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Subpruble .. s of the. X D Sequenei .. ProblOll 

Aa .. ullll H •• t a set. of n ta."s la to be acheduled OD • proc.aaors. 

J:aC'h task 1& ln~tv 1~ll1j,e, and each procel'aor !la, be concerned wltt- on'l, ODe 

task at • tillle. Then the ~ ~ !! aequenein'f probl_ 18 to find th. achedule 

in which the total completion t1 .. for all taak. is .in~al. In a44itlon, 

.. tiCC~ .n algorithmic 50lut10n Which i& efficienti that la , the co.,utatlon 

.IUSt gl"..lW .:.lgcbraically with tile slz. of the probl .. rather than coablnatori­

alh. 

The result!' pre&enllld concern three aeparate feaUles of aubproble ... 

The first problelll 1s an extension of the prable .. of HU, and COff_n and 

Grail:ln!. Here we develop an allorltha for the opU .. 1 aequenel,. of n 1-un1t 

and 2-unlt ta.Le with tree precedence on two proceasor., 

The aeccnd r .. tly of problea& concern. t.he .equeneinc of taaka on two 

ill'OC(.>ssors where the ta.ks constst of chain. 01 opel'atlons w1th known lencths. 

Furlhermorl', the operations of each task are to be perfo .... d alternAtely on the 

two processors. The new results, includinc knap.ack solution., are al,orlthas 

for tasks which con~lst of: 

a. three operations with I-unit and 2-unlt len,ths._ or 

b. three operat 10ns each of wholie adjacent operations dll!-r 1n lencth by 

I-unit, o!' 

e. three ope ra lions ('ach of whose adjacent operat 10n. d lffer ln lencth 

by k-unlt ~, or 

d. three op(>rat tonH in which t.he flrat and laat have identical lengths, 01' 

e. tour ul'cr:at ions in which the first and l •• t have ldent.lc.:al 1enctha and 



til ... cond .ad third have i. ... nt1c.l lenKths. 
I _ 

,.. alcorithaa for the th1rd f .. 11, of pruble •• 'oll(~ the work ot 

Artl.anerl and ."mopadbyay, and Szwarc. In our ~~, we treat II, • ;z 4, prot., 

sora and ta.ks foraed b, chains of • operatlon~. Each of the operation. corre-

_ponds to each of the processors, 1n ordvr. Tbe resultl> include: 

•• a case ln whlch the identl~al lOlik ordt!r UII adjac~nt procc:;:;"r:. yh:lc!_ 

an optl .. 1 schedule, and 

D. th •• ulutlon of a cunstrain~d fuur processor problem by solvin, fI two 

processor probl .. s, and 

c. tha reductl~D of • constralned four processor problem to the solution 

of • three processor problem. 

Sclile syste .. pro,r.1'IIID1DK problems fro. COlllput.er sclence have characu:l'-

lEtlcs slmilar to our sUbproblems. 

'" 
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Subproblems ot the • X n Scquenclnc Problem 

ABSTRACl' 

A.loume t toa t a set of n tasks Is to be scheduled on a proces.or' •• 

~a~h task is indivisible, and each processor .. y be concerned with only ope 

task 4t a time Th~n the ~ ~ ~ sequencln~ E'~~ 1s to find the schedule 

In which the total comi-letion time for all .... sk. is mini •• l. In .ddition, 

lH, IiCL:~' • .111 al~orithmic solution which is efflcient; that la, the computation 

must gl'.)W algebraically with the size of the problem rather than comblnatori­

all)'. 

The rCliultf· presented concern three separate famUies of subproblems. 

The first problem is an extension of the problema of Hu, and Coffman and 

Grahnm. Here we develop an algorlthlll for the optimal sequencing of n I-unit 

and 2-unit tasks with tree precedence on two procesaora. 

The second family of problems concerns the aequenclng of tasks on two 

processors where Ule tasks consist of chains of operations with known lengths. 

Furthermore, th(' operations of each task Ilre to be perforaed alternately on the 

two processors, The new l~sults, including knapsack solutions, are algorithms 

for tasks which consist of: 

a. three operations with l-unit auo 2-unit length., Or 

b. three operations each of whose _djacent operations differ in length by 

l-un;, t t or 

c. three operati~ns ~ach of whose adjacent operations differ in length 

by k-unlts I or 

d. three operat1onu in which the first and last have identical lengths, or 

e. foul" operations ill .. 'hlch t~e first and last bave identical lengths and 



the aecond and third have 1dentical lenlth •• 

The alcorithaa for the third fa.ily of probl ••• follow the .ork of 

Arthanar1 and Mukhopadhyay, and Szwarc. In our eas., .e treat ., • ~ 4, proces­

sors and tasks fo.~d by chains of • operations. Each of the operation. corre­

~pond8 to each at the proce.sors, in order. The results include: 

•• a case in which the identical task order on adjacent processQrs yleld~ 

an opti .. l schedule, and 

b. the solution of a constrained four proces.or prob1em by solving n two 

processor problems, and 

c. the reduction ot a constrained four processor problem to the solution 

of a three processor problem. 

Some systems programming problems trom computer science have character­

l~Llcs similar to our subproblems. 

, , 
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Ch.pt.r 1 

Th. • X n SequenciQl Probl .. 

A cl ••• ic probl .. of oper.tion. re.e.rch and .. na,e .. nt .cience 

i. the opti .. l •• qu.ncinc of n Job. on • proce •• or.. In coaputer ~ci.nce 

the .r •• of .y.t ... pro,r ... inc .ain involv •• the .... probl... In.ll 

c •••• the .olution mu.t be embodi.d in an .ffici.nt .1I0ritha. Th •• olu-

tiona of complicat.d .equencinc probl ... oft.n dep.nd upon .ffici.nt 

al,orithma for the Ie •• coaplex probl ... of .c~.dulinc. Thi. work continu •• 

the d.v.lopm.nt of the •• alcorith ... 

Sine. alcorithaa for the m X n •• ~u.ncinc probl ••• xi.t, wh.t are 

the efficient al,orithma we s.ek? 

Definition 1.1. An effici.nt al,orithm produce •• n opti.al 8Olution to a 

problem using a computaticn whose size ,row. aicebr.ic.lly with the 

size of the probl.m. 

First, efficient alcorithms differ from those procedures th.t examine .11 

possible solutions. These enumerative coaputation. often Crow coabin.iori­

ally with the size of the problem. Second, efficient alcorithas differ 

fro. those procedures th.t reduce .n inherently combinatorial enumeration 

heuristic.Uy. Heuri.tic cOlllput.tions do not n.ce ••• rily produce optll1,al 

.olutions. 

1.1. The Problem Stat.ment 

The ,.nerd problea which concern. u. 1. the ~ ~ ~ sequ.ncing 

probl... It. d.Ur.ition below n •••• the fo~ of U. solution. 8Chedule. 

Author. differ, how.v.r, on the notation of th.ir schedule.. Bere .ach 

8Ch.du1. i. denoted by • Gantt chart [Clark 1947]. A. Figur. 1.1 .bow., 

- 1 -



P1 
tl t4 t7 
2 2 2 

t2 t , 
P2 

I 5, 
2 1 3 

t , t t P3 I 3 1 1 6 1 1 1 1 3 

Figure 1.1. Gantt chart example 
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one of the set of horizontal, parallel tl .. bar. corresponds to each pro­

cessor. Tiae Intervals on each tl .. bar are deliaited by vertical bar •• 

Durioi a tilDe interval a ta.k .. y be e~ecuted on the specific processor. 

The task's naae then appears above th. tlae bar, and the task's lencth 

app.ars below the tl .. bar. ~ represents an idlo tl .. interval. In each 

prabl .. an opti .. l schedule is a .ch.dule in w~lch all taak. ca.plete 

execution in a .iniIDum tiae. Definition 1.2 aescribes the general • ~ n 

sequencing problea. 

Definition 1.2. The m X n S.quenci~ Probl .. 

A aet of D ta.ks i. to be scheduled on ID proce.sor.. Bach ta.k 

Is in~ivisible and may have to be proc •••• d before or after other 

taak.. Each proce •• or aay be concerned with only on. t .. k at a 

time. The.!!! ~ l! ~equencl. prabl_ Is to find the .chedule in which 

the total ~letion tiae for all ta.k. i. aini .. 1. 

This basic definition is frequently .edified to produce a trac­

table probl... For exaaple, the number of proce.sors .. y have identical 

characteri.tics or may perform .pecialized operations. Alternatively, it 

.. y be desirable to find the mini.um number of .. chines, m, required to 

attain the .ini .. l total coapletion time of all ta~ks. Or the character­

istics of the tasks may be varied so that, for example, they may be 

executed only in a special order. 

The research re.ults here concern three distinct clas.e. of 

problem.. The first class concerns I-unit and 2-unit length tasks to be 

sequenced on two processor. (a = 2). In one subproblem the tasks have at 

most one predecessor and at IDost one successor. A second subproblem con­

cerns tasks with many predecessors but with at most one successor. Sets 

of these tasks are then IDaxi.ally connected to si.ilar sets of tasks in 

a third proble.. The geoeral prObIe. of sequencing I-unit and 2-unit 

tasks with ao arbitrary number of predecessors and .uccessors reaains unsolved. 

This first cia •• ~f problems includes those treated by Hu [1961] 

- 3 -



and by Coff.an and Graham [lY12J. Huts problem concerns only I-unit tasks 

with many predecessors but with at most one successor to be sequenced on 

m processors Coffman and Grahaa considered I-unit tasks with an arbitrary 

number of predecessors and successors to be sequenced on two processors 

(m = 2). Our results maintain the O(n) computational co~lexity estab­

lished by Hu for his solution. 

The second class of problems concerns a specific two processor 

sequencing problem. The work extends the results of Johnson [l~54] and 

Bauer and Stone [1970J. In the latter work tasks consist of three operations 

(staces) to be performed on processor one, processor two, and processor one, 

respectively. The time interval for proces.ing these tasks is 8iven. Bauer 

and Stone succeed in isol&ting the difficult core of this problem. Here 

we present new result~ on the problem in which tasks consist of 

a. three operations with I-unit and 2-unit lengths, or 

b. three operations each of whose adjacent operations differ in length 

by I-unit, o~ 

c. three operations each of whose adjacent operations differ in length 

by k-units, or 

d. three operations in which the first and last have identical lengths, 

or 

e. four operations in which the first and last have identical lengths 

and the second and third have identical lengths. 

The third class of problems concerns tasks of varying length to 

be sequenced on four processors. The published results of Szwarc [1968], 

and Arthanari and Mukhopadhyay [1971J considered three processors. Our 

work extends these results to four processors and, in one case, to m proces­

sors. The results include 

a. a case in which the identical task order on adjacent processors 

yields an optimal schedule, and 
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b. the solution of a constrained four processor problem by n app iea­

tions of Johnson ~ .. thod, and 

c. the reduction of I!. constrained four processor problem to the solu­

tion of a three st .. e problem. 

1.2. The Contents 

In this dissertation Chapter 2 presents the history of the proh­

l~m. Instead of repeatine references to the many tansentially relevant 

papers, we cite more complete surveys of the literature. Only work which 

has influenced the present work directly is included here. In addition, we 

discuss the importance to computer scien~e of this classical problem irom 

operations research. 

Chapter 3 presents the results concerning the iirst class of 

problems. The three problems appear tOlether with their algorithmic solu­

tions. 

Chapter Ij defines the specific two processor sequencing problem 

of the second class of problems. Each subproblem appears individually .-it 11 

the discussion of its solution. 

Chapter extends the work of Szwarc, and Arthanari and Mukhopadhvav 

reviewed in Chapter 2. These results correspond to the third class of 

problems discussed above. 

The last chapter contains a discussion of the significance of the 

work and the possible extensions in future research. 

- ..... -



Chapter 2 

Historical Perspecttve 

2.1. General Discussion 

Scheduling and sequencinc res.arch 1s a general n.-e applied to 

nUMerous prQblems. Day and Hottenstein [1970] defined a schema for classi­

fying sequencing problems. Using the Day-Hottenstein scheaa, we answer 

several questions. 

What is the nalure of job arrivals? In all ca.es we treat a 

batch with a fixed size. We do not treat the problem in which jobs contin­

uously arrive satisfying s~e probability denSity function. OUr problem 

restriction is reasonable for some computer systems. In such systems tasks 

may be accumulated with accurate time estlmates. Then the assumption of a 

fixed, known-in-advance, batch size is correct. vne example is a set of 

programs in a student environment to be scheduled for compilation, execution, 

and printer output. These tasks may be set aslde and run as a large ba~ch 

to laprove the system performance by reducing overhead costs. 

How many machines are involved? Each case concerns a multl­

machine situation. In Chapters 3 and 4 the number of processors i~ limited 

to two (m = 2). In Chapter 5 four machines (m = 4) are discussed. However, 

we lre pr1marl1y interested ln the two processor problem. The results of 

Hu [1961J and Coffman and Graham [1972] indicate that two processor problems 

are perhaps the most amenable to efficient solution. 

What is the nature of the job route? Here we treat two distinct 

situations. In Olapter 3 the tasks may be asslgned to elther processor. 

The order of the tasks ls the only constraint. In Chapter 4 the order of 

the jobs ls .. aln constrained, and, in addition, each ta.k must be a •• igned 

- 6 -



to a specific processor. 

Again several examples in computer science exhibit theae restric­

tions. A complete job may consist of .. ny taaks, one or several of which 

are to be completed before another may atart. Tasks .. y be executed on any 

processor, but the order of execution is important. A second example involves 

processors dedicated to specific tasks. Thia case extsts in a previous 

example when one processor compile! a program, a second executes the prograa, 

and a third prints the output. Alternatively, the input-output channel 

processor may perform the input, t.ne central processor lIIay perforoil the 

executlon of the program, and the input-output channel processor, again, 

may then do the output. 

The wealth of papers dealine with m X n sequencine 1s impressive. 

The scarcity of efficient algorithmic solutions is likewise remarkable. 

These facts attest to the relevance of the problem and to its difficulty. 

The reader may find several l:iurveys of this subject in the literature 

[Bellman 19~b, Conway, et. al. 1~67, Day and Hottenstein )970]. Here we 

use combinatorial approaches ratht:l' than solution methods using ma'hematical 

programming or heuristic programmine. 

Combinato!'ial solutions are those solutions 'Nhich are based on 

fin~ing the optimal permutation by changing from one task ordering to 

another. The objective is to find the opti •• l permut. tion but (0 avoid 

complete enumeration over the e.'tire solution space. The families of papers 

discussed below have lrfluenced research in this area considerably. 

2.2. Johnso. 's Results 

The first major results in the problem are by Johnson [1~54J. 

Johnson considered the production schedule of n tasks with two operations 

each. The first operation is performed on the first mach1ne, and the 

- 7 -



second operation is perforwed on the second ..chin.. There are only two 

aachlnes. The second operation may not belln before the first operation 

is coapleted. TWo of Johnson's re.ults arfl Theore. 2.1 and Theor. 2.2, 

below. These theorems are the b •• ts for the flrst efflclent alcOrlt~ 

for the general seqlJenclD1' problem. 

Theorem 2.1. The order of the production sequence on two aachlnes .. y be 

made the laae without loss of time. [John.on 1954J 

Theorem 2.2. Johnson's Rule 

Let tasks 1, i = 1, 2, .•• , n, con.tst of the pair of operattons a
1

, b
i

, 

where a 1, i = 1, 2, •.• , n, are the lencths of the operation. to be 

processed on the first machine and b
i

, 1 = 1, 2, ••• , n, are the lencths 

of the succeeding operations to be processed on the second .. chine. 

An opti~al ordering la given by the rule: 

Item j precedes item j+l if 

min (a j , b
j

+l ) < min (aj + l , b
j

) 

Th1s or~er1ng 1s unique except for ties. [Johnson 1954] 

Johnson generalized Theorem ~.l for n ta.k., each with. operation. 

to be performed on m machines, m ~ 2. Theorem 2.j .tates the result whlch 

we use later. 

Theore. 2.3. The order of the prot.u~tton .equence may b8 .ade the .... on 

processor 1 and processor 2 and may be .ade the .... on proce.sor m-l 

and processor m without lo.s of ti.e. [Johnson 1954J 

An additional Johnson result concerns n task. wtth three opera-

tions each. The operattons are ••• ifrned, respectively, to three proce •• o·.·. 

(m = 3). 

- 8 -



Theora. 2.4. Let ta.ka 1, 1 _ 1, 2, ••• , n, con.t.t of the trlplet of 

lencth. of the operatlona to be proc •••• d on .. chlne. 1, 2, and 3, 

l·e.pecthely. Aa .... th.t all f1r.t operation. are DOt Ie •• than any 

aln JIaX .econd OpeJ,tlon., 1 a i ~ j bj • Ta.k 1 preced •• ta.k j If 

aln (ai+Di , Cj+bj ) < aln (aj~LJ' Ci+bi ) 

The only cOlllplete aolutiOl1 (Ja\..k.on 1956] for tbe pneral a X n 

sequAncinc problem for wblch the colIPutatiD&1I!\ cllll)'llexlty i. alcebralc 

rather than exponential ln n 1. for two proce •• or. (II = 2). Jack.on 

produces Theore. 2.,. Later.e use concept. f~ thl. re.ult ln our .ork. 

Theorem ~. Let 

{A} be the set of job. wlth only on~ operatlon to be perforaed 

on .. chine one, 

(B) be the set of job.: with only one operation to be perfonaed 

on uchine two, 

[AB) be the set of jobs whlch have two operatlons, the flr.t 1.0 

be perfv~ed on uchine one and the .econd 00 .. chine two, 

and (RA} be the set of jobs which have two operations, the first to 

be performed on .. chine two and the .econd on .. chine one. 

Then detenaine the .equance of task. in {AB} and {HA} by Johnson'. 

rule, and, \o:;inc these orderlncs, a •• lin the tasks to uchlne one and 

machine two a. follows: 

Machlne One: taake ln (AB), followed by tat,;ka In {A}, followed 

by ta.k. in (SA) 

Machine TWo: ta.ks in {BA}, followed by tasks in {B}, followed 

by ta.ks in (AB} 
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where the order ot tasks in {A} and (a} does not .. tter. [Jackson 

19)G] 

Bauer and Stone [1970] used at.Uar results for a sa.ewi,at 

different pro~lem. Results of that research are in Chapter 4. 

