
STAN-CS-72-293 SEL-72-027

PB 2:12 234
Combinatorial Solutions
to Partitioning Problems

by

J. A. Lukes

May 1972

Technical Report No. 32

This work has been supported by the
Nationa I Science Foundation under
Grant GJ-IISD and by Dr. Lukes'
fellowship from the IBM Corporation.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

us Deportmen\ of Commerce
Springfif?ld VA 22151

DIIiITAL SYSTEmS LABORATORY

STAnFORD EIE[TROnl[S'LABOR'JTORIE5
STAnFORD UIiIUERSITY • STAnFORD, CALIFORniA

BIBLIOGRAPHIC DA,. A

SHEET
4. T ide and Subt It.e

\

1. Report No.

STAN-CS-72-293

Combinatorial Solutions to Par-.::.itioning Problems

7. A uthor{s)

J. A. Lukes
9. Perforrlling Organization Name and Address

Stanford Un:L versi ty
Computer Science Department
Stanford, California 94305

12. Sponsoring Organization Name and Address

National Science Foundation
Washington, D. C.

15. Supplementary Notes

i 6. Abstracts !

3. Recipient's Accession No.

~$ - ,;.Z /.z, .,.2,31-"
5. Report Date

\May 1972
6.

II. Performing Otganization Rept.

NO'STAN-CS-72"293
10. Project/Task/Work Unit No.

11. Contract/Grant No.

GJl180
13. Type of Report & Period

Covered

technical
104.

In this c.issertation -we describe algorithms that use graph properties and dynamic

progranuning techniques to generate the optimal partition of an arbitrary graph. In

particular, let G be a graph with weighted nodes and weighted edges. We consider

algorithms that solve the problem of partitioninr. G into clusters of nodes such that

the sum of the node weights in any cluster does not exceed a gi;ven mAXimum 1i~. and the

weights of the intercluster edges are minimized. An interesting application of such

an algorithm is the assignment of a program's subroutines and data to pages in a paged

memory system so as to minimize paging faults.

17. Key Words and Document Analysis. 17 •• Descriptors

17b. Identifiers/Open-Ended Terms

17c. COSATI Field/Group

18. Availability Statement

Distribution unlimited

FORM NTIS-aS C 10'70)

.
. :f..fl../

19. SecuritV Class (This
Report)

'UNC:I .ASSIFIFn
20. Security Class (This

Page
UNCLASSIFIED

21. No. of Pages

124
22. Price

#.0. /J-cJ

USCOMM'DC 40329-P71

STAN-CS-72-293 SEL-72-027

COMBINATORIAL SOLUTIONS TO PARTITIONING PROBL.b.'MS

by

J. A. Lukes

May 1972

Technical Report no. 32

DIGITAL SYSTEMS LABORATORY

Department of Electrical Engtneering Department of Computer Science

Stanford University

Stanford, California

This work was supported by the National Science Foundation under grant GJ-1180
and by Dr. Lukes' fellowship from the IBM Corporation.

ABSTRACf

In this dissertation we describe algoritruns that use graph properties

and dynamic programming techniques to generatE: the optimal partition of an

arbi trary graph. In particular, let G be a graph with weighted nO'des and

weighted edges. We consider algorithms that solve the problem of part­

itioning G into clusters of nodes such that the sum of the node weights in

any cluster does not exceed a given maximum Wand the weights of the inter­

cluster edges are minimized. An interesting application of such an

algorithm is the assignment of a program's subroutines and data to pages

in a paged memol'y system so as to minimize paging faults.

The concepts of dynamic programming and, in particular, those

techniques appropriate to the solution of the "knapsack" problem, are

employed i:1 an algorithm that generates the optimal partition of an

arbitrary graph. An upper bound on the algorithm's growth in computation

time and storage to partition an 11 node graph is

where e is the base of the natural logarithms. We use the following graph

properties to reduce this growth rate:

(1) the degree of the graph;

(2) the existence of cutpoints in the graph.

The first property bounds the growth in time and storage of the

algorith~ tc less than

iC-

ii

where x is.a fUl1ct-:'on of the degree of the graph. The value of x is

independent of the number of nodes in the graph; however, the degree of a

graph may grow as n. A graph whose nodes are adjacent to few others has

a value of x « n and, for a small value of W, can be partitioned very

efficiently.

If any :n node graph G contains one or more cutpoints, we show that G

can be partitioned by partitioning the blocks of G and combining these

partitions. A considerable reduction in time ar.d storage to partition the

graph results if the number of nodes in each block of G is small compared

to n.

A very efficient variation of the general algorithm results if the

graph to be partitioned is a tree. We show that trees can be partitioned

in a time proportional to the number of nodes in the graph.

TABLE OF CONTENTS

Abstract

Acknowledgments

List of Tables

List of Figures

1. Introduction

A. Problem Definition and Restrictions

B. History

C. A Combinatorial Approach to the Partitioning Problem

II. A General Graph Partitioning Algorithm

A. Definitions

B. Dynamic Pr('gramming Procedure

C. Growth Rate for Dynamic Programming Procedure

D. Use of Graph ~'roperties in Partitioning

E. Growth Rate for General Partitioning Algorithm

F. The General Graph Partitioning Algorithm

III. An Efficient Tree-partitioning Algorithm

A. Introduction

B. Algorithm

C. Computation and Storage Growth Rates

D. Example

IV. Graph Labeling

A. Relationship Between Labeling and Size of Pk

B. Labeling Algorithm

C. Example

D. Comments on the Optimality of the Labeling Algorithm

Page

i

viii

vii

v

1

1

4

5

8

10

16

20

35

44

49

49

))

60

61

66

66

77

82

iii

iv

v. Conclusions

A.

B.

Summary of Results

Future Research

Appendix A

An Analysis of the Lower Bound on the Number of Feasible

Partitions for a Connected k Node Graph

A. Lower Bound on Number of Feasible Partitions

Ignoring Weight Constraint

B. Lower Bound on Number of Feasible Partitions

fOT a Weight Constraint of W

Appendix B

Implementation of Basic Partitioning Algorithm

A.

B.

C.

Data Structure

Algorithm

Growth Rate

Appendix C

An Implementation of the Graph Partitioning Process

for a Graph with Cutpoints

A. Partitioning Algorithm

B. Growth Rate

C. Example

List of References

Page

84

84

85

90

94

94

97

103

105

106

110

110

119

1.1

2.1

2.2

2·3

2.4

2·5

2.6

2·7

2.8

2·9

2.10

2.11

2.12

3. 1

3.2

3·3

3.4

3·5

4.1

4.2

4.3

4.4

4·5

A.l

A.2

LIST OF FIGURES

A Partition of the Graph G=(V,E)

Examples of Definitions

Illustration of Connected Set

An Example of the Dynamic Programming Procedure

Minimum- and Maximum-level k Node Trees

Illustration of Isolated Set

Application of Isolated Set Theorem

Example of Graph with a Cutpoint

Graph with Constant-size Connected set

Fully-developed Tree

Flowchart of General Graph Partitioning Process

Flowchart of Basic Partitioning Algorithm

Example of Graph Partitioning Algorithm

Transformation of Tree G into Ordered Tree G'

Illustration of Notation

Illustration of Notation

Illustration of Notation

Partition of Tree of Fig. 3.l(a)

Curves of Cardinality of ISOL(k) vs. k

Illustration of Definitions

Flowchart of Labeling Algorithm

Example of Labeling Process

Counterexample to Local Labeling Criterion

Illustration of an Invalid Partition Representation

Minimum- and Maximum-level Spanning Trees

Page

3

11,12,13

17

21

24

26

31

33

40

41

4)

46

48

51

52

54

56

65

70

74

78

80

83

88

91

v

vi

B.l Data Structure for a Partition

B.2 Exrumples of Partition Representations

B.3 An Example of an AVL Tree

C.l The Block-cutpoint Tree

C.2 Example of Partitioning Process·for Graph

with Cutpoints

c.4

C·5

Rooted Tr~e bc' (G) Derived from Block-cutpoint

Graph bC(G)

Examples of Block Labeling

Resulting Partition of Graph of Fig. C.2

Page

95

98

101

107

112

113

111.~

115

LIST OF TABLES

4.1 Operations Required to Label an n Node Graph

B,l Number of Operations Required to Form Partitions

Generated on Step k of the Partitioning Algorithm

C.l Number of Operations to Partition an n Node Graph

with k Cutpoints

vii

Page

79

l~

III

viii

ACKNOWLEDGMENTS

I wish to thank my major advisor, Professor H. S. Stone, for his

'excellent advice, undying support, and phenomenal patience during the

writing of this dissertation. Professors A. M. Peterson and R. W. Dutton

are also to be thanked for their excellent suggestions in presenting the

work reported here.

I also wish to thank International Business Machines COrporation for

its financial assistance in the forl!l of a Residtmt Study Fellowship and

my wife for her encouragement and patience.

CHAPTER I

INTRODUCTION

Consider a graph G whose nodes have nonnegar;ive integer weights and

whose edges have positive values. A familiar combinato~ial problem is the

partitioning of G into subgraphs such that the sum of the node weights in

any subgraph does not exceed a given maximum and the sum of the values of

the edges joining different subgraphs is minimal.

An interesting example of this partitioning problem is t.hat of part-

itioning a program to be run on a computer with a paged memory system into

pages so that paging faults are minimized [Kernighan, 1971J. Here the

graph is the program and the nodes are collections of instructions (such as

subroutines) or data (such as arl~Ys) making up that program. The edges

are the transitions that might occur from one subroutine to other sub-

routines and data, for example.

Befor~~ describing previous investigations 0f partitioning problems,

we define partition in the sense used here.

A. PROBLEM DEFINITION AND RESTRICTIONS

Given a graph G=(V,E) with node set V and edge set E, a partition of G

is a collection of k clusters of nodes {co] (i=1,2, ••• ,k) such that
l.

(1)

(2)

k
U

i=l
Co=V,

l.

Co n c o=¢ for all i~j •
l. J

1

A nonnegative integer weight wi is associated with each node i and a positive

value v 0 0 with each edge (i, j). A weight constraint is imposed upon each
--- l.J

cluster of a partition. Given a positive, integer weight constraint W, the

2

sum of the node weights in any cluster vi a partition must not exceed W.

An edge (a,b) is ~ by a partition if nodes a and b are in different

clusters. Fig. 1.1 illustrates a partition of the given graph where the

weight constraint is two.

An optimal partition is .1efined as some partition of G, PG(opt:)==

tc1,c2, ••• ,ck}, with the property that each ~luster c i satisfies the weight

constra:!.nt,

and

I w .~W,
jEc. J

1

2 v.. is minimal (.f,g=1,2, ••• ,k).

!~~f11~g
jEc j

g

An equivalent property is that each cluster satisfies the weight constraint

and

is maximal (f::l,2, ••• ,k),

since the sum of the edges in clusters plus the sum of the p.dges cut by the

partition equals the sum of the values of G's edges.

We impose several restriction::; ''In the problem investigated here. The

first is that the nodes of the graph must have nonnegative integer weights.

The only restriction placed upon the values of the edges, h('lwcver, is that

they are positive. * Another restriction is that the graph be connected •

Given a disconnected graph G, each connected s~bgraph of G is partitioned

* A connected graph has a path from any node in the graph to all other

nodes in the graph.

weight constraint = .-

partition =

cI =

c2 =

c
3 =

[CI ,C2,C
3

}

(A,B)

(C)

(D,E)

V=£A,B,C,D,E}

E:=(a,b,c,d,e}

all nodes have unit weight

Figure 1.1 -- A partition of the graph G=(V,E)

independently -- i.e., each cluster consists of nodes from the same

connected subgraph. This restriction does not affect the optimality of the

solution to the partitloning problem -- a proof of this fact is given in

Chapter II.

The final restriction is that a mu1tigra~: ~ust be transformed into a

graph by the following modification. If more than one edge exists between

two nodes i and j, then the several edges joining i and j are replaced by

one with a value vij equal to the sum of the values of those edges.

B. HISTORY

The partitioning problem defined above is one of several found in the

literature on optimal partitioning. Two others frequently investigated

are the following:

(1) Partition a graph with weighted nodes into clusters so that each

cluster does not exceed a given weight constraint and the number

of clusters is a minimum.

(2) Partition a directed graph with weighted nodes and edges with

values that are zero if the edge is in a cluster and positive if

cut by the partition. The objective in this problem is to

minimize the value of the worst-case directed path by clustering

* the given network under both weight and pin constraints •

An example of the first problem is that of packaging a logic design

with the objective of minimizing the number of clusters required. The

second problem occurs in the packaging of a logic design when the objective

is ·:;0 minimize the delay assoc'iated with intercluster wiring.

* A pin constraint is a restriction placed on the number of edges cut by

each cluster of a ~artition.

The literature on optimal partitioning generally falls into the three

categories above. Lawler [1962J, Lucc:i.o and Sanli [1968J, and Kernighan

[1971J have investigated restricted problems of the type considered here.

Stone [1970J has investigated the problem of minimizing the number of

modules required to partition a logic network. Lawler, Levitt, and Turner

[1969J and J'ensen [1970J have investigated the problem of partitioning a

directed acyclic graph with the objective of minimizing the maximum-delay

path.

C. A COMBINATORIAL APPROACH TO THE PARTITIONING PROBLEM

In this thesis we describe combinatorial algorithms that use graph

properties and a dynamic programming procedure to generate the optimal

partition of a connected graph.

The dynamic programming procedure generates "feasible" partitions, i.e.

those partitions of a graph G whose clusters satisfy the weight constraint

and form connected subgraphs of G. The number of feasible partitions of a

k node gr~ph grows exponentially in k, consequently we use certain graph

properties to reduce the number of feasible partitions generated on each

stage of the dynamic programming procedure. These;· properties are:

(1) the number of nodes adjacent to each node of the graph;

(2) the existence of cutpoints in the graph.

The f::'rst property limits the number of partitions generated on the kth

stage of the dynamic programming procedure, Pk' to

"k ~ xk[x:wf '
where xk is a function of the degree of the graph, e is the base of the

natural logarithms, and W is the weight constraint. Note that x
k

is

independent of the number of nodes in thE:: graph.

5

6

The growth in computation time for the kth step of th~ partitioning

algorithm is propor~lonal to

where n is the number of graph nodes. The computation time is proportional

to

therefore it grows asymptotically as

where

and

2 • n2 x2 (.xWe)X n p log2 p

p = t:J x

X:= max {:'k}.
l:5:k:5:n

The storage requirements grow asymptotically as

x
np==nx (x:) .

We show that an algorithm that generates all feasible partitions of an

n node graph G has an asymptotic growth in computation time of

2 • 4)n n p log2 p == n (n:

where

A comparison of the partitioning algorithm developed in this thesis and an

algorithm that generates all feasible partitions shows a reduction in the

growth in computation time and storage of

n-x
n

If each node of G is adjacent to few others, the value of x is much less

than n resulting in a significant :;:eduction in computation time over a

procedure that simply generates all feasible partitions.

A graph with cutpoints can be partitioned by first partitioning the

blocks of the graph, then combining these partitions to form the opttmal

partition of the entire graph. The maximum number of partitions generated

on a step of the partitioning process is a function of the number of nodes

in a ~ of the graph, not the graph itself.

The special properties of a graph in the form of a tree are used to

create an algorithm for tree-partitioning. This algorithm has a growth in

computation time and storage requirements that varies linearly with the

number of graph nodes.

