS" THEN
ERROR(SP(SIGMA), " NOT A CLASS IDENTIFIER") /$

193

SP202 TYPELIST ::• SIGMA

Sl D CTYPELIST> : • 1;
BCTYPELIST). [SPCSIGMA)J :• $(GENUS :• TYPDCTYPBLIST);

ATTR : • CL CTYPELIST); ADDI a • S<POIMAT : • Pll;
DN: • OOCTYPILIST>; LN l• LL<TYPILIST>>> /I

SP20J TYPELIST ::• SIGMA, TYPELIST

$1 ECTYPELIST> :• UNIONDOT(E(TYPELIST•>, 11 .. ([SPCSIGMA)J :•
S<GENUS :• TYPDSCTYPELIST); ATTR :• CL(TYPBLJST);

ADDR :• $(FORMAT :• P21; DN :• DO<TYPBLIST>;
LN : • LL(TYPELIST)))) 1$

S/ D CTYPEL I ST) : • D <TYPELI ST•) + 1 /S
S/ DO(TYPELIST•> :• DOCTYPELIST> + 1 /S

IP206 ARDECL ::• ARRAY ARLIST

S/ TYPD<ARLIST) :• S<KIND :• "ARRAY"; TYPB :• "RIAL") /I

IP207 ARDECL ::• TYPEN ARRAY LIST

$/ TYPD(ARLIST) :• PUTINCTYPDSCTYPEN> KIND :• "ARRAY") /S

SP208 ARLIST ::. ARSEG

$/ RULE(ARLlST> :• APENDCRULE(ARSEG>, LISTCINSTR ••
${FORMAT :• F2J; GINUS :• TYIDCARSBG);

D : • D (AJlSEG) -1; L : • L <AISBG)))) I I

SP209 ARLIST ::• ARLIST, ARSEG

S/ RULE(ARLIST) :• APEND<RULE(ARLIST•), APENDCRULBCARSBG>,
LIST(INSTR •• $(FORMAT :• F23; L :• L<ARSIG);

D :• D<ARSEGl-1; GENUS :• TYPD(ARLIST))))) /S
1/ E<ARLIST) :• UNIONDOTCE<ARLIST•), BUlRSEG)) /S
S/ DCARLIST> :• DCARLISTe) + D(~SEG) /S
S/ DOCARSEG> :• DOCARLIST) + D(\RLISTe) /S

SP210 ARSEG ::• ARID [BOUNDPLIST l

I/ RULE(ARSEG> :• CONSCINSTR •• S04ARK1 :• "IGNORE"),
APEND<RULE<BOUNDPLIST),

LIST(INSTR .. S04ARK1 : • "END IGNORB")))) /S
I/ D CARSEG) : • 1;

E CARSEG). [SP (ARID> J : • $(GENUS : • TYPO (ARSIG);
ATTR :• CLCARSEG>; N:• L(80UNDPLIST); ADDR :•

$(FORMAT :• F21; DN :• DO(ARSEG>; LN :• LL(ARSBG~)) /$

SP211 ARSEG :• ARID, 'ARSEG

U4

$/ ECARSEG> :• UNIONDOT<ECARSEG•>, E1 •• S<lSPCARIDl : •
$(GENUS :• TYPD<ARSEG>; N :• L<ARSEG•>;

ATTR :• CL(ARSEG); ADDR :• SCPORMAT :• F21;
ON :• DO<ARSEG); LN :• LLCARSEG))))) /S

$/ DCARSEG> :• DCARSEG•> + 1 /$
$/ DO(ARSEG•) :• DO<ARSEG) • 1 /$

SP212 ARID:: • SIGMA

SP213 BOUNDPLIST ::• BOUNDP

$1 L<BOUNDPLIST> :• 1 /S

SP214 BOUNDPLIST :: • BOUNDPLIST, BOUNDP

$1 RULECBOUNDPLIST) :• APEND<RULECBOUNDPLIST•), RULE(BOUNDP))/$
S/ L(BOUNDPLIST) :• LCBOUNDPLIST•> + 1 /S

SP21S BOUNDP ::• BOUND: BOUND

S/ RULE<BOUNDP> : • APEND<RULECBOUND), RULE<BOUND•)) /$

SP216 BOUND ::• ARITEXPR

S/ APA(ARITEXPR) :• 0; USE<ARITEXPR) :• "VALUE";
ENV(ARITEXPR> : • ENVA<BOUND) /$

SP218 SWDECL ::• SWITCH SWID :• SWLIST

S/ SN : • NEWINTEGER;
INSTR : • $(FORMAT: • F24; SN: • SN; L : • L<SWLIST)) IS

S/ DN :• CHECKVIRT(ENVl(SWDECL), SPCSWID>, "SWITCH") /S
S/ OUTPUTCRULECSWLIST), SN) /$
S/ RULECSWDECL) : • IF ON ~· 0 THEN NULL ELSE LISTCINSTR> /S
$1 VIRDECLCSWDECL) :• IF DN • 0 THEN NULL ELSE

$([DNJ : • INSTR> /S
$/ DCSWDECL) :• IF DN • 0 THEN 1 ELSE 0 /$
$1 El. (SPCSWID)J :" $(GENUS: • $(KIND: • "SWITCH";

TYPE :• "SWITCH">; N :• L(SWLIST>;
ATTR :~ CL(SWDECL>; ADDR :• $(FORMAT :• F21;

LN :• LL(SWDECL);
ON :• IF DN • 0 THEN DO(SWOECL) ELSE ON>>;

E(SWDECL) :• IF ON • 0 THEN El ELSE
BEGIN

UUTIN<ENVCSWDECL): [SP<SWIO)) :• FIRST(El)); NULL
END /$

SP218A SWID ::• SIGMA

SP219 SWLIST ::• DESIGEXPR

195

S/ SN: • NEWINTEGER; L<SwLIST) :• 1; APA<DESIGEXPR) :• 0;
OUTPUT<APEND<RULECDESI~EXPR>,

LIST<INSTR •a $(FORMAT :• P12))), SN) IS
S/ RULE(SWLIST) :• L!ST<INSTR *• $(FORMAT :• FlJ; SN: • SN;

LL :• LL(SWLIST) + 1; TYPB :• "LABEL")) IS·

SP220 SWLIST ::z SWLIST, DESIGEXPR

$/ SN: • NEWINTEGER; APA<DESIGEXPR) :• 0;
OUTPUTCAPENDCRULECDESIGEXPR),

LISTONSTR •· $(FORMAT :• P12})), SN) IS
$1 RULE(SWLIST) : • APENDCRULE(SWLIST•>, LIST(INSTR ••

SCFORMAT :• Pll; LL :•LL(SWLIST) + 1;
TYPE : • "LABEL"; SN : • SN))) /$

s.- L<SWLIST> : E L<SWLIST•> • 1 ;s

SP221 PROCOECL :: • TYPEP PROCEDURE PROCHEAD PROCBODY

$/ SN : • NEWINTEGER;
INSTR :• $(FORMAT :• F33; SN :• SN; LL :• LLCPROCBODY));
DN : • CHECKVIRTCENV1CPROCDECL), SP(PROCHEAD), "PROCEDURE")/$

S/ OUTPUTCAPENDCRULE<PROCHEAD>, APEND(UNDECL(PROCBODY),
LIST(JNSTR •• $(FORMAT : • F12))))), SN)) IS

Sl ENVACPROCBODY> : • INVDELTACENVCPRODECL), E(PROCHEAD)) IS
S/ ENV<PROCBODY : • iNVDELTA(ENVA(PROCBODY>, E<PROCBODY)) IS
S/ ENV1CPROCBODY) :• NULL; ·

LL(PROCBODY> :• LLCPROCHEADl :• LL{PROCDECL) + 1 /S
S/ RULECPROCDECL> :• IF ON~· 0 THEN NULL ELSE LIST(INSTR)

VIRDECL(PRODECL) : • IF DN • 0 THEN NULL
E~SE $([DNJ :• INSTR>;

0 {PRODECL) : • IF ON • 0 THEN 1 ELSE (1;

TYPDCPROCHEAD> :• PUTINCTYPDSCTYPEP) :
KIND :• "PROCEDURE"> /S

S/ El. i:SP (PP.OCHEAD)) :a $<GENUS : • TYPOS (TYPEP);
ATTR: • CL(PROCDECL); NFORMALS :• D(PROCHBAD>;

SEGMENT :• SN; ADDR :• S<PORMAT :• P21;
LN :• LL{PRODECL);
DN: a IF DN • 0 THEN DO<PRODECL) ELSE DN)}) /S

$1 ECPRODECL) : • IF DN • 0 THEN E1 ELSE
BEGIN

'PUTIN(ENV1CPROCDECL) :
[SP<PROCHBAD)l :• PIRST(B1));

NULL
END;

lF DN 0 THEN
SU80RDINATE<QUALTB(PROCDECL),

ENVl (PP.OCDECL), [SP (PROCH&AD) l, GI~US,
TYPDHTYPEP>> /S

S/ DO<PROCBODY) :• D(PROCHEAD) + 2 IS

SP221A TYPEP ::• TYPEN

SP22lil TYPEP::•

196

$1 TYPDS(TYPEP).TYPE :~ "U" /$

SP223 PROCHEAD :: • PROCID FPPART; MOPART S~PART

S/ LEGIT(SPPART} :• 0; CL<SPPART) :• 0; DO<SPPAIT) :• 1;
PLACE<SPPART) :• "SPECIFICATION"; DQCFPPART) :• 2~

NAMETB(MOPART) :• NAMETBCSPPART) :• NTB<FPPART);
ENVl(SPPART) :a ENV(PROCHEAD};
CHECKSPEC~ATRIX<SPPART), D<FPPART>;
MAT <MQPAR.T) : • MATRIX (SPPART) IS

$1 RULE <PROCHEAI>) : • CHERULES (MATRIX <MOP ART), FALSB,
D<FPPART>, 0) /S

SP224 PROCID ::• SIGMA

SP225 FPPART ::•

S/ D<FPPART) :• 0; NTB<FPPART) :• NULL /S

SP226 FPPAR! ::= (FPLIST >

SP227 FPLIST ::• fP

S/ D (FPL 1ST) : " 1; NTB <FPLI ST). [SP (FP) l : • DO (FPL I ST) IS

SP228 FPLIST ::• fPLIST, FP

S/ D<FPLIST) :• D(FPLIST•> + 1 /$
S/ NTB<FPLIST) : • PUTINCNTB<FPLISTe): (SP<FP>J : • DD<FPLIST) +

D<fPLIST•)) IS

SP229 PP ::• SIGMA

SP230 MOPART ::• VALPART NAMEPART

$1 MAT(VALPART) :• MATRIX<NAMEPART);
MATRIX<MOP\RT) :a MATRIX<VALPART> /S

S/ IF MOAMSCNAMEPART) AND MOAMB(VALPART) THE~

DAMB<TRUE, MOPART) ELSE
IF MOAMB<NAMEPART) THEN DAMB(TRUE, MOPAIT) !LSE
IF MOAMB<VALPART) THEN DAMB<FALSE, MOPART)/ S

$P231 MOPART ::• NAMEPART VALPART

$1 MAT(VALPART) :• MATRJX(NAMEPART);
MATRlX<MOPARTl :• MATlliX<VALPART) /S

$1 IF MOAMB<NAMEPAR~) AND MOAMB(VALPART) THEN
DAMBlFALSE, MOPART) ILSI

197

IF MOAMBCNAMEPART> THEN DAMB(PALSE, MOPART) BLSB
IF MOAMBCVALPART> THEN DAMB<TRUE, MOPART) /$

SP 232 VALPART : : • VALliE I DLI ST ;

S/ MOAMBCVALPART> :• fALSE; ENVl(IDLIST) :• NULL;
LLCIDLIST) : • 0; PLACJI(IDLIST) : • "VALUB";
TYPDCIDLlST> :• NULL, DOCIDLIST) :• 0; CL<IDLIST) :• 0 /S

SP233 VALPART ::•

$/ MOAMB<VALPART> :• TRUE; MATRIX(VALPART) :• MATCVALPART) /S

SP234 IDLIST ::• SIGMA

S /LCIDLIST) : • 1;
IP PLACECIDLIST) : • "VIRTUAL" THIIN SN :• 0 ELSB
BEGIN

NEXTl :• FIND<NAMETBODLIST), [SP<SIGMA>l>;
IF ~NULLBCNEXTl) THEN SN :• [NEXT1) ELSE
ERROR<SP<SIGMA>, " NOT A FORMAL PARAMETER")

END /S
$1 MATRIX(IOLIST) :• IF SN •0 THEN NULL ELSE

SCSN • IP PLACECIDLIST) ~· "SPBCIFICATION" THiN
$~DE :• PLACECIDLIST>> ELSB

SCSPEC :• TYPD(IDLIST); MODE:•
IF TYPD<IDLIST),KlND • "SIMPLE" AND
NULLRCFINDCTYPDCIDLIST),QUAL)) THBN "VALUB"

BLSII "REPBRBNCE")) /$
S/ IF PLACBCIDLIST) • "VALUE" THEN

BEGIN
SPEC : • MAT (I DL I ST). [SN]. SPEC;
IF CHECKKIND(SPEC) OR SPEC.TYPE • "REF" THEN
BRROR(SP(SIGMA), " HAf. IMPROPER MODE")

END /S
I/ ECIDLIST) : • IF PLACEODLIST> • '•VALUE" OR

PLACECIDLIST) • "NAME" THEN NULL ELSE
SC[SPCSIGMA)] :• S<GENUS :• TYPD(IDLIST);

ATTR :• CLCIDLIST);
ADDR :• SCFORMAT :• F21; LN :• LL(IDLIST);

DN :• IF SN • 0 THEN DO(IDLIST) BLSB SN))) /$

.P235 IDLIST :• IDLIST 1 SIGMA

S/ IF PLACE(IDLIST> • "VIRTUAL" THEN SN :• 0 ~LSI
BEGIN

NEXTl : • FINDCNAMETB<IDLIST), [SP(SIGMA)));
IF ~NULLB<NEXTl) THEN SN :• [NEXTll ELSE

ERRORCSPCSIGMA>, " NOT A FORMAL PARAMBTIR")
END /$

S/ MATRIXCIDLIST> :• IF SN • 0 THE~ ~ULL &LSI
PUT IN <MATRIX CIDLI ST•>:

[SNl :• IF PLACECIDLIST) ~·"SPECIFICATION" THBN
S <MODE : • PLAC:E (I DLI ST)) ELSE

198

S<SPEC : • TYPD<IDLIST);
MODE: • IF TYPD<IDLIST).KIND • "SIMPLE" AND

NULLRCFIND<TYPD(IDLIST>, QUAL)) THEN
"VALUE" ELSE REPEIBNCE>> IS

S/ IF PLACE<IDLIST) • "VALUE" THEN
BEGIN

SPEC : • MAT (I DL I ST). (SNJ. SPEC;
IF CKECKKJND(SPEC> OR SPEC.TYPE • "REF" THEN
ERROR(SP<SIGMA), " HAS IMPROPER MODE">

END /$
S/ E(IDLIST> :• IF PLAC~CIOLIST> • "VALUE" OR

PLACECIDLIST) • "NAME" THEN NULL ELSE
UNIONDOT(E([DLIST•), El *- $([SP<SIGMA)) :•

$(GENUS :• TYP~CtnLIST); ATTR :• CL<IDLIST);
AODR :• S<FOkMAT :• F21; LN :• LL(IDLIST);

ON :• IF SN • 0 THEN DO(IOLIST) ELSB SN)))) /$

$/ L<JDLIS~) :• L(IDLIST•> + 1 /S
S/ DOCIDLJ!i•) :• DO<IDLIST) + 1 i$

SP236 NAMEPART ::• NAME IOLIST;

S/MOAMBCNAMEPART) :• FALSE; INVl(IDLIST) :• NULL;
PLACE(lDLIST) :• "NAME"; TYPD<IDLIST) :• NULL;
DOUDLIST) : • 0; Cl.ODLIST> : • 0; LL(IDLIST) : • 0 IS

SP237 NAMEPART ::•

$/ MATRIX(NAMEPART) :• MAT<NAMEPART);
MOAMBCNAMEPART) :• TRUE /S

SP238 SPPART .:•

$/RULE(SPPART) :• NULL; L<SPPART) :• 0; E(SPPART> :• NULL;
MATRJX(SPPART> :• NULL/$

SP239 SPPART ::• SPPART SPf~IFIER JDLIST;

$1 ENV(SPECIFIER> :• ENVl(SPPART>;
RULE<SPPART) :• IF PLACE(SPPART) ~·"VIRTUAL" THEN NULL ELSE

APEND(RULE(SPPART•),
BUILDVC(TYPDS(SPECJPIIR).XIND, L(IDLIST)) /S

S/ IF PLACECSPPART) • "VIRTUAL" THEN
BEGIN IF ~CHECKKIND<TYPDS(SPECIPI!R)) THBN
ERROR<"INVALID SPECIFIER IN A VIRTUAL DICLAIATION") BND /S

S/ If LEGIT(SPPART) • 1 THEN
BEGIN

IF CHECKXIND<TYPDS<SPECIFIER>> THEN
ERROR("INVALID SPECIFIER FOR A CLASS PORMAL PARAMETER">

END /S
$1 TYPOCIDLlSTl :• TYPDS(SPECIFlER>;

MATRIX(SPPART> :• MAiRIX(IDLIST>;
MATCIDLIST) :• MATRIX(SPPART•>;
L(SPPART) :• L(SPPART•> + L(IDLIST) /$

$1 DO(IDLIST) :• L<SPPART•> + DO(SPPART) /$

199

S/ i(SPPART) :• UNIONDOT(i(SPPART•), BCIDLIST)) /S

SP240 SP&CIPIER :: • TYPEN

SP24l SPECIPIER :: • ARRAY

S/ TYPDS<SPBCifl&l) :• $(KIND :• "AIRAY"I TYPE I•. "REAL") IS

SP242 SPECIPIER :: • TYPEN AllAY

S/ TYPDS(SPECI'\:IER) :• PUTINCTYPDS<TYPIN): KIND :• "ARRAY") II

SP243 SPECIFIER ::• LABEL

S/ TYPDSCSPECIFIER).KIND :• "LABEL" IS

SP244 SPECIFIER ::• SWITCH

S/ TYPDSCSPECIFIER).KIND :• "SWITCH" /S

SP245 SPECIFIER ::• PROCEDURE

$1 TYPDSCSPECIFIER) :• SCKIND :• "PROCEDURE"; TYPE I• "~") I$

SP246 SPECIFIER ::• TYPEN PROCEDURE

S/ TYPDS(SPECIFIER) :• PUTIN<TYPDS<TYPIN):
KIND :• •PIOCIDUIB") IS

SP247 PROCBODY ::• STl

Sl BEGUN(STl) :• TRUE; OUTERMOST(ST1) :• PALSI; CL(ST1) I• 0 IS

$P250 CLDECL ::• P~t MPART

tl SN : • ~SWINTEGER; SM : • NEWINTEGER; D(CLDECL) : • 1;
PPL <MPART) : • PL (PRE);
IF Pl. <PRE). ADDR. LN ~· LL (CLDECL) THEN UROR

("PiEPIX AND CLASS DECLARAATIONS AT DIPPIIBNT LIVILS") /S
Sl LLf~PART> :• LL<CLDICL> + 2;
Sl RULE<CLDECL) :• LIST<INSTR •• SCFORMAT :• P32; SN :• SM;

LL :• LLCCLDSCL) + 1)) IS
$1 RULE : • VIRMERGECIP PL<MPAilT). SEGMENT • 0 THIN RULB<MPAIT)

ELSE CONCATENATE (PL (PRE). CO DB, RULI <MPAIT)),
VIIDECL <MPAIT)) II

S/ OUTPUTCLISTCINSTR •• SCFORMAT :• P31; 5N :• SN; SM :• ~

OUTPUT CIULE, SN) IS
OBJECT : • PL (PIS) .,OIJICT)), 5M);

S/ E(CLDECL).SP<MPART) I• PUTIN(PL<MPART> : ADDI I•

200

$P251 PRE :: •

S <FORMAT : • F21; Ul : • I.L (CLOECL) i DN • DO (CLDECL));
ATTR :•CI.(CLDECL;; C9.DE :• RULE; SEGMENT: • SN;

OBJECT :• SM) /S

S/ Pl. <PRE) : • $ (ADOR. LN : • LL CPRE); LOCALE : = NULL;
NFORMALS : " 0; FORMALE : • NULL; NLOCA!.S : • 0;
VIRTUAL£ : = l.JULL; SEGMENT : • 0; OBJECT : • 0 /S

SP2S3 MPART :: • CLASS CLIO FPPART; VALPART SPPART VIRTPART CLBODY

S/ LEGIT(SPPART) : = 1; PLACE(SPPART) : • "SPECIFICATION";
ENVl(SPPART) :. ENVl(VlRTPART) :• ENV<MPART>;
DO (SPPART) : = 0;
RULE <MPART> : = APE NO (CHERULES <MATR l X <VAL PART), TRUE,