2.3. Identical Order on m Processors 

A second family ot results concerns the. X n s.quenclnc problea 

with an identical processin& order reqUired on each machine. In ,eneral, 

the solution of this probJem does not necessarily lead to the solution of 

the problem in which the processing order of tasks is not required to be 

identical. Filure 2.1 shows all ex .. ple in which the 0pUllal solution to 

the leneral • X n sequencing problem differs from th~ solution to the prob­

lem WiUI ~dentical task ordering. However, because ot the COIIp1extty 01 

improving the solution for the ,eneral case, the problem with identical 

ta.k ordering is often deemed practical. 

The principle results for the problem with identical task order­

ing are those of Dudek and Teuton [1~64], Karu.h [1965], Saith and Dudek 

[1966, 1969], Szwarc [1968], and Arthanari and Mukhopadhyay (1971). All 

the results have the characteristic of providinc a decision rule for the 

orderinc of tasks. The complexity of theye rules is evidenc.~ by halt of 

the references listed being corrections of the other half. 

Arthanarl and Mukhopadhyay [1971J extended Szwarc's results [l968J 

to reduce the 3 X n problem to repeated applications of Johnson's result, 

Theorem 2.2. The Arthanari and Mukhopadhyay problell is stated in Problp.1I 

2.1. No efficient algorithm is known for th~ 3 X n sequencinc prablem 

without restrictions upon the size of the ta.ks. Thi ... thod of prabl .. 

reduction is the basis of work described in Chapter 5. 
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Problem 2.1. 

Find the optimal achedule for the 3 X n aequenclae probl .. ln 

which each of the n tasks conslsts of three operations ai' b
t

, and 

1, 2, .•• , n. Theae operat.ions are to be execut"d on proces-

sors 1, 2, and 3, respectively. Assu.. for .1) task. that either 

max .in 
1 ~ k $ n ck ~ 1 $ k ~ n bk 

or max .1n 
1 ~ k $ n ak ~ 1 $ k ~ n bk 

max min 
In the situation in whtch k a

k 
S k bk , they found that the 

schedule on machlne two and machtne three ~as most crttical. Let so .. 

task i be th~ first task asalgn~d, and let all other ta.ks on .. chlne two 

and .aehine three be scheduled using Johnaon'a .. thod fro. Theore. 2.2. 

Then call the tdle time on the third processor It for the partial schedule 

obtained by Johnson's method for processors two and three. When all three 

proces.ors are considered, the total idle time, D
t

, on aachlne three 1. 

Di = a1 + bi - c
t 

+ max (ci ' Ii) 

where task I is the first ta.k executed. The solution then 1s st.ply to find 

the minimum value of Di for all 1, i = 1, 2, ••• , n. The n applicattons of 

Johnson's algorithm wtll locate the opttmal sequence. The situatlon for 

max min k c
k 

S k b
k 

ha •• similar solution. Figure 2.2 depicts the v.rious 

quantities discussed abo\'e. 

Extensions to these results appear tn Chapter 4. 

2,4. "CUtting the Loneest queue" Alsorithu 

A third family of sequencing problema concerns the II X n sequencing 

problem in which the processing order of the tasks 1s restricted. We ~c.ll 

several definitions from graph theory and then define the sequeneine 

probl .. p 1n these terms. 

- 12 -



P, 
&, &2 &J I • 2 2 2 

P2 ~ I 
b] bi b

J , 
2 3 3 ' 2 

, 0 - O2 c3 
1'3 I " 2 ., I 

5 1 2 

, -I 

I, 

11 = 3 units 

D1 • 2 + 3 - 1 + max (1, 3) = 7 units 

Figure 2.2. Arthanari and Mukhopadhyay notation 
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Definition 2.1. Given two tasks x and y, ~ (read, x precedes y) 1f x 

must be processed before y may be,in to be processed. Si.ilarly, 

~ (read, ~ succeeds y) 1f Y must be processed before x beClnR to 

be processed. III particular, x « y (read, x directly precedes y) 

[or x » y (read, x directly succeeds y)] it x < y [x > y] and there 

exists no operation z such that x < z < y [x > z > y]. 

Definition 2.2. The partial oraerin, between tasks ,iven by the binary 

relationship < is called precedence. 

Definition 2.3. Given two tas~s x and y, x - y if x and y may be executed 

independently. That is, x ~ y, x ~ y, and x ~ y. 

Definition 2.4. (Tree Precedence) The prer.edence of all tasks is called 

a tree if 

1. There exists one and or.ly one task x such that for all tasks 

y, x f. y, y < x. The tasle x is called the ~ task (x is 

the last task). 

and 2. For each task y where y is not the root task, there exists 

one and only one task z such that y «z. (Each task except 

the last task has one and only one successor.) 

Hu [1961, ct. Hsu 1966J developed the solution to a special m X n 

sequencinc subproblem. For ten years, his alcorithm remained the only 

major contribution to this area. The Hu problem is described in Problem 2.2. 

Fi,ure 2.3 shows an example of the tasks. Al,orithm 2.1 states Huts 

cut tin, the longest queue" procedure for two processors em = 2). 

Problem 2.2. Hu's Problem 

Find the optimal schedule for the m X n sequencinc problem in 

which all tasks have l-u~\t length and tree precedence. 
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18 1-unit tasks with tree precedence 

t17 t t t t t d 
P2 ~ I 15 1 141 9 I 1 I 4 I " 

I 
t18 t 13 t8 t 10 t5 

P3 I -I I , I • 
P'igure 2.3. Hu • s "cutt ing the longest queue" algori thlll 
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Algorithm~. Hu's solution to Problem 2.2 for m = 2 

1. FOr each task in the tree precedence, calculate its distance fro. 

the root task. 

2. At each instant that a new task is soUCht by a processor, asslgn 

the task farthest from the root task with all precedlng tasks 

completed. Tles are broken at random. [HU 1961] 

Figure 2.4 sh~,,~ that Hu's algQrithm is not extendable to tasks 

of arbitrary length with tree precedence. 

BefOre continuing the discus~ion of related results, a definition 

of a more complex kind of precedence 1s needed. 

Definition~. The precedence of all tasks is called acyclic if for all 

tasks, possibly with a partial ordering <, there is no task x such 

that x < x. 

Chandy, Dickson, and Ramamoorthy [1972a, 1972bJ observed that at 

least one of the many solutions which HU's al~orithm yields by breaking ties 

in different ways is indeed an optimal solution when all tasks are of l-unit 

length with acyclic precedence and there are two p"'cessors (m = 2). They 

call the algorithm the Highest Level First (HLF) algorithm. Its significance, 

however, is diminished by a lack of a decision rule for detnrmlning efficiently 

the optimal solution from this still large set of possible solutions. Also 

we find Chandy's result to be a corollary of the concurrent work by Coffman 

and Graham (1972) which is described below. 

C.5. One Unit Tasks with Acyclic Precedence 

An algorithm by Coffman and Graham is most relevant to the work 

presented here. Their result is an algorithm which 1s at once effective 

and efficient. They have limited their scope to Problem 2.3. 
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6 1-UDi t mel 2-uni t tasks with tree precedence 

Solution Qy Hu's algoritha 
t5 t2 t4 t1 

P1 I,' 2 I 2 I 1 I 

t I 6 I 
1 2 3 

2 1 

Figure 2.4. Hu I B algori thll for uneQ.ual task lengths 
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Problem ~. 

Find the opti.al schedule for the 2 X n sequenciac probl .. in which 

all tasks have I-unit length and acyclic precedence. 

Fi,ure 2.~ shows an example of the tasks in Proble. 2.3 aDd a 

schedule froa the Coffman-Graham alcoritha. The strate,y of the alaorithm 

is straightforward. Initially, a task with no .ucce •• ors i. a.silned the 

label 1. Then after k-l tasks are assianed labels 1, 2, ••• ,k-l, a task i. 

labelled k if 

1. all its successors have received labels, and 

2. the set of decreasing integer labels of the i.-ediate .ucce •• or. 

of x is less than or equ&l to the set of decreasing inteler labels 

of the immediate successors of all other task.. (Ties are broken 

arbitrarily.) 

The schedule is formed by selectine at each instant the task with the laraest 

label with all predecessors completed. 

If we denote the list produced by the Coffman-Grab .. al,orithm by 

L* and the length of time to complete the schedule lenerated with list L by 

~L), Theorem 2.6 from Coffm~n and Graham holds. 

Theorem 2.6. For a set of one unit tasks with acyclic precedence, ~(L*) ~ m(L) 

for all lists L. [Coffman and Graham 1972J 

2.6. Two Observations 

The ideas reviewed in the previous section are the initial results 

needed to solve efficiently the general m X n sequencing proble .. with 

an arbitrary nu.t~r of processors and an arbitrary nuaber of tasks. The 

.ethads of solution are varied. Yet the re.ultin, al,ortt~s are efftcient. 

Efficient extensions to these ideas will be another step in the direction 

of a coaplete solution to the m X n seqUencing probl ... 
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19 1-unit tasks with acyclic precedence 

t19t17t1~t14t12t10 t9 t 7 t5 t2 
P, I I • of • I • I • • 

, t1e t 6 t 15 t 13 t 11t4 te *.t3 .t,. 
P2 1 I I I • I I - - -

Figure 2.5. Coffman and Grahaa algorithm example [1972] 
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In addition, research~rs are attempting to show that some sub­

problems of the m X n sequencing problem have only solutions which lrow 

exponentially with the size of the problea. There are no published results 

fro. this research. But such work in the inherent cOlIIPlex::~ ty of a problea 

may prove useful in bounding the allorithmic complexity limits which the 

sequence problem researcher may expect. 
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Chapter 3 

3.1. The Pro~lem Statement 

The work of Hu Ll96l] and Coft..u. and Grah_ [1972] provide 

solutions to problems composed entirely of I-unit ta.ks. In our work .e 

detine a problem composed instead of I-unit tasks and 2-unit tasks. Our 

proble., like Coffman and Graham's, involves only two processors (m = 2). 

Problem 3.1 and Problem 3.2 define the proble.s solved here. Fieure 3.1 

and Filure 3.2 show examples of these problems. 

Problem l:..!. Tree Precedence Problem 

Find an optimal schedule on two processors (m = 2) for a set G of n 

tasks with I-unit and 2-unit length. and tree precedence. 

Before stating Problem 3.2 we define several concepts concerning 

the precedence of the tasks. These ideas are demonstrated in Fieure 3.2. 

Definition~. A task x ~n a set of tasks G is called an initial task if 

there exists no task y such that y ~ x. 

Definition~. A task x in a set of tasks G is called a terainal task if 

there exists no task y such that x < y. 

Definition~. A set or sets of tasks with tree precedence, A, is .axl .. 1Iy 

connected t.o another set or sets of tasks with tree precedence, B, if 

each terminal task of A is a predecessor of each initial task of B. 

Definition~. A set of tasks G with acyclic precedence ha. f !!!!-re.tri~­

~ acyclic precedence if G consists of p set. of ta.k. with tree 

precedence, All A2, ••• , ApI such that Ai _l i. maximally connected to 
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Figure 3.1. Exeaple of .et G in Problea 3.1 
(tree precedence) 

maximally { connected 

max i.ma.ll:r 
connected 

Figure 3.2. 

{ 

Exeaple of set G in Problelll 3.2 
(3 tree-restricted acyclic precedence) 
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Ai' i = 2,3,· •• , p. 

Probl .. ~. The Trep.-restricted Acyclic Prece~Dce Probl .. 

Find an optimal two processor schedule for a set G of D tasks with 

I-unit and 2-unit lengths and p tree-restricted acrcl1c precedence. 

The algorithm to solve the tree precedence proble. is developed 

in two steps. We do this both for siaplification and for clarification of 

the algorithmic strategy. The algorithm for the solution of the tree­

restricted acyclic precedence proble. is closely related tu that for the 

tree precedence problem. Before introducing the interaediate probl .. in 

Problem 3.3 we require two definitions about precedence. 

Definitio~~. A chain is a set of tasks t
l

, t 2 , ... , tr such that 

tl « t2 « ..• « t r • 

Def1n~ l.:.§. The tasks of G arO! said to have ~ precedence if ·.ach 

task in G is a member of one and only one chain (not necessarily the 

same chain). 

Problem hl. The Chain Precedence Problem 

Find an optimal two processor schedule for a set G of n I-unit and 

2-unit tasks with chain precedence. 

Figure 3.3 shows an example of the chain ~recedencp proble •• 

We solve the tree precedence problem and the tree-restricted 

acyclic precedence problem. Algorithm 3.1 is a task labelinc procedure 

which is used by the succeeding aIt -.rHhlls. AlgorHha 3.2, Algoritha 

3.3 and Algorithm 3.4 treat the chain precedence probl .. , the inter­

mediate proble.. First, Algorithm 3.2 is a procedure for achedullng 

the tasks with the s.-e label. Algoritha 3.3 then coabinea the scbedule 

rroduced by Algorithm 3.2. However, the sol~tion is not necessarily 
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Pigure 3.3. Example of Bet G in the ohain preceder.ce problem 
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opti .. l. The cases that lead to nonopt~l .olutiona are treated by Alcoritba 

3.4. Al~orit~ 3.3 and Alcoritha 3.4 then co.bine with Alcorlt~ 3.5 to 

Bolve the tree precedence probl~. Finally, Alcoritha 3.6 .ol~e. the tree­

restr1cted acyclic precedence proble •• 

J.2. Development of the Solution to the Chain Precedence Proble. 

The situation posed in the chain precedence probl •• CODcerna only 

chains of tasks and is a subprobl82 of the tree precedence proble.. Fieure 

3.4 Is an example of how a set of chaln. may be aodlfied to become. tree 

of tasks with one root task. A nonexi.tent root task i. added which haa •• 

its predecessor all terminal tasks of the chain •• 

The development of the algorithm f~r the chain precedence probl .. 

is a series of three basic algorithms w~1ch lead to a poaaibly nonopti .. l 

solution. A fourth algorithm modifies the nonopt1aal solution to an opt1 .. l 

solution. Since the cha1n precedence p.oblem is a subproblem of thp. ~lee 

precedence problem, the proof of lhe so'ution to the chain precedence prob­

lem is omitted. Only the proof of the solution to the tree preeedence prob­

lem is stated. 

3.2.1. Algorithm 3.l--Labelling 

Algorithm 3.1 1 •• procedure for accomplishing the labelling of the 

tasks. This algorit~ is appli~ahle to tasks with tree preeedence as well 

~s chain precedence alld Is similar to Hu's a~orithm. The allOrit~ baCin. 

by labelling each initial task with the label 1. All other task. receive 

an integer label one greater than the largest label of its pred.cessor8. 

Algorithm~. Labelling 

1. Label each initial task with level number 1. 

2. For each task for which each of its l ... diate predecessors ba. 
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Figure 3.4. Chains and tree. 

- 26 -

I 
I 

I 

1 

2 

3 

4 



been assigned level numbers, label the t .. k with the maxi.um level 

number of its predecessors plus one. 

3. Repeat Step 2 until each ta~k has been assigned a level number. 

Figure 3.5 shows an example ot the labels produced by Al,orlthm 

3.1. Throughout this chapter the largest level number a.signed by the label11ng 

procedure is called M. 

In an analysis of Algorithm 3.1 each task must be visited once for 

labelling. However, when labelling a specific task x all 1mmediate prede­

cessors of x must be examined. Since each task in a tree is an immediate 

predecessor of at most one task, each task except the terminal tasks must 

be visited only twice. Therefore, for n tasks approximately 2n operations 

a.l.·e required. The computation for Algorithm 3.1 is, therefore, of order n, 

O(n) . 

Hllvlng fC'.Jl'rt level num lers for each task by Algorithm 3.1 we then 

may refer to the number of tasks at a given level or merely to the level 

number itself. The following definitions are helpful. 

Definition ~.7. For each task x in G, L(x) is the level number or label 

of tas1\. x. 

Definition~. For level k in G, ~ is the number of tasks at level k 

remaining to be scheduled. 

Using Figure 3.6, the concepts of Definition 3.7 and 3.8 are clear. 

For example, L(t
5

) = 2 and N(3) = 2. 

Corollary 3.1 is immediately apparent from the labelling algorithm 

and Definition 3.7. The corollary states that the predecessors of a task 

have smaller level numbers. 
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Fi~re 3.5. Example of the labell ing algorithm 

level 1 

level 2 

level 3 

Figure 3.6. Level notation 
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corollary~. For tasks x, y in G and x < y, L(x) < L(Y). 

The value of N(k) for each level k in G chances as a scheduliac 

algorithm progresses. For example, if level j has six tasks initially and 

one task is assigned before the remainlD! five tasks, N(j) = 5 after the 

single task 1s assigned. 

3.2.2. Algorithm 3.2--Individual Level Scheduling 

The second algorithm, Algorithm 3.2, schedules tasks with the 

same level number without consideration of the tasks from other levels. We 

then characterize the indiVidual schedules to observe their form before 

incorporating them into a complete schedule in Algorlthm 3.3. 

In Algorithm 3.2 all 2-unit tasks are aSSigned before I-unit 

tasks. A task is aSSigned when a processor calls for a new task. Figure 

3.7 shows an exsmple of the use of the algorithm. 

Algorithm 3.2. Individual Level Scheduling 

Let the two processors be PI and P
2

• For a given level, 

1. Order the tasks into a list L so that 2-unit tasks precede 

l-unit tasks. 

2. When a processor needs a task, assign the next unassigned task 

in list L. If both processors need a task simultaneously, 

assign the next unaSSigned task in list L toP and the 
I 

second unaSSigned task in list L to P
2

• 

Algorithm 3.2 schedules the H(X) tasks of each level k. The order-

ing of Step 1 is a simple procedure; all 2-unit tasks must precede l-unit 

tasks. The ordering is accomplished by creating a double-ended queue, or 

deque, in which one end is for 2-unit tasks and one end 1s for l-unit tasks. 
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2 

Fl.g'.J.re 3.1. Use of !lgori tha 3.2 in exaaple of ligure 3.4 
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Each task is visited once during Step 1 for M(I) operations. In Step 2 each 

task is again visited to create the level's scbedule; again there are N(I) 

operations. The total number of operations for a given level k is 2M(I) 

Algorithm 3.2 is then also of order n, o(n). 

