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ABSTRACT

In this dissertation we describe algorithms that use graph properties
and dynamic programming techniques to generate the optimal partition of an
arbitrary graph. In particular, let G be a graph with weighted nodes and
weighted edges. We consider algorithms that solve the problem of part-
itioning G into clusters of nodes such that the sum of the node weights in
any cluster does not exceed a given maximum W and the weights of the inter-
cluster edges are minimized. An interesting application of such an
algorithm is the assigoment of a program's subroutines and data to pages
in a paged memory system so as to minimize paging faults.

The concepts of dynamic programming and, in particular, those
techniques appropriate to the solution of the "knapsack'' problem, are
employed in an algorithm that generates the optimal partition of an
arbitrary graph. An upper bound on the algorithm's growth in computation

time and storage to partition an n node graph is

n
nu nw
e

where e is the base of the natural logarithms. We use the following graph
properties to reduce this growth rate:

(1) the degree of the graph;

(2) the existence of cutpoints in the graph.

The first property bounds the growth in time and storage of the

algorithm tc less than
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where x is.a function of the degree of the graph., The value of x is
independent of the number of nodes in the graph; however, the degree of a
graph may grow as n, A graph whose nodes are adjacent to few others has
a value of x << n and, for a small value of W, can be partitioned very
efficiently.

If any n node graph G ccntains one or more cutpoints, we show that G
can be partitioned by partitioning the blocks of G and combining these
partitions, A considerable reduction in time arnd storage to partition the
graph results if the number of nodes in each block of G is small compared
to n.

A very efficient variation of the general algorithm results if the
graph to be partitioned is a tree. We show that trees can be partitioned

in a time proportional to the number of nodes in the graph.
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CHAPTER 1

INTRCOHUCT ION

Consider a graph G whose nodes have nonnegative integer weights and
whose edges have positive values. A familiar combinatorial problem is the
partitioning of G into subgraphs such that the sum of the node weigh%s in
any subgraph does not exceed a given maximum and the sum of the values of
the edges joining different subgraphs is minimal,

An interesting exampie of this partitioning problem is that of part-
itioning a program to be run on a computer wilh a paged ncmory system into
pages so that paging faults are minimized [Kernighan, 1971]. Here the
graph is the program and the nodes are collections of instructionmns (such as
subroutines) or data (such as arisys) making up that program. The edges
are the transitions that might occur from one subroutine to other sub-
routines and data, for example,.

Before describing previous investigations of partitioning problems,

we define partition in the sense used here.

A. PROBLEM DEFINITION AND RESTRICTIONS
Given a graph G=(V,E) with node set V and edge set E, a partition of G
is a collection of k clusters of nodes {ci} (i=1,2,...,k) such that
k
(1) U ec.=v,
: i
i=1

(2) c; n cj=¢ for all i#j .

A nonnegative integer weight w, is associlated with each node i and a positive

i

value Vi with each edge (i,j). A weight constraint is imposed upon each

cluster of a partition. Given a positive, integer weight constraint ¥, the




sum of the node weights in any cluster uf{ a partition must not exceed W.
An edge (a,b) is cut by a partition if nodes a and b are in different
clusters. Fig. 1.1 illustrates a partition of the given graph where the
weight constraint is two.

An optimal partition is defined as some partition of G, pG(opf)=

{cl,ce,...,ck}, with the property that each cluster c, satisfies the weight

> e,
Jj€c J

i

constraint,

and

2: v,. is minimal (£,g=1,2,...,k).

R ij

1€cf

and” | ffg

j€c

J g

An equivalent property is that each cluster satisfies the weight constraint

and

21 v,. is maximal (£=1,2,...,k),
J€

since the sum of the edges in clusters plus the sum of the edges cut by the
partition equals the sum of the values of G's edges.

We impose several restrictions »n the problem investigated here., The
first is that the nodes of the graph must have nonnegative integer weights.
The only restriction placed upon the values of the edges, howcver, is that
they are positive. Another restriction is that the graph be connected*.

Given a disconnected graph G, each connected subgraph of G is partitioned

% A connected graph has a path from any node in the graph to all other

nodes in the graph,



v={A,B,C,D,E]}

E={a,b,c,d,e}

weight constraint = & 211 nodes have unit weight
partition = {cl,cg,c3}
c, = (a,B)
C2 = (C)
c_ = (D,E
3 ( 2 )

Figure 1.1 —-- A partition of the graph G=(V,E)



independently -- i.e., each cluster consists of nodes from the same
connected subgraph. This restriction does not affect the optimality of the
solution to the partitioning problem —- a proof of this fact is given in
Chapter II,

The final restriction is that a multigrap’ must be transformed into a
graph by the following modification. If more than one edge exists between
two nodes 1 and j, then the several edges joining i and j are replaced by

one with a value v_ . equal to the sum of the values of those edges.

ij

B. HISTORY

The partitioning problem defined above is one of several found in the
literature on optimal partitioning. Two others frequently investigated
are the following:

(1) Partition a graph with weighted nodes into clusters so that each
cluster does not exceed a given weight constraint and the number
of clusters is a minimum,

(2) Partition a directed graph with weighted nodes and edges with
values that are zero if the edge is in a cluster and positive if
cut by the partition. The objective in this problem is to
minimize the value of the worst-case directed path by clustering

*
the given network under both weight and pin constraints .,

An example of the first problem is that of packaging a logic design
with the objective of minimizing the number of clusters required. The
second problem occurs in the packaging of a logic design when the objective

is ¢o minimize the delay asscciated with intercluster wiring.

* A pin constraint is a restriction placed on the number of edges cut by

each cluster of a partition.



The literature on optimal partitioning generally falls into the three
categories above, Lawler [1962], Luccio and Sami [1968], and Kernighan
[1971] have investigated restricted problems of the type considered here.
Stone [1970] has investigated the problem of minimizing the number of
modules required to partition a logic network. Lawler, Levitt, and Turner
{19697 and Jensen [1970] have investigated the problem of partitioning a
directed acyclic graph with the objective of minimizing the maximum-delay

path,

c. A COMBINATORIAL APPROACH TO THE PARTITIONING PROBLEM

In this thesis we describe combinatorial algorithms that use graph
properties and a dynamic programming procedure to generate the optimal
partition of a connected graph.

The dynamic programming procedure generates ''feasible' partitions, i.e.
those partitions of a graph G whose clusters satisfy the weight constraint
and form connected subgraphs of G. The number of feasible partitions of a
k node graph grows exponentially in k, consequently we use certain graph
properfies to reduce the number of feasible partitions generated on each
stage of the dynamic programming procedure. These properties are:

(l) the number of nodes adjacent to each node of the graph;

(2) the existence of cutpoints in the graph.

The first property limits the number of partitions generated on the kth

stage of the dynamic programming procedure, pk, to

k
P, < Xy ka s

e

where Xy is a function of the degree of the graph, e is the base of the

natural logarithms, and W is the weight constraint. ©Note that X is

independent of the number of nodes in the graph.



The growth in computation time for the kth step of the partitioning

algorithm is proportional to

n{p, (log, p)]
where n is the number of graph nodes. The computation time is proportional

to

n
n zpk 1og, Py
k=1

therefore it grows asymptotically as

n'2 lo = n2 2 (__xﬂ)x
p g2 p - X v e
where
X
P = x|x¥
e
and
X = max {:{ } -
1<k<n

The storage requirements grow asymptotically as

np=nx (_}_(E)x .
e

We show that an algorithm that generates all feasible partitions of an

n node graph G has an asymptotic growth in computation time of

L n
‘)

2
n- p log, p
where

p=(n)(aW)" .

A comparison of the partitioning algorithm developed in this thesis and an
algorithm that generates all feasible partitions shows a reduction in the
growth in computation time and storage of

It-X
n .



If each node of G is adjacent to few others, the value of x is much less
than n resulting in a significant reduction in computation time over a
procedure that simply generates all feasible partitions.

A graph with cutpoints can be partitioned by first partitioning the
blocks of the graph, then combining these partitions to form the optimal
partition of the entire graph. The maximum number of partitions generated
on a step of the partitioning process is a function of the number of nodes
in a 21225 of the graph, not the graph itself,

The special properties of a graph in the form of a tree are used to
create an algorithm for tree-partitioning. This algorithm has a growth in
computation time and storage requirements that varies linearly with the

number of graph nodes.



CHAPTER II

A GENERAL GRAPH PARTITIONING ALGORITHM

In this chapter we describe a partitioning algorithm that has as its
basis a dynamic programming procedure similar to that used in the solution
of the one—dimensional knapsack problem [¢ilmore, Gomory, 1966]. The
similarity between that problem and the partitioning problem becomes
apparent when their properties are compared.

The one-dimensional knapsack problem cax be posed as the problem
faced by a mountain climber who has a knapsack that can carry a maximum
weight of W pounds and a number of different items he wishes to carry in
the knapsack. Each item has a weight and value associlated with‘it, and the

sum of the weights of the items exceeds W. A mathematical statement of

this problem is the following:

1-dimensional knapsack problem

lLet v weight of item i

(i=1,2,. .. )
v,
1

]

value of item i

W = capacity of knapsack
n

Maximize ji:vixi subject to the constraints

i=
S
. wixis w
i=1
1 if item i is in knapsack
b A
i

0 otherwise,

The mathematical statement of the partitioning problem, given below,
is seen to be an extension of the one~dimensional knapsack problem to the
distribution of interconnected, weighted items into many "knapsacks' or

clusters, each of capacity W:



Partitioning problem

Let wi = welght of node i

Vyg = value of edge (i,j) (i,3=1,2,...,n)

W = weight constraint

n n
Maximize ji S;v Ko X subject to the constraints
: ij7ik jk
i=1 j=1
n
Eiwixiksw (k=1,2,...,number of clusters in
i=1 vartition)

1l if node i is in cluster k

O otherwise.

A problem amenable to solution using dynamic programming must have the
following characteristics [Hillier and Lieberman, 1967]:

(1) The problem is divisible into stages with a policy decision

rcguired at each stage.
(2) Each stage has a number of states associated with it.
(3) The policy decision translates a state associated with the
present stage into a state associated with the next stage.
(4) Given the current state, an optimal policy for the remaining

stages is independent of how the current state is reached.

We now show that the partitioning problem satisfies these characteristics,
In order tc pose the partitioning problem as one suitable for solution
by dynamic programming, the graph is first labeled. A labeling is the
assignment of i unique integer to each node of the graph; the node
associated with some integer k by the labeling is then referred to as

'node k." The kth step, or stage, of the partitioning process generates

the feasible partitions of the subgraph consisting cf those nodes with
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labels = k. These partitions correspond to the states of the kth stage.
The partitions of the subgraph consisting of those nodes with labels no
greater than k are created from the partitions of the k-1 st step by
adding node k to these partitions within the limitations imposed by the
weight constraint. The policy decision is the determination of which
parfitions of step k-1 can have node k added to one of their clusters to
generate partitions of step k. Consequently, it is apparent that the
partitioning problem can be solved with a dynamic programming procedure,
Before describing the basic partitioning process, we give the following

definitions.

A. DEFINITIONS

The nodal representation of a partition is an unordered collection of

lists where each 1list represents a cluster and the contents of the list are
the nodes in that cluster. For example, a cluster with nodes 1,3,5, and 6
is represented by the list (1,3,5,6), where the order in which the nodes
appear in the list is not important. An example of a nodal representation
of a partition with this cluster is (1,3,5,6)(2,4)(7). The set of partitions
generated on the kth step of the partitioning process are denoted by Pk' A
partition in Pk is denoted by pi,k and represents a partition of the sub-
graph consisting of nodes with labels less than or equal to k. The value

of some partition pi,k is defined zs the sum of the values of the edges
within the clusters of pi,k' The weight of a cluster is defined as the sum
of the weights of the nodes in that cluster., The cost of a partition equals
the sum of the values of the intercluster edges. The cost plus the value of
a partition equals the sum of the values of all edges in the graph for which

that partition is generated. Fig. 2.1 illustrates several of these

definitions,



cluster:

partition: (1,3,5,6)(2,4)(7)

(a) Nodal representation of a partition

Figure 2.1 -- Examples of definitions

(1,3,5,6)

11
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partition p:

VALUE(p) = 6 + 4 + 5 =15

cosT(p) =3 +1 =14

(b) vVvalue and cost of a partition

Figure 2,1 ~-~ Examples of definitions



a 2-adjacency of node 4:

(1,2)(3,4)

another Z2-adjacency

of node UL:
(1)(3)(2,4)

(c) A k-adjacency of node j

Figure 2.1 -- Examples of definitions

13
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A k-adjacency of node j is defined as a partition Py 5 with a cluster
b

containing node j whose weight is k. An example of a 2-adjacency of ncde 4
is shown in Fig, 2.1. A k-adjacercy of a node is not unique, as is also
shown in Fig. 2.1,

In Chapter I a weight constraint is imposed upon each cluster of- a
partition, The following theorem further constrains the properties of the

nodes in a cluster.

Connectivity Theorem

An optimal peclicy for a connected graph G is to cluster only those
nodes that ultimately form a connected subgraph of G.

Proof

Let there exist a cluster of an optimal partition of G that contains
two or more disjoint connected subgraphs, Sl’s2""’sk' Since the graph G
is connected, some subgraph Si can be removed from the cluster in which it
presently cxists and added to a cluster in which there is at least one
node adjacent to some node of Si' If the sum of the nodes in the newly
formed uluster does not exceed the weight constraint, an edge that was cut
by the partition (there may be more than one) is now within the newly
formed cluster., Since all edge values are positive, the original partition
is not optimal, contrary to the given condition; this contradiction proves
the theorem,

If the subgraph Si cannot be added to a cluster containing a node
acjacent to some node of Si without violating the weight limitation, theun
it can be clustered by itself with no increase in the cost of the partition.
Consequently, all clusters in an optimal partition of a connected graph G
can form connected subgraphs of G. A partition of G can, however, have

clusters containing disjoint connected subgraphs with a cost that is equal
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to that of the optimal partition generated using this policy, and, in fact,
may require fewer clusters. The point of the theorem is that the connect-
ivity limitation does not cause the deletion of an optimal partition,

A feasible partition of a graph G is defined as a partition whose

clusters each satisfy the following properties:
(1) The sum of the weights of the nodes in a cluster must not
exceed W, the weight constraint.