DO(VIRTPART) -1, PPL<MPART).NLOCALS­
PPL<MPART).NFORMALS),

APEND(UNDECL(CLBODY), APEND<RULE(CLBODY),
LIST(INSTR •· $(FORMAT:= F35)))))) /$

$1 E<MPART) ::: U::IONDOTCE<CLBODY), E<SPPART)) IS
$/ ENV (Ci..BODY> : • 1 NVDELTA <ENV (MPART),

E *= I(PLCMPART).LOCALE) /$
Sl ENVl<CLBODY) :• PL<MPART).VIRTUALE /$
S/ NAMETABCSPPART) :• NAMETB(VALPART) : • NTB(FPPART);

MAT(VALPART) : = MATRIX(SPPART>;
CHECKSPEC<MATRIX(SPPARTl, D<FPPART)) /S

S/ DO(FPPART) : s PPLCMPART).NLOCALS + 1;
DO(V!RTPART> : = DO(FPPART> + DCFPPART>;
DO<CLBODY> : • DO(VlRTPART) + L(VlRTPART) /S

S/ PL<MPART) := S<GENUS.KlND := "CLA.SS";
$1 NFORMALS :• D(FPPART) + PPL<MPART).NFORMALS /$;
S/ NLOCALS : • D<CLBODV) + L<VIRTPART) + O(FPPART)

+ PrL<MPART).NLOCALS /S;
$/LOCALE :• INVOELTA(PPL<MPART).LOCALE, INVDELTAC

. PL<MPART). VIRTUALE, E<MPART))) /S;
$/ FORMALE: • JNVDELTA(PPL<MPART>.FORMALE,

E •= • E(SPPART)) /S;
$1 VIRTUALE :• UNIONDOT(E(VIRTPART),

PPL<MPART).VlRTUALE) /$) /$

SP254 VIRTPART :: •

S/ RULE(VIRTPART) : • NULL; E(VIRTPART) :• NULL;
L(VIRTPART) : = 0 /$

SP2SS VIRTPART ::.VIRTUAL: SPPART

S/ PLACECSPPART) :• "VIRTUAL"; LEGIT(SPPART) :• 2;
NAMETB(SPPART) : • NULL /S

$P2SSA CLIO ::• SIGMA

201

SP256 CLBODY ::• ST1

S/ BEGUN <ST1) :• TRUE; OUTERMOSTCSTI) :• TRUE /S

SP257 CL&ODY ::• SPLITBODY

SP258 SPLITBODY ::• INITOPS INNER: FINOPS

S/ RULE<SPLITBODY) :• APEND(ARULE(INITOPS),
APEND(UNDECLCINITOPS), APENDCUNDECL(PINOPS),

CONS(INSTR •• S~K :• "INIT");
APEND(RULECINITOPS), CONS(INSTR ••

S~K: • "INNER"), RULE(PINOPS)))))))/S
S/ VIRDECL(SPLITBODY> :• UNJONR(VIRDECL(INITOPS),

VIRDECL(PINOPS)) /S
$/ E(SPLITBODY> :• UNIONI>OT<E<INITOPS), BCPINOPS)) /$
$/ D(SPLITBODY) :• D<INITOPS) + DCPINOPS) /$
$1 DOCFINOPS> :• DOCSPLITBODY) + DCINITOPS) /S
$/ UNDECLCSPLITBODY> :• NULL/$

$P259 INITOPS ::.BEGIN

$/STAITCINITOPS> :• TRUE; D(INJTOPS} :• 0; ICINITOPS) :• NULL;
RULECINITOPS) : • NULLi ARULE<INITOPS) :• NULL;
UNDECL(INITOPS) :• NULL; VIRDECL(INITOPS) :• NULL;
EMDECCINITOPS) :• FALSE/$

$P260 INITOPS :• BLOCKHEAD;

$1 STAIT(INJTOPS> :• TRUE; UNDECLCINITOPS> :• NULL;
RULE(INITOPS) :• NULL; ARULECINITOPS> :• IULBCILOCKHBAD) IS

S/ IF EMDECCBLOCKHEAD) THEN DAMBCFALSE, 1) IS

SP26l INITOPS :: • INJTOPS ST i

S/ RULECINITOPS> :• APEND<RULE<INITOPSt), RULB(ST)) /S
S/ UNDECL<INITOPS> :• APENDCUNDECL<INITOPSt), RULB(ST)) /S
S/ VIRDECL<INITOPS> :• UNIONRCVIRDECL(INITOPSt), VIRDBCLlST))/$
S/ BCINITOPS> :• UNIONDOTCE(INITOPSt), BCST)) /S
S/ DCINITOPS) :• DCINITOPS•> + DCST) /$
$1 DO(ST) :• DOCINITOPS> + DCINITOPSt) /S
S/ STARTCINITOPS> :• STAI!CINITOPSt) AND ~BMDIC(INITOPSt) AND

PIRSTSTCST);
If STARTCINITOPS) THEN DAMB(TRUB, 1) /$

SP262 FINOPS ::~ iND

S/ RULE(fiNOPS> :• NULL; E(fiNOPS> :• NULL; D(PINOPS) :• 0;
VJRDECL(FINOPS) :• NULL; UNDECL(FIN~PS) :• NULL /S

202

SP263 FINOPS ::•; COMPT

SP264 COMPT :: • ST END
$/ FIRSTSTCCOMPTl :a FALSE /S

SP265 COMPT :: • ST; COMPT

S/ FIRSTSTCCOMPT) :~ FIRSTST(ST);
UNDECL(COMPT) : • APE~D(UNDECL(ST), UNDECL(COMPT•}) /$

S/ VIRDECL(COMPT) :a UNIONRCVIRDECL(ST), VIROFCL(COMPT•)) /S
S/ RULE<COMFT> : = APENDCRULE(ST), RULE(COMPTe)) /S
S/ E(COMPT) :• UNIONDOTCE(ST), E(COMPTe))
S/ 0(CQMPT) :• D(ST) + DCCOMPT•> /$
S/ DO(COMPT•) : • OO(COMPT) + O(ST) /S

SP26SA ST ::~ STl

SP266

$P267

SP268

SP269

S/ BEGIN (STl) : = FALSE; ENVA (5T1) : • ~ULL;
OUTERMOST(5T1) :• FALSE/$

STl ::• UNCONDST

$1 OPEN <STl) : • "NONE" 1$

ST1 :: • CONDST

S/ FIRSTST (ST1) : • FALSE;
RULE (STO :a PUTII CRULE(CONOST), OUTERMOST<STl)) 1:

STl : : • CONNST

S/ FIRSTST (STD : • FALSE;
RULE(ST1) : • PUTII<RULECCONNST), OUTERMOST(STl) /S

STl :: • WHILEST

S/ FIRSTST(ST1) :s FALSE
RULE(STl) :• PUTII(RULE<WHILEST).OUTERMOST(STl)) /S

SP270 UNCONOST ::• BASICST

S/ RULE(UNCONDST> := PUTII CRULE(BASICST),
OUTERMOST(UNCONDST))/$

SP271 UNCONDST ::• COMPST

$/ RULECUNCONDST) :a PUTII CRULE(COMPST), OUTERMOST(UNCONDST)}/$
S/ FIRSTSTCUNCONDST) : • FALSE /S

203

SP272 UNCONDST ::• BLOCK

S/ FIRSTSTCUNOONDST) :• PALSE /S

SP273 BASICST ::• UNLBASICST

$/ VIRDECLCBASICST) :• NULL; UNDECL(BASICST);
ECBASiCST> :• NULL; DCBASICST) :• 0 /S

SP274 BASICST ::• LABELO: BASICST

$1 FIRSTSTCBASICST> :• FALSE; SN :• NEWINTEGER;
INSTR :• $(FORMAT :• F21; JLABEL :• SN>;
DN :• CHECKVIRTCENV1CBASICST), SPCLABELO>, "LABeL"> /S

$1 RULE<BASICST) :• CONSCINSTR •• SCLABELI :• SN),
. RULECIASICST•>> /S

$/ UNDECLCBASJCST) :• IF DN ~· 0 TH&N UNDECLCBASICST•) BLSE
• CONSCINSTR, UNDECLCBASICST•>> /$

S/ VllDECL(BASICST) :• IF DN • 0 THEN VIRDBCL(BASICST•> BLSB
. PUTIN(VJRDECL(BASICST•> : lDNJ :• INSTR)/S

$/ E(8ASICST) :• IF DN ~·0 THEN E(BASICST•) ELSE .
UNIONDOTCECBASICST•>, 81 •• ((SPCLABILO)J :•

$\GENUS :• $(KIND :• "LABEL"; TYPB :•·"LABBL");
ADDR :• SCPORMAT :• P21; LN :• LLCBASICST);

DN :• DOCBASICST))))) /S
S/ D(BASICST) : • IP DN ~· 0 THEN D(8A51CST•)

ELSE D(BASICST•> + 1 /S
$1 DOCBASICST•> :• If DN ~· 0 THEN DO(BASICSTe)

ELSE DO(BASICSTe) + 1 /S
$/ PJRSTST(BASICST) :• fALSE IS

$P275 UNLBASICST ::• ASSST

$/ FJRSTST(U~LBASJCST) :• FALSE/$

$P276 UNLBASICST ::• GOTOST

S/ FIRSTST(UNLBASICST) :• PALSE /$

SP277 UNLBASICST ::• DUMMYST

S/ FIRSTSTCUNLBASICST) :• TRUI /S

SP278 UNLBASICST ::• PROCST

$1 FIRSTST(UNLBASICST) :• FALSI/$

SP280 UNLBASICST ::• OBJGEN

204

S/ USE<OBJGEN) : • "VALUE"; FIRSTST<UNLBASICST) :• FALSE; RULE<UNLBASICST) : • APENDCRULE(OBJGEN),
LIST(INSTR •· $(FORMAT :• P25))) /S

SP281 UNLBASICST ::• RESUME (OBJEXPR)

$1 USeCOBJEXPR> : • "ADDR"; APACOBJEXPR; : • 0;
Fi~STST(UNLBASICT) :• FALSE;
RULECUNLBASICST) : • APEND(RULECOBJEXPR),

T.IST<JNSTR .. S<FORMAT:. P26))) /S

SP282 UNLBASICST : ~ DETACH

$1 RULECUNLBASICST) :• LI5TCINSTR •• SCFORMAT: • F27); FIRSTSTCUNLBASICST) :• FALSE;
IF CL(UNLBASICST) = 0 THEN
ERROR("OETACH STATEMENT IN ~NON OBJECT BLOCK") /S

$P2SJ ASSST ::• VALASS

S/ ALSO(VALASS) :• FALSE /S

$P284 ASSST ::• REPASS

$/ ALSO(REFASS) : • FALSE /S

$P285 VALASS :: = VALLPAR1 :• VALRPART

$/ USE (VALLPART> : • "ADDR"; USE (VALRPART) : • "VALUE"; ALSO (VALRPART) :• TRUE; PLCVALASS) :• PL(VALLPART>; RULECVALASS) : • APEND<RULE(VALLPART), APEND(RULE(VALRPART),
Ll ST <I NSTR •• $(FORMAT : ,. F28;

ALSO :• ALSO(VALASS))))) /S S/ TYPEl :• PL<VALLPART>.GENUS.TYPE;
TYPE2 :• PL(VALRPART).GENUS.TYPE;
IF ~<<CTYPEl • "!NTEGER" OR TYPE 1 • "REAL") AND

<TYPE 2 • "INTEGERk OR TYPE2 • "REAL")) OR
(TYPE 1 = "BOOLEAN" AND TYPi2 • "BOOLEAN")) THEN ERROR("TYPE INCOMPATIBILITY IN A VALUE ASSIGNMENT"> 1$

SP2~6 VALLPART ::• VAR

S/ APACVAR) : • 0; KIND : • PL<VAR). GENUS. KIND;
IF KIND -• "ARRAY" THEN DAMBCKIND • "SIMPLE", 1) /S

SP287 VALLPART ::• PROGID2

$1 DAMBCPLCPROCID2).GENUS.KIND • "PROCEDURE", 1);
RULE(VALLPART) :• LIST<INSTR *"' SCFORMAT:• F8;

ADDR : • S (FORMAT : • F21; DN : • 1;
LN := PL(PROCID2).ADDR.LN + 1))) /S

205

IP287A PROCID2 ::• SIGMA

I/ NEXT1 :• FIND<ENV<PROCID2), (SP(SIGMA)]);
IF ~NULLB<NEXTl) THEN PLCPROCID2) :• [NIXT1J ILSI
ERROR <SP<SIGMA), • UNDECLARED IDBNTIPIEI") /I

IP288 VALRPART ::• VALEXPR

$/ APA(VALEXPR) :• 1/S

SP289 VALP.PART ::• VALASS

SP290 REPASS ::• RBFLPART :• REFRPART

$1 USE<REFLPART) :• "ADDR"i USE<REFRPART) : • "VALUE";
PL(REFASS) :• PL<REFLPART); ALSO(REFRPART) :• TRUE;
RULE<REFASS) :• APEND(RULE(REFLPART), APEND<RULB(RBPRPART),

LIST(INSTR •• $(FORMAT :• F28;
ALSO :• ALSO(RBP~ .S))))) IS

S/ GENUSl ~· PL<REFLPART).GENUS; GENUS2 :• PL(REFRPART). GENUS;
IF ~CGENUSl.TYPE • "REF" AND GENUS 2.TYPE • "REF"> THIN
ERRORC"TYPE INCOMPABILITY IN A REFERENCE ASSIGNMENT") BLSI
IF GENUSl.QUAL • -1 THEN
ERRORC"LHS OF A REFERENCE ASSIGNMENT IS NONE") ILSI
IF GENUS2.QUAL ~· -1 THEN
COMMENT IF THE TWO QUALS HAVE NO COMMON ANCESTOR THE

FUNCTION CONDQUAL REGISTERS THE BRROR;

'CONDQUAL(QUALTBCRBPASS), GENUS1.QUAL, GE~US2.QUAL) /I

SP29l REFLPART ::• VAR

S/ APA(VAR) :• 0; KI~D :• PL(VAR).GINUS.KIND;
IF KIND ~· "ARRAY" THIN DAMB(KIND • "SIMPLI", 1) /S

SP292 REPLPART ::• PROCID2

S/ DAMBCPL<PROCID2>.GENUS.KIND • "PROCEDURE", 1>;
RULI(REFLPART) :• ~IST<INSTR •• $(FORMAT :• F8;

ADDR :• $(FORMAT :• P21; DN :• 1;
LN :• PL<PROCID2).ADDR.LN + 1))) /S

$P293 REPRPART ::• REPEXPR

S/ APACREPEXPR> :• 0 /S

SP294 R&PRPART ::• REPASS

206

SP295 GOTOST ::• GO TO DESIGEXPR

$/APACDESIGEXPR) : = 0;
RULECGOTOST> :• 4PEND<RULECDESIGEXPR>,

LISTCINSTR :• S<FOkMAT :• F29))) /S

SP296 DtlMMYST :: =

S/ RULECDUMMYST) : • NULL /$

SP297 PROCST :: = PROC!Dl APPART

S/ APA CPROCI 01) : = 0; USE CPROCI 01) : • "VALUE":
TYPE : = PL CPROCI DlJ. GENUS. TYPE;
IF TYPE•"U" THEN TYPE : = "INTEGER";
RULECPROCST) : = CONS(INSTR •= $(FORMAT:= Fll),

SP298 CONDST :: = IFST

CONS<INSTR *• $(FORMAT: z F30),
CONS(INSTR •= $(FORMAT :z F9; OPER :• TYPE),

APENO(RULE(APPART), APEND(RULECPROCIDl),
CONS (I NSTR : = $(FORMAT : = Fl 0),

LIST(IN5TR *"-$(FORMAT :• F25)))))))) /$

S/ SN :• NEWINTEGER; OPENCCONDST) : • "NONE";
FJUMP CIFST) : • SN;
RULECCONDST) : = APEND(RULECIFST),

LIST<INSTR *"' SCLABELI : • S~))) /S

SP299 CONOST :: = IFST ELSE ST

S/ SN := NEWINTEGER; SM: = NEWINTEGER; FJUMP(IFST) : • SN;
OPENCCONDST) : = OPEN CST>;
RULECCONDST) : • APEND<RULE(IFST),

FIXCONDCRULE(ST), SM, SN)) /S
S/ occorm::n := uClFST' + ocsn ;s
$1 DO CST> : • D (I FST) + DO CCONDST) /S
$1 UNDECL(CONDST) :• APEND<UNDECLCIFST), UNDECLCST)) /S
S/ VIRDECLCCONDST) :• UNIONRCVIRDECL(IFST), VIRDECL(ST)) /S
S/ E<CONDST) := UNIONDOTCECIFST), ECST)) /S

$P300 CONDST :: = IFCL CONNST

S/ SN :• NEWINTEGER; FJUMPCIFCL) :• SN;
RULECCONDST) : = APENDCRULECIFCL), APEND .RULE(CONNST),

LISTONSTR *"' $(LABELl : • SN)))) /S

$P301 CONDST :: • IFCL WHILEST

$1 SN: • NEWINTEGER; FJUMP(IFCL) : • SN:
RULECCONOST) : • APEND(RULECIFCL), APEND(RULE(wHlLEST),

LlST(INSTR •• $(LABELl :• SN))) /S

207

SP302 CONDST ::• LABELO: CONDST

I/ SN :• NEWJNTEGER; INSTR :• $(FORMAT :• P20; JLAIIL I• SN);
DN :• CHECKVIRT(ENVl(CONDST), SP<LABELO), "LABEL"> /I

S/ RULE(CONDST> :• CONS(lNSTR •• $(LABELl :• SN>,
IULECCONDSTe)) /S

S/ D<CONDST) :• IF ON~· 0 THEN DCCONDSTt)
ELSE DCCONDST•> + 1 /S

S/ DOCCONDST•> :• IF DN ~· 0 THEN DOCCONDST)
ELSE DOCCONDST) + 1 /S

$1 UNDECLCCONDST) :• IF DN ~· 0 THEN UNDECLCCONDST•> ELSE
CONS(INSTR, UNDECL(CONDSTe)) I I

S/ VIRDECLCCONDST) :• IF DN • 0 THEN VIRDECL(CONDSTe) ELSE
PUT IN CVIRDECL (CONDST•> : lDNl : • INSTR) IS

S/ E(CONDST) :• IF DN ~· 0 THEN ECCONDST•> ELSE
UNIONDOTCE(CONDSTe), E1 •• SClSPCLABELO)] :•

$(GENUS :• S<KIND:• "LABEL"; TYPE: • "LABEL">;
ADDR :• $(FORMAT :• F21; LN I• LL(CONDST)I

ON :• DO\CONDST))))) /S

IPJOJ IPST ::• IFCL UNCONDST

S/ ENVACUNCONDST) :• NULL; BEGUN<UNCONDST) :• FALSI;
CL(UNCONDST) :• 0; OUTERMOST(UNCONDST) :• FALSI;
RULECIFST) :• APENDCIULECIFCL), RULICUNOONDST)) /I

SP304 IPCL ::• IF BEXPR THEN

I/ USECBEXPR) :• "VALUE"; APACBEXPR) :• 0;
RULBCIFCL) :• APENDCRULECBEXPR), LISTCINSrR •• $(POIMAT :•

Fl7; JLABEL :• FJUMP(IFCL)))) IS

SPJOS WHILEST ::• WHILE BEXPR 1>0 ST

$1 APACBEXPR): • 0; USECBEXPR> :• "VALUI";
SM :• NiWINTEGER; SN: • NEWINTEGER
RULECWHILEST) • CONSCINSTR •• $(LABELl :• SN),

APENDCRULECBEXPR),
CONS<INSTR •• $(FORMAT :• P17; JLABIL :• SM),
A PEND <RULE CST), .

