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Bidiagonalization of Matrices 

and Solution of Linear Equations 

C. C. Paige* 

Abstlact 

An algorithm given by Golub and Kahan [2) for reducing a general matrix 

to bidiagonal form is shown to be very important for large sparse matrices. 

The singular values of the matrix are those of the bidiagonal form, Rnd these 

can be easily computed. The bidiagonalization algorithm is shown to be the 

basis of important methods for solving the linear least squares problem for 

large sparse matrices. Eigenvalues of certain 2-cyclic matrices can also be 

efficiently computed using this bidiagonalization. 

*Institute of Computer Science, University of London, England. This work 
was done while Visiting Research Associate at Stanford University under 

National Science F'oundation grant, GJ 29988x. 



1. Introduction 

The ::;ingular value decomposition of an In by n matrix A is 

(1.1) 

where X and Yare unitary matrices and E is a rectangular diagonal 

m by n matrix with non-negative real diagonal entries, the singular values 

of A • 

Golub and Kahan [2, equation (2.4)] suggest a particular method for 

produc:ing a bidiA.gonal matrix wi',h the same singular values as A. This 

method 1s r<'lated to tl.e Lanczos method of minimized iterations for tridia­

gonalizin~ a symmetric matrix [51, and like that method is ideally suited 

for large sparse matrices. The equivalent bidiagonalization of a general 

matrix and tridiagonalization of a symmetr~c matrix using Householder matrices 

is more stable but cannot be applied to many large sparse problems because of 

storage and time considerations. 

Despite a certain numerical instability it is known that a particular 

variant of the r~czos tridiagonalization algorithm still gives extremely 

useful results [7], that is, the eigenvalues and eigenvectors are given as 

accurately as could be hoped, but the convergence can be slower than the 

theoretical rate, and often several computed eigenvalues can represent just 

one true eigenvalue. The bidiagonalization algorithm of Golub and Kahan will be 

seen to be nwnerically equivalent to t.his variant of the Lanczos method applied 

to a certain matrix, and so will have the same sort of stability. Thus 

singular values will be given accurately, but with uncertain multiplicity. 

The bidiagonalization algorithm and its properties are given in Section 2 

, 



2. The Bidiagonalization Algorit~ 

Here Il· \I will denote thl l2 norm, that is 

2 H II u II .. (u"u) = u u • 

The a.lgorithm suggested by Golub and Kahan [2) for bidiagonalizing A will now 

be described in detail. 

For a given m by n matrix A and a given initial vector u
1 

with 

II u, II '" , the method produces m-dimensional vectors u1'~"'" and 

n-dimensional vectors v"v2, ••• , as follows; For i s 1,2, ••• 

(2.1) 

(2.2) 

where the real scalars a i and 6
i
+1 are chosen to be non-negative and 

such that II u i +1 II III II viII .. 1. Suppose ai' IS 1+1 are non-zero for 

i = 1,2, ••• ,k, then the above process is fUlly defined for k steps, 

and if 
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then (2.1) and (2~2) may be re-written 

(2.4) 

where e
k 

is the last column of the k by 1: unit matrix ~, so that 

If Cfk+1 is also non-zero and one more step.of (2.1) alone is executed, 

- - H H with U e [U'~+1] , L • [t '~k+,ek] , then 

H- ~ H ~ 
A U = VI; + Cfk+1 vk+1 ek+1 ' AV = UL (2.6) 

It is now easy to show by induction that 

(2.8) 

Thi& is certainly true for k .. 1 , so supp:>se it is true for some k 2: 1 , 

then from (2.5) Ji~+1" 0 , :. iJHU c I , thus from (2.7) vRvk+1 ... 0 , and 

so (2.8) is true for k + 1 • 

This orthogonality ensures that the process will curtail for some 

value k no greater than the minimum of m and n with either ~k+' '\.+1 - 0 

in (2.4) or Ok+1vk+1 = 0 in (2.6). As a result there are two possible 

final states of' the algorltbm, the first with the k by k IIIII.trix L 
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A~ = VL
H