(2) The ncdes in a cluster must form a connected subgraph of G.

In the process of partitioning a connected graph G the only partitions
that need to be generated are those whose clusters have a weight not
exceeding the weight constraint and that contain mnodes that may form a

connected subgraph of G, In generating the set of partitions P,_ on step Kk,

k
the weight constraint is easily tested by adding node k to each cluster of

some partition in P and rejecting the resulting partitions with a

k-1
cluster whose weight exceeds W. A newly created element of Pk must not only
have clusters that satisfy the weight constraint, but its clusters must also
contain nodes that presently form « Zunnected subgraph, or form a connected

subgraph with the addition of one or more nodes with labels greater than k.

Let this restriction be called the connectivity constraint, In order to

recognize some cluster of an element of Pk 1 to which node k can be added
without violating the connectivity constraint, we introduce the concent of

the connected set,

The connected set for a node k is defined as that set of nodes that, if

one or more of them appears in a cluster of a partition in Pk 17

that the addition of node k to that cluster may on some step j & k form a

guarantees

connected subgraph. The properties of a node i in the connected set for

node k, denoted by CONN(k), are:
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(1) i< Kk;
(2) node i
(a) is adjacent to node k, or
(b) lies on a path 1,375355+4+53,,k where
2 WEIGHT[y] = W
y E{i,jly-'°)k}

jm >k for m=l1,2,...,r.

The second property guarantees that a partition with a cluster containing
two nodes i and k that are presently disconnected, but become connected if
nodes jl’jE""’jr are added to that cluster, is generated on step k.

An illustration of the connected set associated with each node of the

given graph is shown in Fig, 2.2,

B. DYNAMIC PROGRAMMING PROCEDURE

We now descrike the dynamic programming procedure tha* forms the basis
of the partitioning algorithm., A labeling is assumed to have been impressed
upon the graph. The particular labeling used affects the partitioning
process. Chapter IV discusses the problem of labeling a graph.

The kth step of the partitioning algorithm has as its states the
partitions of the subgraph consisting of those nodes with labels < k,

denoted by Pk' We then add node k+1 to all partitions in Pk with a cluster
satisfying the c¢riteria:

(1) the addition of node k+l does not cause the cluster weight to
exceed the weight constraint;
(2) there exists a node in CONN(k+l), the comnected set for node

k+l, in the cluster.

The resulving partitions are the states of k+1, Pk+1'



W =3

all nodes
unit weight

CONN(1) = ¢
CONN(2) = {1}
CONN(3) = {1,2}
CONN(4) = {2,3]}
coMN(5) = {1}

Figure 2,2 -~ Illustration of connected set

17
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The value of each partition equals the summation of the edges within

clusters of the partition. This is expressed as follows:

VALUE[px,k+1] = ;;‘VALUE[edge(y,k+l)] + VALUE[pZ’k]
where
VALUE[pz,k] = value of a partition in Pk_-pz,k
y € CONN(k+1)' where CONN(k+l)' is the subset of CONN(k+1)

present in the cluster of pz Kk to which
node k+l1 was added. ’

The dynamic programming process is outlined below:
STEP 1
For each node k find the connected set, CONN(k).
STEP 2
j=0, Py=g¢
STEP 3
J=j+1
Let the weight of node j be denoted by wj. Pj consists of the
following partitions:
(a) Form the “-adjacencies for k=W, .
Each such k-adjacency is formed by adding a cluster containing
node j alone to the set of clusters of a partition in Pj—l'
(b) For k=wj+1,...,w, form the k-adjacencies of node j., Only
those partitions in Pj-l with at least one cluster containing
a node in CONN(j) can generate these partitions,
STEP 4
Go to step 3 until j=n for an n node graph,
STEP 5

Select the maximal-valued partition in Pn’ This is the optimal-

valued partition of the graph.



We prove the optimality of the dynamic programming procedure by the
following argument. The Connectivity Theorem shows that no partition of
an n node graph G can have a value greater than a partition each of whose
clusters forms a connected subgraph of G. We must then show that the
above algorithm generates all such partitioms.

On step k of the algorithm node k is added to the clusters in each

partition in P

k-1 such that neither the weight nor the comnectivity

constraint is violated., The algorithm may, however, fail to generate an
optimal partition of G if on some step k the addition of node k to a
cluster violating either the weight or the connectivity constraint results
in a feasible partition of G.

If node k is added to a cluster of some partition in Pk—l and the
resulting partition pj,k contains a cluster that violates the weight
constraint, it is clear that all partitions derived from pj,k also have a
cluster that violates the weight constraint. This result follows from the
fact that a node is never removed from a cluster on some step of the
algorithm, and each node has a nonnegative weight.

Let node k be added to a (nonvoid) cluster c of a partition in P ..
If the set of nodes in c is {11,12,...,1r}, then the addition of node k to
¢ violates the connectivity constraint if:

(1) no node in c is adjacent to k;

(2) given any node i in ¢, there is no path i ,3,,...,J ,k such that

ZWEIGHT[ y] =W
y

wvhere

ip > k for h=l1,2,...,2

y E{im’jl’ o -’jzyk} .

19
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Let the partition in P, generated by adding node k to cluster c¢ be

k
denoted by pj,k' Then, every partition of G derived from pJ’k has =a
cluster containing nodes k’il’ia""’ir in which there is no path (within

the cluster) from node k to any of the nodes 11500051, As a
consequence, that cluster cannot form a connected subgraph of G.

In conclusion, the addition of some node k to a cluster violating
either the weight or the connectivity constraint cannot result in a
partition of G whose clusters satisfy the weight constraint and form
connected subgraphs of G. The algorithm described above therefore
generates the optimal partition of graph G.

An example of the use of this algorithm is given in Fig, 2.3. The
results of each step of the algorithm are contained in a tabular form.
Each row of this table corresponds to a step of the procedure; the kth

coiumn and jth row of the table contain the k-adjacencies of node j.

C. GROWTH RATE FOR DYNAMIC PROGRAMMING PROCEDURE

Although the dynamic programming procedure just descrlbed generates an
optimal partition of a graph without resorting to total enumeration, the
question arises as to the number of feasible partitions possible for a
connected graph, In Appendix B we show that the growth in computation time

varies as
n

Z np, [log, p, ]
& P82 P

and the storage requirements vary as np,, where n equals the number of graph
nodes and Py the number of partitions in the set Pk generated on the kth

step of the dynamic programming procedure.



NODE  CONNECTED SET
1 ¢
2 {1}
* 3 (1,2}
2 4 {2,3]
all nodes unit weight 5 {h}
W= 3
k-adjacencles
STEP 1 2 3
1 (1) =0
2 (1)(2) =0 (1,2) =5
3 (1)(2)(3) = (1,3)(2) =3 (1,2,3) =8
(1,2)(3) = 5 (1)(2,3) =0
(1)(2)(3)() =0 (1)(2,4)(3) =1 (1,2,4)(3) = 6
4 (1,2)(3)(%) =5 (1)(2)(3,4) =6 (1,3,4)(2) =9
(1,3)(2)(%) =3 (1,3)(2,4) =& (1)(2,3,4) =7
(1:2:3)(”’) = 8 (1:2)(3:’4‘) = 11
(1)(2 )(g)(h)(5) (1)(2)(3)(h,5) (1)(2, h,5)(3)
5 (1,2)(3 % (4)(5) (1, 2)(3)(4,5) (1)(2)(3, »5)
(1:3)() () ) <1,3)(a><u,5> <1,3><284,5)
(1,2,3)(4)(5) (1, 2,3)(h,5) (1,2)(3,4,5)
=8 =12 =15
(1) (2,4 3(3)(5)
(1)(2 E(g 4)(5)
(1, 3)2 2,4)(5) thus optimal partition is
(1,2)(3,4)(5) (1,2)(3,4,5)
(1,2,;%2)(5) VALUE = 15
<1,3,£>é2)«:5>
(1)(2,3,4)(5)
=7 [

Figure 2.3 -- Example of the dynamic programming procedure

21



22

Consider first the growth in the cardinality of Pk for total
enumeration, To generate this number we assume that the graph is ccmplete*
so that no combination of nodes in some cluster is disconnected. Also, no
weight constraint is imposed upon the clusters. The upper bound on the

size of P ; is the number of ways in which k distinct objects can be

kP
distributed in i nondistinct cells, where i varies from one to k. The
Stirling number of the second kind, S(k,1), enumerates the ways in which k

distinct objects can be distributed into i nondistinct cells, where no cell

is left empty. Thus

Ni=

p, < S(k,i) .
i

i
=

A closed form for this summation does not appear to exist, but an upper

bound results from the recurrence relationship:

p, < (1+c_) p, _ for p.=1 and where
8 kT Tkl ck=|chN(k)| .

This relationship is derived from the fact that Pk is made up of two

subsets:

(1) the l-adjacencies of P, of which there are N

k,
(2) the k-adjacencies of P, where k > 1.

The size of the latter set is bounded by c¢ since each node in CONN(k)

kPk-1
can generate no more than Pr 1 partitions of Pk‘
For the complete graph, ICONN(k)| = k-1, therefore

P < k. .

% A complete graph has every pair of its nodes adjacent,
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Consequently, an upper bound on the number of partitions generated on the
kth step of the partitioning process is k..

To derive a lower hound on the number of feasible partitions, consider
the two trees of Fig. 2.4. The size of CONN{(k) for k > 1 is one for both
of these trees. The tree of Fig. 2.4(a) has the property that CONN(k) is
the same for all k, whereas that of Fig. 2.4(b) has no two CONN(k) equal.

Since every connected graph has a spanning tree (Liu, 1968], there is
at least one labeling of G such that [CONN(k)| = 1 for each node k > 1.

This result follows from the fact that a spanning tree can always be

labeled so that the label of a branch node is less than those of its sons.
The number of feasible partitions generated on the kth step of the dynamic
programming procedure increases with the size of CONN(k). Also, the number
of feasible partitions for a cyclic graph is always greater than the number
of feasible partitions of one of its spanuing trees -- a result proved in
Appendix A, Consequently we can set a lower bound on the number of feasible
partitions for a connected graph by finding the number of feasible partitions
for the trees of Fig. 2.4. Fig. 2.4(a) represents the minimum-level k node
tree and that of Fig. 2.4(b) the maximum-level k node tree.

In Appendix A we show that the number of feasible partitions of the
minimum-level k node tree varies as [f(w)]k where 1 < £(W) < 2 and £(W) is
an increasing function of the weight constraint W. The minimum number of
partitions of a tree of the form shown in Fig. 2.4(b) is F ~ 1.6 and
occurs for a weight constraint of two., Here Fk is the kth Fibonacci number.
An increase in the weight constraint results in an increase in the number of

feasible partitions.

% A spanning tree of a graph G is a subgraph of G which is a tree that

contains all nodes of G.
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(a) Minimum-level k node tree

O—O—C—-- —O

(b) Maximum~-level k node tree

Figure 2.4 -~ Minimum- and maximum~level k node trees
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In conclusion, a k node connected graph has a number of feasible

partitions that grows exponentially in k.,

D. THE USE OF GRAPH PROPERTIES IN PARTITIONING

The computation and storage requirements of the dynamic programming
procedure grow exponentially in k, limiting the utility of this procedure
if it simply generate§ all feasible partitions, 1In this section we
introduce several concepts that take advantage of properties of graphs.
These properties significantly reduce the computation time and storage
requirements for certain classes of graphs.

The first concept discussed is that of the isolated set. Using this
concept we show that the growth in the number of partitions generated on
step k of the partitioning process is dependent only on the degree of the
nodes and not on the number of nodes k. The second concept takes into
account the existence of cutpoints and blocks in a graph., 1In Chapter III
we show that these two concepts form the hasis of an efficient tree-
partitioning algorithm.

A node i is defined to be an element of the isolated set for node Kk,
denoted ISOL(k), if it satisfies the following properties:

(1) The label i is less than k.

(2) Node i is not adjacent to any node with label = k. Fig. 2.5

.-

illustrates this definition.

- omrer oo

Several properties of the isolated set result from this definition.

(1) The size of ISOL(k) is independent of the weight constraint.

{2) The connected set and the isolated set for any node k are
mu&ually exclusive, This property follows from the definition

of each set.



ISOL(1) = ¢
ISOL(2) = ¢
ISOL(3) = o

1soL(k) = {1}

IsoL(5) = {1,2,3]

Figure 2.5 ~~ Illustration of isolated set



27

(3) Let CONN(k)max denote the set of nodes with labels less than k
that are not elements of ISOL(k). Then

|CONN(k)max]=(k-1)—|1$0L(k)|

and is independent of the weight constraint.
(1) Given that CONN(k) represents the connected set of node k and
180L(k) the isolated set,
1soL(k) < {1,2,...,k-1},
conN(k) « {1,2,...,k-1}.
Here {1,2,...,k-1} represents the set of nodes with labels less
than k.
(5) ICONN(k)maxl =z |coNN(k)| for every weight constraint W. Note

that |CONN(k)| is a function of W and |CONN(k)max[ is not.

The growth in the size of ISOL(k) is a nondecreasing function of k,
as we show in the next theorem:
Theorem
|1son(k)| = |zsoL(k+1)]

Proof

Assume that ISOL(k) ¢ ISOL(k+1). Then there exists at least omne
node i that is in ISOL(k) but not in ISOL(k+l)., By definition, i is
adjacent to no node with label greater than Kk, consequently it is adjacent
to no node with label greater than k+l, contrary to the assumption.
Therefore, ISOL(k) & ISOL(k+l). The value of k is finite, thus
|1soL(x)| < |1son(k+1)|. @

We now show that the concept of the isolated set can be used to modify
the rertiticning prucess so that only a subset of the feasible partitions

of a step of the process must be generated on that step.



Let the set of partitions of step k-1 be denoted by Pk-l and let the
isolated set of node k be denoted by ISOL(k). The nodes in {1,2,...,k-1}
not in ISCL(k) are denoted by CONN(k)max. The set P, can then be
separated into disjoint subsets where the partitions in a given subset
have the property below:

Let p and q be two partitions in the same subset of P, ;. If {cip}
(for i=l,2,...,np} denctes the n clusters of partition p and {ch}

(for j=1,2,...,nq) the n clusters of partition q, then for each cluster
cip that contains nodes in CONN(k)maX, there is a cluster ch with =qual
weight that contains the same nodes of CONN(k)max. An example of two
partitions with this property is

p=(l,2)(h~)(3,5) and Q=1)3)‘l‘)(215‘)
where CONN(6)max= {4,5} and all nodes are of unit weight.