CONSCINSTR •• $(FORMAT :• Fl; JLABIL :• SN),
LISTONSTR .. $<LABELl : • SM))))))) IS

SP306 WHILEST ::• LABELO: WHILEST

S/ SN :• NEWINTEGER; INSTR :• $(FORMAT :• P20; JLAIBL :• SN);
DN :• CHECKVIRTCENV10iHILEST), SP(LABELO), "LABBL") /$

S/ RULECWHILEST) :• CONSCINSTR •• S<LABBLI :• SN),
RULE (WHILBST•>) IS

1/ DMIILEST) : • IF DN 0 THEN D<WHILESTe)
ELSE DOOIILESTe) + 1 IS

I/ DO CWHI LEST•> I P DN ~• 0 THEN DO 0011 LEST)

208

ELSE DO <'WHILEST) + 1 /$
$1 UNDECLC'WHILEST) :z IF D~ ~= 0 THEN UNOECl.(WHILEST•> ELSE

CO~S(INSTR, UNOECLCWHILE~T*)) /S
$1 VIRDECL(WHILEST> : = IF ON = 0 THEN VIRDECLCWHILEST•> ELSE

PUTIN<VIROECL<WHJLEST•) : [ONJ : = IN')TR) /$
$1 E(WHlLESTJ : = IF ON -.= 0 THEN E('WHILESh) ELSE

UNJONDOT<E(Io.'HILEST•>, El •= $([SPCLABELO)J :=
S (GE~US : = $ <KI~D: = "LABEL"; TYPE : • "LABEL");

ADDR: = SCFJRMAT ~ = F21; LN : = LL(WHILEST);
DN :'" DO(WHILEST))))) /S

SP307 CONNST :: = INSPECT OBJEX?R CONNPART f,!CL

$/ SM :" !~Ell' I ~TEGER; SN : = NE\o't STEGER;
D<CO:-;:->ST) := IJ(OTCLJ + 1/$

S/ UNDECLCCONl'<ST> : = l}J:-;S<IN5TR •= SCFOkMAT: • F9;
OPER :="REF">, UNDECL(OTCL)) /S

$/ O<OTCLJ : = OPESCCOS\PART>; OPE~ (CONNST) : = OPEN(OTCL) /S
$/ USE COBJEXPR) : = "',ALUE"; FJUMP CCONNPART) : = SN;

TJUMP CCONJ'<PART) : = .>M; APA COBJEXPR) : = 0;
DO (OTCl.) : = DO CCONNST) + 1 /$

$1 RULECC011:~5Tl : = CO\S <I :-;sTR •= S <FORMAT :"' FS;
ADDR : = $(FORMAT : = F21; LN: = LL(CONST);

D:\ : = DO <COSNST>)), A PEND <RULE COBJEXPR),
CONS <I:--<STR •= $<FORMAT : = F28; ALSO :., FALSE),
APE~DCRIJLECCON!\PARTl, CONS(INSTR •= $(LABELl:= SN),

APESD(RULE<OTCL),
LIST (I NSTR *= S (LABEL I : = SM))) l))) IS

SPJOS CONNST :: = I~SPECT OBJEXPR DO CONNBLOCK2 OTCL

$1 SN : = NEWINTEGER; SM : ~ NEWINTEGER; SL : = INTEGER
DCCONNST) : = Dco·rcL> + 1 /$

$1 UNDECL <CONNSTl : = CO~S (I NSTR •= S CFOR~AT : " F9;
OPER: = "REF"), UNDECLCOTCL)) /$

$/ OUTPUT(APEND<UNDECLCCO~~BLOCK2), APENDCRULE(CONNBLOCK2),
LIST<INSTR *"'$(FORMAT:= F12)))), SL) /$

$/ O<OTCL> : = OPEN(CONSBLOCK2); OPEN(CONNST) :• OPENCOTCL) /S
$1 USE COBJEXPRl : = "VALUE"; APA (OBJEXPR) : = 0;

BEGUN <CONNBLOCK2) : = TRUE; DO CCONNBLOCK2) : • 1;
DO <OTCL) : = DO CCOt\NST) + 1 /$

$/ LL (CO~NBLOCK2) : = Ll. <CONNST J • 1 /$
$1 FCCONNST) :• E(OTCL) 1 $
S/ ENV(CONNBLOCK2) : D I~VDELTA(ENV(CON~ST),

I NV DELTA ([QUALTS (COt'<NST). !PL <OBJEXPR). GENUS. QUAL].
CLASSN].LOCALE), E<CCNNBLOCK2))) /S

$1 ADDR :"' S <FORMAT :" F21; LN : = LL (CONNST);
ON:: DOCCONNST)) /S

S/ ITEM <CO~NBLOCK2) : E CONS(XX .E $(QUAL:=
PLCOBJEXPRI.GE~US.QUAW ADDR:: ADDR), ITEM((CONNST)) /S

$/ RULE(CONNST) : = CONSCINSTR •• $(FORMAT:= F2; ADOR: E ADOR),
APENDCRULE<OBJEXPR>,
CO~S(I~STR •= $(FOR~AT: = F28; ALSO: E TRUE),

CONSONSTR •= SCFOR~AT:" F16; CP!:!J. :" "=/="),
CONS<INSTR •= SCFORMAT := F17; JlABEL: = SN),

CONS<INSTR •· $(FORMAT: • Fll),

209

CONS(INSTR •• $(FORMAT :• F22;
LN :• LL<CONNBLOCK2>; SN :• SL),

CONS<INSTR •• $(FORMAT: • Pl; JLABBL':• SM),
CONSCINSTR •• S<LABEL: • SN), APiND(RULI(OTCL),

LIST<INSTR •• $(LABBLI :• SM))))))))))})) /$

SPJ09 CONNST :: • LABELO: CONNST

S/ SN : • NEW INTEGER; I NSTR : • S <FORMAT : • F 20; JLABEL : • SN);
RULE(CONNST) :• CONS<INSTR *• $(LABELl :• SN),.

RULE(CONNST•)) /$
S/ DN :• CHECKVIRT<ENVJ(CONNST), S~(LABEL0) 1 "LABEL") /$
S/ UNDECL(CONNST> : • IF DN ~· 0 THEN UNDECL(CONNST•> ELSE

CONS<INSTR, UNDECL(CONNST•>> /S
S/ VIRDECLCCONNST> :• IF ON~· 0 THEN VIRDECL(CONNST•) ELSB

PUT IN CVIROECL (CCN~'ST) : [DNJ : • IN:;TR) II·
S/ D<CONNST) :• IF DN ~· 0 THEN D<CONNST•>

ELSE D<CONNST•> + 1 /$
S/ DO(CONNST•/ : • IF ON ~· 0 THEN DO<CONNST)

ELSE DO(CONNST) + 1 I$
S/ E(CONNST> : • IF ON ~· 0 THEN E<CONNST•> ELSE

UNIONDOTCECCONNST•), El •• $([SP(LABELO)J :• .
S<GENUS :• $(KIND :• "LABEL"; TYPB :• "LABEL">;

ADDR :• $(FORMAT :• P21; LN :• LL(CONNST);
DN :• DO(CONNST>>>> /S

SPJ10 CONNPART :• CONNCL

SP311 CONNPART ::• CONNPART CONNCL

S/ SN :• NEWINTEGER; FJUMP(CONNPART•) :• SN;
RULE CCONNPART> : • APEND (RULE (CONNPART•), ·CONS <INSTR ••

$(LABELl :• SN), RULB<r~NNCL)) /S
$1 OPEN(CONNPART) :• OPEN(CONNCL) /$

$P312 CONNCL ::• WHEN CLIDl DO CONNBLOCK1

S/ SN :• NEWINTEGER; 8EGUN(CONNBLOCK1) :• TRUE;
DO<CONNBLOCKl) :. 1;
ADDR: • SCFORMAT :M P21; LN :• LL(CONNCL);

DN: • DOCCONNCL));
ITEM<CONNBLOCKl) :• CONS(XX •• S<QUAL :• PL<CLlDl).SIGMBNT;

ADDR :• ADDRl, ITBM(CONNCL)) /$
S/ RULE<CONNCL> : • CONS(INSTR •• $(FORMAT: • F8; ADDR :• ADDR),

CONS<INSTR •· $(fORMAT:. F8; ADDR: • PL(CLIDl).ADDR),
CONSCJNSTR •• $(FORMAT :• Fl6; OPER :• "IN-WHEN"),

CONSCINSTR ••(FORMAT !• F17; JLABEL :• FJUMP(CONNCL)) 1

CONS(INSTR •• $(FORMAT :• Pll);
CONS<JNSTR •• S<FORMAT: • P22; Ll.: • LLCCONNBLOCKl);

SN : • SN),
LIST(INSiR •• $(FORMAT :• Fl;

JLABEL :• TJUMPCCONNCL))))))))) /S
$1 OUTPUTCAPEND(UNDECL(CONNBLOCK1) 1 APEND<RULE(CONNBLOCK1) 1

LIST(INSTR •• $(FORMAT :• F12)))) 1 SN) /S

210

S/ LL(CONNBLOCKl) :• LL(CONNCL) + 1 /S
S/ ENV<CONNBLOCKl) :. INVDELTA(ENV<CONNCL),

INVDELTA(PLCCLI01).LOCALE, E<CONNBLOCKl))) /S

SP313 CONNBLOCKl ~: • STl

S/ ENVl (STl) : • NULL; ENVA (ST1) : • ENV (CONNBLOCKl);
OUTERMOST(STl) :. FALSE; CL(STl) :• 0 /S

$?314 CONNBLOCK2 :• STl

S/ ENVl(STl) :• NULL; ENVA(STt> :• ENV(CONNBLOCK2);
OUTERMOST(STl) :a FALSE; CL(STl) :• 0; /$

SP315 OTCL :: •

S/ RULE(OTCL) : • NULL; UNDECL(OTCL) :• NULL;
V IRDECL COTCL> : • NULL; D (OTCL) : • 0; E (OTCL) : • NULL;
OPEN<OTCL) : • IF O(OTCL) • "CLOSED" OR

O(OTCL} • "OPENDISAMB" THEN "OPENDISAMB"
ELSE "OPEN";

IF OPEN(OTCL) • "OPENDISAMB" THEN DAMB(TRUE, 1) /$

SP316 OTCL :: • OTHERWISE 57

S/ IF O(OTCL) • "OPEN" OR O(OTCL) • "OPENDISAMB" THEN
DAMB (FALSE, 1> /S

S/ OPEN<OTCL) :• IF OPEN(ST) • "OPENDISAMB" THEN "OPEN" ELSE
IF OPEN(ST) • "NONE" THEN "CLOSED"

ELSE OPEN(ST) /S

4. 2 ANALYSIS OF THE DEFINITION

This section analyses the differences between Wilner's and the

present definition. Only major differences are analysed in detail;

differences arising fro~ minor errors or o•isslons are noted but not

co••ented. It should be noted that the r~=:~nt deflnltlon l•ple•ents

only a subset of Wilner's definition. The productions for real

211

nu.bers, characters and siaulation were left out. The reason for this

oalsston ls not any liaitation iaposed by FOLDS; tt siaply reflects

an individual desire to restrict as auth as possible the aaount of

work to be done. It also should be noted that the input-output rules

are aissina; they were not included because they would involve the

hand codina of a larae set of taraet lanauaae instructions which did

not seea to be very relevant to tbe purposes of tbe present

definition.

4.Z.l AMBIGUITIES

In Wilner's definition, aab1auities are haadled in essentially

the saae fashion as errors. The definition bad thus to be chanaed to

adapt it to SPINDLE's foraalisa for handlina aabtau1t1es; a nua~er

of new attributes were introduced (APA, DAA, EMDEC, AEMDBC, NUMDBC,

START, SID>, one was elia1nated <OUTER>, and another aodified

(F I RSTST, froa 1nher l ted to synthesized). Purtheraore, soae

aabiauities were detected that had not been noted by Wilner: one

arlsina froa an eapty naae part and/or value part in a procedure

headina; one arisina froa the first stateaent in the coapound tall of

a block beina eapty; • ·~ one ari5lna fro• the flrst stateaent in

INITIAL OPERATIONS beina eapty.

Z12

4.2.2 QUALTB

The attribute QUALTB maps the sea•ent designation of a class

into the sy•bol table entry for the class and into the class's prefix

class. It is introduced to slmplfy the i•ple•entation of a series of

functions specified by Wilner (e.g.CONDQUAL>. As a consequence of

its introduction, Wilner's functions CPL and JDSP are not 1•pleaented

since the values they would return can be directly obtained fro•

QUALiB.

4. 2. l VIRTUALS

A numuer of •odifications were introduced due to errors fc~nd

in Wilner's sche~e for handling virtual (SIMULA) attributes. The

attribute ENVl was introduced to avoid the following circularity

arising in Wilner's definition: when checking lf an identifier ls

virtual ln ~n identifier declaration the attribute ENV 1s used to

check lf the identifier is virtual; however, ENV depends on the

attribute E whose value depends on the test on the attribute ENV. In

the •odlf1ed sche•e the test is made upon ENVl which does not depend

on ~. The function VIRMERGE had to be •odifled since the original

ver~ion does not work when the attributes of a class include an

array. The obJect code generat!d from procedure state•ents was also

mod if 1 ed. In Wilner's deflnl tion, different rules are genera ted 1 f

the procedure is a proper or a typed procedure; thus, a virtual

213

proper procedure which is redefined as a typed procedure, will cause

execution errors for all procedure atate .. nts tbat call the procedure

fro• tbe body of the prefix cL&as. As .edified, tbe procedure

stat; .. nt always aenerates tbe sa.. object code. Tbe final

.udification was the introduction of tbe function SUIOIDINATI, wblcb

ch~cks the subordination rules for the redefinition of virtual

procedures; it ti •isslna ia Wilner's definition.

4.2.4 CLASS CONCATENATION

The class concatenation .. chants• proposed by Wilner does not

work when a class bas for .. l para .. ters and is prefixed. The

iaple .. ntatlon of a valld •ecb&nls~ besides cbanalna the definition,

required so .. of the ehanaes in Wilner's .. chine whleh were explained

at the bealnnlna of this chapter.

4.2.5 PUNCTION INVDELTA

Th\s function is a aodlfled version of ~liner's ~ function.

While not wrona, Wilner's function was WJre coaplicated tban

necessary. JNVDILTA sl•ply laple .. nts the ALGOL rules for rena•tna

alob&l variables Inside a block.

214

4. 2. 6 CODE

As proposed by Wilner the CODE function does not work. Instead

of lapleaent~ng a function, an attribute COOl! is included in the

syabol table entry of a class: its value is the rule generated for

the class.

4.2. 7 ARRAY DECLARATIONS

According to the SJMULA definition [DMN 701, the array bounds

in an array declarat:on a&Y contain variables <or procedures> that

are global to the block to which the array belongs, plus foraal

paraaeters, if the array ls declared in a class or procedure body.

T~;e attubute ENVA was introduced to iapleaent this feature, which 1s

ignored by Wilner.

As defined by Wilner, an array segaent having aore than one

array identifier will not generate the proper code. The correction of

this error necessitated the changes ln the aachine instruction MAK

which were explained at the beginnina of the current chapter.

215

4.2.8 LABILLID BLOCKS

Production P175 is sianlfieantly different froa the

correspondtna production ln Wilner's deflnttton which bad a

substantial nuaber of errors. The attribute NOLABIL, bad to be

Introduced to detect the left•ost label when aore than one label

appeared on a block.

Production 177 aad 178 were dropped and 176 replaced by

ILOCK ::• UNLABELLED PRIPIXED BLOCK

a labelled prefixed block causes an aabiaulty and notbina is lost,

seaanttcally, by eb&na1na tbe ara ... r.

4. 2.t PROCIDURI AND CLASS HEADINGS

The aeehanlsas proposed by Wilner for headtnas <uslna the

•ttrlbutes MAT, MATRIX and VECT and the fuaction w>, while not wrona,

would have been cu.bersoae to lapleaent in SPINDLE. A slallar but

alapler aecb&nlsa ls lapleaeated uatna tbe attribute• MAT, MATRIX,

NAMITB and NTB, and no special functions.

Zl6

4.2. 10 PROCEDURE DECLARATIONS

To siaplify the definition, productions

221: PROCDECL ::• PROCEDURE PROCHEAD PROCBODY

222: PROCDECL ::• TYPEN PROCEDURE PROCHEAD PROCBODY

were replaced by productions

P221: PROCDECL :: • TYPEP PROCEDURE PROCHEAD PROCBODY

P221A: TYPEP ::• TYPEN

P221~ TYPEP ::•

This modification does not alter the content of the definition

but ser·ves to point out how a proper choice of the araaaar can result

in a more coapact SPINDLE defini Uon.

4. 2. 11 STl

Tne introduction of the nonter•lnal STl is &~other aodtftcatlon

done for the purpose of having a more co•pact def1ntt1on. The use of

both STl and ST decreases the nuaber of seaantlt rules necessary In

the definition. Thus & number of attributes uf STl have values

assigned to thea in P26SA; if only ST were used, those values would

have to be assigned 1n every production in whlch ST were a RHN.

217

4.2.12 OTHIR MODIFICATIONS

lesldes the productions noted above, tbe follovlna productions

bad to be .adlfled due to errors or o•tsstons tn Wilner's deflnltton:

P3, PU, Pal, P89, P90, PI 59, P160, pl6t, Pl70, P1791 P180, Pill,

P183, P~IO, P2111 P2181 P2U, P221, P223, P23~, P234, P2351 P236,

P239, ·~45, P2501 P2511 P253, P256, P2SI, P2St, P261, P262, P265,

P267, P268, P269, P270, P271, P285, P2901 P2tt, P303, P307, P308,

P312, P314, F315, P316.

Ul

CHAPTER 5

CO~CLUSIO:-:

The preceding chapters presented a description of FOLDS and of
its applications. The current chapter reviews the system, describing
its present implementation status and pointing out needed
improvements; 1 t also indicates some areas for further research.

The system implements and extends Knuth's method for the formal
definition of semantics, incorporating \~ilner's extensions to the
method. The declarative nature of the method is preserved by the use
of a special control structure wich permits a nearly complete
dissociation bett-:een language defir.ition and co111p1lat1on. A
formalism for the semantic resolution of syntactic ambiguities is
introduced together with appropriate control mechanisms to carry out
the disambiguation processes The actual disambiguation mechanism is
transparent in the definition as is the compilation carried out from
it. The system provides a language, SPINDLE, for writing the
definitions and a machine, MUTILATE, to compile strings of the
language directly from t!le definition. The language incorporates a
flexible data structure representation; a syntax specification
mechanism imposing practically no rtstrictions on the user; a set of
semantic primitives necessary for specifying the semantic rules
associAted with each production. The language provides the necessary
composition rules so that new semantic operators can be built from
the primitives provided by the system.

219

As shown by the definition of SIMULA in Chapter 4, MUTILATE is

capable of handlin& the definition of lara• lanauaaes and the

coapilat1on of sizeable proaraas in the defined lanauaaes. Further

on, a series of improvements are suaaested to increase the capacity

of the systea. However, in its present staae, the size of the

proaraas it is capable of coapilina is quite adequate for the priaary - -
purpose of the aachine, which is to check the correction of

definitions. A series of debu&aina aids are incorporated in the

aechanisa and have proved adequate in the debua&ina of the SIMULA

definition: however this is a biased opinion since the debuaaing of
•' the systea was carried out in parallel with the debuaaina of the

~efinitlon and no other user besides the author has used the system.

The system 1s currentlY implemented on an IBM 360/67 and

occupies 280K bytes of steraae. It consists of the MUTILATE assembler

and the MUTILATE machine, both written in PL/360 041 71]. The SPINDLE

compiler has not tet been implemented; SPINDLE prograas are hand­

coaplled into MUTILATE asseabler code. The asseabler incorporates

most of the important features of the compiler {e.a., the aeneration

of implied semantic rules), so the hand coapilation is very

straiahtfoward. The SIMULA definition coapiles into approximately

8000 assembler instructions which take 0. 13 ainutes of CPU time to

assemble. The machine is 1aplemented as two separate proarams: the

first implements the parser and the lexical analyzer while the second

implements the MUTILATE interpreter. The SIMULA definition occupies

approximately 30K of byte addressed aeaory, out of a maxiaua of 64K

which indicates that there are no practical lialtat1ons on the size

of languaaes that can be defined and run 1n FOLDS. One real

11a1tat1on is the s1:e of the proarams of the defined lauauaae that

220

can be co~Mpiled b)' ~:U71l.ATE; while compilation time does not seem to

be a constraint 'see the timings that accompany the SIMULA programs

in Appendix 4>, space definitely is; with the present storage (280K

bytes), thE- largest Sl~lULA program that can be compiled is about 30:&

larger than program X 1n Appendix 4. However, this size of progrAm is

more t!1an adequate for tne pur;;oses of the system, which is to test

the definition of languages; it is certainly not adequate for a

production compiler.

The experience with the system is somewhat limited since the

only pracLlcal lan;;uage defined in it is SIMULA 67. Also the

restrict1ons imposed upon the SIMULA definition (that it should

follow the SlMULA 67 grammar and approximate Wilner's definition)

makes it diffiv1lt to generalize from the present experiment.

Inasmuch as SIMULA is representative of a large class of programming

languages, the :.]";;tern seems perfectly adequate for their definition.

Ho~ever rnuch more experience is needed before definitive conclusions

can be drawn about the adequacy of the system for a broader class of

languages.

Despite the disclaimers, initial experience with the system has

been very encouraging. The discipline involved in writing a

d~finition formally has paid off ~andsornely in avoiding and detecting

dozens of errors and inconsistencies in the previous definition of

SI~ULA. There have been many advantages Jn having a working syystem

since many of the errors in Wilner's definition could hardly have

been noticed by hand since humans are not so demanding in precision.

Although space is 1 imi ted, in fac the lim1 tat ion was not so severe as

ex!Jected, since programs nearly a 100 lines long can be handled; this

is almost ,;.r. order of magnitude better than was expected. The

221

runnin& speed is also quite satisfactory. FOLDS ba~ proved 1ts power

and !lexibil1ty ~ 1th the definition of SI~1ULA. Finally, the

!novations introduced in FOLDS, such as parallel state•ents and the

disambiauation mechanisms, see•s to be workina rather well.

Further research is needed to establish SPINDLE proara•aina

techniques. The SIMULA definition has what seems to be very adequate

techniques for the handlina of labels and syabol tables but the

handling of ambiguities seems to be a bit cumbersome. A further study

of the attributes used in the definition should also reveal areas for

t~prove•ent such as a reduction 1n the number of attributes and a

siaplifieatton of the user-defined functions by the utilization of

more adequate attributes. An exaaple of this type of simplification

is the ~ntroduction of QUALTB on Wilner's definition of SIMULA.

Another area for research is the balance between syntax and

seunt1cs. In the present definition the syntax was aostly fixed by

the decision to stick to the official SIMULA aramaar. While it served

to show the power of the method 1t coaplicated the definition and

made it harder to understand. A joint design of the syntax and

semantics would obviously yield simpler and aore readable

definitions. As of now the SJMULA definition seeas to be somewhat

hard to understand for someone not familiar with the SIMULA language;

if indeed this is true, a better choice of syntax and better SPINDLE

programming techniques should help. Also a more liberal use of

comments would certainly improve the readability of the definition.