, AV = UL, Jlu .. A '" ~ , 

'" and the second with the k+1 by k matrix L 

AIt .. vCI , AV = UL, tfIU. ~-t1 ' .;y = ~ • (2.1.0) 

To understand which termination wi11 occur, consider the singular 

value decomposition of L in (2.10). ; ... has linearly independent columns so 

(2.11) 

where M is k+1 by k and has ele'Jents 

m
ij 

~ 0 for i ~ j • 

Thus 

A~ .. V~, AYQ = UPM , 

AAHijp .. UM(I , AH,.VQ = vrJiM I (2.12) 

and so when (2.10) results, A has at least k non-zero singular values 

m11"'.'~ 1 and at least one zero singular value with the last co1.umn 

of UP being :he singular vector that Ues in 'l(AH) , the null space of 

AH • 

Now if for i .. 1 it is true that u
i 

E R(A) , the range of A, then 

it can be seen from (2.2) that this is ~rue for a11 i. But ~(AH) is 

the orthogonal complement of R(A) , so if u
1 

E R(A) then all u
i 

are 

-5-



orthogonal to 71(A~ I and from the previous parar;raph this means that (2.10) 

cannot be th~ final result, and so (2.9) must result. Next note that if 

(2.9) is the final result, then since L is nonsingular U .. AVL-1 , so 

that u i E R(A) for all i; thus if u111(A) then (2.9) cannot 

follow and (2.10) must be the final result. 

Note that if A has rank r .. m , then u. E R(A) necessarily, and 
j 

(2.9) follows. If r < m I then (2.l0) will result unless u
1 

ie a linear 

combination or some of the colll1111ls of X in (1.1). Both final states 

give k non-zero singular values of A, so the process must curtail with 

k ~ r • 

If the process halts with k < r I then it can be continued in an 

obvious way until r orthogonal vectors v1, ••• ,vr are obtained [2]. 

Then if u, is orthogonal to the null space of AH , the result (2.9) 

ca:i bE; written 

A IS urJi , 

Otherwise the result fbllows from (2.10) 

(2.14) 

Such continuation need not be considered here. 

We will now relate the bidiagonalization algoritllm to the Ianczos reduction 

of a certain sYlJllletri~ matrix to tridiagonal form. Defininp; 
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W 5 
o ~ 0 :- :.1 , 

(2.15) 

o 
B • , T :: 

it can be seen for e~le that (2.4) is mathematically equivalent to 

BW .. w.r + ISk+1w2k+1e~, h .. Ia, Jiw2k+1 = 0 , (2.16) 

which is the result of applying 2k steps of the IAnczos process to B 

using ~s initial vector w
1 

J the first column of W. Note that computation 

and vector storage have effectively been halved by taking tull advantage 

of the structure of B. In the 2i-th step the successf'lll variant of the 

IAnczos algorithm [71 forms 
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H wbere the computed and exact values of w2iBw2i are zero, giving 

( Av, - a,., 1 
o 

Now since is found by nox..1izing "this vector I the two methods can 

be seen to be caaputationally as well as mathematical.l.y equivalent. 

In practice neither algorithm will stop with either Ok or ak zero, 

but for large enough It many of the eigenvalues of T in (2.15) will 

approximate eigen·~lues of B to almost machine precision. Now if 

A is an eigenvalue of B such that 

= 

then 

H 2 
AAz. A z 

1 ( 

, 
YI 

! 
Z j 

so that a - , A I is a singul.ar value of A I and several singular 

values of A will be given to almst machine precision by computing the 

eigenvalues of T. However, with the permutation matrix 

, 
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so t.hat. the singular values of L are the moduli of eigenvalues of T , 

and thus we need only comput.e the sin!;lollar values of L. These r.an be 

accurately computed using the Q,R-like algorithm given in [3]. 

Finally, if a is a singular value of A, then V ± a are eigen­

values of the 2-cyc1ic matri~ 

, 

so eigenval".ws of such matrices can be computed efficiently just by using 

the bidiagonalization algorithm on A, and this is particularly important 

for large sparse A, which arise from .~lliptic partlal differential equa­

tions. This result is parallel to that in [9], where Reid shows how the 

computation and storage can be halved when the conjugate gradients algorithm 

is applied to such 2-cyclic matrices. 

