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An Error Analysis 

of a Method for Solving l>\Jtrix Equations 

by 

c. ·C. Paige 

Abstract 

Let B = (1 O]Q be a decomposition of the m by n matrix B cf 

rank. m such that L is lower triangular and Q is orthonormal. It 

is possible to solve Bx ~ busing L but not Q in the f0110wing 

manner: solve !if == b , solve 
T x.Bw. It is 

shown that the numeric~l stability of this method is comparable to that of 

the ~ethod which uses Q. This is important for some methods used in 

mathematical prograDllling where B is very large and sJl8.rse and Q is 

discarded to save ~torage. 

*InstHute of Computer Science, University of L::>ndon, England. This work 
Was done while Visiting Research Associate at Stanford University under 
National Science Foundation grant GJ 299~ 
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1. Introduct ion and Insight 

For a given m by n real matrix B with rank m, n ~ m , and a 

real m dimensional vector b, the under-determined set ot equations 

Bx = b (1) 

can be solved as follows. First use the t.ransformations of either Givens 

or Householder to obtain the decomposition 

B = [L O]Q = [L 0] [~] = LQ, (2) 

where L is lower triangular and Q is orthonormal, so that 

This could be done for example for small matrices by applying Householder 

transformat.ions to BT via the procedure "decompose" in [1]. A solution 

uf (1) i~; then seen by substitution to be 

, (4) 

T and since this lies in the range of B it is orthogonal to the null space 

of B and so is the solutior, ·"hich minimizes 

(5 ) 



~hi~ problem arises in important algorithms used in mathematical 

programming, for example in [2) and (3). However, in these cases B is 

usually very large and sparse and because of storage difficulties it is 

often uneconomical to store and access Q" If this is so, the solution 

can still be obtained by noting that if w is obt~ined from 

T 
LL w = b (6) 

by solv ine with L and then 
T 

L , then x is ~ivl'n tly 

, 

and thi~ can be seen to ~ive the same ma:hematical result as in (4;. 

Unfor~.unately, when such results are obtained on a computer, TJunding 

errors occur; and the two different approaches are likely to give dlff~rent 

answ~rs. Sometu.es it has been thourht that the second result could be 

disas1rously worse than the first, thus negating to a large extent all~orithms 

Similar to 'he one described by «(,) and (7). It i~ the purpo~w of tbis 

nott: to show that such algorithmz are numerically qvite sati~fa('t(lry. 

In order to obtain a clear understanding of the problem and what is 

happening, a simple computation will be examined cefare carrying out the 

full analysiz. This cOMpUtation has no pr3.ctical use other than \-0 clarif): 

t.he numerical performance cf ~he actual case. Suppose A is a nonsinr;ular 

sql,ar!.' matrix a.nd 

T AA w .. b 
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i~ solved on a floating point computer with precision € to give w. ~ow 

well dues x = AT; approximate T x ~ A w t Note that this computation is 

similar TO that in (6) and (7), except that no special advantagv 1;;; taken 

at' any del~omposition here and no errOl' in forming AT; will be con~idered. 

For simplicity assume that II A \\2 '" 1 , so that X = II A- 1 Ib is the spectral 

condition number of A. 

Th~ set of equations (8) can be solved in two distinct ways. First 

AAT cauld be computed and the resulting positive definite symmetric matrix 

equation l.iolved, for example us5.ng C.~e Cholesky factorization. From the 

roundin~ "rror analysi~ [4, p. 115, p. 231] it is known that the computed 

:>clutiun w wi 11 satisfy 

wh~re fen} is some iUnction of n 1 the dimension of the problem. But 

tl:ts ic ju~~t 

T 
b = AA w , 

:';0 t hat un multiplying throuchout by A -1 and taking norms 

r, 
~ "'-(:1 II w \1 2 < x'-€, II l'; 112 

(10) 

(ll) 

But ~'.l~t s .lving Ax = b directly usine a reliable method is knl in to g:i.ve 
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a bound on the error \I x - x ;'2 proporUonal to )(€ II x Ib ' so that if 

Ii ;; 112 is very large, the ab')ve method for solving this equation can lead 

to Il. disastrous loss of accuracy_ 

For the se~o~d approach to solving (8) c0nsider solving Ay = band 

T then solving A w = y for w. Using, for exrunplc. ',riangular decomposition 

wich pivoting, this will give a computed solution w satisfying [I., p. 215, 

p. 248) 