It should be noted that in the SIMULA definition a s1gn1f1eant

aaount amount of the code is dedicated to error and aabiauity

handling. Since this por~1on of the code is a result of the desian of

the syntax, it is easy to see how a better syntax desian ean decrease

the complexity of definitions.

222

Another area for furt~er research is the choice of the target

language. In tho:: SI~.:ULA Je!initlon, l:ilner chose as target language

the order code of a machine similar to the one defined by Randell &

Russell [RR 64] for ALGOL GO. In a sense this is unfortunate since

the machine is com; . .! lea ted enough to mat.;e understanding it

nontri·,ial, thus obscunng some aspects of the definition. Ho\\ever,

as pointed out by Knuth [Kn 711, the target language should be of a

high enough level so that the issueJ involved in the definition are

not obscured by the level of detail made necessary by the low level

0f the target language. There are tradeoffs in the choice of the

target language and further researcn is ne~ded to establish criteria

for a proper choice. One possible choice i.s to compile directly into

some ;natl1ematical formalism; such as the one proposed by Scott

[SS ill, ...,hlch then directly gives the meaning of the strings of the

d~fined languace. An additional advantage of this choice is that

proofs about the pro)Srams can then be worked out directly. The

disadvantage of tilis clloice of target language is that it is not very

relevant to the compiler writer, who should be one of the main :.~sers

of a language definition.

It shculd be noted that since the

point of view of the language designer,

target language, from the

is essentially debugging

lnforml'tion, it should be made as sy1abolic as pCIS$ible. For instance,

in the definition of SIMULA, it ~ould h~ve been very helpfull to link

the source statements to the target language they generate; while

this involves changing the ctefinition, it involves only minor changes

and should be possible to effect ~ith relative ease.

As described in Chapter 1, the parsing and filling in of the

semantics are perfor~ed in two sep~rate steps; this approach was

22l

chosen for its simplicity and because at the time the decision was

reached the p~ocesses involved in the fillina of the seaantics were

not completly understood. But a one step approach (parsina and

filling in if semantics simulataneously), if successful, could both

reduce the compilation time and increase the site of proarams that

can be compiled by the system; the a~ount of backtracking and the

numher of ambiauous subtrees aenerated could both be reduced. A new

pars1na scheme will probably have to be chosen since Earley's, as

analysed ~n Chapter 4, does not seem to adapt itself well to a one

step scheme.

Another aspect of tte system tha~ deserves further study is the

DEVELOP function .,.l':!'=.h traverses the parse tree, return!ng a

different node for each call. A garbage collection mechanis~ collects

all those nodes for which all associated parallel processes have

terminated and those attributes whose values are not relevant to any

other attributes. Thus, the order in which the nodes are developed ·~

critical for efficient space management. As now implemented, DEVBLOP

traverses the tree in a top-down, left to riaht order, which reflects

the bias of most programming languages. But in SIMULA, for instance,

a procedure body may use a .,,n-iable whose declaration comes to the

right of the proceaure declaration; thls shows that the left to right

bias 1s not all-pervasive. In terms of the definition 1n Chapter 4,

the ENV attribute for the procedure body will be defined only aft•r

all the declarations at the same level have been processed. In this

case it would clearly be more efficient to postpone the development

of the subtree corresponding to the procedure body until

ENV<PROCDECL> had been defined. As can .be perceived, a "smarter"

DEVELOP function can increase the size of programs . that can be

compiled by the system.

224

Another necessary improvement to the system is the introduction

of the data types REAL and STRI~G ar.d the necessary functions for

their manipulation. l."hile not essential, these features should

increase the flexibility of the system. The sy~tem was designed with

these data types in mind and so their inclusion will result in

additions to the system, but not manr ~hanges.

In the present implementation all the output is performed at

the end of a run; this guarantees that a~l attributes are defined

before they are printed. This results in a great waste of space; a

coutrol structure that ~ould output attributes as soon as they are

defined, while preserving the output rules st~ted in 2.9. 1, could

greatly improve the capacity of ~UTILAT~

The power of FOLDS could be great•Y increased by the use of a

more powerful scheme for the descriptlun of the syntax. For example,

either the scheme proposed by Galler & Perlis (GP 70] or the one used

by Floyd to describe the syntax of ALGOL W (51 71) would be

convenient. Such schemes, besides permitting a more compact

description of the syntax of a language, generate shallo~·er parse

tree5 for any give~ string of the language, and thereby minimize the

numLer of attributes passed fro= node to node. The use of a simple

production ·cheme for the grammar necessitates the u~e of

intermediary tonterminals ~hich also increase the site of the tree.

The use of a r.ore powerful syntax scheme should also reduce the

number of attributes by decreasing the amount ot information to b~

circulated through the tree. However, the 'doption of these more

powerful syntax schemes is not trivial since a set of semantic

operators will have to be created for the manipulation of attributes.

Research is needed to choose the ap~7op1ate syntax scheme and to

225

choose and develop the associated semant1c operators. The adopt~ n
of a new syntax specification method implies a large overhaul of the
present system which should, however, serve as the basis for the
improved system.

The checking of definitions is another area for further
research. Given a language and its definition, how should a set of
programs in the language be chosen to assure that the definition is
well formed and that it actually reflects the language designer's
concepts about the language? It must be possible,· given the
definition of a particular language to devise a systematic approach,
so that if not all, at least nearly all possible elementary
constructs of the language can be checked out. The exp~r1ence
acquired with SIMULA seems to indicate that FOLDS is capable of
compiling programs long enough to test the definition and that the
debugging aids in the sy~tem seem adequate enough for the task. But,
although a large n~mber of tests have been performed the definition
probably still contains some undetected errors. The experience also
shows that the tests should be performed with the programs as small
as possible; in a language as large as SIMULA, even small pr~grams
generate large parse trees and a great number of attributes. It is
thus very hard to keep track of all th1t is go1na on durin& a
MUTILATE run.

Another area for further research is in the development of
production compilers directly fro~ a SPINDLE definition. While the
stress in FOLDS is towards generality, definitions could be
classified according to their semantic and syntactic characteristics,
and efficient compilers could be generated for certain categories.
Local code optimization can be easily achieved with the use of

226

appropriate attrlbutes, and a special category of rule~ could be

introduced to help generate efficient compilers. Ideally, it should

be possible to generate an efficient compi!er directlr from the

definition, 1>1thout an}' further i:.formation; however, this does not

seem realistic, at l~ast at the moment. It should be noted that a

nondeterminisc ap~roach such as this is bound to be inherently less

efficient than deterministic approaches.

BIB:.JOGRAPHY

(AJ 71) Aho, ,;. \'. and t.:llman, J.D., "Translations on a context free

grammar.", l:1fo. and Control 19, 5 <Dec. 1971), 439-4 75

lB~ G2l Brooker, R. A. and ~lorris, D., "A general translation program

for phrase structured languages.", J. AC~l 9, 1 (Jan. 1962),

l-10

(OH 7 21 Dahl, o. -J. and Hoare, C. A. R., "Hierarchical program

structures.", in Sructurea Programming, by 0. -J. Dahl,

E.~. Dijkstra and C.A.R. Hoare, Academic Press, London,

:97 2, pp-175-:.:20.

:D1 72) Dirkse11,J. A., "Ti.e QA.t Pri1:.er. ", SRI project 8721 DRAFT

llie~o 15 June 1972

(OM:\ 70) Dahl,O. -J., ~lyhr~.aug, B. and ~ygaard, K., SlMULA 67 Common

(Ea GBJ

(Fe 6Gl

[Fe 721

[Fi 701

Base Lanbuage, Publication ~o. S-22, Norwegian Computing

Center, October 1970

Earley, J., "An effici~11t context free parsing algorithm. "•

Comm. AC~·i 13, 2(Feb. 1970), 94-102

Feldman, J. i<., "A forr..al semantics for computer languages

and its application to compiler-compilers.", Comm. ACM 9, 1

(Jan. 1966), 3-9

Feldman,J. ~. et al, "Recent developments in SAIL, an Algol-

based language for artificial intelligence.", Proc.
FJCC(l972)

Fisher, D. A., "Control structures for prog ram·ni ng

languages.", Ph. D. thesis, Carnegie-Mellon University, May

1970

228

Reproduced from
best available copy.

[fl 62)

[GP 70]

(He 71]

CHU 69]

liM 72]

[I r bl]

Floyd,R.W., "On the nonexistence of a phrase structure
grammar for ALGOL 60. ", Comm. ACM S, 9 (Sep. a62), 483-484

Galler,B.A. and Perlis, A.J., A View of· Prograaaina
Languages, Addison-~esley, Reading, Mass., 1970

Hewitt,C., "Procedural Embedding of knowledge in Planner.",
Proc. Second IJCAI, September 1971, pp. 167-182

Hopcroft,J, and Ullman,J., Formal Languages and Their
Relation to Automata, Addison-Wesley, Reading, Mass., 1969

Ichbiah,J.D. and Morse,S.?., "General concepts of the
SIMULA 67 programming language.", Annual Review 1n
Automatic Proirammlng, V. 7, Part 1, 1972, pp. 65-93

Irons, E. T., "Towards more versa tile mechanical
translators.", Proc. Sympos. Applied Math., 1963, .V. 15,

pp.41-SO

[Jo 68] Johnson,W.L et al, "Automatic generation of efficient
lexical processors using finite state techniques. "• ·Cumm.
~ 11, 12 <Dec. 1968), 805-813

CKn 68a] Knuth, D. E., "Semantics of context free languages.",
Mathematical Systems Theory J. 2, 2 (1968), 127-145

(Kn 68bl Knuth,D.E., The Art of Computer Programming, vol. 1:

Fundamental Algorith~s, Artdison-Wesley, Reading, Mass. 1969

(Kn 71] Knuth, D. E., "Examples of formal semantics. "• in Symposium
on Semantics of Algorithmic Languages, Spring-Verlag, New
York, 1971, pp. 212-235

[LLS 68] Lucas,P., Lauer,P. and Stigleitner,H., "Method and notation
for the formal definition of programming languages. "•
TR2S. 087, IBM Lab. Vienna, 1968

(M& 7!) Malcolm,~. A., "PL360 (Revised)- A programming language for

229

the IB~l /360. ", Technlcal Report No. 215, Coo.puter Science

Department, Stanford Uni \'ersi ty <May 1971)

(MGa 65] ~tcCarth/,J. et al, The Lrc:p t. 5 Programming Manual, MIT

Press, Cambridge, ~:ass., 1965

[MCl 65) McClure,R.M., "TMG- A syntdX directed compiler. "• Proc. ACM

~at. Conf., 1965, V. 20, pp. 262-274

(RR 64] Randell,B. and Russell,L.J., ALGOL 60 Implementation,

Academic Press, London, 1964

(S i 71]

(5 s 71]

nve 7 21

(Wi 71]

[l·:i 72]

[h1J 66)

Sites, R. L., "Algol \J Reference Manual.", Technical Report

~o. 230, Computer Sciences Department, Stanford University

<August 1971)

Scott, D. and Strachey, C., "To~<,.ard a mathematical semantics

for computer languages.", Proc. of the Symposium on

Computers and Automata, Microwave Research Institute

Syposium Series Vol. 21, Polytech'nic Institute of Brooklin,

1971

l•'egner, P., "The Vienna Definition Language. "• ACM Computing

Surveys 4, 1 (~tar. 1972), 5-63

l;ilner, 1~. T., "A declarative semantic defini t1on. "• Ph. D.

thes 1 s, Computer Science Department, Stanford Un1 versl ty,

1971

Wilner,W.T., "Formal se~antic definition using synthesized

and inherited attributes.", in Formal Semantics of

Programming Languages, Prentice Hall, Englewood Cliffs, ~ew

Jersey, 1972, pp • .25-40

Wirth,~., and Weber,H., "EULER: A generalization of Algol

and its fon:~al definition part I. "• Comm. ACM 9, 1 (Jan.

1966), 13-23; "?art ii.", Comm. ACM9, 2 CF~b. 1966), 89-99

230

APPE:\DIX l

COM.\1E:\T THIS IS A DESCRIPTIO\ OF TURI:\GOL IN SPil\DLE. THE LIST

~TTRIBUTE OBJPROG HOLDS A LIST OF CO~STRUCTS THAT ARE

TRA~SFOR:•lEO I :\TO A TL/; PROGRA~I BY THE PROCEDURE OUTPUT.

LABELS ARE HA~DLEO BY ~EA~S OF LABEL-VALUES. TO EACH LABEL

IS ASSOCIATED A U~IQU~ I~TEGER, THE LABEL VALUE, AND A

PSEUDO-iSSTRUCTIO~ C~ITH CO~PO~EST TAG) IS INSERTED IN FRONT

OF A LABELED I~STRUCTJO\. THE VALUE OF TAG IS THE LABEL-

\'ALUE. THE OUTPUT PROCEDURE THE~ BINDS LABEL-VALUES AND

A.DDRESSES BY ~.IEA:\S OF THE ~lAP ATTRIBUTE. PSEUDO INSTRUCTIONS

ARE :\OT PRI\7ED. THE SY~BOL TABLE IS REPRESENTED BY THE

CO:\STRUCTS E A\D E~V, E COLLECTI\G THE INFORMATION AND ENV

SPREADI\G IT. EACH SV~BOL TABLE ENTRY HAS ONE COMPONENT,

EITHER LABEL OR SY~EOL ~HICH DEFINES THE KIND OF THE

I DENT! F I ER. THE ATTRIBLITE E~1PTY HANDLES THE SY!\TACTIC

AMBIGUITY THAT ARISES hHES THE FIRST STATE~ENT IS EMPTY. THE

PARSI~G I:\ 1\'HICH THE LAST DECLARATION IS NOT EMPTY IS THE

RIGHT 0:\E;

rE::. .• :x NALS ARE • : ; (, '

RESERVED \\ORf.S ARE TAPe, A'-PHABET, IS, PRINT, MOVE, LEFT, RIGHT, Ot\E,
SQUARE, IF, THE, SiMBOL, THEN, GO, TO

ATTRIBUTES ARE

DIRECTIO~ s TITLE
I S'DEX = INTEGER
E = CO~STRUCT, CO~STRUCT
ESV • E

2ll

El • E
E2 • E
OBJPROG • L T S':'
SP • TIT:.E
MAP • C:O~STRUCT, 1!1/TEGER
IXSTR • CONSTRUCT
TAG • ISTEGER
LOC • INTEGER
SYMBOL • INTEGER
MOVE • TlTLE
LABEL • I~TEGER
Pl .. POINTER
P2 • Pl
M • INTEGER
EMPTY • BOOLEA~

IDENTIFIERS ARE SIGMA WITH ATTRIBUTE SP

NONTERMINALS ARE

P • S <OBJPROG)
S • S <OBJPROG, E, E~4PTY), I (ENV)
L • S <OBJ PROG, E, EMPTY>, I CENV)
D • S<INDEX, E, ~~PTY)
0 • S <DIRECTION)

START SY~1BOL P

FORMATS ARE

Fl • (" <"' LOC, ": PRII\T, " SYMBOL, ") ") • F2 • (" ("' LOC, ... MOVE, " MOVE, "> ") • F3 • ('' ("' LOC, ": Jm1P, " LABEL,")") ,
F4 • <" (", LOC, ": I~. ", SYMBOL, " " LABEL, ") ")

' ' FS • (" ("' LOC, ": STOP>")

FUNCTION JOINE CEl, E2);

BEGIN CO~V.E~T THIS PROCEDURE JOINS TWO SYMBQL TABLES AND CHBCKS FOR

DUPLICATE ENTRIES;

~1 : • ~IRST CE2);
lF NULLBCEl) THEN E2 ELSE
BEGIN

'"HILE -.NULLBCPl> DO
BEGIN

IF ... ~uLLRCF!NDCEl,SELECTOR([Pl]))) THEN
ERRORCSELECTOR([Pl]), " DECLARED TWICE");
El :• •[Pll; Pl :• ~EXT([Pl])

END;

232

El
E~D

E~D;

PROCEDURE OUTPUT<OBJPROG);

BEGI!\ COM:'-IE:-.iT THIS PROCEDURE TAKES THE OBJECT PROGRAM LIST AND PRINTS

ITS INSTRUCTIO~S. I~ THE PROCESS !T PLACES THE ADDRESS OF

THE I:-JSTRUCTIO~ I~ THE COMIIONENT LOC AND BINDS LABELS TO

ADDRESSES. PSEUD0-1:\STRUCTIO~S <·INSTRUCTIQN WITH COMPONENT

TAG> ARE ~OT PRI~TED A:\D ARE USED TO BUILD THE MAP TABLE

THAT GIVES THE .CORRESPONOE:\CE BETWEEN VALUE-LABELS AND

ADDRESS. THE BI!\DI~G IS OO~E BY SUBSTITUTING IN THE

COMPONE~T "LABEL" THE LABEL-VALUE BY THE ADDRESS ASSOCIATED

WITH IT IN MAP. THE BISDING IS DONE IN PARALLEL, USING THE

PROCEDURE PLACE, SO THAT FORWARD REFERENCE~ CAN BE HANDLED

WITHOUT \-.'ORRYI:\G ABOUT PASSIVATIO~S OCCURRING;

M :"' 1;
WHILE ~NULLBCOBJPROG) DO
BEGIN

El\D
END;

Pl :c CAR(OBJPROG); P2 :• FIND([Pl], TAG);
IF NULLB(P2; THE~
BEGI~ CO~L\IEH THIS IS A:\ I:\STRUCTION. CHECK TO SEE IF THERE IS

A LABEL C0~1PO~ENT: IF THERE IS, RETRIEVE IT F.a.OM
MAP AND ASSIGt-: IT;

[Pl]. LOC : • [~1]; P2 : = FIND([Pll, LABEL);
IF ~NULLB(P2) THE~ PLACE([P2l,MAP);
\vRITE c [Pll, I>; M : .. ~~ +1;

END ELSE
COM.\1E:\T THIS IS A PSEUDO-INSTRUCTION. UPDATE MAP:
MAP. [[P2Jl : • [MJ;
OBJPROG : • CDR (OBJPROG)

PROCEDURE PLACE(P2, MAP>;

CO~~ENT THIS PROCEDURE ~ILL ASSIG~, I~ PARALLEL, AN ADDRESS TO THE

233

COMPONENT LABEL. THIS WAY THE PROCEDURE OUTPUT IS

REACTIVATED IMMEDIATE~Y. EVEN IP THIS IS A PORWAAD JUMP. THE

REASON A PROCEDURE IS CALLED INSTEAD OF JUST PLACING THE

PARALLEL STATEMENT IN THE BODY OF THii CALLING PROGRAM IS

THAT THE VALUE OP P2 \o.'HEN THE CALL IS MADE HAS TO BE

PRESERVED AND THE PROCEDURE PRODUCES A COPY OP IT. A

PARALLEL PROCESS BY ITSELF DOES NOT PRODUCE NEW NODES AND AS

1HE VALUE OF P2 IS CONTINUALLY CHANGING THERE IS NO

ASSURANCE (SINCE THE PROCESSES RUN ASiNCHRONOUSLY> THAT IT

WOULD HAVE THE PROPER VALUE EVERY TIME;

S/ [P2l : • MAP. [[P2l l /S

234

SPll 0 :: • TAPE ALPHABET IS SIG~A
$1 I ~OEX <DJ : • 1; E~PTY (D) : ,. fALSE;

ECD). [SP<SIG~IA)J :: 1 1i

$ P 12 0 : : : D ; S I G~1A
$/ E~IPTY (Dl : = FALSE; I~DcX (i)) : = l~DEX<O•) +l /$
$/ E<Dl : = JOJ:\ECE<D•l,

E *= $<(SP<SIG~1A)].SYMBOL ; .. INOEX(O))) /$

$P 13 0 : : = D ;
$1 E~1PTY ([J1 : = 7iWE /$

$P2l S :: = PRI\T ' SlG:.lA '
$1 E (SJ :" :\ULL;

OBJPROGCS) : .. J..lST(l\STR *"' $(FOR~1AT :• Fl;
SnlaOL : = ENV (5). (SP (51 GMA)). SYMBOL)) I$

$/ E~IPTY (5) :" FALSE /$

$P22 S ::: ~lOVE 0 0\E SQUARE
$/ E (Sl : = :\ULL;

OBJPROG (5) :" LIST <I ~STa *- S <FOR.\1AT :,. F2;
~10VE : • DIRECTION (0))) /$

$/ E~lPTY (S) : = F.USE /$

$P221 0 :: = LEFT
$/ DIRECTI0:\(0) : = "LEFT" /$

$ P 2 2 2 0 : : = R I G:lT
:L/ IJIRECTIO:\(OJ • -"RIGHT" 1$

$P23 S :: = •~0 TO SJG:.i;
$/ E (S; : = \ULL;

H24

OBJPROG<Sl : = LISTCI~STR •• Z<FORMAT := F3;

$1 E~IPTY (S) : • FALSE 1i

~ .. -
~ .. -

LABEL : • E:\V ,S). lSP (SIGMA)]. LABEL)) IS

$/ E (5) :" ~ULL; OBJ?ROG C3) : • :\ULL /$
$/ E~:PTY {5) : = TRlJE I$

$P23 S ::=IF iiiE TAPE SY:.i2.0L •s' SIG~IA' THE~ S
$/ ~.: :" :\Eh'l :\TEGER;

OBJPROG (5) : = CO:\S (J ~S7r! u ~ (FQR~IAT : • F4; LABEL : = M;

i/ E~IPTY <S> : = FALSE /$

S Y~:BOL : = E:\V (5). [SP <S I G~1A) l • SYMBOL) ,
APE~D<05J?ROG(5•),

L:ST(I:\STR *• $(TAG: • M)))) /$

235

SP32 S :: • SJG~1A: S
$/ M :• NEWINTEGER;

HS> :• JOINECE<S•>, E •• $((SPCSJGMA)],LABEL :• M)) /$
S/ vBJPROG(S) :• CONSCINSTR •• iCTAG • M), OaJPROGCS•>> /S
$/ E!.tPTY CS) : • FAlSE /S

$P33 S :: • (L)
$/ ~~PTY(S) :• FALSE/$

$P41 L : : • S

SP42 L :: • L ; S
$/ ECL) :• JOINECE(l.•),E(S)) /$
$/ OBJPROG(L) :• APE~D(OBJPROGCL•), OBJPROG(S)) /$
$/ EMPTY(L) :• ~PTYCL•> /S

SPS P :: • D ; L
S/ OBJPROG<P> :• APENDCOBJPROG<L>,

LJST(INSTR *• $(FORMAT :• FS)));
OUTPUTCOBJPROG<P>> /$

$/ ENV (L) : • JOI ~E<E CD>, E (l)) /S
$1 IF E~tPTY(D) THEN DAMB (FALSE, 1) ELSE

IF EMPTYCL> THEN DAMBCTRUE, 1) /$

236

.\I: -:~::-:·.