If a partition in a subset formed by this property has a cluster
containing one or more nodes 11,12,...,im, each of which is in CONN(k)max’
then every other partition in the subset has a cluster of equal weight
containing nodes 11,12,...,im.

Any two partitions in the same subset are defined as similar

partitions. We define the dominant partition of a set of similar

partitions as that partition of maximal value. If two or more partitions
are similar, and have equal maximal values, then one is arbitrarily chosen
as the dominant partition., The dominant partition is then said to
"dominate'' those partitions similar to it.

The reason for separating Pk—l into sets of similar partitions is that
all but the dominant partition can be deleted from each subset of Pk—]'
Wwe show in Section E that this result reduces the upper bound on the number

of feasible partitions generated on step k from
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to
X
k
3/2 [x W
EHXk k ’
e
where x, = lCONN(k)maXi. For small values of W and x, this result represents

a significant reduction in the number of partitions that must be generated
on the kth step of the partitioning process. We now prove that all but the

dominant partitions of step k-1 can be deleted from Pk—l'

Isolated Set Theoreu

The only partitions of step k-1 necessary in generating the partitioms
of step k are the dominant partitions.

Proof

Let G be an n node graph. A partition p generated on some step k in

the process of partitioning G can be represented by a sequence of pairs
[1;( )])[E:CEJ;[3:CSJ:---;[kxck])

where the first entry of a pair represents the node with lahel i and the
second entry the cluster to which node i is added on step i. The advantage
of this notation over the nodal representation is that it describes
precisely how p is generated. An example of this notation is 01, ()1,
[2,( )1,03,(2)1,04,(2)1,05,(2,3)], where "( )" denotes the empty cluster.
This representation is equivalent to the nodal representation p=(1,4)(2,3,5).
Let Pi be the set of partitions generated on step i of the partitioning
process. We then define a derivation of a partition p from a partition q,
where p is in P, and q is in Pj (j < k), as the sequence

[j+lycj+1]:[j+2y cj+2]’ ree )[k’ Ck .
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This notation is a variation of the above representation of p that ignores
the steps leading up to the generation of partition q.

Let two partitions f and g generated on step k-1 be similar and let f
dominate g, Assume that there existe a partition of G, g, derived from g
that has a greater value than any partition of G derived from f. We now
show that this assumption is false.

Let a derivation of g from g be [k,ck],[k+1,ck+1],...,[n,cn]. Since
f and g are similar, there is a partition fn derived from f with the

derivation [k,Ek],[k+1,E

k+1],‘..,[n,cn] such that for i=k,k+l,...,n, ¢,

and Ei have the same weight and the nodes in e differ from those in Ei
only if they are in 1SOL(k). Note that the podes in the isolated set of
node k share no edge with a node whose label is greater than k-1. As a
consequence, the values of partitions generated on steps k,k+l,...,n are
independent of the nodes in ISOL(k) that appear in a cluster together with
nodes in CONN(k)max'

Since clusters c, and A (i=k,k+1,...,n) have nodes that differ only
if they are in 1SOL(k), the sum of the values of the edges in cy and'zi
can differ by the sum of the values of those edges between nodes in ISOL(k)
contained in each cluster., Since f dominates g, the sum of the values of
edges in Ei is equal to or greater than the sum of the edges in e and fn
dominates g, Consequently, the value of fn is greater than or equal to
the value of 8, contrary to the assumption made above. It is therefore
not contrary to an optimal policy to delete all partitions of Pk—l
dominated by another partition. B

An illustration of the results of this theorem is given in Fig. 2.6.

In Section L w2 generalize the reduction in growth of computation

time and storage possible with the use of the Isolated Set Theorem.



-1s0L(5) = {1,2,3}

CONN(5) o = (1]
From Fig. 2.3, the sets of similar partitions in Puﬂare:

51 S
(1)(2)(3)(4)  VALUE= (1)(3)(2,4)  VALUE=1
(1,2)(3)(4)  VALUE= (1)(2)(3,%)  VALUE=6
(1,3)(2)(4)  VALUE=3 (1,3)(2,4)  VALUE=4
(1.2,3) (%) VALUE=8 (1,2)(3,k4) VALUE=11

5
(3)(1,2,4) VALUE=6
(2)(1,3,4)  VALUE=D
(1)(2,3,4)  VALUE=T
The dominant partitions of Ph are:

set dominant partition

S, (1,2,3)(4) VALUE=8

S, (1,2)(3,4) VALUE=11

54 (2)(1,3,4)  VALUE=D

Figure 2.6 -- Application of Isolated Set Theorem

31



32

The size oi the isolated set for the nodes of a graph is a function
of the labeling assigned to the graph. An anaiysis of the relationship
between the labeling and the size of the isolated set is given in
Chapter 1V,

A cutpoint of a comnected graph G=(V,E) is defined as a ncde ¢ such
that V-{c} is the node set of a nontrivial disconnected graph G'. A non-
separable graph is connected, nontrivial and has no cutpoints. A block
of a graph G is a maximal nonseparable subgraph of G. An illustration of
these definitions is given in Fig. 2.7.

If a connected graph G has more than one block, the following theorem
proves that it is valid to find the optimal partitions of each block in
any order and then combine these partitions to generate an optimal

partition of G.

Theorem (Block Independence Theorem)

If a graph G has q blocks, where q > 1, then the optimal partition of
G, p(opt), can be created by first partitioning the blocks independently,
then combining the resulting partitions,

Proof

Consider the nodal representation of p(opt):

LCD)ee e CI0C)eee ()] h D )ee e ODITC )een ()T

NCl NC2

NCq C

Here, NCi represents a (possibly empty) set of clusters whose nodes are
not cutpoints and are all from the same block, Bi' The set C consists of
clusters each of which contains at least one cutpoint,

The nodal repressntation of p(cpt) assumes this form because of the

special picperties of a graph with one or more cutpoints. Since the only



— cutpcint

"splitting" node L results in two blocks

3 block # 1

block # 2

Figure 2.7 -- Example of a graph with a cutpoint
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node in a block Bi adjacent to nodes not in By is a cutpoint, a cluster
that contains nodes from Bi’ but no cutpoint, must only contain nodes from
Bi as a result of the Connectivity Theorem, This property justifies the
collection of clusters into sets NCi for block Bi in the nodal represent-
ation above, )
Fach cluster ¢ € C contains two types of nodes:
(1) a set of cutpoints {kl,kg,...,kx};
(2) a set of nodes {il,ie,...,ia,jl,jg,...,jb,..}, none of which
are cutpoints.
The latter set can be partitioned into subsets by the equivalence
relationship BLOCK, where u BLOCK v if u and v are nodes in the same block
Bi' if the restriction on duplication of nodes implicit in the partition-
ing problem is removed, then the cluster ¢ can be rzplaced by a set of
clusters, {cl,cz,...,cz}, where these clusters have the following
properties:
(1} each cluster c; contains the union of the set of nodes of ¢ from
some block Bj created by the equivalence relation BLOCK and the

set of cutpoints of ¢ also in block B_;

4
(2) ZE.VALUEfci] = VALUE[c], where VALUE[ci] equals the sum of the
i:iues of edges contained in cluster ;.
Note that some cutpoint k may appear in several cf the clusters
making up the set {cl,cz,...,cz}.
When we perform the process above on each cluster in C, the nodal

representation of p(opt) is transformed to

(e ()3 een .- (D T eur ()} e D)0,

“

NC NC c c
1 q




where Ciaa set of clusters of nodes from block Bi including at least one
*

cutpoint of B, in each cluster. The value of the cover p(opt)' given

by this nodal representation equals that of p(opt), and is made up of

sets of clusters (NCi,Ci) representing a partition of block Bi' No edge

exists from a cluster in the set (NCi,Ci) to a cluster in the set (NCj,Cj)

for i#j because of the duplication of cutpoints.

In conclusion we can reverse the process of decomposing p(opt).into
the cover p(opt)' and generate p{opt) by first findirg the partitions of
each block, and then combining these partitions. @

An implemeﬁtation of the results of this theorem is given in

Apnendix C.

E. GROWTH RATE FOR GENERAL GRAPH PARTITIONING ALGORITHM

The following theorem develops an upper bound on the number of
feasible partitions generated on the kth step of the partitioning process
when modified to include the concept of the isolated set.

Theorem

Let CONN(k)max = the set of nodes with labels less than k not in
1SOL(k), i.e.

CONN(k)max = {1,2,...,k-1} - ISOL(k),
and let

x, = |com(x) |
For a weight constraint of W there are no more than

X T g x
T 372 K
xk(xk.)(W )a,v@ka x, W

e

% A cover differs from a partition in that the intersection of the node

sets of two clusters need not be empty.
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partitions generated on step k of the partitioning process.

Proof

The nartitions of step k-1 can be separated into disjoint subsets
by the property that all partitions in a given subset have the same dis-
tribution of the nodes in CONN(k) in their clusters. If, for example,
the set of partitions of step 4 is Ph={(l)(2)(3’h)’ (1,2)(3.4), (1,3)(2,4),

and (1,2,3)(4)} and CONN(5)={3,4}, then the subsets of P, satisfying the

above property are {(1,2)(3,h), (1)(2>(3’h)} and {(1)3)(2:h), (1,2,3)(&)}.
Note that no limitation is placed upon the nodes in ISOL(k) in a cluster.

We now show that any subset of Pk-l so formed has no more than

X
W k

partitions in it, where W is the weight constraint and Xy is the maximum
size of CONN(k) for any weight constraint.

let P/ be a set of partitions of step k-1 each of which has the
k-1

seme distribution of nodes in CONN(k) in its clusters, If a partition in

P;_, has a cluster containing nodes 1,15, .00,1 that are in CONN(k), then

every other partition in Pﬁ-l also has a cluster containing nodes 11,12,

...,1m. No restriction is placed, however, on the nodes in ISOL(k) in a

cluster containing this subset of CONN(k). Conseguently, the weight of a
cluster of a partition in P‘_1 containing nodes 11,12,”..,im need not be

the same for each partition in Pﬁ—l' There are a maximum of xk nodes in

CONN(k), consequently we can distribute the nodes of CONN(k) into no more

than Xy distinct clusters., Any given cluster can assume a weight that

varies from one to W. Assume then that every partition in Pﬁ-l has X
clusters that contain a node in CONN(k) and that every such cluster can

have a weight that varies from one to W. The number of partitions in Pi_l

is then no greater than
X

W k



since this number represents the number of different combinations of Xy
clusters, where each cluster can assume a weight from one to W. This
result follows from the Isolated Set Theorem, as we now show.

Assume that two partitions in Pﬂ-l’ p and q, have clusters such that
for every cluster of p containing a set of nodes in CONN(k), the cluster
of g containing the same set of nodes in CONN(k) has equal weight. Also,
azsume that the value of p is greater than or equal to that of q. The
Isolated Set Theorem then proves that q can be deleted from P&—l'
We now prove that an upper bound on the number of partitions of step k

generated from the set Pﬂ—l is given by

where for simplicity we assume that W < xk.

Assume that each partition in the set Pﬂ-l has r clusters that contain

at least one node in the set CONN(k). Also, let each node have unit weight.
Node k can then be added to each of the r clustérs of a partition in P'_1
if the weight of the cluster to which k is added is less than W. Let P(i)
denote the set of partitions in Pﬁ-l whose ith cluster, of those clusters
that contain a node in CONN(k), has weight less than W. The number of
feasible partitions of step k generated by adding node k to a cluster of a

partition of P! is then given by

2 lp)] -
i=1

The upper bound on |P(i)| is given by

-1

|p(i)|sw™ (w-1),

and the maximum value of r is x therefore no more than

k,

37



38

x -1
K
x, W (w-1)

partitions of step k can result from adding node k to the clusters of the
X

partitions in Pﬁ-l' There are W k l-adjacencies of step k derived from
the partitions in Pi—l’ hence
x -1 X
x, (W-1)W Kook
k
partitions are generated from the subset P&-l’ If we assume that W < Xy
then
x, -1 X X
k k k
xk(W—l)W +W s x W,
From Section C there are less than xkl possible we.s to distribute
the nodes in CONN(k) in clusters, hence the set P can be separated into

k-1

no more than xkl subsets. Therefore the upper bound on the number of

partitions generated on step k of the partitioning algorithm is

K
xk(xkl)w s
where X, is independent of the weight constraint.

If the dynamic programming procedure were not modified to take into
account the existence of isolated nodes, the growth in the size of Pk is
exponential, ranging from yk, where 1 < y < 2, for the simple trees of
Fig. 2.4 to k! for total enumeration. The growth in Pk for an algorithm
consisting of the dynamic programming procedure and a procedure for

deleting suboptimal partitions based upon the concept of the isolated set

has an upper bound of
"k
x, £(x, W where 1 = £(x ) <x.! .
(The lower bound of £(x, | occurs for the graph of Fig. 2.8). If x, and W

are small, a significant reduction in the size of Pk results from the use

of the concept of the isolated set.



T9 illustrate the effectiveness of the isolated set in reducing the
partitions generated on each step of the partitioning process, we now
examine several graph types that readily lend themselves to analysis.

A dramatic example of the reduction in computation time and storage
is the following. In Section C we show that the minimumn numbzr of
partitions generated on the kth step for the simple k node tree of Fig.
2.4(b) is greater than 1.6, Using the analysis above <nis bound is

reduced to the following:

x
xk!)W X Where x =1 for all k > 1

lPk| < X "

e (
thus

|2 | = w.

Another graph whose value of x,_ is independent of k is that of Fig.

k
2.8. TFor a width parameter h, ISOL(k)={i|i has label < k-h}. Thus

xk:h for all k and

BN .
[P | = h(nl)w
A more careful analysis results in the upper bound

[P, | = W

A graph with a constant fan-out f is the fully developed tree, an
exanple of which is shown in Fig, 2.9. Lawler, Levitt, and Turner

LGoldberg, et al., 1967] have shown that the growth for W=2 in the number

of feasible partitions for a fully-developed k node tree with fan-out of f

is bounded by

f+1

|p, (w=2)| < 2 (£+1)",

In the following theorem we show that this bound can be reduced by

employing the concept of the isolated set.