••. < f(n)8~ 
1 

where a depends on the largest dement arising in the decomposition, 

( -1) ( -T) T-Ax = A I + A E2 I + E3A A w = b (13 ) 

so that 

(14) 

and if' ')«. < , , the order of magnitude of the error bOWld is the !:amc a:; 
1 

I.h; t for the direct :;olution. This in effect is what happen:::: in solvine 

(6) and computing (7), that is, whenever the square of the condition number 

Jc:··ur~ in the error bound for the final solution, it :s e.ffc.:''tively mult iplied 

by the square of the precision. Note that in both the examples ju~t ~unsidered 

? 
a III (. term'll ill appear in the error bound for w, so that the intermediate 

VCl:tor w could tave negligible accuracy, but in the second method 01' solu-

lion the final resul+ could atil! have quite a few accurate nf':Ur~c. 'fit,· 

same comments apply to computing (6) and (7); x will not 10;;(' a~ mud, 
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accura('y a:.> the intermediate result w. This is a. fairli regular occurrence 

in numerical computations and needs to be emphasized. 
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2. An:ul::iiC of :tll' Practical Algorithm 

Fur simplicity in the full o.nalyci:,; ~ tIe multiplica.tive terms involvint:'; 

ttl\' di:nel'1uions of the problem will be ami t.tcd frt>m the error brur:d:;. Tl": SE' 

are relatively Wlimportant and can be fcund for any particular cCXIIpUtatiuTi 

from the literature [4]. Results of rounding error analyses will be quoted 

from [4] without further reference, and the symbols €i will indicate non­

negat.ive quantities which arc just the product of €, the computer precision, 

and constants dependent only on the dimensions of the problem. It will be 

assumed ·vhat II L \'12 - 1 in (2) so that yell L- 1 lie is the rondition 

number of L for solution of I.:quations. 

Th~ computed lower triangular ma~rix L obtained oy applying the ortho-

~or.n.l t ran:; format ions of either Givens or Householder to B can be shown 

to SA. t i.r fy 

ar.c; wivn t hi:.: is combined with (2) it follows that 

(16) 

w of can be shown ~o satisf,y 

while t.he formation of the final solutiun eives 
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... T -
x ... (B +~)V, (lS) 

\ 
Equations (15), (17), and (lB) describe the rounding errors tha:". occur , 

in the computation. These will nov be .anipulated to show their etfe~t on 

the final solution. From (4), (16) and (17) it can be seen that 

(19) 

--T where use has been made of ~~ • I. Iht using (15) and then (18; 

- T~- T- T­
Q 1 L w ... B w + E4 w 

so that (19) becomes 

Next from (18), using ~~ T • I , 

T- T ~ 
= B w + ~ ~E)w 

~ T -= x + (Q, ~ - I)~W , 

-7-

(20) 



so that (21) gives 

(22) 

T 
The ~ 't,E;> terms cancel in this last equation, and since from (18) 

w == 
-T" -T -

L ~x - L ~~w , 

whi.c'h, if 'X'-:. < 1 , gives 

(23 ) 

L can be seen by taking the nonn of (22) that 

(24) 

Tilue if 'Xc« 1 I ~hc bound on t,he error in x is proportional v XC 
., 

rather < han -/" c as has often been thoucht. There is ~,hen no cntas .... 1-0:phil' 

10::;;: 01' accuracy in computing (6) and (7) ralh(>r than (4), and so tht; alg(Jrill;m~ 

IiP f'l'rib(d in [2] and [3] can safely be t;;;ed. 

This analysis applies to the fully determined case as well as to :he 

under-determined casco Of course the analydz ('an be simplit'ied i l' lit' fully 
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determined ('ase is treated alone, but the result will be just the same. 

Computational tests carried out by Michael Saunders for the fUlly determined 

~ase using leading parts of the Hilbert IIIltrix indicated that (24) was a 

fairly tight bound. Thp. computations on the same matrices usine (4) eave 

results well within the bounds for this approach, and so these results 

were in fect better than those obtained by using (6) and (7). Such compar·· 

isons have probably helped to form the myth that (6) and (7) produ':!e a 

2 
X c error effect in the solution x. 
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