TAPt Al~HAdEJ IS 8LANK; ~hO; lE~O; POINT;;

PRIM 'POINT';

o;u IU l.AII.R,;

Jt:)l: IF lHf JAPE SYM&Ul I) •uroU 1 lHtN

IPKINJ 1 lEfiC 1 ;

CA~M~: MUwi LEfT C~~ ~wUAKE; ~u ~U TESJJ;

Plll"'l 1 UNC 1 :

~EALI~~: MUVt: MIGHT C~E S~UAkt;

IF lhE JAPE ~YM8Cl IS 1 lt:kU 1 THEN ~ 10 REALIGN.

-.:

PAR Sl "'' T Rt:t

LUCA Tll.o-. AM61GUUUS 8Rl.Tt1fli SON SUIAt.IIC.S S~LEC.T~AolP&~uUC.TICN OR VALUEI

u .. ~ " 1 Ui.'t .,. •• 1'5
1 0)1 i. lU'td •LoiP'tZ
l. 0 Cl J hb •SoiPH
j 0 o; 4 b51o •\,iPZJ .. 0 u 0 'tlJc. •SiuMA,REALIGN
5 0 i. \) !i't Jl ~~luMAolEfHJ
b 0 0 1 lO'tli •L, •!)ft.l
I 0 l • 6 rllli •s,,PJZ
d 0 lG '1 51>4 • s of• I' il
'1 0 0 0 oJ't •U,iPO:ll

l\J I) c. 0 'tllu •SiuMA,IiEALliiN
ll 0 .. IZ 1046 •L,iPitl
ll 0 lit lJ 'o9Z •s,,Pl.l
1J 0 0 u Cllll't •Sll.MAoUNO
lit 0 (.j I !a lOitd •LoiP'ol
~~ 0 Jl. 10 dlo •S,iPJ.l
l.a. 0 JO 11 166 •S,ii'.H

. ~ ~ ~ ~ E i !iS ; .; ~ ~ i !
~ ~u ~,. u ~ ~ ~ ~ • ~~~-~~~~-~-···~~-~~·~N•~•N•-• ~-~~~-~~N~N--#~ ~#N4#~N~··~~cc•NC~Nc••c-c-c-c~#~#~#~#~·N#N#~­~~~&~~~~E~~~~~~~~~~E~~~~E~E~X~~~~~~~~~~~·····

·--~····~--~~~--~--~--~-~-~-~················ .. ·- ·-. ·---. ·-. --. ·- ·- -~ ~~~~~~~~~~~~~~~~~~~~00~~~0~0~~~~~~~~~~~~~~~~~ •••

~:~t:~s~~!;~~s:~~!~t~~:,~:~~'~:::~:::~:~~;!:$ ~o~oo•~•~o•~•Oo4oo•~~~4~~~-~~-o~o•o•o•o•o•o~~ ~ .~ 04 ~4•• 4- • • ~ • ~-- - ~ - - ~ ~ ~

ooo

238

;._::F?:;:·r~·: ~

101 •
tO.:' •
11.iJ • JHJ) IS TU~I~~OL
104 •
10~ •

It 11.b DH r,. , IJl ~,;H ',: .. 1"tl llt:t T,; .. 1 -.~9 DH r,t
It llO Ccf T,l .. lH OH T''

"" . .. 113 IIH K, TAPE
4 114 LtF otoAL~HAdEI .. II~ 01::1 Rol:~t

4 llt> l.li:f M,Pf<li•l .. Ill DEF Mo1'40\IE .. lltl DE .. koLEF J
4 11~ u~F R1 klGHt .. 1..:0 DU· R,Or;t:
4 1.! 1 ~.;Ef R,~..,ji.J.IKE

'·' .. tU &.;t.f Kol f
4 ill lli:.f il., tHE

" lllo Off K 1 SYM&JO;. .. l.l~ Ul:f RoTtii:N

" 1lt> vH ltoGU

" 1d OI:F Ro tu
llll • .. lC:'II UEf lo:~tiGI'o\,~P

IJu •
d lJl i)Ef ~, P, S I u8J PkuG I
il LJl CEF ~~~tSIC~JPRUGoEofi'PTTitliE~\11

z .. lJJ UEF NoLtSIEt~8JPR~~,tMPTYitlll:~~~

Jo lJit Utf NoUtSIINCEXofoi:I'PTYI
.... 135 Lltf "•OoSIUIRl~TlOhl

1J6 •
'td LJ7 vtF S,P

13d •
loQ IJ'f DEf AoOlkE,JILNolllLf
.. a 140 LJH A,lt;U~x, I~TI::(;ER

'tt 141 litf Atto<ll-411i.Y)
~ .. lltl UI::F A,H,TII.Yo<>
:. .. l'tJ LoH t.,t.r;v,e
:. .. '"" UEF Aotlot
~ .. llt5 Ot.f AoE.lot
54 llt6 OEF A ol..IIJPRCG ellS l
~ .. llt7 OEF AoSP,JlTLE
~ .. llt& Utf A,t'~P,<II\H:GEII>

oQ "''" LIEF A, INS Tk,<>

•

-.... -­
•. •. ·- ·- ·-
~~~::!!~ 
~~~~~ 
e I a 8 I -----• I a I I ----­.....
-~"'"""' ~ ... ~~~
"'~"- ~

..
~
0
~ ...
't
.JI

i
c

"' •
...
:il
II
Q ... ·­......
~z
U'.J/ -.. ...
Cli z
at
..,0
oz ...
~ ...
.:5 ~ zz --

•••••••

... OflllfiiiQO-. :::~s:;:: ~0 YllftlftU_. ,..,_. <I' . ,.,. "' .. ·=

... :~::: • .. l::
...

• •

...
==~g
= • M·~-~-~~~·~·,...,...·~~·~··~~~~~~~~-~~~ ~·~···~~·~·~·*~·~~·-~~-··~~~-~~·~

oo•.,.~•~•~,~"'•••~•·•~•~~~••·~~•~o~~ G~Q~ao•··~~~~~~~~~~_,..,..,.~~~~••••o~ ~
~--~~---4·--~-------~~-~---------·

240

...
~ ... • 8 ..
z ... -.. .,
~
..~ ... a ... :
O'"t •• ... g •
... 1!5

! .. az ... o
~=
~~
... :! zz

••••

~ c
~

~ iJd~ .. 0
~ :c f"'"' _,., z ... ·~
~ ... ·-. ... c
0 o-11'0140 ...

z -~ •

... ,_,_, ... g
&.waa._.E

...
c ...
Cl

"'
~.-""""c~-
S.~&.E&.&

... ..

...
c
~
0

:i~ ... z
~~~z~ ... 

... 
II .... ... 

~ 

.... ... 
~ .... 
J 
~ • ... .. • 0 

.. .. ... z 

~ ..., 
"'z ..,_ 
..~ ...... 
:1 .. 

.! 

.... ... .. 
c .... 
t .. 
~ 

"' "' ... 
! 
0 
c 
... 
~ ... 
• 
~ 
"' ... 
c .. ... .... 
c 
~ 
~ 

•••• 

... 
j 
c .... ... 

... .. ...... 
~ ... .. 

.... .. 
u 
~ 

-! ... ... . ... ~ 

-.. 
o-~~#~4~•~,-~~•~4-•~o-~~•~~~-~~~~~-~~~G~Q-~~~~

4-~~~-~~~•~Q~•• 

·~--------~~~~~~~~~~~~~~~~~~~~#~~·····~~~~~~~~~~~~~
04~~~04 .. 

~~~~~~~~~~~~~~~~~N~~~~~~~~~~~~~~~~~~~~~~~
~~~~~~~~~·~~~~~~~~~~ 

"' 0 .. "' .. "' 
"' .. "' "' ... .. ... ... ... .... .... ... .. 

##0#04 "' • e:tN~O:..I .. Q IOO•OON 0 r.~a~• ~0 ., .. ., 
'01'1111.0 .. "' • ... .... o .. "" ~ -.. ..... "' ..... ..... • • .. ... 

:~o.o"' ... ... ... "' ... . . "' ,.. ...... ... .. • ..... • ... ..... 
.,. .. • "" "' ... 

~=· 
.... .. ... "'! "' .. .. .... ., • • ... ... .. .. 

••~ ..... ~-•·~~-#-•-•--• .... ~· ...... o~...,.,~,...., ... ~ ......... ~·o-~<>·,~ -- ... •~•~•••,,~uo---~"'"'"' .... "'"'"'"'~•~~n~~~<>~Q-••<>o•~~~~ 
---~---·--~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

241 

"' .. ... ... 
0 •co •o ... ... .. .. ... "' 

,.. ... 
.0 ... ... .. ... 

"'ID""'1tG.,. ... ,. _..,_.,#\ ..... . 
... ,....,.""".Ol 
,.~~~,.,:~,~ 

""""f'\,l""""""'""'f\~ 



.. .. 
II 
3~----
~~~=~ 

I
i ..
• Q ... • ~
i • ..
I ..

:;; . ..
2 o& ... ~ . . .

~.uiC.IIC

. ·"'"'i ..
~== .. ~~~ 2 Q __,. __ a

1 0
;;; aoc I • 00 • =i a ,

..

0 . •
~=~= ca•w ...

I -i
o-~~-~4~•~~-~~~~•~•~~~~~·~•~·•~-~~•A•~••o·~~·-•~••o·~~•~•W
~=~~~~~~~~~~~~=~~~~=~~~~~~t~~~~-~~~~~~~~~~~;==~=~=~~~~~~~~

0

• 0 ..
.. 00

oo• ...
.."'

...
ot::~,

..
• ..:s g
"'

..

!
Q ... s
;

= !

..
! •
0 • .. 04'0 • ._..,

..... lift ... _,_,,.. •• • • .. • • a ... •
N .. ::"' •

~-,
o•• "' •

·~··-N l ~ JI ••
~

242

JU ~1 25.!1 110 LUAU P.!
J~· lll 211 ~AL
Jll u c 0 Jll liH
l~l 5 n, ASS
Jll u l1• HLI

27~ •
21t .• I~E PKUUUtllu~S Uf IURI~GUL
2H o

l.iJ 27• PkOU DoiA~toii4PHAiflol5o51viiiA .Ho . , .. LAdtL Pll
J~· 1110 ll'loO l o~au PLA I t.UElloU Hl :><I lu.:.S. ldl ASS I l HS C. .I 19<>0 l liU Pl.l tiiiPir,o
J~9 :>II 1~5· .loj A)SI FALSE
l~l oo 2'H2 l lo~ PLA too
J:>6 u ., Jc l .ooS IOEI ~I',SUiiiiA Jou ld .ll><o WAIL
Jol .\) c 0 lol PLA
JoS au llauu 0 l<IIS PlA SJIIIiiOL loll '>II .ll>l<4o 211~ ASS I I HZ IS ~-~" HLI
J1J ~Ill tHOP

l9.i •
l .. l •

JlJ

·~"
PH.IJU OoUtltSIIiti!A Jlllt n~ lA'ltL Pll

}IIIIo !>b Cl l9b PAklll Ill
i\) Jell CIU HoD l , .. , PLA ["I'IWoO .;:- }O,J 51i 1~'>6 h8 ASS I fALSE \._•' J9b lul & l9bU l 2'o9 PlA I lliOtl ,o .. .~ ... tl &191111) lOU IOU lloiOfkoO•

~u~ ld Jill Y&L
~OS Jo .i Jul All ONE I'
~ul s ~u~ A~S

~~~· lS lult HLI 
~CII 110 l!oll l Jli~ ., PLA t,o 
"U u lH<I l )~" (;[' i,U• 
H1 5~ oll.' l.17 PLAN tl 
~.~o ll Jo;a O'L 
~d u 117J6 l JJII IOH SP, SIGNA 
t,;t'> li JlO VAL . .~. 1110 ' c Hl I' LA 
~JO 00 llUO 0 ll2 PLA SY"IOL 
·)~ 6l 119&0 l JLl UH lhDtlloO 
~,. 5 .H .. AS~ 
1tl9 " 100 )15 tALL .ICiht 
~ .. l 5 H6 ASS .... , u 117 HLI .... ~ Jl8 E~OP 

319 • 
J<O • 

~ .... ..io! 1 PIIUO u,",; •sz JU. LAIIEL PU 
~s• •o l<J•o I }lJ PLA E"Pn,o 
<41:>11 5I 21112 J2~ ASSJ Ullt 
~u 15 ld HLI 
~Ill llca fii!OP 

COUt GENtRAJEU fOR IHt I"PLIEO ~EIIIA~IIC RULE~ 
~u u l 

ll9C.O l 2 IPol'cl 



... .. 

.. 

.. .... .. . ... 
~ .... ...... 

... '1\ ., ...... ....... ...... 

•• 

. . 
I .. -... . ... 

.. 
... a .... "'~~ ... .. ........ .. ........ ;! ...... ... 

o ..... 

"' o•• II' ... .. 
~ ..... .. ....... .. ... 

~ 
::;) 

I .. 
"' 

OQ 

00 • ! 

... . ..... ..... 
t~ ...... 

... .. 

... 
a• .... 
c.• .. ... 

244 

• • 

.. .. 
""-~"""' ....... 
"'"'"' "~!• 

• .. ... 
z 

.. • • ... 

.. 
"' 

! .. ... 

0 

i a -... .., ... ... ,... 
o­co 

0 ... 

•o .. .. 
$~ 

... . ..... ..... 
-~ ...... 

... .. 

.. 
o• . .. . .. 
"'"' 

• • 

~ .. 
~ -... ... "' ... 'MI•W'I. 

~~-.a. . ._. .... 
0~01 

~ 

8 ... -
-=~= ~~~c 

.. 



... 
.. o 
.JZ z: ... 

"' -..... ....... 
.00 

': .. 
•..J - -· ~ .... 

~ UJ: 

-""'"'" ' ..... ar:-
..... -!& 
~6. ')I 

... 0·.. ... 
~=~~~~ 
.......... %_., 

o ... ...... 
-.a­..... ... ., ...... ........ 

c 
a 
~ ... "' ~ .; .. 

a ... .. 0 "' . 
~ • ,. ...... _ ... ..... ... - ... .... ... ..... , ... ........ ... •» . • l~ ....... ·-a .. ... CZIL 4 
....... t.UZ~ ~ ........ .. ... ... 

o~ ... 0, 

... 
\,)~f'lf ... ., 

~ ... .... 00 0.0 ....... "' 
., ...... ... .. ... .,._.., : ... ......... - <I'# ....... .. ........ ., ..... .. .. 

#~-~~oo~•~~·~>~••~~•~•,~• 
~~~~oa~~~~••••~•~~~o~~~-­
•ae444o•oo4••4~~~-~~----~

...
~ "' . •,_,._,.., ~ frtl·-·-·· ..,..,""zozw-

...
Qw - .. &
Om4JIICIIIICV'II~~

....... ""-'"""-'~-'2

....... 4 .. 4&.4%11W

...,r.,,.~or-.

-4#\·"'.o
11\ 11'\ .. 0";JA_. ...

.,..o -o ... ,.
......, NI"'""""~# -....................... ,._._

...
;
't
I
~
"' -. ...
0 • • ..
"'
c .. • . "'"'
• .,>0 . ·'C"' --, "' z 8:00

~"'~~••-"'~"'.,."' . #4.0"-""' -... -... -.............. ...

I t-' ::
~ " ~ . _,

~ ~ i~: ~ == i : ~ • = ~~~ ~ ti u
~• - • 4~ ~w~ ~ •• ~

0 ~i. 0 ~ - ,i
~~a:~:~~;~:3~~~=-~==~~::~:~i~ o~~cuc~o~o•~co'~~~~~c~c~'c~~A

a
..
•

~··~~·~o~~~~~•~••~~~~•~4~a~o!
·~··~·~~~A~~~~~~~···~4·····~­
·~····#············~······~·

0 0 a, 00 ...

:5 ...
Q ...
c • ...
ol:
~
~

• z
......

eo •• • • • .. • • ...
00 o•• 00

o• . ,.
~: • ~·

...... •• Q
0"'(1
u

0

"' •

246

0 ... ••• •••

• •

~ -. c • ~
:;;..,_. ... ~ ...

......
00

c
IE
~ -• ~ •

...... ...
~ .. •

~
~ • c
~·

00

000 • •

~ z
i:i ...

0
0 ..

•
J;
QQ f•• ~ a•• o-

... ..

......

"' "' ... ~
..... :>

:i t ~ u
.,_r "'14 -

0 ...,.. - .. i
4<CIVIZIIII~4.,. ... 0.
4.;,""~"'-J-''""~2"'
a.~ .. \J4ZQ.C%~111t

... ..
0 ...

...
G-'»'1'0_.,-.,.11\%
~ .7' Jll .., n 0 "3 ., "3 0 -
~- ~ 1\ "' 11'1 Ill\""

0

"'"'

..
"" ...
Q ... -c
'II ...
z ...
·~

0

»
z ...

"'
• ~

... ..: ~- ..
o-'#'too.n\1\ ~,,.,
.... - 40U"'-

4..,,.,.. ~.,,.
................. ~ll'ltl\
GJII(Jio~IJI'~!Jio(lo;7'fi'O'

... ..
... ..
A,.

..... .,,.
O'W

.no..,.

..... .,.. 7',..,.

• •

.
~ _.., _..,.
.... a, ... _.. ... -~ 'E
~"' -
o•c""~oa
CC-'VIt~4!1.6ot
G.-CLC~"'""

~ .. -... ..
a: ,.

4-0(7-0-
-,-,r:la- ... --.:

./"1.1\11\11\.t\11\l'ltl'l ..
u ...
~ ... -c
2,.., :>

._,
0 .. • ,.,

J!W
u.tOu.t
.......
... ~,..,

,:, "'"'
O<D"', .. •

WWO.P...,._ • a
01-0',.~~~ ...

. .,. ...
"'"'

.......
~o::t

!!~~

0 ...
~ ..
!

•• ...
.. J'\.0 % __
"""'.I'll"'~ ..

"' ...
0
c • ...
2 ...
~

..,
0

• •

• ~
...

......... CI.G.
.,. ~~ 1:
~6...C:.ww

~
~JJZ ..J

•
-:~
~ ...
~Q

""',., ...
oo

~'fttrf•!ol'l4.,_.,__.i.III C~
'XC4-I-"'V'tUioU .. wtJ_, ...
Q. Q. Q, ~ ..;I Q. ./) './),:1

-..
~~-~~~~c~~?o-~~• ., -"" ""_."' "' "" ... ~ ~-"' ... ~

Q ~~~~~n~~~lll\~~~~~~ . .. ·-.,
IMOWW

......_..._.""

... ON
-•.u~

.....
...
0'3:Jl .,.,

.. "'
"-~"'"'0 •• ----a ...

0 ,..."'"" 700' ,. tn •f\ ... "'"', .. ._. ..
... •

...,.
,00 0

...

• ... , ..