Algorithm 3.2 treats only I-unit and 2-uni. tasks on two proces-

sors. The algorithm is applicable to two processors which be,in siaul-

taneously as well as to processors which do not. W:I. th the condition that 

execution on processors PI and P2 begins simultaneously several observa-

t10ns about the individual level schedules become apparent. 

Corollary 3.2. If processors P and P2 begin execution simultaneously, I _ 

Algorithm 3.2 produces a schedule in which proces.or P2 completes all 

tasks either 0, 1, or ;;- units before processor Pl' 

Corollary~. If processors PI and P
2 

begin execution simultaneously, 

Algorithm 3.2 produces a scheduh, 1n which at most one task is e:'<ecuted 

on processor PI when P 2 be come ,_ idle. 

With the condition that processor P2 begins execution before proces­

sor PI we make two additional observations. In particular, we are concerned 

with the cases where processor P2 begins Execution one unit cr two units before 

processor Pl' 

Corollary 3.4. If proces~or P begins execution I or 2 units before proces-
2 

sor Pl' Algorithm 3.2 produces a schedule in which one processor coapletes 

all tasks 0, 1, or ~ units before the other processor. 

Corollary~. If processor P
2 

begins execution two units before processor 

PI' Algorithm 3.2 produces a schedule in which at most two tasks ~egin 

execution on processor P
2 

before processor PI begins execution. 
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3.2.3 Solution to the Chain Precedence Probl .. 

U.inc the labelinc procedure of Algorit~ 3.1 aad tbe .cbedules 

of the individual levels produced by AllOrit~ 3.2, AllOrltba 3.3 produce. 

a schedule for the tasks In tbe chain precedence prabl... However, AllOrit~ 

3.3 does not always produce an opti .. l schedule. Tbe di.cu.slon tollowtnc 

the algorithm points out the tailures. Algoritba 3.4 then su.aarlzes the 

aodifications required in Allorttha 3.3. But in order to .. ke Algoritba 

3.4 applicable to the tree precedence problea also, new definitions are 

aeeded. Algorithm 3.3 and Algoritba 3.4 toaether produce an opti .. l solu­

tion to the chain precedence probl ... 

Algorithm 3.3 ha. three distinct sections. steps 1, 2, and 3 u.e 

Algorithm 3.1 and Algorithm 3.2 to provide the initial labelling of the tasks 

and the schedules of individual levels. Sch~duling ~elins with the ter.l­

nal tasks and progress back to the initial tasks. Step 4 is used when the 

level to be scheduled and all the levels of predecessors have at least 

three tasks. The construction of the ca.plete schedule frca partial 

schedules of Algoritha 3.2 is suaaarized by Table 3.1 follow inc Algorithm 3.3. 

Steps 5, 6, 7, and 3 treat the case when the level to be scheduled 

has less then 3 tasks. Then no level scheduled earlier bas had 3 or aore 

tasks. Step 5 schedules all remaining tasks when only a single chain of 

tasks remains to be a •• igned. Step 6 schedules tasks when the level to be 

scheduled has less than three tasks. The proce.sors are dedicated to the 

longest and second longest chains, respectively. These chains, exclusively, 

are a.signed to the.e proce •• or. unless other Chain. equal' tbe .horter 

chain in nuaber of levels and the length of the queue on the processor is 

two or aore units Ie •• than the other queue. Then a chain other than th8 

dedicated chain aay be scheduled. Essentially, the queues are aaintained 

nearly equal in length until the level to be scheduled has aure than two 
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taak. or all ta.ks are scheduled. Steps 1 and 8 detect the te~1nat1Oft 

conditions and provide the iterative structure of the algoritha. 

Algoritba~. Basic Scheduling Algorithm for Prabl .. 3.3 

1. Usinl Algoritha 3.1 assign a level nuaber to each task. 

2. Schp.dule level M ~sing Algoritha 3.2 with both processors beCin-

ning simultaneously. 

3. Set the current level to level M-l. 

4. If N(!!!!!) ~ 3, 

4A. For ~ =!!!!!, ~ - 1, ••• , 1: 

4A.I. Note the number of units U 3 processor is idle in the 

current schedule while the other processor executes 

some tasks. 

4A.2. Schedule the current!!!!! using Algorithm 3.2 with 

processor P2 beginning execution U units before 

processor Pl' 

4A.3. Rearrange the tasks in the schedule of the current 

level so that no task performed on processor P2 in 

the first U units is a successor of the last task(s) 

performed in the current schedule. 

4A.4. Combine the current schedule and the schedule of the 

current level • ............. 
4a. The schedule is complete. Stop. 

5. If H(k) 1 for k =!!!!!, !!!!!-l, ••• , 1, assign all tasks in 

order. Schedule is complete. Stop. 

6. If H(!!!!!) < 3, 

6A. Assign a queue to the longest chain and th~ second queue to 

the next longest ~hain. Call these dedicated queues. Break 
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ties arbitrarily. 

68. Assien current ~ tasks to the prea •• ilfted queues. 

6C. Define ~1' the deficiency of queue i, as tbe nuaber of units 

queue i la~s tbe other queue. 

6D. If DQi < 3 and N(!!!!!-l) ~ 3, ,0 to Step 8. 

61. If DQi = 0, ~o to Step 8. 

6F. Let ~ ~ be greatest level nuaber of the taaks available 

to be assirned but not dedicated to the longer queue. 

6F.l. If a task in next level is fro. the chain dedicated to 

queue i, 

6F.IA. If the tas~'s length is less than or equal to DQi' 

asalgn the task to queue i and repeat Step 6F. 

6F.18. Otherwise, go to Step 8. 

6F.2.· If a task in next level is not from the chain dedicated 

to queue i J 

6F.2A. If DQ
i 
~ 2, and if by aSSigning the task DQi re.ains 

DQ
1 

$ 1, then .ssign the task and repeat Step 6F. 

6F.28. Otherwise, go to Step 8. 

7. If N\!!!el-1} = 0 or N(k} = 1 for k = l!!!!-l, !!!!!-2, '" , 1, 

assign all tasks to the dedicated queue. Schedule is co~lete. Stop. 

8. Let!!!!! equal level - 1. If M(!!!!!) ~ 3, go to Step 4. Otherwise 

go to Step 68. 

In the schedules produced by Algorlthm 3.2 and 1n .0" of the 

achedule. produced by Algorit~ 3.3 no proce.sor is ldle while the other 

procea.or i. executiac except at the end of the aa.l~aaent. In ~hese 

co~acted .che~ule. we are interested in three posaible foras of the 

.. algnaent or partial assignment. Figure ~.8 ahows ex"ples of For. A, 

Fora I, and FaJ'lll C 'described in Detinl UQD 3.9. 
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Definition~. An asslgnaent or partial assica-ent in which both pro­

cessors ~gin simultaneously and in whlch one proceaeor coapl.tes 

execution two units, one unit, or zero unita before the second 

processor is said to be of ~!, ~!, or !2!:! £, respectively. 

The forms descrlbed 1n Definition 3.9 are convenient for 

Bu .. arizing the assignaents made in Step 4A of Al~oritha 3.3. Table 3.1 

provides this summary which is easl1y verified by ca •• analysis. Bere, 

X 15 the partial a~signment called current schedule. Y is the asslcaaent 

of the current iev~l as found in Algoritha 3.2 with both processors' 

beginning execut10n Simultaneously. Later we refer to the operation 

of Table 1.1 as the' operation. 

• FOnD A Form B Form C 

Form A C B A or Of 

Fo ... m B B C 8 Table 3.1. 

Form C A B C ... i •• ent of Pons 

f (Form A).(Form C) Form A if Form C contains 

no I-unit tasks or only contains three tasks with 

the 2-unit task a predecessor of the last task in 

Form A. In all other cases (Form A)'(Fol'll C) = 

Form C. 

One observation is immediately apparent about a complete 

assignment of I-unit ~nd 2-unlt tasks which has no idle tia. on either 

processor except possibly at the end of the assi~ent. 

Corollary 3.6. A complete assignment of i-unit And 2-unit tasks which 

1s of Form B or Form C 18 optimal. 
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'ora A: 

P 1 I--'------I------jl~ 
L, vi 

p - 2 

P2 ~I----------~-----

Porm B: 

I I 

P2' ~------------+-------

Pr.na C: 

figure 3.8. Porm At Porm B. and Porm C 
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A coaplete ~ .. ai~.nt which 1. of rON A .. , or •• , aot be 

• 
optS.al. Corollary 3.7 de.crlbe. a ca .. that 1. cl.arly optl .. 1 aioc. 

only c-unlt t •• k. are Involved. The diacu •• loQ followln. the corollary 

outline. the abortcoalDCs of Alsorltb. 3.3 and the ••• n. for their 

el1alnation. 

Corollary~. A coaplete .. sl&ft11ent of 2-unl t tasks wblch is of FON 

A or Fora C i. optimal. 

In the analysis of Algorltha 3.3, we first focua on Step 4. 

Indeed, it M{k) ~ 3, no succeeding .tepa of the allOrltba are u.ed. For 

convenience in understanding the .ffect of Step 4, we refer to Table 3.1 

throucbout the discusa1on. Using the terainoloc of thl. table we !lOte 

that It 1. pos.lble for an assignaent to e~d in For. A and not be optl.al. 

Fllura 3.9 shows four situations in which a noftQPtlm.l Fora A a.aiaaaent 

occur.. Later we show that only the.e four kind. of aituations occur if 

a level k with M(k) ~ 3 cont.in. l-unlt ta.ks. The abortcoaiOCs of 

Al,oritba 3.3 follow: 

1. The first situation, depicted In Fieure 3.9(A), is such 

that tbe last level ass~gned with l-unlt taaks (level 2) i. of rON B by 

Al.orltb. 3.2. The partial assignaent after level 3 1. a •• ilfted also Is 

of FYN I. Inste.d of the Form C obtained by the • operation after the 

.ssllQaeat of level 2 we desire to obtaia Fora A. To acca.pllsh this 

result In ,eneral where level 1 has the last l-unit task, the last l-unit 

task In level 1 should be ~ved to the other processor. If a conflict 

with level 1+1 occurs, it must be resolved by rearran, ... nt of ta.ks. 

Alao altbough one processor executes for two unit. while tbe other Is 

idle, no conflict occurs at level i-l. Sinee M(i-l) ~ 3 and level i-l 

has all 2-unlt tasks, at least one task of level 1-1 .ay be found to 
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ell:ecute dUriDi tbe two \lIli t. evea if the two uo1 t. Nlp,...eat two tuk •• 

II. The .ecoad .ituatioo, d.picted in fi~ure 3.9(8), 1 •• ucb 

th_t the la.t lev.l w1tb l-un1t taak. 1D level 1 (1 • 2 1n botb c •••• of 

!'1~. 3.9(8») h of !'Ora C. Then either N(1) > 3 and the partial a .. i~D­

•• at tb~~~b 1 ••• 1 i+1 i. of lOra A or lOra C, or N(i) • 3 and tbe partial 

... ila.8nt throucb level i+1 1. of !'Ora C. In both cu •• , the r ... dy 1. 

the .... a. that de.cribed 1n I abo ••• 

III. In the third .ituatlon, ~hown in Plgure 3.9(C), level 1 ls 

of Fora C and N(l) = 3 aad the partlal ••• ilftaent throQih level 2 is of 

Fora A. Levell i. the l •• t 1.ve1 with 1-unit ta.k.. In leneral the 

l •• t level with l-unit tasks is o~ Fora C with N(i) = 3 and the partial 

a •• icnaent throulh l .. vel i+l is of Fora A. We then want to back up and 

find. level j, j ~ i, -of Fora C and N(j) = 3. In the f1gure, j :: 2. 

If K(j+l) ~ 3, one of the three ta.k. in level j+l doea ~ot conflict with 

the 2-unit ta.k of level j. This nonconrl1~tlng ta.k should be a •• 'gned 

l •• t in l.vel j. Level j throqh level 1 are a.s1~r.ed by the u.ua' • 

operation. In r1cure 3.9(C), then, level 3 1. re.rra~ed .0 th.t 

ta.k t6 1. ".ieaed l.st. Lev.b 2 and 1 are a.signed ill the u.ual 

way. 
IV. In BOae c .... no level j .ay be found auch that N(j+1) ~ 3 

and N(j) = 3. Thi. situation occur. in the exaaple shown in F1cure 3.9(D). 

In the figure level 2 i. of Fora C, K(2) = 3, N{l) = 4 and the p.rtial 

.s.ignment through level 2 1. of Fora A. In lenera1, so .. level i i. of 

Fora C, IfCi) = 3, N{i-1) ~ 3, and the partial a •• icn-ent through level i 

i. of Fora A. One of the l-unit t •• k. of level i is pl.ced before the 2-

unit t •• k of level i. One of the 2-unit tasks of level i-l doe. not con-

fUct. ancS .ay be a •• i,ned following tt.e -.cond l-uni t task of level i 

fol!owed it.elf by tbe predec •• 80r of the first l-unit ta.k of level i. 

Th. re .. i~~er ot the assignment. of level 1 proceeds a. in Algorit.hm 3.2 



If no I-unit tasks exist in a level k such that ~(k) ~ 3, 1t is 

possible that I-unit tasks exist in some other level j where N(j) < 3. 

Again we may transform the schedule. One queue will be longer than the 

other. We use here and prove later in relation to Algorithm 3.5 that all 

tasks in the longer queue are related (Lemma ~.l). Figure 3.10 shows two 

typical cases which need transfo~.tion. 

V. In Figure 3.10 a I-unit t •• k occurs in the longer queue 

(PI) or in the shoy'ter queue (P2)' Find the l.st I-unit task assigned 

and call it task D. When task D was assigned, a task F either started 

execution on the other processor or was midway through executien. Either 

D or F was on the shorter queue, and a task E was available for ass1guman'; 

In Its place. If tasks D and F begin execution slmultaneously, pl~ce D 

in the other queue before F. Otherwise, place D on the other queue a!ter 

F. Replace D with task E. 

E may have been assigned before level k where N(k) >. 3 and 

assigned to the shorter queue. In this case replace it with E', which 1s 

either a task from level k or a predecessor of T. Repeat this process 

until level k is assigned. Assign level k so that no conflict occurs. 

In the case when E is from level j, j = k, k-l, '" , 1, 

replace E with a task from level k. Assign level k so that no conflict 

occurs. 

As is shown in Theorem 3.1, level k may be assigned since 

N(k) ? 3. The structure of the partial assignment is changed either from 

Form A to Form C or from Form C to Form A. 

These correctiol;s at, oerformed by Algorithm 3.4. Algorithm 

3.3 and Algorithm 3.4 produce the solution to the chain precedence pro­

blem. This fact is stAted without proof since this problem is a special 

case of the tree precedence problem. 
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Figure 3.'0. '-unit tasks in Algorithm 3.3 
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Before stating Algorithm 3.4 for chain precedence, we extend 

the modifications slightly for tree precedence. This extension avoids 

the repetition of the algorithm later. To accoapliah this we present 

three definitions. Figure 3.11 shows examples of the situations of 

Definitions 3.11, 3.12, and 3.13. 

Definition 3.10. The longer queue is the queue dedicated to t~,e subtree 

with the highest level number or simply the queue with mor~ ti.e 

units assigned. 

Definition 3.11. An assignment break occurs at time T if 

1. the longer queue completes execution of a task x 

at time t, 

and 2. insufficient tasks y, y - x, remain to be assigned to 

the second queue to extend beyond time T. 

Definition 3.12. An assignment stop occurs at time T if 

1. the longer queue complete3 execution of a task x 

~t time T, 

and 2. x is in level k such that N(k) = 1, 

and 3. N(k-l) = 2 such that both tasks are predecessors 

of x. 

Definition 3.13. An assignment !ork occurs at time T if 

1. the longer queue completes execution of a task x 

at time T, 

and 2. x is in level k such that N(k) ~ 2, 

and 3. insufficient tasks y, y - x, remain to be assigned 

to a second processor to extend beyond time T+l, 

and ~. an assignment break did not occur at time T or T+l. 
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Algorithm 3.4 corrects the failures of A110ritlUl 3.3 but UlleS 

the terminology of tasks with tree precedence above. The algorltha Is 

applicable to both the cha1n precedence probl .. and tbe tree precedence 

problem. The strategy of Algorithm ).4 parallel. the five points .. de in 

the d1scuss1on of Algorith2 3.3's shortcomings. 

Algorithm 3.4. 

1. If the schedule is not of Form A, or if the .chedule does not 

contain I-unit task., or if the schedule is equal in length to 

the longest chain, or if no I-unit tasks appear after the last 

assignment fork or ass1gnment break, Algorithm 3.4 does not 

apply. The current schedule is optimal. 

2. Find the largest numbered level k such th.t N(k) ? 3 when 

assigned 1n the current achedule. 

3. If at least one I-unit task occurs in level. k-l, k-2, •.. , or 

1, find the smallest value 1 such that level 1 co"tains a I-unit 

task. 

3A. If level 1 is of Form B by Algorithm 3.2, th~n by Table 3.1 

the partial as.1gnment k, k-l, .•• , i+l i. of Form B. Take 

the last l--unit task assigned 1n level i, and assign it to 

the other processor. 

3D. If level 1 1S of Form C by Algorithm 3.2 and if N(1) > 3, 

or if level i is of Form C by Algorithm 3.2 and if N(l) = 3 

and if the partial assignment of level. k, k-l, , i+l 

is of Form C, take the last I-unit ta.k a •• igned In level 

i and assign 1 t to the other processor. 

3C. If level j is of Form C by Algorithm 3.2 and if N(i) = 3 
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aad if the partial a •• imaeat of level. k, k-l, ••• , i+l 

i. of POl'll A, f1Dd the larse.t auaber j IUch that level j 

i. of POl'll C by Alccritba 3.2, N(J) m 3 aDd k > j ~ 1. If 

auch a j eXl.t., .. leet oae talk f~ the l •• t three ta.k. 

a •• iened in level j+l which doe. not conflict with the 

2-unit ta.k of level j. A •• len the noaconfllctiac talk 

froa level j+l la.t. A •• l1n level. j, j-l, ••• , 1 by the 

• operation. 

