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An Error Analysis

of a Method for Solving Matrix Equations
by

C. C. Paige

Abstract

Let B = [L 0]Q be a decomposition of the m by n matrix B cof
rank m such that I is lower triangular and Q 1is orthonormal. It
is i;ossible 10 solve Bx =b using L but not Q in the following
manner: solve Iy =b , solve LTw =y, and form x = BTw . It is
shown that the numerical stability of this method is comparable to that of
the method which uses Q . This is important for some methods used in
mathematical programming where B 1is very la'rge and sparse and Q is

discarded to save storage,
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1. Introduction and Insight

For a given mby n real matrix B withrank m, n>m, anda

real m dimensional vector b , the under-determined set of equations
Bx =D (1)

can be solved as follows. First use the transformations of either Givens

or Householder to obtain the decomposition

B=[LOJQ=(LOJ[Q] = IR (2)
%

where L is lower triangular and Q is orthonormel, so that

Qe =1I. (3)

This could be done for example for small matrices by applying Householder
t{ransformations to ﬁT via the procedure "decompose" in [1]. A solution

of (1) is then seen by substitution to be
X = Q1TL-1b , ()

and since this lies in the range of ﬁT it is orthogonal to the null space

of B and so is the solutior vhich minimizes

| x H2 =\/xTn . (5)



Thic problem arises in important algorithms used in mathematical
programming, for example in [2] and {3). However, in these cases B is
usually very large and sparse and because of storage difficulties it is
often uneconomical to store and access Ql . If this is so, the solution
can still be obtained by noting that if w 1is obtained from

BBT‘J = I.QijLTH = LLTw =b (6)

by selving with L and then I? » then x 1ig given by

and this can be seen to pgive the same mathematical result as in (4.

Unfor:unately, when such results are obtained on a computer, rounding
errors occur; and the two different approaches are likely to give different
answers. Sometimes it has been thought that the second result could be
disastroucly worsc than the first, thus negating to a large extent alpgorithms
gimilar to the one deseribed by (€) and (7). It it the purposc of thic
note tu show that such algorithms are numerically quite saticfactory.

In order to obtain a clear understanding of the problem and what is
happening, a simple computation will be examined tefore carrying out the
full analysis. This computation has no practical use other than o clarify
the numerical performance cf the actual case. Suppose A is a nonsinpgular

square matrix and
T o
AA'w=b ()
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is solved on a floating point computer with precision e to give w . How
well does X = AT; approximete x = ATw 7 Note that this computation is
similar 7o that in (6) and (7), except that no special advantagce ic taken
of any decomposition here and no error in forming AT; will be considered.
For simplicity assume that || A ||, =1, so that x = I A ll, is the spectral
condition number of A .

The set of equations (8) can be solved in two distinct ways. First
AA: could be computed and the resulting positive definite symmetric matrix
equation solved, for example using .he Cholesky factorization. From the
rounding error analysic [4, p. 135, p. 231] it is known that the computed

sclution w will saticfy

(AAT + E1); =b, i Fy I, = ¢, < f(n)e , (9)

where f{n) is some function of n , the dimension of the problem. But

this ic juct

A(T + A"E1A"T)ATG ~b =MW, (10)

$o that on multiplying throuchout by A~' and taking norms

AT - AT = AT BT

]

IA

x€q I v ug < Xf€1 I % hg . (11)

But. _uct s .lving Ax

b directly using a reliable method is kncvn to give
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a bound on the error || x - x ip Pproportional to ye It x llp » so that if
| w |, is very large, the above method for solving this equation can lead
to a disastrous loss of accuracy.