In practice the bidiagonalization algorithm performed just as expected, 

the largest singular values being given with remarkable accuracy very quickly, 

while the small ones (which correspond to the middle eigenvalues of B in 

(2.15» were slower to converge, especially when there were several very 

close, very small ones. If the process was carried far enough, the large 

singular values would often appear several times. 

-9-



,. Solution of the Linear Least Squares Problem I 

Given the m by n matrix A and an m-vector b, the problem is 

minimize \I Ax - b \I 

or equivalently, find x and r such that 

r + Ax = b I 

Any such x is called a least spret; solution. The x which also mini­

mizes II x n is called the miniJm.un least squares solution. The minimum 

least squares solution is the unique solution orthogonal to n(A) , and 

so wUl have the form H 
x = A Y • Thus if Y is any solution of 

then H 
x = A Y is the minUmwn least squares solution. 

In order to motivate the methods that are about to be introduced 

for solving such problems, suppose that AV .. UL as in (2.9), and the 

representation x = Vy holds; then since 0 c rHAV .. rHUL and L is 

nonsingular, Jlr .. o. Also 

b .. r + Ax - r + AVy - r + UlU' 

thus y and x may be found from 
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x • Vy' • 

It is n0li necessary to show that for a certain choice of u, in (2.1) 

and (2.2') such a representation of x is possible. We must then consider 

whid'l of (2.9) and (2.10) results and what can be done in the latter case. 

The most conven~~nt Choice of initial vector is the one to be considered 

here 

a, • 1\ b n (~.6) 

this is cQ'lvenlent because u"b "" ;i(, is then known a priori; this will 

be discussed again in Bection 5. The equations of the form (3.1) or (,.2) 

now separate in~o two posstble classes with corresponding slightly different 

methods of solution. First, if the e~tion Ax = b is COmpatible, that is 

if r .. 0 in (3.2), then b E a(A) and so u1 E a(A} in (3.6), and from 

Section 2 it follows that (2.9) must result. This compatible case will 

be treated nOW in rull; the case when r 1= 0 will be examined later in 

this paper. 

Here 

and let x .. Vy + w, where ..(Iw. o. Tben Ax ... UIQ + Aw - $, ~ ; but 

JiAw .. LvBw • 0 I so ~ .. 81e, and thus Aw - 0 , meaning that the solution 

of m': ,dJll'JIIl norm is 

lC • Vy , (,.8) 
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since from (3.7) Vy:: A"uL-Hy E a (AH) J and so is orthogonal to ,,(A) • 

The elements 'l\i of 'I are found from ~ = 61 e1 ' that is 

The method is an attractive one because the 2-norm of the error is 

minimized in the i-th step over all possible approximate solutions which 

are combinations of v
1
, ••• ,v

i
• It is an excellent algorithm if A is 

a lArge sparse matrix, since a means of computing u:= Av - u and storage 

for 3 vectors is just about all that is needed. What is more, the residual 

is available at each step with no extra computation, for if 

'Ii = ('I\1,···,'I\i,0, ••• ,0)H then the residual r i after the i-th step is 

where use has been made of (2.2) ~nd the expression for 'l\i+1 in (3.9)· 

From this expression it can be seen that residuals at different steps are 

orthogonal. 

This is not a new method as will be shown in the next paragraph. Its 

importance here is the very simple derivation fr')m the very natural bidiagon­

alization algorithm (2.1) and (2.2), so that the connection between the 

method and the relevant singular values of A is laid bare. As is well 
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known, these s~ values are of vital importance in the solution of 

linear equations. 

In fact, the method (3.9) is equivalent to Craig's method in the 

computational form described by Faddeev and Faddeeva [1, 
2 (23)]. In Craig's algorithm take Xo = 0, a i a 1/Qi ' 

p. 405, equations 

2 2 
bi = [ai +1'\+1] ![c:ri 'l1 i ] , 

2 
gi = Clti ll i V

i , and r i = -~i+11liui+1 I and the algorithm here will result. 