7

8

CHAPrER II

A GENERAL GRAPH PARTITIONING ALGORITHM

In this chapter we describe a partitioning algorithm that has as its

basis a dynamic programming procedure similar to that used in the solution

of the one-dimensional knapsack problem [Gilmore: Gomory, 1966J. The

similarity between that problem and the partitioning; problem becomes

apparent when their properties are compared"

The one-dimensional knapsack problem carl be pOEed as the problem

faced by a mountain climber who has a knapsack that can carry a maximum

weight of W pounds and a number of different items he wishes to carry in

the knapsack. Each item has a weight and value associated with it, and the

sum of the weights of the items exceeds W. A mathematical statement of

this problem is the following:

I-dimensional knapsac~ problem

I.et wi = weight of item i

vi = value of item i

W ~ capacity of knapsack
n

(i=1,2, ••• ,n)

Maximize 2: v.x.
i=l 1. l.

subject to the constraints

if item i is in knapsack

otherwise.

The mathematical statement of the partitioning problem, given below,

is seen to be an extension of the one-dimensional knapsack problem to the

distribution of in'cerconnected, weighted items into many" knapsacks" or

clusters, each of capacity W:

Partitioning problem

Let wi = weight of node i

vij = value of edge (i,j)

W = weight constraint

Maximize

(i,j=l,2, ••• ,n)

subject to the constraints

(k=1,2""Jn~~ber of clusters in
partition)

if node i is in cluster k

otherwise.

A problem amenable to solution using dynamic programming must have the

following characteristics [Hillier and Lieberman, 1967J:

(1) The problem is divisible into stages with a policy decision

required at each stage.

(2) Each stage has a number of states associated with it.

(3) The policy decision translates a state associated with th<C:l

present stage into a state associated with the next stage.

(4) Given the current state, an optimal policy for the remaining

stagel; is independent of how the current state is reached.

We now show that the partitioning problem satisfies these characteristics.

In order to pose the partitioning problem as one suitable for solution

by dynamic programming, the graph is first labeled. A labeling is the

assignment of £1. unique integer to each node of the graph; the node

associated with some integer k by the labeling is then referred to as

"node k." The kth step, or stage, of the partitioning process generates

the feasible partitions of the subgraph consisting of those nodes with

9

10

labels ~ k. These partitions correspond to the states of the kth stage.

The partitions of the subgraph c.onsisting of those nodes with labels no

greater than k are creRted from the partitions of the k-l st step by

adding node k to these partitions within the limitations imposed by the

weight constraint. The policy decision is the determination of which

partitions of step k-l can have node k added to one of their clusters to

generate partitions of step k. Consequently, it is apparent that the

parti tioning p:::oblem can be solved with a dynamic programming procedure.

Before describing the basic partitioning process, we give the following

definitions.

A. DEFINITIONS

The nodal representation of a partition is an unordered collection of

lists where each list represents a cluster and the contents of the list are

the nodes in that cluster. For example, a cluster with nodes 1,3,5, and 6
is represented by the list (1,3,5,6), where the order in which the nodes

appear in the list is not important. An example of a nodal representation

of a partition with this cluster is (1,3,5,6)(2,4)(7). The set of partitions

generated on the kth step of the partitioning process are denoted by P
k . A

partition in P
k is denoted by Pi,k and represents a partition of the sub­

graph consisting of nodes with labels less than or equal to k. The value

of some partition p. k is defined ~s the sum of the values of the edges ~,

wi. thin the c] usters of p. k' The weight of a cluster is defined as the sum ~,

of the weights of the nodes in that cluster. The cost of a partition equals

the sum of the values of the intercluster edges. The cost plus the value of

a partition equals the sum of the values of all edges in the graph for which

that partition is generated. Fig. 2.1 illustrates several of these

definitions.

11

cluster: (1,3,5,6)

partition: (1,3,5,6)(2,4)(7)

(a) Nodal representation of a partition

Figure 2.1 -- Examples of definitions

12

partition p:

VALUE(p) = 6 + 4 + 5 = 15

COST(P) = 3 + 1 = 4

(b) Value and cost of a partition

Figure 2.1 -- Examples of definitions

a 2-adjacency of node 4:
(1,2)(3,4)

another 2-adjacency

(c) A k-adjacency of node j

4:
(1)(3)(2,4)

Figure 2.1 -- Examples of definitions

13

14

A k-adjacency of node j is defined as a partition p .. with a cluster
1,J

containing node j whose weight is k. An example of a 2-adjacency of node 4

is shown in Fig. 2.1. A k-adjacen'cy of a node is not unique, as is also

shown in Fig. 2.1.

In Chapter I a weight constraint is imposed upon each cluster o~ a

partition. The following theorem fUrther constrains the properties of the

nodes in a cluster.

Connectivity Theorem

J\ll optimal policy for a connected grliph G is to cluster only those

nodes that ultimately form a connected subgraph of G.

Proof

Let there exist a cluster of an optimal partition of G that contains

two or more disjoint connected subgraphsj Sl,s2, ••• ,Sk' Since the graph G

is connected, some subgraph S. can be removed from the cluster in which it
l.

presently exists and added to a cluster in which there is at least one

node adjacent to som~ node of S .• If the sum of the nodes in the newly
).

formed .;l.uster does not exceed the weight constraint, an edge that was cut

by the partition (there may be more than one) is now within the newly

formed cluster. Since all edge values are pOSitive, the original partition

is not optimal, contrary to the given condition; this contradiction proves

the theorem.

If the subgraph S. cannot be added to a cluster containing a node
1.

acjacent to some node of S. without violating the weight limitation, then
l.

it can be clustered by itself with no increase in the cost of the partition.

Consequently, all clusters in an optimal partition of a connected graph G

can form connected subgraphs of G. A partition of G can, however, have

clusters containing diSjoint connected subgraphs with a cost that is equal

to that of the optimal partition generated using this policy, and, in fact,

may require fewer clusters. The point of the theorem is that the connect-

ivity limitation does not cause the deletion of an optimal partition ...

A feasible partition of a graph G is defined as a partition whose

clusters each satisfy the following properties:

(1) The sum of the weights of the nodes in a cluster must not

exceed W, the weight constraint.

(2) The ncdes in a cluster must form a connected subgraph of G.

In the process of partitioning a connected graph G the only partitions

that need to be generated are those whose clusters have a weight not

exceeding the weight constraint and that contain nodes that may form a

connected subgraph of G. In generating the set of partitions Pk on step k,

the weight constraint is easily tested by 8.dding node k to each cluster of

some partition in Pk- 1 and rejecting the resulting partitions with a

cluster whose weight exceeds W. A newly created element of Pk must not only

have clusters that satisfy the weight constraint, but its clusters must also

contain nodes that presently form c.. ·.:;",nnected subgraph, or form a connected

subgraph with the addition of one or more nodes with labels greater than k.

Let this restriction be called the connectivity constraint. In order to

recognize some cluster of an element of P to which node k can be added
k-l

without violating the connectivity constraint, we introduce the concer:i; of

the connected set.

The connected set for a node k is defined as that set of nodes that, if

one or more of them appears in a cluster of a partition in P
k

-
l

, guarantees

that the addition of node k to that cluster may on some step j .?: k form a

connected subgraph. The properties of a node i in the connected set for

node k, denoted by CONN(k), are:

15

16

~:.

(1) i < k;

(2) node i

(a) is adjacent to node k, or

(b) lies on a path i,jl,j2, ••• ,jr,k where

jm> k for m=1,2, ••• ,r.

The second property guarantees that a partition with a cluster containing

two nodes i and k that are presently disconnected, but become connected if

nodes jl,j2, ••• ,jr are added to that cluster, is generated on step k.

An illustration of the connected set associated with each node of the

given graph is shown in Fig. 2.2.

B. DYNAMIC PROGRAMMING PROCEDURE

We now descriGe the dynamic programming procedure that forms the basis

of the parU.tioning algorithm. A labeling is assumed to have been impressed

upon the graph. The particular labeling used affects the partitioning

process. Chapter IV discusses the problem of labeling a graph.

The kth step of the partitioning algoritlun has as its states the

partitions of the subgraph consisting of those nodes with labels ~ k,

denoted by P
k

• We then add node k+l to all partitions in P
k

with a cluster

satisfying the crite~ia:

(1) the addition of node k+l does not cause the cluster weight to

exceed the weight constraint;

(2) there exists a node in CONN(k+l), the connected set for node

k+l, in the cluster.

The resul~ing partitions are the states of k+l, P
k

+
l

•

cONN(l) = ¢

CONN (2) (I}

cONN(3) (1,2}

cONN(4) (2,3}

CO~"N(5) (4}

W == 3

all nodes
unit weight

Figure 2.2 -- Illustration of connected set

- -----.-~- .----~ ...

17

18

The value of each partition equals the summation of the edges within

clusters of the partition. This is expressed as follows:

= '\' VALUE[edge(y,k+l)] + VALUE[p k] ~ z,

where

VALUE[Pz,k] = value of a partition in Pk--Pz,k

y E CONN(k+l), where CONN (k+l), is the subset of CONN(k+l)
present in the cluster of Pz k to which
node k+l was added. '

?he dynamic programming process is outlined below:

STEP 1

For each node k find the connected set, CONN(k).

STEP 2

j=j+l

Let the weight of node j be denoted by w .• P. consists of the
J J

following partitions:

(a) Form the '.~-adjacencies for k=Wr
Each such k-adjacency is formed by adding a cluster containing

node j alone to the set of clusters of a partition in p. 1.
J-

(b) For k=Wj+l, ••• ,W, form the k-adjacencies of node j. Only

STEP 4

those partitions in P. 1 with at least one cluster containing
J-

a node in CONN(j) can generate these partitions.

Go to step 3 until j=n for an n node graph.

STEP 5

Select the maximal-valued partition in P. This is the optimal­
n

valued partition of the graph.

We prove the optimality of the dynamic programming procedure by the

following argument. The Connectivity Theorem shows that no partition of

an n node graph G can have a value greater than a partition each of whose

clusters forms a connected subgraph of G. We must then show that the

above algorithm generates all such partitions.

On step k of the algorithm node k is added to the clusters in each

partition in P
k

-
l

such that neither the weight nor the connectivity

constraint is violated. The algorithm may, however, fail to generate an

optimal partition of G if on some step k the addition of node k to a

cluster violating either the weight or the connectivity constraint results

in a feasible partition of G.

If node k is added to a cluster of some partition in P
k

-
1

and the

resulting partition p. k contains a cluster that violates the weight
J,

constraint, it is clear that all partitions derived from P. k also have a
J,

cluster that violates the weight constraint. This result follows from the

fact that n node is never removed from a cluster on some step of the

algorithm, and each node has a nonnegative weight.

Let node k be added to a (nonvoid) cluster c of a partition in Pk- 1 "

If the set of nodes in c is [i
l
,i

2
, ••• ,i

r
}, then the addition of node k to

c violates the connectivity constraint if:

(1)

(2)

no node in c is adjacent to kj

given any node i in c, there is no path i ,jl, ••• ,j ,k such that
m m z

l WEIGHT[y] ~ W
Y

where

for h:-::l,2, ... ,z

y E[i ,jl"" ,j ,k} . m z

19

20

Let the partition in P
k

generated by adding node k to clust6r c be

denoted by Pj,k' Then, every partition of G derived from Pj, k has a

cluster containing nodes k,i l ,i2
, ••• ,ir in which there is no path (within

the cluster) from node k to any of the nodes i l ,i2, ••• ,ir , As a

consequence, that cluster cannot form a connected subgraph of G.

In conclusion, the addition of some node k to a cluster violating

either the weight or the connectivity constraint cannot result in a

partition of G who~e clusters satisfy the weight constraint and form

connected subgraphs of G. The algorithm described above therefore

generates the optimal partition of graph G.

An example of the use of this algorithm is given in Fig. 2.3. The

results of each step of the algorithm are contained in a tabular form.

Each row of this table corresponds to a step of the procedure; the kth

column and jth row of the table contain the k-adjacencies of node j.

C. GROWTH RATE FOR DYNAMIC PROGRAMMING PROCEDURE

Although the dynamic programming procedure just described generates an

optimal p~rtition of a graph without resorting to total enumeration, the

question arises as to the number of feasible partitions possible for a

connected graph. In Appendix B we show that the growth in computation time

varies as

and the storage requirements vary as np
k

, where n equals the number of graph

nodes and Pk the number of partitions in the set Pk generated on the kth

step of the dynamic programming procedure.

21

NODE CONNEGrED SET

~¢
2 {I}

3 (1,2}

4 {2,3}

all nodes unit weight
5 {4}

w = 3
k-adjacencies

STEP 1 2 3

1 (1) = 0

2 (1)(2) = (I (1,2) = 5

3
(1)(2)(3) = 0
(1,2)(3) = 5

(1,3) (2) = 3
(1)(2,3) = 0

(1,2,3) = 8

(1)(2)(3)(4) = 0 (1)(2,4)(3) = 1 (1,2,4)(3) = 6
(1,2)(3)(4) = 5 (1)(2)(3,4) = 6 (1,3,4)(2) = 9
(1,3)(2)(4) = 3 (1,3)(2,4) = 4 (1)(2,3,4) = 7 4
(1,2,3)(4) = 8 (1,2)(3,4) = 11

(1)(2)(3)(4)(5) (1) (2)(3) (4,5) (1) (2,)j., 5) (3)
= 0 = 4 = 5

(1,2)(3)(4)(5) (1,2)(3)(4,5) (1) (2) (3,4,5)
= 5 = 9 = 10 5

(1,3)(2)(4)(5) (1,3)(2)(4,5) (1,3)(2,4,5)
= 3 = 7 = 8

(1,2,3)(4)(5) (1,2,3)(4,5) (1,2)(3,4,5)
= 8 = 12 = 15

I (1)(2,4)(3)(5)
= 1 \

(1)(2)(3,4)(5)
= 6

(1,3)(2,4)(5) thus optimal partition is
= 4 (1,2)(3,4,5) (1,2)(3,4)(5)
= 11 VALUE = 15 (1,2,4)(3)(5)
= 6

(1,3,4) (2)(5)
= 9

(1)(2,3,4)(5)
= 7 !

Figure 2.3 -- Example of the dynamic programming procedure

22

Consider first the growth in the cardinality of Pk for total

* enumerat ion. To genE'rate this number We assume that the graph is complete

so that no combination of nodes in some cluster is disconnected. Also, no

weight constraint is imposed upon the clusters. The upper bound on the

size of Pk,Pk' is the number of ways in which k distinct objects can be

distributed in i nondistinct cells, where i varies from one to k. The

Stirl:Lng number of the second kind, S(k,i), enumerates the ways in which k

distinct objects can be distributed into i nondistinct cells, where no cell

is left empty. Thus

k

I S(k,i) ,
i=l

A closed for~m for this summation does not appear to exist, but an upper

bound results from the recurrence relationship:

for Pl=l and where
ck=1 CONN(k) I •

This relationship is derived from the fact th~t P
k

is made up of two

subsets:

(1) the I-adjacencies of Pk , of which there are Pk-l;

(2) the k-adjacencies of Pk , where k > 1.

The size of the latter set is bounded by ckPk_
1

since each node in CONN(k)

can gene~ate no more than Pk-l partitions of Pk ,

For the complete graph, ICONN(k)I = k-l, therefore

* A complete graph has every pair of its nodes adjacent,

23

Consequently, an ~.i.pper bound o~ the number of parti.tions b"enerated on the

kth step of the partitioning process is k!.

To derive a lower hound on the number of feasible partitions, consider

the two trees of Fig. 2.4. The size of CONN(k) for k > 1 is one for both

of these trees. The tree of Fig. 2.4(a) has the property that CONN(k-) is

the same for all k, whereas that of Fig. 2.4(b) has no two CONN(k) equal.

* Since every connected graph has a spanning tree [Liu, 1968J, there is

at least one labeling of G such that ICONN(k)I ~ 1 for each node k > 1.