For the second approach to solving (8) consider solving Ay = b and
then solving ATw =y for w . Using, for example. .riangular decomposition
wich pivoiing, this will give a computed sclution w satisfying [&, p. 215,

p. 2L8)

(A +E,) (AT + 35)3

[}
o
-

H E]. “? =€y < f(n)ae , (1)

wherc a  depends on the largest clement arising in the decompesition,

AT < v (13)

. -1
s Ax=A(I +A E2) (1+E5

so that

-5l € vep | 7 1+ Cegt vep,) 115
2 ~
< (x€2 + xej *x 6265) I x 1‘2 ’ (14)

and if xey < 1 , the order of magnitude of the error bound is the came as

th: + for the direct colution. This in effect is what happenc in solving

(6) and computing (7), that is, whenever the square of the condition number
oc.ur. in the error bound for the final solution, it is effectively multiplied
by the square of the precision. Note that in both the examples jus! considered
a ,?g term will appear in the error bound for w , 50 that the intermediate
vector w could have negligible accuracy, bur in the second method ol solu-

tion the f'inal resul* could still have quite a few accurate figurcs. The

same comments apply to computing (6) and (7); X will not lose ai muck

b=



accuracy a5 the intermediate result W . This isa fairly regular occurrence

in numerical computatiions and needs to be emphasized.



2. Anulysis of the Practical Algori‘hm

For simplicity in the full analysic the multiplicative terms involving
the dimensions of the problem will be omitted from the error bourds. Trise
are relatively unimportant and can be fcund for any particular computation
from the literature [4]. Results of rounding error analyses will be quoted

from [4) without further reference, and the symbols will indicate none

€1
negative quantities which are just the product of ¢ , the computer precision,
and constants dependent only on the dimensions of the problem, It will be

assumed that || L |i, =1 in (2) so that y = i !

HE is the ocondition
numter of L for solution of equations,
The computed lower triangular ma~rix 1. obtained by applying the ortho-
zonal transformations of either Givens or Householder to B can be shown
to saticefy
B+E, = (LOR =1, ,
(15)

. T
uYy =1, I By il =€y 5
anc when this is combined with (2) it follows that

m;gT + E@,T ) (16)

I i

Tt compu-ed solution w of Ly W@ =y can be shown %o satisfy

L)
o
-

GeE) @ ml=t,  [E e (17)

whill the formation of the final solutivn gives
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X= (8 + BN, By llp=es - (18)
Equations (15), (17), and (18) describe the rounding errors tha.tlf, occur

Y
in the computation. These will now be manipulated to show their effezt on

the final solution. From (4), (16) and (17) it can be seen that
T.- T - n ~ ~
req L ey I‘1(I‘21Q1T*Ek“‘lT"Eﬂ (i + )%,
Ev , (29)

- qTg, + e, + B3 G,

where use has been made of 515,1T = I . But using (15) and then (18]

=X +BN - BN (20)
so that (19) becomes
T -1 3N (T e (BT 3T o
x = Q[Q + 1 (B, +ERQ)) [x+ (B -E; +Q E; Wl . (21)

Next from (18), using Q1Q‘T =1,

T.T.

1x Q.' L'w + Q1TQ1E3W

O
—
O
¢
n

B + Q1TQ‘ ]:15;

X+ QT - DEF
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so that (21) gives
X - X= (Q1TQ‘ . 1)35; + Q‘Q‘T(L‘LT - E; + '61%2)'7
+ Q1TL-1 (E, + E,&) [X + g, - E, + 'Q“.1TE2);] X (22)
The 0.1'1‘0,135 terms cancel in this last equation, and since from (18)
w = L'TQ1§ - L'TQ1E3; R

which, it yo, <1, gives

i: can be scen by taking the norm of (22) that

il s ey + g v ep v xley +ep) (e + ey + )]V i

+xle, + <) I % g

< {x[r_1 + ch] + xle, + G+ (h] {1+ ,,(c1 + ch)]}” P s -
1 - yﬁi
(ak)

~

Thus if yc << 1, the bound on the error in x 1is propertional . &

rathcer ‘han fc ac has often been thoucht, There is “hen no catasirophic

loc: of accuracy in computing (6) and (7) rather than (&), and so the algorittme
desoribed in [2] and [3] can safely be uced.

This analysis applies to the fully dctermined case as well as to the

under-determined case, Of course the analysis can be simplified it uc¢ fully
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determined case is treated alone, but the result will be just the same.
Computational tests carried out by Michael Ssunders for the fully determined
case using leading parts of the Hilbert matrix indicated that (24) was a
fairly tight bound. The computations on the same matrices using (L) egave
results well within the bounds for this approach, and so these results

were in fect better than those obtained by using (6) and (7). Such compar-
isons have probably helped to form the myth that (6) and (7) produce a

2
y € error effect in the solution x .
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