3D. If level i 1. of Fora C by Alcoritba 3.2, and if N(l) = 3, 

and If N(l-l) ~ 3, and lf the partl.1 a •• i~ent of level. 

k, k-l •.• , i i. of Form A, place the I-unit ta.k of level 

1 before the 2-unit ta.k of level 1 on the longer queue. 

Place ooe of the oonconflicting ta.k. from level 1-1 00 the 

second queue followed by a ~ •• k which doe. not conflict 

wlth the 2-unit ta.k of level 1. 

In .11 c .... ca.plete the a •• ignment by a •• igning level. 1-1, 

i-2, ••• , 1 by the' operation. 

4. If no l-uni t ta.k. occur in le\'el. k, k-l, ..• , or I and a 

I-unit ta.k occurs in levels M, .-1, . .. , or k+l after the last 

a •• ignaent fork or •• signaent b~dak, 

4A. Find the la.t I-unit task .ssigned and call it t.sk D. 

When t •• k 0 w ••••• igned, a ta.k F wa. either .tartins 

execution on the other proce.sor or wa. aidw.y throup 

execution. Place D on the other queue to start before F 

if they bad begun execution .i.ult.neou.ly or, otbek~i.e, 

1...c1i.tely after ta.k F. Either ta.k D or ta.k F wa. not 

on the longer queue .nd another ta.k E could have been 

••• iened In It. place. Replace ta.k 0 with ta.k E. If E 
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had already been assigned to the shorter queue, replace E 

with its predecessor. Continue this replac .. ent until 

either no more predecessors of E have been assigned to the 

shorter queue before level i or a predece • .or of E .ay be 

replaced by a task from level 1. 

A proof of the correctness of Algorltha. 3.3 and 3.4 is 

required here. However, the solution of the chain precedence probl .. i. 

merely a subcase of the solution to the tree precedence probl .. which 

follows. Therefore, we defer a proof of the algorit~ until Algoritha 3.5 

is stated. 

3.3. Solution to the Tree Precedence Problem 

In this section we extend the solution of the chain precedence 

problem to the tree precedence problem. Instead of considering only tasks 

with chain precedence, we permit tasks to be related with tree precedence. 

The resulting algorithms for the solution to the new problem is Algorith. 

3. 4 and Algorithm 3.). Its form is very similar to that of Algorithm 3.3. 

However, the situations which involve assignment stops and assignment 

forks complicate the algorithm. 

Steps I and 2 of Algorithm 3.5 use Algorithm 3.1 to label the 

tasks. Step 3, which corresponds to Step 4 of Algorithm 3.3, treats a 

level and all later levels having three or more tasks. All other steps 

treat the situations where a level with 3 or more tasks has not yet been 

located. Step 4 detects the case where only one subtree reaains from 

the original tree. In this case the partial solution .ay be set aSide, 

and the set of tasks in the subtree may be considered to be a new problem. 

Steps 5 through 13 isolate and treat the special cases w~ere the 

number of tasks in the level to be scheduled is less than three. We call 
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a .ubtre. of una •• ign.d ta.k. with the larg •• t level nuaber the lona •• t 

.ubtr... Si.ilarly, we call a .ubtre. of una •• igned ta.k. with the 

..cond lar, •• t lev.l nuaber the .econd long •• t .ubtr... Step 5 then 

a •• ien. the two proc •• sor. to the lonaest .nd .econd longe.t .ubtr •••• 

Steps 6, 7, 8, .nd 9 then a •• ign ta.ks from th •• e two dedicat.d subtreea 

so that the processor qu.ue. r ••• in within two units of each other. If 

oth.r .ubtr ••• have the .... l.n,th as the shorter d.dicat.d subtre., 

Step 9 selects ta.k. fro. these .ubtrees. Step 7 detects the tiae when 

the number of tasks to be ach.duled in the next l.!vel is thr.e or grester. 

Then the queues ar. r.ady for the use of St.p 3. Steps 10 and 11 detect 

the teraination conditions for the algorithm or the existence of only one 

subtree. Step 12 detects an assignement stop within the schedule. The 

elimination of time gaps within the qu.ue schedule is handled in Step 7A 

and 98.1. Steps l2C and 13 provide the iteration m.chanism until Step 3 

is appl:lcable. 

Algori thm 3.5. 

1. Using Algorithm 3.1 assign a level number to each task. 

2. Let the ~urrent level be equal to M, the largest level number. 

3. If HeM) ~ 3, 

3A. Schedule level M by Algorithm 3.2. 

3B. Set level = level - 1. 

3C. For level = level, level-l, , 1, 

3C.l. Note the number of units, U, a processor is idle in 

the current schedule while the second processor 

executes some tasks. 

3C.2. Schedule the current!!!!! using Algorithm 3.2 with 

processor P2 beginning execution U units before 
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processor Pl' 

3C.3. Rearrange tasks of the current lev.l in the schedule 

of Step 3C.2 so that no task perforaed on processor 

P
2 

in the first U units is a successor of the last 

tasks performed in the current schedule. 

3C.~. Combine the current schedule and the schedule of the 

C'urrent level. 

3D. Go to Algorithm 3.4. 

4. If only one subtree eXists, schedule a slngle task on longer 

'­" . 

queue. Set aslde the partial solution and d~lete the assigned 

task from the tree. Begin Algorithm 3.5 at Step 2 with the 

revised set of tasks. 

If N(M) < 3, ass1gn a queue to the subtree with the 13rgest 

level number and the second queue to the subtree with the next 

largest le{el number. Break ties arbitrarily. Call these queues 

dedicated queues. 

G. If N(level) < 3. assign the current level tasks to the dedicated 

queues. 

(. If ~ ~ 2 and N(~-l) ~ 3, 

"(A. If a previous stop gap remains unfilled (see Step 12B), 

match the longer queues together and fill the gap. If 

N(level-l) < 3, go to Step 8. 

7B. Assign tasks to the deficient queue so that DQ
i 

= O. If 

this is impossible, assign tasks 80 that DQ
i 

= 1. If 

neither is pOSSible, an asslgnment break exlsts. 

re. If N(~-l), 3, set level equal to level-l and go to 

Step 3B. 
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7D. If N(~-l) < 3, ••• ten !!!!!-l to the dedicated queue •• 

Set ~ equal to level-I. 

71. If N(!!!!!-l) < 3, ••• ien ~-l to tbe dedicated queUl. 

and aet .!!!!! equal to !!!!!-l. 

17. If no suutree ~ain., tbe •• siKGaent i. coaplete. Otber-

wl.e, .et !!!!! equal to level-l and go to Step 38. 

8. If ~ 8 0, go to Step 12. 

9. Let tbe ~ !!!!! be tbe gre.teat level nuaber of tbe taska 

available to be aaaiened but not dedlcated to the longer queue. 

9A. If a task In the next level is frOD the subtree dedicated 

to queue i, 

9A.l. If Its length la less than or equ.1 to DQi' a •• ign 

It to queue i. Repeat Step 9. 

9A.2. Otherwise, go to Step 12. 

98. If the task In the next level is not from the tasks dedi-

cated to queue i and if DQ
i 
~ 2 and if assiinini the task 

level leaves DQ
i 

~ I, 

98.1. If a previous unfilled stop gap exists (see Step 128), 

match the longer queues together and ftll the gap. 

Rej)eat Step 9. 

98.2. Otherwise, aaslgn the task to the second processor. 

Repeat Step 9. 

10. If no subtree reaains, the assignaent is complete. Stop. 

11. If one subtree remains to be aSSigned, we have an assignment 

break. Set aside the schedule and begin Algoritha 3.5 at Step 2 

with the subtree. 

12. If an assignment stop haa occurred, 

12 A. If an assi~ent g.p r ... ins unfilled, .. tch the longer 
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queues together and fill the lap. 

12B. Assign taaks to the second queue not to exceed the 

length of the longer q~eue. Thia creates a posaible 

assignment stop gap. 

l2C. Set ~ equal to !!!!!:-l. Go to Step 5. 

13. Set!!!!! equal to !!!!!-l. Go to Step 6. 

The complete schedule consists of the Bucce.sive partial 

schedules derived in Algorithm 3.). 

Now we mUst verify that Algorithms 3.4 and 3.5 do indeed pro­

duce an optimal schedule for Problem 3.1. 

Theorem 3.1. Algorithm 3.~ and 3. 4 find an optimal schedule for 

Problem 3.1. 

Proof. 

The strategy of the proof is to divide the schedule into 

segments each of which is independent of earlier segaents and later 

segments. In this way no task from one segaent !lay be assigned in 

an earlier segment. 

Algorithm 3.5 concludes portions of the schedule in 

several places. These are Step 4, Step 7F, Step 10, and Step 11. 

Step 3D calls upon Algorithm 3.4 to correct the schedule if possible. 

We show that schedules achieved at each termination are opti •• 1. 

Step 4 1s executed only when the current level is level M. 

In this step a single subtree exists in which there is only one task, 

t, such that for all tasks x E G, x :i t, x -< t. Since task t is 

indivjsib1e, only one processor may execute t while the second pro­

cessor remains idle. We call the queue to which t is assigned the 

longer ~u~. The partial optimal sche~ule conaisting only of t is 
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reentered at Step 2 to flnd the .chedule of the reaalnlna taak •• 

Step 7F, Step 10, and Step 11 are .1~1.r. In all the .. Step. 

an a •• lgnaent break occur. before a current level 1. eacountered 

which ha. three or .ore ta.k.. In Step 10 tbe a.slcnaent 1. c~­

plete; ln Step 11 all. reaalnlng ta.k. fona a .1ngle .ubtree con-

sisting of • task t and ta.k. x, x < t. 

~ 3.1. At tlme T, tl i. executed on processor I, t2 is executed on 

processor 2, and L(t l ) < L(t2). At time T', T' > T, ti ls executed 

on proce.sor 1, t2 i. executed on processor 2, and L(ti) > L(t2). 
Then at some time T", T ~ T" ~ T', t~ is executed on processor I, 

t2 is executed on processor 2, L(t1) = L(t2). 
Proof. 

Assu.. that the 1 .... is not true. Then at some time 

T, Letl) < L(t 2) and at time T+l, L(ti) > L(t2). 
Algorithm 3.5 require. that L(ti) ~ L(t2). 
A. As.uau that L(t2) = L(t 2). 

From the a.su.ptions, L(ti) - 1 ~ L(t2) and L(t1) + 1 ~ L(t2). 

Then L(t l ) + 1 ~ L(t2) = L(t2) ~ L(ti) - 1. 

Thi. l.plie. L(tl ) + 2 ~ L(t1). 

B. Assuae that L(t2) = L(t2) + 1. 

From the a •• umption., L(ti) ~ L(t2) + 1 and L(t l ) + 1 ~ L(t2). 

Then L(t l ) + 1 ~ L(t2) = L(t2) + 1 ~ L(ti)' 

This implies Let1) < L(ti) which contradicts the fact that 

L(ti) ~ L(t l )· 
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L~.a~. If an assim-ent break or an assi~nt stop occur. at t1 .. 

T, each t~sk in the lon~er queue ls either a predece.~r or a 

successor of each other task. 

Proof. 

Let t l , t 2 , ... , tr be the task. a •• lened to the loncer queue. 

~t ti, t 2, .,. 1 t~ be the ta.k. assllned to the second queue. 

Suppose at some fir~t timP. T', t i _1 - ti' t1 ~ t 2 > -,. ~ t i _1 > tt' 

t1 .ust have been asslgned durinl Step 9 of AllOritha 3.5 and 

L(tt) = L(t i _l ). If tj 1. 

at tt.e T', L(t i ) < L{tj)' 

L(tt) = L{tj} would require 

the task a •• igned to the .econd proce.sor 

Slnce L(t
i

) = L{t
i

_
l
), the condition 

that L(tt) = L(tt_l) • L(tj). This s1tu-

ation would have been d~teeted a. N(L(tj) = 3 In Step 7 of Allorltha 

3·5. 

Since an assignment break occurs at tl.e T, at least one ta.k 

remains to be assigned. L(t ) > 1 and L(t') = 1. Therefore, r s 

J,~t ) > L{t'), 
r s 

By Le_a 3.1, at some T", T' < T" < T, L(t) = L(tt). 

A. If tl ~ t, then .ince ln Step 9 task. from the dedicateo chain 

are .ssigned first, there exists a task t*, t* < t1 for which 

L(t*) = L{t) = L(t'). Hence we again have M(L(t» 2 3 which 

Step 7 of Algorithm 3.5 would have detected. 

8. If tl - t, then t 1s the last task at L(t}. If there were ~re, 

we agaln would have "(L(t» ~ 3. Row .any tasks are in level 

L(t) - 1? There are at least a predecessor of tl' a predecessor 

of t, and a predecessor of t'. Also there .ay be no tasks at 

level L(t) - 1. Since there is an a.81gn.ent break occurring 

later, both situation. lead to a contradiction. 
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~~. If an ass1cnaent break occurs 1n a partial assilnaent which 

contalns a.silo.ent .top., each ta.k in tbe longer queue i. either 

• predecesaor or a .ucce~sor of each other t •• k. 

Proof. 

In Step 12 of Algorith. 3.5 the a.silnaent stop i. detected. 

All tasks in the longer queue are related by L .... 3.2. Step 78, 

Step qB.l, and Step 12A unite subsequent portions of the schedule at 

the assignment stop by .atching longer queu.s. Since the first task 

of each queu~ 1n the subsequent portion i. related to the task. 1n 

the longer queue at the as.iKQaent stop, the taaks in the loftger 

queue of the united portion. are related. • 
The set of t.sks up to the assignment ~re.k begins on both pro­

cessors si.ul t.neously. No idle ti.1'; OCCUl'S on one processor while 

the second i. executing sOlie tasks f!xcept at the '~nd. Since all 

tasks in the longer queue are related, no shorter time for completion 

of this set of tasks is possible. Since all succeeding tasks, if 

any, are predecessors of the last task assigned to the longer queue, 

no t.sks left unassigned m.y be included in this portion of the 

schedul~. 

Step 3D calls upon Algorith~ 3.4 to complete each schedUle 1n 

whlch some curr('nt level haa three or more tasks. B1 Le_a 3.1 a 

schedule 1n which no current l~vel has three or Dore tasks is such 

that each task 1n the longer rut:ue is a predece~sor or successor of 

each other task. Therefore, no shorter schedule is possible. 

Unless HeM) ~ 3, Step 7 detects that a level with three or more 

tasks is next to be scheduled and the longer queue is processlng tasks 
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while the other processor is idle for no mure than tyO units. First, 

a stop gap may remai n unfi lled. Since;: .,;top had occllrred and not 

an assignment bre~k, the situation is th~ •• me as in Leaaa 3.1. If 

N(level-l) < 3 after the stop Kap is f.llea, th- al~orith. continues 

as if N(level-l) had never be"n greate,' Ulan or equal to 3. 

If no stop gap remaified or if N(level-l) ~ 3 after the stop gap 

was fIlled, Steps 7B throu~h 7F are used. Since an .sslgnment break 

does not exI~t, sufficlen~ tasks exist to satisfy Step 78. If levels 

(level-I) or (~-2) have less than 3 tasks after Step 7B, or both, 

one queue may receive one set and the ~cond qlleue the other. At 

most two units of deficiency exist. Then execution goes to Step 3B. 

Step 3 is entered in two ways. If N(M) ~ 3, Step 3 is entered 

directly from Step 2. Steps 4 through 13 are never executed. Other­

Wise, Step 38 follows Step "(. In either case Step 38 is entered in 

the following ~ituation. 

a. Form A: Either level M ~a~ of Form A or Step 7E left 

F'orm A. In both cases, the la9t task assigned to both 

queues is from the previous level. The current level has 

three or more tasks. 

b. Form 8: Form 8 may be the form of level M or Form 8 may 

be leh by Steps 78, 7D, or 7E. In all cases, the current 

level has thret! or ;)lore tasks. 

c. Form C: Form C ma) be the form of l~vel M or Form C may 

be Idt by Steps 7B, 'lD, or 7E. In all cases the current 

level has three or more tasks. 

For this discussion if N(M) ~ 3, level k 1s level M. Otherwise, 

level k refers to the Cllrrent level in e. J b, and c, above, which i. 
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the first level with three or more tasks. Given the partial assign­

ment through level k, each additional level is added using Algorithm 

3.2 by Steps 3C.2 through 3C.4. The results of these assignments 

are summarized in Table 3.1 which is easily verified by case 

analysis. Consequently the resulting schedule at Step 3D may be of 

Form A, Form B, or Form C. 

~ 3. 4 • No idle time occurs in a partial schedule by Algorithm 3.'; 

except possibly on one processor at the end of the ~chedule. 

Proof. 

Tasks 1n Algorithm 3.2 and in Algorithm 3.5 at Steps ~, 4, '1, 

and q are scheduled without delay between tasks. In Step 12 of 

Algorithm 3.: a stop gap is allowed to exist. However, by definition 

sufficient tasks are available to f111 the gap. The tasks are 

assigned when the longer queues are matched in Step '(A, '1B.1, and 

12A. 

Since no idle time occurs 1n the partial assignment by Lemma 

3.4, schedules of Form B and Form C are optimal by Corollary ~,,~), 

Therefore, only assignments of Form A must be shown to be optimal or 

transformed to Form C by Algor1 tbm 3.~,. 

a. If the length of the longest queue is equal to the length 

of the longest path in the subtree, the Form A is optimal. 

b. If the assignment conta1ns no I-unit tasks, there are an 

odd number of 2-un1t tasks. No better schedule may be 

obtained. 

The I-unit tasks occur either in levels M, M-I, ... , k+l or 

in levels k, k-l, •.• , 1 where k is the largest numbered level such 

that N(k) ~ 3 found in Step 2. 
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c. If. I-unit t •• k occura 1n lev.l. k, k-l, .•• , 1, 

Step 3 finds th.· ... ll •• t v.lu. i .uch that lev.l i con­

taina a I-unit ta.k. 