This result follows from the fact that a spanning tree can always be

labeled so that the label of a branch node is less than those of its sons.

The number of feasible partitions generated on the kth step of the dynamic

programming procedure increases with the size of CONN(k). Also, the number

of feasible partitions for a cyclic graph is always greater than the number

of feasible partitions of one of its spanning trees -- a result proved in

Appendix A. Consequently we can set a lower bound on the number of fea.sible

partitions for a connected graph by finding the number of feasible partitions

for the trees of Fig. 2.4. Fig. 2.4(a) represents the minimum-level k node

tree and that of Fig. 2.4(b) the maximum-level k node tree.

In Appendix A we show that the number of feasible partitions of the

minimum-level k node tree varies as [f(W)]k where 1 < f(W) < 2 and f(W) is

an increasing function of the weight constraint W. The minimum number of

partitions of a tree of the form shown in Fig. 2.4(b) is Fk ~ l.6k
and

occurs for a weight constraint of two. Here Fk is the kth Fibonacci number.

An increase in the weight constraint results in an increase in the number of

feasible partitions.

* A spanning tree of a graph G is a subgraph of G which is a tree that

contains all nodes of G.

24

(a) Minimum-level k node tree

-- - -G

(b) Maximum-level k node tree

Figure 2.4 -- Minimum- and maximum-level k node trees

In conclusion) a k node connected graph has a number of feasible

partitions that grows exponentially in k.

D. THE USE OF GRAPH PROPERTIES IN PARTITIONING

The computation and storage requirements of the dynamic programming

procedure grow exponentially in k, limiting the utility of this procedure

if it simply generated all feasible partitions. In this section we

introduce several concepts that take advantage of properties of graphs.

These properties significantly reduce the computation time and storage

requirements for certain classes of graphs.

The first concept discussed is that of the isolated set. Using this

concept we show that the growth in the number of partitions generated on

step k of the partitioning process is dependent only on the degree of the

nodes and not on the number of nodes k. The second concept takes into

account the existence of cutpoints and blocks in a graph. In Chapter III

we show that these two concepts form the basis of an efficient tree-

partitioning algorithm.

A node i is defined to be an element of t~e isolated set for node k,

denoted ISOL(k), if it satisfies the following properties:

(1) The label i is less than k.

(2) Node i is not adjacent to any node with label ?- k. Fig. 2.5
I'

illustrates this definition.

Several properties of the isolated set result from this definition.

(1) The size of ISOL(k) is independent of the weight constraint.

(2) The connected set and the isolated set for any node k are

mutually exclusive. This property follows from the definition

of each set.

25

26

ISOL(l) = ¢

ISOL(2) = ¢

ISOL(3) =:- ¢

ISOL(4) = (l}

ISOL(5) = [1,2,3}

Figure 2.5 -- Illustration of isolated set

Let CONN(k) denote the set of nodes with labels less than k
max

that are not elements of ISOL(k). Then

and is independent of the weight constraint.

(4) Given that CONN(k) represents the connected set of node k and

ISOL(k) the isolated set,

ISOL(k) c (1,2, ... ,k-l},

CONN(k) ~ {1,2, •.. ,k-l}.

Here (1,2, ... ,k-l} represents the set of nodes with labels less

than k.

(5) ICONN(k)max l ~ I CONN(k) I for every weight constraint W. Note

that ICONN(k)I is a function of Wand ICONN(k)max l is not.

The growth in the size of ISOL(k) is a nondecreasing function of k,

as we show in the next theorem:

Theorem

I ISOL(k)1 $ I ISOL(k+l) I

Proof

Assume that ISOL(k) ~ ISOL(k+l). Then there exists at least one

node i that is in ISOL(k) but not in ISOL(k+l). By definition, i is

adjacent to no node with label greater than k, consequently it is adjacent

to no node with label greater than k+l, contrary to the assumption.

Therefore, ISOL(k) ~ ISOL(k+l). The value of k is finite, thus

I ISOL(k) I $ I ISOL(k+l) I· •

We now show that the concept of the isolated set can be used to modify

the !,~,.titio!:ing, pi"uceSS so that only a subset of the feasible partitions

of a step of the process must be generated on that step.

27

28

Let the set of partitions of step k-l be denoted by Pk- l and let the

isolated set of node k be denoted by ISOL(k). The nodes in {1,2, .•• ,k-.l}

not in ISOL(k) are denoted by CONN(k)max' The set Pk- l can then be

separated into disjoint subsets where the partitions in a given subset

have the property below:

Let p and q be two partitions in the same subset of P
k

- l . If [c. }
lP

(for i=1,2, ... ,n) denotes the n clusters of partition p and (c. }
p P Jq

(for j=1,2, •.. ,n) the n clusters of partition q, then for each cluster
q q

c. that contains nodes in CONN(k) ,there is a cluster c. with equal 1p max Jq

weight that contains the same nodes of CONN(k) • An example of two max

partitions with this property is

where CONN(6) = (4,SJ and all nodes are of unit weight. max

If a partition in a subset formed by this property has a cluster

containing one or more nodes i l ,i2 , ••• ,im, each of which is in CONN(k)max'

then every other partition in the subset has a cluster of equal weight

Any two partitions in the same subset are defined as similar

partitions. We define the dominant part.ition of a set of similar

partitions as that partition of maximal value. If two or more partitions

are Similar, and have equal maximal values, th6n one is arbitrarily chosen

as the dominant partition. The dominant partition is then said to

t1 dominate" those partitions similar to it.

The reason for separating Pk-
l

into sets of similar partitions is that

all but the dominant partition can be deletp-d from each subset of P
k

-
1

.

We :shuw in 3ect1on E that this result reduces the upper bound on the number

of feasible partitions generated on step k from

to

where x
k
= ICONN(k) I. For small values of Wand x

k
this result represents

max

a significant reduction in the number of partitions that must be generated

on the kth step of the partitioning process. We now prove that all but the

dominant partitions of step k-l can be deleted from P
k

- 1 •

Isolated Set Theorelll

The only partitions of step k-l necessary in generating the partitions

of step k are the dominan~ partitions.

Proof

Let G be an n node graph. A partition p generated on some step k in

the process of partitioning G can be represented by a sequence of pairs

where the first entry of a pair represents the node with label i and the

second entry the cluster to which node i is added on step i. The advantage

of this notation over the nodal representation is that it describes

precisely how p is generated. An example of this notation is [1,()J,

[2, ()J,[3, (2)J,[4, (1)J,[5, (2,3)J, where" ()" denotes the empty cluster.

29

This representation is equivalent to the nodal representation p=(1,4)(2,3,5).

Let P. be the set of partitions generated on step i of the partitioning
l.

process. We then define a derivation of a partition p from a partition q,

where p is in P
k

and q is in P
j

(j < k), as the sequence

[j+l,c. 1],[j+2,c. 2], .•. ,[k,ck]. J+ J+ .

30

This notation is a variation of the above representation of p that ignores

the steps leading up to the generation of partition q.

Let two partitions f and g generated on step k-l be similar and let f

dominate g. Assume that there eX1S~S a partition of G, g , derived from g
n

that has a grea te....-;::l ue than any partition of G derived from f. We now

show that this assumption is false.

Let a derivation of gn from g be (k,ck],[k+l,ck+l], ••• ,(n,cnJ. Since

f and g are similar, there is a partition f derived from f with the . n

derivation [k,Ck],(k+l,Ck+l], ••• ,[n,cnJ such that for i=k,k+l, ••• ,n, ci

and C. have the same weight and the nodes in c. differ from those in C
i 1. 1.

only if they are in ISOL(k). Note that the nodes in the isolated set of

node k share no edge with a node whose label is greater than k-l. As a

consequence, the values of partitions generated on steps k,k+l, ••• ,n are

independent of the nodes in ISOL(k) that appear in a cluster together w:tth

nodes in CONN(k) • max

Since clusters Ci and c
i

(i=k,k+l, •.• ,n) have nodes that differ only

if they are i~ ISOL(k), the sum of the values of the edges in c i and C
i

can differ by the sum of the values of those edges between nodes in ISOL(k)

contained in each cluster. Since f dominates g, the sum of the values of

edges in C. is equal to or ~reater than the sum of the edges in c. and f
1. 1. n

dominates g .
n

Consequent 1:;" the value of f is greater than or equal to
n

the value of g , contrary to the assumption made ab0ve. It is therefore
n

not contrary to an optimal policy to delete all partitions of Pk-
1

dominated by another partition. •

An illustration of the results of this theorem is given in Fig. 2.6.

In Section 1 '.':oJ generalize the redUction in growth vf computation

time and storage possible with the use of the Isolated Set Theorem.

From Fig. 2.3, the sets

Sl

(1)(2)(3)(4)

(1,2)(3)(4)

(1,3) (2)(4)

(1 " 2, 3)(4·)

, ISOL(.5) = {1,2,3)

CONN(.5)max = (4)

of similar partitions in P4 are:

S2

VALUE=O (1)(3) (2,4)

VALUE=.5 (1)(2)(3,li.)

VALUE=3 (1,3)(2,4)

VALUE::8 (1,2)(3,4)

~
(3)(1,2,4) VALUE =6

(2)(1,3,4) VALUE=9

(1)(2,3,4) VALUE=7

VALUE=l

VALUE::6

VALUE=4

VALUE=ll

The dominant partitions of P4 are:

set dominant partition

81 (1,2,3)(4) VALUE=8

S2 (1,2)(3,4) VALUE=l1

S3 (2)(1,3,4) VALUE=9

Figure 2.6 -- Application of Isolated Set Theorem

31

32

The size 0:(the isolated f'P.t for the nodes of a graph is a function

of the labeling assigned to the graph. An analysis of the relationship

between the label1ng and the ~ize of the isolated set is given in

Chapter IV.

A cutpoint of a connected graph G=(V,E) is defined as a node c such

that V-tc} is the node set of a nontrivial disconnected graph G'. A non-

separable graph is connected, nontrivial and has no cutpoints. A block

of a graph G is a maximal nonseparable subgraph of G. An illustration of

these definitions is given in Fig. 2.7.

If a connected graph G has more than one block, the following theorem

proves that it is valid to find the optimal parti t :l.ons nf each block in

any order and then combine these partitions to generate an optimal

partition o:f G,

Theorem (Block Independence Theorem)

If a graph G has q blocks, where q > 1, then the optimal partition of

G, p(opt), can be created by first partitioning the blocks independently,

then combining the resulting partitions.

Proof

Consider the nodal repres~ntation of p(opt):

[() ... ()][() ... ()] ... [() ... ()][() ... ()] .
~~ ~ '-----v----I

NC
q

C

H~re, NC. represents a (possibly empty) set of clusters whose nodes are
1

not cutpoints and are all from the same block, Bi • The set C consists of

clusters each of which contains at least one cutpoi.nt.

The nodal repres:ntation of p(;;pt) assumes this form because of the

special properties of a graph with one or more cutpoints. Since the only

33

~ cutpcint

"splitting" node 4 results in two blocks

block # 1

block # 2

Figure 2.7 -- Example of a graph with a cutpoint

34

node in a block Bi adjacent to nodes not in Bi is a cutpoint, a cluster

that contains nodes from B
i

, but no cutpoint, must only contain nodes from

Bi as a result of the Connectivity Theorem. This property justifies the

collection of clusters in~o sets Nei for block Bi in the nodal represent-

ation above.

Each cluster c E C contains two types of nodes:

(1) a set of cutpoints (k
l
,k

2
, ••• ,kx };

(2) a set of nodes (il ,i2, ••• ,ia,jl,j2, ••• ,jb"'}' none of which

are cutpoints.

The latter set can be partitioned into subsets by the equivalence

relationship BLOCK, where u BLOCK v if u and v are nodes in the same block

Bi' If the restriction on duplication of nodes implicit in the partition­

ing problem is removed, then the cluster c can be replaced by a set of

clusters, (cl ,c2, ... ,cz}' where these clusters have the following

properties:

(1)

(2)

eact. cluster c. contains the union of the set of nodes of c from
1.

some block B. created by the equtvalence relation BLOCK and the
J

set of cutpoints of c also in block Bji

z

~VALUE[C.] = VALUE[c], where VALUE[Ci] equals the sum of the
i=1 l.

values of edges contained in cluster c .•
l.

Note that some cutpoint k may appear in several of the clusters

When we perform the process above on each cluster in C, the nodal

representation of p(opt) is transformed to

[() ... ()]
~

NC1

[() ... ()],
'----v---'

C
q

where ci=a set of clusters of nodes from block Bi including at least one

* cutpoint of B. in each cluster. The value of the cover p(opt)' given
l.

by this nOdal representation equals that of p(opt), and is made up of

sets of clusters (NC.,C.) representing a partition of block Bi • No edge
3. 3.

exists from a cluster in the set (NC.,C.) to a cluster in the set (NC:,C.)
3. l. J J

for ifj because of the duplication of cutpoints.

In conclusion we can reverse the process of decomposin~ p(opt) into

the cover p (opt)' and generate p Copt) by first findi;-.g the partitions of

p,ach block, and then combining these partitions. ..

An implementation of the results of this theorem is given in

Ap:,.endix C.

E. GROWTH RATE FOR GENERAL GRAPH PARTITIONING ALGORITHM

The following theorem develops an upper bound on the number of

feasible partitions generated on the kth step of the partitioning process

when modified to include the concept of the isolated set.

Theorem

Let CONN(k) = max
the set of nodes with labels less than k not in

ISOL(k) , i.e.

CONN(k) max [l,2, ••• ,k-l} - ISOL(k),

and let

For a weight constraint of W there are no more than

* A cover differs from a partition in that the intersection of the node

sets of two clusters need not be empty.

35

36

partitions generated on step k of the partitioning process.

Proof

The partitions of step k-l can be separated into disjoint subsets

by the property that all partitions in a given subset have the same dis-

tribution of the nodes in CONN(k) 1n their clusters. If, for example;

the set of partitions of step 4 1s P4={(1)(2)(3,4), (1,2)(3~4), (1,3)(2,4),

and (1,2~3)(4)} and CONN(5)={3,4}, then the subsets of P
4

satisfying the

above property are {(l,2)(3,4), (1)(2)(3,4)} and (1,3)(2,4), (1,2,3)(4»).

Note that no limitation is placed upon the nodes in ISOL(k) in a cluster.

We now show that any subset of Pk- l so formed has no more than

x
k

W

partitions in it, where W is the weight constraint and xk is the maximum

size of CONN(k) for any weight constraint.

Let Pk-l be a set of partitions of step k-l each of which has the

same distribution of nodes in CONN(k) in its clusters. If a partition in

Pk- l has a cluster containing nodes i l ,i2, ••• ,im that are in CONN(k), then

every other partition in Pk-l also has a cluster containing nodes i 1,i2,

••• ,im• No restriction is placed, however, on the nodes in ISOL(k) in a

cluster containing this subset of CONN(k). Consequently, the weight of a

cluster of a partition in Pk-l containing nodes i l ,i2 , •• ,im need not be

the same for each partition in Pk-l • There are a maximum of xk nodes in

CONN(k), consequently we can distribute the nodes of CONN(k) into no more

than xk distinct clusters. Any given cluster can assume a weight that

varies from one to W. Assume then that every partition in Pk-l has xk

clusters that contain a node in CONN(k) and that every such cluster can

have a weight that varies from one to W. The number of partitions in Pk-l

is then no greater than
x

k W

since this number represents the number of different combinations of ~

clusters, where each cluster can assume a weight from one to W. This

result follows from the Isolated Set Theorem, as we now show.