Thus Craig's method is seen to apply to any compatible system of linear 

algebraic equations. It has been pointed out in [1] that Craig's method 

is mathen.tically equivalent to applying the method of cOnjugate gradients 

[4] to 

H H AA Y = b, x = A Y • (~.ll) 

The purpose in using (3.9) rather than conjugate gradients applied to (3.11) 

is to avoid any suggestion of deterioration in the condition of the problem 

to be solved. 

The possibility that now has to be examined is the one where r is 

non-zero in (3.2), so that u1 ~ b/~1J( ICA). Section 2 then shows that 

(2.10) must be the final E.tate of the bidiagonalization procedure. Thus 

solve 

H A r • 0 

using 
1'-- -H --R- _.1t_ 

K"lJ a VI; I AV .. UL , tTl) .. ~+1 ' V-y .. ~ • 
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Suppose 

x _ Vy + w with v"w - 0 , (3.14) 

then r + UIQr + Aw a 81 u, , but rJlAw III i:vRw .. 0 so IQr = 8, e, - uHr 

giving r + Aw .. ffiflr, :. wHAHr + wHAHAw '" 1\ Aw \12 
.. wHA'tU"r = 0, since 

H lL", 
w A--U = 0 t'rom the above. 

Thus Aw - 0 , and a smaller solution is obtained by taking x '" Vy 

in ('.14). But from (2.1) vi E a(AH) rorail i I and so this x is 

orthogonal to "I(A) and is therefore the miniJDwD. least squares solu~ion. 

The equations of interest are now 

(3.15 ) 

but since r is unknown a priori the i-th element 1\i of y apparently 

cannot be found at the same time as u i and vi r-re producecl--unlike ('.9). 

However, suppose 

t • (:: ')" ( 

\ 1'k_1 

t ) E fiIr/y , 

'I'k 

it follows on dividing by Y that 
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\~J ""1"1 
a2 \. (3.18) 

Ot2 83 \ 

Otk ~k+) 
This can be solved, giving 

Thus if V were known a priori , u
i 
Hr would be available in tbe i-th step 

and 80 ~i could be found. on the other hand, from (,.15) and (3.11) 

II 2 H 
r \I - I), r U, - ., V 

so if' Y were known a priori, then II r II would be known a priori, which 

seems unlike ly. 

Suppose now that vectors z and ware found from 

I 

then takiDg 

yaz-vw 

gives 

-15-



so that 

x • Vy • Vz - yVw (3.24) 

and Vz and Vw -.y be formed as the bidiagonalization proceeds. In the 

last step y may be found from the last element of the middle equation in 

(3.15), eq~tion (3.22), and (3.16). 

i.e. , 

where 'i' roi are the i-th clements of z, w respectively. The solution 

x is then given by (3.24). 

It Vz and yVW were large and nearly equal, then cancellation in 

(3.22) wo').ld mean numerical instability. However, from (3. 21) II z II S S,l0k 

where a k is the smallest singular value of L, that is, the sm.llest 

relevant (non-zero) singular value of A. Thus the subtraction in (3.22) 

can at most introduce an (additional) error in x of ~10(~>lO'k' where 

E is the Nchine precision. Such an error size is to be expected from 

the condit inn ot the problel'\, and so the step (3. 24) appears acceptable. 

With this a~ach the algorithm for solving either compatible or 

incompatible system~ o~ e~tions can be written 

'0 :- -1 ; vz:- 0 w :- 0 

-16-



i :- 0 

general step: i :- i + 1 

if 81+1 = 0 t1u:n (solution :- vz reslctua~:- 0 ; stop) 

if a
i
+

1
• 0 then 

so~ution :- vz - yvw stop) ; 

go to general step ; 

As before a i I 81 are chosen 80 that II Vi II - II u
i 

II - 1 • This requires 

only , vectors of length n, i.e., v, vz , vw , and 1 vector of length m I 

i. e. u ; or if it were known a priori that y - 0 , then vw would not be 

needed. 