1. k ~ i, the p.rti.l ••• isn-.nt up to l.vel i+l i. of 

Fora B .nd level i i. of Fo~ B by Alcoritba 3.2: By 

T.ble 3.1, (Form B).(Fora B) give. ro~ c. By .oving 

one I-unit t.sk from one proce.sor to the next in 

Step 3A, the form becoaea Fo~ A. By T.ble 3.1 the 

.asigna.nt of level. of Form C and Form A which before 

created Form A now creates Form C. Since all re .. ining 

levels have only 2-unit t •• ks, • coaplete assignaent 

which before was Form A now becomes Fo~ C by T.ble 3.1. 

2. k ~ i, the partial assignaent up to level i+l i. of 

Form C and level i i. of Form C by Algorithm 3.2: Ag.in 

one of the I-unit tasks can be moved from one processor 

to the second or do~e in Step 3B. The form which was 

(Form C).(Form C) = Form C now becomes Form A. By 

Table 3.1 and the fact th.t no I-unit task. occur later, 

the assignment 1s co~leted as Fora C. 

3. k > i, the parti.l .ssignment up to level i+l is of 

Form A, and level i is of Form C by Algorithm 3.2 with 

N(i) > 3. Since Nei) > 3, there are more than one task 

other than the two I-unit task5. At least one of these 

t.sks may be aSSigned daring the partial assignment 

deficit. This leaves at le.st one I-unit task which 

aay be moved to the other processor to create Form A 

instead of Form C as 1n Step 3B. 
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4. k > i, level i is of Fora C by Algorithm 3.2 with 

N(i) = 3 and the partial assignaent up to level 1+1 is 

of Fora A. Step lC finds the largest number j such that 

k > j, M(j) = 3, and level j is of Form C by Algorithm 

3.2. If j does not exlst, the assignment length equals 

the length of the longest path In the tree. The last 

ta.k. ...igDed 1n level j+l are unrelated, and two do 

not conflict with the 2-~nit task of level j. By 

assigning one of these two tasks last in level j+l, as 

In Step 3C, the partial assignment up to level j 

becomes Form C instead of Form A. 

5. k ~ 1, level i is of Form C by Algorithm 3.2, 

N(i) = 3, N(i-l) ~ 3, and the partial assignment up to 

level i is of Form A. Level i-I contalns only 2-unit 

tasks. Two of which, respectively, are predecessors 

of the I-unit tasks of level i. As in Step 3D, by 

placing a l-unlt ta3k t of level i before the 2-unit 

t3sk of levell, the predecessors of the other I-unit 

task t' of level i may be assigned In place of t. Then 

the predecessor of t 1s assigned after that. All other 

tasks of level i-I are assigned as usual. If the 

original form of the partial assignment was Form A, or 

Form C, it now becomes Form C or Form A, respectively. 

By Table 3.1, the complete assignment becomes Form C. 

6. No I-unit tasks exist in levels k, k-l, ••• , 1. We 

desire to change the Form A or Form C of the partial 

assignment of levels M, M-l, •.• , k to Form C or Form A, 
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re8pectively. This operation is acca.pliahed by .oving 

a I-unit task fr~ one queue to the other. 

6A. In Step 4A, a last as.i~ed I-unit task 0 exists 

which i. not in tbe lonler queue. At the ... e 

ti .. a ta.k r i. executing on the longer queue. 

Also .ince N(k) ~ 3, there exist. a ta.k I, 

E - D, E - F. I i. a 2-unit task. D is replaced 

by I, and D i. placed before F if F begin. execu­

tion at the .... tiae •• D. Otherwise, D i. 

placed i.-edl.tely after F. Since 0, in its new 

place, doe. not begin execution earlier than 

before, it ha. no conflict with earlier tasks. 

Since no ta.k related to 0 is executed while D is 

executed, no conflict exists there. If I had 

already been assigned to the second queue, all 

tasks assigned before jt begin no earlier than 

they had before. ThIs creates no problems since 

no assignment fork occurred. Scheduling the task. 

of level i creates a different form than before. 

68. In Step 48, one extra unit is again assigned to 

the longer queue with the saae results as in 

Step 6A. 

d. N~w it must be shown that all possible occurrences of non­

opti •• l schedules have been corrected. 

1. A schedule which end. in Form A and whose last level i 

with I-unit tasks is of Form B, ha. a partial schedule 

through level i+l of Fora B. Otherwise,. Form 8 would 
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re.ult after a.aignaent of ievel i which could not be 

changed to Fora A by the ta.k. in .ucceeding levels of 

Fora A and Fora C. Thi. ca.e i. taken care of in para­

,raph 1 of e above. 

2. A schedule which ends in Fora A and whoae last level i 

with I-unit task. i8 of Form C may have a partial 

schedule through levol i+l of Form A or Fora C. Form B 

may not exist if the whole scheaule ends 1n Form A. 

These cases are found in 2, 3, 4 and ~ of c above. 

3. The last level with I-unit tasks may not be of Form A 

by deti nl tion. 

4. The proced~re of paragraph 6 in c above succeeds only if no 

assignment fork occurred after the I-unit ta.k. Suppose a 

change may be made before the a •• ignment fork at time F. The~ 

we must increase the longer queue by one unit ana decrease the 

shorter queue IJy one unit. It is impossible to decreasp. 

the longer queue since all its tasks are rel~ted. 

Originally, the last task t in the longer queue termin­

ated at time T, and no ta.k. were aSSignable to the 

shorter queue after time T+l. Hence, a predecessor t' 

of t had to be assigned at time T or TTl on the shorter 

queue if it were available. By increasing the longer 

queue by I-unit the last task s, s f t, in general, ends 

at time T+l on the longer queue. t' then must be 

assigned at time T-l if ~ I t or at time T if s t. In 

both cases t, the successor of t', has not been com­

pleted, and the aSliitlUllent ·is nt"t possible. 

- 60 -



3.3.1. Analysis of Algorith.s 3. 4 and 3.5 

The analysis of Algorithas 3.4 and 3.5 is .are involved than 

for Algorithm 3.1 and 3.2. But the description below shows that the 

solution to the tree precedence proble. requires o(n) operations. We 

begin with Algorithm 3.5. 

In Step 1 the use ~f Algorithm 3.1 one ti.e requires O(n) 

operations. Its use is never repeated throughout the algorithm. St~ 2 

reqUires at most one operation per level to keep track of the current 

level number. In general, much less than n operations is required. 

Step 3 is a complicated step which in some cases may perform 

the whole sequencing operation. As shown earlier the use of Algorithm 

3.2 in Step 3A and Step 3C.2 1s an operation which requires on the order 

of the number of tasks in th~ level for completion. The repeated use 

through each level would give 0(0) operations. Steps 38 and 3C combine, 

again, to require OeM) operations (M « n, in general). The inspection 

of the current schedule needed in Step 3C.l at each level also means OeM) 

operations. Step 3C.3 means that each task in a level may have to be 

scanned to rearrange the current level schedule. In general, not all 

tasks must be visited here. Yet the step when repeated for each level 

gives o(n) operations. The total number of operations in all for Step 3 

is of o(n). 

The examination of Step 4 is a process which may require 

looking at two terminal tasks in the yet unscheduled tree. However, in 

practice the number of tasks remaining at given levels is a value the 

implementer would probably maintain in a separate table. In either case 

the number of operations for inspection 18 o(n) through the whole 

procedure. If the assignment is performed by Step 4 it is of the 
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simplest nature and requires one operation for .ach use. 

Step 5 is si.ilar to Step 4 in that at aost two tasks must be 

scanned each ti.e th. step is encountered whicb .ay be M ti.... But 

again this requiros o(n) operations. In Step 6 we have the .... analy.is. 

Step 7 has .any option.. In Step 7A .aae aechani .. i8 req~ired 

to retain the tact that a stop gap i. unfilled. Several, perhaps all, 

currently a.signable ta.k •• ay be vi.ited. In the worst case this may be 

nearly all n task.. However, Step 7 .. y be used only once during an 

assignment. A practical iaplementation on the other hand may apply Step 

I of Algorithm 3.2 to an levels before going beyond Step 3 to facilitate 

these searches. Step 78 is similar to Step 7A and may use information 

obtained by its search so as not to repeat unsuccessful attempts. Step 7C 

is a test and level count update if used. Step 7D, 7E, and 7F perform 

simple two task assignments. Then either the assignment is complete or 

Step 3 1s entered. For Step 7 the number of operations is of O(n) for 

its single use. 

Steps 8 through 13 are lengthy to describe but computationally 

simple. Step 8 requires a simple test of a variable constantly updated. 

Step q may be repeated several times at each use. However, the value of 

next level would be constantly maintained in an implementation to facili-

t3te its u-e. Although the step .ay be repeated more than once, it is 

not repeated more than the number of levels. Usually the number is much 

IE!ss than M. The searches in both 9A and <)8 may require looklng at 

nearly all tasks. From the complete algorithm the number of operations 

1s about Mn. 

Step 10 and Step 11 inapect the remain1ng subtree and require 

knowing the nuaber of tasks awaiting assignment in the next highest level. 

- 62 -



Step 12A is .nalyzed in the ... e •• nner •• 7A. Step 12A and 128 •• Y 

requir~ looking at the ... 11 nuaber of ta.ks awaiting ezecut10n. Steps 

12C and 13 require .erely bookkeepina for the level count. The nuaber of 

operations i. much le8. than n. 

Algorithm 3.4 i. applied in certain ca.es to the resulting 

schedule after Step 3 of Algorithm 3.5 ia used. Step 2 requires locating 

a speCial level which is easily maintained in an implementation of 

AlgorHhm 3.). 

In Sten 3 the scan of the levels cannot require looking at more 

than each ta.k once. However, again an implementation may .implify this 

process by some bookk~eping. Steps 3A, 3B, 3C, and 3D are local fixups 

and reqUire looking at a few tasks in at most two levels or finding 

another specific level. Again no task must be looked at more than once. 

To coc,plete the optimal schedule Step 3 of Algorithm 3.5 as embodied in 

Table 3.1 must be applied. In all the number of operations 1s O(n). 

The analysis of Step 4 is similar to that for Step 3. Again a 

search for specific tasks looks at each task at most once. The transfor­

mation is local although several tasks assigned later may be inspected. 

Again the optimal schedule is completed using Table 3.1. In all the 

number of operations is o(n). 

The practical use of the algorithm occurs when M «n. In 

these cases the number of operations when summed throughout the algorithm 

15 of :)(n). 

3.4. A Solution to the Tree-restricted Acyclic Precedence Problem 

A more difficult problem is an extension of the tree precedence 

probl~m to I-unit and 2-unit tasks with acyclic precedence. Its solution 

would be a major step forward in scheduling research. Unfortunately, we 
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have been unable to find an efficient solution. Inatead, the special 

case defined by Problem 3.2, the tree-restricted acyclic precedence 

probl.m, 1s c'onsidered here. First, we repeat the problem stateaent fro. 

Secti:)n 3.1. 

Problem 3.2. The Tree-restricted Acyclic Precedence ProbJ_ 

Find an optimal two-processor IChedule for a set G of n I-unit and 

2-unit tasks with p tree-restr1cted acyclic precedence. 

Algorithm 3.6 presents a procedure to solve the tree-~estrlcted 

acyclic precedence problea. The aethod 1s repeated applications of the 

solution to the tree precedence problell. This process is successful 

because each tree in a set G must be completed before any tasks in the 

successive tree may begin. 

Algorithm 3.0. 

1. Locate the p sets of tasks with tree-precedence, AI' A2 , ... , 
A , such that A

i
_

l 
is maximally connected to Ai' i '" 2 3, ... , p. p , 

Schedule each set of tasks with tree-precedence, AI' A2 , ... , A , 
P 

2. 

using Algor1thms 3. 4 and 3.). 

3. Execute the sets of tasks 1n order AI' A2 , .•. , Ap' 

Theorem~. Algor1tha 3.6 produces an optimal achedule for n l-un1t and 

2-unit tasks with p tree-restricted acyclic precedence on two 

processors (m = 2). 

Proof. 

By Theorem 3.1 each set of tasks, Ai' i = 1, 2, , P with 

tree precedence is scheduled optimally by Algorithms 3. 4 and 3.;. 

For all tasks x in A
i

_
l 

and all tasks y in Ai' x < y, for 

i 2, 3, ... , p, by Definitions 3.1 and 3.2. All tasks in A
i

_l 
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must be completed before any ta.k 1n Ai .ay begin execution. Since 

for all i, Ai is scheduled optimally, the whole schedule is optimal. 

3 . :) . A Look Ahead 

The central result presented in this chapter 18 an algorithm 

for the optimal schedul1ng on two processors of I-unit and 2-unit tasks 

wi th t j'ee precedence. Our work has not produced an extension of these 

resLilts to the problem for two processors and I-unit and 2-unit tasks 

with acyclic precedence. However, In the latter problem the technique of 

sutschedules may be applicable. Also the structuring of schedules so that 

aI' tasks lr one section must be completed before any other task begins 

har- been successful here and In the Coffman and Graham solution. This 

te'~hnlque may also faclli f.atE' the solution of the general problem. 

In addition to the problem suggested in the previous paragraph 

the problem of finding an optimal schedule on three or more processors 

for I-unit tasKs with acyclic precedence remains unsolved. We feel that 

both these prOblems should be studied at this time. This area suffered 

el~ven years without major results between Hu's solution and the Coffman 

ano Graham solution, The repetition of eleven years with no results, we 

feel, is unlikely. 
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Chapter 4 

Se~ented Proce.sor Schedulinc 

~.l. The Sepented Scheduling Problem 

Thi. chapter presents work conceroin, apecial e .... of the two 

m.chine (a = 2) probl~ with n taaka. The probl .. ia fo~ally pre.ented 

1n Problem 4.1. Ioform.lly, however, the re.sonableness of the restric­

tions are readily apparent. 

In ca.puter schedullng it ia aa.etiae adv.ntageous to queue a 

group of taak. (prograas) which use the same faellity (coapiler) which i~ 

serially reuseable (core reSident). In this case lntermixing a queue of 

dis.imilar ta.k. would cause set up delays of disproportionate length. 

Similarly, the processing (execution) of these task. on a .econd machine 

may also require special facllitie. (run time a~inistration) which are 

also serially reuseable. Finally, the completion of the task processing 

(output) may again be performed by the first processor with advantages of 

grouping. Proble~ 4.1 establi.hes these requirement., 

Problem 4.1. Segmented Scheduling Problem 

Find A schedule for n tasks composed of three operations. 7he 

first and third operations of each ta.k DlUSt be performed on Machi ne 

One and the second o~eration Dlust be performed on Machine Two (m ~ ~). 

Using JMckson's notation of Section 2.2, the tasks are divided into 

two set.: rASA} and (DAB). The form of the solution is 

restricted as described below to a schedule with no idle time. 

M.chi ne One: The in! ti.l operations of the set (ABA 1, followed h~' 

the second operations of the set {BAD1, and followed 

by t~e third operation. of the .et rABA1. 
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Machine Two: The initial operation. of tbe .. t (BAH), followed 

by the .econd operation. of the .. t {ABA}, and followed 

by the third operation. of the .. t (BAS). 

The .egaented acheduling probl .. restrict. the solution to one 

of the four forms illustrated in the Gantt charta [Clark 1947] of rieure 

4.1. In the .. charts the ti .. on each proce.sor 1. divided into ..... nt. 

and labelled with the .et ta.k. to be a •• 1Kned in that aer-ent. An under­

line within the bracket. indicateS the operation. for the set of ta.k., 

which is to be perfor.ed in the particul.r ..... nt. For ex .. ple, !AB~} 

i~dicates that the third operation. of the ta.ks in the set {ABA} are 

processed. 

By the symmetry of Machine One with respect to Machine Two, 

Gantt charts II and III are similar, and Gantt charts I and IV are simi­

lar. The discussion will be limited, therefore, to form. I and II. 

The following sections of th1s chapter conta1n results of 

several subproblems of the segmented scheduling problem. F1rst, 1n 

Section 4,2 we limit our consideration of the problem to those cases 

which have the !orm of Gantt chart II. We call this restricted problea 

the "special sepented proble .. ". Then by 11mi Ung the operation lengths 

of the tasks in this new problem we define and solve new ~ubproble.s. 

These proble .. s are: 

a. The special segmented problem with tasks having I-unit and 

2-unit operations. (Section 4.2.2) 

b. The specia~ segmented problem with tasks having succes.ive 

operations that d1ffer by one unit in len,th and that differ 

by k units i,1 length. (Section 4.2.3) 
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Figure 4.1. Jiorms of the Special Segmented Problem 
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c, The special segmented problem with tasks having first and third 

operationF of equal length, (Section 4.2.4) 

Finally, the special segaented problem is extended to four .... ent.. We 

then solve the new probl.elll when the tasks have first and la.t operations 

of equal length and have second and th1t"d operations of equal length. 

(Section 4.2.5) 

Before we proceed, however, it is worthwhile to consider the 

relationship of our problem to the general m X n sequencing problelll. As 

mentioned above, the segmented scheduling problem reflects certain 

constraints found in some computer scheduling problems. But the solution 

to the problem as restricted by these conditions is not necessarily an 

optimal solution for the general m X n sequencing problem. Figures 4.2 

and ~.3 show examples in which no solution satisfying the conditions of 

the segmented scheduling problem may be fauna. 

4.2. Segmented Scheduling Problem 

When we consider problems which have the form of Gantt chart 1, 

the problems have a ;ery simple solution. The reason for the ease of 

solution is that the operat1ons are decoupled. 

Definition 4.1. Two successive operations in a set of tasks in the 

segmented scheduling problem are decoupled if all of the first 

operations of all the tasks in the set can be completed before any 

of the succeSSOl' operations of any of the taaks in the set may be 

init'ated. 

In an assignment of the type of Gantt chart 1, two pairs of 

operations are decoupled: the first and second operations of the set 

~tlABJ and the seccnd and tnird operations 01 the set (ABA1. The order 

in which the :lr'si operations of the set (BAB) a"d performed, therefore, 
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Given the four tasks 

(ABA.l = {t 1 - (7 t 3 , 4), t 2 = (1,8 , 6 )} 

(BAS) • (t) • (4,2, 1 ), t 4 - (2, 3. 5 )} 

an 8snignment may be found which contains no idle time 

and is co~pleted in 23 time units. 