39
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h = width parameter

Figure 2.8 —- Graph with constant-size connected set



Level

f = fan-out

9 ~-- Fully-developed tree

Figure 2.
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Theorem

A fully-developed k node tree with fan-out of £ has an upper bound
of
(f+1)k/f
feasible partitions for a weight constraint of two. -

Proot

Assume that the tree is labeled such that node 1 is the root, nodes

\

2y3,...,f+1 are at level 1, nodes f+2,f+3,...,2f+1 are at level 2, etc.

Given any node j at level x of the tree, all nodes at levels 1,2,...,x-2

are in ISOL(k). A partition of step kX then assumes the form

CCXC D)o (0DINCIC ) ()]
——— e

A B

where "( )" denotes a cluster of the partition. Set A comprises clusters
all of whose nodes are in ISOL(k). Set B consists of clusters containing
nodes at levels x-1 and x. The number of feasible partitions of the tree
is then the number of possible distributions of nodes in clusters in the
set B.

For W=2 a fezasible cluster in set B contains either a single node at
level x-1 or x, or a node at level x and its predecessor at level x-1,

Separate the nodes at levels x and x-1 into subsets Sl’S ,Sy, where

Dy
the nodes in the same subset consist of:
(1) the nodes at level x with the same predecessor node i, and
(2) the common predecessor node i.
The number of subsets y equals the number of nodes at level x-1, therefore
yzfx—e.
Each subset Si contains f+1 nodes, These nodes can form no more

than £+1 feasible partitions for W=2 since a cluster of a feasible



partition that contains more than one node must contain the node in Si at
level x~1, The distribution of the f+1 nodes in each of the y subsets
5,,555.+.,S 1is independent of the distribution in the other subsets,
1’72 y

consequently there are
(£11)Y
possible ways to cluster the nodes at levels x and x-1l. The value of k

is related to the level x by

therefore
k
1

o <k/E (K1),

The upper bound on the number of feasible partitions for the tree is

therefore

[P, | < (#+1)T  for w2. @

el
In Chapter III we show that any tree can be partitioned with a total
number of operations directly proportional to the number of nodes in the
tree,
In conclusion, the introduction of the concept of the isolated set
bounds the number of partitions generated on the kth step of the dynamic

programming procedure to a maximui of
*x
IPkI < x, £(x )W © where
x,=| com(k) |

=(k-1)-|IS0L(k)| and

1 s £(x, ) < x.!
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An implementation of the result of the Block Independence Theorem
is given in Appendix C. We show there that the maximum number of
portitions generated on any step is directly proportional to the number
of partitions generated if each block were partitioned independently. 1In
many cases this reduces the growth in the cardinality of Pk from an

exponential in k to an exponential in k', where k' << k.

F. THE GENERAL GRAPH PARTITIONING ALGORITHM

The concepts of block indepen@ence and the isolated set introduced
in Section D can bc combined with the dynamic programming procedure to
form an algorithm for partitioning a general graph with a substantial
improvement in the growth in computational and storage requirements.
Section E has shown this improvement.

The general partitioning algorithm is summarized in Figs. 2.10 and
2.11. These flow charts consist of three procedures:

(1) A procedure that determines the blocks in a graph and then
generates the partitions of these blocks, combining them with
partitions of other blocks of the graph.

(2) A basic partitioning algorithm consisting of two subprocedures:
(a) A dynamic programming procedure that generates feasible

partitions,

(b) A procedure, based upon the concept of the isolated set,
that deletes all but the dominant partitions on each step
of the dynamic programming procedure,

The flow chart shown in Fig, 2.10 contains a procedure {A) to find

the blocks of a given graph, This algorithm is outlined in Hopcroft and

Tarjan [1971]. If no cutpoints exist in the graph to be partitioned,
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Find b blocks of
n node graph G
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Partition graph G
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procecure B

i=1i+1

:
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Figure 2,10 -- Flowchart of general graph partitioning process
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PROCEDURE B
ENTER

N

Label
graph

Find connected and
isolated set for
each node of graph

Use the dynamic
programming procedure
to generate feasible
partitions of step
k

k=k+1

'

Use isolated set

concept to delete

all but dominant

partitions of step
k

no

yes

EXIT

Figure 2,11 -- Flowchart of basic partitioning algorithm
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then the basic partitioning algorithm (procedure B) is performed and the
resulting maximal-valued partition is the optimal partition of the graph,

If more than one block exists in the graph each block is partitioned
and the results combined with the partitions of other blocks to form the
optimal partition of the graph. An implementation of procedure C that.
performs this task is given in Appendix C.

An implementation of the basic partitioning algorithm is given in
Appendix B. The procedure (D) for labeling the graph is the subject of
Chapter 1V.

An example of the use of the basic partitioning algorithm is given
in Fig. 2.12, It is instructive to compare the number of partitions
generated here with the number generated using the dynamic programming
procedure alone (Fig. 2.3). We see that significantly fewer partitions
are generated on each step by the general partitioning algorithm, We have
not made use of the Block Independence Theorem, although the graph has two

blocks. An example of the use of this theorem is given in Appendix C.
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STEP

k CONN({k) ISOL(k)
1 ® ¢
2 | {1} ¢
3 | {1,2} ¢
by {2,3} {1}
5 | {4} {1,2,3}
all nodes unit weight
W=3 k-adjacencies
1 2 3
(1) =0
(1)(2) =0 (1,2) =5
(1)(2)(3) =0 (1,3)(2) = 3 (1,2,3) = 8
(1,2)(3) =5 (1)(2,3) = 0
(1,2,3)(4) =8 (1)(2, 4)(3) (1,2 4)(3)
(1)(2>(2,h) (1 5,4) 2)
(1,2)911{) (1)\2 3,l+)
(1,2)£3i11@)(5) (1,2,2)92#,5) (1,2)£3,11;,5)

optimal partition is (1,2)(3,4,5) with VALUE = 15

Figure 2.12 ~- Example of graph partitioning algorithm
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CHAPTER 111

AN EFFICIENT TREE-PARTITIONING ALGORITHM

A very efficient variation of the general algorithm described in
Chapter II results if the graph to be partitioned is a tree. The concepts
of the isolated set and block independence, combined with the property
that a tree has no cycles, result in a partitioning algorithm whose growth
in computation time is directly proportional to the number of nodes in the
tree.

Before describing this algorithm, we note that the ability to partition
a tree with integer-weighted nodes and multi-valued edges has not been
considered in the literature. Kernighan [1G69] describes an algorithm that
partitions a tree with a growth in computation of n(loggn) for aﬂ n node

tree. The edges of this tree must, however, assume a restricted set of values.

A, INTRODUCT ION
A rooted tree is a directed graph T with node set V containing one or
more nodes sﬁch that:
(1) there is a specially designated node of V called the root of T,
and
(2) the remaining nodes in V can be separated into m 2 O disjoint
subsets Vl’VE""’Vm such that each Vi is the node set of a rooted
tree T, (i=1,2,...,m). The trees TysTps.-., T are called the
subtrees of the root.
If the relative order cf the subtrees Tl’TE""’Tm is important, the tree
is an ordered tree. The degree of a node of the rooted tree equals the
number of subtrees of that node. A leaf has degree zero and a branch node

has degree greater than zero. The roots of the subtrees of a branch node k

are the sons of node k.
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The tree partitioning algorithm of Section B can only partition an
ordered tree. We show in Sections B and C that the particular ordered
tree employed has no effect upon the growth in computation time and
storage space requirements of the algorithm, The graph to be partitioned
G is therefore transformed into an ordered tree G' by the following
procedure:

(1) Assign a unique label to each node in G.

(2) Form a rooted tree by selecting any node of G as root.

(3) Order the subtrees of a branch node k by increasing label of

their roots.
Whereas the growth in computation time and storage of the general graph
partitioning algorithm is a function of the labeling, such is not the
case for the algorithm described here; the labels assigned to nodes in
step 1 above are merely identifiers. An example of the transformation of
a tree G to an ordered tree G' is shown in Fig. 3.1. Before describing
the tree-partitioning algorithm, we introduce the following notation. In
this notation small letters represent partitions and capital letters
represent subgraphs. In particular, the letter q represents a partition
of a subtree of the ordered graph G', p represents a partition of a sub-
graph of G', and S represents a subgraph of G'. We also use the shorter

1

term "subtree k' to mean the subtree of G' whose root is the node with

label k.

q(k,w) and q(k):

The maximal-valued partition of subtree k whose cluster containing
node k is of weight w is denoted by q(k,w). The maximal-valued partition
of subtree k for all weights is denoted by q(k). Fig. 3.2 illustrates

these definitions.



all nodes unit weight
W=3

edge
values

(a) Graph to be partitioned, G

(¢) Ordered tree G'

Figure 3.1 -~ Transformation of tree G into ordered tree G'
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subtree

2
RN

1

(a) An illustration of the notation "subtree K"

subtree 2:
let all nodes have

unit weight and W = 3

Then q(2,1)=(1)(2)(3)(6) VALUE=0
a(2,2)=(1,2)(3)(6)  VALUE=5 a(2)=q(2,3)

Q(2:3)=(1,216)(3) VALUE=8

(b) An illustration of the notation q(k,w)

Figure 3.2 -~ Illustration of notation
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Eiﬁgl:

Let Si(k) denote the subgraph of G' with the following properties:

(i) The node set of Si(k) consists of the branch ncde k and the
nodes in the first i subtrees of node k.

(2) The edge set of Si(k) consists of the edges from node k to the
first i sons of k and the edges in the first 1 subtrees of

node k,

BingWZ:

The tree-partitioning algorithm iteratively generates partitions of
si+l(k) by combining the partitions of Si(k) with the partitions of ‘the
i+l st subtree of node k. The maximal-~valued partition of Si(k) whose
cluster containing node k is of weight w is denoted by pi(k,w). Fig. 3.3

illustrates this notation,

[p, (iw,),a(3,%,)] and [, (,w)]0a(3)]:

If subtree j is the 1+1 st subtree of branch node k, denote by

[Pi(k)wl):Q(ijg)]
the partition of Si+1(k) whose cluster containing node k is of weight
wl+w2. The set of clusters of the partition so represented contains one

cluster created by merging the cluster of pi(k,wl) containing node k and
the cluster of q(j’WE) containing node j. The other clusters of
[pk(k,wl),q(j,wz)] are made up of the remaining (unmodified) clusters of
pi(k,wl) and q(J’WE)'
Denote by
[p, (,w)10(3)]

the partition of Si+1(k) whose cluster containing node k has weight w
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Sl(lp): 0

5,(4): (1)

OGO 6
S3()+): ”
(2] 3 O
OB OO
(a) An illustration of the notation Si(k)

» if each node has unit weight
and W=3 then

1 py(4,1)=(1,2,6)(3)(4)  VALUES
5 3 p (4,2)=(2,4)(1)(3)(6) VALUE=1
CJORO b, (4,3)=(1,2,4)(3)(6)  vALUE6

(b) An illustration of the notation pi(k,w)

Figure 3.3 -~ Illustratioms of notation
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created by concatenating the unmodified clusters of pi(k,w) and'a(j).

Fig. 3.4 illustrates the use of this notation.

B. ALGORITHM
STEP 1
Form an ordered tree G' using the method given in Sectlon A,

STEP 2

Initialize every leaf k of G' such that

a(k,w)=(k) and VALUE[q(k,w)]=0.
~Also
q(k)=(k) and VALUE[q(k)]=0.
STEP 3
Find a branch node k all of whose sons are leaf nodes, If no such
node exists, go to step 5.
STEP 4
If node k has m sons with labels jl’jz""’jm’ find the partitions
of subtree k as follows (for w=WEIGHT[k], WEIGHT[k]+l,...,W):
(a) Let i=1 and po(k,w)=(k) if w=WEIGHT[ k] where VALUE[po(k,w)]=o.
(b) po(k,w)ICa(d;)] if w=WEIGHT[k], or
Pl(k)w)= [Po(k)wl)’Q(jlywe)J
if w > WEIGHT[k]
where w. =WEIGHT[k] and w

1 2

such that w, WEIGHT[jlj.

=w-WEIGHT[ k]

VALUE[ p, (k,w)]= VALUE[q(j,)] if w=WEIGHT[k], or
VALUE[q(jl,w2)1+VALUE[edge(k,jl)]
if WAWEIGHT[k].

Delete partitions of subtree jl from storage.



56

W=3

all nodes unit weight

£ q(5,1)=(5)(8)(9) and Py (4,1)=(14)(1,2,6)(3)
a(5,2)=(5,9)(8) P, (4,2)=(2,4)(1)(3)(6)
a(5,3)=(5,8,9) p, (4,3)=(1,2,4)(3)(6)
a(5)=a(5,3)

then

[p, (4,2),a(5,1)1=(2,4,5)(8)(9)(1)(3)(6)

and

[p, (4,3)1[a(5)1=(1,2,4)(3)(6)(5,8,9)

Figure 3.4 -- Illustration of notation



(¢) 1i=141
pi(k,w) = maximal-valued partition of the collection:
[p,_y (i,w)1[a(d,)] and
[pi_l(k:wl);Q(Jing)] with
w1=WEIGHT[k],WEIGHT[k]+1,...,W—WEIGHT[ji]
and w,=w-w, such that w, 2 WEIGHT[ji].

1

Here
vaLue((p, _, (k,w)1[a(3,;)1} = vALUE(p,_, (k,)]
+ VALUELq(3,)],
and
vatve{[p, _,(k,w;),a(d;,¥,)1} = VALUE(p, , (k,%;)]
+ VALUE[q(J,,%,)] + VALUE{ edge (k, J, )].
(d) Delete the partitions of subtree ji from storage,
(e) 1If i=m then:
(1) a(k,w)=p (k,w)
(ii) E(k):pm(k,w) such that VALUE[pm(k,w)] is maximal for
W=WEIGHT[k],WEIGIT[k]+1,...,W.
(iii) Prune nodes 3ysdpseeesdy from G'.
(iv) Store all q(k,w), q(k), and go to step 3.
1f iFm go to (c).
STEP 5
If r is the label of the root node, then E(r) is the optimal-valued
partition of the given tree G.
The efficiency of the tree-partitioning algorithm is due to the
ability to perform global optimization through local operationms. The

algorithm is based upon the following theorem,
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Theorem

R

Let a set of feasible partitions of subgraph Si(k) be separated into
disjoiﬁt subsets where all parfitions in the same subset have a cluster
of the same weight that contains node k. Then, all but a maximal-valued
partition from each subset can be deleted. The resulting maximal-valued
partition, whose cluster containing node k is of weight w, 1is denoted by
pi(k,w), where w=WKIGHT[k],WEIGHT[k]+1,...,W.