Assume that two partitions in Pk-l , p and q, have clusters such that

for every cluster of p containing a set of nodes in CONN(k), the cluster

of q containing the same set of nodes in CONN(k) has equal weight. Also,

assump that the value of p is greater than or equal to that of q. The

Isolated Set Theorem then proves that q can be deleted from Pk-l •

We now prove that an upper bound on the number of partitions of step k

gene~ated from the set Pk-l is given by

where for simplicity we assume that W S xk '

Assume that each partition in the set Pk- l has r clusters that contain

at least one node in the set CONN(k). Also, let each node have unit weight.

Node k can then be added to each of the r clusters of a partition in Pk-l

if the weight of the cluster to which k is added is less than W. Let P(i)

denote the set of partitions in Pk-l whose ith cluster, of those clusters

that contain a node in CONN(k), has weight less than W. The number of

feasible partitions of step k generated by adding node k to a cluster of a

partition of Pk- l is then given by

r

Llp(i)l.
i==l

The upper bound on Ip(i)1 is given by

and the maximum value of r is xk' therefore no mOre than

37

38

partitions of step k can result from adding node k to the clusters of the
x

k
partitions in Pk- l • There are W I-adjacencies of step k derived from

the partitions in Pk-l , hence

xk-l
xk(W-I)W

partitions are generated from the subset Pk-l • If we assume that W ~ xk

then

From Section C there are less than x
k

! possible w£'~s to distribute

the nodes in CONN(k) in clusters, hence the set Pk-
l

can be separated into

no more than xk ! subsets. Therefore the upper bound on the number of

partitions generated on step k of the partitioning algorithm is

where xk is independent of the weight const.raint.

If the dynamic programming procedure were not modified to take into

account the existence of isolated nodes, the growth in the size of Pk is

exponential, ranging from yk, where I < y < 2, for the simple trees of

Fig. 2.4 to k! for total enumeration. The growth in Pk for an algorithm

consisting of the dynamic progranuning procedure and a procedure for

deleting suboptimal partitions based upon the concept of the isolated set

has an upper bound of

(The lower bound of f(xk.1 occurs for the graph of Fig. 2.8). If xk and W

are small, a significant reduction in the size of Pk results from the use

of the concept of the isolat~d set.

To illustrate the effectiveness of the isolated set in reducing the

partitions generated on each step of the partitioning process, we now

examine several graph types that readily lend themselves to analysis.

A dramatic example of the reduction in computRtion time and storage

is the following. In Section C we show that the minimum numb~r of

partitions generated on the kth step for the simple k node tree of Fig.

k
2.4(b) is greater than 1.6. Using the analysis above ~bis bound is

reduced to the following:

where xk=l for all k > 1

thus

Another graph whose value of xk is independent of k is that of Fig.

2.8. For a width parameter h, ISOL(k)=[ili has label < k-h}. Thus

for all k and

A more careful analysis results in thu upper bound

A graph with a constant fan-out f is the fully developed tree, an

example of which is shown in Fig. 2.9. Lawler, Levitt, and Turner

[Goldberg, et al., 1967J have shown that the growth for W=2 in the humber

of feasible partitions for a fully-developed k node tree with fan-out of f

is bounded by

Ir. the following theorem we show that this bound can be reduced by

employing the concept of the isolated set.

39

40

h = wid~h parameter

Fi~ure 2.8 -- Graph with constant-size connected set

Level 1

I

41

2 3 4

f = fan-out

Figure 2.9 -- FUlly-developed tree

42

Theorem

A fully-developed k node tree with fan-out of f hAs an upper bound

of

feasible partitions for a weight constraint of two.

Proof

Assume that the tree is labeled such that node 1 is the root, nodes

2,3, ••• ,f+l are at levell, nodes f+2,f+3, ••• ,2f+1 are at level 2, etc.

Given any node j at level x of the tree, all nodes at levels 1,2, ••• ',x-2

are in ISOL(k). A partition of step k then assumes the form

[()() ••• ()J[()() ••. ()]
~ "'-----y----"

A B

where "()" denotes a cluster of the partition. Set A comprises clusters

all of whose nodes are in ISOL(k). Set B consists of clusters containing

nodes at levels x-I and x. i'he number of feasible partitions of the tree

is then the number of possible distributions of nodes in clusters in the

set B.

For W=2 a feasible cluster in set B contains either a single node at

level x-lor x, or a node at level x and its predecessor at level x-I.

separate the nodes at levels x and x-I into subsets Sl'S2""'Sy' where

the nodes in the same subset consist of:

(1) the nodes at level x with the same predecessor node i, and

(2) the common predecessor node i.

The number of subsets y equals the number of nodes at level x-I, therlsfore

x-2
y=f •

Each subset Si contains f+l nodes. These nodes can form no more

than f+l feasible partitions for W=2 since a cluster of a feasible

partition that contains more than one node must contaiH the node in S. at
l.

level x-I. The distribution of the f+l nodes in each of the y subsets

Sl,S2' ••• 'Sy is independent of the distribution in the other subsets,

consequently there are

possible ways to cluster the nodes at levels x and x-I. The value of k

is related to the level x by

therefore

-(f-l~ k - f-l

x-2
f

k
::: --

f

k 1
-2 + -2 < k/.f
f f

(k>l) •

The upper bound on the number of feasible partitions for the tree is

therefore

for W=2 ••

In Chapter III we show that any tree can be partitioned with a total

number of operations directly proportional to the number of nodes in the

tree.

In conclusion, the introduction of the concept of the isolated set

bounds the number of partitions generated on the kth step of the dynamic

programming procedure to a maximu~ of

xk=1 CONN(k) I _ max

=(k-l)-IISOL(k)I and

1 :;; f(xk) < xk !

43

44

An implement~tion of the result of the Block Independence Theorem

is given in A~pendix C. We show there that the maximum number of

~~rtitions generated on any step is directly proportional to the number

of partitions generated if each block were partitioned independently. In

many cases this reduces the growth in the cardinality of Pk from an

exponential in k to an exponential in k', where k' « k.

F. THE GENERAL GRAPH PARTITIONING ALGORITHM

The conc~pts of block indepen~ence and the isolated set introduced

in Section D can be combined with the dynamic programming procedure to

form an algorithm for partitioning a general graph with a substantial

improvement in the growth in computational and storage requirements.

Section E has shown this improvement.

The general partitioning algorithm is summarized in Figs. 2.10 and

2.11. These flow charts consist of three procedures:

(1) A procedure that detennines the blocks in a graph and then

generates the partitions of these blocks, combining them with

partitions of other blocks of the graph.

(2) A basic partitioning algorithm consisting of two subprocedures:

(a) A dynamic programming procedure that generates feasible

partitions.

(b) A procedure, based upon the concept of the isolated set,

that deletes all but the dominant partitions on each step

of the dynamic programming procedure.

The flow chart shown in Fig. 2.10 contains a procedure (A) to find

the blocks of a given graph. This algorithm is outlined in Hopcroft and

Tarjan [197lJ. If no cutpoints exist in the graph to be partitioned,

START

Find b blocks of
n node graph G

Partition block B.
~

Combine partitions

no --_-<

no

Partition graph G

Select max
valued

partition
generated 1:Jy
procedure B

STOP

yes -()

Figure 2.10 -- Flowchart of general graph partitioning process

45

46

PROCEDURE B

ENTER

+
Label
graph

Find connected and
isolated set for

each node of graph

Use the dynamic
programming procedure
to generate feasible
partitions of step

k

Use isolated set
concept to delete
all but dominant

partitions of step
k

no

EXIT

Figure 2.11 -.- Flowchart of basic partitioning algorithm

then the basic partitioning algorithm (procedure B) is performed and the

resulting maximal-valued partition is the optimal partition of the graph.

If more than one block ~xists in the graph each block is partitioned

and the results combined with the partitions of other blocks to form the

optimal partition of the graph. An implementation of procedure C that.

performs this task is given in Appendix C.

An implementation of the basic partitioning algorithm is given in

Appendix B. The procedure (D) for labeling the graph is the subject of

Chapter IV.

An example of the use of the basic partitioning algorithm is given

in Fig. 2.12. It is instructive to compare the number of partitions

generated here with the number generated using the dynamic programming

procedure alone (Fig. 2.3). We see that significantly fewer partitions

are generated on each step by the general partitioning algorithm. We have

not made use of the Block Independence Theorem, althoubh the graph has two

blocks. An example of the use of this theorem is given in Appendix C.

47

48

STEP

1

2

3

4

5

('
values

all nodes unit weight
W = 3

1

(1) :::: 0

(1)(2) = 0

(1)(2)(3) :::: 0
(1,2) (3) = 5

(1,2,3)(4) = 8

(1,2)(3,4)(5)
= 11

k

1 I
2

3

4

5

k-adjacencies

2

(1,2) == 5

(1,3)(2) = 3
(1)(2,3) = 0

(1)(2,4)(3)
= 1

(1)(2)(3,4)
= 6

(1,2)(3,4)
= 11

(1,2,3)(4,5)
= 12

CONN (1,,) ISOL(k)

¢ ¢

(I} ¢

(1,2} ¢

(2,3) (I}

(4-} (1,2,3}

3

(1,2,3) :::: 8

(1,2,4)(3)
:::: 6

(1,3,4)(2)
:::: 9

(1)(2,3,4)
= 7

(1,2)(3,4,5)
= I:;

optimal partition is (1,2)(3,4,5) with VALUE = 15

Figure 2.12 -- Example of graph partitioning algorithm

CHAPTER II I

AN EFFICIENT TREE-PARTITIONING ALGORITHM

A very efficient variation of the general algorithm described in

Chapter II results if the graph to be partitioned is a tree. The ('.oncepts

of the isolated set and block independence, combined with the property

that a tree has no cycles, result in a partitioning algorithm whose growth

in computation time is directly proportional to the number of nodes in the

tree.

49

Before describing this algorithm, we note that the ability to partition

a tree with integer-weighted nodes and mUlti-valued edges has not been

considered in the literature. Kernighan [1969J describes an algorithm that

partitions a tree with a growth in computation of n(10g
2

n) for an n node

tree. The edges of this tree must, however, assume a restricted set of values.

A. INTRODUCTION

A rooted tree is a directed graph T with node set V containing one or

more nodes such that:

(1) there is a specially designated node of V called the root of T,

and

(2) the remaining nodes in V can be separated into m ~ 0 disjoint

subsets V1 'V2""'Vm such that each Vi is the node set of a rooted

tree Ti (i=l,2, ••• ,m). The trees Tl ,T2 , ••• ,Tm are called the

subtrees of the root.

If the relative order of the subtrees T
1

,T
2

, ••• ,Tm is important, the tree

;'s an ordered tree. The degree of a node of the rooted tree equals the

number of subtrees of that node. A leaf has degree zero and a branch node

has degree greater than zero. The roots of the subtrees of a branch node k

are the sons of node k.

50

The tree partitioning algorithm of Section B can only partition an

ordered tree. We show in Sections Band C that the particular ordered

tree employed has no effect upon the growth in computation time and

stf)r,age space requirements of the algorithm. The graph to be partitioned

G is therefore transformed into an ordered tree G' by the following

procedure:

(1) Assign a unique label to each node in G.

(2) Form a rooted tree by selecting any node of G as root.

(3) Order the subtrees of a branch node k by increasing label of

their roots.

Whereas the growth in computation time and storage of the general graph

partitinning algorithm is a function of the labeling, such is not the

case for the algorithm described here; the labels assigned to nodes in

step 1 above are merely identifiers. An example of the transformation of

a tree G to an ordered tree G' is shown in Fig. 3.1. Before describing

the tree-partitioning algorithm, we introduce the following notation. In

this notation small letters represent partitions and capital letters

represent subgraphs. In particular, the letter q represents a partition

of a subtree of the ordered graph G', p represents a partition of a sub­

graph of G', and S represents a subgraph of G'. We also use the shorter

term" subtree k" to mean the subtree of G' whose root is the node with

label k.

q(k, w) and q(k):

The maximal-valued partition of subtree k whose cluster containing

node k is of weight w is denoted by q(k,w). The maximal-valued partition

of subtree k for all weights is denoted by q(k). Fig. 3.2 illustrates

these definitions.

~6
edge

values

all nodes unit weight

w = 3

(a) Graph to be partitioned, G

(b) A unique label is assigned to each node of G

(c) Ordered tree G'

Figure 3.1 -- Transformation of tree G into ordered tree G'

51

52

r
subtree 2 I

" I
I
I
I
1-

(a) An illustration of the notation" subtree k"

subtree 2:

Then q(2,1)=(1)(2)(3)(6) VALUE=O

q(2,2)=(1,2)(3)(6)

q(2,3)=(1,2,6)(3)

VALUE=:5

VALUE=8

let all nodes have

unit weight and W = 3

(b) An illustration of the notation q(k,w)

Figure 3.2 --- Illustration of notation

~iill:

Let Si(k) denote the subgraph of G' with the following properties:

(1) The node set of SiCk) consists of the branch node k and the

nodes in the first 1 subtrees of node k.

(2) The edge set of SiCk) consists of the edges from node k to the

first i sons of k end the edges in the first i subtrees of

node k.

The tree-partitioning algorithm iteratively generates partitions of

SHI(k) by combining the partitions of St(k) with the partitions of It he

i+l st subtree of node k. The maximal-valued partition of S.(k) whose
1.

cluster containing node k is of weight w 1s denoted by Pi(k,w). Fig. 3.3

illustrates this notation.

If subtree j is the i+l !! subtree of branch node k, denote by

the partition of Si+l(k) whose cluster containing node k is of weight

wl +w2 • The set of clusters of the partition so represented contains one

cluster created by merging the cluster of Pi(k,w1) containing node k and

the cluster of q(j,w2) containing node j. The other clusters /."If

[Pk(k,w1),q(j,w2)] are made up of the remaining (unmodified) clusters of

Pi(k,wl) and q(j,w2).

Denote by

the partition of Si+l(k) whose cluster containing node k has weight w

53

54

(a) An illustration of the notation S.(k)
~

if each node has unit weight

and W=3 then

Pl (4,1)=(1,2,6)(3)(4) VALUE:8

Pl (4,2)=(2,4)(1)(3)(6) VALUE=l

Pl (4,3)=(1,2,4)(3)(6) VALUE:6

(b) An illustration of the notation p.(k,w)
~

Figure 3.3 -- Illustrations of notation

created by concatenating the unmodified clusters of Pi(k,w) and q(j).

Fig. 3.4 illustrates the use of this notation.

B. AWORITHM

STEP 1

Form an ordered t~ee G' using the method given in Section A.

STEP 2

Initialize every leaf k of G' such that

q(k,W)=(k) and VALUE[q(k,w)]:O.

Also

STEP 3

Find a branch node k all of whose sons are leaf nodes. If no such

node exists, go to step ?

STEP 4

If node k has m sons with labels jl,j2, ••• ,jm' find the partitions

of subtree k as follows (for w=WEIGHT[k], WEIGHT[k]+I, ••• ,W):

(a)

(b)

Let i=l and PO(k,W)=(k) if w=WEIGHT[k] where VALUE[PO(k,W)]=O.

{

[Po(k'W)Jrq(~I)] if w=WEIGHT[k], or

Pl(k,w)= [PO(k,W1),q(J l ,W2)]

if w > WEIGHT[k]

where Wl=WEIGHT[k] and W2=W-WEIGHT[k]

such that w2 ~ WEIGHT[jl]'

VALUE[P1(k,W)j={VALUE[q(jl)] if W=WEIGHT[k], or

VALUE[q(jl,w2)]+VALUE[edge(k,jl)]

if wfWEIGHT[k].

Delete partitions of subtree jl from storage.