... ., '"..-. • •
•a-""o-- ... "'"'0~
.1\0..0 O.O.O.I't

o,,..._.,.,._.,.o., ... •~~ 411 t ·f\ 1'- ol\ ..:> D D..,...,....,...,.._ •
.,...,....J'""l':JOo-,o,~ooo

...--~~~- -~

lO•Il •• ., .. l us GU Ol.tlltl"''S
hl'tl l.t , .. APliOO
l09l , ur ASS
lJ9J u '~ ~· . ., Ut tiiiW

CUOt liE-lAAflG fOA THE l_,LlEO ~EKANfiC AULES
lO'i4 u 2

un• • a E"v
un• l l E"W

11.J<It
.,

11,, ,. 1094
1111• sz 10!10

'". !l<~tl •
llll '"l PIIOO PoDoloL ..
ll24 ~ ..) LAIIfL PS
U.t-o !16 01 PAliN ll
U-ti ,. 01 ~ .. , PAR~ Ill

UJZ •• JtoO J SC.f> GET EIIPfroO
llJio ll '"' Vo\L
UJl !I .. 01 , ... JUIIPf fit

u .. o '' hS6 '"' Vo\Lt fALSt
lld "" lleoll no OAIIII ,
u .. c. u l91>0 l sst TR GET E_,fYoL

1\) U!IO .~. SS2 VAL
~ U!ll , .. 01 !HI .I .IUIII'f Eat J
CP u, .. ,, 2912 !i!l .. WALt TRuE

ll ,l "" uorz !I !I !I DAIIII p

ll<>U l5 S!io Ul f HLJ
llot ., lill .. l SSl lU Plo\ OI.IPIIOGoP
ll6S lZ SSil UIIL
au •• tl IH4 l !IS9 '-ET OIJPIWiioL
llJO ... !iOO LIST
ll , .. u 166-41 , .. PUN INSfR

uu. 12 Sol OIL
1&11

!10 "'"
, .. ""' f!l

UIIO 10 '" COlliS
lllll u 565 APEIIO
Ul.l !I !i66 ASS
UIIJ !IJ Ill , . ., CALL OUIPUT

lUll as !161 MLI

u11r 60 lUlt ' ,.. ll PU EIIWoL
l19l .. l!ill ' no loU EoL
U¥!1 .. Z»U J '" ~· loO
Ut,. , 100 SJZ 'ALL JDIM
1202 s !Ill us
UOJ u ,. MLf
1204 sn IIIIOfl

UM ,.,. IMD

~ IRAQIS OEIICIED

I Of I II SIAliC Tllill (o\AIIS PAOC.USEo- !Ill

...
~~

-~ .,,
i~u zc ...

cz: ~ l!l-4'" ---l
..,..,_ .. ~-

~~
.... ,_

H &•- i G c

~
.. ra
~0~ -p., --o <-; ~zc -.. & .•
i • ~ :2
t-CK~&o~Q6. z_,_,. ..
-~~~:A.~

:=~=~l6' c.-.. >
•A'~-~--_..,z_,..,'"' _,._
.>.:...ewc6.
-•.:XC""' ... :~
.z; zc: ...
::> ~...)!,:~~~
~ .. -c :c,.,.,_,..,
-::~- ""% ruz""---4:: _.., z ., .. --c•""
"'.:: .. a
K . .u-..., ¥ ..u
4'¥~'K4'~
x:.uZ.c1.:» ., ... -4
o··~-,.,~ ... -~cJ:z
ca.~-c---..
z ...
lE a
~

... ...
"' ..

a ~ z!
" ~ :c .. . "'

• ...
~ .. -z

!
~

...
::>
-4 ..
"' • <:1

z
0 -
~ ~ ~ ~ • ~c • • ~~ ~ ~ ~ ~~~ • ~ ~~ a - ~o
~ Q - ~~- ~~ ~~ ~~ ~ ~ ~~ ~ ~#~~ •~·~u~•~• ~~ a • ~~ ~
~ et..-•• "'....... -~ .. •.o•• Ql ~ -~·"'·····~,., - '.l'D•• ~ ·~K"-"'o- •u~:~.•• •-ra.-::J~n.. • ~.,...., c-..,~. a.
~ &•U*4~A---·~Z1~1-1 •~-~~~-~·~"'-• ~ 4·~·"'•'='~-"'·"'•~ll(u•c...- ~::t·c~~-ru- •• .. ar:~-t-a..•.zu-c-....,~II(..J- • a.-.,..a-•4.: -~..~ ... z
~ ~j~~-·~-~"'c~~--~·x~~~~~··&u...t~~a~ ·~ ·~·..JJC: ·-..J'-"'~ ... ~~~-.z ... J- •.JJ..:I.,J2'-~Q·JQ..·~ .. _, ~~z~--~44~CC4~4w~~~·~-cco-~~~~~~
~ ~a~u~~~~~4~~>•~--~~>~~»»-~gQ--~­
~•.......................
...
z : ..
<A

"' .. .t
~

'-'
" ..
...
~
~
::>

"' ..
& ..

~G•o~~~a~~a~#~~434D4~~~~~~~~•~o•
~·~~oa~-~~#~~~~~~~~·~4~4~4-~~o~~
~~~~N~4~~·~-~-~~~-~~~-e•D-~~~~-­~~~~~~~~·~#~~~~~~4~·~·#~4·~~~··· •••~N~~~~~~~ ~N N -~~~ "" 

-~~~~4--~~~~~•~~-~o~-?~#~~~~~~a~ 

----~---- NN ~~~ ~~~~ ~ 

~~o•ooo~o~o~aaooo~oo?~ooooooo-oo 

N "" "' 

o-~~ .. ~4·.,.~~~~-~ft~~~~,-~-~~~~D~~-- --------~-~~~~~~~~~~~~ ... 
'-' 
~ 



: ! .. ... .. .. • .. . c ... • .. .. ... .. ., 
~ .. .. i • ; 

• ..... c • ... 
: .. .. s .. • ... .. . .. .. 

~-u .. ~ .... 
0 

IIIU ...... ..... .... ,,. 
•• 
~-"'"' ... 

0 .. 
·~ 

... - u 

--
... ·- .. 

0 ... ... .... .. 
:'! .. 

c 
&~ .. ... 

-~=- • 
~li:K ~ ... ! ::a~~ l "' ....... 

l! ·-·- ~ 
I :a=~= • .. ..., . ...,.,.. 

250 



1111 

~~""tNJ I~ lHI) tAA~PLl IT IS l~ltRt~TI~~ JO OI~ERWt lHt ~MIER Of 
&~oi~UIIItS ~ENtRATt~ bY A~ ALiuAl PARA~EJEk •hiCH 1$ A 
SINiiLt liltr.TifltMI 

of, IN 
IME.;EM J, Ji 
REAL l'~vLtiiiiRE PIAl; IMt,Eil lli P u A••ZI 
J ,. l.; I : • PI Jl 

tND 

PAIISHoli TRU: 

,, LUCAflllN AIIIIIGUCl•S lkLI,.EII SON ~EMA"'TIU ~tLtCTUMIPk~~CTION 01 VAlUfl 
'-'' 
f~ " v 0 I ll6b8 ., .. ~""'"·"169 I I) 0 ~ JjJ~l> •oLUC~oiPih 

l u 0 l hv~o •U"'llllUL~ oiP ll'i 
J " Ill> .. l.lvV4t •t.;IOPI,.Plb5 
It 0 18 i ll9lb e(CMP I,"'~" s 0 " c. ZJ20"' •H,IP21>'>A 

" " 0 1 ZHOO •SH,JPillll r " 0 II ljbou •UN!.LPIOS J oiPZlu 
II 0 0 "' <•Ho •t>A>" ~ r, JPZIJ 
~ oJ " tu z.,~~z •UNlcA~I~)J,IPll~ 

lD " Q ll z~c.~o ••:.:osr ,.,,IIJ 
11 Q 0 ll l .. l'ol> •YALAS~oiPc!l~ 
ll 0 81 ll zsao .. •v&uu•u r, "'"'' ll 7< II 

·~ SOH •"AlflPM tlt'4 
Ill u 0 15 HZ.! .,,.~ lt:APII,IPl 
t> 0 0 lo ~ JJl •sA··IHlPR,IP'il 
lb Q 0 II ~ .... ,. •TtiCMoU'h 

" ... ~ u ~~db •FU,IPI~ 
IIJ I) 0 19 0)11 .. •PMI~,I~.IJ ... J J .J , .. ,c Hvi'<C ,.fd~ n J ... 

~· ""' o.;f'PA~ f, H'll 
ll u ~ u 11U •AI'll ~I, tl't; J 
ll llo v .J oOill tAP 1 i ... "'t 
LJ Q 0 21o 7lbd tAMivl, lP8!1 
i.'t .Q 0 -~ IOC.)l •1Uiolt'5i. 
<) u 0 u I>Ud t~luMAo J 
l<> l'i \) H lll•l oAI't tP'IIl n J 0 •• l.Z)I J •:> .. IUI,SPl•a 
~-~ .; u v tJ~cl ·~1-.I'IA,J ... Jl 0 ]0 .z ... •AP• U 1 '1M 
jl) " 0 _, ~ lbi.U •~k.;C IU lo SP'IO 
ll 0 0 l) l>bSl •101, .,.,;: 
j,C u " JJ Nu.t. ........ 95 
H .,, c J .. .. 119il •U,PR,IPl 



oooooo~ooo~aooooaaooaoaoooooooooooooo
~oaagoooooooaoooQoooooo 

~ 

252 



.... 
• ~c ~ ~ -~ ~ ~ • ~4 • ~ ~ 
• ~ •~ c ~~ ~~~ ~ a- • ~ ~ g 

ft~ ~· ~· ~ ~ ~~ ~-· A~ ~~ ~ ~- ~ ~~~ • ~-~ 

~~~~~ ~~ ! ~~~~ ~~:~~!:~~ :~ !~ ! !~~ ~=:~~ 
Q. • .., r - •• .J':t • •.O ._..,"' _ ... ·~..,. "' ""•ca.• •• • .,._~ •-•o..&. •¥..,_"""""" o...,. ... - J•..o- •'.JQ.•-· ·~•-o"""' epro~•,... ""'•• .,... • ~C'JI~ ;.1•• -~.~~ .,...,.
; If~~~~; : ~ ~ ~ ~ ~ ~!: ,~ ~ ;' ~ ~ "~-: ,~ '. ~ ~::. ~ ~ ~ ~;: =-:! ~.:;: ~ ~ ~ ~:! ~ ~!.:: ~: ': ~.:..:
folti&IC"'- • .., • ~-ca.••cc •':l~•"'...,..:~~- ~, ... ·• • • • ·•-•a.-<4A.••41~_,.. .. _ _.~••
c c !M- - a' • a. ,..., J . .., a' ..J • • E u .J J ..., • ..J - ~ •· .a "Y ~ .-- x • r "" • E • • a r y 4 ·.J • .J .,, a ..J • • ~ -J 4 - ~ 'I..J ~U.,. c c
~ ,.j -'- :I: J! ~- • ~ ..3 .> ~ 'W - ~ :J U J J - •J _,. ~ ~ ..- ~ .J-ar. ..& '.J- • ~- .11: - \.!t- ~ CL J- _, ...l '..3J...: - '-' U 0.. .J 3 IAot:.,. ~~a.
•,. .. " 1 ... c x ":1 c:1 , -a :J-, .:: s '- -1 ~ ,, ..; -1 '"1: .:x: oe .., ..,. ~ ~"' -y c ~- ~ ~a c ~ 4 ::.:: - • ... "l-" • -,- ~., .. a. ':II
••••~-~~~··~·--~~~~·•~uJ~~··•~-.a~.~·-•~44~-·~···-•~•-•~~·•~ ••

o~•~~404~Q••••-v~~~~~?~~~~4#~~~••~~4~~~~#~~,~o•###~#o~·~~•~••
~,~~~~-~~,,~~~~~>~o~oo-c~~,~~·•~~•aoo~~o•o~~~~ooo~~~-~~o~~o~
~-~-~Q~-~~~~m~~Q~-~~~Q~~~--o-~~o-•~~~o•~~-44~0-~~Q--~~#•--~o

~~~~~~~4~~~ 4DQ ~~-~~~~•~#~~~~~•••~•••~•~~~~#~•••Q••o~~oo~o~ 

~~ -~~ ~ ---~~~~~··~ - - ~· ~ -~--·--~-

~•·•,~-~o'~~·c~,-~~~~o~~~o-~~'~o~~~~-~o~.,.o~~~~,~~~oo•~oo-o,# 

~~~~,,,, 00 00, ---------~·~~~~~· ~~~~ ·~ ~~·~ ### ~## ~~ ~ --- --- ~----·---~----~-- ---
o~o~ooooo~~,Oj~O~~~~ooooo~a~oo~o·~~oooooo4ooooooooo~~~o~ooo~

Q 4 ~ ""' " ,... .Otl\ ... II\ "'
- - - __ 4

o3oo~oo~~4~o~~~oo~o~o~~~?,~,~oooo~o~~coo,oo?-ooo~o~~~~~oo~o•
0 ~ ~ ~ ...

ro
VI
~

u• 0 au 0 zoz~.z •IIIANlPAUoiPUf

1'1~ 0 0 0 l'IJU •wiLPUI,.,lU ,,. 0 ,,. ,,
'""' •IIOP&U o t P lJ l

I'U 0 ,,.
" lUfl· •II&LP&U,t,lJJ

a~u 0 0 0 .zo.z•.z •Jo&l'lPAklotPZJl

"' 0 &U UoJ ... ~ .. ef.PP&U ,&Pl.Z.

uo 0 0 ,., 11910 •frLISfoiPZlf ,., 0 0 l.Z 19011f •fPotP2l9
uz 0 G 0 UUl •saG"'•"'
lU 0 0 ,.~ IIllO• •PKI;tlOo tPlZ~ , .. 0 0 I»

··~~·
•su;u,p ,., 0 0 ••• ••u• e11,tPo IPlllA , .. r 0 ,., a•u• •HPUooll'ltJ ,., ., 0 Q , •w&LI"EoiPlt!lo , .. 0 0 , . ., l!lolll ••u:•c.outtao, IP&M , .. 0 0 110 un~ •ottL oiP 1111

llil 0 0 '"
,,. ... efYPtDtC.LoiPl92

Ul " lfll IJl , ... o •TYPtLI Sl, IPZOJ

u.z 0 ... au •••o11 • TYP Ell 5I oiPZOl

liJ 0 0 0 601 •SIGMo.l ,,. 0 0 0 'l•O ·"~·· an 0 0 n• ••u• •tYPEII.oi"U

U• 0 0 0 ••••z •v&LI'fPiolfll ..

oa&IOIN•

J
C.HliC•lo~tNY~•IAI~•,IMPLEol'fPf•IJoftGEa,QYAL•IoROOE•WILUloC.LAi5•FILSII

ACRI~UR•ILJo•tot~•lll

WALI~R•ILN•toGl•lll
CIINit~EitiVALUE•lll

Alll••t
SIOI FAUU
liEf

l
C. &IN Til. tit I
C.l ... hl>tlll
CIP~CCtuv~~llEYEL•toStGRE~J•JII

ACAIA~Oit•ILJo•••t"•ZII
C.IIHIEG£111YALUE•ZII
UlllfALStl
ACNIA~ult•ILII.••oOII.•lll ... ~~
C.I"Ell
tlltEALI
C.IACIUALI.UOY•IoLEWtL•SoOUAL•,U.CtRIYPE•I•tt~Eitll

¥&LIAOOR•ILh•6oGhaJII
ENI
STillfALSU
AU

r
AtltiADOR•ILA•••OII.•ZII
REI

...
& -...
:
4 •
"' "' ...
::> z
a

• ..,_
& • _.., ..
z g.., -· .. _ , ..
w ... ::.
>::>
:c
0"' o ..
00

-... ...

..
c
4

"' ., ...
~

", , ...
~

.c
24
J: .. o ...
"' ~;~ ...
"'~-

••.JtMUZ.O
CM..)&W,...
'lCJICZ. "
.c--~-"::11
~ ~ '.2
-~~ ..

••• -ll

~ (1[,1:, ··""' ••
"" .u~.Jt _,

..:Jwwc~
w~~AJCE~ .. zz.:so::~~.~

... --..acu-z . .,

.
z
·~

<.:1 z "' ... ::J

~-,., ...
• -~
u ,, ..
~

0
z .~ .l 11
1: •. , ,

" .. ·• .
~" "
0~ ~-
..4 ~ -
__ ,.

.z ...
-..Jw'l. ... •

-~ ..
I
... . .,._..,.
--~
Z I' . :) . -..... z 11"1 ~ '"
..., tt ..I I •
.:L4 ... z
..:J~> .. ,.j

__ .., ____ _
... . -"' l

u

"' •
~ ...

--... • ~ ...
"' • z ...

-... • .c ...

sz...,o.zuoo s • ..,, • o
~c-~·~~~ w ~~~ c •
~~~~:;33~!-~~d;8 -8 
-~~4U•4C~~~-~~~- ~-

-"" I ... 

z~c-~----z~z---- ~­-~4«~u'~~---~~,~ -~ ~ ~ 
---~--o4~-c--•~•~o•~•ow 

#;..J...J~•I..J"'~:»-U\.)UW"'-.-~··'-'~~:.~J• 

! -.. 
• ... 
:!! 
i 
i ... 

I"'! ... a .. 
! ... .... ..... 
~ .. 
u ... ~ ... ... .., ...... ...... ..... ,, 
!~ .. . ..... 
-=~ 00 

... 
~ ... ... -.. .. ... 
• 
~ 

f 
~ .. • 



a 

... • c 

• 

-Jl ... 
I 
8 

.. . 
Jj 

• .. 
~ 

"' .. 
z 

.. ... ., 
Jj 
c 
a 

; 
t .. .. -• c -~ ... . .. 

.; 
! 
• -"' .... 
"' .... 
i 
<.:I •• -­... "' . 
• -· -· ... 

Q -IAI\Jt 

~ -"'""" . -" ~ .... :.-
"'11:0 

A wt•&. 
: : ...... ;~. 

~ ..J ..6.1 It ... 
... "' -c•- ecwt 

- f.J ;:It-.., 
a x .c-~.~~t 

... .. " , "C-
1 '•""'-'~CCO .., ..Jl'l~--w.J't& 

~ z z ~ ~ '~ ~ 
.J ,._ 

.... 
~:;-~·1) ~;i""' 

ZIKI.W .£-61--c..ca ..,"C'.,., 

:il ~ . "' 

. z , -• 0 

-... ...... ,. ... 
.JJC .... .... .... ....... .... .... 
Jj ... ... . .... ..,., .. .. cc 
z~ .. 
... .. 
oa 
ii 
I o 
.. Jj 
cc 
::1~ .,0 .. 
·~ ...... 
~~ 

~~ 
zz --•• ... ... ...... .... .... . . ... ... 
Jj ... .... 

-... 
I ... ... 

. ... 
~ .. 
c • 
~ • i 

11:11: • -- ... 
W'twt ~---.. ...---
0 c - .... -- - ... ~ "" 
~L-~~--z••• 
-- ... ~-"4-~ttC.~ 
"lltiQIItiU~~ --.u ·~.u ....... 
ll::)ll't:J.=IQ..,.t\11\ 
Vtwt~•..;.JI1-Itlll 
:1~·...:"44-41!="'­
"!'-'!~~~ ... -...J.JJ 

..a~ ... ----·---

0 
I ,. 

!I 
u . 
• z -.. c • t 
& z -.. 
• "' 
, __ .., __ 
.... ,__,,..._. .._._ 
L • • It­
... z4! .&-:J • y •..) u. ... .... 
A- .. .1\ .,:;, 

~·" ._. -~4! .:c :=-=-=! 

--., .... 
•• z.c uu ..... 
I I 
Z« 
Jj~ 

-• 
.,,:,.,,.o:a:"'E.nll••• , ......... % ....... !!C ... 
•••.._,"C..,.,=t4..t:C .l'Z~~.ll:~ot.~ ':C~..,._ 

""'..._ _, ~ , !I .!! ") ") ~ z ~ .:. ~ ~ ., - - ~ :t - , ":. 
~~~~:~~~~~-~~~~~~!'~~~~~ 
--z-zz----•-----z•----~­~~-~--~~~...J-~¥~~~-~,~~•-•
~x-c--•c~c,cu4~c-~~«cz-z

~~~~»YVE>>•4Z~~~>~w-~~-~-



-- ---"'"'' - - ....... - ...... -
• • - - • • I - • • 
~· "' 0 zcz ""~-w:.a • • U0:0<.1 0 "'"'" ... ... ... ... . ... 
I'~ ~ ~ "'"'" ~ 4'-#'~ 

• • ~ ~ • • • ~ • • .j 

Z4 c c ...... c .tt:.tl:C 
~ ... ,. .. ~ ...... ... ~ ...... ---- ------ -----..... ~-- ~··· -·~··~ ... 4C~~~~~~~~• «~~«m~ ~ 

:l ~ _, '':J''~-'.:t~"l :a.., ... Q.,, ... 
~~~~i~::~~~-~!:~~~-=· 
---z-z-----•-z~--z•-­
~~·-·-c~ ... ~~-~-u•~--~-­~4~-z-~-444•~-~uc-~-ow

»»-~-w~~~~>4-u~•~uc~~
~

--... • ...
~

~ -'"' ... , .. -! ... _..,
'""'"'

'I -..
c •
"" ~
i
;:
...

~~ _,. ..
! ...
-c --~ .. u
... ~
JC ..
... o..J

"'"'
~~ zz --.. &
.,
0'2

...
~ ..
!: ...
c ..
"' •
~

i
~
""

"' _,.. - • :: t: •• - • cc • -- • •
'1 -- c I· ,. ,. •• :u

~~ - ... --- Z<.a • 4 •• 44 ~c
~ c ~~ •:I : !I .. • . •• :t! ! cc ac ~ OCI ;a .a - • • • . c ""'' •• c a S~: •• • - - -c -... t zc _ ·- • • • ! 11 -z.c• ~~ 4 ... 4 i! ~ -:s: " Oo U I Q

-OJ z 10 .. -· ~ o. •• I 0 ..~ ... • .. -· c ,.,. I ... • I 1: -c .».C"'-·· :::ll'll ii zc z z ... ~,
i~ ~~- ... ~ ...