(2, t, t4 t2 t t1 
P1 I 3 I 

1 7 3 6 2 4 

I t4 t2 t, t) t4 t 
P2 I 3, 2 I 8 3 4 5 1 

The ordering requirement on each processor may not be 

maintained without adding idle time. The best solution 

that satisfies the ordering condition on both processors 

is an assignment of length 24. 

t t, t t4 ¢ t2 t1 
P, 1,2, • 3 I I I 

7 2 3 1 6 4 

t) t t2 t, t t4 
P2 I I 4 I , ). 

4 2 8 ) 1 5 

Figure 4.2. No solution to Problem 4.1 in Form II 
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Given the four taeke 

tlBAl • tt, • (2.3.6). t2 D (" .8.2}) 

(BAB) • {t 3 • (4 t 8.8 ) t t4 • (2.4,8}) 

we obtain the .intaal solution of le~h )). 

P, I t
" 

t4 t2 t} t, t 
I 2. 

2 4 l' 8 6 2 

CA) 

It~ t J t, t~ 
P2 

ti t} 
I 3 • 2 I 4 8 8 8 

The ordering require.ent on .ach processor may not be 

maintained wi tbout adding iclle time. The best solution 

that satisfies the ordering condition on both processors 

is an assignment of length 37. 

P, It1 t2 t4 t) t, t 
2 I 11 

I I 2, 
4 8 6 2 

(B) 

P2 It4 t J t, ~ t2 t, t3 
2 I I I I 

4 3 4 8 8 8 

Pigure 4.3. No eolution to Problem 4.1 in Form 1 
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i~ arbitrary, Likewise, the order in which the third operations of the 

set ~ABA~ are perfurmed is also arbitrary. The remaining operations 

may be assigned using Johnson's method if a feasible as.i~ent is at all 

possible with this form. 

The form of the problem cnaracterized by Gantt chart II poses 

a more challengjng probl .. , Clearly, the operations of {BAD} may be 

performed without any regard to their relative order since both pairs of 

successive operations are decoupled. We are then concerned only with the 

assignment order of the operations of tasks in set [ABA1. To facilitate 

later discussion we define this problem a. the Special Segaented Problem. 

Definition 4.2. The Special Segmented Problem i. that speCial case of 

Problem 4.1 which is characterized by Gantt chart II. 

~.2.1. A Foundation for New Results 

The results of Bauer and Stone [1970J show that several 

subproblems have efficient solutions. However, one co~e problem remains 

unsolved. In this section these solutions are given as background for 

new results. First a few basic definitions are required. 

Definition ~.3. A stage! of a given machine is a segaent of time in 

which the i-th operations, and only the i-th operations, of all 

taSKS are scheduled. 

Defin1tion 4.4. A delay, ~i' j' is the difference between the time a 

task's j-th operation is initiated and its i-th operation is 

initiated. 

Definition 4.~, The gap is the segment of time aft~r the first stage 

terminates and the third stage initiat~~. 

Each task, t
k

, k = 1, 2, ... , n, consists of three operations 

"k' bk , and c k to be scheduled in stages 1, 2, and 3, respectively. Then 
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we may define the contribution a ta.k .ak •• to the delay. 

Definition 4.6. Let xi' Y
i 

be a pair of .ucce •• ive operation. of a ta.k 

t i • Then the contrl~'~loft C(X
1

'Yl) of ta.k tl i. the difference 

Yi - xi' 

It i. important to know If a ta.k i. a •• ignable without causing 

delay. in the schedule during whic~ no operation .ay be executed. The 

following definition deterain •• the condition of assignability. 

Definition 4:" A task ti i. i .. cJiately assignable if 

ai ~ Al ,2 and bi S A2,3' 

If for each ta.k t k , k = 1, 2, .,. , n, ak S bk S ck ' then the 

contribution. C(ak,bk ) and C(lk'ck ) are nonnegative. As soon a. a task 

becomes immediately a.signable, it may be a •• igned, In no case may the 

task reduce the values of the delays, Al 2 and A2~' If a task or group 
, ,J 

of tasks never becomes immediately assignable, the problem has no solution. 

The second problem consists of tasks wk ' k = 1, 2, '" , n, 

where a
k 
~ bk ~ c k ' The problem 15 identical to that described in I when 

the following transfo~ation i. performed, 

Definition 4.8, The mirror image problem is the problem obtained by two 

transforaations of the original probl ... 

I, The precedence among the three operations is reversed, For 

example, with a
k 

< b
k 

< c
k 

In the original problem, 

c
k 

> b
k 

> a
k 

In the mirror Image problem. 

2. The initial delays Al 2 and A2 3 in the original problem , , 
become A

3
,2 and A2,l' respectively. 

The tbird problem ~onsists of tasks t
k

, k _ 1,2, ••• , n, 

such that a
k 
~ bk and c

k 
~ bk . This problem has the same characteristics 

as its ~irror i.age proble., In brief, Bauer and Stone give a ~olution 
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con.i.ting of a functional equation. Th • .alution dep.nd. upon the fact 

that the ta.k. may be divided into two group.. In each group on. opera­

tion of all the ta.k. are decoupled froa the other two operation.. Tbe 

tasks of each group of ta.ks are found in tbe order they muat be a •• i,"~d. 

They are •• lect.d from a li.t of task. arran .. d by the increa.ing siz. of 

the second ta.k. 

The problem con.isting ~~ ta.k. t k, k = 1, 2, ••• , n, .uch 

that a
k 
~ b

k 
and c

k 
~ b

k 
i. unsolved by an .ffici.nt solution. We call 

this the core proble.. In .ucceeding section. special c •••• of this 

problem are discuss.d. 

4.2.2. A Special segmented Problem 

Problem 4.2. 

Find a schedule for n task. composed of three operations. T~e 

first and third operations must be performed on Machine One, and 

the second operation mu.t be performed on Machine Two (m = 2). The 

length of each operation i. I-unit or 2-un1ts. The form of the 

schedule is restricted to the Special Segaented Problem with no idle 

time. 

The restriction ~pon the length of each operation in Problem 

,+.2 lpaves onl)' eight possible ta.k fora •• 

III 

211 

112 

212 

121 

221 

122 

222 

The contributions C(ak,b
k

) and C(bk,c k) may equal only -1, 0, or +1 for 

each task k, k = 1, 2, ••. , n. Algorithm 4.1 schedule. the tasks in an 

order which assures a correct aS8ignment 1f one ex1sts. If no opt1mal 

alsignment exists for Ploblem 4.2, the algorithm fails. 
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The aain .trateo of .ulOr1t~ 4.1 ...,elUl. gpoll the delay 

between .ucee •• lve operation.. One delay i. uaually too ... 11 to acc~-

date the ta.k wlth the ..xiau. ai •• operatioa corre.,oDd1ns to that delay. 

Hence, it i. desirable to build up the value of the delay to accoaaodate 

this maximua task by a •• ign1ns i ... dlat.ly a •• isnable ta.k. with the 

largest contributiona to offset tbe deficient delay. Th1a proce •• 1. 

repeated upon the delay that 1. def1c1ant unt1l all ta.k. are a •• 1sned, 

lf that is posaible. 

Algorithm 4.1. 

1. Divlde the ta.ka lnto four .eta 

Set I (taak. of fora. 111, 112, 122, 222) 

Set II (taaka of font 212) 

Set III ( taak. of font 121) 

Set IV = (taak. of fonaa 211, 221) 

2. Calculate inltlal value. of ~1 2' ~2 3' A3 2' and A2 l' 
I " I 

3. A •• ign all unaa.igned taaka frca Set I wh1ch are a •• 1gnable. 

Update value. of ~ and A If Set II = ¢ and Set III = ¢, 1,2 2,3' 

go to Step 12. 

4. If Al 2 > 2 and A2 3 ~ 1 and Set II ~ ¢, aaalgn ta.k from Set II. , , 

~. 

6. 

7. 

p 
c'. 

Update Al 2 and A2 3' Go to Step 3. , , 
If ~l 2 > 2 and A2 3 ~ 1 and Set 11 = ¢, aa.1gn taak frca Set 111. , , 
Update ~1,2 and ~2,3' Go to Step 11. 

If ~1 2 = 2 and ~2 3 = 1, .aa1gn ta.k froa Set II. Update , , 
Al 2 and A2 3' Go to Step 3. , , 
If Al 2 = 1 , and A2,3 > 2 and Set III F ~, a.algn ta.k from Set 

III. Update Al 2 and A2 3· , , Go to Step 3. 

If ~1,2 = 2 and A2,3 > 2 and Set 111 ~ ¢, a.a1gn ta.k. froa 
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Set III. Update ~l 2 and ~2 3' Go to Step 3. , , 
q. It ~l 2 = 2 and .'12 ,3 > 2 and Set III = ~, a •• ign ta.k frOll , 

Set II. Update ~l ~ 
,~ and t. 2,3' Go to Step 11. 

le. Assignment fails. 

11. If Set II .,. ¢ or Set III ~ ~, assignment fails. 

12. Assign all unassigned tasks frOll Set I which are assignable. 

Update values of lil ,2 and A2 ,3' If Set I .,. ifJ, usignllent fails. 

13, Reverse time, If Set IV = ~, .ssignaent is cOIIplete. 

14, Assign all unassigned tasks from Set IV which are assignable, 

Update t.3 2 and t.2 I' , , 
1), It Set IV .,. ifJ, assignment is complete. 

Ii: If tasks exiat which were asalgT.ed before, as.ign last task 

assigned, If not, assignment fails. 

1'(. Go to 14. 

The algorithm is quite straightforward. However, a proof that 

its output is indeed the optimal solution desired is required. Theore_ 

4.1 provides such a proof aa well as a discussion of the algorithm step 

by step. 

Theorem 4.1. AlgorithJII 4.1 provides an optimal solutioll to Problem 4.2, 

if one exists. 

Proof. 

Assume that a feasible asslgnaent is possible but that 

Algorithm 4.1 fails. Failure may only occur at Steps 10, 11, 12, 

or 16. 

A. Failure occurs at Step 10 or Step 11. Assume that Set IV !fJ 

since Set IV .,. ¢ can only make the situation wors~. 
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A.I. Suppo .. Set II F ~ .nd Set III F ~ and Set III #~. If 

~1,2 > 0 and ~2,3 > 0 initi.lly, Step. 4 throulh 9 do not 

allow ~1,2 or 62,3 to beeoa. 0 while Set IIi • ..,ty (Step 5). 

If either Al 2 ~ 0 or ~2 3 = 0 initially, no ••• icn-ent w •• 
I J 

posaible, Then when f.ilure occur. at Step 10 or Step 11, 

Al 2 = 62 3 = 1 aince ei ther equaUnc 2 would aUow a t •• k to , , 
be ••• igned, Step 3 a •• imed all ta.k. of fora 112 which were 

.vailable. No condition in Step 4 throu~h 9 w •• ever .ati.-

fied .ince this woUld have incre •• ed either ~l 2 or A2 3' 
I , 

The latter .. an. one w •• zero which contradict. the exi.tence 

of a fea.ible ••• ignaent. 

A.2. Suppose Set II I ~ .nd Set III =~. When f.ilure occur. at 

Step 10 or Step 11, either Al 2 < 2 or A2 3 < 1. Siaee Step. 
J , 

4 through 9 do not perait either Al 2 or A2 3 to be zero, only , , 
AI ,2 = 1 and A2 ,3 ~ 1 is perai.sible if • fe •• ible ••• ignaent 

exiat.. If .are than one t •• k ia in Set 11, all contribution. 

would reduce Al 2 to negative. , 
A ~.ak in Set II cannot be ••• imed l •• t; if a feaaible 

as.ignment exists, a ta.k in Set III must be a •• igned la.t. 

A.sume • task from Set III i8 left until l •• t and all other 

tasks 1n Set II and Set I were assigned. The resulting values 

of Al 2 and A2 3 would change to Ai 2 = Al 2 - 2 and A2 3 J, ", 
= A2,3 + 2, Since A1 •2 = 1, Ai,2 = -1 which .ean. an a.sign-

ment may not leave either a m .. ber of set II or Set II to be 

.ssigned la.~ from tbe two set.. No ••• ignaent w •• fea.ible. 

A.3. Suppos. Set II = ~ and Set III !~. By siallar reasoning to 

those in part A.2, a contradiction to the exiatence of a 
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fe •• lble a •• ienaent i. found. 

8. Failure at Step 12. Alain Set IV .ay be dl8l'ecarded and 

a ••• ed .-pty. Since t •• ". ln Set 1 .re ••• 11"" a. aoon •• 

they .re fe •• ible, elther 

1. 

2. 

~1,2 

~1,2 

o 01' ~2,3 = 0, initially 

1 and ~2,3 > 1 OJ 

~1,2 > 1 and 62,3 = 1, al.ay., and a ta." 

of fora 222 r ... ln. 

or 3. ~1,2 = 1 and 42,3 = 1, al •• y., .ad ta.". of fo~. 122 

or 222 r ... ln. 

B.l. ~l 2 = 0 01' ~2 3 = 0, initially. No f ••• ibl •••• iea-ent , , 

B.2. 

B.3. 

1. po.aible. 

Al ,2 = 1 and ~2,3 > 1 or ~1,2 > 1 and A2,3 = 1, .l •• y., 

.nd • t •• " of fora 222 r .. aln.. Then the e ... never 

occurred .hen ~1,2 ~ 2 and 62,3 ~ 2. Either Al 2 = 1 or 
I 

A2,3 = 1 at all time.. Thi. forced the ••• 1enaent to be 

f~ Set 111 or set II, respectively, ln order that nelther 

becoae. O. Slnce both set II and Set III are .-pty, and 

only tal'k. of fol'll 222 r_ain ln Set 1, no a •• lcnaent i. 

fe.sillie. 

Al 2 = 1 .nd A2,3 = 1 and ta.". of fora 122 .nd 222 reaain. , 
It .a. never the c ... that Al 2 = 1 .nd ~2,3 ~ 2 01' that 

I 

Al 2 ~ 2 .nd A2,3 ~ ~ occurred. No task other than 111 , 
.a. ever ••• igned slnce at aa.e t1M elther Al 2 or ~2,3 , 
.ould have been zero. No ••• 1gnaent i. fe •• lble. 

C. Failure at Step 16. 

C.l. If 211 tasks r .. a1n to be ••• 1rned, then elther A
3
,2 = 0 
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or 62 1 = 0 initially. Th.n no f.a.ible a •• ica-ent wa. , 
po .. ibl •• 

reaain. It ha. never occurr.d that A3 2 ~ 1 and A2 1 ~ 2. , , 
Then no taak frca Set II or Set III ia. even be.n 

a.sign.d. No 211, 122, or 221 ta.k. have been a •• igned. 

Only III aad 112 ta.k. bave been a •• iened, and A
3
,2 = I 

at all ti.... No fea.ible a •• i~nt was pos.ibl •• 

Figure 4.4 shows the use of Allor1t~ 4.1 to solve an example 

ot Problem 4.2. 

4.2.3. A Mure General Core Proble. 

To extend the result of tbe previous section we introduce a 

pr0blem which relaxes the constraint on the length of the ta.ks. In 

Problem 4.3 below the lengths of successive operation. are required only 

to d1ffer by one unit. 

Problem 4.3. 

Find a schedule for n tasks coaposed of three operations. The 

first and third operations au.t be perfo~ed on Machine One, and 

the second operation .u.t be perfo~.d on Machine Two (. = 2). The 

first and third operations h.ve identical length, and the second 

operation has length Qne less or one greater than the fir.t and 

third operations. The fo~ of the schedule 1s restricted to the 

Special Sec-ented Probl .. with no idle ti.e. 

The solution to Probl .. 4.3 i. siailar to that for probl .. 4.2. 

Algorithm 4.2 gives the details of the solution •• thod while Figure 4.5 

shows an example of its us~. 
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Tasks 

t, - (1,1,1) 

t2 -

t) -

t4 -

t5 -

t6 -

t7 -= 

(2.1.1) 
Set I - (t l' t 41 

(1,2,1) 
Set II - (t51 

(1,2,2) 
Set III • (t), t 6, 

(2,1,2) 
Set IV • {t~ 

(1,2,1) 

(1,2,1) 

tt tt t t t 
p 2 ~,1, 4. 3 I 5. 6 I 7 I ~ 

1221221 

Figure 4.4. Example of Algorithm 4.1 
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Tasks 

tl = (4,5,4) t2 - (4,5,4) 

t) = (5,6,5) t4 - (5,6,5) 

t5 = (6,1,6) t6 • (6,1,6) 

t7 = (7,8,1) t8 -= (1,8,1) 

tg -= (8,9,8) 

Figure 4.5. Problem 4.3 and Algorithm 4.2 

If the tasks are: Scale tasks by 2: 

tl = (8,10,8) t1 • (4,5,4) 

t2 = (8,10,8) ti • (4,5,4) 

t) = (10,12,10) tj • (5,6,5) 

t4 = (10,12,10) t.\ • (5,6,5) 

t5 = (12,14,12) t' • 5 (6,1,6) 

t6 = (12,14,12) t6 = ( l;, 1,6) 

t1 = (14,16,14) t7 = (1,8,1) 

ts = (14,16,14) tb - (1,8,1) 

tg = (16,18,16) tg = (8,9,8) 

Pigure 4.6. Problem 4.4 and Algoritha 4.2 
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I. Divide the tasks lnto two .et. according to whether the contri-

butlon from the flrst and second operations 1. +1 or -1: 

Set J {nx I X+l yj 

Set II {XYX I X-I • Y) 

2, Def1ne M to be 
1 

equal to the larg.st first operntion. 

Define M2 to be equal to the largest second operation, 

Calculate Al ~ and t:J.? 3' , c! ., 
3. 

4. If Set II ~ and Set III = ~, the optl.al achedule 1s complete. 

5. If for some 1, i = 1 or 2, Ml > ~i,i+l' assign task wlth the 

largest valued second operation from Set I if i ~ 1 or from 

Set II if i = 2, Update values of M1, M2 , 60 1 ,2 and A,2,3' Go 

to Step 4, If no task may be fo~~d to assign, the as~lgnaent 

faj Is, 

6, For some i, i 

M
j 

S tJ. j,j+l, 

1 or 2 and j, j i i, j = 1 or 2, Ml tii,i+I and 

(lA. If all tasks t with the i-th operation equal to Mi are in 

Set II, ass1~n each task t ln Set II alternately with tasks 

with the largest operations fro~ Set I until all tare 

assigned. Update the values of Ml , )(2' t:J.I ,2' and tJ.2 ,3' Go 

to Step 4. 