55

56

If q(5,1)=(5)(8)(9)

q(5,2)=(5,9)(8)

q(5,3)=(5,8,9)

Q(5)=Q(5,3)

then

and

and

W = 3

all nodes unit weight

Pl(4,1)=(4)(lj2,6)(3)

P1 (4,2)=(2,4)(1)(3)(6)

Pl (4,3)=(1,2,4)(3)(6)

Figure 3.4 -- Illustration of notation

(c) i=1+1

Here

and

Pi(k,W) = maximal-valued partition of the collection:

{

[Pi-l (k,W)][q(ji)] and

[Pi_l(k,wl),q(ji'w2)] with

WI=WEIGHT[k],WEIGHT[k]+I, ••• ,W-WEIGHT[ji]

and w2=w-w
l

such that w2 ~ WEIGHT[ji].

VALUE([Pi_l(k,W)][q(ji)]J = VALUE[Pi_l(k,W)]

+ V ALUE[q (j i)] ,

VAX,UE([P i _1 (k,WI),q(ji,w
2

)]J = VALUE[P i _1 (k,w1)]

+ VALUE[q(ji'w2)] + VALUE[edge(k,ji)]·

(d) Delete the partitions of subtree ji from storage.

(e) If i=m then:

STEP 5

(1) q(k,w)=p (k,w) m

(11) q(k)=P (k,w) such that VALUE[p (k,w)] is maximal for m m

W=WEIGHT[k], WEIGHT[l.]+l, ••• , W.

(1ii) Prune nodes jl,j2, ••• ,jm from G'.

(iv) Store all q(k,w), q(k), and go to step 3.

If irm go to (c).

If r is the label oi the root node, then q(r) is the optimal-valued

partition of the given tree G.

The efficiency of the tree-partitioning algorithm is due to the

ability to perfor.m global optimization through local operations. The

algorithm is based upon the following theorem.

57

58

Theorem

Ll~t a set of feasible partitions of subgraph Si(k) be separated into

disjoint subset~ where all partitions in the same subset have a cluster

of the same weight that contains node k. Then, all but a maximal-valued

partition from each subset can be deleted. The resulting maximal-valued

partition, whose cluster containing node k is of weight w, is denoted by

Pi (k.w), where w=WEIGHT[k],WEIGHT[k]+I, ••• ,W.

Proof

All nodes of Si(k), with the exception of node k, are adjacent to no

node in the subgraph of G' yet to be partitioned. As a consequence, the

connectivity constraint dictates that the only cluster of a partition of

Si(k) modified in future steps of the partitioning process is that

contai.ning node k. We can use an argument identical to that used in the

proof of the Isolated Set Theorem to show that, of the set ~f partitions

of Si(k) with a clllster of weight w containing node k, all but the

maximal-valued partition can be deleted from further consideration in the

partitioning precess. Ii

Corollary

Given a set of feasible partitions of subtree k, all but the maximal-

valued partitions with a cluster containing node k of weight w for

W=WEIGHT[k], WEIGHT[kJ+I} ••• ;W can be deleted from further consideration

in the partitioning process. The maxi~al-valued partition of subtree k

whose cluster containing node k is of weight w is denoted by q(k,w).

Proof

Since S (k) represents subtree k if node k has m sons, and q(k,w)= m

p (k,w), this result is a special case of the above theorem ...
m

We now prove the optimality of the tree-partitioning algorithm.

Theorem

The tree-partitioning algori thm g'~nerates the optimal-valued

partition of the given tree, G.

Proof

Let G' be the ordered tree to which tree G is transformed in step 1

of the algorithm. The Block Independence Theorem proves that the optimal-

valued partition of a graph with more than one block can be created by

generating the partitions of each block independently and then combining

these partitions. We can extend this result to the practice of generating

the partitions of disjoint subgraphs containing more than one block and

then combining the resulting partitions to form the optimal partitions of

the graph. Since every subtree of the ordered tree G' represents a

collection of blocks of G, the generation of the optimal partition of G'

can be performed by first generating the partition of each subtree whose

root is a son of a branch node k! and then combining these partitions in

any order to create the feasible partitions of subtree k. Note that this

result justifies the assumption that the order in which the subtrees of

each branch node k are combined is unimportant. In Section C we further

shoVI that the particular rooted tree used to form G' from G has no effect

upon the partitioning algorithm.

We now show that the method used to generate the optimal-valued

partitions of each subtree is correct.

The previous theorem and its corollary prove that all but a maximal-

valued representative of the partitions of subgraph Si_l(k) whose cluster

containing node k has weight w can be deleted. The proof of this theorem

is based upon the fact that the only cluster of a partition of S. l(k)
~-

modified when that partition is combined with partitions of other sub-

59

60

graphs is the cluster containing node k. Consequently, when fO~~Jing the

partitions of S. (k) we need only consider the possib!.~ combinations of
1.

the cluster of a partition of subtree j. containing node j. and the
1. 1.

cluster of a partition of subgraph S. l(k) containing node k. Here node
1.-

ji is the ith son of node k. The collection

[Pi_l(k~w)J[~(ji)] and

[Pi-l (k,w 1)' Q(ji'w2)]

with WI=WEIGHT[k],WEIGHT[k]+I, ••• ,W-WEIGHT[jiJ

and w
2

=w-wl such that W
2

~ WEIGHT[jiJ

then enumerates the ways in which two clusters, one containing node k and

the other node j., can be combined to result in a cluster of weight w
1.

containing node k. •

C. COMPUTATIONAL AND STORAGE GROWTH RATES

Consider a step in which the partition p.(k,w) is generated. There
1.

are a m~~imum of w ways to form p.(k,w) since the collection of partitions
1.

from which p.(k,w) is selected is enumerated by
1.

[P. I (k , w)] ["q (j .)] and
1.- 1.

[Pi_l~k,wl),q(ji,w2)] where wI ranges from a minimum of "

to a maximum of w-I and w
2

=w-w
1

such that w
2

=1.
min

Since w can range from one to W, there are W(W+I)/2 partitions gellerated

on each iteration of the step that combines the partitions of Si_l(k) and

the partitions of the ith subtree of k, subtree ji' For a root with p sons,

there are p iterations of this step, hence

W(W+l)p/2

operations per root node. The sum of the number of sons for all roots in

any rooted tree is equal to (n-l) for an n node tree, therefore the growth

in computational complexity for this algorithm is

2
W(W+l)(n-l) ~ W n.

2

Note that this growth rate is dependent only on the number of nodes in the

tree, not the particular rooted tree used to represent the tree.

At any point in the partitioning process, the maximum amount of

storage required occurs if some node has p subtrees and each subtree has

W partitions, hence a maximum of less than nWM words of storage are

required, where M represents the number of words of storage required to

store a partition.

In conclusion, the storage and comp~tational requirements of the

tree-partitioning algorithm are linear tn the number of nodes in the tree.

D. EXAMPLE

We now illustrate the use of the algorithm by partition.ing the graph

of Fig. 3. 1 (a) •

STEP 1

The transforma.tion of the graph of Fig. 3.1(a) to an ordered tree is

outlined in Fig. 3.1.

STEP 2

STEP 3 (iteration 1)

Select branch node 2 with sons 1,3, and 6.

61

62

STEP 4 (iteration 1)

(a) i=l ani PO(2,1)=(2) VALUE=O

(b) PI (2,1)=[PO(2,1)][q(1)]=(1)(2) VALUE:O

Pl(2,2)=[PO(2,1),q(1,1)]

=(1,2) VALUE~5

Delete partitions of subtree 1.

(c) i=2

VALUE=O I
Select P2 (2,2) f:om:

I [PI (2,2)]Cq(3)J=(1,2)(3) VALUE=5\

VALUE=2 [P2 (2,1),q(3,1)J=(2,3)(1)

Select P2 (2,3) from:

[Pl (2,3)][q(3)] does not exist

lib (2,2)~q(3,1)]=(l,2,3) VALUE=7!

[Pl (2,1),q(3,2)J=does not exist

(d) Delete partitions of subtree 3.

(e) i13, therefore go to (c)

(f) i=3

Select P3(2,1) from:

*

I [P2 (2, l)J [q(6)J=(1)(3)(2)(6) VALUE=O I

* Boxed partition is maximal-valued partition in collection.

Se16ct P3(2,2) from:

I [P2(2,2)][q(6)J=(1,2) (3) (6) VALUE=5 !
[P2(2,1),q(6,1)J=(1,6)(2)(3) VALUE=3

Select P
3

(2,3) from:

[P2(2,3)J[q(6)J=(1,2,3)(6) VALUE=7

I [P2 (2,2), q(6, l)J=(l, 2,6)(3) VALUE=81

[P2(2,1),q(6,2)]=does not exist

(d}c) Delete partitions of subtree 6.

Since i=3, let

q(2,1)=P
3

(2,1)=(1) (2)(3) (6) VAU .. "E=O

q(2,2)=P
3

(2,2)=(1,2)(3)(6) VALUE=5

q(2)=q(2,3)=P
3

(2,3)=(1,2,6)(3) VALUE=8

Prune nodes 1,3, and 6 from Gt
•

STEP 3 (iteration 2)

Select branch node 5 with sons 8 and 9.

STEP 4 (iteration 2)

A summary of the results of step 4 is:

q(5,1)=(5)(8)(9) VALUE=O

q(5,2)=(5,9)(8) VALUE=6

q(5,3)=(5,8,9) VALUE =10

q(5)=q(5,3)

STEP 3 (iteration 3)

Select root node 4 with sons 2~5, and 7.

STEP 4 (iteration 3)

(a) i=l and PO(4,1)=(4) VALUE=O

63

64

(b) P1(4,1)==[PO(4,l)][q(2)]=(4)(1,2,6)(3) VALUE::8

P1(4,2)==[PO(4,l),q(2,1)]=(I)(2,4)(3)(6) VALUE=l

P
1

(4,3)=[PO(4,1),q(2,2)]=(I,2,4)(3)(6) VALUE:6

Delete partitions of subtree 2 from storage.

(c) i::::2

Select P2(4,1) from:

Select P2(4,2) from:

[PI (4, 2)] [q (5)] =(:-) (2,4) (3)(6) (5,8,9) VALUEd I

[PI (4,1),q(5,1)J=(4,j)(8)(9)(1,2,6)(3) VALUE=161

Select P2 (4,3) from:

[PI (4,3)] [q(5)] ==(1, 2,4) (3) (6) (5,8,9) VALUE=16

[PI (4,2) , q (5, 1)] = (1.) (2,4,5) (8) (9) (3) (6) VALUE=9

[Pl (4,l),q(5,2)]=(4,5,9)(1,2,6)(3)(8) VALUE=22

(e) it3, therefore go to step (c)

(c,d,e) Summary of these steps:

STEP 3,5

q(4,1)=(1,2,6)(3)(5,8,9)(4)(7) VALUE=18

q(4,2)=(1,2,6)(3)(4,5)(8,9)(7) VALUE=16

q(4,3)=(1,2,6)(3)(8)(4,5,9)(7) VALUE=22

Maximal-valued partition of tree is q(4)=q()j.,3). This partition is

shown in Fig. 3.5.

65

Figure 3.5 -- Partition of tree of Fig. 3.1(a)

66

CHAPTER IV

GRAPH LABELING

The labeling of a graph is an important part of the partitioning

process since the maximum number of partitions generated on each step of

this process is a function of the labeling. The time to partition an n

node graph is proportional to nPk(log2 Pk)' where Pk is the number of

partitions generated on step k of the partitioning algorithm. The storage

requirements of the algorithm vary as nPk. Consequently, the cardinality

of Pk , the set of partitions generated on step k, should be kept as small

as possible for maximum efficiency.

In this chapter we show the relationship of the labeling of the graph

and the size of Pk • An ad hoc labeling algorithm with a computational

complexity related algebraically to the number of graph nodes is also

described.

/I.. RRT,ATIONSHIP BETWEEN LABELING AND SIZE OF P
k

In Section E of Chapter II we show that

x
k

Pk ~ Xk(f(Xk)W ,

where

Pk=lpkl=number of partitions generated on step k of the

partitioning algorithm

xk=lcONN(k)maxl=(k-l)

ik=1 ISOL(k) I
W=weight constraint

- i k

f(xk)=number of ways in which nodes in CO~~(k) are
max

distributed in clusters.

In Appendix B we show that the number of operations performed on

step k of the partitioning algorithm has an upper bound proportional to

for an n node graph G. As a consequence, the sum

n

n 2 Pk(log2 Pk)
k=l

is directly proportional to the computation time required to partition G.

We also show in Appendix B that the growth in storage requirements

for the kth step of the algorithm varies as

therefore

can be used as a measure of the growth in the average storage requirements

of the algorithm.

In order to compare the effectiveness of the many possible labelings

of a given graph, we use the sum

k-i
Z k ,

where Z is a constant whose value is much greater than one. We now

justify the use of this sum in measuring the effect of a given labeling

upon the growth in computation time and storage for a giJen graph.
x

k
Since Pk S xk(Xk~)W , the worst-case value of Pk grows asymptotically

x
k

as Z ,where

67

68

e=base of natural logarithms,

3 l/(2xk).
c=[2ITXk] =1.

The value of (Pk)(10g2 Pk) can then be approximated by

xk+l k-ik
Z =Z

since

and we assume that

Therefore the growth in both computation time and the average storage

requirements to partition an n node graph G is proportional to

~ k-ik
nL,Z .
k=l

We use the sum above to compare different 1abe1ings of the same graph,

therefore the value of n carries no added information and can be omitted.

To further simplify the measure, the value of Z is assumEd to be

independent of k.

The objective in labeling is then to minimize

f k-i
S = LZ k

k=l

by maximizing for each node the size of ISOL(k),ik •

A feature of this summation is made clearer by a change in notation:

Let ~k=ik-ik_1 and iO=O. Then

l-~ l-~ l-~
S = Z 1[1 + Z 2[1 + Z 3[... [1

1-6
+ Z n] ...]].

Given two different labelings A and B, it is apparent that labeling A with

a value of ~. >~. may result in a smaller value of S than labeling B
1A l.B

with ~j > ~. , where j > i. If a plot of i k versus k is made to compare
B J A

two different labelings of a graph, two situations can occur:

(1) Labeling A has a consistently higher value of i k than labeling

B (Fig. 4.1(a)). The value of SeA) for labeling A therefore is

always less than that of S(B) for labeling B.

(2) The curves of i
k

versus k for labeling A and labeling B cross

at one or more points (Fig. 4.1(b)). The only method of

comparing L.l two labelings is to evaluate SeA) and S(B) and

choose the labeling with the smallest value.

Note that a curve of i k versus k is monotonically nondecreasing.

This is a result of the theorem of Chapter II that proves that IISOL(k)l~

1 I SOL (k+l) I·

The usefulness of the global evaluation of a labeling L given by

S(L)

is limited to those situations where the labeling L already exists. It

is assumed here that the graph is unlabeled.

A nonenumerative algorithm that generates a globally optimal labeling

has not been found. However, we now describe a locally optimal algorithm

with algebraic growth in computation time,

B. LABELING ALGORITHM

In Sect ion A we develop the sut~

S(L)
~ j-i. (L)

= / Z J
-..J

j=l

to measure the labeling L of a graph G, where i.(L) is the size ~f ISOL(j)
J

for labeling L. The labeling of G with the minimum value of S requir0.s

69

70

k

'" ; ...
I

I
/ _/.,.

... ~ labeling B

(a) Example in which labeling A is conSistently
better than labeling B

labeling B

labeling A

k

(b) Example in which it is not possible to know which
labeling is the best without evaluating both

Figure)+.1 -- CUrves of cardinality of ISOL(k) versus k

the least storage space and computation time to partition G. Since a

graph with n nodes can have n! labelings impressed upon it, a labeling

procedure that ccms~sts of generating a labeling L and using S(L) to

measure its effectiveness is impractical. We therefore resort to the

generation of a labeling iteratively by assigning the labels in ascending

order and use the increment in the partial value of S caused by the

assignment of labels to unlabeled nodes to compare the effectiveness of

different assigr~ents.