Proof

All nodes of Si(k)’ with the exception of node k, are adjacent to no
node in the subgraph of G' yet to be partitioned. As a consequence, the
connectivity constraint dictates that the only cluster of a partition of
Si(k) modified in future steps of the partitioning process is that
containing node k. We can use an argument identical to that used in the
proof of the Isolated Set Theorem to show that, of the set »f partitions
of Si(k) with a cluster of weight w containing node k, all but the
maximal-valued partition can be deleted from further consideration in the
partitioning process. R

Corollary

Given a set of feasible partitions of subtree k, all but the maximal-
valued partitions with a cluster containing node k of weight w for
w=WEIGHT[ k], WEIGHT[k]+1,....W can be deleted from further consideration
in the partitioning process. The maximal-valued partition of subtree k
whose cluster containing node k is of weight w is denoted by a(k,w).

Proof

Since Sm(k) represents subtree k if node k has m sons, and q(k,w)=
pm(k,w), this result is a special case of the above theorem. §§

We now prove the optimality of the tree-partitioning algorithm,
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Theorem
The tree-partitioning algorithm generates the optimal-valued
partition of the given tree, G.

Proof

Let G' be the ordered tree to which tree G is transformed in step 1
of the algorithm, The Block Independence Theorem proves that the optimal-
valued partition of a graph with more than one block can be created by
generating the partitions of each block independently and then combining
these partitions, We can extend this result to the practice of generating
the partitions of disjoint subgraphs containing more than one block and
then combining the resulting partitions to form the optimal partitions of
the graph. Since every subtiree of the ordered tree G' represents a
collection of blocks of G, the generation of the optimal partition of G'
can be performed by first generating the partition of each subtree whose
root is a son of a branch node k, and then combining these partitions in
any order to create the feasible partitions of subtree k. Note that this
result justifies the assumption that the order in which the subtrees of
each branch node k are combined is unimportant. 1In Section C we further
show that the particular rooted tree used to form G' from G has no effect
upon the partitioning algorithm.

We now show that the method used to generate the optimal-valued
partitions of each subtree is correct.

The previous theorem and its corollary prove that all but a maximal-
valued representative of the partitions of subgraph si—l(k) whose cluster
containing node k has weight w can be deleted. The proof of this theorem
is based upon the fact that the only cluster of a partition of Si—l(k)

modified when that partition is combined with partitions of other sub-
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graphs is the cluster containing node k. Consequently, when ferming the
partitions of Si(k) we need only consider the possiblz combinations of
the cluster of a partition of subtree ji containing node ji and the
cluster of a partition of subgraph si—l(k) containing node k., Here node

ji is the ith son of node k. The collection

[pi_l(k,,W)JEQ(Ji)] and
[pi-l(k"wl), q(‘ji,w2)]
with w1=WEIGHT[k],WEIGHT[k]+1,...,W-WEIGHT[ji]
: =W- = j
axd wy=w-w, such that w, WEIGHT[Ji]
then enumerates the ways in which two clusters, one containing node k and

the other node ji, can be combined to result in a cluster of weight w

containing node k. B

C. COMPUTA1'IONAL AND STORAGE GROWTH RATES
Consider a step in which the partition pi(k,w) is generated. There
are a maximum of w ways to form pi(k,w) since the collection of partitions

from which pi(k,w) is selected is enumerated by

[p,_, (kw)I(3(3,)] and
[pi_l(k,wl),q(ji,WE)] where w, ranges from a minimum of 1

to a maximum of w~1 and W y=W=Wy such that Vo =1.
min
Since w can range from one to W, there are W(W+l)/2 partitions geierated
on each iteration of the step that combines the partitions of Si_l(k) and
the partitions of the ith subtree of k, subtree ji. For a root with p sonmns,

there are p iterations of this step, hence
W(wW+1)p/2

operations per root node. The sum of the number of sons for all roots in



any rooted tree is equal to (n-l) for an n node tree, therefore the growth

in computational complexity for this algorithm is

W(W+1)(n-1) ~ Won,
2

Note that this growth rate is dependent only on the number of nodes in the
tree, not the particular rooted tree used to represent the tree.

At any point in the partitioning process, the maximum amount of
storage required occurs if some node has p subtrees and each subtree has
W partitions, hence a maximum of less than nWM words of storage are
required, where M represents the number of words of storage required to
store a partition.

In conclusion, the storage and computational requirements of the

tree~partitioning algorithm are linear in the number of nodes in the tree.

D. EXAMPLE
We now illustrate the use of the algorithm by partitioning the graph
of Fig. 3.1(a).
STEP 1
The transformation of the graph of Fig. 3.1(a) to an ordered tree is
outlined in Fig. 3.1.
STEP 2
Initialize: q(k)=q(k,1)=(k)
VALUE=0
where k=1,3,6,7,8,9
STEP 3 (iteration 1)

Select branch node 2 with sons 1,3, and 6.
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STEP L (iteration 1)
(a) 1i=1 and po(2,1)=(2) VALUE=0
(0) py(2,1)=lpy(2,1)1[a(2)]=(1)(2)  VALUE=O
p; (2,2)=[py(2,1),a(1,1)]
=(1,2) VALUE=S
p1(2,3) does not exist
Delete partitions of subtree 1,
(e¢) i=2

Select p2(2,1) from:

[p1(2,1)][&(3)]:(1)(2)<3) VALUE=0

Select p2(

(p,(2,2)10a(3)1=(1,2)(3)  VALUE=S

2,2) from:

[P2(2,1),q(3,1)3=(2,3)(1) VALUE=2
Select P2(2:3) from:

[Pl(2,3)][3(3)] does not exist

Cp,y(2,2):a(3,1)1=(1,2,3)  VALUE=T

[p1(2,1),q(3,2)]=does not exist
(d) Delete partitions of subtree 3.
(e) i#3, therefore go to (c)
(£) i=3

Select p3(2,1) from;:

[p,(2,1)10a(6)]=(1)(3)(2)(6)  VALUE=O

¥ Boxed partition is maximal-~valued partition in collection.



Select p3(2,2) from:

p,(2,2)10a(6)1=(1,2)(3)(6)  VALUE=S

[P2(2:l)JQ(6:1)1=(196)(2)(3) VALUE=3

Select Py (2,3) from:

[p,(2,3)10a(6)1=(1,2,3)(6)  VALUE=T

(p,(2,2), a(6,1)1=(1,2,6)(3) VALUE=8

[p2(2,1),q(6,2)]=does not exist
(d,e) Delete partitions of subtree 6.

Since i=3, let
a(2,1)=p5(2,1)=(1)(2)(3)(6)  VALLE=O
q(2,2)=p3(2,2)=(1,2)(3)(6) VALUE=5

a(2)=a(2,3)=p5(2,3)=(1,2,6)(3)  VALUE-B

Prune nodes 1,3, and 6 from G'.

STEP 3 (iteration 2)
Select branch node 5 with sons 8 and 9.
STEP 4 (iteration 2)

A summary of the results of step 4 is:

a(5,1)=(5)(8)(9)  VALUE=O

a(5,2)=(5,9)(8)  VALUE=6
a(5,3)=(5,8,9)  VALUE=10

a(5)=a(5,3)
STEP 3 (iteration 3)

Select root node 4 with sons 2,5, and 7.
STEP L (iteration 3)

(a) 4i=1 and po(u,1)=(u) VALUE=0
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(0) py(4,1)=lpy(%,1)I0a(2)]=(4)(1,2,6)(3)  VALUE=8
P, (4,2)=Lpy(%;1),4(2,1)]1=(1)(2,4)(3)(6)  VALUE=1
Py (4,3)=lpy(%,1),4(2,2)1=(1,2,4)(3)(6)  VALUE=6
Delete partitions of subtree 2 from storage.

(e) 1i=2

Select na(h,l) from:

(p, (4,1)1[a(5)1=(%)(1,2,6)(3)(5,8,9)  VALUE=18

Select pe(h,2) from:

[py (%,2)1[a(5)1=(-)(2,4)(3)(6)(5,8,9)  VALUE=11

[y (4,1),a(5,1)3=(4,5)(8)(9)(1,2,6)(3)  VALUE=16

Select p2(4,3) from:
[py (4,3)10a(5)1=(1,2,4)(3)(6)(5,8,9)  VALUE=16
[py (4,2),a(5,1)1=(2)(2,%,5)(8)(9)(3)(6)  VALUE=9

Upy (%51),a(5,2))=(4,5,9)(1,2,6)(3)(8)  VALUE=22

(e) i#3, therefore go to step (c)

(c,d,e) Summary of these steps:
a(l,1)=(1,2,6)(3)(5,8,9)(4+)(7)  VALUE=18
a(%,2)=(1,2,6)(3)(4,5)(8,9)(T)  VALUE=16
a(%,3)=(1,2,6)(3)(8)(4,5,9)(7)  VALUE=R2

STEP 3,5

Maximal-valued partition of tree is q(4)=q(%,3). This partition is

shown in Fig. 3.5.



Figure 3.5 -- Partition of tree of Fig. 3.1(a)
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CHAPTER 1V

GRAPH LABELING

The labeling of a graph is an important part of the partitioning
process since the maximum number of partitions generated on each step of
this process is a function of the labeling. The time to partition an n
node graph is proportional to npk(log2 pk), where p, is the number of
partitions generated on step k of the partitioning algorithm, The storage
requirements of the algorithm vary as npk. Consequently, the cardinality
of Pk’ the set of partitions generated on step k, should be kept as small
as possible for maximum efficiency.

In this chapter we show the.relationship of the labeling of the graph
and the size of Pk' An ad hoc labzling algorithm with a computational

complexity related algebraically to the number of graph nodes is also

described.

A. RFTATIONSHIP BETWEEN LABELING AND SIZE OF Pk

In Section E of Chapter II we show that

*x
pk = xk(f(xk))w b
where
pk=lPkI=number of partitions generated on step k of the
partitioning algorithm
xk=|CONN(k)max|=(k-1) - iy
i, =|ISOL(k)]
W=weight constraint

f(x, )=number of ways in which nodes in CONN(k)max are

distributed in clusters.



In Appendix B we show that the number of operations performed on

step k of the partitioning algorithm has an upper bound proportional to
nlp, (log, P )]

for an n node graph G. As a consequence, the sum

[

. p, (log, p)

w
il

is directly proportional to the computation time required to partition G.
We also show in Appendix B that the growth in storage requirements

for the kth step of the algorithm varies as

n(p, ),

therefore

e

n P

k

k=1

1]

can be used as a measure of the growth in the average storage requirements
of the algoxithm,
In order to compare the effectiveness of the many possible labelings

of a given graph, we use the sum
§ k=i
5= / Z 5
k=1

where 7 is a constant whose value is much greater than one. We now
justify the use of this sum in measuring the effect of a given labeling

upon the growth in computation time and storage for a given graph.
X

k
Since P < xk(xkl)w , the worst-case value of pk grows asymptotically
b

as 2 k, where

Z=CWXk s

e
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e=base of natural logarithms,

1/(2xk);

o={2nx, 3] 1.

The value of (pk)(log2 pk) can then be approximated by

xk+1 k-i

Z =Z k

since Xk
(p,.) (108, B,) < (2 ) (x,)(log, Z)

and we assume that
1
xk(*og2 Z) < 2.

Therefore the growth in both computation time and the average storage

requirements to partition an n node graph G is proportional to

k=1

We use the sum above to compare different labelings of the same graph,

. therefore the value of n carries no added information and can be omitted.

To further simplify the measure, the value of Z is assumed to be
independent of k.

The objective in labeling is then to minimize

< k-i
S=ZZ
k=1

by maximizing for each node the size of ISOL(k),ik.

A feature of this summation is made clearer by a change in notation:

Let Ak=1k—1k_1 and 10=O. Then

1-b, 1-4, 1-4 1-A
S =2 1 + 2z (1 +12 3[...[1 + 2z J...1].

Given two different labelings A and B, it is apparent that labeling A with

a value of Ai > Ai may result in a smaller value of S than labeling B
A B



with Aj§> AjA, where j > i. If a plot of ik versus k is made to compare
two differeﬁt labelings of a graph, two situations can occur:
(1) Labeling A has a consistently higher value of ik than labeling
B (Fig. 4.1(a)). The value of S(A) for labeling A therefore is
always less than that of S(B) for labeling B.
(2) The curves of ik versus k for labeling A and labeling B cross
at one or more points (Fig. 4.1(b)). The only method of

comparing tl: two labelings is to evaluate S(A) and S(B) and

choose the labeling with the smallest value.

Note that a curve of ik versus k is monotonically nondecreasing.
This is a result of the theorem of Chapter II that proves that |ISOL(k)|S
| 1oL (x+1)].
The usefulness of the global evaluation of a labeling L given by
< k-i(L),
s(L) = Eiz
k=1
js limited to those situations where the labeling L already exists. 1t

is assumed here that the graph is unlabeled.

A nonenumerative algorithm that generates a globally optimal labeling

has not been found. However, we now describe a locally optimal algorithm

with algebraic growth in computation time.

B. LABELING ALGORITHM
In Section A we develop the sun

n
N
=2,

j=1

j—ij(L)

s(L) Z

to measure the labeling L of a graph G, where ij(L) is the size of ISOL(J)

for labeling L. The labeling of G with the minimum value of S reguires
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1, =|1s0L(k)| *

labeling A

(a) Example in wkich labeling A 1s consistently
better than labeling B

labeling B

labeling A

(b) Example in which it is not possible to know which
labeling is the best without evaluating both

&

" Figure 4,1 -- Curves of cardinality of ISOL(k) versus k
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the least storage space and computation time to partition G, Since a
graph with n nodes can have n! labelings impressed upen it, a labeling
procedure that consists of generating a labeling 1. and using S(L) to
measure its effectiveness is impractical. We therefore resort to the
generation of a labeling iteratively by assigning the labels i ascending
order and use the increment in the partial value of S caused by the
assignment of labels to unlabeled nodes to compare the effectiveness of
different assignments.