68. If all tasks t with the i-th operation equal to Nl are in 

Set I, assign each task t in Set I alternately with tasks 

with the largest operations from Set II until all tare 

assigned, Up~ate MI , M2 , tJ.I 2' and tJ.2 3' G~ to Step 4. , , 
0C. If tasks t with the i-th operation equal to Ml are in both 

Set 1 and Set II, assign each task t in Set I fGllowed by 
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a task t from Set II until all t' 8 are assigned f·,·o. ei ther ' 

Set I or Set II, Update the values of Ml , M2 , ~1,2t and 

t'2,3' Go to Step 4. 

7. If lol,? ~ Nl and ~2,3 <! M2, 

tA. While 61,2 <! Ml and ~2,3 ;:> )12' assign tasks with the 

largest first operation from Set I alternately w1 th tasks 

with the largest first operation from Set II. Update the 

values of Ml , )12' Al ,2, and ~2,3' Chpck the condition 

after each assignment. When the condition fails or both 

sets are empty, go to Step 4. 

As in the case of the previous algorithm, the detailed discus-

s10n of Algorithm 4.2 is contained in the proof of a theorem. Theorem 

' •. 2 shows that Algorithm 4.2 does produce an optimal solution for 

Theorem I 
... c'. Algorithm 4.2 provides an optimal solution for Problem 4.3 

if one exists. 

Proof. 

Assume that a feasible solution is possible to Problem L.3, but 

that Algorithm 4.2 fails. Failure may only occur at Step). Then 

for all tasks XYX in Set I and S~t II either 

A. 

x > 61 ,2 or Y > 6 2 ,3 

X > ~1,2 and Y > A2 ,3: A solution was possible under the condi-

tion that Mi < 6 i i+l for i = 1 or 2, then f~r j i 1, j ~ 1 or , 
2, 6i,i+l-Mi S Mj - 6 j ,j+l. 

B. X - Al 2> 1 or Y - ~2 3 > 1. Then the algorithm was operating , , 
in Step 5 for the first time while attempting to build up to the 
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maximum task size but failed. An insufficient contribution was 

availabl€ to make the large task feasible. A feasible solution 

was not pOBsible. 

c. x - ~1,2 ~ 1 or Y - ~2,3 ; 1. Either lhe algorithm was opera-

ting in Step ~ for the first time as in B, or the algorithm in 

Step 6 assigned n task which reduced /).1 ') or A0 by 1 to create 
, "- ,- I 3 

this situation. The first possibility leFds to the ~ame contra-

diction as in part B. The second possibility divides into two 

cases. 

In either case, no task remained to m~kc up the de1icit, Hence, 

the wrong task was left until last. Tetsks remained only in 

Set I or only in Set II. not bo,h. 

CI. '" - /:;'1 ~ ,e 
1 and Y - Y ~ 1 (Set II) 

Suppose at some stage thi s L1Sk f;t·,.'Jld havl';' been assigned 

instead of another tas\<, Whtmevel" it was possible a ta!'k 

.ith a larger or equal len~th first op~ration was assigned. 

Cl.A. No task w1lh a smaller len,;tl first operation was 

assip;ned from Se: 11. Wh(n: task in Set II with a 

smaller lengill first operation wa3 aSSigned, XYX 

could not have bettn assigned. As!;1gning XYX in~tead 

of an equal or larKer length task would have left 

that task una!',signed. No switch could be made, and 
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th~ ••• i.uaent wa. not fe •• ible. 

Cl.B. If a ta.k f~ Set I wa. replaced by XYX, Al 2 would , 
have decr .... d by 2. Then another ta.k With a + con-

tr1but1on would have been needed to .ake up the 

deficit. But there were no t •• k. in Set II with a 

.. aller lenlth fir.t oper.tion to fill this need. 

All were used to en.ble t •• k. with. larger or equal 

lenlth fir.t operation to be ••• ilfted. Hence, XiX 

could not h.ve been used to replace. t •• k fro. Set I. 

C2. Y - A2,3 = 1 .nd Y - X = I eSet I) 

Arcuaent •• nalalou. to th.t in Cl. 

The solution to Probl .. 4.3 alao provide. a solution to ~ 

related problea. This new probl .. 1 •• t.ted in Probl .. 4.4. TI.8 ti.e 

the constraint upon the lenlth of the ta.k. ~peration. i. relaxed to 

include ta.k. with .ucce •• ive p.ira of operation. who .. lengths differ by 

a con.tant. An ex .. ple of the use of Alloritha 4.2 to solve this 

proble. is in Figure 4.6. 

Probl .. 4.4. 

Find. schedule for n taaks coapo .. d of three operations ai' 

b
i

, c i ' i = 1, 2, .•• , n. The first and third operation .ust be 

perforaed on Machine One, and the second operation .ust be performed 

on Machine Two e. ~ 2). The lenlth of each operation 1 •• rbitrary, 

but the contribution between .djacent operation. within each t.sk 

.uat be Ceai,bi) = k, C(bi ,c1) = -k or Ceai,bi) = -k, C(b1 ,c i ) = 

k, i = 1, 2, ••• , n (k 1a con.tant). The fora of the schedule is 

re.tricted to tbe Speci.l SeKaented Proble. with no idle ti.e. 
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:or~11.ry ~. Algoritha 4.2 provides the .. tbod of ~lutlon for Problea 

4.4 if • aolutlon exl;ts. 

Proof • 

Scale each task In Probl .. 4.4 by dlV1dlac the leacth of .ach 

operation by k. That is, if a taak has operation. of leacth 1ji 

1 i i where j i ± k, tran.for. the task to i' i % 1, i' The contribution 

of each ~Fir of operations after tran.foraation i. +1 or -1. Since 

the proof of Theor .. 4.2 does not require operations of inte,ral 

length, Allorit~ 4.2 is .l.a the .ethad of .alutlon for problea 4.4 

if • solution exists. 

4.2.4. A Probl .. with. Knapsack Solution 

We continue with another variation of the central problea 

presented earlier. The 8Olution .. thod differs, however, f~ the l.st 

several ex .. ples. In Prohl .. 4.5, below, the con.traint upon the lengths 

of operations is further relaxed. Here the first and third operations 

must have identical lengtha. 

Problem 4.5. 

Find a 8Chedule for n tasks coapo .. d of thr .. operation.. The 

first and third operations .ust be perforaed on Machine One, and 

the second operation .ust be perforaed on Machine Two (a = 2). The 

.first and third operations have identical length, and the second 

operation has a different length. The fora of the achedule 1. 

restricted to the Special Secaer+-d probl .. with no idle tiae. 

The fora of thp solution to pr~bl .. 4.5 has two possibilities. 

References are .. de to terainology defined in Section 4.2.1. In one ca .. , 

a decoupling pOint, D, occurs during the gap, G. 'ilUre 4.7 shows a 
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I 
I 

P I Gapl 
1~------~~~G~I~--------~-

I 
I 
I 
I 

p2~1-----+--------~;----~--------­
I 
D 

FifUl"e 4.7. First f~rm of Probl •• 4.5 solution 

p2~1--~ ____ ~S __ +-__ +-____ _ 

Figure 4.8. Second form of Problem 4.5 solution 
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charact.rization of this .alution fora. In tb. s.cond ca •• , a second 

operation S beeins before the v,ap, G, and .nd. ~ the ,.p, G. Fieure 

4.8 .how. the char.ct.riz.tion for the second solution fo~. 

Th. operations ul each ta.k are k,\Own to be in identical order 

,m •• ch of the three processors by Johnson I. rellUl t. The set of t •• k. 

R occurring before the decouplinc point, D, or before t •• k S in the 

respecti ve foras is decoupled between st.p. 2 and j. The .et of ta.". 

T occurring aft.r the deco~l1ft1 point D or tho task S, in the respective 

c •••• , i. decoupl.d b~tween st.,e I .nd 2. Hence, the R ta." •• ay be 

Johnson ordered between st.,es I arut 2, and the T ta.ks •• y be Johnson 

ordered between sta,.e. 3 and 2. However, w. do not know .! ~..!. what 

t •• ks fora set. Rand T or even which ta.k i. ta.k S. 

Mote i.-edi.tely that t~e first and third operations of each 

t •• k are identical in length. Consequently I th'3 contribution C( ai/bi ) 

equals the contribut~on C(ci/bi ). Thi. symaetry .UII.sts the use of a 

tWo-di.ensional knaps.ck solution deecribed in Alloritha 4.3. ~1gure 4.9 

shows an exa-ple of the use of Algorithm 4.3. 

Algorithm 4.3. 

1. Separate the tasks into two sets: 

Set I 

Set II 

{all tasks such that c(ai,bi ' ~ OJ 

{all tasks .uch that C(ai,bi < O} 

2. Tr.nsfora Sets I and II into the followinl ordered .et: 

set III = (S~-'t I in order of incre.sinl size of th~ first 

operation and incre.sinl contribution followed by 

set 11 in order of deerea.ln,. .ize of the first 

operation and decre •• inK contribution 1088.) 

Set ~~ 2 equal to the initial length frca the end of .t.ee 2 to 
J' 

the end of stage 3. 
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Ta!3k6 

tl = 

t? = 
t) = 
t4 = 
t5 • 

(1,3,1) 

(1,4,1) 

(2,),2) 
(4,3,4) 
(5,1,5) 

I 
I 

• I 

P1 
13 

P2 I 
6 

A,,2 • 6 

• • • 

• I 
1 

14 

I:a 3,2 • 7 

: ----r--- I. ·----T---~ 
• 

" 
o J. 

After all five tasks: 

I I I ------r-----T------+--
I I I 
I I I 

• I I I 
r. I I r I 

• 
• I' I I 

10 •• - - • - - + - - • -- - -t - - - - - - J_ -
, I I 

• 

• "', I 
• :. I' , 

:. • I. : 
• I' • I • I 

I I ---- - -r. - ----e--. -- ~L_ 
I 
I 
• 

• I I 
i I 
, • I · , I 
I 

I , 
I 

Figwre 4.9. Example of Algorithm 4.3 
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3. Set Ll ",qual tc. o -- the total leDKth aaaicned to ata .. 1. 

Set f1 ..... to the 
I,L 

iniUal lencth of ti.. fro. atart of at .. e 1 

to the start of atac. 2. 

SetTL equal to o -- the total leDKth of tbe firat operation 

Set TC equal to 0 -- the total contrlbutlon C(ai,bi ) aaallfted. 

4. Eatablish the firat quadrant of a two-dl .. nalonal Carte.lan 

coordinate syst .. , f; With the valuea of Ll and ~I,2 repre .. nted 

by the ab.cia .. aftd ordinate, re~tively. .ark initial value. 

of (Lt , fl l ,2) 

5. For each ta.k, ai' bi , c
l

' in the ordered Set III, for each 

point (x,y) in e, 

5A. if Y ~ ai' indlcate a n .. point (x+ai,y+C(ai,bi ». 
Go to 58. 

58. if 6
3
,2 + (TC-y) < ai' delete (x,y). Go to 5C. 

5C. aet TL = TL + a
i 

aet TC = TC + C(ai,bi ) 

6. Select the aolution corresponding to the point (x,y) 
n n 

where r a
1 

~ x + y ~ E a
i 

+ G. If aue~ a point (x,y) .xiata, 
i-I i=l 

the corresponding aoluUon ls opU.al. tt not, co to Step 7. 

7· For .ach ta.k 1n Set III auet: that bi Ot G + 2, 

7A. Fora Set III' by deleting a'b'c' 
1 1 i 

frOil Set III. 

78. Repeat Steps 3 through 5 for Set III' In.tead of III. 

7C. Select the solutlor. corre8pOndlnc to the point (~,y) where 
n n 
E al - (b~ - (G-l» ~ x + y s E ai - 1 

i_I i=l 
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the 8eCond fOrR with S = 8ibici. Stop. If .uch a point 

(x,y) does not eXiat, continue with Step 7 iteration. 

8. No .alution ia poaaible. 

Theorem 4.3. Algorithm 4.3 provide. an opti.al .alution to Problea 4.5, 

if one edats. 

Proof. 

AssUllle a feasible optimal solution eXiats, but AllJoritha !I.; 

fails. Failure occurs only at Step 8. Neither of the two solution 

fOrllls could be found. Johnson' a tneorem require. that • specific 

order of tasks forms a feasible solution in &et R and Set T, if a 

solution exists. The pre-ordering of taaka in Set III in Steps I 

and 2 of Algorithm 4.3 arranges the tasks in the order they become 

candidatea to b~ assigned in Set R and Set T. Baaed on the defini­

tions of Step 3 and the initial point in Step 4, Step 5 decides 

whether a task may be assigned in Set R, in Set T, or in both sets. 

For each deciaion, 8 new po~nt Is reached in the graph. After each 

task In Set III has been tried, Step 6 and Step 7C find if any point 

in the graph represents a feasible solution. The feaaible solution 

is that solution which satisfies one of the two basiC fOrlls. The 

p01nts on the graph always represent feasible solution. because 

others are deleted at Step 5B. Since all attempts are .ade to satisfy 

one of the two basic forms, the alg~rithm's failure aeans no solution. 

A contradiction. 

4.2. r. • Extension to t he Four St age Problem 

In this section we discuss a four stage problem which parallels 

the Special Segmented Problem of an earlier section. Although the 

- 91 -



extenaion fram the thr .. stap prabl. is straiptfo"'ard, Prabl_ 4.6 

foraally de.crlb~s the ftew .ituation. 

Prabl .. 4.6. 

Finei a .chedule for n tasks ca.poMd of four operations. The 

first and third operation •• ust be perfo~d au Machiae One, aDd 

the second .nd fourth operation •• ust be p.rforaed on Machine Two 

(m = 2). Using Jackson's notaU<)n of Section 2.2 the ta.ks are 

di vided into two .ets: (ABAS} and (BASA) • Th. fol'll of the 

solut10n i. restricted .s de~r1bed below to a ~hedul. with no idl. 

tille. 

Machin. One: The fir.t operatlon. of the .. t (ARAB), 

followed by the second operatlons of the set (BABA) , 

followed by the third operations of the .. t {ABAB} , 

and followed by the fourth nper.tio~. of the .. t (BABA). 

Machine Two: The first operations of the .. t {BABA}, followed 

by the s.<:ond op.rations of the .et {ABAB}, followed by 

the third c.p<;:rations of the set (BASA) and followed by 

the :'ourt h opel'aUons of the set (ABAB J • 

If the tasks in Probl .. 4.6 are li.ited to tho.e who .. first 

and fourth operations are equal and whose 8eCond and third operation. are 

equal, the knapsack solution of Prabl .. 4.5 is acain applicable. Fram 

the Johnson result the processing order of th. ta •• '.8 i. toe .... on each 

processor. Slnce no contr1bution ls m.de by the second and th1rd 

op~rations, all second operatlons mu.t be feasible lnlt1ally fram the end 

of stage 3. The extra operation, therefore, d~~ not ~ake the probl .. 

difterent from Problem 4.5. Algorithm 4.3 •• y ~ applied. 

- 92 -



' •. ~ Other Subprobl_s 

The results presented 1" this chapter strolll(ly restrict the 

51ze of the oper.t1ons of the tasks we ccnsider. The operations aust 

differ in length by a const.nt or p.irs of operations aust have identical 

length. The re.ult. do not apply for task. with operation. of arbitrary 

length.. We, however, h.ve exp.nded the list of solved .ubprobl .... 

These solutions .ay be incorporated into solution. of aore eoaplex 

problems. 

New proble •••• Y h.ve solut10ns which apply several ideas we 

described earlier. For exaaple, one attack on new probl.a ... y be to 

f1nd a canon1cal fora for the ., a ~ 4, segRent problem and to apply the 

knapsack solution aethod to portions of the probl... Sign1ficant use 

also may be mad. of the decoupling phenoaenon in conjunction with the •• 

canonical form.. In any event, it appears 11kely that research inquest 

of efficient .lgorithm. for achedullng .ubprob:w •• will go on long into 

the future. 
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Ch.pter 5 

The Four Proce.M)r Probl_ 

5. I . The Four Processor Probl_ 

Snare'. work [1968] wa. d .. crlbed ta seetlo" 2.3. Be 

con.idered • three proc".50r probl ... Dd task. coa.t.Uac of a chaia of 

three operatioa.. In this section the re.ult. ar ... tenaions of azwarc'. 

work to the 4 )( n aequencin, probl... In Sectloa 5.2 .,. d.Ua. the 

proble. so that ,,~ are .. ekia, tbe .t \1 .. 1 ca.pl.tloa 1:1 .. for all tau. 

on .11 aachine •. Th·~l Section 5.3 dev.lop. a coadit1o" on th. operation. 

so th.t the order of t •• ks i. identic.l on .dj~.nt proc •• sor. aDd the 

tot~l completion ti.e i •• iniaal. Section 5.4 tollow ..... re·. objective 

and reduces the 4 X n sequencing probl... Under two .xplieit coDdition. 

the 4 )( n sequencinl probl .. i. reduced to a 2 )( It aequenclq probl ... 

and a 3 )( n sequencing probl .. , respectively. (Theor .. 5.2 and 

Theor_ 5.3) 

5.2. Probl .. Definition 

Before di8Cu .. ing the new ~ .. ault. tr. Ur.t p,.. .. ot th. 

definition of the four processor prObI .. aDd tb. notatioo we u .. throuib­

out the chapter. 

Probl_ ') .1. The Four Proce.sor Prob1 .. 

E.ch of n t •• k. i. c~.ed of tour operation. ai' b
i

, ci ' aDd 

di to be exe~ut.d on four proce.sor., A, I, C, aDd D, re.,ectlve1y 

(. = 4). Find the schedule which ainialz •• the total caapl.tion 

ti ... 

FrOll John.on·. re.ul tin Theor .. 2.3 we Iloow that two pel'll\ltaUo08 
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of the tasks are sufficient to assign the n tasks to the four processors. 