If we assign labels k.,ki+l, .•• ,k. to a set of unlabeled nodes, the
l. J

effect on the value of S can be measured by observing the term

b.S(k.,k.)
:I. J r

j::k.
l.

j-i.
Z J

The value of S is then given by

The basis of the labeling algorithm is to minimize the increments in the

values of S, b.S(k.,k.), and therehy attempt to minimize the global value
l. J

of S. Note that although each value of LlS(ki,k
j

) is minimal._ the value

of S may not be minimal. Section D investigates this point further. In

order to find the set of unlabeled nodes whose labeling causes the

minimum increment in the values of S, we develop the following rules.

The increase in the value of S is minimized by assigning labels to

the nodes of the graph so that each value of i j
, the size of ISOL(j), is

maximal for j=1,2, ••• ,n. In order to become a member of the isolated of

some node m, a node with label j can be adjacent to no node with label

grea~er than or equal to m. Since nodes are assigned in ascending order,

a node with label j adjacent to r unlabeled nodes can become a member of

71

72

some !SOL(m) only if the r unlabeled nodes are assigned labels less than

m but greatex than j. Assume that the largest label previously assigned

is kj to minimize m we must then assign labels k+1,k+2, ••• ,k+r to the r

unlabeled nodes. To minimize the increment in the value of S, we then

try to find that set of unlabeled nodes whose labeling allows the largest

number of previously labeled nodes to become members of ISOL(m),ISOL(m+l),

••• ,ISOL(n) for as sD!all a value of m as possible. To determine that set,

we perform the following analysis.

Consider a step in the labeling of a graph where a number of the

nodes have been labeled. Let the set of labeled nodes, each of which is

adjacent to an unlabeled node, be denoted by L and the set of unlabeled

nodes by U. With each labeled node i associate a subset of U, denoted by

U., with the propel.'ty that each node in U. is unlabeled and adj acent to
~ 1

node i. If the largest label assigned to a node in U. is m, then node i
1

is a member of the isolated set of every node with label greater than m.

Some set U. associated with a node whose lab01 is j may be contained
J

within U .• For this case we define the relationship RELEASES, where i
~

RELEASES j if:

(1)

(2)

U. c U.
J ~

Ui=Uj and label i $ label j.

If the nodes in U. are labeled such that the greatest label assigned to a
~

node of U. is m, then both nodes i and j are "released" to become members
1

of the isolated set of those nodes with labels greater than m.

We then form the sets L. ,L. , ••• ,L. of those labeled nodes adjacent
11 1.2 1r

to one or more unlabeled nodes using the relationship RELEASES such that

Li=(jlj is a node in Land i RELEASES j}.

Fig. 4.2 illustrates the definition of L. and U., where u.=lu.1 and
~ ~ ~ , 1

Given the collection of sets of unlabeled nodes Ui ,U. , ••• ,U. and
1 12 ~r

their associated sets of labeled nodes L. ,L. , ••• ,L. formed by the
1.1 ~2 ~r

relation RELEASES, we then select some set U from this collection for
a

labeling. Let the last label assigned to a node be k. The criterion

used to select the set U is as follows:
a

(1) For all pairs of sets in the collection U. ,U. , ••• ,U. , find
~l 12 1. r

the increment in the value of S caused by assigning lahels

k+l,k+2, ••• ,k+u to U and then assigning labels k+u +1,
a a a

k+ua+2, ••. ,k+u
a

+Ub to Ub'

(2) Compare the results of (1) with the increase in S caused by

assigning labels k+l,k+2, •.• ,k+u
b

to U
b

and then assigning

We then label the set in the collection that cal' -es the smallest increment

in the value of S. This practice may fail to yield a value of S that is

minimal because the assumptions are made that:

(1) The only sets of unlabeled nodes adjacent to labeled nodes

(2)

after U is lat·eled are those in the collection U., where
a 1

i=i
l
,i

2
, ..• ,ir • This ignores the fact that newly created sets

of tmlabeled nodes adjacent to labeled nodes may be created by

labeling U •
a

Th~ sets U. ,U. , ••• ,U. are not modified by the labeling of U •
11 ~2 1r a

This may not be true.

We have found no ef~icient method to detect the modification of existing

sets Ui (i=i
l
,i

2
, ••. ,i

r
), or the creation of new sets U. ,U. , ••• , due

1r+l l.r+2
to the labeling of U •

a

73

74

labeled nodes

unlabeled nodes

-----)
L=(i,j,k,l} i<j<k<l

U=(m,n,o}

U.=(m,n}
l.

u.:::{m,n}
J

uk={n,o} u1={o}

Therefore:

L.={i,j}
J.

u.={m,n}
l.

11=2 u1=2

~=(k,l} uk={n,o} lk=2 uk=2

Ll=(lj u1={o} 11=1 U1=1

L.={j} U.={m,n} 1.=1 u.=2
J J J J

Figure 4.2 -- Illustration of definitions

With these rules we calculate the effect on the value of S of

labeling the nodes in some set U by comparing the increase in S caused
a

by first labeling Ua and then labeling Ub' where b=i l ,i2, ••• ,ir and ~b.

If we denote the change in the value of S caused by first labeling U and
a

then labeling Ub by ~Sab' the value of ~Sab is given by

where

i.=
J

j-i.
Z J

k < j s; k+u
a

This increment in the value of S is then compared to that caused by first

labeling U
b

and then labeling U
a

,

where

i.=
J

The values of AS
ab

ASab =
~i

Z k

.
and

ASba -
~i

Z k

and

u
a

I
j=l

u
Z a

Z
u

b

j-i.
Z J

ASba
can be simplified

u
b j+u -1

zj + 2 z a a

j=l

u +ub-l
+ Z a a

+
u +u -lb

Z a b

by forming the terms

75

76

The labeling of U
a

, and then U
b

, then results in a smaller increase in

the value of S than the labeling of Ub , and then U
a

, if

Let

Then

u u +ub-l ub u +~-lb
Z a + z a a < Z + Z a .

ua+ub[1
K = Z --ab u

Z a

1
-1-
... a
.u

and the labeling of U
a

and then U
b

results in a lower increment in S than

the labeling of Ub and then U
a

if Kab > O.

In general, given the sets U. ,U. , ••• ,U.
l.l l.2 1.r

use the following procedure to find that set U
i

j=i l ,i2
, ••. ,ir and j~i.

and L. ,L. , ••• ,L. , we
J. l 1.2 l'r

such that K .. ;?; 0 for
l.J

(1) For k=i
l
,i2, ••• ,i

r
form the differences uk-lk and separate the

sets Uk into three disjoint sets:

(a) Set I = (ukluk - lk < OJ

(b) Set II = (ukluk - 1k = O}

(c) Set III = (ukluk - 1k > OJ .
(2) If sets I and II are v;::<::uous" then label the element of set III,

U., such that 1. is maximum. If two or more elements of set III
J. J.

satisfy this criterion, then label the element of set III

satisfying the criteria of maximum 1. and minimum u .•
l. l.

(3) If set I is empty, then Kab=~a' Use criterion listed in (5)

below.

(4) If set I is not empty, then choose that element of set I such

that u. is minimum. If several elements of set I have minimal
l.

valU0 S , s,e1ect that element with minimum ui and maximum Ii'

(5) If two or more elements are equivalent from the standpoint of

the above tests, then label that set U
i

sharing the most

elements with the other sets Uk for ~i. This practice

minimizes the number of unlabeled nodes in the graph adjacent

to labeled nodes, allowing the labeled nodes to become nodes

in the isolated set ISOL(j) for lower labels j.

To initiate the labeling process we select some node as the node with

label 1. A candidate for label 1 can be selected by:

(1) choosing that node adjacent to the least number of nodes in the

graph;

(2) letting each node of the graph be node 1 in turn and performing

the labeling algorithm n times for an n node graph.

The first alternative is based upon the fact that labeling the node with

the least number of adjacent nodes allows node 1 to become a node in some

ISOL(j) where j is minimal.

The labeling algorithm is summarized in the flow chart of Fig. 4.3.

The computational growth rate of this algorithm is summarized in

Table 4.1. This table shows that the growth in computation time varies as

n3 , where n is the number of graph nodes.

An implementation of the partitioning of a graph with cutpoints is

described in Appendix C. This implementation reduces the growth in

computation for the labeling process to c(n,)3, where n' is the number of

nodes in the largest block of the graph and ~ is a constant.

C. EXAMPLE

We present an example of the labeling algorithm for the graph of

Fig. 4.4(a):

77

7 " '-

1

2

3

4

START

Choose a node with label
1. k:::l

Form the set of labeled
nodes adjacent to one

or more unlabeled nodes.
Denote by L.

no

For each node in L, i,
form the set u. - the
set of unlabel~d nodes
adjacent to node i.

Form the sets L. for
j=jl,j2, .•• ,j ~here
L.:::tkIJ RELEASES k}

J

,
G

5

STOP 6

7

8

Find the set U. such
that K .. G 0 i;here

.. . IJ . b t . ..1.. J:::J l ,J2 , ••• ,J r u .J,1

no

yes

1
Label that set U. (of
those sets such hat

K .. are equal) that
sfi~res the largest

number of nodes with

o~he~ Uk fO~
k:::J l ,J 2,··· ,J r

~

1

Assign labels k+l,
k+2, ••• ,k+u. to
nodes in set U.

l.

,
k=k+u.

1

cb
Figure 4.3 -- Flowchart of labeling algorithm

i ,

* STEP

1

2

3

4

5

6

"7

8

*

**

Table 4.1 -- Operations required to label an n node g~aph

** OPERATIONS/STEP TOTAL OPERATIONS

2 2
cln c1n

2 c
2

n C~/l

2 c n3 c
3

n
3

2 c 0 3 c
4

n).
I

2 c n3 c
5

n
5

2 c n3 c
5

n
6

2 c
7

n c
7

n

c8 c8n

Refer to Fig. 4.3 for step number

The constants c l ,c2 ' •••• ,c8 are dependent upon the particular

implementation used for the algorithm

79

80

(a) Given graph

k ISOL(k)

1 ¢
2 ¢
3 ¢
4 {I}
5 {1,3}
6 {1,3,4}

(b) Resulting labeling

Figure 4.4 -- Example of labeling process

(1) Since nodes A,C,E, and F each have the minim'~ number of adjacent

nodes, select A arbitrarily as the node with label 1.

(2) L = {I}

Thus

U={B,C,D,E,F}

subsets of L: LI={I}

U
I

={B,C}

Let node B have label 2 and node C label 3.

Thus

U2={E,D}

U
3

={D}

U={E,D, F}

subsets of L: L2={2,3}

U2={E,D}

L
3

={3}

U
3

={D}

K23=K32 therefore let D have label 4.

(4) L={2,4}

Thus

subsets of L: L
2

={2}

U2={E}

L4={4}

U4={F}

K24=K42 therefore node F has label 5.

(5) Node E has label 6 since it is the only node left.

Fig. 4.4(b) shows the resulting labeled graph.

81

82

D. COMMENTS ON THE OPTIMALITY OF TIlE LABELING ALGORITHM

A counterexample of the optimality of the algorithm above is shown

in Fig. 4.5. Fig. 4.5(a) shows the labeling that results from the

labeling algorithm and Fig. 4.5(b) another labeling that deliberately

defies the criterion employed in the algorithm. A comparison of the

values of S for each labeling shows that the second labeling results in

a lower value.

This phenomenon occurs because the labeling algorithm only examines

local data. One method of partially overcoming this problem is the

simple "lookahead" strategy now described,

Given a situation in which L has been separated into subsets L
l

,L
2

,

••• ,L, allOW the nodes in each subset L. to become isolated nodes by
x L

labeling the set U .• Then, perform the local labeling algorithm for a
1.

few steps. The set Uk resulting in the best overall value of S is then

labeled first. This practice avoids the problem of Fig. 4.5 while

increasing the computation time moderately.

(a) Labeling produced by labeling
algorithm

~(k)=ISOL(k)-ISOL(k-1)

k ~(k)

4 1
6 2
8 4

10 5
14 3
15 10,11,12,13

S~2Z9

k ~(k) -
4 1
8 3
9 4,5,6,7

11 2
13 ~
15 10

S=4Z
6

(n) Labeling that defies labeling criterion used in
labeling algorithm

Figure 4.5 -- Counterexample to local labeling criterion

83

84

CHAPI'ER V

CONCLUSIONS

A. SUMMARY OF RESULTS

In this thesis we investigate the problem of partitioning the

integer weighted nodes of a graph into clusters so that the values of the

edges cut are minimized.

Chapter II describes a dynamic programming procedure that generates

"feasible" partitions of an n node graph G. A partition is feasible if

each of its clusters satisfies the following restrictions:

(1) The sum of the node weights in the cluster is equal to or

less than a given weight constraint.

(2) The cluster nodes form a connected subgraph of G.

The nodes of G are first assigned unique labels 1,2, ••• ,n. Then stage k

of the dynamic programming procedure generates feasible partitions of

those nodes with labels ~ k.

The number of fe&si~le partitions for a cyclic k node graph grows

exponentially in k. Since the growth in computation time is proportional

to

n

n I Pk(10g2 Pk)
k=l

where Pk is the number of partitions generated on the kth step of the

partitioning process, the use of the dynamic programming procedure to

generate all feasible partitic\l~3 is quite inefficient.

We then introduce the coifc{!;p ~ .. '..,f the isolated ~et. This concept is

based upon the connectivjty requirements of each cluster of a feasible

partition and limits the number of partitions generated on the kth step of

the dynamic programming procedure to less than

Here x
k

is the number of node~ of the graph with labels less than k that

can be clustered with node k. If x
k

is much less than k for k=lj2, ••• ,n

and W«n, the number of partitions that must be generated by the dynamic

programming procedure is substantially less than the number of feasible

partitions.

A graph with cutpoints can be partitioned by first partitioning the

blocks of the graph, then combining these partitions to generate an

optimal partition of the entire graph. The maximum number of partitions

generated on a step of the partitioning process ·~.s a function of the

number of nodes in a block and not the graph itself.

In Chapter III the results of Cha·;>ter q are applied to the

partitioning of a tree. The special p:;operties of the tree result in an

algorithm whose computation time and storagG requirements grow linearly

with the number of graph nodes.

A basic requirement of the partitioning algorithm is the assignment

of a unique integer label to each node. In Chapter IV we show the

relationship between the labeling impressed upon the graph and the growth

in the number of partitions generated on each step of the partitioning

algori thm. An ad hoc labeling algori t:lun is also described.

B. FUTURE RESEARCH

We have investigated the problem of partitioning a c~nnected graph G

into disjoint clusters with the objective of minimizing the value of the

edges cut by the partition. A logical. extension of the partitioning

problem is the investigation of the pl'oble:m of finding a minimum-valued

85

H6

cover of G. A cover differs from a partition in that a cover is the

distribution of the nodes of G into clusters (c
i

} (i=1,2, ••• ,k) where

c. n c. need not be empty. A cover can often result in a lower value of
~ J

the interc1uster edges than a partition of G [Kernighan, 1969J.

An algorithm that solves the covering problem can be used to cluster

logic gates onto integrated circuit modules. The objective here is to

minimize the number of intermodule connections at the expense of

duplicating gates. This problem is discussed extensively in the article

by Oden, Russo, and Wolff [1971J.

The labeling algorithm developed in this thesis is locally optimal.

Therefore, an investigation of algorithms to efficiently generate a

globally optimal labeling is warranted.