I1f we assign labels ki’ki+1""’kj to a set of unlabeled nodes, the

effect on the value of S can be measured by observing the term

k
AS(ki,kj) = :f

e
zJ J
J=k;

The value of S is then given by
S = AS(l,k1)+AS(kl+1,k2)+...+AS(kr+1,n).

The basis of the labeling algorithm is to minimize the increments in the
values of S, As(ki,kj), and thereby attempt to minimize the global value
of S. Note that although each value of AS(ki,kj) is minimal, the value
of S may not be minimal. Section D investigates this point further. 1In
order to find the set of unlabeled nodes whose labeling causes the
minimum increment in the values of S, we develop the following rules.
The increase in the value of S is minimized by assigning labels to
the nodes of the graph so that each value of ij’ the size of ISOL(j), is
maximal for j=1,2,...,n., In order to become a member of the isolated of
some node m, a node with label j can be adjacent to no node with label
greaier than or equal to m., Since nodes are assigned in ascending order,

a node with label j adjacent to r unlabeled nodes can become a member of
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some ISOL(m) only if the r unlabeled nodes are assigned labels less than
m but greater than j. Assume that the largest label previously assigned
is k; to minimize m we must then assign labels k+l,k+2,...,k+r to the r
unlabeled nodes, To minimize the increment in the value of S, we then
try to find that set of unlabeled nodes whose labeling allows the largest
number of previously labeled nodes to become members of ISOL(m),ISOL(m+1),
...,ISOL(n) for as srall a value of m as possible. To determine that set,
we perform the following analysis,

Consider a step in the labeling of a graph where a number of the
nodes have been labeled. Let the set of labeled nodes, each of which is
adjacent to an unlabeled node, be denoted by L and the set of unlabeled
nodes by U. With each labeled node i assocciate a subset of U, denoted by
Ui’ with the property that each node in Ui is unlabeled and adjacent to
node i. If the largest label assigned to a node in Ui is m, then node i
is a member of the isolated set of every node with label greater than m,

Some set Uj associated with a node whose label is j may be contained
within Ui' For this case we define the relationship RELEASES, where i
RELEASES j if:

(1) UJ. < U,

(2) U.=U. and label i < label j.
RS S ,

If the nodes in Ui are labeled such that the greatest label assigned to a
node of U, is m, then both nodes i and j are "released' to become members
of the isolated set of those nodes with labels greater than m,

We then form the sets Li ’Li ,...,Li of those labeled nodes adjacent

1 2 r
to one or more unlabeled nodes using the relationship RELEASES such that

Li={j|j is a node in L and i RELEASES j}.



Fig. 4.2 illustrates the definition of L, and U , where ui=!Ui| and

1.=|L,].
Given the collection of sets of unlabeled nodes Ui ’Ui ,...,Ui and
1 2 r
their associated sets of labeled nodes Li ,Li ""’Li formed by the
1 72 r

relation RELEASES, we then select some set Ua from this collection for
labeling., Let the last label assigned to a node be k. The criterion
used to select the set Ua is as follows:
(1) TFor all pairs of sets in the collection U, ,U. ,...,U; , find
1 2 r
the increment in the value of S caused by assigning lahels
k+l,k+2,...,k+ua to U and then assigning labels k+uaf1,
k+ua+2,...,k+uafub to U, .
(2) Compare the results of (1) with the increase in S caused by

assigning labels k+1,k+2,...,k+ub to Ub and then assigning

labels k+ub+1,k+ub+2,...,k+ub

+u_ to U .
a a
We then label the set in the collection that cav "es the smallest increment
in the value of S. This practice may fail to yield a value of S that is
minimal because the assumptions are made that:
(l) The only sets of unlabeled nodes adjacent to labeled nodes
after Ua is lakeled are those in the collection Ui’ where
izil’iﬁ""’ir' This ignores the fact that newly created sets
[
of unlabeled nodes adjacent to labeled nodes may be created by
labeling Ua'
(2) The sets U, ,U, ,...,U, are not modified by the labeling of U .
i i i a
1 2 r
This may not bhe true.
We have found no efficient method to detect the modification of existing
sets U, (i:il,ie,...,ir), or the creation of new sets U, ,U,  ,..., due

r+1 r+2
to the labeling of Ua'
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labeled nodes

l

unlabeled nodes

N
DAVAVS
3

N

1={i,3,k,1} i<j<k<l

U={m,n,o}

Ui={m, n} Uj—_—{m, n}

U, ={n,0} u,={o}

Therefore:
Li={i, il Ui={m, n} 1,=2 u, =2
L ={x,1} Uk={n,o} 1,=2 u, =2
L1={l } Ul={0} 1,=1 u,=1
Lj={j} Uj={m,n} 1j=1 uj=2

Figure 4.2 -- Illustration of definitions



With these rules we calculate the effect on the value of S of
labeling the nodes in some set Ua by comparing the increase in S caused
by first labeling U_ and then labeling U, where b=ij,i,,...,1 and 8¥b.
If we denote the change in the value of S caused by first labeling Ua and
then labeling U

by AS the value of Asab is given by

b ab’
k+u +
_ g? ub st
AS = S Z J
ab ,
J=k+1
where
. <
1k k<3 k+ua
ij=
i +1 k+u j < k+u +u,_ .,
k =a a <3 k a b

This increment in the value of S is then compared to that caused by first

labeling Ub and then labeling Ua’
k+ua+ub i
s, = z z J
J=k+1
where
ik k<js< k+ub
ij=
: <
1k+1b k+ub <J k+ua+ub .
The values of Asab and Asba can be simplified by forming the terms
u u
a b .
. j+u -1
Asab = ZJ + z Z a a
k-i j=1 j=1
7 k
ua u +ub—la
tz%4+2%
and
u u +u -1
. b
ASpp 2P ag?® PP
k—1k
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The labeling of Ua’ and then Ub’ then results in a smaller increase in

the value of S than the labeling of Ub’ and then Ua’ if

ua ua+ub—1a ub Zua—i-u,b-lb

Z  + 2 <Z +
Let

u u +u -1 u u +u, ~1

zZ "+ Z b + K. =12 b + Z bk .

ab

Then

K o Z“a*“b 1 1 11 \

ab ~ u 1a ug 1,

z% z% \z z "/

and the labeling of Ua and then Ub results in a lower increment in S than

the labeling of U, and then Ua if K

b ab = O

1 iven th . . eeasU. nd L. ,L, ,...,L, we
In general, given the sets U1 ’U1 » ,U1 a Ll TR 2Ly s

1 2 r 1 2 T
use the following procedure to find that set Ui such that Kij = 0 for

j=ig,ig,...,i and j#i.
(1) For k=i,,i,...,1 form the differences u, -1 and separate the

sets Uk into three disjoint sets:
(a) set I = {Ukluk -1 < 0}

(b) set II = {y |u -1 =0}

k
(e) set 1II = {u, |u_- 1, >0} .

(2) If sets I and II are v:cuous, then label the element of set III,
U;, such that 1i is maximum, If two or more elements of set III
satisfy this criterion, then label the element of set III
satisfying the criteria of maximum 1i and minimum u, .

(3) 1If set I is empty, then =K.+ Use criterion listed in (3)
below,

(L) 1If set I is not empty, then choose that element of set I such

that ui is minimum. If several elements of set I have minimal

.values, select that element with minimum ui and maximum 1i'



(5) If two or more elements are equivalent from the standpoint of

the above tests, then label that set U, sharing the most

i

elements with the other sets Uk for k%i. This practice
minimizes the number of unlabeled nodes in the graph adjacent

to labeled nodes, allowing the labeled nodes to become nodes

in the isolated set ISOL(j) for lower labels j.

To initiate the labeling process we select some node as the node with
label 1., A candidate for label 1 can be selected by:
(1) choosing that node adjacent to the least number of nodes in the
graph;
(2) 1letting each node of the graph be node 1 in turn and performing

the labeling algorithm n times for an n node graph.

The first alternative is based upon the fact that labeling the node with
the least number of adjacent nodes allows node 1 to become a node in some
ISOL(j) where j is minimal,
The labeling algorithm is summarized in the flow chart of Fig. 4.3,
The computational growth rate of this algorithm is summarized in
Table 4.1, This table shows that the growth in computation time varies as

3

n~, where n is the number of graph nodes.
An implementation of the partitioning of a graph with cutpoints is
described in Appendix C, This implementation reduces the growth in

computation for the labeling process to c(n')3, where n' is the number of

nodes in the largest block of the graph and ¢ is a constant.

c. EXAMPLE

We present an example of the labeling algorithm for the graph of

Fig. L.4(a):
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START

|

Choose a node with label
1. k=1

Form the cet of labeled
nodes adjacent to one
or more unlabeled nodes,

Denote by L.

yes-;

{

STOP

For each node in L, i,
form the set Ui - the
set of unlabeled nodes
adjacent to node i,

i

Form the sets L, for
J=J ,jg,...,j &here
L={k|3 RELEABES k)

v

O

Find the set Ui such
that K,. =2 O where

- N 1] . <L
J=J1}J2’oci).]r b'Jt J#l

Label that set U, (of
those sets such %hat
K.. are equal) that
s %res the largest

number of nodes with

other Uk for

k=j1,j2,...,jr

B

Assign labels k+l,
k+2,,,.,k+u, to
nodes in set Ui

k=k+u.
1

Figure 4.3 -- Flowchart of labeling algorithm
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Table 4,1 -- Operations required to label an n node graph

§2§g* OPERATIONS/STEP** TOTAL OPERATIONS
1 cln2 cln2
2 con 02n2
3 c3n2 c3n3
b cun2 ckna
5 c5n2 c5n3
6 c5n2 c6n3
7 c.n C n2
7 7
8 cg cgn

* Refer to Fig. 4.3 for step number

¥*  The constants 01’02""’08 are dependent upon the particular

implementation used for the algorithm



80

(a) Given graph

k ISOL(k)
1 ¢

e ¢

3 ¢

4 {1}
5 {1,3]
6 {1,3,4

b Resulting labelin
g

Figure 4.} -- Example of labeling process



(1) sSince nodes A,C,E, and F each have the minimum number of adjacent
ncdes, select A arbitrarily as the node with label 1,
(2) L= {1} u={B,C,D,E,F}
Thus
U1={B,C} subsets of L: Ll={1}
U1={B,c}

Let node B have label 2 and node C label 3,

(3) 1={2,3} u={E,D, F}
Thus
U2={E,D} subsets of L: L2=[2,3}
U3={D] U2={E,D}
L.={3]
U,={D}
K23=K32 therefore let D have label L.
(%) 1={2,4} ' U={E, F}
Thus
U2={E} subsets of L: L2={2}
UL:{F} U2={E}
L, ={4}
U, ={F}
K, =K, , therefore node F has label 5.

(5) Node E has label 6 since it is the only node left.

Fig. 4.4(b) shows the resulting labeled graph.
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D. COMMENTS ON THE OPTIMALITY OF THE LABELING ALGORITHM

A counterexample of the optimality of the algorithm above is shown
in Fig. 4.5. Fig. 4.5(a) shows the labeling that results from the
labeling algorithm and Fig. L.5(b) another labeling that deliberately
defies the criterion employed in the algorithm. A comparison of the
values of S for each labeling shows that the second labeling results in
a lower value.

This phenomenon occurs because the labeling algorithm only examines
iocal data. One method of partially overcoming this problem is the
simple '"lookahead' strategy now described.

Given a situation in which L has been separated into subsets L1’L2’
""Lx’ allow the nodes in each subset Li to become isolated nodes by
labeling the set Ui' Then, perform the local labeling algorithm for a
few steps. The set Uk resulting in the best overall value of S is then
labeled first. This practice avoids the problem of Fig. 4.5 while

increasing the computation time moderately.



A(k)=ISOL(k)-ISOL(k-1)

A(k)

Kk
L
6
8

10

1h

15

85229

() Labeling produced by labeling
algorithm

1
2
n
>
3

10,

11,12,13

(r) Labeling that defies labeling criterion used in
labeling algorithm

Figure 4.5 -~ Counterexample to local labeling criterion
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CHAPTER V

CONCLUSIONS

A, SUMMARY OF RESULTS

In this thesis we investigate the problem of partitioning the
integer weighted nodes of a graph into clusters so that the values of the
edges cut are minimized,

Chapter II describes a dynamic programming procedure that generates
"feasible" partitions of an n node graph G. A partition is feasible if
each of its clusters satisfies the following restrictions:

(1) The sum of the node weights in the cluster is equal to or

less than a given weight constraint,

(2) The cluster nodes form a connected subgraph of G.

The nodes of G are first assigned unique labels 1,2,...,n. Then stage k
of the dynamic programming procedure generates feasible partitions of
those nodes with labels < k.,

The number of feasihle partitions for a cyclic k node graph grows
exponentially in k. Since the growth in computation time is proportional

to

n
n ﬁ;‘ p, (log, P, )
o

where pk is the number of partitions generated on the kth step of the
partitioning process, the use of the dynamic programming procedure to
generate all feasible partiticas is quite inefficient.

We then introduce the c&ﬁcéﬁtfuf the isolated set. This concept is
based upon the connectivity requirements of each cluster of a feasible

partition and limits the number of partitions generated on the kth step of
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the dynamic programming procedure to less than

x
k )
xkf(xk)w where 1 < f(xk) <x L.

Here X is the number of nodes of the graph with labels less than k that
can be clustered with node k. If X, is much less than k for k=1,2,...,n
and W<<n, the number of partitions that rust be generated by the dynamic
programming procedure is substantially less than the number of feasible
partitions.

A graph with cutpoints can be partitioned by first partitioning the
blocks of the graph, then combining these partitions to generate an
optimal partition of the entire graph. The maximum number of partitions
generated on a step of the partitioning process *s a function of the
number of nodes in a block and not the graph'itself.

In Chapter III the results of Chaoter Ii are applied to the
partitioning of a tree. The special pioperties of the tree result in an
algorithm whose computation time and storage requirements grow linearly
with the number of graph nodes.

A basic requirement of the partitioning algorithm is the assignment
of a unique integer label to each node, In Chapter IV we show the
relationship between the labeling impressed upon the graph and the growth
in the number of partitions generated on each step of the partitioning

algorithm, An ad hoc labeling algorithm is also described.