"
·v• • 1 __ ..,.

... :r; -- 0 IC"' I • • ~" a ~ • • j __ .,. ____ t.l••

• • ~~ cc o~ ... f I ·~ .i i-- ! :I ::I QMC cz• -"'-· z ... c ..
~ ~~ ~~ -·- - -~ :ll :ll • "' ~- :t: • c z • -- -- _

ocw c ... • "' :II •o.Ju •a.\,1-·

259

CII,.HI.OERI
CISAil~~ILI~I·~·~E~~~~ll
Cll&Bcll~t~Mt,.f•To~ISP•ftt
&C~IA~Uk•ll~·~,C~•lll
ClllliHl>~~t•ALuE•lll
Hl.lfAL~tl
ALKIA~uK•I~~·~,C~•IIt

VALIAUUR•IL .. •,,t ... •lll
Cll .. flvt~lwAL~f•lll
AIU-1
SftHALSEl
~AliAOU~•lL ... •5oC~•lll
CIINil~t~IV~LUt•ltt
CC'4PI •I
lfJI~II
VALIA~OR•IL~•,otN•2tl
Cll .. flvtRIVAL~E•III
11\.U WALUt I
GC
<Oil IHI
VAliA~UR•IL"''~oOh•lll
CI1Nf£Gt~lw~LUE•OII
CC"PI•I
lfJIHI
VALIAUJW•IL~·~.t ... •211
W~LIAU~k•l~~a).~~·ll)

CIINfl .. tiCIVAL~t•lll ... ,.,
INIIVALlJEI
GC
VALIAOD~•IL"'•~oCh•211
CIINJE"t~lwalu&•~ll
11•.111 VALU• I
IOU
RET

l
CIINHI.t~l
tiS•IfCHILISJ•lolt"'~TH•ll
tllABtL l~t~.~EM•IoLISP•SII
CllA~ELISt~ICl .. l•loLISP•Jll
Ill UK
E~flltVEL•~o8CUW•71
ACMIAUOII•IL~•~oCI\.•111

tii,.JE~tllliAL~t•OII
STGIFALHI
RET

A&LPM JOi STAJISlltS-- Ooll ~INUTES tXtCUTION TIME
Oo86 ~1~TES CPU TINt Ool• MINUIES •all 11NE

--..
z
; ... • .. _,z,.

-u
-~ 1011114
~•c
... ... -
... ~ ··- 1111'1
~ ·•ua • •-•u.r.,. -"' •411""--z

... ... 4

..,._., J

·-· ,j -'-'J ..,._ ...
z -~ ... •

...
-"'
•

0 .,
4

• ..
0

8 ...

J ...

...

• z
;; • ,

261

.. -
0 0 • • I ..
! ! I • • ~ ~ . . . 0 -I I ,. - .. -. • • I • I
Q I

Q

0 C)

• • - - -.. ,_ ,_ -:t
..,

5- ... z c-, ,
a .. ~: • J ...

u :;) u ..

• • i: • i: _.., a ... -..
• 4 o -· Q

~ • ..
... ...
c
~
"' -•
"'
... "' • . .. "' a :>
"::1 ~ • ... ,. "'
~ •!I ...
g ..
• !,_.., _,. _..,..,

l1t ...
~
!
I -a< ...
::I
j
1-
.J ...
con

"' ii.! • ~ . .., ... "'"" ""
"" ~-'

~
... .
"'"' ., ... -_.., ...

>-
_,.

.... ...
) .. o

=>-
:> -:.-, ... 1)~ ... _..,
"' """" lolt ~""-.. -c­...J-.L~~-
U!Z"CUZ.-~ ...
-c--<.U'-""';.u

-u~..,....,\3~ac

...
"::1

" ..
I
"' ..
.j
...
" •
"' i
I
.J ..
~ • ...
~
z -,. -­.. -.. ~
:..:.w.>
lE"''"' _.., ..
Jl ~ • -
,. • '!)-

~";~.!,
-~"':..
..C~Q..-1
....~,. ... ·--> .., 0 ..a..o

• ...
:I

~
>

J'tO:l • " • • I .,.
~--':"" tl. ,. .cz •

~·
I ..
~ •

~~~· .j -' ~~ • ~ 
~~%J ----~ • 

!~~1 ~ ~ ~~~ ... ~; ~ -
-"""'~ "::1 " .j~~,,,_ ~ c 
.~~--" ":>- ·~~7-•- ........ 
ucc~~4 4~ ~4«-~-~ ~--

-~J~~-~-- ----~~-~-~­~uu~~-1...J4~~~~u~~,----
-L----u~•w ..... uc--uiO.czg.., 
_..,..., ............ ~-~~~ .. ,- ... ~-& ... ~0 

-• ... 
"' - ·----"'-~­• I II-

I~ZO 
Q.:JQI .. -... .... , ... ~ 
~4:..!:4 
..;..;..;> 

r -.. 
c • ... ... -:I 
"' i .. 

..... -· • • ..:o 
z o ... -· ..... ., ... ... 
"'" .... ..,..., 
... .. ...... .... 
:I:::J 
!! 
&& .... 
"00 
' . 00 

"' ~ .. 
"' .. .. .. ... 
• 
~ 

l 
~ • 



. ... ... 
~ 

~ ... 
; ... ... 
• ~ 

"" ... 
• Q -- .. .. ... -- • .. .. E . - • .. -· .. • ; 

• z .. 
"" • ... .. ... % Iii ... ..... ~ .. -• 

~~ ~ ... ... --.. o ... ... . .... z " .. .. .... .... ..o ... Q 

~~ 
... .. ..... • 

: • ... ... = -~ -. - ~ ... ~- ~ ... . 
» ...... ... . • 0 

•a .... ... .... .. "' zc za 1E "' ...... ... • -· -~ I s:: 7~ • ! 
~ z • ! ... -· -- .. .. . & ... ...... - -~ 1111 • • 1E ... .. .. .. ... ~ ... -.. .: ~ 0 • "' .. . 

~ ...... ... ... ~ " 
... "' .. ..... ... . .. ... ... I .... ... ~ .. ... a.c.J ..,;s ... ... "' 

'"' ·- • .. ..., "' ... 
... ~ ~-· 

c •• •• .... . ; ... g-, .:10 z ...... "' "' ... ... ... ... ..., ..~""" 
.. ... . ... • • • • _.,. .... a ~- .1: ... g:: ~ ... ,. ... ... ... 

., ... u .... ... ~ ~ .:> 2 

.: . .. oaz• -··"' • ... 0 ~ 
... ... .... .. ..... • .. - .. .... • ... ... 

_,. .... .., ... ... u ,. ! ... ... ...... "' ~ ... .. -- .. • ~ - ... 
... ~· ;;2:6::"' .aii~IC !I .... .. • • 

IA~Z-MW 
..., ... ... ... ... 

.... -a: •.• .., ... ~ . .~- .. .J I I .! ! .. " 
..., ..., 

..... ~ i ..... ~ i .......... .. • .. = ... 
Z..l-w.t ... ... ... .. ... "" ... ... 
-u~• ... .... ... .. .... 0 :!! • ~ ! ... z ! ... 
~ • • --... z z ~ • ... •-'" o-.., ........ 
• "'' ... z 0 ... -..... ....... ... .... 



u 
(ll~llvLMlW~L~t•}~t 

•U 

ll 
Lll~ltuE~IwAluf•~ll 

~EJ 

l .. 
CII,IE~tklv~LJt•~ll 

~tl 

·~ L~ t l C.: t. •'-"t:·•uS• I"" 1 ~&J• Sl ,_.Pt. E, TYP£•1 NT l~t:R, WUAl•), JIIUJOE •NAMt.l&.ASS•FAl5f I 
A(R(AJuK:IL~~7,C~•liJ 

Cll~l~ut~IYALUt•lll 

~AllA~~R:tl~•7,C~·~I~ 
Ao\1 .. 1 
,~J ... ' FAL :u .. J 
O[J 

l5 
LIINit:.,t~lwAL~t•jl) 

HI 

Ill 
~t." OoJtLrlcJJY!:.'iJ,tS•lu.PkEFJA•ItJ 

> 
""•l~•lout'u~•IAI~u·~IMPLf 0 TYPt•l~llGfR,QUAL•I,MOOE•V4LU~.tLA~~·FAL~EI 
AU~IAJJR~lL~•~tC~aJ)a 

VALIAJuR•Il~•loC~•211 

~TCifAL5cl 
RET 

i 
~"fiC2 lt~t~u~•IKI~D·~IMPLEtTY~l•I~TE~EMtWUAL•IeMOu(•YALUEt,LAS~•IP.~E 

"HtiC•~eYt~VS•IKl~D•SIMPL~tT,Pl•I~TE~EA,WUAL•I,~OE•V4LUEe,LASS•IR~E 
CIL.HELIScu"E~T•l,CISP•~II 

Clf~UllUUkEILtVEL•7o~tG•Ehl•511 
LIRE ALl 
~IL&Boll~t~Mc~T•leCISP•9Il 
VAL(&uUM•lL~•oeC~•lll 

~u 
~~~&tau~•&L~•btON•~)t 

"A~K

CIMEII
CIMEALI
CIALIUALioJuY•~eolEVEL•ltQ~Al•eUhtERTYPE•IhTEGEMII
VAllA~~M•IL~•Oe~h•4)1
E~T
SfuiFALSEI
DETITtKI

ll
ADRIAUDR•IL"•o,C~•lll

RU

9
C~flC•le~c"USaiKI~•SIMPlfoiYPt•INft~ERoWUAL•,tMODE•VALUEe,LASS•JRUE

...
~

:
•
"' "' ..
4 ...
~
~
"" • ...
Q

i

• 4 .. ,
2

«,
"' -•

"" -•

..
I
4

I .
~ ...
f

:
~,

~i;~l H
O..H
HLI•AL;i: I
ACRtAuuR•lL~•~.C~•4JI
,_.AR~

C I AC fuAL I Ovc V =l2, U •H• ~, .,UAL•, Ut.<.tk J Yi'~ •I ,.,ftGtR I I
C I AC JUAL I uJuV•l>o U ~~L• ~, .,o.;AL•, Volll" TYP~•I "''f C.tk II
tiACfU4LicLuV•1o,Lf•FL•5 1 ~UAL•o~"'~~~~JJPf•I"'Jf~EKII
~AliA~UR•IL"'~oOh•411
~ott. Ill
IHI

>JCIFAlSt I
~~~lAU~~·~~~·~.c~a~J~ 

,...""' 
CIRt II 
(lilt ALl 
I.. I Ac hiAl I oJLo V •' 5, ll ~ll• 5o QUAL• oiiPILER lYPf• lr.HioER II 
YALIA~u"•lL~•••C~·,-· 
\1' Al (A Jut...,. t lt\"'b, ~.,..t.ac. t 1 W.tMJ •.. , 
>JCifAlSll 
•LRIAJU~=I .. ,.,=~,O~•bll 
~4LlAJ~R~,~~~~~~h•~JJ 
VAliAJUk•l<.~•boCk=ai,Mf"l 
~fUlfil~< I 
WAL~AUU~~~L~~~,~~:JJJ 
Ai)R( AU&..h,• & L~t=u, t.l\•) J ,MtMJ 
V4L(AUJ,•CL~·~,~~·~JJ 
AUNt4C~~a&L~•b,O~·~J,Rt"t 
,_.Akt. 
CIRETI 
(I ott All 
CI~IJALic~uY•l~oll~El•5oQUAl•ollr.C£RfYPE•REALII 
fALIAijwR•IL"'"~•tPI•411 
''All AIILIM•IL"••ol011•41 ,lUI'! I 

""' S lUI JRUE I 
STOC fltl ~f I 
KET 

Jl 
AtRIAOU«•IL~••oD~511 
IIU 

RALPH JUI ~JAJISTitS -- 0.)0 ~&,.,UTES EXECUTIO~ fiMt 
0,1) "l"'llfES CPU JIME 0.17 MI~~JE5 •All tiME 



-"' 

.. • .. ... .. 
z: 
c 
~ 
• 
t 
c 
Q 

z 

.. .. 
Q 
tr. c 

= .. 
"' .. 
c 
" ~ ;o 
• .. .. 
z ... 
I 
3 

.. ·-• ·­,..z 
\5M ..,o 

.. .. 
! 
• .. -... 

• 
~ ... .. 
~ 

--.. .: -· .... ... ..... ·­...... 
• • ~ ....... 
"'"' '~.;JI 

-co .. -_,.., .. 
•:tJJCI4 -•u...,• -cs•l.JI 
- .. t~t..a.O . .. ... ... 
~: z ... 

i ... 

.. 
c 

~ ... • 

... 

! 
~ 
• 0 

ii 
A -... 
= • 
i -. ... 
I 

i ... .. 
~ ... ... 
~ 
• 
"' ... 

-; .. 
I 

'! 
~ .. -• ... 
~ ... .. 
z .... ......... .. ..... 

.. ... • 4 .. 
; 
I • ... -• 
I ... 

..u ... ..... 

-
= ~ ... 
l ... 
c 
~ 

"! 

~ .. 
i . -I 
~ 
:t a 
c ... 
:! .. 
! 
• .. • .. .. . 
Ill 
~ 

t 



..... 
~~ 
at at ...... 
I I ... ,. ...... 
cc ...... 
-!'"! ...... 
1~ ..... 
::5:' 
...... 
... o 0 

":i I 

"' ... . ... 
o- -0 I ... 
.:.- 0 ... u 
-~ ..: I , ... I .... -; 
~ ... ,.., .... ,.. ...... c .. z " ... - " at . .. 
I "' ~--..... o-"< ..... ~·~ ..... -I I 
... . ...... ~ .... z~ ..... .... .... .... 
;,t& "' ... " .,._ ....... ...... -.:tA.I\ . • -~ .... 
j~ -~--"""--" -4 •• . 

0.£--~~ .. .. IIUtl....,tM -- ... .... > » .. ~ 0~ ...,,.,. ........ ..All~~ .. 
J ~ ·~-- .. z~ >~-'-M~ 

...,~---· .. " "'" ...... " ... ,, . •• .a..I...,«J:..l..:ll-

..... c!l ~a z .. u .u ::c . ."""' .... QI.Ao1....,J.U 
J ......~-- ·~~ ·~---zz--cz•-,....,.. __ _.liii:~Q.--.. .... r--4c--..., 

"' ,..._U•...J....J\J>1E'Ij...,~ 

... ... ... 
c . • "' "' c ... 
u . ... 
0 ... 
c 
> 
I ... 
i . 
I 

i 
~ ... .. 
I ... ... .. . ... 
.J ... 
a .. . 
0 .. .., .... .. 

z~ ...... 

-• :ll 
... --~- ...... - ... ""'""-.. " .. - ... .. . -

./!~~- I 4..C-
u...a'-oJII II C.l..,. 

• • .,..., IW • •-411 

• -Q -4-~ ~ -~~ 
J't ...... _. ~ ··~ 

l ~~ ~~~: : 3~: 
~--- ---

., ... 
•• ~z ..... 

__ 
., ... _ 
0 I­
z~ .. 
~..,. . . ... 
..... .:> 
I I_. 
.c c c ......... 

__ 
...... _ .. -z .... 
uuo . .... ... ~ 
I 0 ... 
.c ..... 

--~~! 
, ••• ••*~ u z ••"E w ••-.••ar M·.u••~..,. 
-~~~ ~~~~ ~ 4 ~~M ~ -~~~¥~ ~~~-~ ~ 

~~6~~~5~~~ ~V-~~~a~ ~ BSd~~~ ~1~ai ; 
~-cc-•c•c•-~-o~~c4•-~-4Cc44~-~•cc•-• 

-z--~----7•-1~~---z•-~-----z•----z•­~-~_.~,_._._.--~~-~,•-t--c-~.~~_._.--•~~j--~-
~-ccw•ccc-c:cz~?· ... oc-ot•o•c~c"'-~~·wc-~ ... .., 

~vu••u-••·~·-u~u-••uc.,.~••-••u•-"'c>uc.Jts 

-"' I ... 
.:> ... 
~ 

"' ... 
<» 
~ 
! .. ...... ..... "' 

--"' I ... ... .. ... ... . -.. __ 
~-o 

.., __ 

... 0 I .. ...... 

.. .:>.:> 
~-~~ ... ...... .,.» ... --.... c -...... ..... ~~ ... ...... c--d!! --­~""'""~ 



; 
• ... ... 

-\ -.. .. • • .. 
i -.. 

... 
II: --.. -.. • ... ... 
i 
; 
... 

I": _., .. 
s ... 
-c .. . 
:I .. 

~:I ... 
"'"' ...... ...... .... 
!! • • 
~= .. 
ao 

... 
"' -.. ... .. .. .. ... 
• 
~ 

f 
i • 



i 
~ ... ... 
! -• • 
z I 
c a:g ... 
J 

8 c - .... 
• - -:z: ... ... 11.10 .. "' .. .. 
0 ... ... - .• z 

11. 0 ..... WIU 
• ~ "~ ........ 
"' .. ~ 0 .. 

"' .:liZ z -........ 
!!2 .. ~ ...... a .. ~j5 .• .• z <.:> ...... 

z- ~A~J:-11( -a..m-.. -·J""W .... Z:Jt- ... - "' .. #/!<IIIU.£. •.c • - .... --"" "' 4 ..... ..,._ 
oW tof'l- ~ .• ::c- .z ..... .• ::. z .... ~ -I .. .. C.C<..J ..., ... .... 

~- It ••IZ 1.Jo1 0 0 z .. -- -~-..:~ . -. , • ..,JA.••...,-!..!t_c.lt ... ..... o.Aa. -~ ... ... 
z .. .,~ .. nc-Q-~ .... ... 40ji;&:-

zc Z•.Jo..JC.,.,. 
--" ~-...J-:::)U~Z 

"' ·~'lit - .... _,_ 
Z4 .. -- 'L 'It._- .J • u•.I!<JJ•Zl: ..... 
... -1 UG.loiCK~-AID ...... z 

"'"' .,.zv z z.., .,. ...... .... C'" a' ~ 

"' ! 
..... ':) .. -- I.ISI<..J " .,.;r 

·A-
• •.2 a ..,Jtu 

-·~ D ~ ... • 

:J 
r ... 

:J z ... 

0 • "' ;;» 

• M 

• -• .. 
; .. 
; -• '4 • ... 

• -.. 
: . ... ..... 

~ .1'1 •• ... ~. ...... -... ., .. 
z-.,. .. . ., ...... .... ... . 

\JI.A.I •• .. 
2;:) 'I 
:J:J ........ _ _,_ 
-·...> ~ 
"'"' ... u ... .., ... voz 
z-c ~ 

""' .. , 

~ )' 7' 
' ' 

~ z ... 
~ 

! 
• -... . a= .. 
; .... ... .. :.1 . 

-~ ·-• ... - :~ -• ';) 

"' • ; .... .... ... ... z ... z 
J ...... ... • :z:.., ':ll ... ... J • ... 

:: ao 
I 

I M 

• ... ..... • .... ... ... g • .. 
•• WI •• .. - Q ...... Q ... & 
~ ... - Q 

::.""- ... ,. 0 
z- c ••cw- - 0 .... .... ~ •• -. Q 

_,. 
..... .... -E..t:J'\ j~ z 
co- ..~-·~o #'& L) 

J • - ...... _.., -UWIII •• ~- ..... - a- .. 
• ...,. .... ...J .. -z . ... u 

Z~? •z~-- . ... .... ... 
~Q ~· ... -.E Cl»o ... ~ ... 
...... z ......~ ... I ... ... ... ... _..,_ 

"' .. I .... u 
-o<.!> -a. ••• -· ... u 
''"" ... zc-...-z ..,_ • o .... M...JZI~ 1.1~& ..~ ... ... Z..J z "' 0 ·~ ... ~ .,_ 

I z I ... • c 
z- .. -·- ..... ...... • 

i . .., 0 .c .. .. .,_, .... z• z .. ... z uw.: .., a:z ';) ... ... ... . .. J;IC~o~o:t~ ... c ,._IE "' "' y .. ,.,.., "' ...... z 
l 

.,._ 
z.c • ... -· ... 

Q .. 
z z ... "' 



... 
~ • .. 
I 

"' "' c 
~ ... . 
~ 
~ ,. 
I ... 
I . -- - I .. IP • ~ .. • .. c 

• • .. ~ 

0 .; ... • ... 
• .. .. ..s .. "' • ... .. - - ... z . . .; ... ... .. -• • ... I I • • 
"' • ... 

' 
0 • • .. .. ... 

• • • I - • ~ .. ... "' • :: ... ... ... ! 
,. - ... ... .. .. - z - z ';" ... ... • • • ... . 

& 2 • g ... ... i ~ ~ .. ... ... .. .. Q • • - . . • ~ ... .. ... .. ... ~ • & ... • 0 • • a .. "" .. ... .. . . ... ~ ... ... .. . ... ... u ... :lS • .. -~ 
I • • .. -... ~ ... ~ • • :; "' ... ~ • ... ...... -

~ a .j ~ ~ "' ... -- ... ·-- ... 
~ ~ "" ~ .. ,.., .... . ; . . i"'"" .. 
1.1 ... ... ... . . - •• 11 ... .. .; I I I 

... ... ... ... • .. "' .cc ... . .. -~g • ... ... • • • • UCI ~~ • • • 0 u 

"' ~ 
... ~ ... ~ ~ .. ... . . .. .. ~ .. -.. . 

4 ~ ~ :] § :J ~ •• ... ~ a '" a 1 •• • 
~ i 4 • ~ ~ 4 •• li 0 Q 0 i ~~1 I ... .., • ... • c c •• • • • ... u c u - "' 

,. ~~ J~ : - - - ZJ4 ~ .. .. .. -- -- .. .. ... 
.., __ -

!I !I ... u ... • c • • •• u u ... u ~I I- I 

·~ .. Q ... ... .. ... ·~ •a ... ... .. ... .... ~I 
~ ! • ~ , ~ :4 i .. :~i ~ ~ ... ... 

&ii~ :25 ~ ::s ! i!l • : • • ., 
• • 0 - - Q 0 0 0 

• ... • ... • .. ~- c ----- ... -... -..... 
~ 

.. a .. ~ • • • _ ... 
~~ .. ~-~~~~-~ • • • • ~~~=~ z i & ... ... .,_ ... .,._.., .... .._.c.JI&IOIII ..... o ... . ... "' & ... ... :c 0 #4 ... ... ......... ....... -">»o _ _. •• ..,. ... .. ... .. ... . ... Jt •U>»•'JI> 

271 



-.. ... 
_, c 

: = 

, .. ... 
... . ... ... .. 

"' • Jl: 
u 

-.. .., 
~ ... .. 
! 
I 

t ... .. 
"' ... 
Q 

"' ::ll . 
I 
~ c 
::0 
~ 

"' • ~ ..,_ 
:~>­...... 
~ . ... 
CI'U .. . 
I ., ... . -
QJt: I 

.. 
"" . .. 
:> 
u .. 

., .... . ,., 
ll- -~ .. 

• -· ·- ..I 2: ..j -It 161 ~ • .u 
U"' ""1 C""J -:'11-J,_ "» 
..,_~ :>-:.- ...:-•A ~· .......... -·- -"'--~ ~~~ 
~u-~-...~-- -wCL ... lt-­
~GE:acn:~~,c- ,.z:..,"' ... __ 
--u ... -c,..~.~~--u .. 4.:~""' 

-~w•a~»~~~uu-~u~~ 

.., ..... .. ., "'~- ... ~- ,.., . . . • • .. - . ·- • 
"'"'"' .... "'"'~ z.r:- 4: ........ uu QUO ~u • u .. ; ;: . . "' . . ... . 
0 0 ..... ... .:> ... 
• • . • • • . ~ • • ... I 

"'"' .. """' ZLC 2ZC "' ~~ ...... ~ ... ~» ~ -- ----- -----..... <,J....,. ·-" •• ..a~.u• ·~ _ .. .., 
~~~J~-~~xx~ ~~~~w x~~ 
:>~~ :>~•:>,~ ... ~.,.~~ ~~--~
~:>,~c~:>,.:>:>~ cc~o~ ~~~
CC~>•44C4·---~44--C~· ----------z•----7•--­¥~~~~4~~~~--K~J~--~~~-