-17-



It can be shown using ('.13), (,.15), and (,.16), that after the i-th 

atep the reaidual is 

but "thiB is not available until y is known at the end of the process. 

However, if' r. 0 in (,.12) then y '" 0 from (,.16) and so "'~i+1'iu1+1 

is ~he residual after the i-th step; this is just (,.10). 

In practice the stopping criteria would be almost useless, and in 

fact it could happen that no 0i or ai was even sall. The hope is 

that both 'i and IDi become negligible, and that y in (,.25) attains 

a stable value. 

-18-



4. Solution of tht. Linear I£ast Squares Problem. II 

The bidlagonal1zation algorithll can be applied with AH interchanged 

with A In (2.1) and (2.2), and then a different algorithll for solution 

ot equatlons will result. However, since the present bidiagonalization 

algorithm bas been analysed 80 tully in Section 2, it will be retained, 

and the alternative solution of equations algorithm will be derived from 

applying thiS same bidiagonalization algorithm to the problem. 

H r+Axo:b, 

where, as before, A is an m by n matrix, and b is given. 

The most convenient choice of initial vector here is 

D, • II Ab II • 

(4.1) 

(4.2) 

With this choice u
t 

E R(A) , and from the discussion in Section 2 the final 

result of the bidiagoru. ... l1zation DUst be 

ABu • vr,H , AV • UL , 

Suppose nov that 

x - Uy + r, tfIt. 0 , 
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(4.4) 

Thus b - r • vvB(b - r) + AHr I giving with (4.3) 

(4.5) 

and on ml t 1plying by tJI 

(4.6) 

since tJIAAHt. uflAHt - O. Finally substituting (4.6) in (4.5) gives 

H . H H 
AA ~ • O. Thus f E ~(A ) , anel since Uy is orthogonal. to 'l(A:) I 

x • Uy 1s the min~ least squares sol.ution if y can be found from (4.4). 

:r~ (4.4) and (4.6) it follows that 

Z a vfi(b - r} • 

Clearly y ca.nnot be found. until the b1d1a.gonalizat1on is complete, but we 

are really only interested in rinding Uy, so 

(4.8) 

and W can be cOllPlted a colUill at a time, a.s the a~orithm progresses, by 

solving 

-20-



(4.9) 

In th1s algor1thm 

from (4.}), and 80 i8 orthonormal; what is more, if Xi;: WZ i ' 

T ) H R_ -H 
zl • ('1"'" 'i' 0, •.• , 0 , then r i - b - A xi - b - K"UL zi - b - VZi 

which can easily be updated as the computation progresses. Without ca.puting 

r 1 the algorithm can be written as f'ollows. Remember that crt cannot in 

theory be zero. 

i :- 1 

w 1 :- U f a 1 

general step: i:- i + 1 

if' -i. 0 then stop ; 

-21-



go to general step 

As usual the a i and ~i are chosen so that II vi II • \I ui 1\ .. 1 • 

This a~orithJn requ,ires storage space for the 3 vec~ors u I w , x of 

dimension m I and v of dimension n. 

This is apparent~ a new ~orlthm; its advantages are its simplicity 

and economy and its direct relation to the bidiagonalization (2.1) and (2.2), 

so that the singUlar values relevant to the problem can be found easily 

floom L. Good approximations to the s1ngu.l.ar values can also be found 

after only a fraction of the full number of steps. 

If this is used computationally, then it is unlikely that either ~i 

or cri will ever become negligible, but in practice the '1 eventually 

do, and so the computation can be curtailed, giving as accurate a solution 

as could be hoped for. A possible test is to check that Ar '" A(AHx - b) 

is negllgible. Computational experience shows that unless the condition of 

the problem is too bad for the machine precision, the algorithm will converge, 

but on problems with very clos~ very sDlLll singular values, far more tban 

n steps may be required. 
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5. COlllllents and ConcluBions 

The very natura.l bidiagonalization algoritl.m of Golub and Kahan [2], 

deocribed tlcrc in (2.1) and (2.2), appearu to be of significant. theoretical 

importance. First, it allows s1ngular values and vectors of A to be easily 

obtained, for instance by finding the singular value decomposition of the 

bidiagonal II&trix L using the QR-like method given in [3]. This was the 

original motivation for deriving the algorithll. Now since the singular 

values are nf such great importance in solving linear equations, it is 

not, in retrospect, so surprising that this bidiagonalization turns out to 

be very basically related to several methods for solving such equations. 