The tree partitioning algorithm, because of its efficiency, can form

the basis of a partitioning algorithm for cyclic graphs. This algorithm

can efficiently generate a partition whose value may not be optimal but is

wi thin a given bound.

APPENDIX A

AN ANALYS1S OF THE LOWER BOUND ON THE NUMBER OF

FEASIBLE PARTITIONS FOR A CONNECI'ED k NODE GRAPH

A. LOWER BOUND ON NUMBER OF FEASIBLE PARTITIONS IGNORING WEIGHT

CONSTRAINT

Let the e edges of a graph G be assigned unique integer labels

1,2, ••• ,e. A binary variable e
k

can then be associated with the edge

with label k and represents the condition of edge k in a partition of

G -- i. e. :

if edge k is within a cluster of the partition

if edge k is cut by the partition.

We can then represent a partition of G by a binary sequence of

length e, where the kth bit of the sequence represents the condition of

edge k. This representation is unique, as we now show.

Assume that two binary sequences 8
1

and S2 :s:epresent the same

partition of G. If 8
1

is not equal to 8
2

, there must be at least one bit,

e., that is a 1 in one sequence and a 0 in the other. ·This situation
l.

cannot possibly occur since an edge cannot be both cut and contained in a

cluster of the same partition, thus 8
1

=8
2

,

A graph with k nodes has from k-l to k(k-l)/2 edges. If each binary

e
sequence represents a partition, a graph with e edges has no more than 2

feasible partitions. There are not, however, 2.
e feaLible partitions of

an e edge cyclic. graph because certain combinations ;:.f bi. ts in an e bit

binary sequence represent no partition of G. An illustration of this

fact is given in Fig. A.l. In particular, let an arbitrary labeling be

impressed upon the edges of the graph G. Assume that a cycle of G, whose

87

88

partition: (1,2) (3) (4,5,6)

valid representation: 1000111

invalid representatioi;l: 1000110

node label

edge label

2 -----/

Figure A.l -- Illustration of an invalid partition representation

length is c, contains the set of edges with labels (i1 ",i
2

, ... ,i
c
}' Anye

bit sequence representing a partition of G cannot contain a combination of

the bits e. ,e. , ... ,e. , in which one of these bits i::; a zero and the
~l ~2 ~c

rest are ones. Any other combination of the bits e. ,e
i

, ••• ,e
i

is valid
~l 2 c

if no cycle is contained within this cycle.

The lower bound on the number of feasible partitions of a k node

k-l cyclic graph is 2 ,as we now show.

Let a spanning tree st(G) of a graph G be formed. Let G have k nodes,

e edges, and let G be connected and cyclic. There are k-l edges and no

k-l cycles in st(G), therefore st(G) has 2 feasible partitions. Each

feasible partition of st(G) is also a feasible partition of G. This

follows from the fact that a feasible partition of st(G) can always be

transformed to a feasible partition of G by adding edge (i,j) to a cluster

of a part.ition of st(G) if nodes i and j are in the same cluster nnd edge

(i,j) is contained in G, bUL not st(G). Note that this is true regardless

of the weight constraint. Also, there are feasible partitions of G that

are not feasible partitions of st(G). For example, if edge (i,j) is an

edge of G not in st(G), then a partition with a cluster containing nodes 1

and j alone is feasible for G but not for S"t(G).

If P
k

denotes the set of feasible partitions for a k node connected

graph, then

k-l
= 2 for the tr~e

and

2k- 1 < IPkl < 2(k-I)(k/2) for a cyclic graph.
max

89

90

B. LOWER BOUND ON NUMBER OF FEASIBLE PARTITIONS FOR A WEIGHT

CONSTRAINT OF W

We have shown that a k node tree has the fewest feasible partitions

of any connected k node graph, ignoring the weight constraint. Since the

feasible partitions of the spanning tree of a graph G are a subset of the

partitions of G, we can find a lower bound on the feasible partitions of

a connected graph by analyzing the two tree types shown in Fig. A.2.

These troes represent the two extremes in spanning trees of a k node

graph. The tree of Fig. A.2(a) has the fewest levels of any k node tree

and each connected set contains the same node. The tree of Fig. A.2(b)

has the maximum number of levels for a k node tree, and each connected set

is one element contained in no other connected set.

The number of feasible partitions of the tree of Fig. A.2(a) is given

by the summation

We derive this number by noting that no cluster of a feasible partition can

contain more than one node unless node 1 is in that cluster. A lower bound

for this summation is given by

k! for W-l S k/2.
(k-W+l)! (W-l)!

Letting x = W-l, and using Stirling's approxi.mation,
k

Letting the term

91

(a) Minimum-level tree

------8
(b) Maximum-level tree

Figure A.2 -- Minimum- and maximum-level spanning trees

92

x

= f(x) ,

we can show that 1 < f(x) < 2 for 0 < x < ~"

A recurrence relationship for the number of feasible partitions of

the tree of Fig. A.2(b) can be derived from the fact that no more than

W nodes, hence W-l edges, can appear together in a single cluster for a

weight constraint of W. Consequently, a binary sequence representing a

feQsible partition of this tree cannot have a consecutive sequence on W

or more ones.

The number of binary sequences representing feasible partitions for

a weight constraint W is given by

where

= 2k- 1 _ b
k-l

with initial conditions

The solution to this recurrence relationship for W=2 is

where Fk is the kth Fibonacci number. The following theorem proves that

this is the minimum number of partitions for a nontrivial weight constraint.

Theorem

If B(k,W) denotes the set of k bit binary sequences with no subsequence

of W or more adjacent ones, and if dk(W)=IB(k,W)I, then

Proof

B(k,W) ~ B(k,W+I) since all sequences in B(k,W) are sequences in

B(k,W+I). B(k,W+I) properly contains B(k,W) since a k bit sequence with

a su.bsequence of W adjacent ones is a sequence in B(k,W+I) and not in

B(k,W)j yet, all sequences in B(k,W) are sequences in B(k,W+I). Since

x < y.

The sequences in the set B(k,W) are in one-to-one correspondence to

the partitions in Pk+l for the simple tree of Fig. A.2(b). Therefore,

k-l the number of partitions for this tree increases from Fk for W=2 to 2

for W ~ k ••

93

APPENDIX B

IMPLEMENTATION OF BASIC PARTITIONING ALGORITHM

Much of the analysis of Chapters II, III, and IV 1s based upon the

assumption that the computational and s~orage requirements associated with

some step of the partitioning algorithm are directly proportional to

where n is the number of graph nodes and Pk is the number of partitions

generated on step k. To support this assumption, an implementation of the

baSic partitioning algorithm outlined in Fig. 2.11 is now described.

A. OAT A STRUcrURE

Let P
k

be the set of partitions associated with step k of the part­

itioning algorithm. The information associated with each partition in the

set of partitions Pk is shown in Fig. B.l. The fields of the two data

types are summarizp.d below:

(1) HEADER (one per partition)

(a) DFLAG: a flag used to signal the existence of a partition

to be deleted.

(b) VAL: value of partition

(2) BODY (one entry per graph node)

(a) CC-FLAG: Warns that the cluster containing this node has

been used previously to form a new partition.

(b) REP: The n REP entries form a unique representation of a

partition. This representation is used in conjunction

with the WT entries to detect the dominant partitions

of each step.

95

HEADER

DFLAG VAL

BODY(l:n)

1

2

· I

· I

· I

n 1~ __ CC_-_FU __ G __ ~_RE_p __ ~_n __ R __ I~_~ __ ~I~_NE_W_P __ ~_~_O_D_E~

Figure B.l -- Data structure for a partition

96

(c) PTR: Used to link the BODY elements of nodes in the same

cluster.

(d) WT: Weight associateu with the cluster in which this

node exists.

(e) NEWP: Contains pointer to a partition previously created

from this partition. This entry allows the value

of a partition with a cluster that has two or more

elements of CONN(k) to be updated correctly.

(f) HNODE: Contains the highest-numbered node on the path

from node j to node k, where j E CONN(k) and the

path is that path that results in j being an

element of CONN(k). The purpose of this entry is

to handle situations where a cluster violates the

connectivity constraint locally, but does not do so

globally. When HNODE < k, the unconnected cluster

containing k and j never becomes connected by the

addition of a node with label> k. Consequently,

the partition can be deleted.

Each partition has a unique representation consisting of the n-tuple

formed by the REP entries of the BODY data associated with that partition.

This representation is used to detect the dominant partitions of P
k

• The

Isolated Set Theorem proves that all but the dominant partitions can be

deleted from P
k

before performing step k+l.

A cluster of a partition is uniquely identified by assigning the same

integer i to each REP entry associated with the non-isolated nodes in that

cluster. The integer i is the larel of that node in the cluster that

becomes a member of some ~ (j)=ISOL;~j)-ISOL~j-l) for a maximum value of j.

If two or more nodes in a cluste:c be.:.ong to the same c. (j) J then choose as

identifier that node with the smallest label. The reason for selecting

this form of identification for a cluster is explained below.

The REP ~ .tries associated with isolated nodes are zeroed. We then

use the representation, as well as the weights of those clusters containing

a node in CONN(k) ,to find similar partitions. 1wo partitions are
'max

similar if:

(1) their representations are equal,

(2) the weight of a cluster with identifier i, where i > 0, of the

first partition equals that of cluster i of the second partition.

We use the node r that is an element of ~(j) for the largest label j

to identify the cluster in which it exists because this avoids changing

the cluster identification until a new node is added to the cluster. A

cluster's identification changes for the following reasons:

(1) All nodes in the clustel' become isolated nodes, in which case

all REP entries become zero.

(2) The cluster is modified by the inclusion of node k, in which

case the cluster identification is updated if required.

The use of the partition representation is tllustrated ~n Fig. B.2.

B. ALGORITHM

(1) Label graph.

(2) Find CONN(k) and ISOL(k) for all nodes k. Also create a matrix

HI(j,k), where j E CONN(k) and j is not adjacent to k. Here the

entry in the m3trix is the largest label of a node on the path from

97

98

1

2

3

4

5
6

1

2

3
4

5
6

7
8

REP PrR WT

0 2 0

2 1 6

0 3 1

a 5 a

5 4 11

0 6 0

c 7 0

0 8 0
L.....-

(a) Partition (1,~)(3)(4,5)

p. 6
-2:z..:::

REP P'rR WT

0 2 0

0 1 ')
'-

0 3 1

0 5 0

6 6 a
6 4 3

F· 6~(1,2)(3)(4,~,6)
~,

P. 6~(1)(2)(4)(3,?,6) .1,
ISOL(6)~[1,3,2,4}

1

2

3
4

6

(b) Equivalent partitions

ISOL(5)=[1,3,4)

2 E b.(7)

5 E b.(8)

P. 6
~

REP PTR WT

0 1 1

0 2 1

0 5 0

0 4 1

b 6 0

6 3 3

Figure B.2 -- Examples of partition representations

node j to node k that results in node j being in the set CONN(k).

Also, find ~(k)=ISOL(k) - ISOL(k-I), where ISOL(O)=¢.

(3) PI={(l)}, k=l.

(4) k=k+l. If k > n, then exit.

(5) If CONN(k) is empty, go to (7). Else, select a node in CONN(k) --

let it be j -- and delete j from CONN(k).

(6) Form new partitions:

(a) For i=l to IPk-11 let q=Pi k-l -- i.e. create a new partition ,
of Pk whose data is initialized to the contents of Pi k-l' the ,
ith partition in Pk- l •

(b) Let Tl=q.REP(j).

(c) If q.CC-FLAG(TI)=l, then cluster Tl has been previously modified

by the inclusion of some other node in COh~(k). Update the

value of the partition previously created by adding the value

of edge(j,k) to VAL of the partition pOinted to by q.NEWP(Tl).

Go to (6a).

(d) If q.WT(TI)+WEIGHT(k) > W, then go to (6a). Else, q.\VT(Tl)=

q.WT(Tl)+WEIGHT(k).

(e) q.VAL=q.VAL+VALUE[edge(j,k)].

(f) If q.HNODE(TI)=k, then Pi k_I.DFLAG=I. ,
(g) If VALUE[edge(j,k)]=O, then enter HI(j,k) in q.HNODE(Tl).

(h) :.J:. TI is a node in ~(a) and k is a node in ~(b), then replace

(i)

(j)

(k)

all REP entries whose identifier is Tl with k if a < b and set

q.REP(k)=k. Else, q.REP(k)=TI.

T2=PTR(j), PTR(j)=k, PTR(k)=T2.

p. k I·NEWP(TI)=pointer to storage space associated with q.
1., -

Go to (6a).

99

100

(7) If ~(k+l) is empty, go to (~). Else, select a node in ~(k+l) -­

let it be x -- and delete x from ~(k+l).

(8) Zero all REP(x) entries associated with the partiLi~ns in P
k

-
l

and

P k' Go to (7).

(9) Create I-adjacencies of P
k

by taking each partition in P
k

-
l

whose

DFLAG entry is zero and entering k in REP(k). This is equivalent to

creating a partition with node k clustered alone. Delete all

partitions in P
k

-
l

•

(10) Determine those partitions of P
k

that are dominant and delete all

other partitions. We can implement this step by using the concept

of the AVL tree [Adel' son-Vel' skii, Landis, 1962J [Foster, J.96)J.

An AVL tree is defined as follows:

For every node of an A\'L tree, the length of the longest path

in the left su':,tree differs from the length of the longest path in

the right subtree by no more than one branch. Fig. B.3 illustrates

an AVL tree.

A full descrlption of the data structures associated with AVL

trees, and searching and inserting data using AVL trees, is given in

Stone [1972J.

An AVL tree has the advantage that the asymptotic growth to

search or insert data into the tree grows as log~(r), where r is the

number of nodes in the tree. The ma~imum number of nodes in the AVL

tree used to find the dominant partitions of P
k

is Pk=IPkl. We can

therefore find the dominant partitions of P
k

in a number of

operations whose upper bound is proportional to Pk~log2 Pk) times the

number of operations associated with the comparison of two partitions.

WI

Figure B.3 -- An example of an AVL tree

102

We now describe how the AVL tree is used to find the dominant

parti tions of P
k

,

In Section D of Chapter II we define two partitions as

similar partitions if:

(1) they have equal distributions of the nodes in CONN(k) in

their clusters;

(2) clusters containing the same subset of CONN(k) have the

same weight in both partitions,

When translated into the data structure of Fig. B.l, two partitions

p and q are similar if:

(1) they have equal representations, i.e. P.REP(i)=q.REP(i)

for i:::l,2, ••• ,n;

(2) P.WT(j)=q,WT(j) where j is a nonzero cluster identifier.

The partition p dominates partition q if:

(1)

(2)

p and q are similar;

* p. VAL C?; q. VAL •

To find the dominant partitions of P
k

, we select some partitions

p in P
k

that has not yet been inserted in the AVL tree and search the

tree for a similar partition. If a partition similar to p is found,

then the partition of greater value is left in the tree, and the

partition of lesser value is deleted from P
k

• If two similar

partitions have equal value, then the partition being inserted, P, is

deleted from P
k

• If no partition in the AVL tree is similar to p,

then p is inserted in the tree.

* If two partitions have equal values, one is arbitrarily chosen as the

dominant partition.

The data associated with each node of the tree consists of the

n REP entries associated with a partition and a maximum of n WT

entries, one for each cluster containing a node in CONN(k) • A
max

comparison of two partitions then takes a number of operations

proportional to n for an n node graph.

(n) Go to (4).