"'~cc.e-cczcc-~z·cc-•z•~~
~~>•-~>>->>uC-~>>UC->~~

,...~-, ... _
I I ·-...... z.r: Zl. ...
U:.J..J uu '-lUI
0 0 " ~ .. 00>.:> • •zz -~~ .r:zc
--~~--~ ~ ... ~~> ------- -.........," .. -···"' IS'W.i::ll"'ct:'YC'W'C"-' :t
n _::, ::) -J ..j , ~ ~ ~ ":: ·.!t ~
":1-"l..a~:;,o~:.o .. c
44 ... > 1C4CC~-~ ----------z•­,~~IC..:J--44111(""',J __ ._

•~•-..z-. .. cz-c4-~Z -c»>-J'I>::Ifl>_.,.»....,•-

--f'lll•- ,.. .. - . a..c- 4
uu• u .. "',:, " .. ~.. ~
~4~ ~ ----

-... '!
::t• ...
'="'
•c
c~
JW w •
'!~
~:I
i!
.:~
• It
c-
&:
-~

=~ .Ja
......
z.u ,., ,..,..
JJ
ltlt

"'"' •• QQ
.c.c --""

!'\,)
--l
.::-

(iilllU
UUI fi;IU

u
CHtlt•loCENu~•lKI~•S&MPLtofYP~•INfEvER,~UAL•IoNUDE•VALU£ 0C.LASS•I~~t l
~K(IC•~o~t~~S•IKI~O•SIMPLEofYPE•MEfoQUAL•bloMOUE•AtfE~f~CEotLASS•fRUE
Cl~kCttOUM~ILlVEL•~oSE.PENI•liJI
C.&INftl.tRI
WALIAOUR•IL~•6oCN•211
VALIAdUM•IL~•Iot~•lll
llloAUUURI
~ALIACD••IL~•IoLN•III
SJOI fAL ~t.l
ilfl
CleOllE&NIV&lUt••IRUE•IJ
IFJnll
ICMIAUOR•Il~•loC~•~II
Cll~ft.~tRIVALUt•lll
HGif&LSE I
VALCAJU~•IlN•ItON•411
VlliAOUM•IlN•IotN•lll
CIINicG(~IV4LUl•lll
Ul-1
CtiWI<•I
IFJI 3!>1
lUll II.
tiMUI
CIIIIIIEGERI
WALI&~R•IL~•&oCN•~II

ENI
UEL
OET
ACRIAJJII•IL~•IoD~•411

VALIA~R•ILN•ItD~•411
Cll~fcGtRIVAlUE•lll
AR(•I
SICIF&LSEI
!iOIUI
AOMIADUII•ILN•&oCN•411
VALI~uii•IL~•IoON•lll
CIINIEGERIVALUE•lll .. ,_,
SIUIFALSEI
MARti
CIRt II
Cl Hole.OEMI
VALIAdllR•ILN•IoGN•lll
Ellof
DEL
CET
AC~IAOuR•ILN•IoD~•211
IIH
l)fl

iilliiU
UETC ltiU

19
CHtlt•lo~i·1US•III.I~O·~IMPlEoflPE•INJtGERoQUIL•I,~Ot•VILUEotliSS•f~UE I
ChEIO•~o(iE~S•III.l~·~IMPlfofYPt•RtfoQU&L••IoMOUt•Mt•ERENt£,CLASS•TMUE
tiPR~tfuUMEIL£V£L•9oSl(iP£N1•2211

275

- ~ ... "' • . • .c .c .c
u u 0 . . • • • • • •
"' .c .c ~ ...
• I • .. • "' "' <> 0 "' ... :1 ~ ~ s: ,. ,. ... ~"'"' "' "'""'"' """'"'

- ~ ..,
• • z L
<J ~ .
• ..,
• • .c .c -. .
"' "' 0 .,
!l "'

... u o,

~ ...
.;,
.., .
4:
~

" "' .>
0 ..
"''" "'"'"'

...
:» • • •
"' "'
"!

zn

-I
=~ •• Ul_,
;~
~· ----::I~:U ...

I ---J
i
i
0

f":
•O ..
! ...
•IE -­, .. u w:»
ii --11:11:

"'"'
oo

"' ~ -.. c
•
~

f
~ •

• ;:: .. - ..
~
~

.. : :z: ...
; ... ~

_,
• .., "' "'
~ c "' c c ... ,. . ~ ... :1 "' .. • z ..

' "' c ... c ... c '"' • % "' ~
a ~ z: ~ ...

... ~ ... ,. • "' "' • •
l :> ... ~ ... :c .,

w 0 ...
__ ..,

"' -
'"' '-' >CO .. z .. •• -II(..... •• -!II(

z: 'i -· _..,,,._,,._
~

..... • >ol: 0 s.-~· i
,. ._ ..

... _.,. ... _,_.., • .. - -»-• ... _.,._
- .. "' ·~ .. z ... "

,_ ':J "'
.. _.., .. ! "'' 'Z...,..., -a. "' "' ...

<C ... a •• ... :... ... ~ • •4oH..J & "'-!
..,_ Q u

(\, ... z "' I I ·~ •-J: "'"' • -~ .
"' .;, "' -s •• ll:- tCQ.'WI.W "'
"' "'

.,._ ,._ .. a.-xca.at,.zc " %

c :> ... :>oac c :> -·~~11.~\L ~ - .. l, ... ~ :>w , " :::> ..: - "'"'- 0 I&.,-.. ... ; .U:l <3 ~ ... a. ~ "'JII<

... "' u '-' u ... - .. 0 ~
...

c ~ I 0"'0 , ... ~ I I I I

... ... "'" ... -~- ... "' •.... I I ..
-~" II: .. ~ ~! .' . I "'

c ~ c ... - ,., > -~ .. "' ... " ~l[&4
,._

"'
..,

"' ... "' "'"' .. 0.. . » ,. " " ... -et ---
:::> ... L " -c 4 • .. ~~oc.:•...t "'"'
•J,,:::J ,_,,._ ... """~.UG.n..W _... ~ .. tM.C.W6. - u "' .. -~loti.UU:Z ... "'

__ Q£...,f:CC
.:> .. :::> --· ,J.l ... 0"'::::3 ~ o:>_ ... "' -.. ... w.z..u.a. ... ,. "' IIIZw.t-M ZJO .,.zi.U~ - ... >. .. ·- < ""-~-

.. " V'l-os•,._ ..
;: .) "' , .~ ... • "' c c , ~ ... ,

1> ... _,.,, 1! "'
~ "' u11 ... u

..JI'Z~.U

z " .,_"' .. " "' "' "' _, :l ~ -... Z"' z "' c

%
_.,

-..111 ... "'
1[<3
u ..,.., •

r\)
-.;
•'>i:)

Ucl1& a- If hPAIME •• lEAO IHEN
LI'IIIIIE

ELSE
Nt~ ijJffiLPAI~oAPAI~II

:~Ell IV 1- DtLU
tr.• ;l lVI

::."~ l:,! :- f i

ll~flt~h~IA~IIli~~.~hil

CCMNE-J f"t INIIIAL OPE•AIIONS Of JHl CLA$i SINIOL
&ME ~~~ fCLLL•I~~;

ltM~ :- r.t~ Lur.~••-••oa;

~NE :- hf• ~CN$1&hlllll
ltR~ob,LIA •- '~E.~tLI& 1- lfllij;

tNO SWII&ull

SYMIIO&. It li lh
REFIVA~IAbLfiAoYoll

Mt~lt&P~I~oYotofi
A :-~Ell ~&AIAIILllll; I 1- fill• VAitUIUilll
u :- ~r• ~~~~•••'''
l 1- -f• VARI.BLtllll
~ 1- hi• ~lfflloht• '~N$1~TI•II;
c &- hE• ClffiUoVIi
f a- EoCEAI~UI

UtD
EltO

ENTERING '&RIA~l COLLECTIO-

~IER Of CELLS CCLLtCTEO•I Jz•r• SUI

ENTEIIIN~ ~AR8&'E C~LECIION

NUNitll Of CtLLS CCLLtCIED•I)Qt&o)tllo .~ ..
t-IERING G&RdAGE CCLLECIICN

N~IEA Of CtLL~ CCLLtCito-: 5120o
~··· •n•

ENitAING GAAI&Gl CCLLECIION

NUMIER Uf CELLS CCLLECTED-1 ttl5o ., .. • •••

......
'::t:J ~~ .:):3 ~! ~! ;;) • I I I I •• ..
''"" "'"' "'"' • "'"' "'"' "' "' ~~ ~~ ~~ c
~~ "!~ ~ ~
~~ ~~ ~':i ~ ~ •• u ~ I •• •• Q
I • • . • • 0 88 ~ 88 ag -~~ ~~ ~~ • ~ -- -- •• .. •• •• :J • I . • • . ..
~~ J~ ~J • ~~ ;;):I

~~ ...
~~ '~0

; ; - - "' ... "' .. ':f f'f -- . • • • • I • 0 0 - - ...
I I - ,

~ • • • - ~ ~ z z z ... • • . ~~ ... -~~ ... -~~ ~ ... • "' "' 0 a, "'"' a, # a. "' ... 11:11: "' 11:11: "' a:o: .. "' II: • .. • • • ... I • "' "' "'
.,. ... ~-vtwt \It-fA~,.,

"' ... -· . ·- .. ·- . • •- I I . ; !~~ ••oo ~.:.~5! . "'""' .; • ... ~ •...w.z~c
::0 0 "' .. ::o-- ~,:,-- _.~-- - ... ::~-• • _, • • • • • Ju~c.:,.It" • "'JI& c __

><~~~~-- >c-- Q .. .;) :J 0 Q Q ,. . • ... ,.. ~ ... ,. .
Q '::t . _, _, 0 "' 0 _, . ., J • "· Jl Q ,. • • -· c ~ "' -o~~ -.a--,~

__ ,:11

• :!i ,. = zz ~ ;!'! ~·?!'!
"J - ~~ ~ J -.4 .~ *.., _,., - ::oc " .a '-' ~oil ..!ItS ~--'.!11 3~~~- ..J , a.;o- ~, . . - ~~ .. - .. ~.;) .

I ., .,,. .. '.3 .3 .,MC"W ... '\a~ ~..,_,at "".,_"'.z: .,,. ..
"' "',_,., cD .. "

..,_, •,_, ~~~~~ • ...,_,
:; Q .., ::o ... - .. - 0 c ~ .. au .. •J-..~U- Q ., - ! .. ~- .Jt.•---

11!:\Aol ___ 1&14.1 ___

~ ... -- • • • • ... ~- ... "'- Q.&""'w~ -.z:~.,y~ • • ~ __ ,., .,._.., ,..., o ...
.,.. __ 4rw.t

---l:.LWrl
.,. __ ..L•.;.J filii--£

~ ,~ .ovv~
~---

... ~ ,,uuu~ "1.1'-ot,U~ -...w...,uuu -· -""u-oJ

... "' ...
~ ~ ~

4
I I I

;)
~ c c c

~ ~ ~
I ... "! "! "' .
.II
4 ~

y
~ ~

"! ... ,., ...
c "" •

;)
J
4 • • • ,. I I I
I ! I ! -"' -
~

") 0 ~ f ;; ;:; --
I
J I • • ,.
c ~ i 1

..
1 • J :t ...
; '! I c: - "' c 'I c ~ • I • I - I

! ~ - :: c ... I ~ ; . . .; c I. -... ... J J J - J 0 . & • ..
0 "' ! i ! I
I,. ___

..,_ .. --- ..,. ___
...

"' . -. , __
I -I --- --- - - ·--- ...

••o ,:, o _..,.fit. .,. ~I I"' ...
1 ... 4: .., I •• .., . ~ • I • I 0 0 • I 0

• '"""'- -44.£ -..:..- ~~.~. 4~ .. ~ 4 "' -:~~4

• w:wQ._. OliO"' o .. 0 ~ "~~'"' _ _,.
0 ... ,.. la"lil. . ,. "' "' •=»•• • .;;o 1'1 ••• ,,. . .., . 0 I .. • • • . "'
" -o.> :JL4~ "'"- 442 I.ZI. • I. I. , .. ~ i, Z.•.J~ I. ,J. ,JJJ

=~~--
,J J ~

c JJ----- ----- - - - M -... ~ 4' ,_, ", ~·4 • Ill • • • .,.cc. :; ... Q., .. _
-~·:c..,., . ..: ~- ~ar•.., • c • •::t,:) ...

"' ., .., ., 1'\,1.,~.:1.,..., .,.,
"~·-~~=-=--' .. oo::»"' 0 0 0 "'11'7(J'Q c

::: .. U- II \At ~4~~~~ :a.i:!~~~~~:=~~J~: i a i •••O
__ ,

"' o•~- a_
s~-- ;;;~o;. -- 'IJ Q.------ ... ----- i:= ~~~·~~~~ .. • &.I!C~- w~~~~~•~OQ-cs~~o~ ,l: ... "'"' --:r"' Nruu•a- ... r.~~ ~L·-~~UU4~-UU04-~W '"'-L--o .. ---

0, IJII v'""' ·~ :3 -ucc~W"'w~~a: -~,..,.~ .. ,c,...,..,.., ,...,,c z ol\otC once 1'1'\~U\J<Cau"'""'

...
"' • I ...
a. •
i
• J

J
~

----...... •• ••
~~ ••
ii
.::~ •• .J~

~~
-!'!

282

-..
~ • ..
~ . ,.
• ..
::
• ..
j ...

""" ... •••

-.. • • • ..
~ ...
;. ,.
• . •
I • • • a 0

i i -... a.., .'3 o•"'

... ...
~ •
t
c
.J
~ ... • • •
~ -..
E f :;; ... - ... • ..
~

... • ::> ...
~ I 4 ...

~ • I ... ~ ~
~ .J .. ~

I[• .J .. loA--- ·--- ,. __
... "' _
• ~, . JO • "" - ::.:J-' .. , ... 'C..I..IU .. ~o -·· • ,. ... »"' ••• . "'
.e :)004 1z.a ... 7. •J

tl~ ... - ·--• ""4CI -· • "" . ., ~
:> .._,., .,0 c~o

J ·--~ --~~0 o_,._ cc
-.u.u-lll'w"'u--·- ~.c•~rw•••_,.,,_

"'" o~~.a.--t:t ... ---ccz . .. " "'IIU...JU4·\,,~~~Jio1U

283

~ .
z
"' ...
I .c
~

I • ~
~
iii u

--:5
~
!
I

l: ...

--
~
!
I ...
~ ..

• • -I
~
c ...

; ~ .a
I ~ .. . - I "' ~
• "' I ... I .J a

i & . j ... • ... ,. .
• • c .. • ... j .J -·- ·- "' ~ .. ----- - -=-- - ... -................,.

I • • • • .. • •
til. II.~~""
WLIQUU • -..... ~ :0 - - ; ·a • • • 4 c

~ • I • I ...Q u ~ • • , :I :I :I I. •
I I • • • 0 2 ~ czz.ca ! ~J~~,.j ~ 0 ---------- - I& ..

,j ... j • • I
c c c c 'J! IE .c • ,.

~ :! j
w ·- w ... • • ~ • c -· . • • ,. ~-..~- ... ;;; ..,,~~o~~.j• ., ...

:~~~~~::= 11 "'
,_

Cl c ca

... "' j. .. ! I ~ ~ c~ 0

= ~ ~ ! a~:: ~ a
c

:2~~i~i!~:
~w~-• ...,.u.c _4_..,~"'"'

•1A::a4 ~~ »UittiH::S,aut.Jco•

z z ! .. z =~;; ~i:: _,...,._.., . _ _.., o4.-u..-"'.u "'"'"' •oou "',,"""' .. '-'•• •

284

• • • -•
=

! ~ • ! ..
• I • I

:f r • • • :i • • "' ... ~ <a .. ~
<& J • z
~ ~ ~ ----- • • I I

.......... ___
~ i ~ i _,..

,_ I I I I I i i ~ ~ ·~...J~..I-1
...... ~..UtMW . . - -.. ~ a a
» ... rM>MollltM • I I I ... ~ .. ~-~ ··-- ~ ~ • • ~ ~ -~ - -------- -·- ·- Q

..,_ -"' ... •o•a~~--•••----- - ----- ; "' ... - -:-::':':':!!.1~~:,!,!,!, •"" . .._. "'"' ...
1 • WoloM.U\MW.4J~:I.j~..l:t~!),l ~· I ~· • I I I • • ~· I ~· J • .ft4 •• ••••• I •• • • :a.-.a._..J4C4~..1..1-''-I Q . .. QQQQ<JI ... ~ Q oftO ell--.~~-- .. c•»•4444 . # • . # • ;,;:;; .:;; • • ... -----·······~.-.. I • • . .. • • • • I • oo~~o~··~~~·•••• .. . • • ... • .. . • z • ___ ._._ .. .,..,. ... ~ ... oo.o.a« oz. • ~~ tolf'!'•..r:: r oc z. -:ac • ~ ~ .,..,:3,.:.~ _, ,~ ~

-~~~~~--~ i~ -~
,~ ~ - &•S'CS&...II,.j.J..I..I-4..1-

.,_ -- ·- • • ~!!~~~~;;~;1~';1~ -· -. ~M••••• ...,. -· -· :u • I ~- ... "' v.cs•a•..,..,.• ~-
! "'"""""",...""'a~,~~~-.3'2~= ~§- ~~ ~8- "'§,§col,.,, C':> ~.., !§:

.. ,
~~~~~~:;:::::::::~ ... ~ : i i :!~i ::10~ .. J :3 .. ... .. c ... ..c .. - ~~~~~~~~:~::=~~;:~-; .. ;;-~-~-~~;:-:;;;~~:i .. ~;~~-i .. ;;• ..... ac• ..... ...... ~------·--------~4-~w~•04-~w~-·~•3•••u•-•ww•u•-~~-~w• c • ..... ·y~~UUUU~WUWYUWW4~Ua~-~-&~·~-~---4~~~--u·~~~4&y»~·~·K 



-... 
~ 
f 
"' ... .. ... c 

i 

,:. 
0. eo 

o" 
..::. 
,J5 
•..! u·-

~· -u> 
o• 
0:: 
~J 

• • ! . • • z ... 
• • e.; 

:i 

! .. -i ... 
~ 
J 
i .. 

r-: 
·"=' .. 
~~ ,__ 
~ .. ... 
=l ... ... ...... ...... 
~i .... 
•• .... . . 
00 

... 
~ .. 
"' -.. .. .. 
A 

• 
~ 