B. FUTURE RESEARCH

We have investigated the problem of partitioning a connected graph G
into disjoint clusters with the objective of minimizing the value of the
edges cut by the pdrtition, A logical extension of the partitioning

problem is the investigation of the problem of finding a minimum-valued
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cover of G. A cover differs from a partition in that a cover is the
distribution of the nodes of G into clusters {ci} (i=1,2,...,k) where

cs n cj need not be empty. A cover can often result in a lower value of
the intercluster edges than a partition of G [Kernighan, 1969].

An algorithm that solves the covering problem can be used to cluster -
logic gates onto integrated circuit modules. The objective here is to
minimize the number of intermodule connections at the expense of
duplicating gates. This problem is discussed extensively in the article
by Oden, Russo, and Wolff [1971].

The labeling algorithm developed in this thesis is locally optimal.
Therefore, an investigation of algorithms to efficiently generate a
globally optimal labeling is warranted.

The tree partitioning algorithm, because of its efficiency, can form
the basis of a partitioning algorithm for cyclic graphs, This algorithm

can efficiently generate a partition whose value may not be optimal but is

within a given bound,



APPENDIX A
AN ANALYSIS OF THE LOWER BOUND ON THE NUMBER OF

FEASIRLE PARTITIONS FOR A CONNECTED k NODE GRAPH

A. LOWER BOUND ON NUMBER OF FEASIBLE PARTITIONS IGNORING WEIGHT
CONSTRAINT
Let the e edges of a graph G be assigned unique integer labels
1,2,...,e. A binary variable e, can then be associated with the edge
with label k and represents the condition of edge k in a partition of
G -- i.e,:
{ 1 if edge k is within a cluster of the partition
K=

0 if edge k is cut by the partition.

We can then represent a partition of G by a binary sequence of
length e, where the kth bit of the sequence represents the condition of
edge k. This representation is unique, as we now show.

Assume that two binary sequences S1 and 52 represent the same
partition of G, 1If S1 is not equal to 82, there must bé at least one bit,
) that is a 1 in one sequence and a O in the other. ;This situation
cannot possibly occur since an edge cannot be both cufﬁand contained in a
cluster of the same partition, thus Sl=82'

A graph with k nodes has from k-1 to k{k-1)/2 edges. If each binary
sequence represents a partition, a graph with e edges has no more than 2e
feasible partitions. There are not, however, Ee feacible partitions of
an e edge cyclic graph because certain combinations wf bits in an e bit
binary sequence represent no partition of G. An illustration of this

fact is given in Fig, A.l1. 1In particular, let an arbitrary labeling be

impressed upon the edges of the gfaph G. Assume that a cycle of G, whose
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node label

edge label
2 d‘———J/

partition: (1,2)(3)(4,5,6)
valid representation: 1000111

invalid representation: 1000110

Figure A.l1 -- Illustration of an invalid partition representation



length is c, contains the set of edges with labels (11‘12""’ic}° Any e
bit sequence representing a partition of G cannot contain a combination of
the bits e, ,e, ,...,e, , in which one of these bits is a zero and the

1 2 ‘e
rest are ones, Any other combination of the bits €, 1€y yr.0s® is valid

1 2 ic

if no cycle is contained within this cycle,

The lower bound on the number of feasible partitions of a k node
cyclic graph is 2k_1, as we now show,

Let a spanning tree st(G) of a graph G be formed. Let G have k nodes,
e edges, and let G be connected and cyclic, There are k-1 edges and no
cycles in st(G), therefore st(G) has 251 feasible partitions. Each
feasible partition of st(G) is also a feasible partition of G. This
follows from the fact that a feasible partition of st(G) can always be
transformed to a feasible partition of G by adding edge (i,j) to a cluster
of a partition of st(G) if nodes i and j are in the same Eluster and edge
(i,j) is contained in G, but not st(G). Note that this is true regardless
of the weight constraint. Also, there are feasible partitions of G that
are not feasible partitions of st(G). For example, if edge (1,j) is an
edge of G not in st(G), then a partition with a cluster containing nodes i
and j alone is feasible for G but not for st(G).

If Pk denotes the set of feasible partiticns for a k node connected
graph, then

lPk' = Ek_l for the tr:ze

and

gk'l < ka] < 2(k_1)(k/2) for a eyeclic graph.
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B. LOWER BOUND ON NUMBER OF FEASIBLE PARTITIONS FOR A WEIGHT

CONSTRAINT OF W

We have shown that a k node tree has the fewest feasible partitions
of any connected k node grapﬁ, ignoring the weight constraint. Since the
feasible partitions of the spanning tree of a graph G are a subset of the
partitions of G, we can find a lower bound on the feasible partitions of
a connected graph by anal&zing the two tree types shown in Fig. A.Z2.

These trces represent the two extremes in spanning trees of a k node
graph. The tree of Fig, A.E(a) hasnthe fewest levels of any k node tree
and each connected set contains the same ncde. The tree of Fig. A,2(b)
has the maximum number of levels for a k node tree, and each connected set
is one element contained in no other connected set.

The number of feasible partitions of the tree of Fig. A.2(a) is given

by the summation

ol = 2. (%) -

We derive this number by noting that no cluster of a feasible partition can
contain more than one node unless node 1 is in that cluster. A lower bound
for this summation is given by
k '
w-1) = k., for w-1 < k/2,
(k-W+1)1(W-1)1

letting x = W-1, and using Stirling's approximation,
k

1 X
lpk' > (’;E) .

Letting the term



(a) Minimum-level tree

O—O—C—-- O

(b) Maximum-level tree

Figure A,2 -- Minimum- and maximum-level spanning trees
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b'S
1l-x

x = £(x) ,

(1-x)

we can show that 1 < £(x) < 2 for O < x < %,

A recurrence relationship for the number of feasible partitions of
the tree of Fig. A.2(b) can be derived from the fact that no more than
¥ nodes, hence W-1 edges, can appear together in a single cluster for a
weight constraint of W. Consequently, a binary sequence representing a
fensible partition of this tree cannot have a consecutive sequence on W
or more ones,

The number of binary sequences representing feasible partitions for
a weight constraint W is given by

B k-1

k| = P12

where
r-w-1

br = 2br~1 + 2 - br—w~1

with initial conditions

b =b

1 2:...=bw_1=0 and bw=1.

The solution to this recurrence relationship for W=2 is

where Fk is the kth Fibonacci number. The following theorem proves that
this is the minimum number of partitions for a nontrivial weight constraint.

Theorem

1f B(k,W) denotes the set of k bit binary sequences with no subsequence

of W or more adjacent ones, and if dk(w)=|B(k,w)|, then

dk(x) < dk(y) if x < y.
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Proof

B(k,W) < B(k,W+1) since all sequences in B(k,W) are sequences in
B(k,Ww+1). B(k,W+1) properly contains B(k,W) since a k bit sequence with
a subsequence of W adjacent ones is a sequence in B(k,W+l1) and not in
B(k,W); yet, all sequences in B(k,W) are sequences in B(k,W+l). Since
B(k,W) < B(k,W+1), dk(W) < d (W1) < dk(w+2)..,, thus d, (x) < d (y) if
x<y.

The sequences in the set B(k,W) are in one-to-one correspondence to

the partitions in P

k41 TOT the simple tree of Fig. A.2(b). Therefore,

the number of partitions for this tree increases from F, for W=2 to ok-1

for w2z k.



APPENDIX B

IMPLEMENTATION OF BASIC PARTITIONING ALGORITHM

Much of the analysis of Chapters II, III, and IV is based upon the
assumption that the computational and storage requirements associated with

some step of the partitioning algorithm are directly proportional to
n{p, *log, p, 1,

where n is the number of graph nodes and pk is the number of partitions
generated on step k., To support this assumption, an implementation of the

basic partitioning algorithm outlined in Fig. 2.11 is now described.

A. DATA STRUCTURE
Let Pk be the set of partitions associated with step k of the part-
itioning algorithm, The information associated with each partition in the
set of partitions Pk is shown in Fig. B.l. The fields of the two data
types are summarized below:
(1) HEADER (one per partition)
(a) DFLAG: a flag used to signal the existence of a partition
to be deleted.
(b) VAL: value of partition
(2) BODY {one entry per graph node)
(a) CC-FLAG: Warns that the cluster containing this node has
been used previously to form a new partition,
(b) REP: The n REP entries form a unique representation of a
partition. This representation is used in conjunction

with the WT entries to detect the dominant partitions

of each step.



n

HEADER
DFLAG VAL
BODY(1:n)
I I
I |
l l
CC~FLAG REP PTR NEWP HNODE

Figure B,l -- Data structure for a partition
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(c) PTR: Used to link the BODY elements of nodes in the same

cluster,

(d) Wr: Weight associated with the cluster in which this

node exists,

(e) NEWP: Contains pointer to a partition previously created
from this partition. 'This entry allows the value
pf a partition with a cluster that has two or more
elements of CONN(k) to be updated correctly.

(f) HNODE: Contains the highest-numbered node on the path
from node j to node k, where j € CONN(k) and the
path is that path that results in j being an
element of CONN(%:). The purpose of this entry is
to handle situations where a cluster violates the
connectivity constraint locally, but does not do so
globally, When HNODE < k, the unconnected cluster
containing k and j never becomes connected by the
addition of a node with label > k, Consequently,

the partition can be deleted.

Each partition has a unique representation consisting of the n-tuple
formed by the REP entries of the BODY data associated with that partition.
This representation is used to detect the dominant partitions of Pk' The
Isolated Set Theorem proves that all but the dominant partitions can be
deleted from Pk before perfor@ing step k+1,

A cluster of a partition is uniquely identified by assigning the same

integer i to each REP entry associated with the non-isolated nodes in that

cluster, The integer i is the label of that node in the cluster that
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becomes a member of some 4(j)=ISOL{j;-ISOL,j-1) for a maximum value of j.
If two or more nodes in a clustcr belong to the same A{j), then choose as
identifier that node with the smallest label. The reason for selecting
this form of identification for a cluster is explained below.

The REP ¢ .tries associated with isolated nodes are zeroed. We then
use the representation, as well as the weights of those clusters containing
a node in CONN(k)maX, to find similar partitions, 7Two partitions are
similar if:

(1) their representations are equal,

(2) the weight of a cluster with identifier i, where i > O, of the

first partition equals that of cluster i of the second partition,

We use the node r that is an element of 4(j) for the largest label j
to identify the cluster in which it exists because this avoids changing
the cluster identification until a new node is added to the cluster. A
cluster's identification changes for the following reasons:

(1) All nodes in the cluster become isolated nodes, in which case

all REP entries become zero.

(2) The cluster is modified by the inclusion of node k, in which

case the cluster identificatien is updated if required.

The use of the partition representation is illustrated irn Fig. B.2.

B. ALGORITHM

(1) Label graph.

(2) Find CONN(k) and ISOL{k) for all nodes k. Also create a matrix
HI(j,k), where j € CONN(k) and j is not adjacent to k. Here the

entry in the matrix is the largest label of a node on the path from
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N \J F Ww P

REP PTR WT

1 0 2 0
2 2 1 6
R B 150L(5)={1,3,4)
v | o} 5] o0
6|l ol 6o 5 € A(8)
7 ¢ T
8 0 8

(a) Partition (1,2)(3)(4,5)
Fi’6=<1:2)(3)(u’336)
P, 6=(1)(2)(4)(3,2,6)
1SOL(6)={1,3,2,u4}

Pi,6 3,6
REP PTR WT REP PTR WT
0 2 0 1 0 1 1
o] 1] 2 2| o 2 | 1
0 3 1 3 0 5 0
0 5 0 b 0 b 1
6 6 0 5 b 6 0
6 | v | 3 &€ 6| 31 3

(b) Equivalent partitions

Figure B.2 —-- Examples of partition representations



(3)
()
(5)

(6)

node j to node k that results in ndde J being in the set CONN(k).
Also, find A(k)=ISOL(k) - ISOL(k-1), where ISOL(O)=g.

pl={(1)}, k=1.

k=k+1, If k > n, then exit.

If CONN(k) is empty, go to (7). Else, select a node in CONN(k) --
let it be j ~- and delete j from CONN(k).

Form new partitions:

(a) For i=l1 to ka-ll let g=p -- i.e. create a new partition

i,k-1

of Pk whose data is initialized to the contents of Py ke the
2

17
ith partition in Pk—l'
(b) Let Tl=q.REP(j).

(¢) If q.CC-FLAG(T1)=1, then cluster T1 has been previously modified
by the inclusion of some other node in CONN(k). Update the
value of the partition previously created by adding the value
of edge(j,k) to VAL of the partition pointed to by q.NEWP(T1).
Go to (6a).

(d) If q.WI(T1)}+WEIGHT(k) > W, then go to (6a). Else, q.WT(T1)=
q.WT(T1)+WEIGHT(k).

(e) q.VAL=q.VAL+VALUE[ edge(j,k)].

(£) If q.HNODE(T1)=k, then pi’k_l.DFLAG=l.

(g) 1If VALUE[edge(j,k)]=0, then enter HI(j,k) in q.HNODE(T1).

(h) 74 T1 is a node in A(a) and k is a node in A(b), then replace
all REP entries whose identifier is Tl with k if a < b and set
q.REP(k)=k, Else, q.REP(k)=T1.

(1) T2=PTR(j), PTR(j)=k, PTR(k)=T2.

(3) Pi’k_l.NEWP(T1)=pointer to storage space associated with q.

(k) Go to (6a).
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(8)

(9)

{10)

1f A(k+1l) is empty, go to (0). Else, select a node in A(k+l) --
let it be x -- and delete x from A(k+1).
Zero all REP(x) entries associated with the partitions in P&—l and

P Go to (7).

K
Create l-adjacencies of Pk by taking each partition in pk«l whose
DFLAG entry is zero and entering k in REP{k). This is equivalent to
creating a partition with node k clustered alone. Delete all
partitions in Pk-l'

Determine those partitions of Pk that are dominant and delete all

other partitions. We can implement this step by using the concept
of the AVL tree [Adel'son-Vel'skii, Landis, 196Z] [Foster, 1965].

An AVL tree is defined as follows:

For every node of an AVL tree, the length of the longest path
in the left subtree differs from the length of the longest path in
the right subiree by no more than one branch. Fig. B.3 illustrates
an AVL tree,

A full description of the data structures associated with AVL
trees, and searching and inserting data using AVL trees, is given in
Stone [1972].