C. GROWTH RATE

A summary of the nwnber of operations required to perform steps 4

through 11 of the algorithm (these steps are performed once per partition)

is given in Table B.l. We see that step 10 dominates the growth in

computation time. Therefore the worst-case growth in computation time

varies asymptotically as

where Pk equals the number of partitions generated on step k and n equals

the number of nodes in the graph. Stone [1972J shows that the number of

words of storage required to use an AVL tree grows as the number of nodes

in the tree; there are no more than Pk nodes in the tree. The data

outlined in Fig. B.l, however, is proportional to n(Pk)' consequently the

storage requirements of the kth step of the algorithm grow as

103

104

Table B.l -- Number of operations required to form

partitions generated on step k of the

partitioning algorithm.

STEP OPERATIONS

4,5,6,11 (cl +c2w)Pk *

7,8 (k+l)c
3Pk

**

q c4 (Pk-l)
'"

10 c
5

(nPk)(log2 Pk)

Notes:

* Step 6
h

may require up to c
2
W operations for each partition,

where W is the weight constraint.

Pk=number of partitions generated on step k of algorithm

n= number of graph nodes

cl'C2,c3'C4,c5 are constants dependent upon implementation of

operations.

APPENDIX C

AN IMPLEMENTATION OF THE GRAPH PARTITIONING

PROCESS FOR A GRAPH WITH CUTPOINTS

The Block Independence Theorem proves that an optimal partition of

a graph G with one or more cutpoints can be created by generating the

partitions of each block of G independently, and combining these

partitions.

The only nodes of a block B contained in other blocks of G are cut­

points. This means that there can be a maximum of x(x~)WX partitions of a

block with x cutpoints since all other nodes in the block are" isolated"

nodes, i.e. are adjacent to no node in another block. If some block of G

has Xl cutpoints and another block has x2' then the process of combining
Xl x2

the partitions of these blocks may take up to [xl(xlw/e)][x2 (x
2
w/e)]

steps.

We derive a partitioning algorithm here whose computation time grows

asymptotically as

-2
n(n)(p log2 p)

and whose storage requirements grow as

WP.

Here W is the weight constraint, n is the number of nodes in the graph G,

n is the number of nodes in the largest block of G, and p is the largest

number of partitions generated in partitioning a ~lock of G. If the

blocks of G have sUbstantially fewer nodes than GJ a large reduction in

computation time and storage space is possible.

105

106

A. PARTITIONING ALGORITHM

If a connected graph G has a nonvoid set of cutpoints (c.} and an
J

associated set of blocks (B.}, the b10ck-cutpoint graph of G, denoted by
l.

bC(G), is a tree with node set V=(B.} U (c.} [Harary, 1969J. Here a node
l. J

Bi 1.s associated with block B. and a node c., with cutpoint c.. TWo nodes
l. J J

are adjacent if one node corresponds to a block B. and the other to a
l.

cutpoint c., and c. is in B .• Note that bC(G) is also a bigraph. Fig.
J J l.

C.l illustrates the block-cutpoint tree for the given graph.

The block-cutpoint tree is used to order the sequence in which the

partitions of a block are combined with the partitions of blocks

previously partitioned. This sequence is dictated by the following rule:

a block B. is eligible for partitioning if at most one cutpoint of B. is
1. l.

an element of the node set of some unpartitioned block. We base this

rule on the following result.

The nodes in a partitioned block B., with the possible exception of
l.

cutpoint c. of B., are contained in no unpartitioned block. We refer to
J].

these nodes as "isolated nodes" since a cluster consisting entirely of

these nodes is never mOdified in future steps of the partitioning process.

As a result, the Isolated Set Theorem states that we can select the

optimal-valued partition whose cluster containing node c. is of weight w,
J

where w=WEIGHT[c.J, WEIGHT[c.]+l, ••• ,W. Therefore a maximum of W of the
J J

partitions generated in the partitioning of B. must be kept for future use
].

in the partitioning process. These partitions represent the optimal-

valued partitions of the subgraph whose nodes are in the blocks previously

partitioned. We now describe the procedure used to generate and combine

partitions:

(a) Graph with cutpoints C,F, and H

mfD.
0--@

® B2

(0-€)

B3 J9 ®-'(D 0~
GfJ®--G

B5

B6

(b) Blocks of graph

(c) Block-cutpoint tree of graph

Figure C.l -- The block-cutpoint tree

107

108

(1) Assign each node of the graph to be partitioned a unique identifier.

(2) Create the block-cutpoint graph bC(G).

(3) Choose some node of bC(G) that corresponds to a block as root. Form

the directed tree bc' (G).

(4) Select a branch node c
k

of be' (G) all of whose sons are leaf nodes.

(a) Select some son of c
k

• This node corresponds to a block of G,

(b)

(c)

B
i

, with cutpoint c
k

in its node set.

Label the nodes of B. with integer labels 1,2, •.• ,n. using the
1 1

labeling algorithm developed in Chapter IV. Here n. equals the
1

number of nodes in B .• Note that this labeling is independent
1

of the labeling employed in partitioning another block of G.

Partition B. with the basic partitioning algorithm (Fig. 2~11)
1

with one modification: If some node with label k is a cutpoint

C., upon completion of step k find if previously-partitioned
J

blocks also contained node c.. If so, then there are a
J

maximum of W optimal partitions of the subgraph consisting of

the nodes in these blocks. Let this set of partitions be

denoted by P • The partitions i~l P
k

, the set of partitions c.
J

generated on the kth step of the partitioning of block B., are
1

then combined with the partitions in set P •
c

j
The combination of P and P

k
results in a set denoted by

c.
J

Pk ,. Since all nodes in clusters of the partitions of Pare
c.

J
isolated nodes, except c., the maximum size of CONN(k)

J max

remains unchanged and Ipk , I max = IPkl max •

We now describe the process of combining the partitions in

the sets Pk and P
c.

J

(i)

(ii)

(iii)

Let an x-adjacency of node k be denoted by p k where
x,

PX,k E Pk • The partition in P
Cj

with a cluster of weight

y containing node c
j

is denoted by p •
y,c

j
Combine p k and p by concatenatij~ the clusters of x, y,c

j
each partition. The result is a partition p k' with z,

clusters consisting of the unmodified clusters of Px k ,
and p ,with the exception of the two clusters

y,c
j

containing node c. and node k. These two clusters are
J

merged into one whose weight is given by

z=x+y-WEIGHT[c;].
,j

The set of nodes in the merged cluster includes the union

of the set of nodes in both clusters containing node c.
J

(node k) with the identifier of node c
j

replaced by its

local label k.

VALUE[P. k,]=VALUE[P k]+VALUE[P] z, x, y,c.
J

(d) When Bi is partitioned, delete the labels for each node of Bi

and replace them with the identifier a.ssigned in step (1).

(e) Delete Bi from bc'(G). If the number of nodes in Bi equals n
i

,

(f)

then P =P If Bi was the last son o~ branch node c
k

then
ck °i

delete c
k

from bc' (G) also and select a.nother branch node of

bc' (G) whose sons are leaf nodes.

Go to (a) until only the root B remains. Partition Busing
r r

steps (a) through (d) above. Choose the optimal partition of

those associated with B. This is the optimal partition of the
r

graph.

109

110

B. GROWTH RATE

The growth in computation time is summarized in Table C.l. The

nwnber of operations is dominated by the operations required to partition

a block of the graph (step 4c). The growth rate of the computation time

to partition a graph G therefore varies asymptotically as

- 2) n(n (p log2 p)

where p is the maximum number of partitions generated in partitioning a

block of the graph G and Ii is the maximum number of nodes in a block of G.

The maximum storage requirements of the algorithm occur during steps

4c(i)., 4c(ii), and 4c(iii) since Wp partitions may be generated during

these steps. The growth in storage is therefore proportional to Wp.

C. EXAMPLE

We now give an ex~~ple of the above procedure. The graph to be

partitioned is shown in Fig. C.2(a).

s'rEP 1

Assign unique i.jentifiers to nodes (Fig. C. 2 (b)).

STEP 2

Find bC(G) (Fig. C.l).

STEP 3

Form rooted tree bc'(G) by selecting node B6 as root (Fig. C.3).

STEP 4

Select branch C since sons B1,B2,B
3

are all leaf nodes.

(a) Select Bl for partitioning.

(b) Label Bl (Fig. C.4(a».

(c) Partition Bl with algorithm outlined in Fig. 2.11:

111

Table C.1 -- Number of operations to partition

an n node gr~ph with k cutpoints

*** STEP OPERATIONS/ STEP TOTAL OPERATIONS

1 cln c1n

2 ,...
2 Co c2n c2n

3 c
3

n c
3

n

4a c
4

n c
4

kn

4b -3*
C kn:3 c n

5 5

4c -2
c6n (p log2 p) ** -2 c6kn (p log2 p)

4c(i,ii, and iii) c
7

n Wp C
7

k'ii Wp

4d cSn cSkn

4e
2 2 c

9
n c

9
kn

4f clO kc10

* n=maximum number of nodes in a block of the graph

** p=maximum number of partitions g·anerated in creating partitions of

a block of th~l graph

*** The constants c1,c2, ••• ,clO are implementation dependent

112

(a) Graph to be partitioned

(b) Nodes of graph are assigned identifiers

Figure C.2 -- Example of partitioning process for

graph with cutpoints

Figure C.3 -- Rooted tree bC'(G) derived from block­

cutpoint graph bC(G)

113

114

(a) Labeling of Bl

(b) Labeling of B2

Figure c.4 -- Examples of block labeling

115

Figure C.5 -- Resulting partition of graph of Fig. C.2

116

Results --

P3={Pl,3,P2,3,P3,3}

Pl ,3=(l, 2) (3)

P2, 3=(2, 3)(1)

P3,3=(1,2,3)

VALUE=l

VALUEd 1

VALUE=20.

(d) Delete labels and replace with node identifiers:

PC=[PI e'P2 e,P3 e} , , ,
Pl,e=(A,B)(e)

P2,e::::(A)(e,B)

P3,e=(A,n,e)

VALUE=l

VALUE=ll

VALUE=20.

(e) Delete Bl from tree.

Iteration 2:

(a)

(b)

(c)

Select son B2 of branch node e.

Label B2 (Fig. C.4(b».

Partition B
2

:

P3=tP1,3,P2,3,P3 ,3}

P1,3=(1,2)(3) VALUE:b

P2,3=(2)(1,3) VALUE=4

P3,3=(1,2,3) VALUE=12.

Since node 3=node C, and node e is a cutpoint contained in a

previously partitioned block Bl , combine P
3

with Pc:

combine Pl ,3 and Pl,e: (A,B)(3)(1,2)

VALUE=7

combine P and P2 e: (1,2)(3,B)(A)
1,3 ,

VALUE=17

combine P2,3 and Pl,e: (A,B)(1,3)(2)

VALUE=5

combine Pl ,3 and P3,e: (A,B,3)(1,2)

VALUE=26

combine P2,3 and P2,e: (1,3,B)(2)(A)

VALUEd5

combine P
3
,3 and PI,e: (1,2,3)(A,B)

VALUE=13·

After deleting suboptimal partitions:

P3,=[Pl,3"P2,3"P3,3'}

PI ,3,=(A,B)(3)(1,2) VALUE~7

P2 ,3,=(1,2)(3,B)(A) VALUE~17

Pi,3,=(A,B,3)(1,2) VALUE=26

(d) Delete labels:

Pe=[P1 C'P2 e'P3 c}
, J ,

PI e=(A,B)(D,E)(e) ,
P2 e=(A)(B,e)(D,E) ,
P

3
,3=(A,B,C)(D,E)

(e) Delete B2 from be' (G).

Iteration 3:

(a) B3 is the remain:.ng son of e.

VALUE=,

VALUEd?

VALUE=26.

(b,e,d) The generation of these partitions is similar to the above,

hence:

117

118

PC=[PI C'P2 c'P3 c} , , ,
P1,C=(A,B)(D,E)(C)(J)

P2,C=(B,C)(A)(D,E)(J)

P3,c=(A,B,C)(D,E)(J)

(e) Delete B3 and C.

Iteration 4:

VALUE =7

VALUE=17

VALUE=26

(a) Select node F since it has one son that is a leaf node, B4'

(b,c,d) Resul~ing partitions:

Pl,F=(A,B,C)(D,E)(J)(F)

P2,F=(A,B)(D,E)(C,F)(J)

P
3

,F=(B,C,F)(A)(D,E)(J)

(e) Delete. nodes B4 and F.

Iteration 5:

VALUE=26

VALUE=H

VALUE=21

(a) Select node H since it has son B
5

•

(b,c,d) Kesults:

Pl,H=(G)(H)

P2 H=(G,H) ,
(e) Delete nodes B5 and H.

Iteration 6:

VALUE=O

VALUE=2

The only node of bc'(G) left is the root, B6. It is partitioned with

the result that the optimal partition of G is

(A,B,C)(D,E)(J)(F,r,H)(G) VALUE=3S'·

Fig. C.5 shows this partition impressed upon the graph of Fig, C.2.

LIST OF REFERENCES

[1962J G. M. Adel'son-Vel'skii and E. M. Landis, "An algorithm for the

organization of information," !)oklo Akad. Nauk SSSR, Mathemat.,

vol. 146, pp. 263-266, 1962.

[1965J c. C. Foster, "Information storage and retrieval using AVL trees,"

Proc. ACM Natl. Con£., pp. 292-305, 1965.

[1966J P. C. Gilmore and R. E. Gomory, "The theory and computation of

knapsack functions," Oper. Res., vol. 14, pp. 1045-1074, Nov.-Dec.

1966.

[1967J J. Goldberg et aI, Logic Design Techniques for Propagation Limited

Networks, Stanford Research Institute, Rep. AFCRL-68-0002, PP. 5-51,

Nov. 1967.

[1969J F. Harary, Graph Theory. Reading, Mass.: Addison-Wesley, 1969,

Pp. 36-37.

[1967J F. S. Hillier and G. J. Lieberman, Introduction to Operations

Research. San Francisco, Cal.: Holden-Day, 1967, ~p. 243-244.

[1971J H. Hopcroft and R. Tarjan, "Planarity testing in V log V steps,"

Computer Science Dept., Stanford University, Stanford, Cal.,

Re~. CS-71-201, Feb. 1971.

[1970J P. A. Jensen, "Optimal network partitioning," Opns. Res., vol. 19,

pp. 916-932, Jul.-Aug. 1970.

[1969j B. W. Kernighan, "Some graph partitioning problems related to

program segmentation," Ph.D. thesis, Princeton Univ., Princeton,

N.J., Jan. 1969.

119

120

[1971J B. W. Kernighan, "Optimal Sequential Partitions of graphs,"

JACM, vol. 18, pP. 34-40, Feb. 1962.

[1962J E. L. Lawler, "Electrical assemblies with a minimum number of

interconnections," IRE Trans. on Elect. Computers, PP. 86-88,

Feb. 1962.

[1969J E. L. Lawler, K. N. Levitt and J. Turner, "Module clustering to

minimize delay in digital networks," IEEE Trans. on Computers,

vol. c-18, pp. 45-57, Jan. 1969.

[1968J c. L. Liu, Introduction to Combinatorial ~lathematics. New York:

McGraw-Hill, 1968, p. 187.

[1969J F. Luccio and M. Sami, "On the decomposition of networks in

minimally interconnected subnetworks," IEEE Trans. on Circuit

Theory, vol. CT-16, pp. 184-188, May 1969.

[1971J P. H. Oden, R. L. Russo and P. K. Wolff, "A heuristic procedure

for the partitioning and mapping of computer logic graphs,"

IEEE Trans. on Computers, vol. C-20, PP. 1455-1462, Dec. 1971.

[1970J H. S. Stone, "An algorithm for module partitioning," JACM,

vol. 18, pP. 182-19j, Jan. 1970.

[1972J H. S. Stone, Introduction to Computer Organization and Data

Structure. New York: McGraw-Hill, 1972, Pp. 277-289.