Let us call the permutatlons p and q where 

p (pI, p2, . .. , 
q (ql, q2, .. , 

pi, pi+l, 

qi, q1+l, 

. .. , pn) 

qn) 

Each pj and qj, j = 1, 2, ••• , n, represents one of the n tasks. In 

general, pj I qj for j ; 1, 2, ••• , n. The permutation p represents the 

permutation of tasks on the first two pr~!easors, A and B; perautati~n q 

r~presents the permutation of tasks on the last two pro~~.sor8, C and D. 

A schedule is respectively ABC D. For e,ample, if p = (1,3,2) and 
p p q q 

q 

and 

(2,1,3) the schedule repreaented by ABC D on proceS80rs A, D, C, 
P P q q 

D would be 

A: a1 a
3 

a2 

D: b
l 

b
3 

b
2 

c: c 2 c l c
3 

D' d2 d
l 

d
3 

Restr1~tion. on Permutations p and q 

In some cases it is possible to consider four proceaaor 

schedules in which the order of tasks on each processor i. the aa... That 

is, p equals q. The result of Theorem 5.1, however, is acre general. 

This theorem describes a case when two adjacent processors in the m X n 

sequencing problem may process tasks in identical order without loss of 

optimality. 

Theorem J.l. If m:x tk s m;n sk where the operation ak on machine S 

immediately p~edes t.he operation tk on machine T in the _ X n 

sequencing problem, then one opti .. l schedule is one 1n which the 

permutation p of operations on machine S is identical to the 
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pe~utation q of operation. on .achine T. 

Pr.oof. 

p = (pi, p2, ... , pn) i. the p.~utation of operation. on 

• achine Sand q = (ql, q2, , qn) i. the perautation of operation • 

on machine T in an opti.al schedule. Aa.uae for eoae .inl.al i, 

pi 1 qi. Proce • .or T i. idle while .pi+l 1. executed on proce.lOr S. 

Since .pi+l ~ t pi ' by a •• uaptlon, tpi .ay be executed on proce •• or T 

while .pi+l i. executed. No ta.k on proce • .or T coaplete. l.ter In 

this new .chedule than it did in the original fea.ible schedule. 

Hence, the new schedule Is al.o f.asible. Sinc. this proce .... y be 

repeated until p = q, one optimal schedule i. one in which p = q. 

max S min b Corollary 5.1. In Problem 5.1 if k c k k k' the perautation of 

operations on .ach processor is identical. 

Proof. 

By Johnson'. result which wa. restated in Theorem 2.3 the 

permutation of operations is identical on proce • .or. A and Band 

i8 al.o identical on proce.sor. C and D. By Theora. 5.1 and the 

hypothesis the permutation of operations i. identical on processors 

Band C. Hence, the permutation of operation. i. identical on all 

processor., 

).4. Exten.ion of Szwarc's Result. 

The 3 X n sequencing problem re.ult. in Section 3.2 were by 

Wlodzimierz Szwarc, and T. S. Arthanari and A. C. Mukhopadhyay. The 

4 X n sequencing problem results here use a similar foraulation. In all 

cases the tot. I idle time on the la.t proce.sor i. to be minimized. 

To di.cuss this work on the four processor problem we must 
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consider three quantities. Assuming the two perautations p and q are 

p 

q 

(pi ,p2, 

(ql,q2, 

,pn) 

,qn) , 

we may examine the values of 

xk idle tiae on the second processor after as.igning task pk 

\' 'k idle tiIRe on the third processor after assigning task qk 

zk idle time on the fourth proc •• sor 

After assigning taskti pI and ql to 

Xl a pI 

\' -, max (bpl+Xl bq1+Rq1 ) . 1 , 
%1 v . 1 .. c 

ql 

·t ..f-l 
where R . 

qJ 
~ Xi + ~ bpi when pt ~ qj. 

L,l i",l 

Consequently, R 
P 

after aaaigning taak qk 

the respective four .achines, 

This term represents the possibility that p and q are not identical. 

Then tasks on the third processor may not begin execution i.mediately 

after the first task is completed on the second processor. 

After assigning tasks p2 and q2 to the respective four .achines, 

x. max (apl + a ~ - Xl - bPI l,l) 
<.: p~ 

Y,? .. max {Rq2 + b -p2 (Yl + c q1 ) Rp2 + b -p2 (Yl + cq1 ) , v) 

z2 max (Y1 + Y2 + c q1 + c q2 - zl - dql ' 0) 

In general, after assigning tasks pk and qk, k -. 1, 2, ... , n, 

to the respect! ve four machines the idle times are: 

k 
x

k 
~, max { E 

i=l 

k-l 
a - E x -
pi 1=1 i 

k-l 
max { Rqk + bpk - E y -

i=1 i 

k-l 
E 

i::l 
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k-l k-l 
Rpk + b - 1: Y - 1: cq1 ' 0) pk 

1=1 1 lei 
k k k-l k-l 

Zk = .u ( 1: Yl + 1: c - 1: • - 1: dq1 ' 0) 
1=1 i",1 ql 1=1 1 1=1 

However, what we .ust .1nim1z. 1. the total 1dle t1.e on the 

fourth proce •• or. The total 1dle U •• on the fourth proce.aar 1s Z . n 

n n n n-l n-l 
Z = 1: z1 = max ( 1: Yl + 1: c - 1: dq1 , 1: :0.1) n 

i=1 1=1 i=l 
ql 

1=1 1=1 

Similarly, we may obta1n the total Idle t1 .. on the aecond proce •• or, 

Xn' and the total idle t1me on the th1rd proce.aar, Yo. 

n n n n-l 
X 1: x1 '" .ax ( 1: a - 1: bPI 1: x

1 ) n 
1=1 1=1 

p1 1",1 1 ... 1 
n n-l 

y 1: Y1 ",. .ax ( R + b !: ~ql , 
n 1=1 

qn pn 
1=) 
n-l n-l 

R + b !: C q1 , 1: Y1 ) 
pn pn 

1=1 i=1 

To sl .. plify the expr •• s1on for X w. def1ne the quanU ty K n u 

u u-l 
K 1: a - 1: b

P1 u 
1=1 

p1 
1=1 

u 
X = 1: Xl u 1 .. 1 

( ) .ax K 
Xn = .ax Kn' Kn_1 = 1 s u ~ I: U 

S1m1larly to s1apl1fy Y we firat expand the expres.lon for 
n 

y which beca.e. n 
t ~1 n-l 

Y = .ax ( t Xl + 1: b - 1: cq1 , 
n 

1=1 1=1 p1 1",1 
n n n-l n-l 
t x1 + t b - t C q1 , 1: Yi ) 

1",1 1=1 
p1 

1=1 1",1 
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where p-f , qo 

n n n 
y .. ax ( l:: x

t 
+ 1: 

0 1",1 1~1 
b - 1: x

1 
+ I: b -

1'1 1::n+l 1",1 1'1 

t n-l 
+ l:: b l:: 

l",n p1 1 .. 1 
C 

ql , 

n n n-l 0-1 
E cq1 ' l:: Y1 ) 

1=.1 1:1 
b -pi 

where p-f = qn 

Now Hand G are defined for substitution in Y . 
\I V n 

\I v-I 
H I: b - l:: c

q1 v 
1",1 

pi 
1 .. 1 

n t v f-

n 

I: b 1 + 
lut " 

G I: x + !: x - l:: b + l:: bpi .here p-{. .. qv. 
v i 1 1...t pi i-f.,tl i ",v+l l=v 

y .ax .ax (G + H n + 1 R H R max 
n-l + 1 0 n SUS n u SuS n u 

Y 
n 

y 
n 

G + H + 
.ax 

Ru,Hn_1 + n-l n-l 1 Sus n-l 1 S 

... , 

G
1 

+ HI + Rl ) 

(H + 
.ax 

R + .ax (G , 0) max 
1 S; uSn I n u n 

+ 
.ax 

H R + .ax (G 1 ' 0), n-l 1 SUS n u n-

By defin1ng F , Z .ay l1k .. l.e be .1.plif1.d. • n 
111 .-1 

F",I:c -!:d 
111 1~1 q1 1=1 ql 
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Z ( au (H R ( ) ) n = .ax 1 ~ u ~ v ~ n v + u + aax Gv ' 0 + Fo ' 

. .. , 
Equation 5.1 

In order to .ake it Obviou. that Z I the idle tl •• on proce •• or 
n 

D, depend. on the p8rautat1on. p and q, we reuae Z'l to be ,(p,q). 

Fro. the.e equation. and following Arthanarl and Mukhopadhyay, 

two re.ults for the four .achine probl. arl .. In Theo~. 5.2 and 5.3. 

Fleure 5.1 .bowa an exaaple of the u .. of Theor. 5.2 while Fieure 5.2 . 

• hows an exaap1e of Theora 5.3. 

Theora 5.2. If n ta.k., each coapo •• d of four operation., ai' bi , c
t

' 

and d
1

, are to be executed, reapectlvely, on four proce.sors (m = 4) 

aax ain -ax aln 
and k bk ~ k ck and k ak ~ k bkl the four a.chine problem is 

aolved by 801vlng n two-aachine probl •• , 

Proof. 

Let the p8rautatlon. of ta.t. on the first two proces.ors be 

p and on the 1a.t two proce.aora be q. Por each t, 1 ~ t ~ n-1, 

aax aln 
.1 nee k bk ~ k ck ' 

t t-1 
fit = 1: b- - I: ~ 

1=1 pi 1=1 ql 
H1 t 

=tb--Ec-
1;1 pi 1=1 qi 

-b- +C-qt~O pt+l 
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t1 - :~,;,:...,2) 

t,:: (:.:.),7) 

10) • (3,3,4,0) 

t,4 • (1,4,4,2) 

Figure 5.'. Example of Theore~ 5.1 

~~~r IO~~!b~litie~ of 11 solution .. 
P1 f\ , 
P2 

~ 10 1 

~ I Z4 • 29 

p) ~ 10, t,3 t2 104 
4 6 4 5 4 

P4 ~ t, 
I ~ I 

10) 10 2 104 
10 I 2 2 6 7 ' 2 I 

P, 
10 2 
2 I 

P2 I ¢ 
102 Z4 • 28 

2 4 

~ 
102 10) 10, '" p) 

6 5 4 6 4 

P4 
~ 

102 '3 10, 104 
, 1 7 6· ' 2 I 2 I 

P1 
') 

3 

P2 62 
3 • 

t J 
3 I 

Zo4 • 27 

P 3 
f 10) 10 2 101 104 
b 4 5 6 4 

fa 
103 

102 10 10 
P4 I ' I 4 I 6 1 2 2 

10 

" I 4, 
1 

'2 f~' 
104 

1 .. Zo4 • 28 

') 
f '4 'J , 
5 4 4 

10 1 
6 

P" f I 104 , ,. 
I 

9 2 2 6 

102 10 
I 1 I 

7 2 

Optimal permutation i. (),2,1,4) 
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Tasks 

t, • (2,4,),6) 

t2 • (3,6,1.4) 

t3 • (4.5,3,2) 

P, ~ t, 
2 I 

P2 I ~ • 
p) t 

P4 ~ 

tj 

4 

t1 
4 

, 
6 

@ 

9 

Figure 5.2. Example 

• 
t2 

I 
3 

• 
t3 , t2 , 
5 6 

t, I , I 
t) @ It, 

3 2 3 3 1 

t1 , 't)". t2 
6 2 1 4 

o! Theora. 5.2 
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Therefore, 

.ax - -
1 r t ~ n Ht "1 

Similarly, for each t, 1 ~ t s n-l, sir.ce 
.ax a

k 
:s; 

a1n 
bk ' .. k 

t t-l 
K

t I: .. - I: bp1 
1::1 

pi 
i=l 

t+l t 

kt+l l: a- - l: 1>-
1=1 

pi 
1=1 

pi 

K - Kt+l Apt+l + bpt ~ 
(: 

t 

it .:' Kt + l 

Therefore, 
max 

n Kt Kl 1 s t :s; 

By Theorem ).1 and Corollary J.l and the fact that 

max min max m1n -
k bk S k ck and k ak ~ k bk , the permutation p is identical to 

the permutat10n q. Then 

G ~ Q for v = 1, 2, •.• , n v 

Us1nK equation 5.1 above 

(f ) 
" 

Equation 'J •. 

Our goal 1s to minimize K(q,q) over all possible sequences q 

designated by the set Qi' For a fixed 1 = ql, 
w .-1 

I - _min (liax L 0- _ 

i - q ~ Qi 2 ~ • ~ n ( 1=2 q1 1:2 dqi) ) 
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11 1. the .inlawa ldl. tl .. on the l •• t·aacbine D fro. tbe two a.cblne 

probl .. with -.chine. C and D where tbe Nt of t •• k. i. an n t •• k. 

except ta.k 1 = ql. Call tbis opUMl peJWItation 8i • Lot tiq Dl and 

&i(q,q) be the ldle tl .. on .acbine D when ta.k 1 1. t •• k ql, froa 

Equation 5.2 

Dl = '1(q,q) = -ql + bql + cql - dql + aax (cql' I ql )· 

Th. probl .. tbu. i. to flnd 10 and an opt1aal p.rautatlon. 8i 
o 

• uch th.t Di 
o 

Tb. ca.p1ete optlaal peraut.tion 1 • 

Theorea~. If n ta.ks .ach co-po .. d of four operatlon. al , b1 , c i' 

and d
1 

are to be executed, re.pecth"ely, on four proce •• ors 

A, B, C and D (a c 4), and -:x ~ ~ a!n ck' th.n the four .. ~hlne 

prable. reduce. to a three aachln. prob1 .. ln whlcb p.rmutatlon p 

i. not nec~ ••• r11y the .... a. perautatian q. 

Proof. 

"x d .... ain Since k k ~ k Ck ' for e.ch t, 1 ~ t s n-l, 

t 

Ft = E G- -
1=1 ql 

t-l 
E ciql 

1=1 
t t+l 

E 
1=1 

G- - E ~ql 
ql 1=1 

c- +~ ~O 
qt+l qt 

Therefore, 
.ax - -

1 ~ w ~ n Fw = Fn 
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From Equation 4.2 and definitions Gf H , K , and F here and in 
v u • 

Theorem r,. 2, 

(- -) .ax (F + ii + au (0 , 0) + K ) g p,q = 1 ~ u ~ v ~ w S n • v v u 

Let ,{p,q) be the time for a cOIIIplete schedule using pennuLJLw,l 

p and q. Then 

n 
~(p,q) = g(P,q) + r: clql 

i =1 

1min(P,q) 
ain ,(i,ti) 

E Pi' 
-

~ P q E 

lIin 
n 

p E Pt' q E Qi 
[ g(p,ei) + r: dqi 

] 
i=l 

lJain 
n n-1 n 

[ ~ : ct=. + 
- q Q

1 
I: c- - r: + 

p E Pi' E 1=.1 ql 1=1 ql 1~1 
ql 

mu 
n (Bv + lUX (0 , C) + K ) 

1 ~ u s v s v u 
n 
r: c

i 
+- .1n [ d- + 

Ll P c. Pi' q E Q
i 

qn 

1 ~ 
max (11 
uSv~n v + max (0 , v 0) + K ) 

!l 

From the above the idle time on processor C is exactly 

max (ii + max ( G , C) + K ) 
1 ~ u s v S n v v u 

Hence, S.in(P,q) is found by finding the solution to the th1'l:e 

processor probl_ of machlnes A, B, and C with p 1- q in genval . 

':' ';. In Su.mary 

As we pointed out several times in earlier chapters the 

significance of results for Simplified subproblems is that they may 

later be incorporated in the solutions of larger probleas. Our resul:~ 

and those of Snare delllOnstrate this significance IIIOst vividly. We haH' 

taken the more ca.plex 4 X n sequencing prob1 .. and shown that in certain 
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instances only l~ss eoaplex prObI .. a need to be aolved. 

However, the work in this ar.a i. far froa ca.plete. The 

general four proceaaor probl .. i. not .alved efficiently. In addttion, 

ltttle reduction ha. been .. de to the ., • > 4, proce • .ar problea. Future 

reaearchers .ay, neverthe1e •• , u .. the ...... thod. in the .ore 

coaplieated prob1e ••• 

- 106 -



Cbapt.r 6 

Future D1rectioaB 

The reRlts ln a)( n Hqu_clq re ... reh haa had th .... fnlittul 

period., the aid 1950,s, the e.rly 1960'., and the •• rly 1910's. Th. 

probl ... are noted for their .1aple foraulatloa and tbe eluaivene •• r,f 

efficient algorltha •• 

We bell eve th.t one of the ao.t laportant contrlbutir,n. of the 

.arller re.ult. and those pre •• nted h.r. 1. to the uuder.tADdlUC .nd 

.naly.18 of aor. coapl.x probl.... The reaU.tic probl •• of c .... ut.r 

scheduling h •• r only aini •• l re ... blanee to the probl~.s pre .. nted. But 

before the .ore coapl.x ach.dullng probl ..... y be handl.d .ati.factorily, 

we JlUst know the fUndaaental re.ult. of .)( n Mquencln,. 

To predict the future .ucc ..... in this ar •• i. a risky, if 

_joy.bl., job. Yet .. veral probl .. s .... r1pe for .olution 1n the ne.r 

luture, First, the recent Coftaan and Grab_ re.ults lend hope that the 

.-queneing of I-unit tasks with tr .. pr.ced.nce or perhaps acyclic 

precedenee on aore than two processors .. y have an efficient aolutlon. 

Lik..t .. , the work here live. hope for an efflclent, coaplete aolutlon 

of the sequencing probl .. with I-unit and 2-un1t ta.ts with acyclic 

precedence. 

Second, the Special Be.ented Probl .. 1. clo .. ly relate" to the 

three procesaor probl .. , It .. y be po •• ible .lao to find significant 

.aluUoa. to th1a .. t of probl.... The concept of ct.coupl1ng between 

.. t. of t.st. ~ay be a powerful key to the •• effici.nt solutions. 

Ro cClllput.r aclenU.t, h .. ver, .. y iKDore the work in the 

field Of CCIIIputatioaal cOliplexity. Althoup no probl .. With au inherently 
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exponential 801uUon 1. lmown, .uch probl .... y be found. AlthOl.lKh 

dt.appointtnl, the .. re~!t~ wokld be u .. lul in boundinl the ~re. for 

future re ... rcher •• 
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