An AVL tree has the advantage that the asymptotic growth to
search or insert data into the tree grows as log,{r), where r is the
number of nodes in the tree. The maximum number of nodes in the AVL
tree used to find the dominant partitions of Pk is pk=|Pk|. We can
therefore find the dominant partitions of Pk in a number of

operations whose upper bound is proportiocnal to pk.\'log2 pk) times the

number of operations associated with the comparison of two partitions.
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Figure B.3 -~ An example of an AVL tree



We now describe how the AVL tree is used to find the dominant
partitions of Pk'
In Section D of Chapter II we define two partitions as

similar partitions if:

(1) they have equal distributions of the nodes in CONN(k) in
their clusters;
(2) clusters containing the same subset of CONN(k) have the
same weight in both partitions.
When translated into the data structure of Fig. B.1l, two partitions
p and q are similar if:
{1) they have equal representations, i.e. p.REP(1)=q.REP(i)
for i=1,2,...,n;
(2) p.wr(j)=q.wr(j) where j is a nonzero cluster identifier.
The partition p dominates partition q if:
(1) p and g are similar;
(2) p.VAL = q.VAL*.

To find the dominant partitions of P we select some partitions

k}
p in Pk that has not yet been inserted in the AVL tree and search the
tree for a similar partition. If a partition similar to p is found,
then the partition of greater value is left in the tree, and the
partition of lesser value is deleted from Pk. If two similar
partitions have equal value, then the partition being inserted, p, is

deleted from Pk. If no partition in the AVL tree is similar to p,

then p is inserted in the tree,

% If two partitions have equal values, one is arbitrarily chosen as *he

dominant partition.



The data associated with each node of the tree consists of the

n REP entries associated with a partition and a maximum of n WT

entries, one for each cluster containing a node in CONN(k)max. A

comparison of two partitions then takes a number
proportional to n for an n node graph.

(11) Go to (4).

C. GROWTH RATE

of operations

A summary of the number of operations required to perform steps L

through 11 of the algorithm (these steps are performed once per partition)

is given in Table B.1l. We see that step 10 dominates
computation time, Therefore the worst~case growth in

varies asymptotically as

n[p, (1og, p, )]

where p, equals the number of partitions generated on

k
the number of nodes in the graph. Stone [1972] shows

words of storage required to use an AVL tree grows as

the growth in

computation time

step k and n equals
that the number of

the number of nodes

in the tree; there are no more than Py nodes in the tree. The data

outlined in Fig. B.l, however, is proportional to n(pk), consequently the

storage requirements of the kth step of the algorithm

n(pk).

grow as

103
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Table B.l -- Number of operations required to form
partitions generated on step k of the

partitioning algorithm,

STEP OPERATIONS
*
4,5,6,11 (cl+02W)pk
*¥
7,8 (k+1 )c3pk
9 C)+ (pk—l)
10 eg (mpy ) (Logy )

Notes:
* Step 6h may require up to 02W operations for each partition,
where W is the weight constraint.
w0 | (k1) | <k
pk=number of partitions generated on step k of algorithm
n= number of graph nodes
cl,cz,c3,c]+,c5 are constants dependent upon implementation of

operations.



105

APPENDIX C
AN IMPLEMENTATION OF THE GRAPH PARTITIONING

PROCESS FOR A GRAPH WITH CUTPOINTS

The Block Independence Theorem proves that an optimal partition of
a graph G with one or more cutpoints can be created by generating the
partitions of each block of G independently, and combining these
partitions.

The only nodes of a block B contained in other blocks of G are cut-
points. This means that there can be a maximum of x(xl)Wx partitions of a
block with x cutpoints since all other nodes in the block are "isolated"
nodes, i.e. are adjacent to no node in another block, If some block of G

has x, cutpoints and another blcck has x

1 , then the process of combining

- *1 *2
the partitions of these blocks may take up to [xl(XIW/e) JEXE(XEW/G) ]
steps,

We derive a partitioning algorithm here whose computation time grows

asymptotically as
- 2
n(n “)(p log,, p)
and whose storage requirements grow as
Wpl

Here W is the weight constraint, n is the number of nodes in the graph G,
N is the number of nodes in the largest block of G, and p is the largest
number of partitions generated in partitioning a block of G, If the
blocks of G have substantially fewer nodes than G, a large reduction in

computation time and storage space is possible,
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A. PARTITIONING ALGORITHM
If a connected graph G has a nonvoid set of cutpoints {cj} and an

associated set of blocks {Bi], the block-cutpoint graph of G, denoted by

bc(G), is a tree with node set V={Bi} U {cj} (Harary, 1969]. Here a node
Bi is associated with block'Bi and a node cj\with cutpoint cj. Two nodes
are adjacent if one node corresponds to a block Bi and the other to a
cutpoint cj, and cj is in Bi' Note that bc(é) is also a bigraph. Fig.
C.1l illustrates the block—cutpoint tree for the given graph.

The block-cutpoint tree is used to order the sequence in which the
partitions of a block are combined with the partitions of blocks
previously partitioned. This sequence is dictated by the following rule:
a block Bi is eligible for partitioning if at most one cutpoint of Bi is
an element of the node set of some unpartitioned block, We base this
rule on the following result,

The nodes in a partitioned block Bi’ with the possible exception of
cutpoint Cj of Bi’ are contained in no unpartitioned block. We refer to
these nodes as "isolated nodes" since a cluster consisting entirely of
these nodes is never modified in future steps of the partitioning process.
As a result, the Isolated Set Theorem states that we can select the
optimal-valued partition whose cluster containing node cj is of weight w,
where w=WEIGHT[cj], WEIGHT[cj]+1,...,W. Therefore a maximum of W of the
partitions generated in the partitioning of Bi must be kept for future use
in the partitioning process. These partitions represent the optimal-
valued partitions of the subgraph whose nodes are in the plocks previously
partitioned. We now describe the procedure used to generate and combine

partitions:



(a) Graph with cutpoints C,F, and H

(c) Block-cutpoint tree of graph

Figure C.,1 -- The block-cutpoint tree
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(1)
(2)
(3)

(%)

Assign each node of the graph to be partitioned a unique identifier.

Create the block-cutpoint graph bec(G).

Choose some node of bc(G) that corresponds to a block as root, Form

the directed tree bec'(G).

Select a branch node c; of bc' (G) all of whose sons are leaf nodes.

(2)

(v)

()

Select some son of ck. This node corresponds to a block of G,

Bi’ with cutpoint c, in its node set,

Label the nodes of Bi with integer labels 1,2,...,ni using the
labeling algorithm developed in Chapter IV, Here n, equals the
number of nodes in Bi' Note that this labeling is independent
of the labeling employed in partitioning another block of G.
Partition B, with the basic partitioning algorithm (Fig. 2i11)
with one modification: 1If some node with label k is a cutpoint
cj, upon completion of step k find if previously-partitioned
blecks also contained node cj. If so, then there are a
maximum of W optimal partitions of the subgraph consisting of
the nodes in these blocks., Let this set of partitions be

denoted oy Pc . The partitions in P the set of partitions

. k?
J
generated on the kth step of the partitioning of block Bi’ are

then combined with the partitions in set P .,

c
J
The combination of Pc and Pk results in a set denoted by
J
Pk" Since all nodes in clusters of the partitions of Pc are

J
isolated nodes, except cs the maximum size of CONN(k)

remains unchanged and lpk’lmax = lpk‘max'

We now describe the process of combining the partitions in

the sets P, and P
k cj
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(i) Let an x-adjacency of node k be denoted by pX " where
J

p € P . The partition in P with a cluster of weight
X,k k c‘j

y containing node c, is denoted by p

ysc.®

J
J
(ii) Combine px K and py c by concatenating the clusters of
) sC.
J
each partition. The result is a partition pz K with
3

clusters consisting of the unmodified clusters of P,k
2

and py c ! with the exception of the two clusters
J .

J :
containing node cj and node k, These two clusters are

merged into one whose weight is given by

z=x+y-WEIGHT[ c ].
v

The set of nodes in the merged cluster includes the union
of the set of nodes in both clusters containing node Cj

(node k) with the identifier of node ¢, replaced by its

J
local lzbel k.,
(iii) VALUE[pZ’k,]=VALUE[pX’k]+VALUE[py,cj]

(d) When Bi is partitioned, delete the labels for each node of Bi

and replace them with the identifier assigned in step (1).
(e) Delete B, from be'(G). If the number of nodes in B, equals n_,

then P =P_ . 1If B, was the last son of branch node c, then
ck ni i ) k
delete Cy from be' (G) also and select another branch node of
be' (G) whose sons are leaf nodes.
(£) Go to (a) until only the root Br remains, Partition Br using
steps (a) through (d) above. Choose the optimal partition of

those associated with Br' This is the optimal partition of the

graph.



110

B. GROWTH RATE

The growth in computation time is summarized in Table C.1l. The
number of operations is dominated by the operations required to partition
a block of the graph (step he). The growth rate of the computation time

to partition a graph G therefore varies asymptotically as
-2
n(n “)(p log, p)

where p is the maximum number of partitions generated in partitioning a

block of the graph G and T is the maximum number of nodes in a block of G.
The maximum storage requirements of the algorithm occur during steps

he(i), be(ii), and Le(iii) since Wp partitions may be generated during

these steps. The growth in storage is therafore proportional to Wp.

C. EXAMPLE

We now give an example of the above procedure, The graph to be

partitioned is shown in Fig. C.2(a).
STEP 1
Assign unique identifiers to nodes (Fig. C.2(b)).
STEP 2
Find be(G) (Fig. C.1).
STEP 3

Form rooted tree be'(G) by selecting node B, as root (Fig. C.3).
STEP 4

Select branch C since sons BI’BE’B are all leaf nodes.

3

(a) select B, for partitioning.

(b) Label B, (Fig. C.k(a)).

(¢) Partition B, with algorithm outlined in Fig. 2.,11:

1



STEP

La
4b

Le

he(d,

Ld

he

Lt

Table C.1 ~- Number of operations to partition

an n node graph with k cutpoints

s
OPERATIONS/ STEP

ii, and iii) c.n Wp

TOTAL OPERATIONS

cukn

c_kn

5
c kﬁg(p log,. P)
6 2

c_kn Wp
T

c8kﬁ

c kn2

9

kclo

Tn=maximum number of nodes in a block of the graph

p=maximum number of partitions ganerated in creating partitions of

a block of the graph

The constants cl,ce,...,clo are implementation dependent
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(a) Graph to be partitioned

(b) Nodes of graph are assigned identifiers

Figure C.2 -- Example of partitioning process for

graph with cutpoints
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Figure C.3 -~ Rooted tree bec'(G) derived from block-

cutpoint graph bc(G)
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(a) Labeling of Bl

(b) Labeling of B2

Figure C.4 -- Examples of block labeling
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Figure C.5 =~ Resulting partition of graph of Fig. c.2
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Results -~

P=lpy 31Pp 3773, 3

P, ,=(1,2)(3) VALUE=1
1,3

p2’3=(2,3)(1) VALUE=11
p3’3=(1,2,3) VALUE=20.

(d) Delete labels and replace with node identifiers:

Pc={p1,c’p2,c’p3,c}

pl,c=(A,B)(C) VALUE=1
p2’C=(A)(C,B) VALUE=11
p, =(4,B,C) VALUE=20.
3,C

(e) Delete B, from tree.

Iteration 2:
(2) sSelect son B, of branch node C,
(b) Label B, (Fig. C.h(b)).

(e) Partition B,:

- 1
Py=lpy, 1P, 3073, 3

p, .=(1,2)(3) VALUE=6
1,3

p2’3=(2)(1,3) VALUE=4
p3’3=(1,2,3) VALUE=12.

Since node 3=node C, and node C is a cutpoint contained in a

previously partitioned block Bl’ combine P3 with Pc:

combine pl’3 and pl,ci (a,B)(3)(1,2)

VALUE=T



combine

combine

combine and p

combine

combine p

3,3

and pE,C:

p2,3 and pl,C:

3,C’

p2,3 and p2,C:

and Py ¢
2

(1,2)(3,B)(4)
VALUE=17
(4:B)(1,3)(2)

VALUE=S

(4,8,3)(1,2)
VALUE=26

(1,3,B)(2)(A)
VALUE=15

(1,2,3)(a,B)

VALUE=13.

After deleting suboptimal partitions:

P = ~1t [
3=y 500Pp 3175 5]

p1,3,=(A,B){3)(1,2)
p2’3|=<1)2)(3JB)(A)
p3,3,=(A,B,3)(1,2)
(d) Delete labels:
Pc={p1,c’p2,c’p3,c}

p1’C=(A:B)(D)E)(C>

P, c=(8)(B,C) (D, E)

p3, 3=(AJBJC) <D)E)

(e) Delete B, from be' (G).

Iteration 3:

VALUE=T
VALUE=17

VALUE=26

VALUE=T
VALUE=17

VALUE=26.

(a) B, is the remaining son of C.

3

(b,c,d) The generation of these partitions is similar to the above,

hence:
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pcz[pl,c’p2,c’p3,c}

Pl,C=(A,B)(D,E)(C)(J) VALUE=7
P, o=(B,C)(4)(D,E)(J) VALUE=17
b
Py o=(4;B,C)(D,E){J) VALUE=26
(e) Delete B, and C.

3

Iteration k4:
(a) Select node F since it has one son that is a leaf node, BM'
(b,c,d) Resulting partitions:
pl,F=(A,B,C)(D,E)(J)(F) VALUE=26
p2,F=(A,B)(D,E)(C,F)(J) VALUE=11
p3’F=(B,C,F)(A)(D,E)(J) VALUE=21
(e) Delete nodes B, and F.

Iteration 5:

(a) Select node H since it has son B_.

5
(b,c,d) Keésults:
Pl’H=(G)(H) VALUE=0
PQ,H=(G,H) VALUE=2

(e) Delete nodes B5 and H.
Iteration 6: |

The only node of be'(G) left is the root, Bé. It is partitioned with
the result that the optimal partition of G is

(4,B,C)(D,E)(J)(F,I,H)(G) VALUE=3Y.

Fig. C.5 shows this partition impressed upon the graph of Fig. C.Z2.
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