Two solution of equations algorithms have been developed here using the 

: Idiagonalization algorithm as a basis; these have the important advantage 

that the relevant singul.a.r values can be found if needed. 

A very important pJint that does not appear to be generally realized 

is that the choice of initial vector for solution of equations in algorithms 

such as these is computationally all important. Choices other than those 

in (3.6) and (4.2) are perfectly satisfactory in theory, and just require small 

alterations in the algOrithms involving one additional inner-prolluct. However, 

the ones given seem to be the only ones that can be relied upon to give con-

vergence in practice. Note that when (3.6) is used it is aSSUllled in the 

algorithm that rJib. '1e1 I and yet it is known that this is not usually 

the case, that is, orthogonality is lost. If the true value of J\ is 

used in the algorithm instead of e1e1 ' it is found in practice that the 

algorithm will not converge once orthogonality is 1ost. A s1m11ar result 

holds for (4.2). 

This does not mean that another initial approximation to the solution 

cannot be used. Suppose H AraO,and ~ i. a good 



approxiation to x then if rO = b - AxO ' it is clear we now want to 

solve 

H A r .0, 

80 tbat x - ~ + g. The method for solving this new problem can now 

start with the necessary initial vector, e.g., ~1u.,. rO in (3.6). Note 

H 
here tbat if ~ - YO + Zo with Zo E mA), YO E R(A ); then x. y + Zo 

with Y E a(AH) , so that x 11 not the minimum least squares solution tor 

non-zero zO. 

The cOIIIpUtational 1IIIportance of all the algorithms suggested here lies 

in their application to very large ,problems with a sparse matrix A. In 

thil case the computation per step and storage is about as slIIIl.ll as oould be 

hoped, and theoretically the number of steps will be no greater than the 

minilrruJll dimenSion of A. In practice, however, the number of steps required 

for a given accur&c,y can be much less or much greater than the expected 

number, depending, among other thingS, on the computer preciSion and the 

actual s1ngula.r values. Rounding errors usually cause orthogonality ot the 

vectors ui and ot the vectors Vi in (2.1) and (2.2) to be lost, but the 

si~r values and vectors can still be accurately obtained, and the solution 

of the given equations can be accurately computed. This is an exact pe.rallel 

to the ~tational pertol'llllUlce ot the IAnczos JDethod tor finding eigenvalues 

ot ~tric IIIIl.trices [7], even as far as often obtaining several. computed 

singUlar values of A corresponding to one actual singular value. 

Although the bidiagonalization algorithm has been extensively tested, 

only the solution ot equations algorithm in Section 4 has been tested, it 
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being mre straightfolVard th!Ul the (~xtension of Craig's· algorithm given :!..n 

Section 3. The suggestions on computational technique come from experience 

with the algoritrJm in Section 4 and other algorithms closely related to 

these here. 

The methods described here are for a general matrix A ; if A is 

hermitian, then these methods will be inefficient. The Lanczos algorithm 

takes advantage of the Sytlllletry of A for finding eigenvalues (singula r 

vA.lues), while the method of conjugate gradients is suited to positive 

definite systems of equations. A future paper by Paige and Saunders will 

show how advantage may be taken of sYJIIIletry for effiCiently solving systems 

of equation~ with an indefinite symmetric matrix by using the vectors from 

the Lanczos process. 

An attempt has been made here to show that the bidiagonalization 

algorithm introduced by Golub and Kahan is a very basic algorithm, and of 

great practical importance for large sparse matrices. The same can be said 

of the original Ianczos algorithm for tridiagonalizing hermitian matric,esj 

in fact i.t could be argued that this latter algorithm is mre bllSic, one 

reason being that the former can be derived in a simple manner from the 

tridiagonalization algorithm applied to the matrix B in (2.15). 
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